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Chapter 1

Introduction

Lithography, the process of printing images on surfaces, is a key part of semiconductor

processing. Presently optical lithography, printing using a near-visible light source, is used

in industrial semiconductor manufacturing. X-ray lithography (XRL), printing using an x-

ray source, was introduced in 1972 [1] and is expected to replace optical lithography in the

near future because of its capability of printing smaller features than optical lithogra-

phy.[2]

A schematic of proximity x-ray lithography is shown in Figure 1.1. An x-ray mask

patterned with an x-ray absorber is illuminated with x-rays passing through a vacuum win-

dow. X-rays travel through the transparent mask and expose the x-ray sensitive resist on

the silicon wafer. Behind the absorber the x-ray sensitive resist is left unexposed because

the illuminating x-rays are attenuated by the absorber. Subsequent development of the

resist results in a copy on the substrate of the x-ray mask pattern.

A diagram of an x-ray mask is shown in Figure 1.2. An x-ray mask is a thin mem-

brane, approximately one micron thick, which is typically made of Si, SiNx, SiC, or dia-

mond. [3, 4] A layer of x-ray absorber, thick enough to ensure 5 to 10 dB attenuation of

the x-ray source, is deposited on top of the membrane. The x-ray absorber is patterned

with the desired pattern via techniques such as e-beam lithography and RIE.

Since x-ray lithography is a one-to-one replication technique, its accuracy is limited by

the precision of the features on the original mask. A major concern is that the stress of the

x-ray absorber will lead to pattern distortion through deformation of the thin supporting x-

ray mask. [5-7] Two types of pattern distortion may be caused by the stress of the x-ray

absorber: in-plane distortion and out-of-plane distortion. Stretching and shrinking of the

8
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Figure 1.1: X-ray lithography schematic

pattern in the original plane of the membrane results in in-plane distortion. Out-of-plane

distortion occurs when the x-ray mask bends out of its original plane. Out-of-plane distor-

tion is negligible when a synchroton source is used, but in-plane distortion is always a

concern in x-ray lithography. [7]

This thesis concentrates on improving x-ray mask manufacturing through the develop-

ment of equipment to test the optical and mechanical properties of x-ray masks. Two tests

for x-ray masks are described: an optical transmission test and a bulge test. The optical

transmission test is attractive because it provides a non-contact method of measuring the

thickness and index of refraction of an x-ray mask or a vacuum window. The thickness of

the x-ray mask is needed in the bulge test to calculate the stress and bulk modulus of the

sample. The thickness of the vacuum window and membrane determine the amount of x-

9
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Figure 1.2: X-ray Mask schematic

ray which reaches the silicon wafer as shown in Figure 1.1. The bulge test provides a non-

destructive test to determine the intrinsic stresses and bulk moduli of layers of films on an

x-ray mask. [8-17] Ideally a membrane should have a high intrinsic stress, and an absorber

should have a very low intrinsic stress to minimize pattern distortion. Through knowledge

of the optical and mechanical properties of an x-ray mask, quality control is provided on

the x-ray mask manufacturing process.

10



Chapter 2

Reflection and Transmission by a Layered Medium
In this chapter the reflected and transmitted power of the TE component an incident

field on a layered medium will be calculated and then the principle of duality will be used

to find the solutions for the TM component. [18] The transmitted power from an ambient-

film-ambient system will be calculated in terms of the index and thickness of the film and

the incident wavelength. The results will be used in Chapter 5 to experimentally find the

thickness of a thin film.

A plane wave incident on a medium and the reflected and transmitted waves it pro-

duces define the plane of incidence. The incident wave can be completely described by

transverse electric (TE) and transverse magnetic (TM) waves.

z

V

Region 0 Du O

Region 1 1 e1

Region 2 2 2

Region n Ans n

Region t = n + 1 4t t

Figure 2.1: Medium with isotropic layers

Z = -do

z=-d 

= -d 2

= -d n-1

z=-d n

11

A1

I
I



The electric field vector of TE waves is perpendicular to the plane of incidence, while the

magnetic field vector of TM waves is perpendicular to the plane of incidence. The TE and

TM components of the incident wave can be analyzed separately through Maxwell's equa-

tions.

In Figure 2.1 an isotropic layered medium is shown with each layer described by a per-

mittivity El and a permeability Pl. An incident TE plane wave in region 0 can be described

by E Ey = E ik + ix Assuming the field vectors are dependent on x and z only,

Maxwell's equations for TE waves are:

1 aEly
Ix - io) az

1 aEly
HiZ iO , az (2.1)

a + 22 + 11Ely = 0

Using Maxwell's equations for TE waves we find the electric and magnetic field vectors in

the lth layer to be:

Ely = (Ae klzZ + Ble-iklzz) eikxx

(Aleiklz -Beik z) ikxx

Hli = -x (Al eik lz z+ B e -ik Z ) eikx x

where the amplitude Al corresponds with components travelling in the +z-direction, and

the amplitude Bl corresponds with components travelling in the -z-direction. A layer iden-

12



tification subscript I for kx is not used since continuity of the tangential electric field at a

boundary requires that kx be the same in each of the layers.

At the boundary z = -d1, boundary conditions require that the tangential electric and

magnetic fields are continuous:

Ale- klzd +BekIzdI =Al+ e-ik(1+1 )zd +Bl+ e(l+)zI
(2.3)

p + A-iklzdi B eikzd [ - ik(l+1)zd e (+)dl
P(l+ l)l[Ale / -Ble Iz 1 = [A I+ l e-i - B le d] (3

where for TE waves:

(1+ 1) klz1

P (+ = (2.4)
-v) 1 [lk(l+ 1)z Pi(l+ 1) 2.4

Solving for Al+, and Bl+1 and expressing the answer in matrix form, we have:

r ~~~ ~ ~~~~~~~~~~~~~~~~~~~'n_
Al+ le-ik(+z d (+1)

Ai+ le ik(l+ )zd(l+ )

I _

(2.5)

where the forward-propagating matrix V(1+1)1 is:

[1 r e-ik(,+ )z ((1 + l ) - d1) R e-ik(+ lz (d -1) dl (2.6)d)

V(t+ =I [1 +P(l+1)1]
1) 2 R (1+1)1 LR ( 1 e) (l+ -)leik(I+z(d(,+l) -d) 

R(l+l)l is the reflection coefficient at the boundary between regions 1+1 and 1, where the

first subscript is the region with the incident wave. For TE waves the reflection coefficient

R(1+l)1 is:

13



1 P(l+l)l
R(1+1)1 = -RP(+ 1)1 ( ) (2.7)(1+1)1 +P1(1+ 1)

where P(l+l)l is given in equation (2.4) for TE waves. To determine the wave amplitudes in

region m > I in terms of those in any region I the following formula can be used:

(2.8)

where Vm(m 1) is given in equation (2.6).

When evaluating equation (2.5) between regions n and t = n+l, we need to use care

since the region t is of infinite thickness. In equation (2.5) we eliminate the common factor

e-ik(+ 1)zd(+ l) from the top line and the common factor e i k ( + 1)zd(+1 from the

bottom line. Also in region t there is no wave propagating in the +z-direction:

At =O
(2.9)

Bt = TE o

Thus between layers n and t equation (2.5) reduces to:

o= Vtn

where

14
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(2.11)

To find the transmission coefficient T in terms of the incident field in region 0, we

expand the vector on the right hand side of equation (2.10) by using equation (2.8). In

equation (2.8) we set I = 0, m = n, At = 0, AO = RolEo , and Bo = E0 and obtain:

= Vto. (2.12)

where

Vt = Vn V -... V1 (2.13)

In order to find the transmission coefficient T for the TM case, we use the principle of

duality, namely we replace E by H, H by -E, and interchange pt and . Al and Bl now

denote amplitudes of tangential magnetic fields for TM waves. For TM waves equations

(2.7), (2.11), and (2.12) can be used by making the substitution:

£(l+ l)klz 1
P(-+1)1 = (2.14)Elk(l+ 1l)z Pl(+ 1)

In Figure 2.2 an ambient-film-ambient system is shown with a normally incident k

vector. Using equations (2.4), (2.7), (2.11), (2.12), (2.13), and (2.14) we find the transmit-

ted power t for both TE and TM waves of the ambient-film-ambient system in terms of the

index of the film to be:

15
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Figure 2.2: Ambient-film-ambient system

2 4 Nei27d1Ni/t 171- 2=2 i itd1 N1 /?~ (2.15)
(1+N1 ) 2_(1-N1 ) 2e4d (2.15

where N1 is the index of the film. The real and imaginary parts of the index region 1 can

be approximated as polynomials as shown in equation (2.16).

N1 = n + ia

n = no + n2/X 2 + n4/X4 (2.16)

a= +a /X+ 3/X3

In Chapter 5 the transmitted power of an ambient-film-ambient system will be measured

over a broad wavelength range. Equations (2.15) and (2.16) will be used to derive the

thickness of the film from the measured transmitted power in Chapter 5.
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Chapter 3

Bulge Test
In this chapter the basic concepts of the mechanics of solids will be reviewed before

embarking on finding a relationship between the pressure, deflection, residual stresses, and

bulk moduli for a multi-layered circular membrane. The overview of solid mechanics

includes definitions of basic terms of solid mechanics, Hooke's laws, and the principle of

minimum potential energy. [19, 20] The multi-layered circular membrane problem will be

solved using the energy-minimization method, and the solution will be used in finding the

bulk moduli and residual stresses of single-layer and multi-layer samples in Chapter 5.

3.1 Overview of the Principles of the Solids of Mechanics
3.1.1 Stress

Stress is a vector with dimensions of force per unit area. The stress distribution

through an object is generally nonuniform, with regions of low or high stress present. A

map of the stress distribution through an object can be made by calculating the local stress

at each point using:

6 = lim ( ) (3.17)

where a is stress, F is force, and A is area. The SI units for stress are N/m2 which is also

called a Pascal. Uniform stress is a special stress distribution case in which the total force

is uniformly distributed over a given area. When the stress throughout an object is uniform

or varies little, the stress can be described macroscopically as:

8F
= 8A (3.18)

where a is stress, F is force, and A is area.

17



Stress is categorized by the direction of the acting force with respect to the material.

The force acting on a material is the sum of force components perpendicular and parallel

to the surface. Force components perpendicular to the area of contact give rise to normal

stresses, and force components parallel to the material cause shear stresses as shown in

Figure 3.3. Normal stresses are further divided into tensile and compressive stresses,

depending on the direction of the normal force component vector. Tensile stress occurs

when the force acts out of the material, and compressive stress occurs when the normal

stress acts into the material.

(a) normal compressive stress
(b) normal tensile stress

(c) shear stress

Figure 3.3: Stress types

3.1.2 Strain

When stress is applied to a material which is constrained against moving as a rigid

body, a change in the shape of the material occurs. The deformation which occurs when a

normal stress is applied to an object is called a normal or direct strain. The appropriate

definition of strain to use depends on the situation encountered. The engineer's strain is

widely used in the case of small strains. Engineer's strain i in the i-direction is defined as:

18



AL.
E. L (3.19)

Li

where ALi is the change in length in the i-direction, and Li is the original length in the i-

direction. The sign convention for the change in length is to use a positive sign for an

increase in length and a negative sign for a decrease in length.

A material will typically be subjected to normal stresses in more than one direction.

The normal stresses on an isotropic material give rise to normal strains, as seen in the gen-

eralized Hooke's law (equation (3.24)). The changes in length along each axis alter the

total volume of the object. Volumetric strain £vol is the ratio between the change in volume

(V-VO) and the original volume Vo.

V- V
E - (3.20)

Vol V

3.1.3 Young's Modulus and Bulk Modulus

Stress and strain are linked by the properties of the material. For uniaxial stress on a

linear material only, the relationship between stress and strain in the elastic region is

expressed by Hooke's law:

a. = E£. (3.21)

where the constant E has the units of stress and is the modulus of elasticity of the material

or Young's Modulus. For hydrostatic loading conditions, a state in which the normal

stresses are equal in all directions, the relationship between hydrostatic stress and volu-

metric strain can be expressed as:

G(H = K£vol (3.22

where the constant K has the units of stress and is the bulk modulus for the material. Equa-

tions (3.21) and (3.22) assume that the deformation of the material is small.

19



Young's Modulus and the bulk modulus of a material can be found experimentally by

developing a stress-strain curve. For each stress applied to a material, the strain produced

is measured. The slope of the stress-strain curve gives either the Young's Modulus or the

bulk modulus of the material, depending on whether the loading conditions are uniaxial or

hydrostatic.

5 (7I £1

E

C .

11 rVol

Figure 3.4: Young's modulus and bulk modulus found from
stress-strain curves

The stress-strain test gives information about the strength and elasticity of the material

in addition to the Young's modulus or bulk modulus. The strength properties of the mate-

rial determine the maximum level of stresses which can be tolerated in the stress-strain

test. The material is considered to be elastic if it retraces the original curve to zero stress

and strain when the stress is removed. If the original curve back to zero stress and strain is

not followed, the yield point has been passed, and a permanent strain or a permanent stress

in the material may result.

3.1.4 Poisson's Ratio

A stress along one axis of a material can produce strains along all axes, as seen with

rubber bands where an elongation along one axis results in a contraction in the lateral

dimensions of the rubber band. The strains for an isotropic material are experimentally

found to be:

20



-)kEE E =2E fy(3.23)£j = £k = -i E i

where £i is the strain in the i-direction, E is the Young's modulus, Gi is the stress in the i-

direction, 'u is Poisson's ratio, and i, j, and k form an orthogonal cartesian coordinate sys-

tem. Poisson's ratio is the ratio between lateral and axial strain, and it varies between 0

and 0.5, with most metals having a ratio of 0.3.

3.1.5 Generalized Hooke's Law

The generalized Hooke's law for a linear isotropic material states that strain ei in the i-

direction is the superposition of the effects of the individual stresses in all directions. Two

elastic properties of the material, the Young's modulus and the Poisson ratio, link the

stresses to the strains produced. The generalized Hooke's law is given below:

1

ex = [x-V( y+z)]

_ E [(y-V ( + 6x) ] (3.24)

Z E [ Z-v (X Py 

where i is the strain, i is the stress, ) is Poisson's ratio, and E is Young's Modulus. The

generalized Hookes' law is a linear relation which is valid for small deformations.

3.1.6 Strain Energy

Work is the integral over distance of the dot product of a force vector F and a displace-

ment vector ds. Consider a normal force oxdydz acting on an area dydz which results in a

change in length £x dx of a small volume element. Assuming that the relationship between

the force and the change in length is linear and no kinetic energy is developed, the work

done on the element is the area of the triangle OAB as shown in Figure 3.5. [21] The work

dV done is called strain energy and is equal to:

21
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0 B

Figure 3.5: Strain energy

1
dV = 2 jxExdxdydz (3.25)

The total strain energy can be calculated by integrating the strain energy dV of the small

volume element over the total volume of the object.

3.1.7 Principle of Minimum Potential Energy

An object constrained against moving as a rigid body will deform when it is under

stress. A displacement function can be written which predicts the displacements of the

stressed object. The principle of minimum potential energy can be used to ensure that the

true displacement function has been chosen. The principle of minimum potential energy

states that the actual displacement function will make the total potential energy an abso-

lute minimum. [22]

3.2 Calculation of Beam's Equation
In this subsection an equation attributed to Beams [8], which relates the pressure,

deflection, residual stress, and Young's modulus of a circular membrane, will be derived.

Consider an isotropic, thin-walled spherical membrane subjected to a difference p in

hydrostatic pressure between its inner and outer surfaces. The thin-walled condition is met

22



when the ratio of the thickness of the membrane to the radius of the membrane is less than

one-tenth.

Figure 3.6 shows a cross-section of a spherical membrane cut at its equator, with the

forces acting on the cut edge found by using Newton's third law, for every action there is

an equal and opposite reaction. The forces Fv act at the midpoint of the shell wall, thus

P

F F

F F

Figure 3.6: Cross-sectional view of the in-plane forces acting on
spherical membrane

there is no moment. Rotation of the bottom hemisphere in Figure (3.6) by 180 degrees

leads to the conclusion that the forces FH are equal to zero since they are in opposite direc-

23



tions in the two hemispheres. The stresses in the 0 and p directions of the membrane are

equal since the material is isotropic and its loading conditions are symmetric. The term

circumferential stress ac will be used to denote stresses in either the 0 or p directions. The

circumferential stress is assumed to be uniform throughout the membrane wall.

t

ac

Figure 3.7: Circumferential stress on a
volume element of a spherical membrane

The vertical forces on the membrane must balance in a state of equilibrium.The verti-

cal force component Fp related to the internal pressure is:

n/2 27c

Fp = dO dpR2sinOcosO = cpR2 (3.26)

0 0

where Ri is the inner diameter of the spherical membrane, and p is the differential hydro-

static pressure. The vertical force from the circumferential stress is equal to

FV = JTc (R 2 - R2 ) , where Ro is the outer radius of the spherical membrane. Equat-

ing the vertical forces, we find:

24



pR2 pR
= - (3.27)c 2tRm 2t

where the mean radius Rm of the spherical membrane is (Ro + Ri) /2, and t is the thick-

ness of the membrane.

By the generalized Hooke's law a membrane with residual stress o has a circumferen-

tial strain Ec of:

(1-v)
£c = E (( - ) (3.28)

where ec is the circumferential strain of the membrane, E is Young's modulus, v is the

Poisson ratio, and co is the residual stress. For a membrane of radius a which undergoes a

hemispherical bulge, the circumferential strain Ec is defined as the change in arclength

divided by the original arclength:

RO-a
E = (3.29)c a

where R is the radius of the membrane, and 0 is the angle measured from the vertical of

the sphere of radius R as shown in Figure 3.8. Assuming the deflections of the membrane

are small compared to the radius of the membrane, RO can be approximated well by the

first terms of a Taylor series expansion:

a 1 30

RO = Rsin - 1 () a + (3.30)

Through geometric relations R is found to be:

25



j membrane

a

'~o' R

Figure 3.8: Geometry of a bulged membrane

2a dR=2 + 2 (3.31)2d 2

Assuming the deflection d of the membrane is small, the second term of equation (3.31)

can be neglected. Substituting equations (3.30) and (3.31) into equation (3.29), we find the

strain of a hemispherically bulged membrane to be:

2a2

CE~~~ 3a2 ~~~~~~~(3.32)
c 3a 2

Substituting equation (3.32) and equation (3.27) into equation (3.28), we arrive at Beams'

equation:

2 2
pa 8t E dd (l +4 t (3.33)

d 3 1 v)-2+ 0

From a plot ofpa 2/d versus (d/a)2 the bulk modulus can be extracted from the slope of the

plot, and the residual stress can be found from the y-intercept.
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3.3 Multi-layer Circular Membrane
In this section the energy minimization approach will be used to calculate a relation-

ship between pressure, deflection, residual stresses, and the bulk moduli of a multi-layered

circular membrane. [13] Figure 3.9 is a flow diagram of the procedure which will be used

Choose:
* displacement function w in z
* displacement function u in r

Calc

mc

,nq/ M

Calculate:
* strain energy
* system energy

Minimize:
* system potential energy.

using energy mmlmizaon
prnclple

Multilayer Equation

Figure 3.9: Procedure for developing the multilayer equation

to find the multilayer equation. The first step is to choose the displacement function w in

the z-direction to be a hemispheric function.
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m-I
w = (R2 - r2) 1/2_ (R-d) + tk

k= 1

where w is the deflection in the z-direction, R is the radius of curvature of the deflected

membrane, r is the radial position on the membrane, d is the deflection at the center of the

membrane, and tk is the thickness of the kth layer of the m-layer sample. Assuming

(r/R)2<<1 equation (3.34) can be approximated with the first terms of its Taylor expan-

sion:

2 4 m-l

w -2)+ 9 + tk (3.36)

u = r(a - r) (kl + k2r + ...) (3.37)

where kl and k2 are constants to be determined through use of the principle of minimum

potential energy. The choice of u satisfies the boundary conditions that the radial displace-

ment be zero at the center of the membrane and at the edges of the membrane. Now we22 22The displacement function u in the rdirection is chosen to be:

Er dr+2 d ) =kla+2(k 2a-kl) r-3k 2r2 + a4 (3u = r (a - r) (kl + k2r +...)

r
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Figure 3.10: Forces on a section of a membrane

Algebraic manipulation of the generalized Hooke's law (3.24) gives:

Eiti
Nr = 2 (Er+ Vit )

l-v

~~~~E.t~~~ ~ ~(3.39)
Nt = E 1 2 (t + Vir)

l-v

where Nr and Nt are the force per unit length in the radial and transverse directions respec-

tively as shown in Figure 3.10, E is Young's modulus of the ith layer, ti is the thickness of

the ith layer, and vi is the Poisson ratio of the ith layer. The total force per unit length

along the plane of the membrane is the sum of the elastic and residual components:

Ntotal Nr + tiiNtr =Nr+dti( i
(3.40)

Mota l = N + tiai
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where Nrtotal and Nttotal are the total force per unit length in the radial and transverse

directions respectively, ti is the thickness of the ith layer of the sample, and ai is the resid-

ual stress of the ith layer of the sample. The total strain energy V is given by:

V = (Nrtotal +Nttalt) rdrdO (3.41)

A

Substituting equations (3.38), (3.39), and (3.40) in (3.41) the total strain energy V is:

Eiti 21 + 2
V = 2 E i i( + +2Vi , t) rdrdO + EGtcoiti £jr+ £trdr (3.42)

The total strain energy is the sum of a term due to the elastic stretching process without

consideration for the material properties of the membrane and a term due to the residual

stress of the membrane.

V = Vela + Vres (3.43)

Upon integration the elastic term Vela is:

E t k2a4 3kk 2 a 7k2 a6 -3klad 2 -2k a2d2 2d +
l v. I + 1---2--- --- + + 2 + +VeEa = 1-v2 T4 + 10 + 60 5 5 3a )'3~ ~ (3.44)

Eitivi (klad2 2k2a2d2
1 _-V2V + 15

The residual term is:

Vres = d2 iti (3.45)

The principle of minimum potential energy states that the potential energy of a system in

equilibrium is a minimum. The total system potential energy Vsys is

Vsys = V- PwrdrdO.
A
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- ' sys

ak1

- sys= 0
ak22

avsys =0

The first line of equation (3.46) allows us solve for kl and k2.

Eitivi

d2 VE,7t
a{= 3- x

4a 4 E_ 1-~2.

Eintivi
2 1 _V2

k = d2 3- i
I 4a3 Efltiv 

Eliv2

Substituting equations (3.44), (3.45), and (3.47) into equation (3.43), we obtain an expres-

sion for the total strain energy in terms of the membrane's material properties and geomet-

ric properties under deflection, and the pressure of the gas.

V = 2f(v)
24a

+ d2jaiti

where f(v) is:

f(v) = 71 Eiti
1 -v 2

l

E Eitivi

t 1-v 1
1 -Y-,l~v.l

The second line of equation (3.46) requires that:

aV Pa2

aid 2
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Substituting equation (3.48) into equation (3.50), we find a relation between the pressure

of the gas, and the membrane's material properties and geometric properties under deflec-

tion:

d 3 4d (3.51)P - 4(V) + -E iti (3.51)
3a a

If the Poisson ratio is the same among the layers, equation (3.49) reduces to:

f(V) E i ti (7 -v)
f(v) = d (1 - v) (3.52)

and

Pa2 (7-v) 2Z Eiti

d 3 ( a2 ) +4( (3.53)

In Chapter 5 single and double-layered samples will be pressurized and the resulting

deflections will be measured. For a single-layered circular membrane the residual stress

and bulk modulus can be found from the y-intercept and slope of a (Pa2/d) versus (d/a)2

plot, and the thickness t of the membrane:

residualstressl = y-intercept
4t1

(3.54)
3 x slopebulkmodulusl = -

1 - v t1 (7 -v)

The bulk modulus and residual stress of the second-layer of a double-layered sample can

be found with the knowledge of the single-layer parameters, the slope and intercept of the

double-layered (Pa2 /d) versus (d/a)2 plot, and the thickness t2 of the second layer:
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residual_stress2 = J2
1

t2

y-intercept
4

bulkmodulus2 =
E2

-v
1 3 xslope
t2 (7 - v)

lEt 1 (3.55)

(1 -v)

Equations (3.54) and (3.55) will be used in Chapter 5 to evaluate the residual stresses and

bulk moduli of experimental data.
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Chapter 4

Experimental Procedure

4.1 Membrane Fabrication
The silicon nitride membrane fabrication process is shown in Figure 4.1. Silicon wafers

were coated with silicon-rich, low-stress, LPCVD silicon nitride in the Integrated Circuits

laboratory at M.I.T. All subsequent steps were performed in the NanoStructures laboratory

at M.I.T. The silicon nitride on the backside of the wafer was RIE etched, and the wafer

was cleaved into quarters. The quarter wafer was anodically bonded to an optically flat

pyrex ring, and a frontside mesa stencil RIE etch was performed to remove excess silicon

nitride. A backside KOH etch-through and frontside mesa etch were done to remove the

silicon. Finally the frontside overhang of silicon nitride was removed with Scotch tape.

4.2 Spectrometer Thickness Measurements by Transmission
The setup for the spectrometer thickness measurements is shown in Figure 4.2. The tung-

sten lamp of an Acton Research Model TDS-429 Dual Light Source was used as the

source. An Oriel f/3 fused-silica piano-convex lens collimated the light from the source,

and an Oriel laser quality, A1(MgF2)-coated mirror directed the beam into the entrance slit

of the spectrometer. An EG&G 1235 Digital Triple Grating Spectrograph with a blazed

grating of 0.5 micron blaze wavelength and spacing of 150 grooves/mm separated the

incident light into its spectral orders. An EG&G Model 1453A Silicon Photodiode Detec-

tor measured the spectral orders. An EG&G Model 1471A Detector Interface interfaced

the spectrograph with a Macintosh computer, and MacOMA 2.55 software was used to

acquire the spectra.

The lens and the mirror positions were adjusted to collimate the source light and to

direct the light into the entrance slit of the spectrograph respectively. The grating position
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4. Anodically bond to optically-flat Pyrex ring

5. Frontside mesa stencil etch in RIE

p .............-.........

6. Backside KOH etch and frontside mesa etch
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7. Remove frontside overhang with Scotch tape

. I.I.. . ..... 

8. Absorber patterning R(

Figure 4.1: Membrane Fabrication Process

W930120

was adjusted so the center wavelength of the photodiode array was 700 nm. A calibration

curve to correspond the position on the photodiode detector with wavelength was made by

using three reference sources: a sodium lamp, a green lamp, and a He-Ne laser. A spec-

trum of the tungsten light source was taken and saved in computer memory. A silicon

nitride membrane was placed on the sample holder, and another spectrum was taken. The

spectrum with the sample membrane in place was divided by the spectrum of the light

source, resulting in a plot of the transmittance of the membrane versus wavelength.
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Figure 4.2: Spectrometer Transmission Measurement Setup

The transmittance spectrum was fit to the equation (2.15) using a program written in

MATLAB, which can be found in Appendix A. The MATLAB program used the Leven-

berg-Marquardt least squares curve fitting routine to find the thickness, and real and imag-

inary parts of the index of refraction versus wavelength. Plots were made of the fit to the

spectrum, the real part of the index of refraction versus wavelength, and the imaginary

part of the index of refraction.

4.3 Bulge Test Measurements

A schematic of the bulge test chuck is shown in Figure 4.3. The holder is made of alumi-

num with an inset in the shape of an x-ray mask. The membrane is pressurized by nitrogen

gas which enters a drilled passage on the side of the chuck and exits through a small hole

in the top of the chuck. The clamping ring made of Ultem is somewhat flexible, allowing

the applied stress to be more evenly distributed over the pyrex ring of the x-ray mask.

A schematic of the bulge test measurement setup is shown in Figure 4.4. A program

written in LabVIEW was used to control data acquisition and to analyze the data. An MKS
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Jltem Clamping Ring

X-ray Mask

O-rio'r

Figure 4.3: Bulge Test Chuck

type 250 proportional controller was used in conjunction with an MKS type 248 control

valve and an MKS type 220 capacitance manometer to set the desired pressure within the

bulge test chuck chamber and to send the measured value of the chamber pressure to the

Macintosh iivx computer. The deflection of the membrane was measured by an MTI-1000

Fotonic sensor which was also interfaced with the computer. The position of the Fotonic

sensor was controllable with micrometers in the x, y, and z directions.

The mask was placed in the bulge test holder after the pressure setpoint was checked

to be near zero. In order to ensure that the clamping pressure was distributed equally over

the pyrex ring of the mask and that no masks were broken, each of the three screws attach-

ing the clamping ring to the bulge test holder was alternately incrementally tightened until
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Fotonic Sensor

membrane

Figure 4.4: Bulge test measurement setup

the force on each screw was 16 oz. in., as read on a torque wrench. The Fotonic sensor was

calibrated by moving it toward the sample membrane and by setting its optical peak to 10

Volts. The Fotonic sensor was moved away from the sample until the readout was 7.8

Volts, ensuring that only the linear part of the backslope of the Fotonic sensor calibration

curve would be used while deflecting the membrane.

A program written in LabVIEW, which is included in Appendix B, was used to control

the data acquisition and the pressure of the gas on the membrane. In all of the bulge testing

experiments, the following procedure was used to find the center of the membrane. The

single or multilayered sample was first bulged up to approximately 10 torr by increments

of 2.5 torr, and the Fotonic sensor position and final deflection were noted. The Fotonic

sensor was moved, the sample was bulged again to approximately 10 torr by increments of
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2.5 torr, and the new final deflection was noted. The procedure was repeated until a high-

est final deflection was found, with the surrounding points measuring a lower final deflec-

tion.

Three types of single-layer bulge measurements were done: a single-layer bulge test, a

single-layer repeatability test, and a single-layer elasticity test. In the single-layer bulge

test the membrane was incrementally bulged to a final pressure of 12-20 torr. The slope

and intercept of a plot of Pa2 /d versus (d/a)2 were found, where P is the pressure of the

gas, a is the radius of the membrane, and d is the deflection of the membrane. The residual

stress and bulk modulus of the membrane were found by using equation (3.54) assuming

v = 0.28 and using thickness measurements of the membrane obtained with the optical

transmission test.

The single-layer repeatability test and elasticity test are based on the single-layer bulge

test. In the single-layer repeatability test, the single-layer bulge test was repeated several

times. The membrane was removed from the bulge test chuck in between runs, and the

center of the membrane was found on each trial. In the single-layer elasticity test the mem-

brane was incrementally bulged to a final pressure of 12-20 torr, and then the pressure was

incrementally decreased. The residual stress and bulk moduli of the membrane were found

for the increasing pressure part of the run and the decreasing pressure part of the run by

the same procedure as in the single-layer bulge test.

In the multilayer bulge test, a single-layer bulge test was first performed, and the resid-

ual stress and bulk modulus of the membrane were found. A layer of 9% PMMA was spun

at 3.5 Krpm for 60 seconds, and the sample was subsequently baked for 1 hour at 180

degrees Celsius. The cooled sample was placed in the bulge test chuck, and the pressure

on the membrane was incrementally increased. The slope and intercept of a plot of Pa2/d

versus (d/a)2 were found. A step-edge was made on the sample by exposing part of the

39



PMMA for 45 minutes using a UV lamp with a wavelength of 220 nm, developing until

clear in a 2:3 volume ratio of MIBK:IPA, and then rinsing in IPA for 30 seconds. The

thickness of the PMMA layer was found by performing a step-edge test under a Linnik

interferometer. Equation (3.55) was then used to derive the residual stress and bulk modu-

lus of the PMMA layer assuming v was equal to 0.28.
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Chapter 5

Results

5.1 Optical Transmission Test
Figure 5.1 shows a plot of the transmittance of the silicon nitride x-ray mask MITa076.

The graph exhibits seven peaks between 400 and 1000 nm. Above 900 nm the transmit-

tance data is noisier than at lower wavelengths. The width, and the transmittance at the

maxima and minima of the peaks increase as wavelength increases. The transmittance at

the maxima and minima of the peaks increases rapidly between 400 and 600 nm, and lev-

els off at wavelengths greater than 700 nm. A Levenberg-Marquardt least squares fit to

equation (2.15) yielded a measured thickness of 992 nm. The IC laboratory at M.I.T.

reported a value of approximately 1 micron for the silicon nitride at deposition (See

"Membrane Fabrication Process" on page 35.).

Transmission Fit for MITa076
i I j I I

0.9

0.8

0.7

c 0.6
._o

E 0.5
a

- 0.4

0.3

0.2

0.1

A , 60 7 8 I , 
400 500 600 700 800 900 1000 1100

wavelength (nanometers)

Figure 5.1: Transmittance of MITa076 versus wavelength plus curve fit
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In Figures 5.2 and 5.3 the real and imaginary parts of the refractive index of the silicon

nitride membrane MITaO76 are plotted from the parameters found through the curve fit to

the data in Figure 5.1. Both the real and imaginary parts of the refractive index are highest

at 400 nm and decrease sharply in the 400 to 600 nm region. The change in value is greater

for the real part of the refractive index, which varies from 2.213 to 2.425. The imaginary

part of the refractive index remains very small (- 2E-3 to 30E-3) throughout the 400 to

1000 nm wavelength range. The measured value of the real part of the refractive index at

632.8 nm was 2.26. Ellipsometry measurements by Foxboro of silicon nitride made with

different deposition conditions was 2.2. [16]

Real part of refractive index for MlTaO76

x0
_0cu0

t.

coaaa.
0d

wavelength [nm]

Figure 5.2: Real part of the refractive index of MITaO76 versus wavelength

5.2 Bulge Test Measurements
In Figure 5.4 the pressure versus deflection of the silicon nitride x-ray mask MITa203

is plotted. From a deflection value of 0 to 125 microns the pressure-deflection curve is lin-
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Imaginary part of refractive index for MITaO76

wavelength [nm]

Figure 5.3: Imaginary part of the refractive index of MITaO76 versus wavelength

Bulge Measurement for MITa203
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Figure 5.4: Bulge pressure-deflection curve for MITa203
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ear. Above a deflection value of 125 microns the pressure-deflection curve is nonlinear. At

20 torr the membrane deflection value is approximately 370 microns. The plot used to

derive the residual stress and bulk modulus of MITa203 is shown in Figure 5.5. Using a

1.9

1.8

Cu

-C

0.
Za

1.2

1.1

0

Figure 5.5:

x 106 Plot Used to Derive Residual Stress and Bulk Modulus

1 2 3 4 5
d2/aA2 x10 4

Plot used to derive residual stress and bulk modulus of MITa203

linear fit and equation (3.54), a residual stress of 327 +/- 10 MPa and a bulk modulus of

426 +/- 25 GPa were found for MITa203. The errors noted are from the repeatability test

shown in Figures 5.7 and 5.8.

In Figure 5.6 the pressure-deflection curve for a Si wafer bonded to a pyrex ring is

shown. There is some scatter in the measured data. The measured deflections range from 0

to 7.7 microns in submicron intervals. The pressure-deflection curve is linear throughout

the pressure range of 0 to 20 torr. No nonlinear behavior is observed as was seen in the

case of the silicon nitride membrane MITa203 shown in Figure 5.4.
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Bulge of a Si Wafer Bonded to a Pyrex ring

20
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A
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deflection [microns]

Figure 5.6: Bulge Pressure-Deflection curve for a Si wafer bonded to a pyrex ring

The results of a test of the repeatability of measurements of the residual stress and the

bulk modulus of a silicon nitride membrane are shown in Figures 5.7 and 5.8. The residual

stress and bulk modulus of MITa203 were measured eleven times. The value obtained for

the residual stress was 325 +/- 10 MPa, a 3% error. The measured bulk modulus was

418 +/- 25 GPa, a 6% error. The repeatability error includes the variation in clamping

conditions of the sample to the bulge test holder, positioning of the Fotonic sensor, pres-

sure offset errors, and variation of the environment.

In Figure 5.9 a pressure-deflection plot for MITa285 is shown, where the plotted val-

ues are from increasing the pressure from zero to 20 torr and then decreasing the pressure

back to zero. The measured points from both halves of the run fall on top of each other. In

Figure 5.10 the plots used to derive the residual stress and bulk modulus of MITa285 show

a slight deviation between the two halves of the run. The calculated residual stress from
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Residual Stress Measured for MITa203
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Figure 5.7: Test of the repeatability of residual stress measurements for MITa203

Bulk Modulus Measured for MITa203
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Figure 5.8: Test of the repeatability of bulk modulus measurements for MITa203
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Bulge Elasticity Plot for MTa285
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deflection um]

Figure 5.9: Bulge elasticity plot for MITa285

Elasticity Test of MITa285
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Figure 5.10: Plot used to derive
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residual stresses and bulk moduli of elasticity test for
MITa285
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the half of the run with increasing pressure was 285 MPa, while the calculated residual

stress from the decreasing pressure part of the run was 284 MPa. The difference in calcu-

lated residual stresses is 1 MPa, 0.35% of the increasing part of the run value. The calcu-

lated bulk modulus from the increasing pressure part of the run was 367 GPa, while the

calculated bulk modulus from the decreasing part of the run was 374 GPa. The difference

in bulk moduli was 7 GPa, 1.9% of the increasing pressure part of the run value.

In Figure 5.11 the pressure-deflection curves for a silicon nitride membrane with and

without a layer of PMMA deposited on it are shown. For a given pressure, the deflection

of the membrane with the PMMA layer is less than the deflection of the membrane with-

out the PMMA layer. The thickness of the membrane was found by the optical transmis-

Bulge Curves for MITaO76 with and without PMMA layer
Ib
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Figure 5.11: Bulge pressure-deflection curves for MITaO76 with and without additional
PMMA layer

sion test to be 992 nm, and the thickness of the PMMA layer was 1730 nm as found by a

48

I. . . .

- ~MlTaO76 + PMMA..-
.='~~~~~~~~~~~~~~~~~~~~~~ . ·

.· .~~~~~~~~~~~~.~~~~~~~~~~ ·

. , .

. .' MITa076 without PMMA

,. .
. ."

i,
· ~ ~~ 

· e~~~~~ 
. .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

"-~~ilJ* L~UtM 1*l~-" ~ .

--



1.5

1.4
E

1.CZa.
'a

1.3

1.2

1.1

1

Curves to Find Residual Stress and Bulk Modulus

0 0.5 1 1.5 2 2.5 3 3.5
dA2/aA2 10-4

Figure 5.12: Curves to find residual stress and bulk modulus of multilayer sample

step edge test under a Linnik interferometer1 . Using equation (3.51) the residual stress and

bulk modulus of the membrane without PMMA were calculated to be 359 +/- 10 MPa and

525 +/- 25 GPa respectively. Using equation (3.55) the residual stress of the PMMA was

found to be 22 +/- 6 MPa, and the bulk modulus of the PMMA was calculated as 33 +/- 25

GPa. The errors given are for repeatability and are taken from the repeatability test in Fig-

ures 5.7 and 5.8.

1. The deposition and thickness measurement of the PMMA was performed by Scott Hector at the
NanoStructures Laboratory.
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Chapter 6

Discussion

6.1 Optical Transmission Test

The optical transmission results described in Chapter 5 will be explained in this subsection

by using Male's graphical technique. [24] An expression for the transmitted power in

terms of the magnitudes of three vectors will first be found. The reflection coefficients

defined in equation (2.7) for the ambient-film-ambient system shown in Figure 2.2 can be

expressed in complex polar form as:

(n1 + ial) - 1
01 (nl + ial ) + 1 1 (6.

R12 = 1

We define a vector D as:

1 -1 i2 1D = -= -e (6.2)
R01R 12 2

and a vector E as:

-a d i47nldl
E -exp(i4cdl Nl/k) = -exp I- exp ( ) (6.3)

where N1 is defined in equation (2.16). The value of the transmitted power t can be written

as:

A-._ /i

t = o, 12
R01 R 12

A -aurlal /

= K 2 (6.4)
JEDI2
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where ED is shown in Figure 6.1. T(+ 1) is defined in equation (6.5) for a normally inci-

dent wave on the film:

2N
= (6.5)I (I+ 1) Nl + N(l+ 1)

where Ni is the refractive index of medium i. The variable K in equation (6.4) can be

found by using the fact that the transmitted power is equal to one when the film thickness

dl is equal to zero.

K= IEoD12

E0D -42taEd1/X _ _

ED 2 4ia dj/X= ED E2 (6.6)
ED ED

The term EoD is the distance from D to the point (-1, 0) on the complex plane (which is

the value of E at d1 equal to zero). The transmitted power is now expressed in terms of the

magnitudes of three vectors shown in Figure 6.1.

The distance ED is strongly dependent on wavelength because of the changes in the

angle and magnitude of E with wavelength. The values for l1 and n1 used in the following

analysis were found in fitting the data in Figure 5.1. The magnitude of E increases expo-

nentially as wavelength increases until it reaches a steady value at 650 nm as shown in

Figure 6.2. The vector E encircles the origin and traces a spiral as wavelength increases, as

shown in the polar plot in Figure 6.3. The innermost point of the spiral corresponds with

400 nm, and the outermost point of the spiral corresponds with 800 nm.

Many phenomena seen in Figure 5.1 can be explained by the phase, rotation speed,

and magnitude of E versus wavelength. When E is aligned in phase with D, the distance

ED is a minimum causing the transmitted power to have a local maximum. When B and D

51



I
I
I
I
I

·t
I
I
I
I )

/
Tnr IID I

Re

Figure 6.1: Ma1e's construction for finding the
transmitted power of an ambient-film-ambient system

Plot of Exp[-4*pi*a/lambda]

wavelength [nm]

Figure 6.2: Plot of exp(-4rocd/X) versus wavelength
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Plot of E for the wavelength range 400 to 800 nm

901.5

180 0

270

Figure 6.3: Plot of E for the wavelength range 400 to 800 nm

are 180 degrees out of phase, the distance ED is a maximum causing the transmitted

power to have a local minimum. As E revolves around the origin it passes the vector D

many times, thus the transmitted power goes through a series of maxima and minima as

observed in Figures 5.1. As wavelength increases and n1 decreases, the vector E circles

the origin at a slower rate, as observed experimentally in the increase in the width of the

peaks with increasing wavelength. Above 650 nm the exponential weighting factor in

equation (6.6) is roughly constant, and the magnitude of E reaches a steady value, thus the

transmitted power becomes constant.

6.2 Bulge Test

The observed shape of the bulge test pressure-deflection curves can be explained using

equation (3.53). In Figure 5.4, Figure 5.9, and Figure 5.11 the pressure-deflection curves

for the silicon nitride membranes were linear up to a deflection of approximately 125
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microns and then became nonlinear. Equation (3.53) states that for small deflections the

linear term in d dominates, but the nonlinear d3 term becomes more significant as deflec-

tions become large. In Figure 5.11 the slope of the pressure-deflection curve at small

deflections was greater for the membrane with the PMMA layer, as expected since the

weighting factor of the linear term in d is larger for the multilayer membrane. The nonlin-

ear term in equation (3.53) becomes significant at a slightly lower deflection in the multi-

layer case in Figure 5.11 than in the single-layer case because of the increased weighting

the d3 term.

The measured values of the residual stress and bulk modulus of silicon nitride corre-

spond roughly to values reported in the literature for different deposition conditions. The

measured residual stress of the silicon nitride membrane was 327 +/- 10 MPa, and the

measured bulk modulus was 426 +/- 25 GPa. Values of the residual stress and bulk modu-

lus of silicon nitride membranes reported by Bromley were 100 MPa and 190 GPa respec-

tively for a 1 micron thick membrane of radius 5 mm. [9] Bromley used a SiH2C12:NH3

gas volume ratio of 5:1 at deposition, while our deposition gas ratio was 10:1. The differ-

ences in residual stress and bulk modulus measurements for silicon nitride may be attrib-

uted to the difference in deposition conditions.

The residual stress of the deposited PMMA was found to be 22 +/- 6 MPa, and the

bulk modulus of the PMMA was 33 +/- 25 GPa. IBM reported the value of the residual

stress of PMMA to be 10-20 MPa for a 0.5 micron film using a resonance frequency test.

The IBM value is close to our measured value. No reported value of the bulk modulus of

PMMA has been found. Our measured value for the bulk modulus of PMMA has very

large error bars due to the propagation of the repeatability error in measuring the bulk

modulus of the supporting silicon nitride membrane in the multilayer bulge equation.
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Several measurement errors were observed in the experimental data. The residual

stress and bulk modulus repeatability errors were 3% and 6% of their mean values respec-

tively. In the elasticity test in Figure 5.10 a 1.9% error of the bulk modulus measurement

was found between the increasing and decreasing pressure parts of the run, suggesting that

a significant part of the error in the bulk modulus measurement is not from clamping or

environmental variations. Through examination of the multilayer equation it is seen that a

very precise measurement of the deflection is needed in order to achieve a small error bar

on the measured bulk modulus since the bulk modulus term is weighted by the cube of the

deflection. Figure 5.6 and the deviations from linearity as (d/a)2 goes to zero in Figure

5.10 and 5.12 confirm that there is an error in measuring small deflections with the present

bulge test setup.
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Chapter 7

Future Work
Modifications to improve the current optical transmission test and bulge test, and two

projects related to the optical transmission test and the bulge test are proposed in this

chapter. The alterations to the current bulge test setup would decrease the time required for

a measurement and would increase the accuracy of the deflection measurements. The opti-

cal reflection test would use much of the equipment for the optical transmission test to

measure the thickness and refractive index of thin films on a silicon wafer. The in-situ

bulge tester for a tungsten sputtering system would provide feedback on the state of the

tungsten stress.

7.1 Optical Transmission Test
A more physical model to use for the real and imaginary parts of the index of refrac-

tion of a thin absorbing film is the Lorentz harmonic oscillator model. In this model the

dielectric constant of the thin absorbing film is approximated as the sum of a set of

Lorentz oscillators [25]:

= o Zok( ot+1 k (hv+Pk+i Fk hV-k+jFk)
(7.1)

N 0 " = n + ic
N1-

where each oscillator has an amplitude ak, a center energy 3
k, and a broadening factor Fk .

The Lorentz oscillator model would be an improvement over the model in equation (2.16)

since it would prevent the result of the curve fit from being unphysical situation (i.e. deter-

mining the absorption coefficient of an absorbing film to be negative).
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7.2 Optical Reflection Test

The thickness of thin films deposited on a silicon wafer could be found by measuring the

reflected power of the sample over a broad wavelength range. The setup for reflection

mode measurements shown in Figure 7.1 uses much of the equipment for the optical trans-

mission test. A beamsplitter at an angle of 45 degrees would direct light towards the sam-

ple and subsequently direct the reflected light into the entrance slit of the spectrometer. A

mirror below the sample holder would be used to measure the spectrum of the light source.

Acton Research
Model TDS-429
Dual Light Source

.°

Collimating Lens 

Beamsplitter .................

Sample Holder 
i 

Mirror

Figure 7.1: Optical reflection test setup

The procedure for reflectance measurements would be similar to the procedure for

transmittance measurements. A spectrum of the tungsten light source would be taken and

saved in computer memory. A sample would be placed on the sample holder, and the mir-

ror would be covered with a black cloth to prevent multiply reflected and transmitted light

from entering the spectrograph. The spectrum with the sample in place would be divided

by the spectrum of the light source, resulting in a plot of the reflectance of the sample ver-
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sus wavelength. The thickness, and real and imaginary parts of the index of refraction ver-

sus wavelength would be found by fitting the reflected power r spectrum to:

r = (N1 + N2 ) (N1 - N2 ) | L (N1 + N2
L (Ni +N 2 )

(7.1)

where the expansions for the index of the film N 1 are given in equation (2.16), N2 is the

index of silicon, and dl is the thickness of the thin film on the silicon wafer.

7.3 Improvements in the Bulge Test Measurement Schematic
The bulge test measurements are presently a laborious task because of the time required to

find the point of highest deflection of the membrane. A set of at least four Fotonic sensors

to measure the deflection of the membrane would improve the bulge test measurement

scheme by decreasing the time requirement for a measurement and by increasing the accu-

racy of the deflection measurement. The accuracy would be improved because a measure-

ment of the radius of curvature of the membrane by the set of Fotonic sensors would be a

better measurement of the deflection than the point measurement of a single Fotonic sen-

sor. Higher accuracy of the measurement of a single-layer film would decrease the error

bars on the measurements of a multilayered sample. The shape of the deflected membrane

could also be studied with a set of Fotonic sensors.

7.4 In-Situ Monitoring of the Stress of Sputtered Tungsten
It is possible to deposit low-stress tungsten on x-ray membranes, but it is difficult to

achieve good repeatability of the tungsten stress. We propose adding a bulge test in the

sputtering system to provide feedback on the current stress of the tungsten. The membrane

would be pressurized with a few torr of He gas, which is currently being used in the sput-
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tering system to ensure stress and temperature uniformity over the membrane. [26] For

small deflections the multilayer bulge equation (3.53) reduces to:

P = 4d ((tl 2t2) (7.2)
a

The stress a, and thickness t of the silicon nitride membrane would be measured in the

improved ex-situ bulge test before a sputtering run. The thickness t2 of the sputtered tung-

sten is currently monitored in the sputtering system, thus the stress of the sputtered tung-

sten a2 could be found using equation (7.2). The argon gas pressure would be adjusted to

attain the desired tungsten stress, since the stress of sputtered tungsten has been shown to

have a strong dependence on the argon gas pressure.
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Appendix A

Optical Transmission Test Computer Programs
The optical transmission test program consists of two programs. The program

runner(file) runs the runs the transmission fitt for the data in "file". The program

transmission(parameters) contains equation (2.15) for the transmitted power of the ambi-

ent-film-ambient system shown in Figure 2.2. The Levenberg-Marquardt fitting algorithim

is used to find the best fit to the experimental data.

A.8 Runner(file)

function parameters = runner(file)
%RUNNER(FILE) runs the transmission fitting program with the
% data in FILE; uses the Levenberg-Marquardt
% least squares fitting algorithim

global Plothandle lambda transmission parameters

lambdan = file(:,1); %lambda is 1st column of FILE
lambda = lambdan(200:5:600);
transmissionn = file(:,2); %transmission is 2nd column of FILE
transmission = transmissionn(200:5:600);

plot(lambdan, transmissionn, 'm-') %plot original data
xlabel('wavelength (nanometers)')
ylabel('transmission')
title('Transmission Fit')
hold on

%plot fit line which will move as the fit progresses
Plothandle = plot(lambda, transmission, 'c--', 'EraseMode', 'xor');

%initial guess
start = [970.4261 2.1145 1.5249e4 3.6798e9 0.0332 -33.4289 5.6137e6]';

options(2) = 0.02; %termination criteria for parameters
options(14) = 400; %maximum number of iterations

parameters = leastsq('transmission', start, options);
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d = parameters(l);
nO = parameters(2);
n2 = parameters(3);
n4 = parameters(4);
kO = parameters(5);
kl = parameters(6);
k3 = parameters(7);

lamHeNe = 632.8; %find values of n and k at the HeNe wavelength
nHeNe = nO + n2 /(lamHeNe)A2 + n4/(lamHeNe)A4;
kHeNe = kO + kl/lamHeNe + k3/(lamHeNe)A3;

%print values of d, nHeNe, and kHeNe on screen
dstring = sprintf('thickness = %5.4g nm', d);
nstring = sprintf('n(632.8) = %.4f', nHeNe);
kstring = sprintf('k(632.8) = %.5f', kHeNe);
text(lambda(50), 0.4, dstring)
text(lambda(50), 0.3, nstring)
text(lambda(50), 0.2, kstring)

A.9 Transmission(parameters)
function error = transmission(parameters)
%TRANSMISSION plots transmission of an ambient-film-ambient
% system using complex arithmetic
global Plothandle lambda transmission error

d = parameters(l);
nO = parameters(2);
n2 = parameters(3);
n4 = parameters(4);
kO = parameters(5);
kl = parameters(6);
k3 = parameters(7);

%define polynomial expansions for n and k
n = nO + n2 ./ (lambda).^2 + n4 ./(lambda).^4;
k = kO + kl ./ lambda + k3 ./(lambda).a3;
N=n-j*k;
beta = 2 * pi * d * N ./ lambda;

%calculate Fresnel reflection and transmission coefficients
tOl = 2./(1 +N);
t12 = 2* N./( 1 + N);
rOl = (N- 1) ./(1 + N);
r12 = (1 - N)./(1 + N);
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%calculate transmitted power
Tnum = t01 .* t12 .* exp(-j * beta);
Tden = 1 + r01 .* r12 .* exp(-2 * j * beta);
t = abs(Tnum ./ Tden) .* abs(Tnum ./ Tden);

set(Plothandle, 'ydata', t)
drawnow

error = t - transmission; %error of fit
hold off
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Appendix B

LabVIEW Computer Programs
The heart of the LabVIEW programs for the bulge test measurement system are shown

on the following pages. On page 66 the main bulge test driver is shown, and the subVIs

which the main program calls are shown on pages 67 - 69. On page 67 the subVI which

acquires, filters, and averages the data is shown. On page 68 the subVI which does a linear

fit of the data is shown. Finally on page 69 the subVI which translates the slope and inter-

cept of the linear fit into the residual stress and bulk modulus of the tested membrane layer

is shown.
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