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Abstract

The goal of cryptography is to construct secure and efficient protocols for various
tasks. Unfortunately, it is often the case that protocols that are provably secure are
not efficient enough for practical use. As a result, most protocols used in practice are
heuristics that lack a proof of security. These heuristics are typically very efficient
and are believed to be secure, though no proof of security has been provided. In
this thesis we study the security of two types of such popular heuristics: (1) the
Fiat-Shamir paradigm for constructing digital signature schemes, and (2) heuristics
for obfuscation. We show that, in some sense, both of these types of heuristics are
insecure.

This thesis consists of two parts:

1. The insecurity of the Fiat-Shamir paradigm. The Fiat-Shamir paradigm
provides a general method for transforming any 3-round identification scheme, in
which the verifier’s message is random (and consists of his random coin tosses),
into a digital signature scheme. The idea of the transformation is to replace the
random message of the verifier in the identification scheme, with the value of
some deterministic hash function evaluated on the first-round message (sent by
the prover) and on the message to be signed. The Fiat-Shamir methodology for
producing digital signature schemes quickly gained popularity both in theory
and in practice, as it yields efficient and easy to implement digital signature
schemes. The most important question however remained open: are the digital
signature schemes produced by the Fiat-Shamir methodology secure?

In this thesis, we answer this question negatively. We show that there ex-
ist secure 3-round public-coin identification schemes for which the Fiat-Shamir
transformation yields insecure digital signature schemes for any hash function
used by the transformation. This is in contrast to the work of Pointcheval and
Stern, who proved that the Fiat-Shamir methodology always produces digital
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signature schemes that are secure against chosen message attacks in the “Ran-
dom Oracle Model” – when the hash function is modelled by a random oracle.

2. The impossibility of obfuscation. The goal of code obfuscation is to make
a program completely “unintelligible” while preserving its functionality. Obfus-
cation has been used for many years in attempts to prevent reverse engineering,
e.g., for copy protection, licensing schemes, and games. As a result, many heuris-
tics for obfuscation have emerged, and the important question that remained
is: are these heuristics for obfuscation secure?

In this thesis, we show that there are many “natural” classes of functions for
which obfuscation is not at all possible. This impossibility result holds in an
augmentation of the formal obfuscation model of Barak et al . (2001) that in-
cludes auxiliary input.

In both of these parts, among other things, we make usage of Barak’s technique
for taking advantage of non black-box access to a program, this time in the context
of digital signature schemes and in the context of obfuscation.

Thesis Supervisor: Shafi Goldwasser
Title: RSA Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In their famous paper, Diffie and Hellman [8] introduced the concept of public-key

cryptography, thus setting the foundations for modern cryptography. Since then

there has been a major effort to shift cryptography to provably secure grounds. The

goal was to formally define security of different cryptographic primitives, and to con-

struct protocols that are provably secure according to these definitions. For example,

Goldwasser and Micali [18] introduced the notion of semantic security for encryp-

tion schemes, and presented a construction of an encryption scheme that is semantic

secure. Golwasser, Micali and Rivest [19] introduced several definitions for secure

digital signature schemes, the strongest which is existential security against adaptive

chosen message attacks, and presented a construction of a digital signature scheme

that is secure with respect to this strongest security definition.

Unfortunately, it is often the case that provably secure protocols are not efficient

enough for practical use. As a result, most protocols used in practice are heuristics

that lack a proof of security. These heuristics are typically very efficient and are

believed to be secure, though no proof of security has been provided. In this thesis

we study the security of two types of such popular heuristics: (1) the Fiat-Shamir

paradigm for constructing digital signature schemes, and (2) heuristics for obfusca-

tion. We show that, in some sense, both of these types of heuristics are insecure.
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1.1 The Fiat-Shamir Heuristic

Fiat and Shamir [12] proposed a general paradigm for designing digital signature

schemes. Their starting observation was that designing (provably) secure identifica-

tion schemes (in which a sender interactively identifies himself to a receiver) can be

done with greater ease and efficiency than seems to be the case for secure digital

signature schemes (in which a signer non-interactively produces a digital signature

for some message, to be verified valid by a verifier). Indeed, to this day, all of the

provably secure signature schemes considered in the literature [19, 31, 34, 16, 7] are

quite complicated and are not sufficiently efficient for many practical purposes.

Building on this observation, they proposed a two-step heuristic for designing

secure digital signatures.

1. First, design a secure 3-round public-coin identification scheme. Namely, a se-

cure 3-round identification scheme (α; β; γ) where α is the prover’s first message,

β is a random message sent by the verifier (consisting of the verifier’s random

coin tosses), and γ is the prover’s response.

2. Second, choose a function ensemble H, and obtain a digital signature scheme as

follows. Let the signer choose at random a public key PK of the identification

scheme designed in step 1, and append to it a randomly chosen function h ∈R H.

Namely, the verification-key of the signer is (PK, h). To sign a message M,

the legal signer produces an accepting transcript (α; β; γ) of the interactive

identification scheme (with respect to the public-key PK), where β = h(α, M).

The completeness of the identification scheme implies that the legal signer, who

knows the secret-key corresponding to PK, can easily produce an accepting transcript

for any M. The intuition for why this signature scheme is secure is that when h is a

“sufficiently complicated” function (chosen by the real signer), then for any practical

purpose it looks like a truly random function. Now, if h was a truly random function

(say given to all parties via oracle access), then it should be hard for a forger, who

takes as input a pair (PK, h), to find an accepting transcript (α; β; γ), such that

14



β = h(α, M). Loosely speaking, this is the case since interacting with a truly random

function is essentially the same as interacting with a verifier that sends a truly random

message β.

The complexity of a digital signature scheme resulting from the above paradigm

is equivalent to the complexity of the starting identification scheme and the cost of

evaluating the public function h. Current proposals for a public (keyless) function h

are very efficient (e.g. [28]).

Due to the efficiency and the ease of design, the Fiat-Shamir paradigm quickly

gained much popularity both in theory and in practice. Several digital signature

schemes, including [35, 21, 32], were designed following this paradigm. The paradigm

has also been used to achieve forward secure digital signature schemes [1] and to

achieve better exact security [29]. Both of the above applications actually use a vari-

ation of the Fiat-Shamir paradigm. Still, they share the same basic structure: start

with some secure 3-round public-coin identification scheme and transform it into a

digital signature scheme, eliminating the random move of the verifier by an appli-

cation of a fixed function h to different quantities determined by the protocol and

to the message to be signed. The Fiat-Shamir paradigm, was also taken outside of

the context of identification schemes and digital signature schemes, as it provides a

general way of eliminating interaction from protocols by replacing the verifier with a

function ensemble. In particular, it was used by Micali in the context of CS proofs

[27]. The main question regarding any of these proposals is:

What can be proven about the security of the resulting schemes?

1.2 Program Obfuscation

The goal of program obfuscation is to make a program completely “unintelligible”

while preserving its functionality. Obfuscation has been used for many years in at-

tempts to prevent reverse engineering, e.g., for copy protection, licensing schemes, and

games. The problem of program obfuscation, which practitioners have been engaged
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in for many years, has only recently received attention in the theoretical community.

This was initiated by the work of Barak et al . [4], who formulated the notion of

program obfuscation. They formalized the intuition that a program should be “un-

intelligible” via the “virtual black box” property, which asserts that any predicate

that can be computed (in polynomial time) from the obfuscated program can also be

computed (in polynomial time) from the input-output behavior of the program (i.e.,

given black-box access to the program).

Barak et al . [4] showed that there exists a (contrived) class of functions F that is

not obfuscatable; meaning that every class of polynomial time programs P = {Pf :

f ∈ F}, where Pf computes the function f , is not obfuscatable. In contrast, Canetti

and Wee [5, 36] showed how to obfuscate the particular class of point functions under

various complexity assumptions. The class of point functions consists of all Boolean

functions of the form Ix(y) = 1 if and only if x = y (one may think of x as a pass-

word and the obfuscation of Ix as a public program that checks whether y is a valid

password or not). The question that remained is:

Are most functions of interest obfuscatable?

1.3 Our Results

In this thesis we investigate the above two questions. Our results are mainly negative.

1.3.1 On the Insecurity of the Fiat-Shamir Paradigm

We prove that the Fiat-Shamir paradigm for designing digital signature schemes can

lead to universally forgeable digital signatures. We do so by demonstrating the exis-

tence of a secure 3-round public-coin identification scheme for which the corresponding

signature scheme, obtained by applying the Fiat-Shamir paradigm, is insecure with

respect to any function ensemble implementing the public function.

Our result relies on the existence of one-way functions. Note, however, that if

one-way functions do not exist then secure signature schemes do not exist and thus
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the Fiat-Shamir paradigm always fails to produce secure signature schemes, as none

exist. In this sense, our result is unconditional. The problems we demonstrate for

the Fiat-Shamir paradigm apply to all other variations of the Fiat-Shamir paradigm

proposed in the literature [29, 1].

We stress that our result does not imply that a particular identification scheme,

such as [12, 35], cannot be proven to yield secure signature schemes with respect to

some tailor-made function ensemble H, under the Fiat-Shamir paradigm. What it

does imply is that any proof of security would have to involve the particulars of the

identification scheme and the H in question.

Our first idea is to make use of Barak’s technique [2] of taking advantage of

non black-box access to the program of the verifier. Intuitively, the idea is to take

any secure 3-round public-coin identification scheme (which is not necessarily zero-

knowledge) and extend its verdict function so that the verifier also accepts views

which convince him that the prover knew in advance a (deterministic) function that

computes the verifier’s message. Since the verifier chooses its message at random,

there is no way that the prover can guess in advance a (deterministic) function that

computes the verifier’s message, except with negligible probability, and therefore the

scheme remains secure. However, when the identification scheme is converted into a

signature scheme, by applying the Fiat-Shamir paradigm, the “verifier’s message” is

computed by a public (deterministic) function, chosen at random from some function

ensemble, and is known in advance to everyone. A forger, who will now know in

advance this function, will be able to generate an accepting view, which corresponds to

a legitimate signature. This makes the signature scheme insecure regardless of which

function ensemble is used to compute the “verifier’s message” in the identification

scheme.

The main technical challenge with implementing this approach is the following:

How can the prover convince the verifier that he knew in advance a function that com-

putes the verifier’s message in a 3-round protocol? (Note that the size of the messages

of the identification scheme should be a priori bounded by some fixed polynomial,

whereas the size of this function is not a priori bounded by any fixed polynomial.)

17



Non-interactive CS-proofs of Micali [27] can be used to overcome this challenge.

However, non-interactive CS-proofs (which themselves use a Fiat-Shamir type step to

eliminate interaction) are only known to hold in the Random Oracle Model. Thus, we

first get the (somewhat odd-looking) conditional result that if CS-proofs are realizable

in the real world by some function ensemble, then there exists a secure identification

scheme for which the Fiat-Shamir paradigm fails to produce a secure digital signature

scheme for all function ensembles. Next, more generally, we show that the Fiat-

Shamir paradigm is insecure regardless of whether or not CS-proofs are realizable in

the real world. This part of the proof contains the bulk of difficulty and technical

complication. It entails showing different extensions of secure 3-round public-coin

identification schemes, which become insecure as digital signature schemes when the

Fiat-Shamir paradigm is applied to them. All in all, we construct three identification

schemes ID1, ID2 and ID3, and prove that at least one of them demonstrates the

insecurity of the Fiat-Shamir paradigm.

The Insecurity of Modifications of the Fiat-Shamir Paradigm. Two modi-

fications of the Fiat-Shamir paradigm were considered in the literature: One due to

Micali and Reyzin [29] and the other due to Abdalla, An, Bellare and Nampremre

[1].

Micali and Reyzin [29] presented a method for constructing Fiat-Shamir-like signa-

ture schemes that yield better “exact security” than the original Fiat-Shamir method.

In their method, they convert any identification scheme (α; β; γ) into a signature

scheme, in which the signer first chooses β and only then produces α by computing

α = h(β, M), where M is the message to be signed and h is the function used to

eliminate interaction.1

Abdalla et. al. [1] defined a randomized generalization of the Fiat-Shamir paradigm,

and showed that signature schemes, obtained from the generalized Fiat-Shamir paradigm,

are secure (resp. forward secure) in the Random Oracle Model if and only if the un-

derlying identification scheme is secure (resp. forward secure) against impersonation

1Note that this method can be applied only to identification schemes in which the sender can
compute γ only given (SK, PK, α, β), and does not need any additional information on α.
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under passive attacks. Their randomized method transforms any 3-round public-coin

identification scheme (α; β; γ) into a signature scheme by replacing the random β with

h(α, M, r), where M is the message to be signed, h is the function used to eliminate

interaction, and r is randomness chosen by the signer.

Using similar ideas to the ones presented in this thesis, one can prove the insecurity

of these Fiat-Shamir modifications as well.

1.3.2 On the Impossibility of Obfuscation

We show that there are many “natural” classes of functions that are not obfuscatable

under a multiple obfuscation attack. More precisely:

1. We first argue that the definition of obfuscation due to Barak et al . is not robust

against multiple obfuscation attacks.

2. We then define obfuscation w.r.t. auxiliary input, which is robust against such

attacks.

3. Finally, we argue that many “natural” classes of functions are not obfuscatable

w.r.t. auxiliary input.

• Multiple obfuscation attacks. Let us first illustrate, via an example, that the

definition of obfuscation due to Barak et al . is not robust against multiple obfus-

cation attacks. A primary usage of obfuscation, pointed out in [4], is to delegate

cryptographic ability. Consider the task of decryption where DECSK(C) stands for

the decryption algorithm with secret key SK applied to the ciphertext C. Say Alice

wants to delegate to her assistant Bob the ability to decrypt all documents which

pertain to travel matters. This is easily achieved using an obfuscator O as follows.

Define the function DEC1
SK(C) ! “compute M = DECSK(C); output M if and only if

M starts with ‘subject:travel’,” and give Bob the obfuscated program O(DEC1
SK).

Say that next month, Alice wants to delegate to Bob the ability to decrypt all doc-

uments which pertain to recruiting matters. This is achieved in the same manner:
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let DEC2
SK(C) ! “compute M = DECSK(C); output M if and only if M starts with

‘subject:recruiting’,” and give Bob the obfuscated program O(DEC2
SK).

Thus, Bob is given obfuscations of two functions O(DEC1
SK) and O(DEC2

SK). We

should obviously require that Bob cannot gain (in polynomial time) too much

knowledge from O(DEC1
SK) and O(DEC2

SK). In particular, we should require that

Bob cannot learn the corresponding secret-key SK from these two obfuscations.

This is not guaranteed by the original definition of Barak et al . [4], and led us to

the conclusion that we should consider obfuscation with respect to auxiliary input.

In the example above, Bob was given an obfuscation of two dependent functions

DEC1
SK and DEC2

SK (these functions are dependent in the sense that they both use

the same secret-key). Quite surprisingly, we show that even if Bob is given obfus-

cations of two independent functions, he can still carry out a multiple obfuscation

attack.

For example, consider any secure digital signature scheme SIG = (GEN, SIGN, VERIFY).

Say a signer Alice with secret signing key SK1 and a signer Carol with an indepen-

dent signing key SK2 share an assistant Bob. Alice delegates to Bob the ability to

sign on her behalf the documents which pertain to personal matters, by giving Bob

the obfuscated program O(SIGN1
SK1

), where SIGN1
SK1

(M) ! “output SIGNSK1(M) if

and only if M starts with ‘subject:personal’.” Carol delegates to Bob the ability

to sign on her behalf all documents which pertain to student affairs matters, by

giving Bob the obfuscated program O(SIGN2
SK2

), where SIGN2
SK2

(M) ! “output

SIGNSK2(M) if and only if M starts with ‘subject:student affairs’.” Thus, Bob is

given two obfuscations O(SIGN1
SK1

) and O(SIGN2
SK2

).

We show that even in this case, where the two obfuscations are independent, there

is some predicate s that can be learned from the two obfuscations that could not

be learned if one of these obfuscations was replaced with black-box access to the

function. In other words, even though each obfuscation by itself is essentially

equivalent to a black-box, and even though these functions are completely inde-
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pendent of each other, together they are not a valid obfuscation, in the sense that

they reveal a predicate s that could not have been computed if one of these ob-

fuscations was replaced with black-box access to the function. At first glance this

may seem counterintuitive, since given only O(SIGN1
SK1

), Bob himself could gener-

ate O(SIGN2
SK2

) (as it is independent of O(SIGN1
SK1

)), and thus learn the predicate

s. However, this is not a contradiction, since s is actually a function of both

SK1 and SK2, and it is efficiently computable from O(SIGN1
SK1

) and SK2, but it is

not efficiently computable from O(SIGN1
SK1

) and O(SIGN2
SK2

). This led us to the

conclusion that we should consider obfuscation w.r.t. auxiliary input, even if the

auxiliary input is independent of the obfuscated function.

The idea of requiring security to hold even when an auxiliary input is available to

the adversary is not new, and has been present since the early work on auxiliary-

input zero-knowledge protocols [20]. In the context of zero-knowledge, the re-

quirement is that for every x ∈ L and for every auxiliary input z, whatever can

be learned by a polynomial time verifier that is given (x, z) and interacts with a

prover on input x, can also be learned by a polynomial time simulator that is given

only (x, z). Intuitively, one may think of z as the history observed by the verifier

in previous executions. Without this requirement, it is impossible to show secure

(even sequential) composition of zero-knowledge protocols. Thus, by now, the

terms zero-knowledge [19] and auxiliary-input zero-knowledge [20] have become

one and the same. In the context of obfuscation, we incorporate auxiliary-input

in a very similar manner into the definition.

• Obfuscation w.r.t auxiliary input. When considering obfuscation w.r.t. aux-

iliary input, we modify the “virtual black box” property, to require that for every

auxiliary input z any predicate that can be learned by a polynomial time non-

uniform adversary that is given z and an obfuscated program, can also be learned

by a polynomial time non-uniform simulator that is given z and input/output ac-

cess to the program. Notice that, as obfuscation w.r.t. auxiliary input is harder to

satisfy than obfuscation without auxiliary input, the result of [4] already implies
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the existence of classes of functions that cannot be obfuscated w.r.t. auxiliary in-

put. Our emphasis is to show that this is actually true for wide and natural classes

of functions.

We distinguish between two types of obfuscation w.r.t. auxiliary input: obfuscation

w.r.t. dependent auxiliary input and obfuscation w.r.t. independent auxiliary input.2

Dependent auxiliary input. Let F = {Fn}n∈N be a class of functions. We say

that O is an obfuscator w.r.t. dependent auxiliary input for the class F if for every

function f ∈ F the virtual black-box property holds even when the adversary (and

the simulator) are given an additional auxiliary input z (this should hold for any

z, including one that possibly depends on f).3

Independent auxiliary input. We say that O is an obfuscator w.r.t. inde-

pendent auxiliary input for the class F if for every function f ∈ F the virtual

black-box property holds even when the adversary (and the simulator) are given

an additional auxiliary input z which is independent of f . To capture the inde-

pendence of the auxiliary input z from the obfuscated function f , we fix z before

f is chosen from the class F . Formally, we require that for all auxiliary inputs z

given to the adversary, the black-box property should hold for a randomly chosen

function in F .

At first it may seem that fixing the independent auxiliary input z to the adversary

before choosing the function to be obfuscated, is equivalent to hard-wiring z to the

adversary, and thus that an impossibility result for obfuscation w.r.t. independent

auxiliary input implies an impossibility result for obfuscation w.r.t. [4]’s original

definition. However, as was mentioned above (in the example of a multiple obfus-

cation attack w.r.t. independent auxiliary input) this intuition is misleading. Let

us illustrate this via an example. Consider a z that satisfies the following three

2This distinction was not done in the context of zero-knowledge.
3This definition follows the lines of the definition of auxiliary-input zero-knowledge, which also

allows the auxiliary input z to depend on the statement x being proven.
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requirements: (1) given z and an obfuscation of f ∈R F it is easy to compute

some predicate π(f, z); (2) given z and black-box access to f ∈R F it is hard to

compute the predicate π(f, z); (3) given z and black-box access to f ∈R F and

the value of some hard computation on z (say g(z), for a hard function g) it is

easy to compute the predicate π(f, z). Then, certainly, requirements (1) and (2)

imply that it is impossible to obfuscate f w.r.t. auxiliary input. In contrast, no

such impossibility is implied for the [4]’s definition, since by requirements (1) and

(3), if z is hard-wired to the adversary which is given z and an obfuscation of f ,

then g(z) can be hard-wired to the simulator which is only given z and black-box

access to f . This will enable the simulator to compute π(f, z). We note that both

in our impossibility results and in our examples we use an auxiliary input of this

form.

Whereas requiring the black box property to hold when an auxiliary input is

available, is a strengthening of the requirement made by the original definition

[4], the fact that we require the black box property to hold for a random function

in the class rather than for every function, is a weakening of the requirement in

[4].4 We emphasize that weakening the definition of obfuscation strengthens any

impossibility result on obfuscation, which is the focus of this work. However,

we do believe that this weakening is meaningful and sufficient for many positive

applications of obfuscation, where the particular obfuscated function is chosen at

random from some class of functions. This is how obfuscation is used in most of

the examples of [4], where generally speaking a class of functions F corresponds

to a class of cryptographic algorithms (e.g. a class of RSA decryption functions

where each decryption function is w.r.t. a different secret key, a class of digital

signature functions where each signing function is w.r.t. a different signing key, or

a class of pseudo random functions, where each pseudo random function is w.r.t. a

different seed) and a random choice of f ∈ F corresponds to choosing a particular

key for the cryptographic algorithm at hand.

We give separate impossibility results for obfuscation w.r.t. independent auxiliary

4We note that the negative results of [4] hold with respect to this weakening.
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input and obfuscation w.r.t. dependent auxiliary input. We stress that our impos-

sibility results are unconditional and do not require any intractability assumptions

such as the existence of one-way functions.

• Impossibility of obfuscation w.r.t. auxiliary input

Independent auxiliary input. Our first result considers obfuscation w.r.t. in-

dependent auxiliary input. Loosely speaking, we show that many natural filter

functions (defined below) cannot be obfuscated w.r.t. independent auxiliary input.

Filter functions. Loosely speaking, each filter function is associated with a

function f and an NP language L, and is denoted by fL. The filter function fL

on input (x,w) checks whether (x, w) ∈ RL (where RL is the NP relation that

corresponds to L), and outputs f(x) if and only if w is a valid witness. Thus, fL

gives the value of f(x) only to whoever knows a witness corresponding to x.

Formally, each class of filter functions is associated with a class of functions F and

an NP language L. The class of filter functions FL ! {fL : f ∈ F} is the class

of functions where each function fL ∈ FL is defined as follows: fL(x,w) = f(x)

for every input (x, w) ∈ RL, and fL(x,w) = ⊥ for every input (x,w) $∈ RL. For

example, one may think of F = {SIGNSK} as any class of signing functions, L as

the set {(N, y) : y ∈ QRN} (the set of quadratic residues mod N), and SIGNL
SK as

computing SIGNSK(N, y) only for those users who supply the pair (N, y) together

with a square-root of y modulo N. An analogy may be taken from the setting

of certification authority: a user’s identity corresponds to a pair (N, y) for which

only the legal user knows a square root of y mod N, and when he presents this

square-root to the trusted center, he gets from the authority a signed certificate

of (N, y).

Our result on the impossibility of obfuscation w.r.t. independent auxiliary input

is the following:
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Result 1 (Informal): Let L be any NP-complete language, and let F be any

any class of pseudo-random functions, secure secret-key encryption algorithms, or

randomized digital signature algorithms (where the coins used by the algorithms

are replaced by a pseudo random function). Then the class of filter functions FL

cannot be obfuscated w.r.t. independent auxiliary input.

To express this result in its full generality, we need to introduce the concept of

functions with super-polynomial pseudo entropy.5

Functions with super-polynomial pseudo entropy. Pseudo entropy can be

thought of as a relaxation of pseudo-randomness. A class of functions F is pseudo-

random if it is hard to distinguish between having oracle access to f ∈R F and

having oracle access to a totally random function. The pseudo-randomness require-

ment is very strong: f needs to look truly random on every (polynomial time com-

putable) element in the domain. Pseudo entropy requires the pseudo-randomness

to hold only on a (small) subset of the domain. Moreover, the function need not

look truly random on this subset; rather we require the function values on this

subset to look as if they have high min entropy.

Specifically, we say that a class of functions F has pseudo entropy at least p(·) if

for every n ∈ N there exists a polynomial size subset In ⊆ {0, 1}n such that for a

randomly chosen f ∈R Fn, the random variable {f(x)}x∈In cannot be distinguished

from a random variable which has statistical min-entropy p(n).6 We say that F

has super-polynomial pseudo entropy if it has pseudo entropy at least p(·), for every

polynomial p(·).

We claim that there are many natural classes of functions with super-polynomial

pseudo entropy, and in particular we show (Claim 26) that every class of pseudo

random functions [15], every class of secure secret-key encryption algorithms [18],

and every class of randomized digital signature algorithm [19] (where the coins

5The term “pseudo entropy” was introduced by [23] in the context of random variables. We
extend the use of this term to the context of classes of functions.

6We refer the reader to Section 4.3 for the precise definition.

25



used by the algorithms are replaced by a pseudo random function), has super-

polynomial pseudo entropy.

Result 1 can now be stated more generally.

Result 1 (General): The class of filter functions FL cannot be obfuscated

(in the presence of independent auxiliary inputs), where L is any NP-complete

language and F is any class of functions that satisfies the following two properties:

1. F is strongly unpredictable. Namely, for every x and for a random f ∈R F it

is hard to predict f(x), given oracle access to f everywhere except x .

2. F has super-polynomial pseudo entropy on inputs in L (i.e., where the poly-

nomial size subsets In are contained in L ∩ {0, 1}n).7,8

Impossibility of Obfuscation w.r.t. Dependent Auxiliary Input. We next

consider obfuscation w.r.t. dependent auxiliary input. We show that if point-filter

functions (defined below) can be obfuscated then every class of functions with

super-polynomial pseudo entropy cannot be obfuscated (in particular, every class

of pseudo random functions, every class of secure secret-key encryption algorithms,

and every class of randomized signing algorithms cannot be obfuscated).9 Using a

separate proof we show that this condition also implies that the class of decryption

algorithms corresponding to any secure encryption scheme cannot be obfuscated.

Point-filter functions. Loosely speaking, each point-filter function is associated

with an NP language L, a point x, and a secret bit b. On input w, it outputs its

secret bit b if and only if w is a valid witness of x (with respect to the language

7We note that every class of pseudo-random functions, secure secret-key encryption algorithms
and secure probabilistic digital signature algorithms (that use pseudo-random functions to replace
their randomness), satisfies these two properties.

8Although it may seem that strong unpredictability implies super-polynomial pseudo entropy,
and thus that item 2 is superfluous, this is not the case. For example an unpredictable function may
be verifiable (i.e., hard to compute but easy to verify), and thus have pseudo entropy 0.

9We stress that [4] presents particular (contrived) examples of classes of pseudo-random functions,
secret-key encryption algorithms and digital signature algorithms which are not obfuscatable.
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L). We stress that the language L and the point x are public, whereas the output

bit b is secret. Intuitively, the reason that it may be hard to compute the secret

bit b is that it may be hard to find a valid witness w for x.10

More precisely, every class of point-filter functions is associated with some language

L ∈ NP and is of the form ∆L = {∆L
n}n∈N. Every function δx,b ∈ ∆L

n is associated

with a public string x ∈ {0, 1}n and a secret bit b ∈ {0, 1}. The function δx,b

reveals its secret bit b only on inputs w such that (x,w) ∈ RL (where RL is the

NP relation corresponding to the language L). In order to emphasize that x is

public, we append x to each output. Formally, δx,b(w) = (x, b) if (x, w) ∈ RL, and

δx,b(w) = x otherwise. Examples of point-filter classes are ∆SIG = {δVK,b}, where

δVK,b reveals its secret bit b only on inputs which are valid signatures w.r.t. the

verification key VK, and the class ∆SAT = {δφ,b}, where δφ,b reveals its secret bit b

only on inputs which satisfy the formula φ.

We can now state the result, on the impossibility of obfuscation w.r.t. dependent

auxiliary input.

Result 2: Every class of functions with super-polynomial pseudo entropy can-

not be obfuscated w.r.t. dependent auxiliary input, or for every NP-complete

language L, the class of point-filter functions ∆L cannot be obfuscated w.r.t. de-

pendent auxiliary input.

Thus, we exhibit two classes of functions and show that at least one of them

cannot be obfuscated. An alternative, and interesting, conditional formulation of

this result, is that if one could obfuscate a single point-filter class ∆L for some NP-

complete language L, then every class of functions with super-polynomial pseudo

10Note the contrast between point-filter functions and point functions of [5, 36]. While point
functions are zero everywhere except for one point, a point-filter function can be non-zero on ex-
ponentially many inputs (x may have exponentially many witnesses). Moreover, in a point-filter
function, x is public and may yield information about the points w which yield the secret value b,
whereas there is absolutely no information about which point yields a non-zero value in the point
function case.
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entropy could not be obfuscated.

The question of whether there exists an NP-complete language L for which the

point-filter class ∆L is obfuscatable is thus a worthy future direction to pursue.

We show that this question is related to a beautiful fundamental question on the

existence of a hard core predicate for NP languages (see Section 4.5.1 for details).

1.4 Related Work

There are several works in the literature on the security (or insecurity) of the Fiat-

Shamir paradigm and on the possibility (or impossibility) of program obfuscation.

1.4.1 Prior Work on the Security and Insecurity of the Fiat-

Shamir Paradigm

There are two main papers addressing the security of the Fiat-Shamir paradigm.

The first is a positive result due to Pointcheval and Stern [33], showing that the

Fiat-Shamir paradigm is secure in the Random Oracle Model. The second is the

work of Dwork, Naor, Reingold and Stockmeyer [9], showing that the security of

the Fiat-Shamir paradigm is closely related to two previously studied problems: the

selective decommitment problem,11 and the existence of 3-round public-coin weak zero-

knowledge arguments for non BPP languages. We note that our negative results,

regarding the security of the Fiat-Shamir paradigm, have implications on these related

problems.

In particular, the result of [9], that the existence of 3-round public-coin zero-

knowledge protocols for non BPP languages implies the insecurity of the Fiat-Shamir

paradigm, is worth elaborating on. It follows from the following simple observation.

Suppose there exists a 3-round public-coin zero-knowledge argument for some hard

11In the selective decommitment problem, an adversary is given commitments to a collection
of messages, and the adversary can ask for some subset of the commitments to be opened. The
question is whether seeing the decommitments to these open plaintexts allows the adversary to learn
something unexpected about the plaintexts that are still hidden.

28



language. View this zero-knowledge argument as a secure identification protocol.12

The fact that the identification protocol is zero-knowledge (and not only honest ver-

ifier zero-knowledge) means that for every verifier there exists a simulator that can

generate views which are computationally indistinguishable from the ones produced

during the run of the identification protocol. As the Fiat-Shamir paradigm (applied

to this identification protocol) essentially fixes a public program for the verifier of the

zero-knowledge argument, a forger can now simply run the simulator for this fixed

verifier to produce a view of the identification protocol, i.e. a valid digital signature.

This simple argument extends to any k-round public-coin zero-knowledge argu-

ment. Namely, if such a k-round public-coin zero-knowledge argument exists, it can be

viewed as an identification protocol. Now, extend the original Fiat-Shamir paradigm

to an Extended-Fiat-Shamir paradigm which replaces each message of the verifier (one

round at a time) by applying a fixed public function to previous messages in the pro-

tocol. Then the same argument as above says, that the simulator for the k-round

zero-knowledge protocol can be used to produce forgeries in the signature scheme

resulting from the Extended-Fiat-Shamir paradigm.

Barak [2] has shown that under the assumption that collision-resistant function

ensembles exist, every language in NP has a k-round (for some constant k > 3)

public-coin zero-knowledge argument. Thus, it follows from [9] and [2] that the k-

round Extended-Fiat-Shamir paradigm is insecure.

However, the Fiat-Shamir paradigm was defined, and has always been used, only

for 3-round identification schemes. Barak’s work does not apply to this case, and it

is not known whether there exist 3-round public-coin ZK protocols for non BPP lan-

guages. Moreover, whereas all that can be deduced from [9, 2] is that the Fiat-Shamir

paradigm (extended or otherwise) fails on zero-knowledge identification schemes (in-

deed it is the simulator for the zero-knowledge system which will produce forgeries),

it leaves open the possibility that the (extended and ordinary) Fiat-Shamir paradigm

works when the starting identification schemes are secure with respect to a less strict

12It is not necessarily a proof of knowledge but it is certainly a proof of ability of proving mem-
bership in L, which is hard for polynomial-time impersonating algorithms.
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security requirement and are not zero-knowledge.

1.4.2 Prior work on the Possibility and Impossibility of Ob-

fuscation

As was mentioned in Section 1.2, the theoretical investigation of obfuscation was

initiated in the work of Barak et al . [4], who formalized the notion of obfuscation

and proved that there are (contrived) classes of functions that are not obfuscatable.

However, even prior to this work, Hada [22] considered the question of whether pseudo

random functions can be obfuscated. He also considered a “virtual black box” type

definition. However, he did not restrict the output to be a Boolean predicate. Instead,

he defined the notion of obfuscation with respect to a given adversary. Namely, an

obfuscator which is designed to work against a specific probabilistic polynomial-time

adversary A (who may be given an auxiliary input). He gave a negative result for

obfuscating any class of pseudo-random functions against the following adversary A:

A fixes a language L ∈ NP , fixes a zero-knowledge proof (P, V) for L, and fixes

a sequence {xn}n∈N such that xn $∈ L. Given any program computing a function

f , it outputs an accepting view of (P, V∗)(xn), where V∗ computes its messages by

applying f to all previous messages. This can be done using the simulator of the

zero-knowledge proof.13 On the other hand, notice that the fact that xn /∈ L together

with the fact that f is a pseudo random function, implies that with black-box access

to f it is computationally hard to output an accepting view of (P, V∗)(xn).

There are also several positive results that appeared in the literature. As was

mentioned in Section 1.2, Canetti and Wee [5, 36] proved that point functions are

obfuscatable (under complexity theoretic assumptions). Other positive results include

[6], [10] and [25]. The work of [6] generalizes the work of [5], in the sense that it relies

on weaker and more general assumptions. However, their work yields an obfuscator

for the class of point functions, which is weaker in two aspects: (1) the obfuscator is

not w.r.t. auxiliary input, whereas the work of [5] yields an obfuscator w.r.t auxiliary

13The result of Hada was conditioned on the existence of a constant-round public-coin zero knowl-
edge protocol for a non-trivial language, which was later shown to exist by Barak [2].
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input. (2) The “virtual black box” property holds only w.r.t. distributions with high

min-entropy (i.e., where the point function Ix, to be obfuscated, is chosen according

to some high min-entropy distribution over the class of all point functions). The

work of [10] generalizes the work of [6]; it shows how to obfuscate (in the sense of [6])

proximity functions (and not only point functions), where a proximity function is of

the form Ix,τ (y) = 1 if and only if the Hamming distance between x and y is at most

τ . The work of [25] generalizes the work of [5, 36] in the sense that it shows that many

access control functions (not only point functions) can be obfuscated. However, their

result is in the Random Oracle Model, which assumes black box access to a truly

random function.
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Chapter 2

Preliminaries

Notations: We use [19]’s notations and conventions for probabilistic algorithms.

If A is a probabilistic algorithm then for any input x we let A(x) refer to the prob-

ability space which assigns to any string σ the probability that A(x) outputs σ. If

S is a probability space then x ← S denotes that x is randomly chosen according

to S. If S is a finite set then x ∈R S denotes that x is randomly chosen in the set

S. For any probabilistic interactive Turing machines A and B, we let (A,B)(x) refer

to the transcript of their interaction on input x. We assume that at the end of the

interaction B will always either accept or reject. We refer to this decision function

of B as the verdict function of B. We abuse notion by saying that (A,B)(x) = 1 if

B accepts, and we denote by ACC(B(x)) the set of all transcripts that B(x) accepts.

We denote by A|α, machine A, restricted to sending α as its first message. More

generally, we denote by A|α1;...;αt , machine A, restricted to sending αi as its i’th mes-

sage, for i = 1, . . . , t. We adopt the standard way of modeling an efficient adversary

as a non-uniform probabilistic polynomial-time Turing machine (or equivalently, as

a polynomial size circuit family). Similarly, computational indistinguishability refers

to indistinguishability by non-uniform probabilistic polynomial-time adversaries. For

any binary relation R we denote by LR
def
= {x : ∃w s.t. (x,w) ∈ R} the language

corresponding to R.

Definition 1 (Negligible): We say that a function g(·) is negligible if for every poly-
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nomial p(·) there exists n0 ∈ N such that for every n ≥ n0 it holds that g(n) < 1
p(n) .

For any function g(·), we let g(n) = negl(n) denote the fact that g(·) is a negligible

function.

Definition 2 (Non-negligible): We say that a function g(·) is non-negligible if it is

not negligible. That is, we say that g(·) is non-negligible if there exists a polynomial

p(·) such that for infinitely many n’s it holds that g(n) ≥ 1
p(n) .

For any function g(·), we let g(n) = non-negl(n) denote the fact that g(·) is a non-

negligible function.

Definition 3 (one-way function): We say that a polynomial-time computable func-

tion f : {0, 1}∗ → {0, 1}∗ is one-way if for every polynomial-size circuit family

C = {Cn}n∈N,

Pr[Cn(y) = x : f(x) = y] = negl(n)

(where the probability is over y ← f(Un)).

Definition 4 (hash-function ensemble): A hash-function ensemble is a family of

polynomial size functions F = {F}n∈N such that for every n ∈ N, every f ∈ Fn is a

function from {0, 1}∗ to {0, 1}n.

Definition 5 (collision resistant hash-function ensemble): We say that a hash-function

ensemble F = {Fn}n∈N is collision resistant if for every polynomial-size circuit family

C = {Cn}n∈N,

Pr[Cn(fn) = (x1, x2) : fn(x1) = fn(x2) ∧ x1 $= x2] = negl(n)

(where the probability is over fn ∈R Fn).1

1We abuse notation by letting f also denote the description of the function f .
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Chapter 3

The Insecurity of the Fiat-Shamir

Paradigm

3.1 Definitions

Let us start by giving the standard definitions (see [19, 11, 13]) of identification

schemes (Section 3.1.1), signature schemes (Section 3.1.2), and the Fiat-Shamir paradigm

(Section 3.1.3).

3.1.1 Identification Schemes

Definition 6 (Identification Scheme): An identification scheme (or ID scheme, for

short) is identified with a triplet (G, S, R), where G is a key generation algorithm and

S is the sender who wishes to prove his identity to the receiver R.

• G is a probabilistic polynomial-time Turing machine that, on input a security

parameter 1n, outputs a pair (SK, PK), such that the sizes of SK and PK are

polynomially related to n. SK is referred to as the secret-key and PK is referred

to as the public-key.

• (S, R) is a pair of probabilistic polynomial-time interactive Turing machines that

take a public-key PK as common input. The sender S also takes as input a cor-

responding secret-key SK. Intuitively, R outputs 1 if and only if he is convinced
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that he is interacting with the sender who’s identity is PK. Formally, it is

required that for any pair (SK, PK) in the support of G(1n),

Pr[(S(SK), R)(PK) = 1] = 1

(where the probability is over the random coin tosses of S and R).

Recall that the Fiat-Shamir paradigm was defined as a method for converting 3-

round public-coin ID schemes into signature schemes. We refer to such ID schemes

as canonical ID schemes.

Definition 7 (Canonical ID Scheme): A canonical ID scheme is a 3-round ID scheme

with a transcript of the form (α; β; γ), where α is sent by the sender S, β is sent by

the receiver R and consists of R’s random coins,1 and γ is sent by the sender S.

For a sender S, with keys (SK, PK) and randomness r, we denote α = S(SK,PK)(r) and

γ = S(SK,PK)(α, β, r).

Security of ID Schemes. As with any cryptographic primitive, the notion of se-

curity considers adversarial goals (i.e., what it has to do to win) and adversarial

capability (i.e., what attacks it is allowed). Naturally, for an ID scheme, the adver-

sary’s goal is impersonation: it wins if it can interact with the receiver (in the role

of a sender), and convince him to accept. As for the adversary’s capabilities, the

adversary is modeled as a (probabilistic) polynomial-size circuit family. There are

two natural attacks to consider: passive and active. Passive attacks correspond to

eavesdropping, meaning the adversary is in possession of transcripts of conversations

between the real sender and the receiver. Active attacks means that it gets to play the

role of a receiver, interacting with the real sender in an effort to extract information.

We will not give formal definitions of secure ID schemes, as they are not needed for

the understanding this work.

1For the simplicity of notations (and without loss of generality), throughout this paper we assume
that the random string β sent by the receiver is of length n, where n is the security parameter.
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We note that assuming the existence of one-way functions, there exist ID schemes

which are secure against active attacks.2 Throughout this manuscript, security of an

ID scheme should be interpreted as security against active attacks.

3.1.2 Signature Schemes

Definition 8 (Signature scheme): A signature scheme is identified with a triplet

(GEN, SIGN, VERIFY) of probabilistic polynomial-time Turing machines, where

• GEN is the key generation algorithm that takes as input a security parameter

1n and outputs a pair (SK, VK) such that the sizes of SK, VK are polynomially

related to n. SK is referred to as the signing-key and VK is referred to as the

verification-key.

• SIGN is the signing algorithm which takes as input a pair (SK, VK) and a mes-

sage M to be signed, and outputs a signature of m with respect to (SK, VK).

• VERIFY is the verification algorithm which takes as input a verification-key VK,

a message M and a string σ (supposedly a signature of M with respect to VK),

and outputs 0 or 1. Intuitively, it outputs 1 if σ is a valid signature of M with

respect to VK, and it outputs 0 otherwise.

Formally, it is required that for any pair (SK, VK) in the support of GEN(1n) and for

any message M ∈ {0, 1}∗,3

Pr[VERIFY(VK, M, SIGN((SK, VK), M)) = 1] = 1

(where the probability is over the random coin tosses of SIGN and VERIFY).

2This is the case since the existence of one-way functions implies the existence of secure signature
schemes [31, 34], which in turn implies the existence of ID schemes which are secure against active
attacks (see Section 3.3).

3Notice that it is (implicitly) assumed that the message space is {0, 1}∗. This assumption is only
for the sake of simplicity.
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Security of Signature Schemes. Several types of security requirements were con-

sidered in the literature, the strongest which is existential security against adaptive

chosen message attacks. Throughout this manuscript we say that a signature scheme

is secure if it is secure with respect to this strongest security requirement.

Definition 9 (Security against adaptive chosen message attacks): We say that a

signature scheme SIG = (GEN, SIGN, VERIFY) is secure if for every polynomial-size

circuit family C = {Cn}n∈N with oracle access to SIGN, the probability that on input a

uniformly chosen verification-key VK, where (SK, VK) ← GEN(1n), Cn outputs a pair

(M, SIGM) such that VERIFY(VK, M, SIGM) = 1 and such that M was not sent by Cn

as an oracle query to SIGN, is negligible (where the probability is over VK and over

the randomness of the oracle SIGN).

3.1.3 The Fiat-Shamir Paradigm

Definition 10 (The Fiat-Shamir Paradigm): Given any canonical ID scheme ID =

(G, S, R) and any hash-function ensemble H = {Hn}n∈N, the Fiat-Shamir paradigm

transforms ID and H into a signature scheme SIGH = (GENH, SIGNH, VERIFYH),

defined as follows.

• The key generation algorithm GENH, on input 1n, emulates algorithm G(1n) to

generate a pair (SK, PK) of secret key and public key. It then chooses at random

a function h ∈R Hn, and outputs SK as the signing key and VK = (PK, h) as

the verification key.

• The signing algorithm SIGNH, on input a signing key SK, a corresponding veri-

fication key VK = (PK, h), and a message M, emulates the sender S with respect

to (SK, PK) to produce (α; β; γ), where β = h(α, M). That is, SIGNH(SK, VK, M)

operates as follows.

1. Tosses coins r (for S) and computes α = S(SK,PK)(r).

2. Computes β = h(α, M).

3. Computes γ = S(SK,PK)(α, β, r)
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4. Outputs (α; β; γ) as a signature of M.

• The verification algorithm VERIFYH, on input a verification-key VK = (PK, h),

a message M and a triplet (α; β; γ) (which is supposedly a signature of M),

accepts if and only if β = h(α, M) and (α; β; γ) ∈ ACC(R(PK)).

Throughout this paper, the Fiat-Shamir paradigm is referred to as the FS paradigm.

We denote by FSH(ID) the signature scheme obtained by applying the FS paradigm

to ID and H. FSH(ID) is referred to as a FS signature scheme corresponding to ID. We

say that the FS paradigm is secure if for every secure canonical ID scheme ID, there

exists a hash-function ensemble H such that FSH(ID) is secure. Otherwise, we say

that the FS paradigm is insecure. We denote by (FS) the case that the FS paradigm

is secure and we denote by ¬(FS) the case that the FS paradigm is insecure.

3.2 Road Map

In the remaining of Chapter 3 we focus on proving the following two theorems.

Theorem 11 If collision resistant hash-function ensembles do not exist and one-way

functions do exist then the FS paradigm is insecure.

Theorem 12 If collision resistant hash-function ensembles exist then the FS paradigm

is insecure.

From the above two theorems and from the fact that the existence of a collision re-

sistant hash-function ensemble implies the existence of a one-way function, we obtain

the following corollary.

Corollary 13 If one-way functions exist then the FS paradigm is insecure.

It is well known that if one-way functions do not exist then neither do secure signa-

ture schemes. Thus, in a sense our result is unconditional since we get that the FS

paradigm is either insecure or useless (i.e., never produces secure signatures, as none

exist).
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We note that the proof of Theorem 11 is relatively simple and that the main result

in Chapter 3 is the proof of Theorem 12. We begin by proving Theorem 11 (Section

3.3), and we then prove Theorem 12 (Sections 3.4-3.7).

3.3 Proof of Theorem 11

In this subsection, we assume that collision resistant hash-function ensembles do not

exist and that one-way functions do exist. That is, we assume that for every hash-

function ensemble H = {Hn} there exist infinitely many n’s such that on input

a random h ∈ Hn, it is easy to find M1 $= M2 such that h(M1) = h(M2). More

formally, we assume that for every hash-function ensemble H = {Hn} there exists

a polynomial-size circuit family C = {Cn} and a polynomial p(·), such for infinitely

many n’s,

Pr[Cn(h) = (M1, M2) : h(M1) = h(M2) ∧ M1 $= M2] ≥
1

p(n)

(where the probability is over h ∈R Hn). For every H, we denote the set of all such

n’s by SH.

Our goal is to construct a secure canonical ID scheme ID such that for every H,

the corresponding signature scheme FSH(ID) = (GENH, SIGNH, VERIFYH) is insecure.

More specifically, we demonstrate the insecurity of FSH(ID) by constructing a forger

that for every n ∈ SH succeeds in forging signatures, with respect to VK = (PK, h)

generated by GENH(1n), with non-negligible probability.

Intuitively, ID is defined as follows. Fix any secure signature scheme SIG =

(GEN, SIGN, VERIFY) (the existence of secure signature schemes follows from the ex-

istence of one-way functions [31, 34]). The sender will identify himself by signing a

random message sent by the receiver.4 The security of ID will follow from the secu-

rity of SIG. The insecurity of FSH(ID) will follow from the assumption that collision

4In some sense this is the inversion of the Fiat-Shamir paradigm, which starts with an ID scheme
and converts it into a signature scheme. Here, we start with a signature scheme and use it to
construct an ID scheme.
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resistant hash-function ensembles do not exist.

In what follows we give a formal proof of Theorem 1.

Proof: Let SIG = (GEN, SIGN, VERIFY) be any secure signature scheme. Consider

the following ID scheme, ID = (G, S, R).

• G: On input 1n, emulate GEN(1n) to obtain a pair (SK, VK), and output SK as

the secret-key and VK as the public-key.

• S and R are interactive probabilistic polynomial-time Turing machines, that for

any (SK, VK) ← G(1n), the interaction of (S(SK), R)(VK) is as follows.

S(SK) VK R

∅−−−−−−−−−→

β←−−−−−−−−−

SIGN((SK, VK), β)
−−−−−−−−−−−−−−−→

R(VK) accepts a transcript (α; β; γ) if and only if α = ∅ and VERIFY(VK, β, γ) =

1 (i.e., γ is a valid signature of β, with respect to the verification-key VK).

Claim 14 ID is secure, assuming SIG is a secure signature scheme.

Proof: Follows immediately from the definition of a secure signature scheme (which

corresponds to security against adaptive chosen message attacks).

Claim 15 The signature scheme FSH(ID) = (GENH, SIGNH, VERIFYH) is insecure for

every hash-function ensemble H, assuming collision resistant hash-function ensembles

do not exist.
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Proof: Fix any hash-function ensemble H. Our assumption that collision resistant

hash-function ensembles do not exist implies that there exists a circuit family C =

{Cn}, a polynomial p(·), and an infinite set SH, such that for every n ∈ SH,

Pr[Cn(h) = (M1, M2) : h(M1) = h(M2) ∧ M1 $= M2] ≥
1

p(n)

(where the probability is over h ∈R Hn). The forger will use this circuit family

C = {Cn}. Given a verification-key (VK, h) ← GENH(1n), where n ∈ SH, and given

a signing oracle, the forger will forge a signature of some new message M, as follows.

1. Compute (M1, M2) = Cn(h). From our assumption, with probability at least

1
p(n) it holds that h(M1) = h(M2) and M1 $= M2.

2. Query the signing oracle with the message M1, to obtain a signature (α; β; γ).

3. Output (α; β; γ) as a signature of M2.

Notice that (α; β; γ) is a valid signature of M2 if it is a valid signature of M1 and

h(M1) = h(M2). Since both of these conditions are satisfied with non-negligible prob-

ability, the forger succeeds in forging a signature of M2 with non-negligible probability.

Throughout the remaining of Chapter 3 we assume the existence of a collision

resistant hash-function ensemble, which we denote by F . Actually, we restrict our

attention to a collision resistant hash-function ensemble from {0, 1}2n to {0, 1}n.

3.4 Overview of the Proof of Theorem 12

Recall that our goal is to construct a secure canonical ID scheme such that for any

hash-function ensembleH, FSH(ID) is an insecure signature scheme. Our idea towards

achieving this goal is the following.

Take any secure canonical ID scheme and extend its verdict function in such a way

that the ID scheme remains secure, yet all the corresponding FS signature schemes
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become insecure no matter which hash-function ensemble is used. To carry out this

idea we need to exploit the difference between the ID scheme and the corresponding

FS signature schemes. As we see it, the main difference between the two is that in

the ID scheme the receiver’s message is totally random, whereas in the corresponding

FS signature schemes everyone knows in advance a (deterministic) public function h

that computes the “receiver’s message.”

Thus, our idea is to take any secure ID scheme and to extend its verdict function

so as to also accept transcripts which convince the receiver that the sender knew

in advance a (deterministic) function that computes the receiver’s message. Since

the receiver chooses its message at random (by definition of a canonical ID scheme),

there is no way that a sender could have guessed in advance such a function, except

with negligible probability, and therefore the ID scheme remains secure. However,

when the ID scheme is converted into a signature scheme via the FS paradigm, the

receiver is replaced with a succinct (deterministic) public function, and thus everyone

knows in advance a function that computes the “receiver’s message.” Thus, a forger

can easily convince the verifier of knowledge of this function, which corresponds to a

legitimate signature. Hence, all the corresponding FS signature schemes are insecure

(no matter which hash-function ensemble is used).

The main problem with this approach is the following: How can the sender con-

vince the receiver that he knew in advance a function that computes the receiver’s

message? The first idea that comes to mind is for the sender to simply send to the

receiver (in the first round) a polynomial-size circuit that computes the receiver’s

message. The problem with this idea is that we must first fix the ID scheme (in

particular, fix a polynomial bound on the size of its messages) and only then show

that for any hash-function ensemble H replacing the receiver, FSH(ID) is insecure. In

other words, we need to find a protocol of a-priori bounded size, in which the sender

will be able to convince the receiver of knowledge of any polynomial-size circuit cor-

responding to any H. Thus, the sender cannot simply send the verifier his circuit in

hand (which may be too big). We overcome this problem by having the sender send
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a size-reducing commitment to his circuit, rather than the circuit itself.5

To summarize, our idea for proving the insecurity of the FS paradigm is as follows:

Start with any secure ID scheme and extend its verdict function so as to also accept

views in which the sender first sends message a (supposedly a = COM(C) is a size-

reducing commitment to a circuit C), the receiver replies with b, and only then the

sender proves to the receiver that he knows a circuit C, such that both COM(C) = a

and C(a) = b. More precisely, after receiving the message b, the sender proves that

he knows a circuit C, which is a witness to (a, b) in the following relation:

R = {((a, b), C) : a = COM(C) ∧ C(a) = b}.

Note that if R was an NP-relation, then we would be done, as the sender could

then prove knowledge of a witness C by simply revealing C. However, if we bound

R to be an NP-relation by bounding all the witnesses to be of size at most p(n)

(for some fixed polynomial p(·)), then we could only prove that the corresponding FS

signature schemes with hash-function ensembles of size at most p(·) are insecure, and

we would not know if all the corresponding FS signature schemes (with respect to all

hash-function ensembles) are insecure. Thus, instead we bound the witnesses of R

by some super-polynomial function (say nlog n), and define R as follows:

R = {((a, b), C) : a = COM(C) ∧ C(a) = b ∧ |C| ≤ nlog n},

which results with R being an NTIME(nlog n) relation.

This brings about a new issue that needs to be resolved: In the above extended

ID scheme, in the third round the sender needs to prove knowledge of a witness for

(a, b) in the relation R, where a is the message sent by the sender in the first round

and b is the message sent by the receiver in the second round. This requires a proof-

5Note that all known constructions of size-reducing commitment schemes that rely on the exis-
tence of a collision resistant hash-function ensemble consist of two rounds. We ignore this issue here,
and treat the commitment scheme as a one-round commitment scheme (eventually, the first round
of the commitment scheme will be appended to the public key). This issue will be elaborated on in
Section 3.5.

44



of-knowledge system for R which consists of either one round or two rounds in which

the first round consists of the verifier’s random coin tosses. Unfortunately, we do not

know if such a proof-of-knowledge system for R exists, as R is not an NP-relation.

To summarize so far, if there somehow existed a 2-round public-coin proof-of-

knowledge system for R then we would be done, since we could take the secure

canonical ID scheme, and extend its verdict function so as to also accept transcripts

of the form

a−−−−−−−−→

b, q←−−−−−−

ans−−−−−−−→
where (q; ans) is a 2-round public-coin proof-of-knowledge of C such that ((a, b), C) ∈

R.

Thus, our next attempt is to try to construct a 2-round public-coin proof-of-

knowledge system for R. Barak and Goldreich [3], based on the works of [24, 27],

presented a 4-round public-coin argument, called universal argument, for every lan-

guage in NEXP, and in particular for R. Our approach is to apply the FS paradigm to

this universal argument system to obtain a 2-round system, which we call a 2-round

universal system. This seems like a strange approach, since our goal in this paper is to

prove the insecurity of the FS paradigm. In particular, the resulting 2-round universal

system may not be a proof-of-knowledge and may not even be sound. Nevertheless,

it will take us one step further in the proof.

Thus, in the above ID scheme we use a 2-round universal system obtained by

applying the FS paradigm to the universal argument system of [3]. Note that the 2-

round universal system, and hence the above ID scheme, depend on the hash-function

ensemble used when applying the FS paradigm to the 4-round universal argument

system. For any hash-function ensemble G, we denote by ID1
G the above ID scheme,

where the 2-round universal system is obtained by applying the FS paradigm with

respect to the hash-function ensemble G.
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Note, that since we do not know whether the FS paradigm is secure, we do not

know whether there exists a hash-function ensemble G such that ID1
G is secure. How-

ever, we do know that for every G, all the FS signature schemes corresponding to

ID1
G are insecure. In other words, we know that for every hash-function ensembles G

and H, the signature scheme FSH(ID1
G) is insecure. (This follows from the fact that

the resulting 2-round universal system is complete, since applying a FS step always

preserves the completeness property.)

We proceed by considering the following two cases. Case 1 is the case that there

exists a hash-function ensemble G such that ID1
G is secure, in which case we are done,

as ID1
G demonstrates the insecurity of the FS paradigm. Case 2 is the case that ID1

G

is insecure for every hash-function ensemble G. In this case we construct another ID

scheme, called ID2 that demonstrates the insecurity of the FS paradigm.

The idea behind the construction of ID2 is the following: Note that the assumption

that ID1
G is insecure implies that there exits an impersonator S∗ that for infinitely

many n’s finds an a such that for a random b it can convince the 2-round universal

system (obtained by applying the FS paradigm with respect to G) that it “knows”

a witness for (a, b) ∈ LR with non-negligible probability (where LR denotes the

language corresponding to the relation R). This implies that there exits S∗ such that

for infinitely many n’s, finds a, b1, b2 such that it can convince this 2-round universal

system that it “knows” a witness for both (a, b1) ∈ LR and (a, b2) ∈ LR. In contrast,

it is hard for any S∗ to convince the 4-round universal argument that it knows a

witness for both (a, b1) ∈ LR and (a, b2) ∈ LR, since the 4-round universal argument

system is a proof-of-knowledge system, and knowledge of a witness for both (a, b1) and

(a, b2) implies knowledge of C1 $= C2 such that COM(C1) = COM(C2), contradicting

the binding property of the commitment scheme.6 This contrast between the 2-

round universal system and the 4-round universal system, suggests constructing the

6Since C1 and C2 are not a priori bounded by any polynomial, it seems like we need super-
polynomial hardness assumptions in order to contradict the binding property of the commitment
scheme. We eliminate the need of a super-polynomial hardness assumption, by using a tree-
commitment scheme rather than a regular commitment scheme. The notion of tree-commitment
was introduced by Merkle [26] and has the advantageous property that it allows decommitment to
individual bits. We shall elaborate on this in Section 3.5.
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following ID scheme, denoted by ID2.

From now on we denote an accepting transcript of the 4-round universal system by

(α; β; γ; δ), where α and γ are random strings. ID2 is defined by taking any secure ID

scheme and extending its public-key by appending random α1, α2 to it, and extending

its verdict function so as to also accept transcripts of the form

a, b1, b2, β1, β2−−−−−−−−−−−→

γ1, γ2←−−−−−−−−

δ1, δ2−−−−−−−−→

where (α1; β1; γ1; δ1) is an accepting transcript of the 4-round universal system for

(a, b1) ∈ LR and (α2; β2; γ2; δ2) is an accepting transcript of the 4-round universal

system for (a, b2) ∈ LR.

The security of ID2 follows from the fact that the 4-round universal system is

a proof of knowledge and from the binding property of the commitment scheme.7

Intuitively, the insecurity of the FS signature schemes corresponding to ID2 seems

to follow from our assumption that ID1
G is insecure for every hash-function ensemble

G. The reason being that for every hash-function ensemble H, in order to forge a

signature in the signature scheme FSH(ID2), it suffices to find a, b1, b2 and to convince

the 2-round universal system that it “knows” a witness for both (a, b1) ∈ LR and

(a, b2) ∈ LR, where the first 2-round universal system is with respect to H1 (which

outputs the |γ1|most significant bits ofH) and the second is with respect toH2 (which

outputs the |γ2| least significant bits of H). Thus it seems that by taking G = H1∪H2,

an impersonator for ID1
G can be used as a forger for FSH(ID2). However, this is not

quite so, since in order to forge a signature in FSH(ID2) one needs to generate two

7As previously mentioned, the commitment scheme used will be a tree-commitment scheme (to
be defined in Section 3.5), which is based on the existence of a collision resistant hash-function
ensemble. We will get a contradiction to the collision resistant property by using the knowledge
extractor of the universal system to find 2n bits of C1 (which is a witness for (a, b1)) and 2n bits of
C2 (which is a witness for (a, b2)) that form a collision.
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accepting transcripts for the two-round universal system (one for (a, b1) ∈ LR and

one for (a, b2) ∈ LR) that depend on one another (i.e., γ1 depends on both β1 and β2,

and same holds for γ2), whereas in order to impersonate the sender in ID1
G it suffices

to generate independent accepting transcripts.

In order to overcome this problem we construct yet another (and final!) ID scheme,

denoted by ID3. We prove that the insecurity of FSH(ID3) (for every H) follows from

the insecurity of ID1
H (for every H). Moreover, we prove that either ID3 is secure or

FSH(ID2) is insecure for every H. Thus, either ID2 or ID3 demonstrate the insecurity

of the FS paradigm.

This concludes the overview of the proof of Theorem 12. We warn the reader

that the actual proof contains several technical difficulties that were omitted from

the overview. In the remaining of Chapter 3 we give a more formal presentation of

the proof. In Section 3.5 we formally define the relation R, which from now on will

be called the central relation and will be denoted by RF (as it depends on a collision

resistant hash-function ensemble F). In Section 3.6 we define our 2-round universal

system for RF . In Section 3.7 we present in more detail the constructions of ID1
G, ID2,

and ID3, and prove that one of them demonstrates the insecurity of the FS paradigm,

assuming that F is a collision resistant hash-function ensemble.

3.5 Central Relation RF

Recall that in Section 3.4 we informally defined the relation R as follows:

R = {((a, b), C) : a = COM(C) ∧ C(a) = b ∧ |C| ≤ nlog n}.

As we mentioned, COM is a size-reducing commitment scheme. More specifically (as

was mentioned in footnote 11), the type of commitment we use is a tree-commitment,

which not only allows a fixed polynomial-size commitment for any polynomial-size

string, but also has the advantageous property that it allows decommitment to indi-

vidual bits. The notion of tree-commitment was introduced by Merkle [26].
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Definition 16 (Tree-Commitment): A tree-commitment to x ∈ {0, 1}∗, with respect

to the function f : {0, 1}2n → {0, 1}n, is defined as follows. Consider a complete

binary tree of depth lg(|x|/n), where each node has a label in {0, 1}n. The leaves are

labeled by the bits of x (n bits per leaf). Each internal node is labeled by applying f

to the label of its children. The tree-commitment to x, with respect to f , is denoted

by TCf (x), and consists of the label of the root and the depth of the tree.8

We let authf (x, i) denote the authentication path of the ith bit of x with respect

to f . Namely, authf (x, i) consists of the label of the leaf corresponding to xi, the

label its sibling, the labels of its ancestors and the labels of its ancestors siblings. We

let authf (x) denote the entire tree, which contains the authentication path of xi, for

every i.

We are now ready to define the central relation more formally. Let F be a collision

resistant hash-function ensemble.

Definition 17 (Central Relation):

RF = {((f, a, b), Ĉ) : TCf (Ĉ) = a ∧ C(a) = b ∧ |Ĉ| < nlg n}

where C → Ĉ is a special circuit-encoding which satisfies the following properties.

1. It is an efficient encoding. Namely, there is a polynomial-time algorithm that

given any circuit C, outputs Ĉ.

2. It has high minimum distance. Namely, for every C1 $= C2, Ĉ1 and Ĉ2 differ in

a polynomial fraction of their coordinates.

3. Given y, it is easy to check whether y is a codeword. Namely, there is a

polynomial-time algorithm that given y, outputs 1 if and only if there exists

a circuit C such that y = Ĉ.

8Note that if f is chosen at random from a collision resistant hash-function ensemble then the
tree-commitment with respect to f is computationally binding.
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4. There exists a polynomial-time algorithm that given any circuit-encoding Ĉ

(where C is defined on inputs of size n) and given any x ∈ {0, 1}n, computes

C(x).

Remarks:

1. For technical reasons to be clarified in the proof of Lemma 3.7.4, rather than

having merely Ĉ as a witness, we actually include the entire tree authf (Ĉ) in

the witness. So RF will actually be defined by:

RF ! {((f, a, b), authf (Ĉ)) : TCf (Ĉ) = a ∧ C(a) = b ∧ |Ĉ| < nlg n}

2. The reason we bound the size of Ĉ by nlg n is because the function that replaces

the receiver in the FS paradigm can be of any polynomial-size. Hence, we

cannot bound the size of Ĉ by a fixed polynomial, and so we bound it by some

super-polynomial, such as nlg n.

3. We defined RF using a tree-commitment, as opposed to a regular length-

reducing commitment, for the following technical reason. In our proof we get a

contradiction to the security of the Fiat-Shamir paradigm, by claiming knowl-

edge of Ĉ1 $= Ĉ2 which commit to the same value. However, the size of these

circuits is not a-priori bounded by some polynomial, and hence we cannot ex-

tract this knowledge using a polynomial-time algorithm. We get around this

technical problem by using a tree-commitment, which allows decommitment to

individual bits.

4. Property 1 of the encoding is needed in the proof of Lemma 3.7.1. Property 2

of the encoding is needed in the proof of Lemma 3.7.4. Properties 3 and 4 of

the encoding are needed in the proof of Proposition 1.

5. Without loss of generality, we assume that authf (Ĉ) is of the following form:

After every bit of Ĉ there are exactly (lg n)2 bits of the authentication path of

that bit. Namely, we assume that the i’th bit of Ĉ is represented in the (1+(i−
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1)((lg n)2 + 1))’th bit of authf (Ĉ), followed by (lg n)2 bits of its authentication

path. We will need this precision of representation in proving Lemma 3.7.4.

6. Sometimes we refer to a witness of (f, a, b) by w(f,a,b) or simply by w.

7. For simplicity, we assume that for every ((f, a, b), w) ∈ RF such that f ∈ Fn,

it holds that |a| = |b| = n. We are being imprecise here, since actually |a| > n.

We assume |a| = n only in order to simplify notations.

Protocol 1 [3]: LRF ∈ NTIME(nlg n).

Proof: Follows immediately from the definition of RF and from properties 3 and

4 of the circuit-encoding C → Ĉ.

3.6 Interactive Arguments for RF

In this subsection we try to find a 2-round proof-of-knowledge for RF . From the

theory on Probabilistic-Checkable-Proofs it follows that for every relation R in NEXP

there exists a polynomial-time Turing machine PPCP and a probabilistic polynomial-

time oracle machine VPCP with the following properties.

1. (Relatively-efficient oracle construction): for every (x,w) ∈ R,

PPCP(x,w) = π such that Pr[Vπ
PCP(x) = 1] = 1. Throughout the paper, we refer

to π as a PCP proof.

2. (Non-adaptive verifier): The verifier’s queries are determined based only on

its input and on its internal coin tosses. That is, there exists a probabilistic

polynomial-time algorithm QPCP such that on input x and random coins r, the

verifier makes the query sequence {qi}, where for every i, qi = QPCP(x, r, i).9

3. (Efficient reverse-sampling): There exists a probabilistic polynomial-time oracle

machine S such that, on input any string x and integers i and q, outputs a

uniformly distributed r that satisfies QPCP(x, r, i) = q.

9Throughout this paper, we let QPCP(x, r) denote the query sequence of VPCP on input x and
random tape r.
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4. (Proof-of-knowledge): There exists a probabilistic polynomial-time oracle ma-

chine E and a negligible function ε : N → [0, 1] such that for every x, and for

every π, if Pr[Vπ
PCP(x) = 1] > ε(|x|) then there exists w, such that (x,w) ∈ R

and for every i, Pr[Eπ(x, i) = wi] ≥ 2/3.

Based on the above theory of PCP and based on the works of [24, 27], Barak and

Goldreich [3] presented a 4-round public-coin argument, called universal argument,

for every language in NEXP, and in particular for RF .

We begin by presenting this 4-round universal argument for RF . Then we reduce

interaction by applying a Fiat-Shamir type step, this time in the context of universal

arguments. This seems like a strange idea, since our goal is to prove the insecurity of

the FS paradigm, but it will take us one step further in the proof.

3.6.1 First Interactive Argument [3]: (P0, V0)

• Common input: (f, a, b)

• Auxiliary input to the prover: w such that supposedly ((f, a, b), w) ∈ RF .

1. V0: Uniformly select fUA ∈R Fn and send it to the prover.

2. P0:

(a) Construct a PCP proof of ((f, a, b), w) by computing π = PPCP((f, a, b), w).

(b) Compute β = TCfUA(π),10 which is the tree-commitment to π with respect

to fUA.

(c) Send β to the verifier.

3. V0: Uniformly select a random-tape γ for VPCP, and send γ to the prover.

10Note that there are two levels of use of the tree-commitment:
i. In the definition of RF : TCf (w) = a.
ii. In the interactive argument for RF : TCfUA(π) = β.

In both cases we use a tree-commitment since the size of both w and π may be to large to extract.
Using a tree-commitment we can extract only a few coordinates, with the ability to verify that these
values were committed to.
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4. P0: Provide the answers to the (PCP) queries of VPCP((f, a, b), γ) augmented

by proofs of consistency to these answers, as follows.

(a) Determining the queries: Invoke QPCP((f, a, b), γ), in order to determine

the sequence of queries that VPCP makes on input (f, a, b), given a random

string γ.

(b) For each query qi of QPCP((f, a, b), γ), send the label of the leaf that con-

tains πqi and send the labels of the path corresponding to this leaf, which

consists of the label of its sibling, the labels of its ancestors and the labels

of its ancestors siblings, which are needed in order to verify consistency

with β.

We denote this response by δ = (label(γ), auth(γ)).

V0 accepts if and only if the answers provided by the prover would have been accepted

by VPCP, and all the proofs of consistency are valid.

(P0, V0), on input (f, a, b), can be schematically viewed as follows.

P0 V0

fUA ∈ Fn←−−−−−−−−−−−−

π = PPCP((f, a, b), w)

β = TCfUA(π)
β−−−−−−−−−→

γ←−−−−−−−−−−

δ = (label(γ), auth(γ))
−−−−−−−−−−−−−−−−→
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Lemma 3.6.1 [27],[3]: (P0, V0) satisfies the following properties.

• Completeness: For every ((f, a, b), w) ∈ RF ,

Pr[(P0(w), V0)(f, a, b) = 1] = 1

(where the probability is over the random coin tosses of V0).

• CS-proof-of-knowledge: For every polynomial p(·) there exists a polynomial

p′(·) and a probabilistic polynomial-time oracle machine E such that for ev-

ery polynomial-size circuit family P̃ = {P̃n}, for every sufficiently large n, and

for every input (f, a, b) such that f ∈ Fn and |a| = |b| = n, if

Pr[(P̃n, V0)(f, a, b) = 1] ≥ 1/p(n)

(where the probability is over the random coin tosses of V0), then

Pr[∃w s.t. ((f, a, b), w) ∈ RF and ∀i EP̃n((f, a, b), i) = wi] ≥ 1/p′(n)

(where the probability is over the random coin tosses of E).

Remarks:

1. We will not prove this Lemma since it was proved in [3] (using the four properties

of (PPCP, VPCP)). However, we would like to stress that following the proof in

[3], it can be easily seen that the above proof-of-knowledge property holds even

if P̃n chooses (f, a, b) after receiving the verifier’s first message fUA.

2. We assume for simplicity that |β| = |γ| = n. Note that we are being imprecise

by assuming |β| = n, though this is done only for the ease of notations.

3.6.2 Reduced-Interaction Argument: (PG, VG)

Next, we reduce the number of rounds in (P0, V0) by applying a Fiat-Shamir type

step to it. Namely, we replace V0’s second message with some function applied to
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P0’s first message. For technical reasons to be clarified later, we append randomness

to the prover’s first message.

For any hash-function ensemble G, we define a reduced-interaction argument

(PG, VG) for RF , as follows.

• Common input: (f, a, b).

• Auxiliary input to the prover: w such that supposedly ((f, a, b), w) ∈ RF .

1. VG: Uniformly select

• fUA ∈ Fn (a function for the tree-commitment)

• g ∈ Gn

• r ∈ {0, 1}t (we will actually set t = 4n).

Send (fUA, g, r) to the prover.

2. PG:

(a) Invoke PPCP on ((f, a, b), w) to obtain π = PPCP((f, a, b), w).

(b) Compute β = TCfUA(π).

(c) compute γ = g(β, r).

(d) Let δ be the (PCP) answers corresponding to the queries QPCP((f, a, b), γ)

augmented by proofs of consistency to these answers.

send (β, γ, δ).

VG accepts if and only if the following conditions hold.

1. γ = g(β, r).

2. (fUA; β; γ; δ) ∈ ACC(V0(f, a, b)).
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(PG, VG), on input (f, a, b), can be schematically viewed as follows.

PG VG

fUA, g, r←−−−−−−−−−−−−−

π = PPCP((f, a, b), w)

β = TCfUA(π)

γ = g(β, r)

δ = (label(γ), auth(γ))

(β, γ, δ)
−−−−−−−−−−→

3.6.3 Another Reduced-Interaction Argument: (PG
1,G2

, VG1,G2
)

For technical reasons to be clarified later, we define an additional reduced-interaction

argument for RF , which is essentially a parallel repetition of (PG, VG). For any two

hash-function ensembles G1 and G2, we define (PG
1,G2

, VG1,G2
), as follows.

• Common input: (f, a, b).

• Auxiliary input to the prover: w such that supposedly ((f, a, b), w) ∈ RF .

1. VG1,G2
: Uniformly select

• fUA ∈ Fn (a function for the tree-commitment)

• g1 ∈ G1
n

• g2 ∈ G2
n

• r1, r2 ∈ {0, 1}t (where t = 4n).

Send (fUA, g1, g2, r1, r2) to the prover.

2. PG
1,G2

: For i = 1, 2,
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(a) Invoke PPCP on ((f, a, b), w) to obtain πi = PPCP((f, a, b), w).11

(b) Compute βi = TCfUA(πi).12

(c) compute γi = gi(βi, ri).

(d) Let δi be the (PCP) answers corresponding to the queries QPCP((f, a, b), γi)

augmented by proofs of consistency to these answers.

send {βi, γi, δi}i=1,2.

VG1,G2
accept if and only if the following conditions hold for i = 1, 2.

1. γi = gi(βi, ri).

2. (fUA; βi; γi; δi) ∈ ACC(V0(f, a, b)).

(PG
1,G2

, VG1,G2
), on input (f, a, b), can be schematically viewed as follows.

PG
1,G2

VG1,G2

fUA, g1, g2, r1, r2←−−−−−−−−−−−−−−−−−−−

πi = PPCP((f, a, b), w)

βi = TCfUA(πi)

γi = gi(βi, ri)

δi = (label(γi), auth(γi))

{βi, γi, δi}i=1,2−−−−−−−−−−−−−−−→

We introduce some notation which will be useful later. We typically let q denote

the message sent by VG or by VG1,G2
, and we let ans denote the response of PG or of

PG
1,G2

.

11Note that since PPCP is deterministic, PG
1,G2

will obtain π1 = π2.
12Note that PG1,G2 will obtain β1 = β2.
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It is easy to see that both (PG, VG) and (PG
1,G2

, VG1,G2
) satisfy the completeness re-

quirement. However, we do not know whether they satisfy the CS-proof-of-knowledge

property. Notice that if (PG, VG) satisfies the CS-proof-of-knowledge property, then

so does (PG
1,G2

, VG1,G2
). Thus, all the arguments in the following subsection also apply

to (PG
1,G2

, VG1,G2
).

3.6.4 (PG, VG) and CS-Proofs

The proof system (PG, VG) is closely related to CS-proofs, defined by Micali [27],

since CS-proofs are essentially a non-interactive version of (P0, V0) obtained by re-

placing the verifier V0 with a random oracle. Micali proved that, in the Random

Oracle Model, CS-proofs satisfy both the completeness property and the CS-proof-

of-knowledge property.13 One can make the following hypothesis.

Hypothesis (CSP). There exists a function ensemble G such that if the random

oracle is replaced with a function uniformly chosen from G, then CS-proofs still sat-

isfy both the completeness property and the CS-proof-of-knowledge property.

Looking carefully into the definition of CS-Proofs one can easily verify the follow-

ing.

Protocol 2 The CSP hypothesis implies that there exists a function ensemble G for

which (PG, VG) satisfies both the completeness property and the CS-proof-of-knowledge

property.

This is quite surprising, since it essentially implies that if CS-proofs exist in the real

world (i.e., if the CSP Hypothesis holds), then the FS paradigm is insecure. In other

words, if the FS paradigm applied to (P0, V0) results with a secure scheme, then the

FS paradigm applied to canonical ID schemes results with insecure schemes. This

was intuitively argued in Section 3.4 and will be formally shown in Section 3.7.1 (via

the construction of ID1
G).

13The definitions of completeness and of CS-proof-of-knowledge were given in Lemma 3.6.1.
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It turns out that the bulk of complication is in showing that if the CSP hypothesis

is false then still the FS paradigm is insecure. Actually, we don’t know how to use

the assumption that the CSP hypothesis is false in order to prove the insecurity of

the FS paradigm, and we prove it directly.

3.7 Proof of Theorem 12

Our goal is to construct a secure canonical ID scheme ID such that for any hash-

function ensemble H, FSH(ID) is an insecure signature scheme. In fact we cannot

point to one explicit construction of such an ID scheme. Instead, we show three

explicit constructions of ID schemes: ID1, ID2, ID3, and prove that the FS paradigm

must be insecure with respect to one of the three. The constructions of these ID

schemes is based on the intuition given in Section 3.4.

3.7.1 Construction of ID1

Let F be a collision resistant hash-function ensemble, let G1 and G2 be some a-priori

fixed hash-function ensembles, and let ID = (G, S, R) be any secure canonical ID

scheme. We extend ID to obtain a new ID scheme ID1
G1,G2 = (G1, S1, R1), by extending

the public-key and the verdict function of ID, as follows.

• G1: on input 1n,

1. Run G(1n), to obtain a pair (SK, PK) ← G(1n).

2. Choose randomly f ∈R Fn.

3. Choose randomly g1 ∈R G1
n and g2 ∈R G2

n.

Output SK as the secret-key and PK′ = (PK, f, g1, g2) as the public-key.

• R1: On input a public-key PK′ = (PK, f, g1, g2), R1 will accept either views that

R(PK) accepts or views of the form
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S1 R1

a−−−−−−−−→

b, r1, r2←−−−−−−−−−

ans−−−−−−→

such that (q; ans) ∈ ACC(VG1,G2
(f, a, b)), where q = (f, g1, g2, r1, r2).

Remarks:

1. Notice that the first part of q appears in the public key, whereas the second

part of q appears in the verifier’s message. The reason we split q into two parts,

rather then simply letting all of q be part of the verifier’s message, as suggested

in the intuition given in Section 3.4, is due to a subtle point made by Hsiao

and Reyzin. (Thanks Hsiao and Reyzin!). Their point is that F ,G1,G2 are not

necessarily public-coin hash-function ensembles, and therefore cannot be sent

by a public-coin verifier. Due to this observation, f, g1, g2 are appended to the

public key.

2. Notice that f is used for two different purposes. It is used both in the instance

(f, a, b) and in the query q = (f, g1, g2, r1, r2). The reason that we can use the

same function, is that both cases require the same property from f , namely it

being collision resistant.

To establish ¬(FS), we need to show that the ID scheme ID1
G1,G2 is secure and

that the signature scheme FSH(ID1
G1,G2) is insecure with respect to any hash-function

ensemble H.
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3.7.2 On the Insecurity of FSH(ID1
G1,G2)

We begin by proving the insecurity of FSH(ID1
G1,G2). We denote FSH(ID1

G1,G2) by

SIG1
G1,G2,H = (GEN1

H, SIGN1
H, VERIFY1

H).

Lemma 3.7.1 For any function ensemble H = {Hn}n∈N, the signature scheme SIG1
G1,G2,H

is insecure.

Intuitively, the insecurity of SIG1
G1,G2,H follows from the fact that the receiver’s

message is replaced with the value of a succinct (deterministic) function h ∈ H (given

as part of the public key), applied to the sender’s first message. Thus, a forger can

easily convince the verifier that he knows a function that computes the “receiver’s

message,” which in turn corresponds to a legitimate signature.

Proof: We construct a forger that, on input any message M and any verification-

key VK = (PK′, h), where PK′ = (PK, f, g1, g2) ← G1(1n) and h ∈ Hn, generates a

signature of M with respect to VK, as follows.

1. Let C be a circuit computing the hash function h. Let CM be a circuit such

that for every x, CM(x) = n most significant bits of C(x, M).

2. Compute the tree-commitment a = TCf (ĈM), and let w = authf (ĈM).

3. Compute (b, r1, r2) = C(a, M).14

4. Let q = (f, g1, g2, r1, r2), and emulate the interaction (PG
1,G2

(w), VG1,G2|q)(f, a, b),

to produce a transcript (q; ans) ← (PG
1,G2

(w), VG1,G2|q)(f, a, b).

5. Output (a; b, r1, r2; ans).

It is easy to verify that all forger steps are polynomial-time computable, and by

completeness of (PG
1,G2

, VG1,G2
), the forger will always be successful.

14Notice that ((f, a, b), w) ∈ RF .
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3.7.3 On the Security of ID1

To establish ¬(FS) it remains to show that there exist hash-function ensembles G1

and G2, such that ID1
G1,G2 is secure. Notice that it is easy to prove the security of

ID1
G1,G2 under the CSP hypothesis.

Lemma 3.7.2 Under the CSP hypothesis, there exist hash-function ensembles G1 and

G2, such that ID1
G1,G2 is secure.

Proof: The CSP hypothesis implies that there exist hash-function ensembles G1

and G2 for which (PG
1,G2

, VG1,G2
) satisfies both the completeness property and the

CS-proof-of-knowledge property (follows from Proposition 2).15 It is easy to verify

that ID1
G1,G2 is secure, with respect to these hash-function ensembles G1 and G2.

Thus, we proved (CSP) =⇒ ¬(FS). It remains to prove ¬(CSP) =⇒ ¬(FS).

Unfortunately, we do not know how to prove this directly. Instead we proceed by

considering the following two cases.

• (Case 1): There exist hash-function ensembles G1 and G2 such that ID1
G1,G2 , is

secure.

• (Case 2): For all hash-function ensembles G1 and G2, ID1
G1,G2 is not secure.

If we are in Case 1 we are done, since then there exist hash-function ensembles G1

and G2 such that ID1
G1,G2 , is secure, whereas FSH(ID1

G1,G2) is insecure with respect to

any hash-function ensemble H, and ¬(FS) is established. Hence, we assume that we

are in Case 2. Namely, we assume that for every hash-function ensembles G1 and

G2, there exists an impersonator (formalized as a polynomial-size circuit family) for

ID1
G1,G2 . We formalize this impersonator by breaking it into two parts. The first

part (denoted by F̃ = {F̃n}) impersonates the first message of the sender, and the

second part (denoted by P̃ = {P̃n}) impersonates the second message of the sender.

Formally, case 2 corresponds to the case that for every hash-function ensembles G1

15Actually, Proposition 2 implies that there exist hash-function ensembles G1 = G2 such that
(PG

1,G2
,VG

1,G2
) satisfies both the completeness property and the CS-proof-of-knowledge property.
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and G2, there exists a polynomial-size circuit family F̃1 = {F̃n
1}, a polynomial-size

circuit family P̃1 = {P̃n
1}, and a polynomial p(·), such that for infinitely many n’s,

Pr[(P̃n
1 , V

G1,G2|q)(f, a, b) = 1 : a = F̃n
1 (f, g1, g2) ∧ q = (f, , g1, g2, r1, r2)] ≥

1

p(n)

(where the probability is over a random q and a random b ∈R {0, 1}n). We denote

the set of all such n’s by S1
G1,G2 .

We refer to this case by (∀G1,G2 ∃IMPERSONATOR)

It remains to prove the following lemma.

Lemma 3.7.3 (∀G1,G2 ∃IMPERSONATOR) ⇒ ¬(FS).

To prove this Lemma we construct yet two more ID schemes ID2 and ID3, such that

one of them demonstrates the insecurity of the FS paradigm.

3.7.4 Construction of ID2

The assumption (∀G1,G2 ∃IMPERSONATOR) implies that for every n ∈ S1
G1,G2 , given

random (f, g1, g2), it is easy to find a and b1 $= b2, and to convince, with non-negligible

probability, both VG1,G2|q(f, a, b1) and VG1,G2|q(f, a, b2), where q = (f, g1, g2, r1, r2)

and r1, r2 are uniformly distributed. Note that in contrast, it is hard to convince

both V0(f, a, b1) and V0(f, a, b2), since (P0, V0) is a proof of knowledge, and anyone

who knows a witness to both (f, a, b1) and (f, a, b2) can be used to find collisions

to f . This contrast between V0 and VG1,G2
suggests constructing a new ID scheme,

ID2, whose security follows from the proof-of-knowledge property of (P0, V0), and

the insecurity of the corresponding FS signature scheme follows from the assumption

(∀G1,G2 ∃IMPERSONATOR).

Let F be a collision resistant hash-function ensemble, and let ID = (G, S, R) be

any secure canonical ID scheme. We extend ID to obtain a new ID scheme ID2 =

(G2, S2, R2), by extending the public key and the verdict function, as follows.

63



• G2: On input 1n,

1. Run G(1n), to obtain a pair (SK, PK) ← G(1n).

2. Choose uniformly

– f ∈ Fn

– r ∈ {0, 1}t, where t = 4n.

– γ′1 (randomness for VPCP).

Output SK as the secret-key and PK′ = (PK, f, r, γ′1) as the public-key.

• R2: On input a public-key PK′ = (PK, f, r, γ′1), R2 accepts either views that

R(PK) accepts or views of the form

S2 R2

β2, r ⊕ (a, b1, b2, β1)−−−−−−−−−−−−−−−−−−−−→

γ1, γ2←−−−−−−−−−−−−−−

δ1, δ2−−−−−−−−−−−−−→

where

– b1 $= b2.

– (f ; β1; γ1 ⊕ γ′1; δ1) ∈ ACC(V0(f, a, b1)).

– (f ; β2; γ2; δ2) ∈ ACC(V0(f, a, b2)).

Intuitively, the above view can be thought of as an interleaved execution of the fol-
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lowing two views:

P0 (f, a, b1) V0

f←−−−−−−

β1−−−−−−→

γ1 ⊕ γ′1←−−−−−−−−

δ1−−−−−−−−→

P0 (f, a, b2) V0

f←−−−−−−

β2−−−−−−→

γ2←−−−−−−−

δ2−−−−−−−→

Remarks:

1. It is necessary to append γ′1 to the public-key in order to later establish the

insecurity of the corresponding signature scheme. The reason is that when

ID2 will be converted into a signature scheme (by applying the Fiat-Shamir

paradigm), the verifier will be replaced with a hash-function, and thus γ1 will

no longer necessarily be uniformly distributed. Yet, as we shall see, we only

know how to establish the insecurity of the corresponding signature scheme if

γ1 is uniformly distributed. We get around this problem by XORing γ1 with a

uniformly distributed string γ′1, from the public-key.

Notice that we do not append γ′2 to the public-key, and thus in some sense ID2 is

asymmetric. The reason for this asymmetry is quite technical and will become

clearer in the proof of Lemma 3.7.5.

2. As in ID1, f is used for two purposes. It is used both in the instances (f, a, b1)

and (f, a, b2), and in the views ACC(V0(f, a, b1)) and ACC(V0(f, a, b2)). As in

ID1, we can use one function for both purposes since both require the same

property from f , namely, it being collision resistant.
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3. Note that we mask (a, b1, b2, β1) by XORing it with a random r, rather then

simply sending (a, b1, b2, β1, β2) in the clear. The reason is quite technical and

will become clearer in the proof of Lemma 3.7.5.

3.7.5 The Security of ID2

Lemma 3.7.4 Assuming F is collision resistant, ID2 is secure.

Proof Idea. Assume for contradiction that ID2 is not secure. That is, assume that

there exists a cheating sender S̃ = {S̃n} and a polynomial p(·) such that for infinitely

many n’s,

Pr[(S̃n, R2)(PK′) = 1] ≥ 1

p(n)

(where the probability is over PK′ ← G2(1n) and over the random coin tosses of R2).

We prove that the existence of S̃ implies the existence of a circuit that finds

collisions in F . This is done in two parts, as follows.

• (Part 1): We first show that there exist non-uniform probabilistic polynomial-

time Turing machines F̃ = {F̃n} and P̃ = {P̃n}, such for infinitely many n’s the

following holds.

For (a, b1, b2, aux1, aux2) = F̃n(f),

Pr
[
(P̃n(aux1), V

0|f )(f, a, b1) = 1 ∧ (P̃n(aux2), V
0|f )(f, a, b2) = 1

]
≥ 1/p(n)2

(where the probability is over a uniformly chosen f ∈ Fn, and over the random

coin tosses of Fn, P̃n, and both independent instances of V0|f ).16

The proof-of-knowledge property of (P0, V0) implies that there exists a proba-

bilistic polynomial-time oracle machine E and a polynomial p′(·) such that for

16recall that V0|f is V0 restricted to sending f as the first message.
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any (a, b1, b2, aux1, aux2) which satisfy the above inequality,

Pr





∀i EP̃n(aux1)((f, a, b1), i) = w1
i s.t. ((f, a, b1), w1) ∈ RF

and

∀i EP̃n(aux2)((f, a, b2), i) = w2
i s.t. ((f, a, b2), w2) ∈ RF




≥ 1

p′(n)

(where the probability is over the random coin tosses of EP̃n(aux1) and EP̃n(aux2)).

• (Part 2): We then show that there exists a probabilistic polynomial-time oracle

machine, with oracle access to E, F̃n and P̃n, such that on input a uniformly

chosen f ∈R Fn, outputs a collision in f , with non-negligible probability.

Since non-uniform probabilistic polynomial-time Turing machines can be modeled

as polynomial-size circuits, Part 1 together with Part 2 imply the existence of a

polynomial-size circuit such that, on input a uniformly chosen f ∈R Fn, outputs a

collision in f , with non-negligible probability. This contradicts the assumption that

F is collision resistant.

The formal proof is quite tedious and is deferred to Appendix A.1.

3.7.6 On the Insecurity of FSH(ID2)

We next consider the insecurity of the corresponding signature scheme FSH(ID2),

which we denote by SIG2
H = (GEN2

H, SIGN2
H, VERIFY2

H). Proving the insecurity of

SIG2
H = FSH(ID2) is tricky. Intuitively, we would like to use the assumption

(∀G1,G2 ∃IMPERSONATOR)

to forge signatures, as follows. Let H1 be a hash-function ensemble that computes

the n most significant bits of the output of H, and let H2 be a hash-function ensemble

that computes the n least significant bits of the output of H. We would like to use

an impersonator for H1,H2. We denote this impersonator by IMPERSONATORH1,H2 .
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Loosely speaking, given a random verification key VK = (PK′, h), where h ∈ H

and PK′ = (PK, f, r, γ′1), we would like to prove the insecurity of SIG2
H by using

IMPERSONATORH1,H2 to find an a such that for random b1 $= b2, IMPERSONATORH1,H2

can fool both VH1
(f, a, b1) and VH2

(f, a, b2) to accept. However, in this approach

IMPERSONATORH1,H2 finds β1, β2, γ1, γ2 such that γ1 depends only on β1 and γ2 de-

pends only on β2, whereas in valid signatures γ1 and γ2 are functions of both β1 and

β2. Thus, to obtain a valid signature, we cannot simply run P̃n
1 twice independently,

since the value of β2 affects the value of γ1 and vice versa.

To get around this problem we distinguish between the following two cases:

• Case 2a: (∀G ∃strong-IMPERSONATOR)

• Case 2b: ¬(∀G ∃strong-IMPERSONATOR)

(∀G ∃strong-IMPERSONATOR) refers to the case that for every function ensemble G

there exists a “strong”-impersonator, that for infinitely many n’s, on input a random

f ∈ Fn, finds a and b1 such that he can convince V0(f, a, b1) to accept, and can

convince VG(f, a, b2) to accept for a random b2. We denote the set of all such n’s

by S2
G. Formally speaking, (∀G ∃strong-IMPERSONATOR) refers to the case that for

every function ensemble G there exists a polynomial-size circuit family F̃2 = {F̃n
2}, a

polynomial-size circuit family P̃2 = {P̃n
2}, a polynomial p(·), and an infinite set S2

G,

such that for every n ∈ S2
G,

Pr[(P̃n
2 , V

0|f )(f, a, b1) = 1 ∧ (P̃n
2 , V

G|q)(f, a, b2) = 1 : (a, b1) = F̃n
2 (f, g) ∧ q = (f, g, r)] ≥ 1

p(n)

(where the probability is over a random q (i.e., over f ∈R Fn, g ∈R Gn, r ∈R {0, 1}4n),

a random b2 ∈R {0, 1}n, and over the random coin tosses of V0|f ).

We proceed by proving the insecurity of the FS paradigm is case 2a and in case 2b.

The insecurity of the FS paradigm in case 2a. In this case, we proceed with

ID2 and show that SIG2
H is insecure for every H. More specifically, we show that for
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every H and for every message M there exists a forger, who succeeds in forging a

signature of M for every n ∈ S2
HM , where HM is a hash-function ensemble which will

be defined shortly.

Lemma 3.7.5 Assuming (∀G ∃strong-IMPERSONATOR), for any function ensemble

H the signature scheme SIG2
H is insecure.

Proof: Fix a function ensemble H and any message M. We show that there exists

a forger FORGM which, on input a random verification-key VK, outputs a signature

of M, with non-negligible probability.

For any n ∈ N and for any h ∈ Hn, define hM(x) = n least-significant-bits of h(x, M),

and let HM = {hM}h∈H. From our assumption there exist two polynomial-size

circuit families F̃2 = {F̃n
2}n∈N and P̃2 = {P̃n

2} such that for every n ∈ S2
HM , for

(a, b1) = F̃n
2 (f, hM), and for q = (f, hM, r),

Pr[(P̃n
2 , V

0|f )(f, a, b1) = 1 ∧ (P̃n
2 , V

HM |q)(f, a, b2) = 1] ≥ 1

poly(n)

(where the probability is over a randomly chosen q, a random b2 ∈R {0, 1}n, and the

random coin tosses of V0|f ).

On input a random verification-key VK = (PK′, h), where h ∈ Hn and PK′ =

(PK, f, r, γ′1), the forger FORGM generates a signature of M as follows.

1. Compute (a, b1) = F̃n
2 (f, hM).

2. Emulate the interaction of (P̃n
2 , V

0|f )(f, a, b1), to obtain a transcript

(f ; β1; ∗; ∗) ← (P̃n
2 , V

0|f )(f, a, b1).

3. Choose randomly b2 ∈ {0, 1}n. Let r′ = r⊕(a, b1, b2, β1) and let q′ = (f, hM, r′).17

4. Emulate the interaction of (P̃n
2 , V

HM|q′)(f, a, b2), to obtain a transcript

(q′; ans) ← (P̃n
2 , V

HM|q′)(f, a, b2).

17When proving that this forger is successful, we use the fact that r′ is uniformly distributed. This
is why we masked (a, b1, b2, β1) by XORing it with a random r.
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Denote ans = (β2, γ2, δ2).

5. Compute (γ1, ∗) = h(β2, r′, M).18

6. Emulate the interaction (P̃n
2 , V

0|f,γ1⊕γ′
1
)(f, a, b1) to obtain a transcript

(f ; β1; γ1 ⊕ γ′1; δ1) ← (P̃n
2 , V

0|f,γ1⊕γ′
1
)(f, a, b1).

7. Output (β2, r ⊕ (a, b1, b2, β1); γ1, γ2; δ1, δ2) as a signature of M.

We claim that the forger will be successful with non-negligible probability.

Claim 18

Pr[VERIFY2
H(VK, M, FORGM(VK)) = 1] = non-negl(n)

(where the probability is over VK and over the random coin tosses of FORGM).

Since the proof is quite technical it is deferred to Appendix A.2.

It remains to prove the insecurity of the FS paradigm in case 2b. We construct

yet another and final ID scheme ID3, which demonstrates the insecurity of the FS

paradigm in this case.

3.7.7 Construction of ID3

Throughout the remaining of Chapter 3, we assume

(∀G1,G2 ∃IMPERSONATOR) ∧ ¬(∀G ∃strong-IMPERSONATOR).

We establish ¬(FS) by extending any secure ID scheme into a new ID scheme ID3 =

(G3, S3, R3). The security of ID3 follows from the assumption ¬(∀G ∃ strong-IMPERSONATOR),

and the insecurity of the corresponding signature scheme SIG3
H = FSH(ID3) (for

18Notice that (γ1, γ2) = h(β2, r′, M).
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n ∈ S1
H) follows from the assumption (∀G1,G2 ∃IMPERSONATOR). Recall that,

roughly speaking, in ID1 there was one execution of (PG
1,G2

, VG1,G2
), and in ID2 there

were two parallel executions of (P0, V0). ID3 is, in some sense, a hybrid of ID1 and

ID2. It once executes (PG, VG) and once executes (P0, V0).

Fix a hash-function ensemble G that does not have a strong-IMPERSONATOR (one

exists by our assumption). Take any secure canonical ID scheme ID = (G, S, R) and

define ID3 by extending the public key and the verdict function, as follows.

• G3: On input 1n,

1. Run G(1n), to obtain a pair (SK, PK) ← G(1n).

2. Choose uniformly

– f ∈ Fn

– g ∈ G

– r1, r′2 ∈ {0, 1}4n

– b′2 ∈ {0, 1}n.

Output SK as the secret-key and PK′ = (PK, f, g, r1, r′2, b
′
2) as the public-key.

• R3: On input a public-key PK′ = (PK, f, g, r1, r′2, b
′
2), R3 accepts either views

that R(PK) accepts or views of the form

S3 R3

β1, r1 ⊕ (a, b1)−−−−−−−−−−−−−−−−−−−−→

γ1, b2, r2←−−−−−−−−−−−−−−

δ1, ans2−−−−−−−−−−−−−−−→

where

– (f ; β1; γ1; δ1) ∈ ACC(V0(f, a, b1))
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– (q2; ans2) ∈ ACC(VG(f, a, b2 ⊕ b′2)), where q2 = (f, g, r2 ⊕ r′2).

Intuitively, the above view can be thought of as an interleaved execution of the

following two views:

P0 (f, a, b1) V0

f←−−−−

β1−−−−−→

γ1←−−−−

δ1−−−−−→

PG (f, a, b2 ⊕ b′2) VG

f, g, r2 ⊕ r′2←−−−−−−−−−−−−

ans2−−−−−−−−→

Remarks:

1. As in ID2, it is necessary to append b′2, r
′
2 to the public-key in order to later

establish the insecurity of FSH(ID3). More specifically, when ID3 will be con-

verted into a signature scheme (by applying the FS paradigm), the verifier will

be replaced with a hash-function, and thus b2 and r2 will no longer necessarily

be chosen at random. Yet, we only know how to establish the insecurity of the

signature scheme assuming that b2 and r2 are chosen at random. We get around

this problem by XORing b2 with a uniformly distributed string b′1 and XORing

r2 with a uniformly distributed string r′2.

2. As in ID1 and ID2, f serves two purposes. It is used both in the instances

(f, a, b1) and (f, a, b2 ⊕ b′2), and in the transcripts of ACC(V0(f, a, b1)) and

ACC(VG(f, a, b2 ⊕ b′2)).

3. As in ID2 and for a similar reason, we mask (a, b1), by XORing it with a random

r1.
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Lemma 3.7.6 Assuming G does not have a strong-IMPERSONATOR, ID3 is secure.

Proof: Follows easily from the definition of a strong-IMPERSONATOR.

We denote FSH(ID3) by SIG3
H = (GEN3

H, SIGN3
H, VERIFY3

H).

Lemma 3.7.7 Assuming (∀G1,G2 ∃IMPERSONATOR), for any hash-function ensem-

ble H the signature scheme SIG3
H is insecure.

Proof: Fix any hash-function ensemble H and any message M. We show that exists

a forger FORGM which, on input a random verification key VK = (PK′, h), where

PK′ = (PK, f, g, r1, r′2, b
′
2), outputs a signature of M with non-negligible probability.

For any n ∈ N and for any h ∈ Hn, define hM(x) = n most-significant-bits of h(x, M),

and let HM = {hM}h∈H. By our assumption (∀G1,G2 ∃IMPERSONATOR) there ex-

ists an impersonator for HM and G. Namely, there exist F̃1 = {F̃n
1}n∈N, P̃1 = {P̃n

1},

and a polynomial p(·), such that for every n ∈ S1
HM,G, for a = F̃n

1 (f, hM, g), and for

q = (f, hM, g, r1, r2),

Pr[(P̃n
1 , V

HM,G|q)(f, a, b) = 1] ≥ 1

p(n)

(where the probability is over a randomly chosen q and a random b ∈R {0, 1}n).

This implies that there exists ˜̃P1 = {˜̃Pn
1}, and a polynomial p′(·) such that for

every n ∈ S1
HM,G, and for a = F̃n

1 (f, hM, g),

Pr[(˜̃Pn
1 , V

HM|(f,hM,r1))(f, a, b1) = 1 ∧ (˜̃Pn
1 , V

G|(f,g,r2))(f, a, b2) = 1] ≥ 1

p′(n)

(where the probability is over f ∈R Fn, hM ∈R HM, g ∈R G, r1, r2 ∈R {0, 1}4n, and

b1, b2 ∈R {0, 1}n). For simplicity, we abuse the notations and denote ˜̃P1 by P̃1.

The forger FORGM generates a signature of M, with respect to VK, as follows.

1. Compute a = F̃n
1 (f, hM, g).

2. (a) Choose b1 ∈R {0, 1}n, and compute r′1 = r1 ⊕ (a, b1).
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(b) Emulate the interaction of (P̃n
1 , V

HM|q1)(f, a, b1), where q1 = (f, hM, r′1) to

obtain a transcript

(q1; ans1) ← (P̃n
1 , V

HM|q1)(f, a, b1).

Denote ans1 = (β1, γ1, δ1).

3. Compute (∗, b2, r2) = h(β1, r′, M).19

4. Emulate the interaction of (P̃1
n, VG|q2)(f, a, b2 ⊕ b′2), where q2 = (f, g, r2 ⊕ r′2),

to obtain a transcript (q2; ans2) ← (P̃1
n, V

G|q2)(f, a, b2 ⊕ b′2).

5. Output (β1, r1 ⊕ (a, b1); γ1, b2, r2; δ1, ans2) as a signature of M.

We claim that the forger is successful with non-negligible probability.

Claim 19 There exists a polynomial p(·) such that for every n ∈ S1
HM,G

Pr[VERIFY3
H(VK, M, FORGM(VK)) = 1] ≥ 1

p(n)

(where the probability is over VK and over the random coin tosses of FORGM).

Again, due to the technical flavor of the proof of the above claim, we defer it to

Appendix A.3.

Thus, we have established the insecurity of SIG3
H.

This concludes the proof of Theorem 12, which is summarized in Figure 1.

19Notice that (γ1, β2, r2) = h(β1, r′,M).
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Chapter 4

The Impossibility of Program

Obfuscation

In this chapter we state and prove our results regarding the impossibility of program

obfuscation. As was mentioned in Chapter 2, we model adversaries as non-uniform

probabilistic polynomial-time Turing machines. We refer to such machines as PPT

Turing machines. We also distinguish between a family of circuits (which has one

circuit for each input size) and a class of circuits (which has many circuits for each

input size). A class of circuits is of the form C = {Cn}n∈N (denoted by calligraphic

letters), where for every n ∈ N, Cn is a set of many circuits, each on inputs of size n.

4.1 Definitions

In this subsection we present the original definition of obfuscation due to Barak et

al. [4] (Section 4.1.1) and present our definitions of obfuscation w.r.t. auxiliary input

(Section 4.1.2). We note that in [4] two definitions of obfuscation were presented: one

in which programs were modeled as Turing machines, and one in which programs were

modeled as Boolean circuits. Throughout this manuscript we always model programs

as Boolean circuits. We note that modeling programs as Boolean circuits, rather

than Turing machines, weakens the definition and thus strengthen the impossibility

results.
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4.1.1 Obfuscation

Definition 20 [4]: A probabilistic algorithm O is an obfuscator for a class of circuits

C = {Cn}n∈N if the following three conditions are satisfied:

• (Functionality): There exists a negligible function µ(·) such that for every n ∈ N

and every C ∈ Cn, with probability 1 − µ(n) over the internal coin tosses of the

obfuscator, O(C) describes a circuit that computes the same function as C.1

• (Polynomial blowup): There is a polynomial l(·) such that for every C ∈ C,

|O(C)| ≤ l(|C|).

• (“Virtual black-box” property): For every PPT A there exists a PPT S and a

negligible function µ(·), such that for every n ∈ N, every C ∈ Cn, and every

predicate π(·),

|Pr[A(O(C)) = π(C)]− Pr[SC(1n) = π(C)]| < µ(n).2

Throughout this thesis, we restrict our attention to efficient obfuscators, defined

as follows.

Definition 21 An obfuscator O is said to be efficient if it runs in probabilistic poly-

nomial time.

A few positive results for obfuscation (in the plain model) exist in the literature

[5, 6, 36]. All these positive results are for weak obfuscators, which have the following

weaker variant of the “virtual black-box” property:

For every PPT A and every polynomial p(·) there exists a PPT S such

1The original definition in [4] considered a slightly stronger functionality property: they required
that O(C) always computes the same function as C. This was relaxed as above in [36].

2[4] formalized the “virtual black-box” property in a different, yet equivalent, way. They required
that for every PPT A there exists a PPT S and a negligible function µ(·), such that for every n ∈ N,
and every C ∈ Cn, ∣∣Pr[A(O(C)) = 1]− Pr[SC(1n) = 1]

∣∣ < µ(n).
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that for every n ∈ N, every C ∈ Cn, and every predicate π(·),

|Pr[A(O(C)) = π(C)]− Pr[SC(1n) = π(C)]| < 1

p(n)
.

We note that the negative results of [4] hold also for weak obfuscators. Similarly,

our negative results hold also for weak obfuscators w.r.t. auxiliary input.

4.1.2 Obfuscation w.r.t. Auxiliary Input

We consider two definitions of obfuscation w.r.t. auxiliary input. In the first definition

we allow the auxiliary input to depend on the function being obfuscated, whereas in

the second definition we require the auxiliary input to be independent of the func-

tion being obfuscated. Both definitions follow the spirit of the original definition of

obfuscation given in [4].

Definition 22 (Obfuscation w.r.t. dependent auxiliary input): A probabilistic al-

gorithm O is an obfuscator w.r.t. dependent auxiliary input for a class of circuits

C = {Cn}n∈N if it satisfies the functionality property and the polynomial blowup prop-

erty as in Definition 20, and in addition it satisfies the following “virtual black box”

property:

For every PPT A there exists a PPT S and a negligible function µ(·), such that for

every polynomial q(·), every n ∈ N, every C ∈ Cn, every auxiliary input z of size q(n)

(z may depend on C), and every predicate π(·),

∣∣Pr[A(O(C), z) = π(C, z)]− Pr[SC(1n, z) = π(C, z)]
∣∣ ≤ µ(n).

Definition 23 (Obfuscation w.r.t. independent auxiliary input): A probabilistic al-

gorithm O is an obfuscator w.r.t. independent auxiliary input for a class of circuits

C = {Cn}n∈N if it satisfies the functionality property and the polynomial blowup prop-

erty as in Definition 20, and in addition it satisfies the following “virtual black box”

property:
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For every PPT A there exists a PPT S and a negligible function µ(·), such that for

every polynomial q(·), every n ∈ N, every auxiliary input z of size q(n), and every

predicate π(·),

∣∣Pr[A(O(C), z) = π(C, z)]− Pr[SC(1n, z) = π(C, z)]
∣∣ ≤ µ(n),

where the probabilities are over C ∈R Cn, and over the random coin tosses of A, S,

and O.

Notice that Definition 23 is weaker than Definition 22, not only because the aux-

iliary input is independent of the function being obfuscated, but also because in Def-

inition 23 the simulator S is required to succeed only for random C ∈R Cn (whereas

in Definition 22 the simulator S is required to succeed for every C ∈ Cn). As was

noted in the Introduction, considering only randomly chosen circuits seems to suffice

for most cryptographic applications. Moreover, even if Definition 23 does seem to

be too weak, this is not a concern to us, since we are mainly proving impossibility

results, and an impossibility of achieving a weak definition implies an impossibility

of achieving a stronger one.

Our negative results hold also for the notion of weak obfuscation w.r.t. auxiliary

input, which is defined analogously to weak obfuscation (without auxiliary input).

The definition of weak obfuscation w.r.t. dependent auxiliary input has the following

weaker variant of the “virtual black-box” property:

For every PPT A, every polynomial p(·), and every polynomial q(·) there

exists a PPT S such that for every n ∈ N, every C ∈ Cn, every auxiliary

input z of size q(n), and every predicate π(·),

∣∣Pr[A(O(C), z) = π(C, z)]− Pr[SC(1n, z) = π(C, z)]
∣∣ <

1

p(n)
.

The definition of weak obfuscation w.r.t. independent auxiliary input has the following

weaker variant of the “virtual black-box” property:
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For every PPT A, every polynomial p(·), and every polynomial q(·) there

exists a PPT S such that for every n ∈ N, every auxiliary input z of size

q(n), and every predicate π(·),

∣∣Pr[A(O(C), z) = π(C, z)]− Pr[SC(1n, z) = π(C, z)]
∣∣ <

1

p(n)
,

where the probabilities are over C ∈R Cn, and over the random coin tosses of

A, S, and O.

4.2 Road Map

When proving our impossibility results, we exploit the following distinction between

an obfuscated circuit and black-box access to a circuit:

1. An obfuscation O(C) is a small (polynomial size) circuit that agrees with C.

2. Given black-box access to C, it is hard to construct a small circuit that agrees

with C.

For item 2 to hold, we need to assume that C is “sufficiently unpredictable.” To this

end, we define in Section 4.3 the notion of pseudo entropy of a class of circuits. We

use this notion to present our negative results for weak obfuscation w.r.t. independent

auxiliary input in Section 4.4, and our negative results for weak obfuscation w.r.t.

dependent auxiliary input in Section 4.5.

4.3 Pseudo Entropy of a Class of Circuits

Loosely speaking, we say that a class of circuits C has pseudo entropy at least p(·) if

there exist polynomial size sets In ⊆ {0, 1}n such that the set C(In) looks as if it has

min-entropy at least p(n), even given oracle access to C on Īn ! {0, 1}n \ In. This is

formalized as follows.
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Definition 24 (Pseudo entropy of a class of circuits): We say that a class of circuits

C = {Cn}n∈N has pseudo entropy at least p(·) if there exists a polynomial t(·) and

sets In ⊆ {0, 1}n of size t(n), and for every C ∈ Cn there is a random variable

*Y C = (Y1, . . . , Yt(n)) such that the following holds:

1. *Y C has (statistical) min entropy at least p(n).3

2. For every PPT oracle machine D there is a negligible function µ(·) such that for

every n ∈ N,

∣∣∣Pr[DC|Īn (*Y C) = 1]− Pr[DC|Īn (C(In)) = 1]
∣∣∣ ≤ µ(n),

where the probabilities are over C ∈R Cn, *Y C, and the random coin tosses of D.

The circuit C|Īn
agrees with C on every x /∈ In and outputs ⊥ on every x ∈ In.

There is a slight abuse of notations here. We use In to denote both a set and a list

(or a vector). For In = (x1, . . . , xt(n)) we let C(In) = (C(x1), . . . , C(xt(n))).

Definition 25 We say that a class of circuits C = {Cn}n∈N has super-polynomial

pseudo entropy if it has pseudo entropy at least p(·), for every polynomial p(·).

We give a few examples of natural classes of circuits that have super-polynomial

pseudo entropy.

Claim 26 The following classes of circuits all have super-polynomial pseudo entropy:

1. Every class of pseudo-random functions.

2. Every randomized digital signature algorithm,4 in which the signer replaces the

randomness by applying a (secret) pseudo-random function to the message to be

signed.

3A random variable X over some set S is said to have (statistical) min-entropy at least k if for
every x ∈ S, Pr[X = x] ≤ 2−k.

4A signature scheme is said to be randomized if for every message M and for every signing key
SK, the random variable SIGNSK(M) has (statistical) min-entropy at least 1.
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3. Every semantic secure secret-key encryption algorithm,5 in which the randomness

is replaced by applying a (secret) pseudo-random function to the message to be

encrypted.

Proof:

1. Follows immediately from the definition of pseudo-random functions.

2. Let SIG = (GEN, SIGN, VERIFY) be any randomized digital signature algorithm,

and let SIGN′ be the deterministic signature algorithm obtained by taking any

pseudo-random function ensemble F = {fs}, and modifying the (randomized)

signing algorithm SIGNSK(·) by appending a (random) seed s of F to its sign-

ing key, and by setting SIGN′
SK,s(M) ! SIGNSK(M; fs(M)) (i.e., SIGN′

SK,s(M) runs

the signing algorithm SIGNSK on message M with randomness fs(M)). For ev-

ery set of t(n) messages In = (M1, . . . , Mt(n)), let *Y SK = (Y1, . . . , Yt(n)) be a

sequence of t(n) independent random variables, where each Yi is identically dis-

tributed to SIGNSK(Mi). The fact that each Yi has (statistical) min-entropy at

least 1, implies that *Y SK has (statistical) min-entropy at least t(n). It remains

to notice that the pseudo-randomness of F implies that every PPT oracle ma-

chine DSIGN′
SK,s|Īn cannot distinguish between the random variable SIGN′

SK,s(In) =

(SIGN′
SK,s(M1), . . . , SIGN′

SK,s(Mt(n))) and the random variable *Y SK = (Y1, . . . , Yt(n))

(for randomly chosen s), implying that the class {SIGN′
SK,s} has super-polynomial

pseudo entropy.

3. Let ENC be any secure (possibly randomized) secret-key encryption scheme, and

let ENC′ be the deterministic encryption scheme obtained by taking any pseudo-

random function ensemble F = {fs}, and modifying the (possibly randomized)

encryption scheme ENCk(·) by appending a (random) seed s of F to its secret-key,

and by setting ENC′
k,s(M) ! ENCk(M; fs(M)). For any polynomial t(·), any n ∈ N,

and any set of messages In = (M1, . . . , Mt(n)), let *Y k = (Y1, . . . , Yt(n)) be t(n) iden-

tical and independent random variables: Each Yi chooses at random M′
i ∈ {0, 1}n

5We refer the reader to [14] for the precise definition of semantic security.
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and sets Yi = ENC′
k,s(M

′
i). Clearly, each Yi has (statistical) min-entropy n. Us-

ing a standard hybrid argument, it is not hard to see that the fact that ENC is

semantic secure implies that every PPT oracle machine DENC′
k,s|Īn cannot distin-

guish between the random variable ENC′
k,s(In) = (ENC′

k,s(M1), . . . , ENC′
k,s(Mt(n)))

and the random variable *Y k = (Y1, . . . , Yt(n)) (for randomly chosen k, s), implying

that ENC has super-polynomial pseudo entropy.

Remark. As was mentioned in Section 4.2, when proving negative results for ob-

fuscation we exploit the difference between having an obfuscation O(C), which is a

small circuit that agrees with C, and having black-box access to C, from which it is

hard to construct a small circuit that agrees with C. However, for this distinction

to hold we need to assume that C is sufficiently “unpredictable.” This is exactly

where the notion of super-polynomial pseudo entropy comes into play. When proving

impossibility results, we exploit the following distinction:

1. An obfuscation O(C) is a small (polynomial size) circuit that agrees with C on

In.

2. Given black-box access to C, it is hard to construct a small circuit that agrees

with C on In.

When arguing for (2), we use the fact that C has super-polynomial pseudo entropy. If

C has super-polynomial pseudo entropy, then given black box access to C|Īn
, it is hard

to distinguish (for C ∈R Cn) between the pair (In, C(In)) and the pair (In, *Y C), where

*Y C is a random variable with high (statistical) min-entropy. Using the connection

between (statistical) min entropy and compression, it can be shown that with high

probability (over the random variable *Y C) there does not exist a small circuit v such

that v(xi) = Yi, where In = (x1, . . . , xt(n)) and *Y C = (Y1, . . . , Yt(n)). Thus, it must

be the case that for a random C ∈ Cn it is hard to come up with a small circuit that

agrees with C on In. Otherwise, this can be used to distinguish between the pair

(In, C(In)) and the pair (In, *Y C). We elaborate on this in Sections 4.4 and 4.5.
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4.4 Impossibility of Obfuscation w.r.t. Indepen-

dent Auxiliary Input

In this subsection, we define the classes of filter functions, and show that many natural

classes of filter functions are not even weakly obfuscatable w.r.t. independent auxiliary

input.

Definition 27 For any NP language L and for any class of circuits C, the class

of filter functions CL is defined by CL ! {CL : C ∈ C}, where each function CL is

defined by

CL(x,w)
def
=

{
C(x,w) if (x,w) ∈ RL

⊥ otherwise

We show that the class of filter functions CL is not weakly obfuscatable w.r.t. inde-

pendent auxiliary input, for L and C = {Cn}n∈N that satisfy the following properties:

1. L is an NP-complete language.

2. C is strongly unpredictable: For every x ∈ {0, 1}n, and for a random C ∈R Cn,

given oracle access to C everywhere except at the point x, it is hard to guess C(x)

(except with negligible probability).

3. C has super-polynomial pseudo entropy over elements in L: for every polynomial

p(·) there exists a polynomial t(·) and sets In ⊆ L ∩ {0, 1}n of t(n) elements,

and for every C ∈ Cn there exists a random variable *Y C = (Y1, . . . , Yt(n)) with

(statistical) min entropy at least p(n), such that every PPT oracle machine DC|Īn

cannot distinguish (for C ∈R Cn) between the random variable C(In) and the

random variable *Y C .

We note that all our natural examples of classes of circuits given in Claim 26, satisfy

both properties 2 and 3 (for every NP-complete language L).
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Theorem 28 For every L and C that satisfy the above three properties, the class of

circuits CL is not weakly obfuscatable w.r.t. independent auxiliary input.

Before presenting the full proof of Theorem 28, we sketch the main ideas.

Proof Sketch. The proof is by contradiction. Assume that there exist C and L as

above, such that CL is weakly obfuscatable w.r.t. independent auxiliary input by an

obfuscator O. The main idea is to exploit the fact that CL has the property, that for

every n ∈ N there is a set In = (x1, . . . , xt(n)) of t(n) elements in L ∩ {0, 1}n, and a

set Wn = (w1, . . . , wt(n)) of t(n) corresponding witnesses, such that:

1. For every PPT S, given black-box access to a random circuit CL ∈R CL
n , it is hard

to come up with a “small” circuit that computes CL on (x1, w1), . . . , (xt(n), wt(n)).

This follows from the fact that C has super-polynomial pseudo entropy over L.

2. For every C ∈ Cn, the obfuscated circuit O(CL) is itself a “small” circuit that

computes CL on (x1, w1), . . . , (xt(n), wt(n)).

We exploit this difference to obtain a contradiction. However, for this we need to

show that given O(CL) it is easy to compute a single bit b, such that every PPT

oracle machine S(CL) fails to compute this bit (with noticeable probability). This is

where our auxiliary input comes into play.

Our first idea was to take the auxiliary input z to be an obfuscation of a circuit

that outputs a secret bit b only on inputs that encode a small circuit that agrees with

CL on (x1, w1), . . . , (xt(n), wt(n)). Such an approach is actually taken in the proof of

Theorem 31. However, here we need to take a different approach: first, because we

need the auxiliary input z to be independent of our obfuscated circuit CL, and z as

defined above does depend on CL; and second, because we do not want to add the

additional assumption that the above z is obfuscatable.

Instead, we let z be an obfuscation of a random filter function KL ∈R CL.6 We

show that there exists a string x∗ ∈ {0, 1}∗ (that depends on In and C(In)) such that:

6Notice that KL is independent of CL.
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1. For every PPT S, given black-box access to a random circuit CL ∈R CL
n , and

given O(KL) it is hard to compute K(x∗).

2. For every C ∈ Cn, given (O(CL),O(KL)) it is easy to compute K(x∗).

We next present the full proof of Theorem 28. This proof makes use of the following

claim, which loosely speaking, asserts the following: Let O be a weak obfuscator

(w.r.t. independent auxiliary input) for the class C. Let A be a PPT algorithm, that

for every C ∈ C and for every auxiliary input z, on input (O(C), z) outputs the

function f(C, z), where f is a deterministic (not necessarily Boolean) function. Then

there exists a PPT algorithm S, that given auxiliary input z and black-box access to

C, computes the function f(C, z) with almost the same probability.

Claim 29 Let C be a class of functions, and let O be a weak obfuscator (w.r.t. inde-

pendent auxiliary input) for C. Then for every PPT A, every deterministic function

f (not necessarily Boolean), every sequence of (polynomial size) auxiliary inputs {zn},

and every polynomial p(·), there exists a PPT S such that for every n ∈ N,

Pr[A(O(C), zn) = f(C, zn)]− Pr[SC(1n, zn) = f(C, zn)] <
1

p(n)
,

where the probabilities are over C ∈R Cn, and over the random coin tosses of A, S

and O.

Proof of Claim 29. Assume for the sake of contradiction that there exists a PPT

A, a deterministic function f , a sequence of (polynomial size) auxiliary inputs {zn},

and a polynomial p(·) such that for every PPT S there exists n ∈ N such that

Pr[A(O(C), zn) = f(C, zn)]− Pr[SC(1n, zn) = f(C, zn)] ≥ 1

p(n)
,

where the probabilities are over C ∈R Cn, and over the random coin tosses of A, S

and O.

Consider a PPT machine A’ that on input (O(C), zn, r) outputs the inner product

〈r,A(O(C), zn)〉. Our assumption, together with the work of [17], implies that there
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exists a polynomial α(·) such that for every PPT S there exists n ∈ N such that

Pr[A′(O(C), zn, r) = 〈r, f(C, zn)〉]− Pr[SC(1n, zn, r) = 〈r, f(C, zn)〉] >
1

α(n)
,

where the probabilities are over C ∈R Cn, over the random string r, and over the

random coin tosses of A, S and O. This contradicts the fact that O is a weak

obfuscator w.r.t. independent auxiliary input (since the inner product is a Boolean

value).

We are now ready to present the full proof of Theorem 28, which makes use of

Claim 29.

Proof of Theorem 28. Assume for the sake of contradiction that there exists an

NP-complete language L and a class of circuits C, that has super-polynomial pseudo

entropy over L and is strongly unpredictable, such that the class of circuits CL can

be weakly obfuscated w.r.t. independent auxiliary input, by some obfuscator O.

Fix any polynomial l(·) such that for every n ∈ N and for every C ∈ Cn, |O(CL)| ≤

l(n). The fact that C has super-polynomial pseudo entropy over L implies in particular

that its pseudo entropy is greater than l(n) + n. This in turn implies that there

exists a polynomial t(·), and for every n ∈ N there exists a set of t(n) elements

In ! (x1 . . . , xt(n)), where each xi ∈ L ∩ {0, 1}n, and for every C ∈ Cn there exists

a random variable *Y C = (Y1, . . . , Yt(n)) with (statistical) min entropy greater than

l(n) + n, such that every PPT oracle machine MC|Īn cannot distinguish between the

random variable C(In) and the random variable *Y C (for a randomly chosen C ∈R Cn).

Consider the language L′ ∈ NP corresponding to theNP-relationRL′ = {Rn
L′}n∈N,

defined by

Rn
L′

def
= {((*x, *w, *y), v) : |*x| = |*w| = |*y| = t(n), |v| ≤ l(n), v(xi, wi) = yi for i = 1, . . . t(n)},

where the witness v is a Boolean circuit.7 Since L′ ∈ NP it is reducible to L via

a polynomial time reduction. Namely, there exists a polynomial time computable

7As was done in Chapter 2, we abuse notations by letting v denote both a circuit and the
description of the circuit.
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function ϕ(·) such that (*x, *w, *y) ∈ L′ if and only if ϕ(*x, *w, *y) ∈ L. Moreover, there

exists a polynomial time computable function ψ(·) such that v is a witness of (*x, *w, *y)

in L′ if and only if ψ((*x, *w, *y), v) is a witness of ϕ(*x, *w, *y) in L.8

For every n ∈ N, consider the auxiliary input z = (In,Wn,O(KL; r)), where

In = (x1, . . . , xt(n)), Wn = (w1 . . . , wt(n)) are t(n) witnesses corresponding to In in

RL, KL ∈ CL
τ(n), where τ(n) = |ϕ(*x, *w, *y)| (where |*x| = |*w| = |*y| = t(n)), and

r ∈ {0, 1}n.9 Claim 29 implies that in order to get a contradiction it suffice to prove

the following two statements:

1. For every n ∈ N, every CL ∈ CL
n , every KL ∈ CL

τ(n), and every r ∈ {0, 1}n,

given the pair (O(CL), z), where z = (In,Wn,O(KL; r)), it is easy to compute

K(ϕ(In,Wn, C(In))).

2. For every PPT oracle machine S and for infinitely many n’s, SCL
(z) can compute

K(ϕ(In,Wn, C(In))) only with negligible probability, for random circuits C ∈R Cn

and K ∈R Cτ(n), and for random r ∈R {0, 1}n.

It is easy to see that (1) holds since given a pair (O(CL), z), where z = (In,Wn,O(KL; r)),

K(ϕ(In, Wn, C(In))) can be easily computed by evaluating

K(ϕ(In,Wn, C(In))) = KL(ϕ(In, Wn, C(In)), ψ((In,Wn, C(In)),O(CL)))

We argue that (2) holds by using the fact that both O(CL) and O(KL) are weak

obfuscations w.r.t. independent auxiliary input.

Assume for the sake of contradiction that (2) does not hold. Then, there exists a

PPT oracle machine S1 and a polynomial α(·) such that for every n ∈ N,

Pr[SCL

1 (z) = K(ϕ(In,Wn, C(In)))] ≥ 1

α(n)

8This witness preserving property does not necessarily hold for every NP-complete language
(though it does hold for most of the NP-complete languages that we are aware of). We assume that
our NP-complete language L is witness preserving.

9For simplicity, we assume without loss of generality that O(KL) uses n bits of randomness.
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(where the probability is over C ∈R Cn, K ∈R Cτ(n), and r ∈R {0, 1}n).10 Thus, there

exists a PPT oracle machine S2 such that for every n ∈ N,

Pr[SC|Īn
2 (z, C(In)) = K(ϕ(In,Wn, C(In)))] ≥ 1

α(n)

(where the probability is over C ∈R Cn, K ∈R Cτ(n), and r ∈R {0, 1}n, and where C|Īn

is a circuit that on input x $∈ In outputs C(x), and on input x ∈ In outputs ⊥).

Next we replace the value C(In) with the random variable *Y C . Notice that for

every n ∈ N,

Pr[SC|Īn
2 (z, *Y C)) = K(ϕ(In, Wn, *Y C))] ≥ 1

α(n)
− negl(n)

(where the probability is over C ∈R Cn, K ∈R Cτ(n), r ∈R {0, 1}n, and over the

random variable *Y C). This is so since otherwise SC|Īn
2 can be used to distinguish

between the random variable C(In) and the random variable *Y C (for a randomly

chosen C ∈R Cn).

This implies that there exists a PPT machine S3 such that for every n ∈ N,

Pr[S3(C, z, *Y C) = K(ϕ(In,Wn, *Y C))] ≥ 1

α(n)
− negl(n)

(where the probability is over C ∈R Cn, K ∈R Cτ(n), r ∈R {0, 1}n, and over the

random variable *Y C).

Recall that z = (In,Wn,O(KL; r)), where O is a weak obfuscator w.r.t. indepen-

dent auxiliary input. Thus, from the definition of weak obfuscation w.r.t. independent

auxiliary input, we conclude that there exists a PPT oracle machine S4 such that for

every n ∈ N,

Pr[SKL

4 (C, In,Wn, *Y C) = K(ϕ(In,Wn, *Y C))] ≥ 1

2α(n)

10For simplicity, we assume without loss of generality that S1 is deterministic.
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(where the probability is over C ∈R Cn, K ∈R Cτ(n), and over the random variable

*Y C). The fact that C is strongly unpredictable, together with the definition of KL,

implies that the only way an oracle machine SKL
can compute K(x), for some element

x ∈ L, is by querying its oracle with (x,w) ∈ RL. Thus, there exists a PPT machine

S5 such that for every n ∈ N,

Pr[S5(C, In,Wn, *Y C) = (ϕ(In,Wn, *Y C), w∗) ∈ RL] ≥ 1

2α(n)

(where the probability is over C ∈R Cn and over the random variable *Y C). Recall that

L is an NP-complete language and ϕ is an NP-reduction from L′ to L. Thus, it is

easy to compute a witness for (In,Wn, *Y C) ∈ L′ from a witness for ϕ(In,Wn, *Y C) ∈ L,

and vice versa.11 Therefore, there exists a PPT machine S6 such that for every n ∈ N,

Pr[S6(C, In,Wn, *Y C) = v : |v| ≤ l(n), v(xi, wi) = Yi for i = 1, . . . , t(n)] ≥ 1

2α(n)

(where In = (x1, . . . , xt(n)), Wn = (w1, . . . , wt(n)) and the probability is over C ∈R Cn

and over the random variable *Y C def
= (Y1, . . . , Yt(n))).

This contradicts the fact that *Y C has min entropy at least l(n) + n. Formally, we

employ a simple counting argument. Notice that there can be at most 2l(n) distinct

values of *Y C for which there exists a value v ∈ {0, 1}l(n) such that v(xi, wi) = Yi for

i = 1, . . . , t(n). Thus, the fact that there exists such a value v with probability at

least 1
2α(n) over the values of *Y C , implies that *Y C obtains one of these 2l(n) values with

probability at least 1
2α(n) , which in turn implies that some values of *Y C are obtained

with probability at least 1
2α(n)2l(n) . This implies that *Y C has (statistical) min-entropy

at most l(n) + log(2α(n)) < l(n) + n, contradicting our assumption that *Y C has

(statistical) min-entropy at least l(n) + n.

11Recall that we assume that our NP-complete language is witness preserving.
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4.5 Impossibility of Obfuscation w.r.t. Dependent

Auxiliary Input

In this subsection we define the classes of point-filter functions. We show that if point-

filter functions can be weakly obfuscated w.r.t. dependent auxiliary input then every

class of circuits with super-polynomial pseudo entropy cannot be weakly obfuscated

w.r.t. dependent auxiliary input.

Definition 30 For every L ∈ NP, the class ∆L = {∆L
n}n∈N is a class of point-filter

functions, where ∆L
n = {δx,b}x∈{0,1}n,b∈{0,1} and each function δx,b is defined by

δx,b(w)
def
=

{
(x, b) if (x, w) ∈ RL

x otherwise

Theorem 31 At least one of the following conditions hold:

1. For every NP-complete language L the class ∆L is not weakly obfuscatable w.r.t.

dependent auxiliary input.

2. Every class C with super-polynomial pseudo entropy is not weakly obfuscatable

w.r.t. dependent auxiliary input.

Before presenting the full proof of Theorem 31, we sketch the main ideas.

Proof Sketch. Assume that condition (1) does not hold. Namely, assume that there

exists anNP-complete language L such that the class ∆L is weakly obfuscatable w.r.t.

dependent auxiliary input. This implies that for every NP language L′ the class ∆L′

is also weakly obfuscatable w.r.t. dependent auxiliary input. (This follows from the

existence of an NP-reduction.12)

We prove that condition (2) holds. Namely, we prove that every class C with

super-polynomial pseudo entropy is not weakly obfuscatable w.r.t. dependent aux-

iliary input. Assume for the sake of contradiction that there exists a class C with

12As in footnote 8, we actually assume that the NP-reduction is witness preserving.
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super-polynomial pseudo entropy that can be weakly obfuscated w.r.t. dependent

auxiliary input by an obfuscator O.

The main idea is to exploit the fact for every n ∈ N there is a polynomial size set

In ⊆ {0, 1}n, such that:

1. For every PPT S, given black-box access to a random circuit C ∈R Cn, it is hard

to come up with a “small” circuit that computes C on In.

2. For every C ∈ Cn, O(C) is itself a “small” circuit that computes C on In.

We want to exploit this difference to obtain a contradiction. However, for this we

need to show that given O(C) it is easy to compute a single bit b, whereas every

PPT oracle machine SC fails to compute this bit (with noticeable probability). This

is where the auxiliary input comes into play.

We let the auxiliary input z = zC be a point-filter function that is associated with

a secret bit b. zC outputs its secret bit b only on inputs that encode a “small” circuit

that agrees with C on the elements in In. More precisely, zC is the point filter function

δ(In,C(In)),b, where a valid witness for (In, C(In)) is a “small” circuit that agrees with

C on all the elements in In.

Thus, it remains to show:

1. For every C ∈ Cn, given (O(C), zC) it is easy to compute the secret bit b.

2. For every PPT S, given black-box access to a random circuit C ∈R Cn, and given

zC it is hard to compute the secret bit b.

It is easy to see that (1) holds, since O(C) is a valid witness of (In, C(In)). Thus,

given (O(C), zC), the secret bit b can be easily computed by evaluating zC on input

O(C). However, it is not clear that (2) holds, since it may actually be easy to extract

the secret bit b from zC , which can be any circuit computing δ(In,C(In)),b. To hide

the secret bit b from S, we obfuscate this point-filter function. Namely, the auxiliary

input zC that we consider is an obfuscation of δ(In,C(In)),b. Now, it is easy to see

intuitively that (2) holds since S does not have any valid witness of (In, C(In)), and
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therefore does not have any advantage in guessing the secret bit b from its obfuscated

point-filter function at hand.

We proceed by presenting the full proof of Theorem 31.

Proof of Theorem 31. Assume that every class of point-filter functions is weakly

obfuscatable w.r.t. dependent auxiliary input. Let C = {Cn}n∈N be any class of

poly-size circuits that has super-polynomial pseudo entropy. Assume for the sake of

contradiction that C is weakly obfuscatable w.r.t. dependent auxiliary input, by some

obfuscator O1. Then by definition, for every PPT A and every polynomials p(·) and

q(·), there exists a PPT S such that for every n ∈ N, every C ∈ Cn, and for every

auxiliary input z of size at most q(n) (that may depend on C),

∣∣Pr[A(O1(C), z) = 1]− Pr[SC(1n, z) = 1]
∣∣ <

1

p(n)
.

Fix any polynomial l(·) such that for every n ∈ N and for every C ∈ Cn, |O1(C)| ≤

l(n). Recall that C has super-polynomial pseudo entropy, and in particular its pseudo

entropy is greater than l(n) + n. This implies that there exists a polynomial t(·), for

every n ∈ N there exists a set of t(n) values In ! (x1 . . . , xt(n)), and for every C ∈ Cn

there exists a random variable *Y C = (Y1, . . . , Yt(n)) with (statistical) min entropy

greater than l(n) + n, such that every PPT oracle machine MC|Īn cannot distinguish

between the random variable C(In) and the random variable *Y C (where C ∈R Cn).

Consider the language L′ ∈ NP corresponding to theNP-relationRL′ = {Rn
L′}n∈N,

defined by

Rn
L′

def
= {((*x, *y), v) : |*x| = |*y| = t(n), |v| ≤ l(n), v(xi) = yi}, 13

and consider the class of point-filter functions ∆L′
= {δ(&x,&y),b}. From our assumption,

there exists a weak obfuscator w.r.t. dependent auxiliary input for the class ∆L′
. We

denote this obfuscator by O2.

For any n ∈ N and any C ∈ Cn, we consider the auxiliary input z = z(C, b, r),

13As in the proof of Theorem 28, we abuse notations by letting v denote both a Boolean circuit
and the description of the circuit.
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which is a weak obfuscation of the point-filter function δ(In,C(In)),b with respect to

randomness r ∈ {0, 1}n.14 Namely, z(C, b, r) ! O2(δ(In,C(In)),b; r).

In order to get a contradiction it suffice to prove that the following two statements

are true:

1. For every n ∈ N, every C ∈ Cn, every bit b, and every r ∈ {0, 1}n, given the pair

(O1(C), z(C, b, r)) it is easy to compute the secret bit b.

2. For every PPT oracle machine S and for infinitely many n’s, SC(1n, z(C, b, r))

does not have any advantage in guessing the secret bit b, for a random circuit

C ∈R Cn, a random bit b ∈R {0, 1} and random r ∈R {0, 1}n.

It is easy to see that (1) holds since given a pair (O1(C), z(C, b, r)), the secret bit

b can be easily computed by simply evaluating z(C, b, r) on input O1(C). We argue

that (2) holds by using the fact that both O1(C) and zC are weak obfuscations w.r.t.

dependent auxiliary input.

Assume for the sake of contradiction that (2) does not hold. Then, there exists a

PPT oracle machine S1 and a polynomial α(·) such that for every n ∈ N,

Pr[SC
1 (z(C, b, r)) = b] ≥ 1

2
+

1

α(n)

(where the probability is over C ∈R Cn, b ∈R {0, 1} and r ∈R {0, 1}n).15 Since

z(C, b, r) is an obfuscation of the point-filter function δ(In,C(In)),b, the values In and

C(In) are public, and thus there exists a PPT oracle machine S2 such that for every

n ∈ N,

Pr[SC|Īn
2 (z(C, b, r)) = b] ≥ 1

2
+

1

α(n)

(where the probability is over C ∈R Cn, b ∈R {0, 1} and r ∈R {0, 1}n). Next, we

replace the auxiliary input z(C, b, r) = O2(δ(In,C(In)),b; r) with the auxiliary input

14For simplicity, we assume without loss of generality that O2 uses n bits of randomness for every
function in ∆L′

n .
15For simplicity, we assume without loss of generality that S1 is deterministic.
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z′(C, b, r) = O2(δ(In,&Y C),b; r). Notice that for every n ∈ N,

Pr[SC|Īn
2 (z′(C, b, r)) = b] ≥ 1

2
+

1

α(n)
− negl(n)

(where the probability is over C ∈R Cn, b ∈R {0, 1}, r ∈R {0, 1}n, and over the

random variable *Y C). This is so since otherwise, SC|Īn
2 can be used to distinguish

between C(In) and *Y C , contradicting the pseudo entropy condition.

Thus, there exists a PPT machine S3 such that for every n ∈ N,

Pr[S3(z
′(C, b, r), C) = b] ≥ 1

2
+

1

α(n)
− negl(n)

(where the probability is also over C ∈R Cn, b ∈R {0, 1}, r ∈R {0, 1}n, and over the

random variable *Y C).

Recall that z′(C, b, r) is a weak obfuscation (w.r.t. dependent auxiliary input) of

δ(In,&Y C),b. Thus, from the definition of weak obfuscation (w.r.t. dependent auxiliary

input) we conclude that there exists a PPT oracle machine S4 such that for every

n ∈ N,

Pr[S
δ(In,!Y C ),b

4 (C) = b] ≥ 1

2
+

1

2α(n)

(where the probability is also over C ∈R Cn, b ∈R {0, 1}, and over the random variable

*Y C).

Recall that a point-filter function δ(&x,&y),b reveals its secret bit b only on inputs v

that are circuits of size l(n) such that v(xi) = yi. Thus, the only way for a PPT

oracle machine Sδ(!x,!y),b to guess the bit b with a noticeable advantage is by finding,

with non-negligible probability, a circuit of size l(n) that on input xi outputs yi. This,

together with the above inequality, implies that there exists a PPT machine S5 and

a polynomial β(·) such that for every n ∈ N,

Pr[S5(C, In, (y
′
1, . . . , y

′
t(n))) = v : |v| = l(n) ∧ v(xi) = y′i for i = 1, . . . , t(n)] ≥ 1

β(n)

(where In = (x1, . . . , xt(n)) and where the probability is over C ∈R Cn and over the
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values (y′1, . . . , y
′
t(n)) assumed by the random variable *Y C). This implies that for every

n ∈ N there exists C ∈ Cn such that

Pr[S5(C, In, (y
′
1, . . . , y

′
t(n))) = v : |v| = l(n) ∧ v(xi) = y′i for i = 1, . . . , t(n)] ≥ 1

β(n)

(where In = (x1, . . . , xt(n)) and where the probability is over the values (y′1, . . . , y
′
t(n))

assumed by the random variable *Y C).

This contradicts the fact that *Y C has min entropy at least l(n) + n. Formally, we

employ a simple counting argument. Notice that there can be at most 2l(n) distinct

values of (y′1, . . . , y
′
t(n)) for which there exists a circuit v of size l(n) such that v(xi) = y′i

for i = 1, . . . , t(n). Thus, the fact that there exists such a circuit v with probability

at least 1
β(n) over the values of (y′1, . . . , y

′
t(n)), implies that some of these values are

obtained with probability at least 1
β(n)2l(n) , which implies that *Y C has (statistical)

min-entropy at most l(n) + log(β(n)) < l(n) + n, contradicting our assumption that

*Y C has (statistical) min-entropy at least l(n) + n.

Using similar ideas, we can prove the following theorem.

Theorem 32 At least one of the following conditions hold.

1. For every NP-complete language L the class ∆L is not weakly obfuscatable w.r.t.

dependent auxiliary input.

2. For every CCA2 secure (secret-key or public-key) encryption scheme (GEN, ENC, DEC),

the class of decryption algorithms DEC = {DECSK} is not weakly obfuscatable

w.r.t. dependent auxiliary input.

We prove Theorem 32 for the case of secure public-key encryption schemes. The

proof for the case of secure secret-key encryption schemes is very similar, and is there-

fore omitted.

Proof of Theorem 32. Assume for the sake of contradiction that both condition

(1) and condition (2) do not hold. Namely, assume that every class of point-filter

functions is weakly obfuscatable w.r.t. dependent auxiliary input, and yet there exists
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a CCA2 secure encryption scheme (GEN, ENC, DEC), such that the class of decryption

algorithms {DECSK} is also weakly obfuscatable w.r.t. dependent auxiliary input, by

some obfuscator O1. By definition, for every PPT A and every polynomials p(·) and

q(·) there exists a PPT S such that for every n ∈ N, every (SK, PK) ∈ GEN(1n), and

for every auxiliary input z of size at most q(n) (that may depend on SK),

|Pr[A(O1(DECSK), z) = 1]− Pr[SDECSK(1n, z) = 1]| < 1

p(n)
.

Fix any polynomial l(·) such that for every n ∈ N and for every (SK, PK) ∈

GEN(1n), it holds that |O1(DECSK)| ≤ l(n). Let t(·) be any polynomial such that for

every n ∈ N, t(n) > l(n) + n.

For every n ∈ N, let *M = {M1, . . . , Mt(n)} be any t(n) messages from the message

space. For every (SK, PK) ∈ GEN(1n) let I = I(PK, π, *r) = (Cπ(1), . . . , Cπ(t(n))), where

*r = (r1, . . . , rt(n)), Ci = ENCPK(Mi; ri), and π is a permutation over {1, . . . , t(n)}.

The fact that (GEN, ENC, DEC) is a CCA2 secure encryption scheme implies that

every PPT oracle machine MDECSK|Ī cannot distinguish between the pair (*Mπ, *Cπ)

and the pair (*Mπ′ , *Cπ), where *Mπ = (Mπ(1), . . . , Mπ(t(n))), *Mπ′ = (Mπ′(1), . . . , Mπ′(t(n))),

*Cπ = I(PK, π, *r), (SK, PK) ← GEN(1n), π, π′ are independent random permutations

over {1, . . . , t(n)}, and r1, . . . , rt(n) ∈R {0, 1}n.

Consider the language L′ ∈ NP corresponding to theNP-relationRL′ = {Rn
L′}n∈N

defined by

Rn
L′

def
= {((*x, *y), v) : |*x| = |*y| = t(n), |v| ≤ l(n), v(xi) = yi},

and consider the class of point-filter functions ∆L′
= {δ(&x,&y),b}. From our assumption,

there exists a weak obfuscator w.r.t. dependent auxiliary input for the class ∆L′
. We

denote this obfuscator by O2.

For any n ∈ N, any (SK, PK) ∈ GEN(1n), any permutation π, any bit b, and any

*r and *r′, consider the auxiliary input z = z(PK, π, *r, b, r′) = O2(δ(&Cπ,&Mπ),b; r
′) which

is a weak obfuscation (w.r.t. dependent auxiliary input) of the point-filter function

δ(&Cπ,&Mπ),b, where *Cπ = I(PK, π, *r). In order to get a contradiction it suffice to prove
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the following two statements:

1. For every n ∈ N, every (SK, PK) ∈ GEN(1n), every permutation π, every bit b, and

every *r and r′, given a pair (O1(DECSK), z(PK, π, *r, b, r′)), it is easy to compute

the secret bit b.

2. For every PPT oracle machine S and for infinitely many n’s, SDECSK(z(PK, π, *r, b, r′))

does not have any advantage in guessing the secret bit b, for (SK, PK) ← GEN(1n),

random permutation π, random bit b, and random *r and r′.

It is easy to see that (1) holds since given a pair (O1(DECSK), z(PK, π, *r, b, r′)),

where z(PK, π, *r, b, r′) = O2(δ(&Cπ ,&Mπ),b; r
′), the secret bit b can be easily computed by

simply evaluating z(PK, π, *r, b, r′) on input O1(DECSK). We argue that (2) holds by

using the fact that both O1(DECSK) and z(PK, π, *r, b, r′) are weak obfuscations w.r.t.

dependent auxiliary input, as follows.

Assume for the sake of contradiction that (2) does not hold. Then, there exists a

PPT oracle machine S1 and a polynomial α(·) such that for every n ∈ N,

Pr[SDECSK
1 (z(PK, π, *r, b, r′)) = b] ≥ 1

2
+

1

α(n)

(where the probability is over (SK, PK) ← GEN(1n), random permutation π, random

bit b, and random *r and r′).16

Since z(PK, π, *r, b, r′) is an obfuscation of the point-filter function δ(&Cπ,&Mπ),b, the

values *Cπ = I(PK, π, *r) and *Mπ are public, and thus there exists a PPT oracle machine

S2 such that for every n ∈ N,

Pr[SDECSK|Ī
2 (z(PK, π, *r, b, r′)) = b] ≥ 1

2
+

1

α(n)

(where the probability is over (SK, PK) ← GEN(1n), random permutation π, random

bit b, and random *r and r′).17

16For simplicity, we assume without loss of generality that S1 is deterministic.
17Recall that we abuse notations by letting I denote both the vector %Cπ and the set {C1, . . . , Ct(n)}.
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Next, we replace the auxiliary input z(PK, π, *r, b, r′) = O2(δ(&Cπ ,&Mπ),b; r
′) with the

auxiliary input z′(PK, π, π′, *r, b, r′) = O2(δ(&Cπ,&Mπ′ ),b
; r′), where *Cπ = I(PK, π, *r). No-

tice that for every n ∈ N,

Pr[SDECSK|Ī
2 (z′(PK, π, π′, *r, b, r′) = b] ≥ 1

2
+

1

α(n)
− negl(n)

(where the probability is over (SK, PK) ← GEN(1n), random permutations π, π′, ran-

dom bit b, and random *r and r′). This is so since otherwise, SDECSK|Ī
2 can be used

to distinguish between the pair (*Mπ, *Cπ) and the pair (*Mπ′ , *Cπ), contradicting the

security of the encryption scheme.

Thus, there exists a PPT machine S3 such that for every n ∈ N,

Pr[S3(DECSK, z′(PK, π, π′, *r, b, r′)) = b] ≥ 1

2
+

1

α(n)
− negl(n)

(where the probability is over (SK, PK) ← GEN(1n), random permutations π, π′, ran-

dom bit b, and random *r and r′).

Recall that z′(PK, π, π′, *r, b, r′) is a weak obfuscation (w.r.t. dependent auxiliary

input) of δ(&Cπ ,&Mπ′ ),b
. Thus, from the definition of weak obfuscation (w.r.t. dependent

auxiliary input) we conclude that there exists a PPT oracle machine S4 such that for

every n ∈ N,

Pr[S
δ( !Cπ,!Mπ′ ),b
4 (DECSK) = b] ≥ 1

2
+

1

2α(n)

(where the probability is over (SK, PK) ← GEN(1n), random permutations π, π′, ran-

dom bit b, and random *r).

Recall that the point-filter function δ(&x,&y),b reveals its secret bit b only on inputs

v which are circuits of size l(n) such that v(xi) = yi. Thus, the only way for a PPT

oracle machine Sδ(!x,!y),b to guess the bit b with a noticeable advantage is by finding,

with non-negligible probability, a circuit of size l(n) that on input xi outputs yi. This,

together with the above inequality, implies that there exists a PPT machine S5 and
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a polynomial β(·) such that for every n ∈ N,

Pr[S5(DECSK, {Cπ(i), Mπ′(i)}t(n)
i=1 ) = v : |v| = l(n) ∧ v(Cπ(i)) = Mπ′(i)] ≥

1

β(n)

(where the probability is over (SK, PK) ← GEN(1n), random permutations π, π′, and

random *r). This implies that for every n ∈ N there exists (SK, PK) ∈ GEN(1n), a

permutation π, and values *r such that

Pr[S5(DECSK, {Cπ(i), Mπ′(i)}t(n)
i=1 ) = v : |v| = l(n) ∧ v(Cπ(i)) = Mπ′(i)] ≥

1

β(n)

(where the probability is over the random permutation π′).

This contradicts the fact that each π′ is chosen with probability 1
t(n)! . Formally, we

employ a simple counting argument. Notice that there can be at most 2l(n) distinct

values of (Mπ′(1), . . . , Mπ′(t(n))) for which there exists a value v ∈ {0, 1}l(n) such that

v(Cπ(i)) = Mπ′(i) for i = 1, . . . , t(n). Thus, the fact that there exists such a value

v with probability at least 1
β(n) over the values of (Mπ′(1), . . . , Mπ′(t(n))), implies that

some values of (Mπ′(1), . . . , Mπ′(t(n))) are obtained with probability at least 1
β(n)2l(n) ,

contradicting the assumption that each such sequence is obtained with probability

1
t(n)! < 1

2t(n) < 1
2l(n)+n < 1

β(n)2l(n) .

4.5.1 Are Point-filter Functions Obfuscatable?

Theorems 31 and 32 both give conditional results. We would much prefer to have the

explicit result that every class with super-polynomial pseudo entropy is not weakly

obfuscatable w.r.t. dependent auxiliary input, which would imply that many natural

cryptographic tasks (such as pseudo-random functions, encryption algorithms, de-

cryption algorithms, signature algorithms, etc.) cannot be weakly obfuscated w.r.t.

dependent auxiliary input. Therefore, we think that it is worth investigating the

question of whether point-filter functions are weakly obfuscatable w.r.t. dependent

auxiliary input. We do not have a complete answer to this question. Rather, we
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relate it to another (seemingly unrelated) problem that is of independent interest.

We show that the existence of a weak obfuscator w.r.t. dependent auxiliary input for

the class ∆L is related to the existence of a hard-core predicate for the language L.

Intuitively, B(·) is a hard-core predicate for the language L if the following two

conditions hold: (1) for every x ∈ L, given any witness of x it is easy to compute

B(x). (2) It is hard to compute B(x) without knowing a witness for x. We formalize

the hard-core predicate B(·) as a probabilistic predicate, as follows.

Definition 33 (Hard-core predicate for L): A randomized predicate B(·) is said to

be a hard-core predicate for L ∈ NP, if the following two conditions hold:

1. There exists a PPT machine A1 and a polynomial p(·) such that for every (x,w) ∈

RL and every r ∈ {0, 1}|x|,

Pr[A1(x,w, r) = B(x, r)] ≥ 1

2
+

1

p(|x|) ,

where the probability is over the random coin tosses of A1.

2. There exists a PPT oracle machine A2 such that for every polynomial q(·) there

exists a polynomial p(·) such that for every x ∈ L and every function fx, that on

input a random r outputs B(x, r) with probability 1
2 + 1

q(|x|) , it holds that

Pr[Afx
2 (x) = w s.t. (x,w) ∈ RL] ≥ 1

p(|x|) ,

where the probability is over the random coin tosses of A2.

Theorem 34 If L ∈ NP has a hard-core predicate then the class ∆L is weakly

obfuscatable w.r.t. dependent auxiliary input.

Proof of Theorem 34. Assume that L ∈ NP has a hard-core predicate B(·).

Then, there exist algorithms A1 and A2 as above. By applying standard amplification

techniques we can assume without loss of generality that for every (x,w) ∈ RL and

every r ∈ {0, 1}|x|,

Pr[A1(x,w, r) = B(x, r)] ≥ 1− 1

22)(|x|) ,
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where the probability is over the random coin tosses of A1, and where -(|x|) is an

upper bound on the length of the witnesses of x.

Consider the (obfuscation) function O, that on input an (un-obfuscated) point-

filter function δx,b and randomness r ∈R {0, 1}|x|, generates an obfuscation O(δx,b; r)

of the point-filter function δx,b, that operates as follows: It has the values x, r and

b′ = A1(x,w, r)⊕ b hard-wired into it.18 On any input w′, O(δx,b; r) checks whether

(x,w′) ∈ RL. If the check is not satisfied then it outputs x. If the check is satisfied,

then it outputs the bit b′′ = A1(x,w′, r)⊕ b′ together with x.

In order to show that O is a weak obfuscator w.r.t. dependent auxiliary input

for the class of point-filter functions ∆L, we need to show that the following three

conditions are satisfied:

• Functionality Condition: Notice that for every x ∈ {0, 1}n, every b ∈ {0, 1}, and

every w′ such that (x,w′) ∈ RL,

Pr[O(δx,b; r)(w′) = δx,b(w′)]

= Pr[A1(x,w′, r)⊕A1(x,w, r)⊕ b = b]

= Pr[A1(x,w′, r) = A1(x,w, r)]

≥ Pr[A1(x,w′, r) = A1(x,w, r) = B(x, r)]

= 1− Pr[A1(x,w′, r) $= B(x, r) ∨ A1(x,w, r) $= B(x, r)]

≥ 1− Pr[A1(x,w′, r) $= B(x, r)]− Pr[A1(x,w, r) $= B(x, r)]

≥ 1− 2
22#(n) .

Thus, for every x ∈ {0, 1}n and b ∈ {0, 1},

Pr[∀w′ O(δx,b; r)(w′) = δx,b(w′)]

= 1− Pr[∃w′ s.t. O(δx,b; r)(w′) $= δx,b(w′)]

≥ 1− 2)(n) Pr[O(δx,b; r)(w′) $= δx,b(w′)]

≥ 1− 2)(n) 2
22#(n)

= 1− negl(n).

18We assume that the (un-obfuscated) circuit δx,b has a witness w of x (if such exists) hard-wired
into it in a “visible way.” If x /∈ L, then set b′ = 0.
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• Polynomial-blowup condition: Trivial.

• Virtual black-box condition: Fix any PPT machine A and any polynomials p(·)

and q(·). We need to show that there exists a PPT oracle machine S such that

for every n ∈ N, x ∈ {0, 1}n, b ∈ {0, 1}, and every auxiliary input z of size q(n)

(z may depend on δx,b),

∣∣Pr[A(O(δx,b), z) = 1]− Pr[Sδx,b(1n, z) = 1]
∣∣ <

1

p(n)

(where the probabilities are over the random coin tosses ofA, S and the obfuscator

O).

As a first step, notice that it is easy to emulate O(δx,b; r) given the values x, r

and A1(x,w, r) ⊕ b. Thus, there exists a PPT machine T , such that for every

n ∈ N, x ∈ {0, 1}n, b ∈ {0, 1}, and every auxiliary input z of size q(n) (z may

depend on δx,b),

Pr[A(O(δx,b), z) = 1] = Pr[T (x, r,A1(x,w, r)⊕ b, z) = 1]

(where the probabilities are over the random coin tosses of A, A1, T , O, and over

r ∈R {0, 1}n).

Therefore, it suffice to show that there exists a PPT oracle machine S such that

for every n ∈ N, x ∈ {0, 1}n, b ∈ {0, 1}, and every auxiliary input z of size q(n)

(z may depend on δx,b),

∣∣Pr[T (x, r,A1(x,w, r)⊕ b, z) = 1]− Pr[Sδx,b(1n, z) = 1]
∣∣ <

1

p(n)
(4.1)

(where the probabilities are over the random coin tosses of A1, T , S, and over

r ∈R {0, 1}n).

For every n ∈ N, let

Sn
0 =

{
(x, b, z) : Pr

r
[T (x, r, B(x, r)⊕ b, z) = 1]− Pr

r,b′
[T (x, r, b′, z) = 1] >

1

p(n)

}
,
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Sn
1 =

{
(x, b, z) : Pr

r,b′
[T (x, r, b′, z) = 1]− Pr

r
[T (x, r, B(x, r)⊕ b, z) = 1] >

1

p(n)

}
,

where x ∈ {0, 1}n, b ∈ {0, 1}, z ∈ {0, 1}q(n).

By applying standard amplification techniques, we can assume without loss of

generality that the PPT oracle machine A2 (given to us from the definition of a

hard-core predicate for L) satisfies that for every x ∈ L and for every function

fx, that on input a random r outputs B(x, r) with probability at least 1
2 + 1

p(|x|) ,

it holds that

Pr[Afx
2 (x) = w s.t. (x,w) ∈ RL] = 1− negl(n),

where the probability is over the random coin tosses of A2.

We use this PPT oracle machine A2, together with the PPT machine T , to

define two PPT machines U0 and U1 such that for every n ∈ N and for every

(x, b, z) ∈ Sn
0 ,

Pr[U0(x, b, z) = w s.t. (x,w) ∈ RL] = 1− negl(n),

and similarly for every n ∈ N and for every (x, b, z) ∈ Sn
1 ,

Pr[U1(x, b, z) = w s.t. (x,w) ∈ RL] = 1− negl(n).

Using these two PPT machines U0 and U1, we construct a simulator S, that

satisfies Eq. (4.1). Sδx,b(1n, z), operates as follows:

1. Choose a random r ∈ {0, 1}n, where |x| = n.

2. Run U0(x, 0, z) and U0(x, 1, z). If in one of these executions the output is w

such that (x,w) ∈ RL then retrieve the secret bit b by feeding the oracle to δx,b

the witness w, and output T (x, r,A1(x,w, r)⊕ b, z).
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3. Otherwise, run U1(x, 0, z) and U1(x, 1, z). If in one of these executions the

output is w such that (x,w) ∈ RL then retrieve the secret bit b by feeding the

oracle to δx,b the witness w, and output T (x, r,A1(x,w, r)⊕ b, z).

4. Otherwise, choose a random bit b′ ∈R {0, 1}, and output T (x, r, b′, z).

Notice that for every n ∈ N, x ∈ {0, 1}n, b ∈ {0, 1}, and z ∈ {0, 1}q(n), such that

(x, b, z) ∈ Sn
0 ,

Pr[Sδx,b(1n, z) = 1] = Pr[T (x, r, B(x, r)⊕ b, z) = 1](1− negl(n)).

Similarly, for every n ∈ N, x ∈ {0, 1}n, b ∈ {0, 1}, and z ∈ {0, 1}q(n), such that

(x, b, z) ∈ Sn
1 ,

Pr[Sδx,b(1n, z) = 1] = Pr[T (x, r, B(x, r)⊕ b, z) = 1](1− negl(n)).

Finally, for every n ∈ N, x ∈ {0, 1}n, b ∈ {0, 1}, and z ∈ {0, 1}q(n), such that

(x, b, z) /∈ Sn
0 ∪ Sn

1 ,

∣∣Pr[Sδx,b(1n, z) = 1]− Pr[T (x, r, B(x, r)⊕ b, z) = 1]
∣∣ ≤ 1

p(n)

(follows from the definition of Sn
0 and Sn

1 ).

Thus, all in all, for every large enough n ∈ N, x ∈ {0, 1}n, b ∈ {0, 1}, and

z ∈ {0, 1}q(n),

∣∣Pr[Sδx,b(1n, z) = 1]− Pr[T (x, r, B(x, r)⊕ b, z) = 1]
∣∣ ≤ 1

p(n)
,

as desired.

Therefore in order to conclude the proof of Theorem 34, it suffices to construct

the PPT oracle machines U0 and U1. In what remains we construct U0 (and U1 is

constructed analogously).

U0, on input (x, b, z), outputs Afx
2 (x), where fx on input r ∈ {0, 1}n (where
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n = |x|) is defined as follows:

1. If T (x, r, b, z) = 1 and T (x, r, b⊕ 1, z) = 0, then predict B(x, r) = 0.

2. If T (x, r, b⊕ 1, z) = 1 and T (x, r, b, z) = 0, then predict B(x, r) = 1.

3. Otherwise, choose at random b ∈R {0, 1}, and predict B(x, r) = b.

For every n ∈ N and for every (x, b, z), we define the following three sets:

GOOD = {r ∈ {0, 1}n : T (x, r, B(x, r)⊕ b, z) = 1 ∧ T (x, r, B(x, r)⊕ b⊕ 1, z) = 0}

BAD = {r ∈ {0, 1}n : T (x, r, B(x, r)⊕ b, z) = 0 ∧ T (x, r, B(x, r)⊕ b⊕ 1, z) = 1}

USELESS = {r ∈ {0, 1}n : T (x, r, B(x, r)⊕ b, z) = T (x, r, B(x, r)⊕ b⊕ 1, z)}.

Notice that for every n ∈ N and for every (x, b, z) ∈ Sn
0 :

– ∀r ∈ GOOD,

Pr[fx(r) = B(x, r)] = 1.

– ∀r ∈ BAD,

Pr[fx(r) = B(x, r)] = 0.

– ∀r ∈ USELESS,

Pr[fx(r) = B(x, r)] =
1

2
.
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Therefore,

Pr[fx(r) = B(x, r)] =

Pr [r ∈ GOOD] + 1
2 Pr [r ∈ USELESS] =

Pr[r ∈ GOOD] + 1
2 (1− Pr[r ∈ GOOD]− Pr[r ∈ BAD]) =

1
2 + 1

2(Pr[r ∈ GOOD]− Pr[r ∈ BAD]).

Thus, in order to conclude the proof of Theorem 34, it remains to notice that for

every n ∈ N, the definition of Sn
0 implies that for every (x, b, z) ∈ Sn

0 ,

Pr
r

[r ∈ GOOD]− Pr
r

[r ∈ BAD] ≥ 2

p(n)
.
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Appendix A

Appendix

A.1 Proof of Lemma 3.7.4

Proof: Assume for contradiction that ID2 is not secure. That is, assume that there

exists a cheating sender S̃ = {S̃n} and a polynomial p(·) such that for infinitely many

n’s,

Pr[(S̃n, R2)(PK′) = 1] ≥ 1

p(n)

(where the probability is over PK′ ← G2(1n) and over the random coin tosses of R2).

Proof Plan: We will prove that the existence of S̃ implies the existence of a cir-

cuit that finds collisions in F . This will be done in two parts, as follows.

• (Part 1): We first show that there exist non-uniform probabilistic polynomial-

time Turing machines F̃ = {F̃n} and P̃ = {P̃n}, such for infinitely many n’s the

following holds.

For (a, b1, b2, aux1, aux2) = F̃n(f),

Pr
[
(P̃n(aux1), V

0|f )(f, a, b1) = 1 ∧ (P̃n(aux2), V
0|f )(f, a, b2) = 1

]
≥ 1/p(n)2

(where the probability is over a uniformly chosen f ∈ Fn, and over the random
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coin tosses of F̃n, P̃n, and over the random coin tosses of both independent in-

stances of V0|f ).

The proof-of-knowledge property of (P0, V0) implies that there exists a probabilis-

tic polynomial-time oracle machine E and a polynomial p′(·) such that for any

(a, b1, b2, aux1, aux2) which satisfy the above inequality,

Pr





∀i EP̃n(aux1)((f, a, b1), i) = w1
i s.t. ((f, a, b1), w1) ∈ RF

and

∀i EP̃n(aux2)((f, a, b2), i) = w2
i s.t. ((f, a, b2), w2) ∈ RF




≥ 1

p′(n)

(where the probability is over the random coin tosses of EP̃n(aux1) and EP̃n(aux2)).

• (Part 2): We will then show that there exists a probabilistic polynomial-time

oracle machine, with oracle access to E, F̃n and P̃n, such that, on input a uniformly

chosen f ∈R Fn, outputs a collision in f , with non-negligible probability.

Note that since non-uniform probabilistic polynomial-time Turing machines can be

modeled as polynomial-size circuits, Part 1 together with Part 2 imply the existence

of a polynomial-size circuit such that, on input a uniformly chosen f ∈R Fn, outputs

a collision in f , with non-negligible probability. This contradicts the assumption that

F is collision resistant.

We proceed to carry out the proof plan.

Part 1:

• F̃n(f) operates as follows.

1. Choose uniformly

– PK ← G(1n)

– r ∈ {0, 1}4n
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– γ′1 (randomness for VPCP)

and set PK′ = (PK, f, r, γ′1).

2. Emulate an interaction of (S̃n, R2)(PK′) to obtain a transcript

(β2, r ⊕ (a, b1, b2, β1); ∗, ∗; ∗, ∗) ← (S̃n, R2)(PK′).

3. Set aux1 = (β1, PK′) and aux2 = (β2, PK′).

Output (a, b1, b2, aux1, aux2).

• P̃n(aux1) interacts with V0|f (f, a, b1) as follows.

– V0 sends f to P̃n.

– P̃n sends β1 to V0.

– V0 chooses γ1 at random, and sends γ1 to P̃n.

– P̃n chooses γd
2 at random (d stands for dummy, as in some sense γd

2 is a dummy

message) and emulates the interaction of (S̃n, R2|γ1⊕γ′
1,γd

2
)(PK′), to obtain a tran-

script

(β2, r ⊕ (a, b1, b2, β1); γ1 ⊕ γ′1, γ
d
2 ; δ1, δ

d
2) ← (S̃n, R

2|γ1⊕γ′
1,γd

2
)(PK′).

P̃n sends δ1 to V0.

• P̃n(aux2) interacts with V0|f (f, a, b2) as follows.

– V0 sends f to P̃n.

– P̃n sends β2 to V0.

– V0 chooses γ2 at random and sends γ2 to P̃n.
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– P̃n chooses γd
1 at random and emulates the interaction of (S̃n, R2|γd

1 ,γ2
)(PK′) to

obtain a transcript

(β2, r ⊕ (a, b1, b2, β1); γ
d
1 , γ2; δ

d
1 , δ2) ← (S̃n, R2|γd

1 ,γ2
)(PK′).

P̃n sends δ2 to V0.

Claim 35 Let F̃n(f) = (a, b1, b2, aux1, aux2). Then, for infinitely many n’s

Pr
[
(P̃n(aux1), V

0|f )(f, a, b1) = 1 ∧ (P̃n(aux2), V
0|f )(f, a, b2) = 1

]
≥ 1/p(n)2

(where the probability is over f ∈R Fn, and over the random coin tosses of both copies

of V0|f).

Proof: By the assumption made for contradiction, for infinitely many n’s

Pr[(S̃n, R
2)(PK′) = 1] ≥ 1/p(n)

(where the probability is over PK′ and over the random coin tosses of R2).

The fact that (γ1 ⊕ γ′1, γ
d
2) and (γd

1 , γ2) are both independently uniformly distributed

and independent of PK′, implies that for infinitely many n’s, the following two con-

ditions hold with probability at least 1/p(n)2.

• (S̃n, R2|γ1⊕γ′
1,γd

2
)(PK′) = 1

• (S̃n, R2|γd
1 ,γ2

)(PK′) = 1

In other words,

• (β2, r ⊕ (a, b1, b2, β1); γ1 ⊕ γ′1, γ
d
2 ; δ1, δd

2) ∈ ACC(R2|γ1⊕γ′
1,γd

2
)(PK′)

• (β2, r ⊕ (a, b1, b2, β1); γd
1 , γ2; δd

1 , δ2) ∈ ACC(R2|γ2
1 ,γ2

2
)(PK′).

Equivalently, all the following conditions hold.

• 1. (f ; β1; γ1 ⊕ γ′1 ⊕ γ′1; δ1) ∈ ACC(V0(f, a, b1))
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2. (f ; β2; γd
2 ; δ

d
2) ∈ ACC(V0(f, a, b2)).

• 1. (f ; β1; γd
1 ⊕ γ′1; δ

d
1) ∈ ACC(V0(f, a, b1))

2. (f ; β2; γ2; δ2) ∈ ACC(V0(f, a, b2)).

In particular,

1. (f ; β1; γ1; δ1) ∈ ACC(V0(f, a, b1))

2. (f ; β2; γ2; δ2) ∈ ACC(V0(f, a, b2)).

The proof-of-knowledge property of (P0, V0) implies that there exists a probabilis-

tic polynomial-time oracle machine E and a polynomial p′(·) such that for infinitely

many n’s, for (a, b1, b2, aux1, aux2) = F̃n(f),

Pr





∀i EP̃n(aux1)((f, a, b1), i) = w1
i s.t. ((f, a, b1), w1) ∈ RF

and

∀i EP̃n(aux2)((f, a, b2), i) = w2
i s.t. ((f, a, b2), w2) ∈ RF




≥ 1

p′(n)

(where the probability is over uniformly chosen f,∈ Fn and over the random coin

tosses of F̃n, EP̃n(aux1) and EP̃n(aux2)).

Part 2: We next show how one can use E and F̃n and P̃n to find a collision in F .

We define a probabilistic polynomial-time oracle machine M, which is given oracle

access to E, F̃n and P̃n, and such that on input a random function f ∈ Fn outputs a

collision in f , with non-negligible probability.

ME,F̃n,P̃n , on input f ∈ Fn, operates as follows.

1. Compute (a, b1, b2, aux1, aux2) = F̃n(f).

2. Choose a random i, and compute Ĉ1
i and Ĉ2

i by emulating

EP̃n(aux1)((f, a, b1), 1+(i−1)((lg n)2+1)) and EP̃n(aux2)((f, a, b2), 1+(i−1)((lg n)2+

1)).1

1Recall that we assumed that Ĉi is the k’th bit of the witness, where k = 1 + (i− 1)((lg n)2 + 1)
.
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3. Compute the authentication path of Ĉ1
i with respect to f , by emulating

EP̃n(aux1)((f, a, b1), 1 + j + (i− 1)((lg n)2 + 1)) for j = 1, ..., (lg n)2.

4. Compute the authentication path of Ĉ2
i with respect to f , by emulating

EP̃n(aux2)((f, a, b2), 1 + j + (i− 1)((lg n)2 + 1)) for j = 1, ..., (lg n)2.

Claim 36 With non-negligible probability (over f ∈R Fn and over the random coin

tosses of M, E, F̃n, and P̃n) somewhere along these paths there will be a collision in

f .

Proof: With non-negligible probability (over the random coin tosses of M, E, F̃n,

and P̃n) the following three conditions hold:

1. Ĉ1
i = EP̃n(aux1)((f, a, b1), 1 + (i− 1)((lg n)2 + 1)), where authf (Ĉ1) is a witness of

(f, a, b1) in RF .

2. Ĉ2
i = EP̃n(aux2)((f, a, b2), 1 + (i− 1)((lg n)2 + 1)), where authf (Ĉ2) is a witness of

(f, a, b2) in RF .

3. In steps 3 and 4 above E gives the authentication paths of Ĉ1
i and Ĉ2

i .

Since C1 $= C2 and since the circuit-encoding C → Ĉ has large minimum distance, it

follows that with probability 1
poly(n) , Ĉ1

i $= Ĉ2
i (where poly(n) is a polynomial and the

probability is over a randomly chosen i).

This implies that somewhere along these paths there will be a collision in f , since

Ĉ1
i $= Ĉ2

i and yet TCf (Ĉ1) = TCf (Ĉ2) = a. Thus, we obtain a contradiction to our

assumption that F is a collision resistant function ensemble.

A.2 Proof of Claim 18

Proof: Denote the output of FORGM(VK) by (β2, r⊕ (a, b1, b2, β1, β2); γ1, γ2; δ1, δ2).

By the definition of P̃n
2 , there exists a polynomial p(·) such that for every n ∈ S2

HM ,
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for (a, b1) = F̃n
2 (f, hM), and for q = (f, hM, r)

Pr[(P̃n
2 , V

0|f )(f, a, b1) = 1 ∧ (P̃n
2 , V

HM|q)(f, a, b2) = 1] ≥ 1

p(n)
(A.1)

(where the probability is over f ∈R Fn, over q, over b2 ∈R {0, 1}n and over the random

coin tosses of V0).

We claim that similarly, for every n ∈ S2
HM , for (a, b1) = F̃n

2 (f, hM), and for q′ =

(f, hM, r′), where r′ = r ⊕ (a, b1, b2, β1),

Pr[(P̃n
2 , V

0|f,γ1⊕γ′
1
)(f, a, b1) = 1 ∧ (P̃n

2 , V
HM|q′)(f, a, b2) = 1] ≥ 1

p(n)
(A.2)

(where γ′1 is part of VK, and where the probability is over f ∈R Fn, over q′, over

b2 ∈R {0, 1}n, and over γ1 ⊕ γ′1).

This is so for the following two reasons

1. γ1⊕ γ′1 was chosen uniformly (follows from the fact that γ′1 was chosen uniformly

and γ1 was chosen independently of γ′1).

2. P̃n
2 (in step 5) cannot distinguish between the distribution of q′ and the distribu-

tion of a random query q of VHM
.

For these two reasons, P̃n
2 in (2) should succeed with essentially the same probability

as in (1).

The fact that (P̃n
2 , V

0|f,γ1⊕γ′
1
)(f, a, b1) = 1 implies that

• (f ; β1; γ1 ⊕ γ′1; δ1) ∈ ACC(V0(f, a, b1)).

The fact that (P̃n
2 , V

HM|q′)(f, a, b2) = 1 implies that (q′; ans) ∈ ACC(VHM
(f, a, b2)),

which in turn implies that both of the following conditions hold.

• (f ; β2; γ2; δ2) ∈ ACC(V0(f, a, b2))

• (γ1, γ2) = h(β2, r′, M).
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The satisfaction of the above three conditions imply that the forgery was successful.

A.3 Proof of Claim 19

Proof: Denote the output of the forger FORGM(VK) by (β1, r1⊕(a, b1); γ1, b2, r2; δ1, ans2).

The existence of an impersonator for HM and G, implies that there exist two poly-size

circuit families F̃ = {F̃n
1} and P̃ = {P̃n

1}, and a polynomial p′(·), such that for every

n ∈ S1
HM,G and for a = F̃n

1 (f, hM, g),

Pr[(P̃n
1 , V

HM|(f,hM,r1))(f, a, b1) = 1 ∧ (P̃n
1 , V

G|(f,g,r2))(f, a, b2) = 1] ≥ 1

p′(n)
(A.3)

(where the probability is over f ∈R Fn, hM ∈R HM, g ∈R G, r1, r2 ∈R {0, 1}4n, and

b1, b2 ∈R {0, 1}n).

We claim that similarly, for a = F̃n
1 (f, hM, g),

Pr[(P̃n
1 , V

HM|q1=(f,hM,r′
1)

)(f, a, b1) = 1 ∧ (P̃ n
1 , VG|q2=(f,g,r2⊕r′

2)
)(f, a, b2⊕b′2) = 1] ≥ 1

p′(n)
(A.4)

(where r′1 = r1 ⊕ (a, b1), (b2, r2) satisfies (∗, b2, r2) = h(β1, r′1, M), and the probability

is over f, h, r1, r′2, b
′
2, b1).

This is so for the following reasons

1. b2 ⊕ b′2 is uniformly distributed in {0, 1}n.

2. r2 ⊕ r′2 is uniformly distributed in {0, 1}4n.

3. r′1 is uniformly distributed in {0, 1}4n.

For these three reasons, P̃1
n in (4) should succeed with essentially the same probability

as in (3).

Thus, for every n ∈ S1
HM,G, the following conditions hold with probability ≥ 1

p′(n) .
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1. (q2; ans2) ∈ ACC(VG(f, a, b2 ⊕ b′2)).

2. (f, hM, r′1; ans1) ∈ ACC((VHM
(f, a, b1)), which in turn implies that the following

conditions hold.

(a) γ1 = hM(β1, r′1), which implies that (γ1, (b2, r2)) = h(β1, r′1, M)

(b) (f ; β1; γ1; δ1) ∈ ACC(V0(f, a, b1))

Recall that VERIFY3
H(VK) accepts if conditions (1) and (2) hold, and thus for every

n ∈ S1
HM,G, FORGM(VK) is successful with probability ≥ 1

p′(n) .

115



116



Appendix B
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