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ABSTRACT

Two topics are here addressed. The first is the application of the Finite-
Difference Time-Domain (FDTD) technique to complex scattering problems in two
and three dimensions. The second is the analysis of electromagnetic waves in com-
plex media.

A review of the FDTD technique is given, and various issues relevant to mod-
eling scattering problems are discussed. The FDTD technique is extended and
applied to the problem of objects buried in a lossy halfspace. Next a method is
presented for the FDTD modeling of dense aperture arrays in thin and thick per-
fectly conducting screens. The method presented is applicable to small apertures of
sub-grid dimension, and is based on the electric and magnetic dipole description of
small apertures, where the small aperture is replaced by oppositely directed pairs
of electric and magnetic dipoles on either side of the short circuited screen. The
approach is applied to the problem of determining the ElectroMagnetic Interference
(EMI) from high-speed computer boxes.

In the above approach to modeling small apertures in FDTD it is necessary to
determine the FDTD fields of electric and magnetic dipoles in the discrete FDTD
grid. To this end the problem of electromagnetic waves in a FDTD lattice is ana-
lyzed. An analytical solution for dipole and line source radiation in a discrete FDTD
grid is presented and applied to the small aperture problem. It is shown that the
FDTD fields close to a dipole deviate from the corresponding fields of a dipole in
a continuum, such as free space, by as much as a factor of two. The discretization
error in dipole radiated power is also determined from the analytical solution.

The thesis concludes with the analysis of the frequency response of nonlin-
ear superconducting stripline resonators. The resonator is modeled as a nonlinear
transmission line, where the inductor flux and resistor voltage drop are assumed
to be odd polynomial functions of the transmission line current. The harmonic
balance technique is used to solve for the nonlinear transmission line equations in
the frequency domain, and these equations are integrated using the fourth-order
Runge-Kutta algorithm, and the integration iterated using the Newton-Raphson
method until the output impedance converges to the load impedance. The poly-



nomial coefficients are adjusted to match measured data. Excellent agreement is
found between theory and measurement. The frequency response at high input
power levels shows a hysteresis effect which is accurately predicted by the model.

Thesis Supervisor: Jin A. Kong

Title: Professor of Electrical Engineering

Thesis Supervisor: Robert T. Shin

Title: Assistant Group Leader, MIT Lincoln Laboratory



ACKNOWLEDGEMENTS

The foremost concerns of a graduate student are his advisors and research
group. I am grateful for the support, encouragement and guidance that I have
received from my advisors, Professor Jin Au Kong, and Dr. Robert T. Shin. I am
also grateful for having had the opportunity to work in Professor Kong's research
group these past four years, and to have learned from such an excellent teacher.
I am particularly grateful for the work environment that he and Dr. Shin have
established in the group. It is an environment both stimulating and challenging, yet
without being stressful. It has also been a privilege to work with such distinguished
researchers as Professor Kong, Dr. Shin and the host of research scientists who have
contributed so much to the group: Dr. Arthur Jordan, Dr. Tsuneki Yamasaki, Dr.
Soon Poh, Dr. Eric Yang, Dr. Check-Fu Lee, Gizheng Gu, Dr. Yi Yuan, Dr. Kevin
O'Neill, Dr. Lars Bomholt and Dr. Kung Hau Ding. I wish to acknowledge in a
special way Dr. Michael Tsuk, who has been closely involved with this work from
the beginning and has contributed invaluable insight.

It has also been a privilege to work with the other students in the group.
Someone once remarked that a graduate student learns equally from his fellow
students as from his advisors, and this has truly been my experience. I am grateful
for having had the opportunity to work with the excellent students in our group:
Dr. Ann Tulintseff, Dr. David Sheen, Harold Lim, Kevin Li, Dr. Cheung-Wei Lam,
Dr. Robert Atkins, Dr. David Arnold, Dr. Jake Xia, Dr. Ali Tassoudji, Dr. Murat
Veysoglu, Chih Hsu, Li-Fang Wang, Yoshihisa Hara, Gregory Huang, Dr. William
Au, Dr. Hsiu-Chi Han, Joel Johnson, Philippe Berisset, Pierre Coutu, Alex Mou,
Mike Moldoveanu, Dr. Laurence Lee, Ante Salcedo, Anthony Triolo, Ewe Hong
Tat, Sean Shih and Yan Zhang.

I am also grateful for the Christians at MIT who have helped me to keep
a proper focus in life. They have helped me to do well in my research without
allowing it to become the master of my life. I wish to thank Dr. Howard Loree
II, Dr. Mike Domroese, Dr. Dan Zachary, Dr. Ted Sung, Dr. Bryan Klassen,
Dr. Peter Rothschild and Cedric Logan. Each has been an example of discipline,
perseverance, fortitude and patience.

Finally, I wish to express my gratitude and affection for my wonderful wife
Karen, who has given me the love and encouragement which has helped to make
these last years of graduate school a joy.





To Karen





Contents

Acknowledgements

Dedication

Table of Contents

5

7

9

List of Figures

List of Tables

1 Introduction

13

19

21

1.1 Background ............................... 21

1.2 Description of the Thesis ........................ 23

2 Application of the Finite-Difference Time-Domain Technique to
the Scattering of Electromagnetic Waves by Metallic and Dielectric
Objects 27

2.1 Introduction ................................ 27

2.2 The FDTD Technique in Two Dimensions . .............. 28

2.2.1 Discretization and the Computational Domain ........ 29

2.2.2 The FDTD Equations in Two Dimensions .......... . 31

9



2.2.3 Boundary Conditions ...............

2.2.4 Plane-Wave Time-Domain Pulse Excitation . . .

2.2.5 Numerical Dispersion in the FDTD Technique

2.3 Scattering From Objects Buried in a Lossy Halfspace . .

2.3.1 Plane-Wave Time-Domain Pulse Excitation . . .

2.3.2 Scattering from Cracks and Rebars in Concrete .

2.4 The FDTD Technique in Three Dimensions .......

2.5 Summary and Conclusions .................

... .... . 32

... .... . 34

... .... . 36

... .... . 43

... .... . 43

... .... . 47

... .... . 58

... .... . 63

3 Small Aperture Modeling for EMI Applications using the Finite-
Difference Time-Domain Technique 65

3.1 Introduction ................................ 65

3.2 Equivalent Electric and Magnetic Dipole Moments .......... 67

3.3 FDTD Implementation of Induced Electric and Magnetic Dipoles . . 75

3.4 Evaluation of the Method for an Isolated Aperture .......... 79

3.5 Subtracting the Dipole Field ...................... 88

3.6 Evaluation of the Error in the Induced Dipole Approach ..... . 93

3.7 Conclusions ................................ 98

4 Modeling Multiple Interacting Small Apertures for EMI Applica-
tions using the Finite-Difference Time-Domain Technique 99

4.1 Introduction ................................ 99

4.2 Analytical Solution for a Finite Array of Apertures .......... 102

4.3 Isolated Aperture Formulation for Sources on Both Sides of the Screenll3

4.4 Correcting the FDTD Dipole Fields .................. 117



4.5 Evaluation for Closely-Spaced Apertures . . . . . . . . . . . ..... 125

4.6 Application to a Computer Box With Aperture Arrays ........ 134

4.7 Conclusions ................................ 137

5 FDTD Analysis of Scattering from Apertures in Thick Screens 139

5.1 Introduction ................................ 139

5.2 Vector Bessel Series Solution for an Aperture in a Thick Screen . . . 141

5.3 Aperture Excitation for Small Apertures . . . . . . . . . . . ..... 147

5.4 Rayleigh Series Solution for a Small Aperture in a Thick Screen. . . 150

5.5 Induced Dipole Moments for an Aperture in a Thick Screen .... . 156

6 Analytical Solution to FDTD Equations for Electric and Magnetic
Dipole and Line Source Radiation 163

6.1 Introduction ................................ 163

6.2 Analytical Solution for Dipole Radiation .. .............. 165

6.3 Analytical Magnetic Dipole Fields From Duality .......... 177

6.4 Interaction Fields of Induced Electric and Magnetic Dipoles .... . 179

6.5 Total Power Radiated by a Dipole in a FDTD Grid .......... 182

6.6 Analytical FDTD Solution for Line Source Radiation ........ 189

6.7 Total Power Radiated By a Line Source in a FDTD Grid ..... . 194

6.8 Alternate Derivation of Total Power .................. 197

7 Nonlinear Transmission Line Model of Superconducting Stripline
Resonators 201

7.1 Introduction ................................ 201



7.2 Nonlinear Transmission Line Model ................... 202

7.3 Method of Solution ............................ 209

7.4 Numerical Procedure ........................... 215

7.5 Results ................................... 216

8 Summary and Conclusion 225

BIBLIOGRAPHY 231



List of Figures

2.1 Computational domain and unit cell for E and H polarizations .... 38

2.2 Interface between four potentially different media. Shown for the
E-polarization case. ........................... 39

2.3 Plane wave time-domain pulse excitation. The computational do-
main is divided into inner and outer regions, with total fields com-
puted in the inner region and scattered fields computed in the outer
region .................................... 40

2.4 Time-domain wave form of the incident pulse for pulse width a =
.159ns, corresponding to fhigh = 2.0GHz. The center frequency is
wo = 1/a. ................... .............. 41

2.5 Frequency-domain spectrum of the incident pulse for w = 1/a = a. . 42

2.6 The geometry of the halfspace problem is shown ............ 52

2.7 Integration path in complex w plane for evaluating inverse Fourier
transform integrals. . . . . . . . . . . . . . . . . . ........ 53

2.8 E-polarization electric field for concrete without fractures ....... 54

2.9 E-polarization electric field for concrete without fractures ....... 55

2.10 E-polarization electric field for concrete with water-filled fractures.. 56

2.11 E-polarization electric field for concrete with water-filled fractures.. 57

2.12 The computational domain and unit cell in the three dimensional
implementation of the FDTD technique ................. 62

13



3.1 The geometry of a circular aperture of radius a in an infinitely thin,
perfectly conducting screen. A plane wave is incident on the screen. 69

3.2 The induced dipole method: (a)-(c) The aperture electric field is
represented by an equivalent magnetic surface current over the short-
circuited screen; (d)-(e) Electric and magnetic dipole moments are
determined from the equivalent magnetic surface current. ...... 72

3.3 Geometry of the aperture relative to the FDTD unit cell. Shown is
the electric dipole and the fields which excite it. ............ 77

3.4 Geometry of the aperture relative to the FDTD unit cell. Shown are
the magnetic dipoles and the fields which excite them ......... 78

3.5 Time-domain comparison between analytical solution and the solu-
tion based on the induced dipole FDTD approach for the transmis-
sion of a differentiated Gaussian pulse through a circular aperture. 81

3.6 Ratio of frequency-domain FDTD aperture transmitted power over
analytical transmitted power. Two sources of error are evident: a/A-
dependent error, and frequency-dependent error. ........... 82

3.7 Comparison of aperture transmission between analytical solution and
the Simple FDTD method for a differentiated Gaussian pulse. The
Simple method models a larger aperture. ............... 84

3.8 Frequency-domain ratio of aperture transmitted power, as computed
by the Simple FDTD method, to the analytical transmitted power. . 85

3.9 Brute-Force FDTD model of circular aperture. A total of 80 grid
cells used to model aperture. ...................... 86

3.10 Comparison of aperture transmission between analytical solution and
the Brute-Force FDTD method for a differentiated Gaussian pulse.
The Brute-Force method models a larger aperture ........... 87

3.11 Ratio of aperture transmitted power as computed with the induced
dipole approach to analytical transmitted power. Dipole field has
been subtracted, eliminating the a/A dependent error ......... 92

3.12 Correcting the frequency-dependent error. Shown are the dipoles K,
and Ky and their image dipoles, and the electric fields which induce
them .................................... 95



3.13 Ratio of aperture transmitted power as computed with the induced
dipole approach to analytical transmitted power. Both the a/A-
dependent error, and the frequency-dependent error have been removed. 97

4.1 Geometry of multiple interacting apertures. . . . . . . . . . . .... 103

4.2 Dipole approximation geometry ...................... 104

4.3 FDTD dipole geometry .......................... 118

4.4 Transmitted power through 5 x 5 array of circular apertures without -
correction. Aperture in every other cell ................. 126

4.5 Transmitted power through 5 x 5 array of circular apertures. Aper-
ture in every other cell. Isolated aperture correction .......... 127

4.6 Transmitted power through 11 x 11 array of circular apertures with-
out correction. Aperture in every cell. ................. 128

4.7 Transmitted power through 11 x 11 array of circular apertures with
isolated aperture correction. Aperture in every cell. ......... 130

4.8 Transmitted power through 11 x 11 array of circular apertures with
nearest-neighbors correction. Aperture in every cell. ......... 131

4.9 Transmitted power through 11 x 11 array of circular apertures for
non-normal incidence using the nearest-neighbor dipole field correc-
tion. The incident field wave vector is given by the spherical coordi-
nates = 450, b = 45°, and the electric field polarization is rotated
450 from the plane of incidence ...................... 132

4.10 Transmitted power through 11 x 11 array of circular apertures using
nearest-neighbors correction for for a dipole radiating behind the
screen at a distance of 8 grid cells. .................... 133

4.11 Computer box with 69x15 closely spaced aperture arrays at two ends.135

4.12 Grey-scale plots of the computer box fields at four instances of time. 136

5.1 Polarizabilities for an aperture in a thick screen plotted versus R =
d/2a. The polarizabilities are normalized by their thin-screen values. 161



6.1 Contour in k plane for evaluating k integration. For n > no we
close the path in the upper half plane. ................. 169

6.2 Comparison of the analytical FDTD solution with the continuum
solution. The analytical FDTD solution agrees with the analytical
solution for distances sufficiently far from the dipole .......... 171

6.3 Frequency dependence of coefficients representing the deviation of
the FDTD dipole field near the dipole. Frequency response is flat. . 174

6.4 Ratio of FDTD dipole radiated power to continuum dipole radiated
power. Solid line is FDTD computed error; dashed line is analytical
FDTD computed error. Both curves show the same trend ....... 187

6.5 Ratio of FDTD dipole radiated power to continuum dipole radiated
power. Solid line is FDTD computed error; dashed line is analyt-
ical FDTD computed error. The computational domain has been
enlarged from 60 cubed to 80 cubed, reducing the effect of reflections
from the corners of the computational domain. ............ 188

6.6 Comparison of the Analytical FDTD solution with the analytical
(Hankel function) and FDTD solution .................. 193

7.1 Schematic diagram of the stripline resonator showing (a) the cross
section and (b) the top view of the transmission line .......... 205

7.2 Lumped-element model of a small length of superconducting trans-
mission line. The elements L and C represent the inductance and
capacitance associated with the electromagnetic field; the parallel
Lk - R, combination represents, respectively, the kinetic inductance
in the super current and the resistance in the normal current ..... 206

7.3 Series approximation to circuit of Figure 2, valid for R, > wLk. . ... 207

7.4 Complete schematic of circuit, including capacitive coupling sections
at input and output, and input and output impedances ........ 208

7.5 Thevenin equivalent representation of circuit shown in Figure 4 .... 214

7.6 NbN resonator. Transmitted power versus frequency (f - fo) for in-
put power levels ranging from 0 dBm to -16 dBm in 2 dB increments.
Solid curve is the measured response, and the dashed curve is the cal-
culated response. Arrows represent the sweep direction. Resonator
operated at t = T/T = 0.27. ....................... 219



7.7 YBCO resonator. Transmitted power versus frequency (f - fo) for
input power levels ranging from 30 dBm to -20 dBm in 5 dB incre-
ments. Solid curve is the measured response, and the dashed curve
is the calculated response. Resonator operated at t = T/TC = 0.89. . 220

7.8 Nonlinear surface resistance of NbN resonator versus current amplitude.221

7.9 Nonlinear inductance of NbN resonator versus current amplitude. . . 222

7.10 Nonlinear surface resistance of YBCO resonator versus current am-
plitude ................................... 223

7.11 Nonlinear inductance of YBCO resonator versus current amplitude.. 224





List of Tables

4.1 Percentage increase in the aperture magnetic current over the isolated
aperture value for A/A = .05, a/A = .25. ................ 109

4.2 Percentage increase in the aperture magnetic current over the isolated
aperture value for A/A = .1, a/A = .25. ................ 109

4.3 Percentage increase in the aperture magnetic current over the isolated
aperture value for A/A = .05, a/A = .45. ............... 110

4.4 Percentage increase in the aperture magnetic current over the isolated
aperture value for A/A = .1, a/A = .45. ................ 110

19



20



Chapter 1

Introduction

1.1 Background

Electromagnetics is an old discipline, the fundamental equations having been set

forth in complete form by 1873. Yet the theory is one of the most fundamental

of theories, and as such is continually fueled with new topics of interest from the

advances in other fields. Each new medium and each new computer algorithm

presents a host of problems and applications in the arena of electromagnetics. In

addition, with computers continuing to increase in speed and memory, the problems

which can be solved in a practical amount of time have increased in scope and

complexity.

One area of research which has been propelled forward by the remarkable

advances in computer technology is the full-wave vector solution of Maxwell's equa-

tions, and one approach to the full-wave vector solution to Maxwell's equations is

the Finite-Difference Time-Domain technique introduced by Yee [1] in 1966. In re-

cent years the FDTD technique has seen increasing application in diverse topics of
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Introduction

electromagnetic theory [2] ranging from the detection of tumors in biological tissues

to the detection of cracks or slots in military vehicles. The main advantages of the

technique are that it is simple to apply to complex configurations, and it solves for

the electromagnetic fields in the time-domain, which can easily be transformed into

broadband frequency-domain fields. Due to rapid developments in computer tech-

nology large scale problems in three dimensions which were previously impossible

are now practical. In recent years there has been extensive research in extending the

method in various ways. Efficient absorbing boundary conditions have been devel-

oped which allow the computational domain for scattering problems to be truncated

a short distance from the scattering objects [3]. In addition, algorithms have been

developed on triangular [4] and curvilinear grids [5]. The problem of multiplying

the grid size has also been developed [6]. Of particular interest is the recent work

on modeling sub-grid geometries, such as small apertures [7], slots and wires [8],

thin dielectric slabs [9] and surface impedance boundary conditions [10][11]. The

method has also been applied to dispersive media [4][12] and high quality-factor

resonators [13].

Another area of interest, which, however, has been little addressed, is the ana-

lytical solution to numerical problems. In the past analytical solutions to numerical

algorithms have been employed to determine, for example, numerical dispersion [14]

and stability limit conditions [15]. In addition, quasi-analytical solutions have been

used to solve numerical algorithms in new ways [16].

Yet another area of recent interest is the nonlinear electrodynamics of super-

conductors. Although the fundamental equations describing the nonlinear electro-
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magnetic fields in conventional low-temperature superconductors have been known

for a long time, yet the nonlinear electromagnetic analysis of superconducting de-

vices has been addressed only recently [17]. For high-temperature superconduc-

tors phenomenological nonlinear equations have been advanced [18] but have not

been applied to practical microwave devices. One problem of particular interest

is the analysis of nonlinear superconducting stripline resonators. Superconducting

stripline resonators have been widely used [19]-[21] for characterization of the prop-

erties of thin films of superconducting materials at microwave frequencies. Such

resonators also hold promise for a large number of practical applications where very

high quality factors (Q) are needed, for example, in oscillator stabilization and in

narrow band filters.

1.2 Description of the Thesis

This thesis addresses, in a broad sense, two topics introduced above, and is divided

into two parts. The first part of this thesis is devoted to the application and

extension of the FDTD technique to complex scattering problems. Two problems

are considered: the first is the scattering of waves from objects buried in a lossy

halfspace; the second is the analysis of dense sub-grid aperture arrays using the

FDTD technique.

The second part is devoted to the analysis of electromagnetic waves in complex

media. Two problems are considered: the first is electric and magnetic dipole

and line source radiation in a discrete FDTD lattice; the second is the analysis of

nonlinear superconducting stripline resonators.
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We begin in Chapter 2 with the application of the FDTD technique to the scat-

tering of electromagnetic waves from metallic and dielectric objects. This chapter

serves first as an introduction to the FDTD technique, and second as an extension

and application of the technique to complex scattering problems in two dimensions.

Various issues in modeling scattering problems are discussed, and the technique

is extended and applied to the problem of electromagnetic wave scattering from

objects buried in a lossy halfspace.

Chapters 3 through 5 are devoted to modeling the ElectroMagnetic Interfer-

ence (EMIl from dense apertures arrays, such as found in computer boxes, for which

a method is presented to accommodate apertures of sub-grid dimension. Chapter 3

addresses the problem of implementing a single isolated aperture of sub-grid dimen-

sion in the FDTD algorithm. The small aperture is modeled by pairs of electric and

magnetic dipoles on either side of the screen, which is short-circuited. In Chapter

4 the method is extended to model an arbitrary array of interacting apertures, and

in Chapter 5 apertures in thick perfectly-conducting screens are studied.

The second part of this thesis is taken up in Chapters 6 and 7. The extension of

the FDTD technique to model sub-grid apertures involves the study of electric and

magnetic dipole radiation in the FDTD numerical grid. In particular, the approach

presented relies on knowing the fields of electric and magnetic dipoles in a discrete

FDTD grid at and near the dipoles. In Chapter 6 an analytical solution of the FDTD

equations for electric dipole radiation is presented. It is shown that the FDTD dipole

fields close to the dipole deviate from the fields of a dipole in a continuum by as

much as a factor of two. The FDTD fields of a magnetic dipole are found through
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a duality transformation. In addition to determining the FDTD dipole fields, the

total power radiated by a dipole in a FDTD lattice is determined analytically, and

from this the error in dipole power due to discretization is determined. The problem

of line source radiation in two dimensions is also taken up.

In Chapter 7 a nonlinear transmission line model is used to explain the nonlin-

ear frequency response at high input power levels of stripline resonators fabricated

with NbN and YBa2Cu307_, thin films. The resonator is modeled as a transmis-

sion line with nonlinear inductance and resistance. The inductor flux and resistor

voltage drop are assumed to be odd polynomial functions of the transmission line

current, and the polynomial coefficients are adjusted to match the measured data.

Excellent agreement is found between the measured and calculated results.
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Chapter 2

Application of the
Finite-Difference Time-Domain
Technique to the Scattering of
Electromagnetic Waves by
Metallic and Dielectric Objects

2.1 Introduction

The scattering of electromagnetic waves from dielectric and metallic objects has

been a subject of continued interest in electromagnetic wave theory. Of particular

interest is the degree to which dielectric objects obstruct the radar return from

metallic objects, or alternately, the degree to which metallic objects obstruct the

return from dielectrics. The former finds application, for example, in the design of

radar absorbing materials, and the latter, for example, in the detection of rebars

and cracks in concrete. Typically the geometries considered are complicated, so

that analytical solutions are not possible. The FDTD method has been invaluable

in recent years in solving a host of problems, ranging from the detection of tumors
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in biological tissues [2] to the detection of cracks and slots in military vehicles [8].

In this chapter we present the application of the Finite-Difference Time-

Domain (FDTD) technique to solving Maxwell's equations for the scattering from

metallic and dielectric objects. The purposes of this chapter are to introduce the

FDTD technique and the notation used throughout the remainder of this thesis; to

address various issues in applying the FDTD technique to scattering problems; and

to extent the method to solve for the plane-wave scattering from objects buried in

a lossy halfspace. To this end we begin in Section 2.2 with a review of the FDTD

technique applied to scattering problems in two dimensions, and address issues such

as the discretization of space and time, the FDTD equations, boundary conditions,

the approach to implementing plane-wave excitation of arbitrary scattering objects,

and numerical dispersion. In Section 2.3 the method is extended to solve for the

scattering from objects buried in a lossy halfspace. Finally, in Section 2.4 the FDTD

technique in three dimensions is discussed.

2.2 The FDTD Technique in Two Dimensions

In this section we review the major elements of the FDTD technique as applied

to two-dimensional scattering problems. We begin with a discussion of the spa-

tial and temporal discretization and the unit cell. Next we look at the decoupled

E-polarization and H-polarization equations. We then discuss the boundary con-

ditions, including the absorbing boundary conditions imposed at the edges of the

computational domain. Following this, we discuss the excitation of the problem by

a plane-wave time-domain pulse, and conclude with a look at numerical dispersion
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The FDTD Technique in Two Dimensions

in FDTD.

2.2.1 Discretization and the Computational Domain

In the FDTD technique the electric and magnetic fields are computed at discrete

points in space. The set of points at which the fields are computed is referred to as

the computational domain. The distance in space between points is referred to as the

grid spacing. For problems considered in this thesis, the grid spacings, Ax and Ay

in the x and y directions are equal. This is referred to as a regular rectangular grid.

Hence we have, Ax = Ay = A, where A is the grid spacing, or grid cell length. The

grid structure of the computational domain neatly divides up space into an array of

repeated unit cells. This division of space allows problems involving inhomogeneous

media to be solved easily by assigning each cell a material type. The materials

considered here are free space, lossy dielectric or magnetic materials, and perfect

conductors. In two dimensions Maxwell's equations decouple into two independent

solutions, which are here referred to as the E-polarization solution, which has the

electric field in the infinite (z) direction; and the H-polarization solution, which has

the magnetic field in the infinite direction. Each of these solutions contains only

three field components. Figure 2.1 shows the computational domain and unit cells

for the E-polarization and H-polarization cases. Notice that the fields have been

normalized. For the E-polarization case, we have,

el(l,m) -E)((p--)ar, la, m) ) (2.1)

(2.2)
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Application of the FDTD Technique...

hP(l,m) _roHy(pAr,(l + )A, mA) (2.3)

and for the H-polarization case,

hP(l,m) = 7o,((p - )Ar,1A,mA) (2.4)2

eP(l,m) _ E,(pArlA,(m+ )A) (2.5)

ep(l,m) = Ey(pAr,(l + )A,mA) (2.6)

where r - ct is the normalized time, and Ar _ CAt is the normalized time step. In

the E-polarization case, the electric field is defined at the node, and the magnetic

fields halfway between the nodes. For the H-polarization case the converse is true.

Hence the electric and magnetic fields are interleaved in space.

The FDTD solution is discretized in time as well, and just as the electric and

magnetic fields are interleaved in space, so they are interleaved in time. At time

T = 0 all fields are zero. At r = 1A the electric fields are computed, and at r = A

the magnetic fields, and so on. For stability we set [15],

Ar = cat= 1.05 (2.7)

The stability limit is Ar = A/V/, and the factor 1.05 is to achieve a margin in

stability. We will show that in order to reduce dispersion, this factor should be as

close as possible to the stability limit.
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2.2.2 The FDTD Equations in Two Dimensions

As indicated above, in two dimensions Maxwell's equations decouple into the two

independent E-polarization and H-polarization solutions. The E-polarization equa-

tions are given as,

ep(l, m) K- Ar
K- el(l m) +K+ K+A

(2.8)

hP(l, m)

hP(l, m'y\,",

AT
m) A

L+A

m) L+A

L- hP-l(l '
L+

- L+ hP-1(1,
L+ Y

[ez(l, m + 1) - e(1, m)]

[e(l, m) - e(l + 1, m)]1 

Ki _ , a 77O0 TA

And the H-polarization equations are given as,2

And the H-polarization equations are given as,

(2.9)

(2.10)

(2.11)

where,

= L- hP-(l m) - r
L+z L+A

[eP-l(,m - 1) - eP-l(l,m) + eP-l(, m) - e'- (l- 1,m)] (2.12), 

- K+ ep- (l1, m) + - [hP(l, m + 1) - h(, m)]K+ AK+
AT

K+- [hP(l, m) - h: + ( + 1,m)]K+A = K+ ep(l, m) +K + eu 

hP(z, m)

eP(I, m)
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In the above 770 is the impedance of free space and oer and a, are respectively electric

and magnetic conductivities. These equations follow directly from the integral form

of Maxwell's equations [2]. The interleaving of the fields in space and time is

the natural implementation of Maxwell's equations on a discrete space-time grid.

This interleaving of the fields results in discrete equations which are accurate to the

second order in A and Ar [2]. Finally, it is evident that when computing the electric

field at a particular node, all that is required is the same electric field at the previous

time step, and the surrounding magnetic fields at the previous half time step. This

means that the method requires little memory, since we can overwrite the fields at

the previous time step, saving values only where desired. Similar statements apply

for the magnetic field.

2.2.3 Boundary Conditions

The boundary conditions can be divided into two classes: reflecting, and absorb-

ing. The former class consists of those conditions imposed at the interface between

arbitrary media. Examples of such interfaces are the interfaces between dielectric

and air, dielectric and dielectric, and dielectric and perfectly conducting media. All

such interfaces produce reflections. The latter class, the absorbing boundary condi-

tions, are applied at the surface bounding the computational domain. The purpose

of these conditions is to perfectly absorb all waves incident to the boundary, thus

simulating infinite free space.

Reflective boundary conditions are easily implemented. At the interface be-

tween two arbitrary dielectric media the tangential fields must be continuous. Con-
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sider for the E-polarization case an interface between four potentially different media

as shown in Figure 2.2. The effect of the interface is manifested in an effective di-

electric constant, which is the average of the four surrounding media. This also

applies for the conductivity. Hence, at such an interface we can use,

10. = -(01 + '2 + 3 + 4 ) (2.14)

1
= (E + 2 + 3 + 4) (2.15)

If the permeability also changes across the interface then the magnetic field is dis-

continuous at the interface. In the FDTD equations it is the integral of the magnetic

field that is needed, and hence the average magnetic field across the interface is what

we are interested in. For h. we arrive at,

p 2p2= (2.16)
1l + p2

and for h,

IL 2=13 (2.17)

P1 + L3

For the H-polarization case dual equations apply.

Finally, at the boundary of a perfect conductor the electric field is zero, and

we simply zero all such fields.

Two absorbing boundary conditions are used. Along the edges of the compu-
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tational domain the second order condition of Engquist and Majda [22] is used:

(andard + -a2 - 2- ) 7t= 0 (2.18)

At the corners, where the second order space derivative is not defined, we use the

first order absorbing boundary condition:

( +n d ( = °1 9(2.19)
where ?k can be any tangential component of either the electric or magnetic field.

These are implemented using central differences.

2.2.4 Plane-Wave Time-Domain Pulse Excitation

The problems considered here are plane-wave time-domain pulse scattering from

dielectric and metallic objects. A convenient way to excite the problem is as fol-

lows(see Figure 2.3). First, we divide the computational domain into two regions:

the inner region and the outer region. The inner region contains all the scattering

objects; the outer region contains free space. In the inner region we compute total

fields; but in the outer, we compute scattered fields only. Hence at the boundary

between the two regions we have a discontinuity in the fields, which is equal to the

incident field. This discontinuity can be considered as arising from surface electric

and magnetic currents on the artificial boundary between the regions, which are

needed to support the discontinuity. These equivalent currents can be viewed as

radiating into the computational domain, thus exciting the problem. As stated
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above, the method is equivalent to the induction theorem [23].

In applying the FDTD technique to scattering problems it is necessary to

choose an incident time-domain pulse. Often we are ultimately seeking frequency-

domain results, and the time-domain FDTD fields are transformed to the frequency-

domain through the discrete Fourier transform. The major concern in selecting an

incident pulse is that the frequency-domain spectrum of the pulse covers the fre-

quency band of interested. For convenience we use here an exponentially-modulated

sinusoidal time-domain pulse, expressed as,

ei(r) = Eoe- (T--)/( °o) sin[ko(r - ro)]U(r - To) (2.20)

where co is the speed of light, a the pulse width, ko _ wo/co the center frequency,

o _- Coto the delay time of the pulse, and u(r) is the unit step function. A plot of

the pulse is given in Figure 2.4 for w = 1/a. The frequency-domain spectrum of the

pulse is,

-woEoeiwto

E( = [w - (-Wo - ia)][w - (Wo -2.21)

where a _= 1/a. This function is plotted in Figure 2.5. The half-amplitude frequency

of the pulse occurs at w = 2(1 + V/3)wo = 2.34wo for wo = 1/a = a. If fh is the

half-amplitude frequency of the spectrum in GHz, a the pulse width in nanoseconds,

and A the grid spacing in meters, and if we set the high frequency such that there

are ten grid cells per wavelength in the medium of highest refractive index, then we
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have,

.372 .03
fh = - 3 (2.22)a nA

a = 12.4nA (2.23)

where n = F is the highest index of refraction in the computational domain.

As indicated in Figure 2.3, the pulse is incident to the y-axis at an arbitrary

angle . In Section 2.3 this incident pulse is used in the analysis of scattering from

objects buried in a lossy medium.

2.2.5 Numerical Dispersion in the FDTD Technique

The FDTD approximation to Maxwell's equations, being a discretized approxima-

tion, introduces artificial dispersion in the solutions. In this section we discuss

numerical dispersion in the FDTD technique.

The FDTD dispersion relation can be found by assuming plane-wave propa-

gation in the FDTD grid and solving for the propagation constant. The dispersion

relation in two dimensions is given by [2],

) s in2 (( k2 ) sin2 ( k(224)
2 + 2 2 (2.24)(A) 2 + (ay)2 (Ar)2

For, Ax = Ay = A and kIc = k sin 8, ky = -k cos 9 the dispersion relation becomes,

sin2 (k sin) + sin2 (2 cos �) rsin (k ) (2.25)
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Hence the wave number is not proportional to frequency. In addition, it is evident

that the dispersion is anisotropic, depending on the direction of propagation, ,

in the numerical grid. The above expression can be expanded in a Taylor series

to determine the phase velocity versus frequency to order (kA)2. For = 0 and

8 = 90° we find,

6 [1 ( A \ ( 2kA (2.26)

From this equation it is evident that to minimize numerical dispersion the normal-

ized time step should be as large as possible consistent with the stability condition.

Similarly, for = 450, we find,

vP=1 1 1 _(^r) |(k\ (2.27)
c 6 2 A 2

Hence, dispersion is smaller in this direction, and, in fact, approaches zero as we

approach the stability limit. Typically we limit the frequency spectrum of the

incident wave such that the amount of dispersion is small.
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Computational Domain: Regular Rectangular Gird

N x\

Grid Spacing

A 

H-polarization

E-polarization

Figure 2.1: Computational domain and unit cell for E and H polarizations.
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Figure 2.2: Interface between four potentially different media. Shown for the

E-polarization case.

I
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X

Figure 2.3: Plane wave time-domain pulse excitation. The computational domain is

divided into inner and outer regions, with total fields computed in the inner region
and scattered fields computed in the outer region.
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Incident Time-Domain

0.5 1

Normalized time T-

Figure 2.4: Time-domain wave form of the incident pulse for pulse width a = .159ns,

corresponding to high = 2.0GHz. The center frequency is wo = 1/a.
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Incident Pulse Spectrum

2 4

Frequency W/W0

Figure 2.5: Frequency-domain spectrum of the incident pulse for w = 1/a = a.
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2.3 Scattering From Objects Buried in a Lossy
Halfspace

In this section we extend the FDTD technique to solve for electromagnetic wave

scattering in two dimensions from arbitrary objects buried in an infinite lossy half-

space, modeling, for example, the problem of scattering from cracks, voids and

rebars in concrete, or, for example, the problem of scattering from pipes buried in

the earth.

The geometry of the halfspace problem is shown in Figure 2.6. We have a

plane wave time-domain pulse incident to the boundary at an arbitrary angle 0 with

respect to the normal. The dielectric is potentially lossy, and an arbitrary number

of dielectric and metallic objects can be buried within the dielectric slab. The

significant difference between this problem and the problems discussed previously

is that we have a infinite slab of dielectric which of necessity extends outside the

computational domain, and hence it is possible to have fields scattered into the

computational domain.

2.3.1 Plane-Wave Time-Domain Pulse Excitation

The method of plane wave excitation is as follows: we first solve analytically for

the fields transmitted into the halfspace in the frequency domain when there are

no scattering objects in the lossy halfspace. The same solution is determined in

the time domain by numerically evaluating the inverse Fourier transform. Now we

can use the known transmitted fields in the time domain in an analogous manner
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as we previously used the incident field, dividing the computational domain within

the lossy halfspace into inner and outer regions and enforcing at the boundary a

discontinuity in the fields equal to the transmitted fields.

Proceeding with this approach, consider the frequency domain solution to the

halfspace problem when the scattering objects are absent. For this problem we

have a simple analytical solution which gives the fields everywhere in space. The

reflection and transmission coefficients for the E-polarization case are given by [24],

T TE - 2t ky (2.28)
RItk + pokty

RTE tky - /okty (2.29)
ptky + okty

where,

k+ + k = w 00o k0o (2.30)

k2 + k 2 W= 2 - k2 (2.31)

et - eoer + io~/w (2.32)

l't - IotLr + i m/w (2.33)

In the above, E0 and o are the permittivity and permeability of the free space region

above the halfspace, and t and t are the permittivity and permeability of the

lossy halfspace region. Since the dielectric is lossy, the transmission and reflection

coefficients are functions of frequency. Given the incident pulse spectrum, Equation
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(2.21), we can compute the time domain pulse through the inverse transform,

et(o, y, r)
1

= Re
7r

0 dw TTE(w)E, (w)ei[ko(a sinf-T)-ktgy] } (2.34)

From this expression it is evident that,

ezt(x, y, r) = et(O, y, - z:sin ) (2.35)

Hence, we need only compute the fields along the y-axis for all time. This is phys-

ically due to the fact that the pulse propagation is a simple translation in the

x-direction.

The field expressions can thus be written for y < 0,

ez,(O, y, r)
1

= -Re

hy(0, y, -)

yz(,Y 7

f{0 dw TTB(W)EE(w)e-iktiYe- ik0

-7ORe (fo+ k.= Re dw T(w)EJ(w)e- e -

T O WitX O W~~cot

(2.36)

(2.37)

(2.38)

and for y > 0,

1
= -Re

7r1= -Re
1= -Re

fo +

{f+00, +
dw Ei(w)[e"Y + RTE(w)eiley]e-ikor }

& , k Ei(w)[e - 'ik _ RTE(W)eiY]e-ik-}

dw k Ei(w)[e-iy + RTE(W)eikY]e-ik0}

(2.39)

(2.40)

(2.41)

e, (0, y, T)

h,(0,y, r)

h,(O, y, r)
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The exciting fields for the H-polarization case are the dual of the above fields.

The above integrals are highly oscillatory for points far from the center of

the pulse, but are conveniently evaluated by deforming the integration path in the

complex w plane as indicated in Figure 2.7. In the following it is assumed that

t = o. The original path, which is along the real w axis, is deformed either into

the upper or lower imaginary w plane depending on the sign of f which is defined,

r = -0- zsin + y cos (Incident field) (2.42)

= - - z sin 8 - y cos (Reflected field) (2.43)

= r - 0 - sin 9 + y/ - sin2 9 (Transmitted field) (2.44)

For C < 0 the path is deformed up the imaginary w axis and closed to the real axis

with an arc at infinity. Along the positive imaginary axis the integrand is purely

imaginary, and along the arc at infinity the integrand is zero. Hence for ~ < 0 the

integrals are zero. For ~ > 0 the path is deformed down along the negative imaginary

w axis and closed again with an arc at infinity, except now a detour in made to cut

out the source pole at w = wo - ia. Only the source pole and the integration

along the branch cut, which extends from the origin to w = -i/eo(e, - sin2 8), give

non-zero contributions to the integral. For small conductivities the length of the

branch cut is small, and the contribution from the branch cut is small. The integral

representing the transmitted electric field is given as,

ez(0, y, -) = {!Re [-i j ds E(-is)TTE(-i s)e- i kt (- i -'( - - in)/ ¢o]
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Re [i'EoTTE(o -i i)e-ikt'(wo-a)+(-i'o+a)( -o-wzsin)/¢o] 

* u(r -o- z sin + ye, - sin)2 ) (2.45)

where kty(-is) indicates kty evaluated at w = -is, and kt,(wo - ia) indicates kty

evaluated at w = wo - ic, and 7 Ey - sin2 6. Similar expressions hold for the

other components of the field.

2.3.2 Scattering from Cracks and Rebars in Concrete

Reinforced concrete is a common building material used in the construction of

bridges, dams, buildings and a host of other structures. Reinforced concrete is

formed by pouring concrete over reinforcing steel bars, termed rebars, which strengthen

the concrete. A serious problem, however, affecting the life and safety of these struc-

tures is the failure, or delamination, of the concrete. A common mode of failure is

the fracture of the concrete in the plane of the rebars, which results from pressure

exerted on the concrete from the corrosion of the rebars.

It is important to be able to assess the condition of reinforced concrete struc-

tures without destroying the structures. Hence, a number of techniques have been

employed in the nondestructive testing of these structures. One technique is to use

radar imaging to detect failures in concrete. In this section we use the halfspace

method presented above to model the scattering from rebars and cracks in concrete.

Consider the geometry in Figure 2.6, where the scattering objects are two

rebars buried in the concrete slab. The concrete slab is modeled as an infinite
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lossy dielectric halfspace, where the loss results from electrical conduction in the

dielectric. The relative dielectric constant of the concrete is assumed to be e, = 6.0,

and the conductivity e = .01 (mhos/m). The concrete is illuminated from an

angle = 67.80 from the normal, which corresponds to the Brewster angle for the

H-polarization case.

Figures 2.8 and 2.9 show grey-scale plots of the electric field intensity for the

E-polarization solution to the above model without any fractures in the concrete.

In these figures the intensity of grey indicates the intensity of the electric field in

dB down from the incident field intensity. A key is given in the upper right hand

corner of the plot indicating five levels of grey, which correspond to 0, 20, 40, 60

and 80 dB down from the incident field. The highest intensity is black, whereas the

lowest in white, which is the threshold for fields to be observed.

The first plot shows the wave before striking the rebars; the second shows a

strong reflected pulse from the first rebar. In addition to the reflection from the

rebar we also see a small spurious reflection from the artificial boundary between the

inner and outer regions. This reflection is about 50 dB down from the incident field,

and is ascribed to numerical dispersion in the FDTD grid. It is evident from the

plots that behind the spurious reflection is a train of dispersion fringes. Because

of dispersion in FDTD the high frequency portion of the incident signal, which

contributes greatly to the leading edge of the pulse, propagates at a slower velocity,

resulting in a mismatch at the artificial boundary. The next two plots show double

and triple reflections between the rebars and the air-halfspace interface.

Consider next the same problem but where now we have a crack in the plane
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of the rebars resulting from the corrosion of rebars. The crack starts at one rebar an

ends at the next. The thickness of the crack is h, which is assumed to be less than

a grid cell length, and the crack is modeled though an effective dielectric constant,

determined by applying the integral form of Maxwell's equations to FDTD cell. For

an air-filled crack the effective dielectric constant of the crack can be modeled as,

er = h + (1-h)et, (2.46)

where et, is the relative dielectric constant of the surrounding concrete.

It is often the case, however, that the cracks in concrete are water-filled, and

hence we consider next a water-filled crack. A model for water that well suits the

present problem is the Debye model [24] including a conduction term, for which the

dielectric constant is given as,

E(w) = E + +i + (2.47)
1- iL(w/w0) L

For water we use E, = 1.8, es = 81.0, wo = 2r(16.93GHz) and o, = 1.722 x

10-4 mhos/m. For cracks of sub-grid dimension an effective dielectric constant can

be determined, giving,

1 - i(W/W0) WD [c 1li(w/o) + E (2.48)

where,

E6 h +(1-h)ec (2.49)
d d
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h
-- (, - )/cod

(2.50)

h
-- - O'wd

(2.51)

where E, and o,, are respectively the dielectric constant and conductivity of concrete.

To implement these equation in FDTD we employ the method presented in

[4] to model frequency dispersive media in the FDTD technique. The normalized

electric flux density is defined as,

d(lI, m) - D ((p - )-, tA, m/\)/Eo (2.52)

and from Maxwell's equations we have,

dP(1, m)
AT

= dP-1(1,m)+ zA

[hPl(l,m -1)- hP-l(l,m) + hP-l(l,m)- h-l(l- 1,m)](2.53)

If we interpret frequency as a differential operator, -ik = /Or, then the relation

(2.48) gives,

+1 a \ d
±ko a2 

= [70o + (E,
+,K+ £To
+ E + a770

ko

09 Er 02]
-+-a O-2 a

where E, - E/co and ko - wo/Co. Discretizing the above using center differences

gives,

(0
(2.54)
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(P - (L T k0 )eP- ±2 + ko ]e-2 +( --o)d -kO -1- 1 dP--- 2
_±f + 0 | frc 2 2ko ko &j

(2.55)

Applying this model for the water-filled crack gives the grey-scale plots shown in

Figures 2.10 and 2.11. In the first plot we see the fields just after the incident wave

strikes the first rebar, and we also see a reflection from the water-filled crack. In

the next plot the wave has reached the second rebar, and in the following plots the

reflection from the crack is obscured by the reflections from the rebars.
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F. T-I.

Figure 2.6: The geometry of the halfspace problem is shown.
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Re{t}

Figure 2.7: Integration path in complex w plane for evaluating inverse Fourier trans-

form integrals.
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i

Figure 2.8: E-polarization electric field for concrete without fractures.
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Figure 2.9: E-polarization electric field for concrete without fractures.
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Figure 2.10: E-polarization electric field for concrete with water-filled fractures.
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Figure 2.11: E-polarization electric field for concrete with water-filled fractures.
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2.4 The FDTD Technique in Three Dimensions

The computational domain and unit cell in the three dimensional implementation

of the FDTD technique are shown in Figure 2.12. In three dimensions Maxwell's

equations no longer decouple into two independent solutions, and we must retain

all six field components. In addition, the number of unknowns is of order 6N,NyNZ,

where, as indicated in Figure 2.12, N,, Ny and N, are respectively the number of unit

cells in the x, y and z directions. Hence, the number of unknowns can be quite large.

The FDTD equations in three dimensions including electric and magnetic currents

are,

eP(l,m,n) = eP-(l,m,n)+ [hP-l(l, m n)- hP-1(l, m - ,n)

+hP-l (l,m, n- 1) - h (,m,n)] - 2 7I(l,m, n) (2.56)

Ar
e( ) (l,m,n) eP-1(1,m, n) + [hP - 1, m, n)- h-l(l, m, n)

+hP -(lm mn) - hP-(l, m, n - 1)] - A ori(lm, n) (2.57)

eP(l,m,n) = e-l(l,m,n)+ + [hP-'(l, m, n)- h-l(l - , m, n)Ar

+hP-(lm-1 n)-hP;-(l,m n)- 2 vOI(Imm" ) (258)hP(l,m, n) = ,P- (t, ) -+ -)- m[e(l,m,n) , -(,- m,n+ 1)

A r
+eP(l,m + 1,n)- e(,m, n)] - A / KP(,m, n) (2.59)

hP(lm, n) = hP-(l,m,n)- A[e(l, m, n + 1) - e(l, m, n)y., ar

58



The FDTD Technique in Three Dimensions

+eP(l,m,n) - e(l + 1,m,n)] -- KYP(l, m, n)

hP(l, m, n)

(2.60)

- h- [e (l,m,n)- eP(l, m + 1, n)= P-(1m~) -[P(~An

+eP(l + 1, m, n) - e(l, m, n)] - - KP(l,m, n) (2.61)

As indicated in Figure 2.12 which shows the unit cell, the above fields are defined

in terms of the continuum fields which they approximate as,

eP(I, m, n)

eP (1, m, n)

eP(l, m, n)

hP(l, m, n)

hP(l, m, n)

E 2((p -l )\, (+ 2 )A, ma, n)- E2((p - )rl) ( + )A mA~A

E- ,((p - )A, lA, (m + )A, nA)

- E((p- )AT,lA,mA,(n+ )A)

77oH(pAT, lA, (m + ')A, (n + 1)A)

- oHy(pAT, (I + 1)A, mA, (n t- 1 )A)

- roHz(pAT, (l + 1)A, (m + 2)A,nA)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

where as before lo is the free space impedance, A is the grid cell length, and

Ar = cat is the normalized time step.

The electric and magnetic currents Ij and Kj are defined by,

Ij = f dSJj (2.68)

Kj = J dSM (2.69)
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where the surface S is normal to the current component. The position of the electric

current vector, I(l,m, n), within the unit cell is coincident with the electric field

vector et(l, m, n), where f = z,y or z; similarly, the position of the magnetic current

vector, hp(l,m, n), within the unit cell is coincident with the magnetic field vector

hP(l,m, n).

These equations are used in Chapters 3 through 6 to model aperture arrays in

FDTD. To include electric and magnetic conductivities as in the two dimensional

case we employ Ohm's law,

1 1
AIp(l, m, n) = ae(ep(l,m, n) + e(l,m,n))

K,'(l,m,n) = om(he(1,m,n) + h'(l,m,n))/77o
A2 2

(2.70)

(2.71)

which transforms the above equations into,

e4(l,m,n)

eP (l, m, n)

e(l, m, n)

hP(I,m, n)

K- eP-l(l,m,n) + [h-l(l,m, n) - hP-'(,m - 1,n)K+ ' K+

+hP1(,m, n - 1)- hp1 (,m,n)] - , r7o(l,m,n)

K- Ar
= - eP-(l m, n) + [h-'(l - 1, m, n) - hP-'(l,m, n)K+ (7 K+

+hP-l(l,m,n)- h-(l,m, n - 1)] - Ar r/oI(l,m, n) (

K- Ar-
K+eP-(lm, n)+ [h7'(l, m, n) - h-(l - 1h m, n)

+hP-(,m- 1,n)- h.-'(,m,n)] - A- 7oIzp(l,m,n) (K+ " K+1~~~~A

2.72)

2.73)

2.74)

L- hP,'(l, m, n) - [e(l, m, n)- e(l, m, n + 1)
L+ L+A
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+eP(I, m + 1, n)- e(I, m, n)] - AKP(1, m, n)
__ A rA -

hP(,m, n)

(2.75)

= L+ h- 1(l, m, n) - [eP( m, n + 1) - eP(, m, n)L+A 

+eP(l, m, n) - e(l + 1, m, n)] - - KY(l, mn)

h(1, m, n)

(2.76)

= L+ hP-1(l, m,n) - Ar [eP(I, m, n) - eP(l, m + 1, n)L+ z L+A -

+eP(I + 1, m, n) - e(l, m,n)] - KP(l, m, n)
Y Y A2

(2.77)

where K ± and L± are defined as in the two dimensional case, and the currents

~(I, m, n) and K(l, m, n) now represent impressed sources.

The stability condition in three dimensions is [2],

A7r < [()21Ar < (AX)2 +
1(y)~-+ (at)- _= vq

(Ay) 2 + (AZ)2 _=3

and, as in the two dimensional case, we set the time step so as to give a small

stability margin.

For plane wave excitation we employ the same approach as given above for

problems in two dimensions.

(2.78)
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Computational Domain

Figure 2.12: The computational domain and unit cell in the three dimensional

implementation of the FDTD technique.
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2.5 Summary and Conclusions

In this chapter we presented the FDTD technique applied to the scattering of elec-

tromagnetic waves for dielectric and metallic objects. The technique was extended

to solve for the scattering from objects buried in a lossy halfspace, and the method

was used to model the scattering from rebars and cracks in concrete. The method

presented can be easily extended to model scattering for the H-polarization case,

which has the advantage that the reflection from the air-dielectric interface is absent

when the interface is illuminated at the Brewster angle. The reflections from the

rebars would be much reduced for this polarization, perhaps giving a clearer view

of cracks in concrete. The method can also be easily extended to model ground

penetration, where detailed models of the earth can be employed [25].
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Chapter 3

Small Aperture Modeling for EMI
Applications using the
Finite-Difference Time-Domain
Technique

3.1 Introduction

Computer hardware is typically designed with apertures in the enclosure to allow

for cooling. With the push to design increasingly fast computer systems, and the

concomitant increase in computer clock rates, the transmission of electromagnetic

waves through the apertures becomes an increasingly severe source of ElectroMag-

netic Interference (EMI). Hence in reducing EMI it is important to be able to model

accurately the transmission through apertures of arbitrary cross-section so as to de-

termine the extent of EMI. The transmission of electromagnetic waves through an

aperture is an old problem, and has been extensively researched [26]-[41]. A method

is needed, however, to couple the aperture to more complex configurations, which do

not have analytical solutions. The Finite-Difference Time-Domain (FDTD) method
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[1][42] has seen increasing application in the field of EMI [33]-[36], and hence it is

desirable to be able to couple the known transmission properties of apertures into

the FDTD method. In [33] and [34] methods are developed which apply to slots

long in one dimension. These methods, however, are inherently two-dimensional,

even though applied in three dimensions. The method of [33] is evaluated in [35],

and errors as high as ten percent are reported, and in [33] the method is given as

one applicable for narrow slots with the long dimension of the slot at least four

grid cells in length. Also, in [34] errors as high as ten percent are reported. It is

possible to model the small aperture in FDTD, for lack of a better method, by a

single node through the standard FDTD equations [43]. We show here, however,

that this method, which we refer to as the Simple method, leads to large errors. Al-

ternately, the computational domain can be expanded and the aperture represented

by many grid cells. We refer to this method as the Brute-Force method. The cost

here is, of course, computer time and memory. We show, however, that there is

still appreciable error even if the aperture is represented by many cells. At present,

then, there is no method which accurately models apertures that are small in both

transverse dimensions. Our purpose here is to present a new method which is ap-

plicable to apertures arbitrarily shaped which, however, are much smaller than a

wavelength. The method allows the apertures to be arbitrarily small, and it applies

also to apertures larger than a grid cell in length.

Our approach to implementing the small aperture in the FDTD algorithm

is based on the observation [44][45][32] that all electrically small apertures can be

modeled by equivalent induced electric and magnetic dipoles if we observe the fields
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sufficiently far from the aperture. Hence, an aperture can be modeled in FDTD

by short-circuiting the screen at the aperture and introducing pairs of oppositely

directed electric and magnetic dipoles on either side of the screen. The problem

of modeling the aperture, then, is reduced to that of determining the magnitude

of the induced dipole moments that correctly model the aperture. This can be

determined from an analytical solution of the aperture, which gives the induced

electric and magnetic current moments in terms of the fields near the aperture. We

begin in Section 3.2 with the problem of determining the induced dipole moments

for a circular aperture from the fields near the aperture. The FDTD implementation

is discussed in Section 3.3. In Section 3.4 we evaluate the method by comparing

it with the analytical solution, and the Simple and Brute-Force methods are also

evaluated. In Section 3.5 we present a method for subtracting the dipole fields,

which contributes a significant error as the aperture size increases, and in Section

3.6 we discuss sources of error in the induced dipole approach.

3.2 Equivalent Electric and Magnetic Dipole Mo-
ments

In [27], Babinet's principle is applied to the H-integral equation developed in [26]

for thin plate scattering, which transforms the thin-plate integral equation to an

integral equation for the aperture fields. A Rayleigh-series expansion is used to solve

for the aperture fields of a circular aperture up to second order in ka, where k is the

wave number and a the aperture radius. The geometry of the circular aperture is

given in Figure 3.1. The aperture fields are represented by an equivalent magnetic
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current density [32] on the surface of the conducting screen. The Rayleigh series

expansion of the magnetic current is [32],

00oo

M = E (ka)'M-
n=O

(3.1)

and the equivalent magnetic current density to order ka is given by,

M(O)
Sp

M(O)
M,0

= 0 (3.2)

(3.3)
2p i

7r(a2 _ p2)1/2EOZ

8i
= 3 rkakz(E4 cos - EO, sin )(a2 - p2)1/2

4i
+ 3k (k sin - cos )(a2 -

.[4(a2 _ p2)1/2+ (a2 _ p2)1/2 ]

4i
+ (k, cos

3Sirka
q + k sin ) p2 + a2

(a2 - p2)1/2 Oz

where p and 4 are polar coordinates. In the above the incident field is assumed to

be,

EB = (iEoZ + yEoy + zEz) exp[i(kz + ky + kzz)] (3.6)

(3.7)

M(1)BP

M(1)
2i
- k-.(E cos + EOy sin )irk a E

(3.4)

(3.5)
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Infini f orr zn

Y

Figure 3.1: The geometry of a circular aperture of radius a in an infinitely thin,

perfectly conducting screen. A plane wave is incident on the screen.
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The magnetic current Kj is defined by,

K, = i dSMj (3.8)

where the surface S is normal to the current component. When the magnetic current

density M is represented by a surface current, the magnetic current moment is given

by,

(KI)j = f dSM.j (3.9)

where the surface S indicates the surface over which the current exists. Just as an

electric current loop represents a magnetic dipole, similarly a magnetic current loop

represents an electric dipole. The electric dipole moment of the magnetic surface

current is given by,

ilck
(IlI) = -2.JZ* pxM. (3.10)

These are the lowest order current moments; higher order moments exist which

represent to a greater extent the variation of the current across the aperture. The

length of the dipoles is assumed to be one grid cell, A. This assumption is verified in

Chapter 6 where the FDTD equations are solved analytically for dipole excitations.

Hence the electric and magnetic currents to be implemented in the FDTD algorithm.

are given by,

ikIq 2Zv A j || Pix M, (3.11)
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K = JjdSMj (3.12)

which we can determine from the above equations for M,.An outline of the induced

dipole approach is given in Figure 3.2.

The magnetic surface currents above were derived assuming harmonic plane

wave incidence. The equations can be generalized, however, to arbitrary excitations

by identifying ik, = 8/Ox, iky = O/Oy, ik, = O/Oz. Also, for aperture problems the

short-circuit[32] electric field is more convenient to work with, and we use,

aE,
Oz

OEY

Oz

1 aE.'
2 z

1 OaEY

2 z

(3.13)

(3.14)

1
Ei= E (3.15)

Z 2Z

To order ka the rectangular components of the surface magnetic current are then

given by,

M, = EC -P s
= E r(a2 - p2

) 1/ 2 sin q

OE"C -2p 2

+ Ox 3r(a 2 - p2)1/ 2 sin(20)

0E~c -2 [2 2

y+ 3?r(a2 - p2 ) 1 /2

Oz 3r(a2 - 2 2 sin(24)19Z 3r(a2 - 2)1/2

cos(20)]
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(b)

Ms =Ea x n

(d)

4

nI 1

(e)

- lI 

Figure 3.2: The induced dipole method: (a)-(c) The aperture electric field is rep-

resented by an equivalent magnetic surface current over the short-circuited screen;

(d)-(e) Electric and magnetic dipole moments are determined from the equivalent

magnetic surface current.

(a)

Ea

1'1=l

(c)
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aE+ 2 [2a -
2 (in 2 +2 cos2 ) (3.16)

Oz 37r(a2 - p2)/ 2 cos

M. _y= Ec Cos
7r(a2 _ p2)1/2

0EC 2 a2 + cos(2)]

Ox 37r(a2 - p2)1/2 [ 2 +

OEsC 2p2

Oy 37r(a2 - p2)1/2 sin(2)

EBC -2 [ +

+Oz 3r(a 2 - p2)/2 sin(24) (3.17)

In the above equations the short-circuit fields and their derivatives are evaluated at

the center of the aperture.

From the higher-order analysis of disk diffraction given in [46], which from

Babinet's principle is related to the present problem, the contribution from terms

of order (ka)2 is down (ka) 2/5 for the electric dipole and 8(ka) 2/15 for the magnetic

dipole. Hence, neglecting these higher-order terms gives a maximum fractional error

of about 4% in magnetic dipole moment, assuming a = .45A and = 10A.

The electric and magnetic current components to order ka are given by,

2a3 OE"c
7/Iz= -3 ECz (3.18)

3A a-

4aS OE OEgc 4a 3 OHc(K = 3 ( ) = 3- A (3.19)

4a3 OE - OEsc= 4a3 H (3.20)Ky = 71 (3.20)3A dz Ox 3= -r
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Given any incident field, then, we can derive from the above equations the induced

currents. The fields radiated by these currents are the focus of the next section.

The ratio of power radiated by the electric and magnetic dipole is,

P - 1 sin2 9 (3.21)
Pm, 4

where is the angle the incident wavevector makes with the z-axis. For normal

incidence there is no electric dipole contribution. For = 45° we have Pe/Pm =

1/8 = .125. Hence, the magnetic dipole gives the dominant contribution to radiated

power.
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3.3 FDTD Implementation of Induced Electric
and Magnetic Dipoles

The above currents are introduced into the FDTD algorithm as oppositely directed

electric and magnetic dipoles on either side of the perfectly conducting screen.

The FDTD equations in three dimensions, for the unit cell shown in Figure 2.12,

including electric and magnetic currents are given in Equations (2.56)-(2.61) of

Chapter 2.

From Equations (3.18)-(3.20) we see that it is the short-circuit fields which

induce the currents. In a typical application, however, the short circuit field, E°C,is

not known. Rather, the total field comprised of the short-circuit field and the field

scattered by the aperture is known. One implementation is simply to neglect the

contribution of the field scattered by the aperture. For small apertures this is quite

accurate, since the aperture scattered field is very small. Results for this implemen-

tation are given below. In section 3.5 a method is presented which determines the

short circuit field directly by subtracting the dipole fields from the total field.

For an aperture located at (, m, 0), with sources in the halfspace z > 0, and

neglecting the contribution from the aperture-scattered field, the FDTD equations

for the induced currents are,

r7qI"(1,mo) = - 2a [hP-l(l, m, ) - h- 1(l - 1,m, 0)

+hP-'(l,m - 1,0) - hP-'(, m, 0)] (3.22)

4a 3
3A2[e(/,m,1) - e¢(l,m + 1,0) + e(l,m, 0)] (3.23)
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4a3

KP(l, m, ) = 3a [-eP(l, m, 1) - e(l, m, 0) + e(l + 1,m, 0)] (3.24)

The geometry of the aperture relative to the FDTD unit cell and the dipole positions

for the electric and magnetic dipoles are shown respectively in Figures 3.3 and 3.4.

The dipoles are, of necessity, displaced from the center of the aperture. These

equations are evaluated and applied in the following section.
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X

Figure 3.3: Geometry of the aperture relative to the FDTD unit cell. Shown is the

electric dipole and the fields which excite it.
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X

),o)

),0,1)

Figure 3.4: Geometry of the aperture relative to the FDTD unit cell. Shown are

the magnetic dipoles and the fields which excite them.

78



Evaluation of the method

3.4 Evaluation of the Method for an Isolated Aper-
ture

The above method is evaluated by comparing the results of transmission for a dif-

ferentiated Gaussian pulse and comparing these results with the analytical solution.

The time-domain field observed at a distance z = -15A behind the aperture is given

in Figure 3.5. The grid cell length used is A = .005 m, and the results are compared

with the analytical solution. The agreement is very good. In Figure 3.6 results are

shown in the frequency domain. Shown is the ratio of the total aperture transmitted

power, as computed by the induced dipole method, over the analytical transmitted

power. Results are plotted versus A/A, where A is the wavelength. A/A = 0.05,

corresponding to twenty grid cells per wavelength, is the typical resolution required

to obtain accurate solution using the FDTD method. The marked deviation in

power at low frequencies is attributed to the absorbing boundary conditions seeing

the dipole near-fields. The dipole near fields are represented by evanescent waves

and are not well absorbed by the absorbing boundary conditions. The marked de-

viation at high frequencies is also attributed to the absorbing boundary conditions,

particularly the absorbing boundary conditions imposed at the corners of the com-

putational domain. The small ripple in power observed in each of the curves is the

result of spurious reflections, and the ripple length indicates that the mismatch is at

the corners of the computational domain, where a first-order absorbing boundary

condition is used. To reduce this error we can use either a larger computational do-

main or a better absorbing boundary condition. Within the useable frequency band

two sources of error are evident. The first is a general downward trend in power
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versus frequency, which is independent of aperture radius. The second is a general

upward trend which depends strongly on aperture radius, but is independent of fre-

quency. We can account for this error as follows: as the aperture radius is increased

the scattered field from the aperture increases proportional to the third power of

the radius, and this field adds to the incident field producing a larger transmitted

field. This produces an error proportional to the third power of the radius, which is

in agreement with the error in Figure 3.5. In the next section we present a method

to subtract the dipole field, which eliminates the above a/A-dependent error. The

sources of the frequency-dependent error are discussed in Section 3.6.

Figure 3.7 shows a time-domain comparison of the Simple method and the

analytical solution. The aperture radius chosen for the analytical solution is such

that the area of the square FDTD aperture equals the area of the circular aperture,

7ra2 = A2 . The Simple method is in error by about a factor of two, and, in effect,

models a larger aperture. Results in the frequency-domain are shown in Figure 3.8.

The Simple method gives as much as 10 dB error at high frequencies. Figure 3.9

shows the geometry of the Brute-Force method. The computational domain has

been expanded by a factor of 10, and the aperture is represented by 80 cells. In

Figure 3.10 we have a time-domain comparison of the Brute-Force method and the

analytical solution. The Brute-Force method gives close to the correct transmission,

but it is still much less accurate than the induced dipole approach. Greater error

is expected for apertures modeled with fewer grid cells. The Simple method is, in

effect, the Brute-Force method with the number of grid cells modeling the aperture

reduced from 80 to 1. We expect, then, the error of the Simple method to be an
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upper limit on error for apertures modeled in this way.
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FDTD Aperture Scattering

-2x10- 4
0.2 0.4.

Normalized Time, = ct

Figure 3.5: Time-domain comparison between analytical solution and the solution

based on the induced dipole FDTD approach for the transmission of a differentiated

Gaussian pulse through a circular aperture.
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Fractional Error in FDTD Aperture Scattering

z
Q0

0
U-
o

L.

0Q
TO

1.2

1

0.8
0 0.05

A/

Figure 3.6: Ratio of frequency-domain FDTD aperture transmitted power over

analytical transmitted power. Two sources of error are evident: a/A-dependent

error, and frequency-dependent error.
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FDTD Aperture Scattering

5x10- 4
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-5x10- 4
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Normalized Time, T =

0.6

ct

Figure 3.7: Comparison of aperture transmission between analytical solution and
the Simple FDTD method for a differentiated Gaussian pulse. The Simple method
models a larger aperture.
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Fractional

10

5

0

Error in FDTD Aperture

0

Scattering

0.05

Figure 3.8: Frequency-domain ratio of aperture transmitted power, as computed by

the Simple FDTD method, to the analytical transmitted power.
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Figure 3.9: Brute-Force FDTD model of circular aperture. A total of 80 grid cells

used to model aperture.
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FDTD Aperture Scattering
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Figure 3.10: Comparison of aperture transmission between analytical solution and

the Brute-Force FDTD method for a differentiated Gaussian pulse. The Brute-Force

method models a larger aperture.
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3.5 Subtracting the Dipole Field

As mentioned above, a small error is introduced by approximating the short-circuit

field with the total field. To remove this error we can subtract out the field produced

by the electric and magnetic dipoles, leaving the short-circuit field alone. From

Equations (3.18)-(3.20) the induced currents can be written,

2as3e, Oedz
7I = - O( - ) (3.25)

4a3 0h, Ohd(
K = 3A ( - ' (3.26)

K = 43 h a hd) (3.27)

where the subscript d indicates the fields produced by the electric and magnetic

dipoles representing the aperture. For an aperture located at cell (I,m,n), I =

IzP(l, m, n), and Oe,l/r = [eP(l,m,n) - e-l'(l,m,n)]/Ar, etc. The dipole fields in

terms of the induced currents are, from Chapter 6, given as,

Oedz , 8(1- )I, + 22(-ik)(K - K)} (3.28)

Ohd, 1 I- 
td (_ )2 f-2o1(-ik) -iIz + 8[(o3 - )K - 4Kv} (3.29)

aaOVr (irA)2 8(3.30)
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where ae = 2a3/3 and a, 4a3/3 are the electric and magnetic polarizabilities of

the aperture [32]. From the above equations and Equations (3.25)-(3.27) we find,

8Ca
7r A

Ky[ r 2Ca2(-ikA)]
ae Ore

A a'r

(3.31)

8a (
+ 2A3(U3 72 K[ 8 a~m 4 ]

[a mI(- ikA) 
lIz[- r2 A 3 -K. [8amO4 8a(3

7r2 A3 (9 

Now from the FDTD algorithm, Equations (2.56)-(2.61), we have,

ae iez

\A Oi- = - A2 [hp-(l, m, ) - h-'(l - 1, m, 0)

QOe

+hP-1(l, m - 1,0) - hP-1(l, m, O)] + 77Iz

= I + aeqlz
OLe

= 2 [eP(l, m, 1) - eP(l, m + 1,0) + eP(l, m, 0)] - K, -K=A3

Lm-

A3

(3.34)

(3.35)

(3.36)

(3.37)

a= m amK
A 2 -eP(l, m, 1)- e(l, m, 0) + e( + 1, m, 0)1]- Ky (3.38)x z A

Kam
A 3 Y

z[ -
2 A 3

cam Ohs
A a-

(3.32)

]r2

8 ]
Ctm Ohy

A Or

(3.33)

am ahs
A 0'r

aCm hy
A_ rA\ &1t
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where i = P(l,m,O), K.= KP(,m,O) and K1y = ky(l,m,O) are the induced

currents without correction, given by,

= - 2[hPy-(l,m, O)- h-(l -1, m,O)A2 Y'y1

+h- 1(l,m- 1,0) - hP-l(l, m, 0)] (3.40)

IP(l, m, O)

KYP(, m, 0)

= 2 [e(l, m, 1) - e(l, m + 1, 0) + eP(l, m, 0)]

= 2 [-eP(l, m, 1)-eP(l,m, ) + e(l + 1, m,0)]

Substituting the above into Equations (3.31)-(3.33), we have,

+Ky [4T 2(-ikA)(a)3]
r2

)3] +K-[1 8 7"' (a )3] K[87m4 a)s]

) -KL 2 ( )3] +K[1 + 82 ( a)3

where y,- ao/a3 and ym - cam/a3 . Inverting this system of equations to first order

in (a ), gives the corrected equations,

r7lIz = [1 + al()3]7 + a3( )3(Kp _ p-1) (3.46)

(3.41)

(3.42)

, [1 = 7Iz

(3.43)

(3.44)

= Ky1

(3.45)

n If (1, M0)

2 ( , ) 2z-;cn2 7r A r 

77 Iz 2-ymal ( i kA )(

· · 72 A(
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-K = +2()3( i i -') + [1- a4 (, )3]Kp + C5( )3Ky (3.47)

p a )3(,jp _ 77 + AlK = -C2( )3(a.z _ r.zz- 1) +(. )3kp + [1-a4(a )3]K'P (3.48)

where I = I(l, m,n ), K = KP(l,,m,n) and KP = KyP(,m,n) for an aperture at

cell (, m, n), and where,

al 8 7er (3.49)

a2 2 ( (3.50)
7Tr Ar

a33 = .72 -) (3.51)

87mar3a 4 2= . (3.52)

_as 8704 (3.53)

Results for the above correction are given in Figure 3.11. It is evident that sub-

tracting the dipole field has removed the a/A dependent error.
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Fractional Error in FDTD Aperture Scattering

-J
0

z0:

n H

`11-0

LM00

1

0.9
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Figure 3.11: Ratio of aperture transmitted power as computed with the induced

dipole approach to analytical transmitted power. Dipole field has been subtracted,

eliminating the a/A dependent error.
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3.6 Evaluation of the Error in the Induced Dipole
Approach

By subtracting the dipole field we have removed the a/A dependent error. There

remains, however, a general downward error in the transmitted power. This error

has at least three sources: the inherent FDTD discretization of space, the displace-

ment of the magnetic dipole a half grid cell from the screen, and an additional error

related to how the short-circuit field induces the magnetic current. Each of these

errors will be discussed in turn.

The error due to discretization alone is determined in Chapter 6, and for small

frequencies where a Taylor series expansion is valid is given by,

edi : = () 2 cos( kA)[l+ (A)2 + 3(q) 4 + (3.54)

2 kAr
q _ sin( 2) (3.55)

This produces an error which increases with frequency. A comparison of this func-

tion with the FDTD computed error for a dipole in the center of a large compu-

tational domain is given in Figure 6.4. Both errors show the same upward trend,

reaching about +2 percent error at high frequencies.

Another source of error is that due to the separation between the induced

dipoles representing the aperture and the perfectly conducting screen. The sum of
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the errors introduced by the dipole separation and discretization is given by,

ed = )2cos( 2 )[1 + O 2) + 1 ( ) + (3.56)k: 2 10 2 10

Thus, the above sources of error nearly cancel each other.

The third source of error, which is the largest of the three, results from ap-

proximating the partial derivatives in (3.18)-(3.20) as finite differences, as done in

(3.22)-(3.24). This error is appreciable for the induced magnetic currents only, since

these currents are excited by fields a full grid cell away from the screen. For plane-

wave incidence, Equations (3.19)-(3.20) in the frequency domain are represented

exactly by,

4a3 [ kA E c- kA/2 (3.57)
K= -32 sin(k,A) sin(kA/2)(E z2 (3.5

,a A k a/2
Kv - -I - (E.83 E. (3.58)32 L sin(k,,-A) ' sin(k--/2)

where the above fields are defined in Figure 3.12. In Equations (3.22)-(3.24) the

k,A/ sin(k,A) and (k,A/2)/ sin(kyA/2) functions have been approximated with

unity. The former of these deviates from unity by as much a 6 percent, resulting in

a significant error, while the deviation of the latter is one forth that of the former and

can be neglected. For most applications this amount of error is of little consequence.

It is possible, however, to remove this error by expanding k,A/ sin(k,A) in a Taylor

series and interpreting ik, as a differential operator:

i(k Eclc) : [1- 6(ikA)2]EvC (3.59)



Evaluation of the Error

Figure 3.12: Correcting the frequency-dependent error. Shown are the dipoles Kz

and Ky and their image dipoles, and the electric fields which induce them.

95



Small Aperture Modeling...

4 C 1
- 3Epvs- -E,,c (3.60)3 1' 6 '

The equations for the magnetic currents including both corrections, then, are Equa-

tions (3.46)-(3.48), with,

4a3 4 1
KP(l, m, ) = 4a 3 A e(lm, 1)-6eP(l,m,2)-eP(l, m + 1,0)+ e(l,m,O)]

(3.61)

KP(, m, O) 3A [-3 eP.(,, 1)+ eP(, m, 2)+eP(l + 1,m, O)-e-(l, m,0)]

(3.62)

(3.63)

Applying this correction gives the error shown in Figure 3.13, which is relatively

flat with frequency. The remaining error, which is less than 2 percent is unresolved.

The method presented here for correcting the frequency dependent error is

more accurate than simply employing a higher-order finite difference, which to or-

der (k,A) 3 approximates the normal derivative as k.A + (k, A)3/3, whereas in the

formulation presented here we have used our knowledge of the form of the fields

near the screen to remove the cubic term, giving a more accurate approximation.
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Fractional Error in FDTD Aperture Scattering

-J

A:

z

c4i

0Lc:

EL

1

0.9
0 0.05

Figure 3.13: Ratio of aperture transmitted power as computed with the induced
dipole approach to analytical transmitted power. Both the a/A-dependent error,
and the frequency-dependent error have been removed.
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3.7 Conclusions

The induced dipole approach to modeling small aperture scattering in FDTD has

been presented and evaluated. The method proves to be both accurate and simple to

implement. In developing the method, an analytical solution of the FDTD equations

describing dipole radiation has been used to determine the FDTD dipole fields at

distances close to the dipole. The solution indicates that at close distances the

FDTD fields deviate from the continuum fields by as much as a factor of two. The

analytical FDTD solution also gives the discretization error inherent in the FDTD

technique. A thorough error analysis has been given, showing the various sources of

error in the method. The errors are small, and the identifiable errors can be removed

through a differencing scheme. The method has been shown to be accurate to within

two percent over the typical frequency range used in FDTD.
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Chapter 4

Modeling Multiple Interacting
Small Apertures for EMI
Applications using the
Finite-Difference Time-Domain
Technique

4.1 Introduction

In the previous chapter a method was presented for modeling small apertures for

Electromagnetic Interference (EMI) applications using the Finite-Difference Time-

Domain(FDTD) technique. That chapter addressed the problem of an isolated small

aperture. However, in typical applications it is an array of closely spaced apertures

which is of interest, such as, for example, used for cooling of computers and other

electronic equipment. With increasing clock rates and increasingly fast computers,

the transmission of electromagnetic waves through such arrays is becoming an in-

creasingly severe problem. Whereas the isolated aperture has been the subject of

extensive research [27]-[47], the modeling of multiple interacting apertures has been
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little addressed [48]-[51]. Through the application of Babinet's principle the scatter-

ing from an array of circular disks, which finds application in the theory of artificial

dielectrics, is a related problem. In [48] the interaction in an infinite periodic array

of circular disks is solved assuming dipole fields, and this problem is relevant to

problem considered here. In [49] transmission through an infinite periodic lattice of

rectangular apertures is solved through a variational approach. In [50] transmission

through an infinite periodic lattice of apertures in an infinitely thin screen is solved

via the moment method, and in [51] the same problem is solved for apertures in a

thick screen. All of the above referenced work is concerned with infinite arrays. We

consider here an arbitrary finite array of circular apertures in a thin screen, and

this problem implemented in the FDTD technique, where it is then easily coupled

to more complex configurations.

Before solving the problem of multiple interacting apertures it is necessary to

consider an isolated aperture excited from either or both sides of the screen, since

for multiple apertures the fields transmitted by one aperture can excite another

aperture from the back, or transmission, side of the screen. The formulation for

sources on both sides of the screen follows directly from the superposition principle.

The method presented in the previous chapter for an isolated aperture, mod-

ified so as to allow sources on both sides of the screen, can be applied with high

accuracy to an array of apertures, provided the apertures are spaced at least two

grid cells apart. For closely spaced apertures, that is, apertures spaced one grid cell

apart, the isolated aperture method leads to about a ten percent error in transmit-

ted power. This error is due to a number of different factors which are discussed
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below. The purposes of this chapter are to modify the isolated aperture formula-

tion to allow sources on both sides of the screen, to develop a correction for closely

spaced apertures which reduces the above error, and to apply the method to the

practical problem of determining the EMI of a typical computer box configuration

with large arrays of closely spaced apertures. We begin in Section 4.2 with a look

at an analytical solution based on the Rayleigh series expansion, which applies to

an arbitrary array of apertures; in Section 4.3 we modify the isolated aperture for-

mulation to allow sources on both sides of the screen; in Section 4.4 we present a

method to subtract the effect of error in the FDTD dipole fields, and in Section

4.5 we evaluate the method, comparing the FDTD solution with the analytical; in

Section 4.6 the method is applied to a dipole within a ventilated computer box, and

Section 4.7 summarizes results and conclusions.
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4.2 Analytical Solution for a Finite Array of Aper-
tures

An example geometry of multiple interacting apertures is illustrated in Figure 4.1,

which indicates a plane wave incident on an aperture perforated screen. Alternately,

as shown in the figure, we may have a dipole of moment II radiating in the pres-

ence of the screen. To test the accuracy of the multiple aperture method presented

here we need an analytical solution. An analytical solution is here presented which

is applicable to an array of interacting, perhaps closely spaced, apertures. The

solution is obtained by approximating the aperture array fields to be that of an

array of dipoles. This approximation is here referred to as the dipole approxima-

tion. For large closely-spaced apertures higher order multipole interaction becomes

important, and hence the importance of the multipole terms is assessed so as to

determine the range of validity of the dipole approximation.

The simplest treatment of an array of apertures is to consider them as being

independent, or non-interacting. For this case the surface magnetic currents repre-

senting the aperture fields are the same as the fields of an isolated aperture, and to

high accuracy the aperture fields are given by the Rayleigh series solution. The effect

of aperture interaction is here assessed by comparing the magnetic surface currents

and transmitted power with those values for the independent, or non-interacting,

apertures.

The Rayleigh series solution for the circular aperture fields is determined by

the total short-circuit electric field at the center of the aperture. The short-circuit
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Figure 4.1: Geometry of multiple interacting apertures.
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field at the center of each aperture is the short-circuit field due to the incident

wave plus the short circuit fields produced by all the other apertures, including the

coupling from the back side of the screen. The geometry of this problem is shown

in Figure 4.2. Denoting K= at the nth aperture as (K=)n, and EsC at the center of

Aperture n'

'4, X

Aperture n

Figure 4.2: Dipole approximation geometry.

I
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the nth aperture as (Eyc),, etc., we can write,

(Kr) = -ikA,27 y(hc) + [Lxx,(K.)., + Ly,(Ky)n + LzI(rIz)n,]
nl Tn

(4.1)

(K I= k-ika (h')n~ + j [Lx,(Kr)nl + L.y,(Ky).n + L,(,Iz)n.

(4.2)

(,Tlz), = +ikA2YeE(ec)n - %eE [LzI(K)nl + LY,.I(Ky)nl + Lzi,(Iz)n']

(4.3)

where yea3 and lma 3 are the electric and magnetic polarizabilities [32] of the aper-

ture, and e ( )3 is regarded as a small parameter. In the above,

= - {-1 + ikr - (ikr)2+ [3: r1r
71' \T

- 3ikr + (ikr)2] }ek (4.4)

71 r2

iky (z\) 3 ikkr

= ( [3 - 3ikr + (ikr) ]ekr
7r r r2

1 ( {-1 + ikr - (ikr)2+() [3-3ikr + (ikr)2]}eik

-ikxA ikr
7r r

_ iky (1 ikr

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

Lzxnn' (4.10)

Lxxnn

LrYnn

yzLnn

Yxnn'

YYnn'

yznn
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Lzy
nn I

L ,nn'

- iz (A\) (1 - ikr)eikr
r-1+ 

= - - l+ikr-(i k ) 2 eik'

(4.11)

(4.12)

give the dipole fields of the n'th aperture at the center of aperture n, including the

contribution from the transmitted fields of the other apertures. Also, r _ r,,, is the

distance between the centers of apertures n and n', and x and y are the distances

in the x and y direction between the two apertures. In order to write (4.1)-(4.3) as

a matrix multiplication, we define,

Lnn, if nn'
nn { lO otherwise (4.13)

The above equations can now be

definitions,

represented by a matrix equation with the following

-=ab
M

a,b = ,

~7~~~

Mab Mb
11 12pab pab

M21 M22

Mbl Mb

y,z

-ikA2 (hc)l
-ik 2(h'c)2

-ikA 2 (hsc)N

-ikA2(hc)l
-ikA2(h'c)2

-ikl 2(hac)N

... M ab

... Mob

I

I

(4.14)

(4.15)

(4.16)

(4.17)
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-ikA2(eC),-
78C _Aik2(eZC )2

=; [ ](4.18)

-ikA2 (ezc)N

(K)1(K.)i
K = .(K(K)2 (4.19)

(K.)N

(K,)1

Y = (K) 2 (4.20)

(K)N

7(I)i

Iz = 71(I.)2 (4.21)

L7(Iz)N

With these definitions Equations (4.1)-(4.3) can be written in block matrix form as,

KZ.FC. -=z - -MZY-MZ-z 1
M M .K

Y] [C] + -] Y KY (4.22)
7IZF - ZZ MZV MZ Iz

where,

lYmI O O

[y 0 mI O0 (4.23)
O O -A/eI

The aperture currents are then given by,

-K F.+-M RK (4.24)

= (I - I=.' M) - ·F'C (4.25)
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(4.26)

where,

~sc
-- L
FCz

xz

M-MC1 Z .MIM
M

(4.27)

(4.28)

=--zY
1M

M"
~zy

1M

M

M--"]

(4.29)

The effect of aperture interaction is illustrated in Tables 4.1- 4.4 for a 5 x 5 array

of closely spaced apertures. The tables give the percentage increase in the aperture

magnetic current over the isolated aperture value for two aperture sizes, a/A, and

two frequencies, A/A = .05 and A/A = .1, which correspond respectively to twenty

and ten grid cells per wavelength. The tables indicate that the magnetic currents

increase with both frequency and aperture radius, and the increase with radius is

proportional to (a/A)3 . The effect of interaction is to increase the magnetic currents

by as much as 24%.
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K 1 2 1 3 J 4 1 5

1 1.34 2.78 2.99 2.82 1.39
2 1.05 2.61 2.88 2.66 1.11
3 1.04 2.60 2.87 2.64 1.11
4 1.05 2.61 2.88 2.66 1.11
5 1.33 2.77 2.97 2.80 1.39

Table 4.1: Percentage increase in the aperture
aperture value for A/A = .05, a/A = .25.

magnetic current over the isolated

K. 1 2 3 4 5

1 1.25 2.95 3.22 2.95 1.25
2 1.30 3.24 3.61 3.24 1.30
3 1.40 3.36 3.75 3.36 1.40
4 1.30 3.24 3.61 3.24 1.30
5 1.25 2.95 3.22 2.95 1.25

Table 4.2: Percentage increase in the aperture
aperture value for A/A = .1, a/A = .25.

magnetic current over the isolated
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IK=I 1 2 3 4 1 5

1 9.65 18.35 19.86 18.34 9.65
2 7.76 17.05 18.90 17.04 7.75
3 7.77 16.94 18.82 16.93 7.77
4 7.76 17.05 18.90 17.05 7.76
5 9.63 18.33 19.85 18.34 9.65

Table 4.3: Percentage increase in the aperture

aperture value for a/l = .05, a/A = .45.

magnetic current over the isolated

[K 1 2 1 3 4 1 5

1 8.54 18.75 20.82 18.73 8.52
2 8.95 20.68 23.39 20.65 8.92
3 9.67 21.57 24.41 21.54 9.64
4 1 8.93 20.68 23.39 20.66 8.92
5 8.51 18.73 20.81 18.74 8.52

Table 4.4: Percentage increase in the aperture

aperture value for A/A = .1, a/A = .45.

magnetic current over the isolated

110



Analytical Solution for a Finite Array

Before proceeding to the FDTD implementation of multiple interacting aper-

tures we consider the effect of the higher-order multipole interaction between the

apertures. Our objective here is to assess the error in neglecting these higher-order

interactions.

From the preceeding analysis we know that the currents at the nth aperture,

within the Rayleigh series approximation to order ka, are induced by the fields at

the center of the aperture, and these fields include the short-circuit field due to the

incident and reflected waves, and, in addition, the fields scattered from the other

apertures. In the above analysis the fields scattered from the other apertures are ap-

proximated as dipole fields. For closely-spaced apertures, however, the higher-order

multipole fields from neighboring apertures become important. These higher-order

fields decay rapidly away from the center of the aperture, and hence we suspect the

higher-order interaction to be important only for large, closely-spaced, apertures.

In the following we restrict ourselves to the case of normal incident, where only

a magnetic dipole moment is induced, and consider the strength of the magnetic

fields from the nearest-neighbor apertures for apertures spaced one per FDTD cell.

To assess the error in neglecting higher-order interactions, we determine the mag-

netic field due to the higher-order multipoles and compare this field with the total

magnetic field comprised of the short-circuit field, dipole fields, and higher-order

multipole fields. The higher-order terms considered are the magnetic quadrupole,

electric quadrupole and magnetic octupole terms.

To lowest order in frequency, the magnetic field close to a circular aperture is
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given by,

ikh = jfdS'{ (Y - y) 2 - 2(x -)2M.. I)_ 3(x - z')(y-y')M C -// ) -',dS' (! !t')' -5 z')

(4.30)

where R - Xl)2 + (y _ y,)2 . In the above the field from the magnetic current

on the back side of the screen has been included. This integral is of the form,

A dSF- M = fdSFMa (4.31)

where the summation convention is implied on the repeated indices. Expanding F

in a Taylor series expansion gives,

dSF M = F.(O) fJ dsM + F () hJAdSxOMa

q 0 2 F'"+ (O) dS(0, M, (4.32)

The first term is the magnetic dipole contribution; the second term contains the

electric dipole and magnetic quadrupole contributions; and the third term contains

the electric quadrupole and magnetic octupole contributions. These integrals can

be evaluated from Equations (3.16)-(3.17) of Chapter 3, which give the equivalent

magnetic surface current. After a little algebra the magnetic field can be written

as,

h. = hc + {(1 + )(3 - 13( - )}h (433)
3ir 2 v 2- A 26V2 A
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where the second term above is the magnetic dipole contribution, and the third

term represents the electric quadrupole and magnetic octupole contributions. The

electric dipole and magnetic quadrupole contributions are zero. The above expres-

sion results from evaluating the various partial derivatives of F at the center of the

aperture, and summing contributions from the eight nearest neighbors. From the

above we find that the ratio of the higher-order contributions to the dipole contri-

bution is given by 6.73(a/A) 2, which is quite large, giving for a/A = .45 a ratio of

1.36. Hence, for large apertures the higher-order contributions are larger that the

dipole contribution. The total error in neglecting the higher-order contributions is

approximately 7.73(a/A) 5 , which for a/A = .45 gives an error of .143. For this case

the total transmitted power is in error by about 28%. The higher-order multipole

interaction consequently places a restriction on how large the aperture radius can

be for closely-spaced apertures. For the error in total transmitted power to be less

than 10%, for example, we must have a/A < .37. In closing, we observe that it is

possible, through a more detailed analysis of the higher-order interaction, to correct

for the above error.

4.3 Isolated Aperture Formulation for Sources on
Both Sides of the Screen

When sources are present on both sides of the screen the induced currents from the

superposition principle are given by,

i( ) a aE' (-) OES' (+)7.- z )(4.34)~~h 67 07
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am OHc(-)
= ( r77(

a OHaCH
- -77( -

A 07

OH:C (+)

Or

OHac(+)

Or

) (4.35)

(4.36))

where the () superscript indicates the short-circuit fields on the ±z side of the

screen. Alternately, the induced currents on the +z side of the screen are given by,

ac, OEc(+)

= &r

am aOH'c(+)
A 7( r

a OH Ca (+)
= - 7(A Or

OEEC(-)

aHc (-)

OrOT

(4.37)

(4.38)

(4.39)

The FDTD implementation of the above equations is,

rI(l, m, 0) A 2[hP-'(l, m, O)- hPv-1,m,O)
A2 

+ h-l(l, m- 1,0) - h-l(l, m, O)

- h(l,m,-1)+ hP-(l- 1,m,-1)

- h-X(l, m-1,-1) + hP-1(l,m,-1)] (4.40)

KP(l, m, O) a m4 (,m, 1 = e,(l,m, 1)-geP,(l,m,2)-e(,m +

4 1
3 §ey(6,1-,m, -2)+(l, m + 1,--1)- e(, m, -1)]

(4.41)
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am 41
KP(l, m, 0) - 2-, -eP(l,m, 1)+ -e(l,m, 2)+eP(l + 1,m,O)-eP(l,m,O)

A 2 3 6

4 1
- §e(l,m,-1)+eP(l,m,-2)-eP(l + 1,m,-1)+eP(l,m,-1)]3 6

(4.42)

Using these equations without a correction to subtract the dipole fields gives twice

the error as the previous formulation, which allowed sources on one side of the screen

only. The additional error results from the dipole fields on the opposite side of the

screen. In the previous formulation this dipole field was present but did not induce

currents, being on the transmission side of the screen. In the present formulation,

however, the dipole fields on the transmission side of the screen do induce currents,

and the currents induced are equal to the currents induced from the dipole fields on

the incident side of the screen. Hence, in the present formulation both dipole fields

must be subtracted.

The induced dipole currents with corrections for the dipole fields on both sides

of the screen are,

2a3 [(ae(+) ae() (Oed(+) ae(-)] (443)7IZ = 43A [( z ) d dz ) (4.43)

4a3 Oh) _ h(-) (+) Oh(-)

K = - �( -(d)i (4.45)
K = 3A a -r Or )- ( r Or(44)

where the (+) superscripts on the currents have been dropped. The induced currents

on the -z side of the screen are the negative of the above. Since the dipoles on
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the transmission side of the screen are opposite the dipoles on the incident side, we

have,

e() = -e(+) (4.46)

h(-) = -h() (4.47)

h(v) = -h? ) (4.48)

and, hence, it is evident that the corrected equations will be identical with those

of the previous chapter except that now7 the correction coefficients are twice the

previous values. The corrected equations, then, including sources on both sides of

the screen are,

7/7IZ = [1 + al()]7Ip + 3()3((Kp - kp - 1 ) (4.49)

KP.= +a2 ( A)3(-7I)- ) + [1-a 4( A )]KP + ( i )KP (4.50)

KP = - ( a( )3(/Ip - rI -1 ) + a5( )3Kp + [1 - a4( )K (4.51)

where I(l m, n), KP(l,r m, n) and KYP(, m,n) are given above, and,

87,y(21)al 7 ) (4.52)

ai2 2 7 n(2l) (4.53)
31.2 A-

3s = (2 2)( ) (4.54)
7.2 AT

4 8ym(2- 3 ) (4.55)
7r2
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8y,(24)
C 5 8( ) (4.56)

4.4 Correcting the FDTD Dipole Fields

The FDTD algorithm automatically accounts for all aperture interactions, and from

this observation we expect the isolated aperture approach to apply for aperture

arrays since it correctly subtracts the self field of the aperture while retaining the

contributions from all other apertures. While this is true for apertures spaced at

least two cells apart, it turns out, however, that a sizable error results for closely

spaced apertures where the fields are defined in Figure 4.3. The reason for the error

is that the FDTD aperture-scattered fields are not accurate near the aperture, and

hence there is an error in the interaction fields for closely spaced apertures. The

sources of the error in the FDTD aperture-scattered fields near the aperture are

many. To begin with, an aperture is correctly modeled by equivalent electric and

magnetic dipoles only for distances sufficiently far from the aperture. We do not

attempt here, however, to correct for this error. The results that are presented below

are compared to the dipole approximation to multiple interacting apertures, and

hence our goal here to accurately render this approximation in the FDTD algorithm.

The remaining sources of the error are in the dipole fields. Figure 4.2 illustrates

the fields Hz, H. and Ez produced by currents K,, Kv and r7Iz in the analytical

solution. In the discretized space of the FDTD technique, however, the geometry

is shown in Figure 4.3. From these two figures it is evident that the FDTD dipole

fields will differ from the analytical dipole fields. The reasons for the discrepancies

are, (1) the dipoles K ,, Ky and 77Iz and their image dipoles are not coincident as in
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'e n

z

Aperture n -Y'

Figure 4.3: FDTD dipole geometry.
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the analytical solution, but are separated a distance A; (2) the FDTD fields close

to a dipole deviate from the continuum values; and (3) the dipoles K,, Ky and

77Iz are displaced from the center of the aperture. All of these sources of error are

significant only for closely spaced apertures.

Our approach to correcting the dipole fields is to analytically subtract out the

FDTD fields which are incorrect and to add back the correct fields. The fields at

aperture n are due to the short-circuit field and the fields from all other apertures

n' Z n, and, as in the isolated apertures case, the fields from aperture n itself as

well. Since the aperture interaction fields are incorrect only for close apertures, the

above correction is applied only for the eight nearest neighbors, n', of aperture n,

and it is assumed that the induced currents at aperture n' are the same as those at

aperture n. In addition, since the correction is applied to close apertures only, we

need to keep terms only to lowest order in frequency.

For simplicity the above correction is applied to all apertures, including those

along the edges and at the corners of the aperture array, even though for these

apertures, which do not have eight immediate neighbors, the correction does not

apply. Different corrections can be derived for edge and corner apertures, but it is

evident from the results given below the the error due to neglecting the different

environments of the edge and corner apertures is small.

Proceeding, then, with the above approach, to lowest order in frequency we

have,

= -(- -1+3( )} (4.57)
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_ 1 _A (3zy)
ir \r 2/ (4.58)

(4.59)

Lzy- nnl

Lyz, = .ikzx()nn 7r \ rJ

Lzy, = Lyz

nn nn

Lnn = -- 

The analytical dipole fields from the eight nearest neighbors n' to n are,

iky ( 3

ir r

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(Oh d ANAL

O ahd ANAL

r )ed ANAL

-r

=( Lo,)KD+nnnln
nr)on (z

El~

Lnn) K

nn= ( E L~,,) K=

( LZ), K.nn'
n1 s"An

Lnn,) K.

which, from Equations (4.57)-(4.65), can be evaluated as,

A2 Oh)
8uo=8o K
7r2

a 2 ( hd ANAL

(4.66)

(4.67)

(4.68)

)nIz

(4.69)
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-16ro
= 2 771ZIr

(4.71)

(4.72)
2 1
2r[1+ ] = 2.12616

In an analysis identical to that for the isolated apertures, the FDTD dipole fields

for an array of (2N + 1) x (2N + 1) apertures are given analytically as,O\2 4) +2K,
AOhd FDTD

Oa2 ) +2Ky

a aed, FDTDa2 &rj +277I1,

= 2(f3K. - 24Ky) - (-ika)77I

8 271= 8 (-o4K. + 3Ky) + 2(-i)k)Iz

= 4r2 (-ikA)(K - KY) + 8--r-hz72 7

The constants a,, however, are different than the corresponding constants for an

isolated aperture given in Chapter 3, representing now the fields of the aperture

array, and are given by,

_Z- 2dd 2d F sin[(2N + )z] sin[(2N + )y] [G F]
u1 = 2jc cjd Y F. osin z sin y

= 1.22651

2fdzy in cos z 1(F+G)2 N
U2, FG 1 - (F + FG)](F + G)2N

sin[(2N + l)y]
sin y

(4.77)

(4.78)

(4.79)

= 1.06078

A d( ANAL

(4.73)

(4.74)

(4.75)

(4.76)
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Fcos 2x 1 - (F + G)2N
J_29Id Ady G [1 -+ 2 (F + G)](F + G)2N

sin[(2N + 1)x] sin[(2N + l)y]
sin x sin y

- 3.14570

2id fiod sin2 x sin2 y sin[(2N + 1)x]
04 2j o F sin x

sin[(2N + )y. [G-
sin y

4.24389 x 10-2

F = F(, y) sin2 + sin y

G = G(, y) 

and the factors of two included in front

the dipole fields on the opposite side of

V1 + sin2 + sin2 y (4.86)

of each integral are included to account for

the screen.

In evaluating the the above double integrals Simpson's rule was employed using

double precision, and the integration subinterval size was successively reduced by a

factor of three until the integration converged to within a fractional error of .001.

The corrected electric and magnetic currents are then given by,

m h, _ h ( d)FTD + hd ,)ANAL (4.87)
A Ok -r + r

(4.81)

(4.82)

(4.83)

(4.84)

where,

(4.85)
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_ am (h
- A 

A OrT'Iz

hdy FDTD

Oedz )FDTD
O ar)

Ohdv
+( O

+ ( edz
+ -~;

ANAL)

)ANAL)

(4.88)

(4.89)

(4.90)

Substituting Equations (4.69)-(4.71) and (4.73)-(4.75) into the above and solving

for the corrected currents gives the final equations for the corrected currents, which

can be written,

a ( )3]kp + ,K = +a2( A) )'(?I - 7jIPl) + [1 - a( )]K +3: a "~~~A1
-a( )3(,Ip _ P- 1- ) + a.( )3kP + [1-C2 z zA 2 - a4( )]KPA 

(4.91)

(4.92)

(4.93)= [1 + al( )]ip + a3( a )3(KP - K-1)

where KDP = KP(l,m,n), KP = KP(l,m,n) and I = Iz(l,m,n) for an aperture at

cell (,m,n), and where,

al 87 + 2y, (4
arl - r ( + 202) (4.94)

2,yml ( A22 . A

a3 - ,2 (; )

87ma4 = ( --o)

87m4
a 5 -

2

(4.95)

(4.96)

(4.97)

(4.98)
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These equations are identical with those for the isolated aperture except that the

constants ac are different. In the next section the above equations are evaluated.



Evaluation for Closely-Spaced Apertures

4.5 Evaluation for Closely-Spaced Apertures

The geometry we are considering is given in Figure 4.1. We have a plane wave

incident on a perfectly conducting, infinitely thin perforated screen, where the per-

forations are in the form of either a 5 x 5 square array of apertures with spacing

2A, or an 11 x 11 square array of apertures with spacing A. The transmitted

power without any correction for the 5 x 5 array is shown in Figure 4.4, where

the transmitted power is divided by the independent aperture transmitted power.

The plane wave excitation is incident normal to the screen with the electric field

polarized in the y direction. Two sources of error are evident as in the previous

chapter, the first depending on a/A, and the second on frequency, and the former

error, as mentioned above, is twice that of the previous chapter, owing to the error

contributed by the dipole on the transmission side of the screen. If the equations

given in the previous chapter for n isolated aperture are used, modified so as to

include sources on both sides of the screen, the transmitted power is as given in Fig-

ure 4.5. It is evident that for the 5 x 5 array, where the spacing between apertures

is 2A, the isolated aperture correction removes both errors. Hence for this case the

correction for the FDTD dipole fields is not necessary. Results for the 11 x 11 array

without correction are given in Figure 4.6. The error without correction for the

11 x 11 array is less than that for the 5 x 5 array. The reason for this is that the

error in the dipole fields cancels a part of the error resulting from the dipole self

field. If we attempt to use the isolated aperture equations developed in Chapter 3

to the closely-spaced aperture array we see from Figure 4.7 that the error is over

corrected, which is expected since we have already observed that the error in the
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Figure 4.4: Transmitted power through 5 x 5 array of circular apertures without
correction. Aperture in every other cell.
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Figure 4.5: Transmitted power through 5 x 5 array of circular apertures. Aperture

in every other cell. Isolated aperture correction.
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Figure 4.6: Transmitted power through 11 x 11 array of circular apertures without
correction. Aperture in every cell.
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dipole fields cancels part of the error resulting from the dipole self field. Here the

correction to I;he FDTD dipole fields is necessary. Applying the nearest-neighbors

correction gives the transmitted power shown in Figure 4.8. It is evident that the

nearest-neighbor correction, to lowest order in frequency, is sufficient to correct for

the error in the dipole fields. Figure 4.9 shows the transmitted power for non-normal

incidence using the nearest-neighbor dipole field correction. The incident field wave

vector is given by the spherical coordinates 0 = 45°, = 450, and the electric field

polarization is rotated 450 from the plane of incidence. The error for this case is

not substantially different from that for normal incidence. Figure 4.10 shows the

transmitted power for a dipole radiating behind the screen at a distance of 8 grid

cells. Again the error is substantially the same as that for plane wave excitation.

In the following section a typical computer box with closely spaced aperture arrays

is modeled for dipole excitations.

129



Modeling Multiple Interacting Small Apertures

Fractional Error in FDTD Aperture Scattering
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Figure 4.7: Transmitted power through 11 x 11 array of circular apertures with
isolated aperture correction. Aperture in every cell.
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Fractional Error in FDTD Aperture Scattering

I I I I I I _ _

Plane Wave Excitation
lixil aperture array
Both errors removed
Nearest neighbor correction

I

I 

---- a/n =.z
.--- a/A=.15
, I I I

0.05

A/;

Figure 4.8: Transmitted power through 11 x 11 array of circular apertures with

nearest-neighbors correction. Aperture in every cell.
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Fractional Error in FDTD Aperture Scattering
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Figure 4.9: Transmitted power through 11 x 11 array of circular apertures for
non-normal incidence using the nearest-neighbor dipole field correction. The inci-
dent field wave vector is given by the spherical coordinates = 450, = 45°, and
the electric field polarization is rotated 45° from the plane of incidence.
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Fractional
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Figure 4.10: Transmitted power through 11 x 11 array of circular apertures using

nearest-neighbors correction for a dipole radiating behind the screen at a distance

of 8 grid cells.
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4.6 Application to a Computer Box With Aper-
ture Arrays

A typical computer box is illustrated in Figure 4.11. The sources of radiation within

a computer are the currents on the interconnects and within the integrated circuits.

For simplicity we model the source as an electric dipole, which can be arbitrarily

located within the box. The dipole is oriented in the y-direction so as to excite

the lowest frequency modes of the box. The frequencies present are the various

harmonics of the clock frequency. The Q of a typical box is estimated to be in the

30- 300 range, and the loss results primarily from conduction in the circuits and box

walls. For the present model the loss is achieved by imposing a uniform conductivity

throughout the box, adjusted so as to give the correct Q. Two identical 69 x 15

aperture arrays are located at opposite ends of the box. The apertures are spaced

one per cell with a radius a/A = 45. Figure 4.12 gives four grey-scale plots of the

y-component of the electric field intensity. Increasing field intensity is represented,

as in Chapter 2, by increasing intensity of grey. The key given indicates the levels

of grey corresponding to 0, 20, 40, 60 and 80 dB down from the maximum field

intensity within the box. It is evident from the plots that various modes are excited

within the box, and that the fields transmitted out of the box are some 40 dB down

from the intensity within the box.



Application to a Computer Box
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Figure 4.12: Grey-scale plots of the computer box fields at four instances of time.
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4.7 Conclusions

The method presented in chapter 3 for modeling an isolated small aperture using

the Finite-Difference Time-Domain(FDTD) technique accurately models apertures

which are spaced at least two grid cells apart. For closely spaced apertures, however,

the isolated aperture formulation over corrects the currents, and this is due to

errors in the FDTD dipole fields. These 'errors can be accurately subtracted out

by analytically subtracting out the FDTD dipole fields from neighboring apertures,

and adding back in the correct fields. The method presented above, based on this

approach, models the dipole approximation to dense aperture arrays with an error

of only a few percent.
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Chapter 5

FDTD Analysis of Scattering from
Apertures in Thick Screens

5.1 Introduction

The scattering and transmission of electromagnetic waves through small apertures

in thick perfectly conducting screens has been addressed, for the most part, in

connection with the coupling of cavity resonators, such as, for example, used in

coupled-cavity traveling-wave tubes. Indeed this was one of the applications given

in Bethe's theory [44] of the circular aperture.

Of particular note is the work of McDonald for the coupling of cavities through

circular and rectangular apertures in thick conducting screens [52], where a varia-

tional technique in conjunction with the Rayleigh-Ritz procedure is employed on a

subset of the circular waveguide modes to find the aperture fields. In this analysis

the coupled-cavity fields are expanded in the basis of the uncoupled-cavity eigen-

solutions in a method similar to that given by [53]. It is assumed that the coupled

resonant frequency is close to one of the uncoupled resonant frequencies and that
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the other modes represent a fringing field which is localized near the aperture and

approximately equal to the field of the same aperture in an infinite flat screen. The

analysis ultimately yields an expression for the cavity coupling constant, and from

this expression is inferred the electric and magnetic polarizabilities of the aperture.

For the circular aperture it is found that the polarizabilities depend of the ratio

TR - d/a, where d is the thickness of the screen and a is the radius of the aperture,

and the dependance on TR is according to the cutoff dependance of the dominant

modes, which are the TM0 1 and TE 1 1 modes.

Since the polarizabilities are determined through the coupling of the cavities,

they represent the induced dipoles on the transmission side of the aperture. The

induced moments on the incident side cannot be determined through this method.

In addition, the assumption of resonant modes is not justified for the problem

that we are considering here, that of an aperture in an infinite screen. Hence, an

alternate method is needed, from which the incident side polarizabilities can also

be determined.

Ultimately we wish to couple the method with the FDTD method. This im-

poses a number of restrictions on the solution. First, we must isolate the frequency

dependance, such as done, for example, in the thin screen case through the Rayleigh

series expansion. We must also be able to express the induced currents in terms of

the various fields near the aperture, with the incident direction given by the spatial

derivatives of the fields.

The method presented here is a mode matching technique which employs the

Vector Bessel Series (VBS) [54] representation of the circular waveguide modes,
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and the Vector Hankel Transform (VHT) [54] representation of the free space fields,

which representations are ideally suited to the present problem in that they elu-

cidate the excitation of TE and TM modes within the aperture. The tangential

short-circuit magnetic field which excites the aperture is expanded in a Taylor se-

ries expansion, and the lowest order dipole contributions retained. The frequency

response is extracted through a Rayleigh series expansion of the governing equations,

and from the solution to these equations the electric and magnetic polarizabilities

are determined. In Section 5.2 a matrix equation for the circular waveguide modes

excited in the aperture is determined. In Section 5.3 the excitation term is expanded

in the lowest multipole terms. In Section 5.4 the matrix equation is expanded in a

Rayleigh series, and in Section 5.5 the polarizabilities are determined.

5.2 Vector Bessel Series Solution for an Aperture
in a Thick Screen

A mode matching technique couched in the notation of the Vector Bessel Series

(VBS) and Vector Hankel Transform (VHT) is here presented for the solution to

the circular aperture in a thick perfectly conducting screen. The circular aperture

fields are expanded in the complete set of orthogonal circular waveguide modes, and

both TE and TM excitations are considered. The free-space transverse fields in the

z < 0 halfspace are represented by the VHT, which is the continuous eigenmode

equivalent of the VBS. The VBS and VHT elucidate TM and TE composition of the

fields. The scattering problem is simplified by solving separately for the fields under

odd and even excitation, which give respectively short and open circuit conditions
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at the mid-plane of the aperture. The tangential electric and magnetic fields are

matched at the surface of the screen at z = -d/2, where d is the screen thickness,

and a matrix equation results for the unknown TM and TE mode amplitudes.

Proceeding with the above approach, the VBS representation of the transverse

aperture fields is given by,

= Z (~EP

nm

-H

E nm(P)
nm

* [Gnm(Z) A$m + GK2(z) .Ain]en>

* [j(z) Ynm nm ()-Gnm(z) Ynm ()]i

where the above matrices are defined,

Gnm

Jnm(P)

nm

YAn
nm

-_ik ( a') Ie 0

. )(h) e± - .r
= ['(z2 -in n(Inmp)

In the above equations the vector A(4 is the amplitude at z = 0 of the TM, mode,

and B$() the amplitude of the TEm mode. The () superscripts represent the

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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amplitudes of the forward and backward traveling modes respectively. The values

of am and 3m are determined by J,(a,,ma) = 0 and J(,,ma) = 0, and k(')

k2 - a2m and k(h) = V 2-- Pn2 are the propagation constants respectively of

the TM and TE,. modes. The diagonal elements of Y,, are the characteristic

admittances of the TMm and TE. modes.

For convenience we consider odd and even excitations of the aperture, the

former leading to a short circuit condition at the aperture mid-plane, and the later

an open circuit condition. For odd excitation we find,

Et = -2i mE einm'"n(p) T. . A(+n
nm

Et = 2 eiJnUnm (p) T m,nm m
nm

(5.9)

(5.10)

where the short circuit

find,

condition gives A(m =-A(+) and for even excitation we

(5.11)E, = 2 ei 'nnm(p) Tcnm A(+
nm

H = -2i E eiJnm(p) T Y, m . A=m
nm

(5.12)

where the open circuit

are defined,

condition gives A-) = A(+, and the matrices Tnm and Tc,,m

T,,, = [sin(k()md/2)

T,, m= [cos (k)dl2)
0

(5.13)

(5.14)

o 
sin(k(h)d/2)

o ]
cos(k(hn) d/2)
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From here on for simplicity of notation we drop the (+) superscript on An., under-

standing this to mean the forward wave amplitude, the backward wave amplitudes

given as indicated above for the short-circuit and open-circuit conditions.

The transverse fields in free space for z < -d/2 represented by the VHT are,

Et = ei j dkpkpJn(kpp) An(kp)eikz(z+d/2) (5.15)
n

Ht = -E e i f dkpk(kp) Y(k,) An(kp)e - i(z+d/ 2 ) (5.16)
n

where k _ - k, and where Jn(kpP) is defined,

kPP
?Jn(kpP) [ J,(kpp) J,(k,p) (5.17)

Given the VBS and VHT representations of the transverse fields we can now

match the free-space and circular aperture fields. We consider first the short-circuit

equations, deriving the matrix equation for the unknown mode amplitudes under

odd excitation. At the end of the section the open-circuit matrix equation is found

by a simple substitution. The tangential electric fields are first matched. The VBS

gives the transverse fields over the aperture, and the tangential electric field is zero

over the rest of the plane z = -d/2. Alternately these same fields are given by the

VHT, Equation (5.15), and hence by equating the two representations and applying

the inverse VHT to both sides of the equation we find,

-An(kp) = -2iEQnm(kp)*Tnm*Anm (5.18)
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where Q,,m(kp) is given by,

Qnm(kp) = j dppJ(kp). Jnm(p)0a p((,, = ·dp
(5.19)

k 2 ln Jn(anma)Jn(kpa)
L ~O

TJI!, Jn(kpa)Jn(Pnma)
" -,62 Jn(/3ma)Jn(kpa)

P n~~~~n

The next condition is the continuity of tangential magnetic field at z = -d/2, but

here the condition only applies for p < a, that is, over the aperture opening. Sub-

stituting Equation (5.18) into Equation (5.16), matching the transverse magnetic

fields over the aperture opening, and using the VBS orthogonality property gives,

nq Tnq Ynq mq
m

- [I" dkpkPQ.q(k) Y(kp) *m(kp)] Tnm} nm

dppJ,(p) Hn(p) (5.21)

where the matrix Cnm is a product of the VBS orthogonality property, given by,

Cnm - cA c°)
L- O C(p)1 

= I a2(1 - n2/C2ma 2)Jn(crnma)i n

(5.22)

(5.23)

Cn) = aJ+l (flnma) (5.24)

and Hn(p) is the nth Fourier

field, given by,

coefficient of the transverse short-circuit magnetic

H(p) = 1 2r dH:c(p, , -d/2)e-in

(5.20)
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2i(n-1)e-in,'Yn(k- p ) Hti (5.26)

where ksin Oi, and Oi and bi are the polar coordinate angles of the incident

wavevector. The incident magnetic field is H_ (iHEo +)Hao + Ho)e(k'+ky+kz)

and,

Ht _ [H o] (5.27)

where Ho -cos io - sin 4iHo, and Hp cos 'Ho + sin O'H. The excitation

integral on the right hand side of Equation (5.21) can be evaluated in closed form

as,

a dppJ =t(p) (P) = i(n-1)eini=Qt() i (5.28)

The final result is a matrix equation for the unknown mode amplitudes An,

{Cnq Tcnq Ynq6mq - i[ dkPkpQnq(kp) (kp) QnmV(kp)]Tnm}Anm

= i(-l)e-in"iqt (ki) .Hio (5.29)

Notice that there is a separate, that is, uncoupled, equation for each value n. We

will show in the next section that the only modes excited are the modes for which

n = 0 (TMm), and for which n = ±1 (TEm). The short-circuit matrix equation as

presented above is rather cumbersome. In the next section we simplify the excitation

term, extracting contributions from the electric and magnetic fields at the center

of the aperture, and the section after that we extract the frequency dependance
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through the Rayleigh series expansion.

For the open-circuit case the analysis is identical if everywhere we make the

substitutions T,,,nm - iTcnm and Tcnm - -iT,,nm.

5.3 Aperture Excitation for Small Apertures

The excitation integral on the right hand side of Equation (5.21) will be shown to be

the surface integral of the product of the magnetic surface current and the tangential

magnetic field, the elements of Jnq(p) being related to the magnetic surface currents,

and hence can be evaluated in terms analogous to the multipole expansion of three

dimensional current distributions [55]. The tangential magnetic field is expanded in

a Taylor series about the center of the aperture, and the second term collected into

symmetric and anti-symmetric terms in three indices. The symmetrization leads to

dipole and quadrupole moments of the magnetic surface currents. The quadrupole

term is dropped, and the dipole terms are retained and the integrals evaluated in

closed form. The end result is that the excitation of the TM modes is proportional

to the product of the normal electric field at the center of the aperture and the

electric dipole moment of the magnetic current, whereas the excitation of the TE

modes is proportional to the product of the tangential magnetic field at the center

of the aperture and the magnetic dipole moment of the magnetic current. Only

TMom and TElm modes are excited.
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The excitation integral can be written as,

dppJn(p) H(p) dSJ J {ME~ HC } (5.30)

wT M * d TM*

where MTq and MnTq are the complex conjugates of the equivalent magnetic

surface currents represented by the aperture TM and TE electric fields. The

short-circuit magnetic field is defined c - [Hp,H ]T, and hence is not equal

to Ht [H ,,-H] T which has the components switched and the second negated.

The excitation integral is then related to the power delivered to the modes. The

-TM,* TM*
equivalent currents Mnq and Mnq in rectangular coordinates are given by,

-TM* I -ino~1,A' in
Mnq = 4el e [-Jn(°nqp) sin+ Jn(anqp) cos ]

innqp

+[Jn(anqp) cos ¢ +- Jn(anqp) sin q] (5.31)
anqp

]1TE* I {n ,p) os s inMnq 4e [n(o(nqp) Cos - Jn,(nqp) sin ]j
&onqP 

+[- Jn (anqp) sin q + Jn(anqp) cos (5.32)
OnqP

Integrals of the above form can be expanded in a multipole series. Consider first

the Taylor series expansion of the magnetic field in an integral of the above form,

OOH/ dSM H = dSM[H(O ) + a (0)] (5.33)

= A dSM, ()]() + 1 dSMx, aH (0) (5.34)= fA dS M fH(O)+ /fA dSM x"-~d (O

where the summation convention is implied on the repeated indices a, / = 1,2.

148



Aperture Excitation

The second term can be written in a series of symmetric and antisymmetric terms

giving,

dA dSM. H = i dSM.H.(O) + a dS(Mx - M d..)( oH,, _ )( )
fA 4 fA dS(MO M1 3 x')( ,3 9X ()

+ I dS(M 13x + Mo3za) x Z (0)) (5.35)

In vector notation the above becomes,

ddSM. (O) ( ) JdSM + V x (O) . dSp x 

-MaH (0) JAdS(;X1OV 7AM) (5.36)

The first term represents the magnetic dipole moment of the magnetic surface cur-

rent, the second the electric dipole moment, and the last term is related to the

magnetic quadrupole moment. Neglecting the quadrupole moment and applying

Maxwell's equation we have,

/ dSM H = H(O) dSM - iEoE(0) dSp x M (5.37)

Now the dipole moments of the magnetic surface currents can be evaluated in

closed form giving,

ffA dSMn = 0 (5.38)

-A TM* a
dSp x Mnq = -,Z -J (Cnq)nO (5.39)

ffA 2a~~~~~nq
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JdS q x Mq = 0 (5.40)

JA dSv IE* 4 (-2 + a)Jl(Onq)&

a
+ -, ( + i)Jl(,nq)6n(-1) (5.41)

Which gives the excitation integral as,

a =t - =_ [ J (anq)iwEoEc()]no 1
2 lodppJnq(P) Hn.(p) a .- ( 5.42)

Hence, the normal electric field excites TMom modes only, whereas the tangential

magnetic field excites TE±lm modes only. In the next section the Rayleigh series

expansion is applied to the matrix equation (5.29) to further simplify the solution.

5.4 Rayleigh Series Solution for a Small Aperture
in a Thick Screen

To implement the thick-screen aperture in FDTD the solution must be cast into

the time domain. The simplest method is to extract the frequency dependence in

a Rayleigh series expansion and then interpret the frequency variable as a time

differentiation operator. To this end we consider here the Rayleigh series expansion

of the matrix equation (5.29).

We seek an expansion to order k in frequency, and begin by expanding sepa-

rately the propagation constants and the matrices, some of which contain elements

with order k -1 frequency dependence, and hence terms up to order k2 are kept

when these are multiplied with order k- terms. Next we match the various orders
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in k on either side of the equation. In the final equation, which is to first order in

k, the TM and TE coefficients are uncoupled. The equations are normalized for

convenience.

The propagation constants expanded to order k2 are given as,

kz = ikp- k+
2kP

k(e)znm
i

=ia,, 2+. ..
20tri

i
k(m = inm ke +. 9 

Using the above expansions, the matrices in Equation (5.29) become,

Cnm Tcnq Ynq
B1 k

0
/ ]

Al/k + Bnqk

I 0
0

B mqk
-B 4kBnqm,

Tsnm

Anm

C1nm
0

pp(p) (p)dppJ,(p) . H( )

where the elements in the above expansions are defined,

C(a)
B1q = -i nq cosh(canqd/2)

nOq70nq

(5.43)

(5.44)

(5.45)

(5.46)

B4mqk
Bnmqmq

Anmqk + Bnmk

c k
Cn, + D1 k2D.,,

-[r AM + kA ( 1
- Bn$ + kB(l + k2Bm

](5.47)

(5.48)

(5.49)

(5.50)

(5.51)
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Alq = i n -cosh(3nd/2) (5.52)
rlo

Bq2 = Cn) cosh(inqd/2) + dsinh( ,nqd/2)] (5.53)
nq 2Bln 4

B -J(anq a)J, (nma)l dk, J(ka)2 (554)
Bnq _ i= Jn- akJOdkA 2 - a)(k2 2 (5.54)B4 ( --ma(~"~)fo ~ &( J,,(k~a) (5.5570o - P nm

l -naqln nm2 [(kp ) 2

Bnm. J(anqa)Jn(nma) dk (5.55)7oB,3nm JnJ -fo2

Cn ~2m = i 7sinh(lnmd/2) (5.56)a [p "n\~P"1 (5.57)2nq7 = o 2Ji,(an)EJ(0)6(nok -(5.61)

are seeking an expansion to order we must be careful to include 2 terms in theCexpanded to order sinh(otice,d/2) (558)Cn, = isinh(onm dl/2) (5.59)-idD- cosh(Pid/2) (5.60)El = () J'(Cnq)E&(O)8no (5.61)

En2 q ( + ,) J (Pn) · C80f( 6nb,±(5.62)

Notice that some of the matrices contain terms of order k- 1 in frequency. Since we

are seeking an expansion to order k we must be careful to include k2 terms in the

elements which multiple terms of order k- 1. Hence some of the terms above are

expanded to order k . Notice also that where integrals have been expanded, the
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resulting integrals are defined and well behaved.

With the above expansions, Equation (5.29) becomes,

6 Bk rnqk B mqk I ClL O lA/k + Bn-qk 2 Bnm4 k A k /kD+BL°d,.,mq/k + B..5 kJ Cnm ,k

A (°M + kA() 1 [kEl
B( + kB + k2B(2 E (5.63)

Equating the various orders in k on either side of the equation, we have by inspection

A(') = 0, since otherwise we have a k 2 term on the left hand side of the TM

equation; B(2 = 0, since otherwise we have a k3 term on the left hand side of the

TM equation; and B( = 0, since otherwise we have a k - on the left hand side of

the TE equation, which cannot be. The resulting equation is,

nq mq- BqC, 0[ A(° l_ Enq (5.64)
0 .6 -A CA ] B E 2Anmq -iAmqC2m LB) - (5.6)

Notice that the TM and TE equations are decoupled to first order in k, and that

the TM modes amplitudes are constant to lowest order, whereas the TE mode

amplitudes are to lowest order proportional to frequency.

Substituting the definitions (5.51) into the above,we have,

-i °q cosh(aoqd/2)Smq - -sinh(aomd/2)J(aoqa)J(aoma)
m 70C~Oq 77o

dk)(kk - 1c ) } A
ia
27o J (oq)E (5.65)
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cosh(lqd/2),,m + /3q sinh(,1m d/2)J, (,3qa)Ji (ilma)
in r/o r/0

(k2 _p2 )(2 ) ±p ) lm

= 4 (: + i)J(/liq) Hf(O)bn(±) (5.66)

The equations for the open-circuit case are the same as the above except that we

must swap sinh and cosh.

It is convenient to normalize the above equation by introducing the following

definitions:

A.m = -AmE.:(0) (5.67)

BIm = -A' i7loka(FH:c(0o) + iHc(O)) (5.68)

= kpa (5.69)

zm = a0oa (5.70)

Zm = ,ima (5.71)

where AO indicates either An or A&, and similarly for AO and A'. The values

zm and z satisfy Jo(zm) = J(zm) = 0. With these definition the above equations,

now explicitly indicating the short and open circuit solutions, become,
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m{ J(zq) cosh(zqd/2a)6,q+ sinh(zmd/2a)J(zq)Jo(zm)

O (2 -(Zq)(2 Z )

1

2z J(zq)2Z21·,q

E j(q) sinh(zqd/2a)6mq
?n 2z

+ cosh(zmd/2a)Jo(zq)Jo(zm)

o ' (, -z )(, -_ )

1
J1 (Zq)

- 2Z2

E { [Zq___ 1/z J 2(Z )
m

cosh(z'd/2a)mq + ZqZm sinh(z'd/2a)Jl(zq)Jl(z')

- z12)( - zm)

-- z]J(zq)sinh(zQd/2a)6mq
m

+ z' cosh(z'd/2a)Jl(z')q m qJl zm

jfdd

1

}Am

(5.72)

Am

(5.73)

fO d ( 2

1

4z Jz qq
(5.74)

2 [J()] 2

( 2 - zI2)(42 _ z,2 )

(5.75)
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These are then the matrix equations for Am and A'", and the mode amplitudes

are given by Equations (5.67)-(5.68). In order to avoid numerical overflow in solv-

ing the above equations a factor e' md/2a is extracted from the first two equations

and emd/2aA solved for. For the second two equations e d/2a is extracted and

ezmd/2aA' solved for.

5.5 Induced Dipole Moments for an Aperture in
a Thick Screen

In the previous section the equations for determining the mode amplitudes are

set forth. Given these amplitudes we find here explicit expressions for the aper-

ture transverse electric fields, or, equivalently, the surface magnetic current density.

From these explicit expressions the electric and magnetic dipole moments of the

magnetic surface current density are determined, and from these moments the elec-

tric and magnetic polarizabilities of the aperture are found.

From the dipole expansion of the excitation integral we found that only the

n = 0 and n = il modes are excited. The aperture electric fields can then be

expressed,

E,(p,q) = Epn(p)ein = Epo + E,,ei ' + E,(_l)e- ' = Mo (5.76)

E,(p, ) = En(p)e'"n = EOo + Ejle + E(_l)e-& = -M,, (5.77)

The equivalent magnetic surface current given above is for the surface at z = -d/2.

For the surface at z = d/2 the sign of the current changes.
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The electric and magnetic dipole moments of the magnetic surface current

distribution are defined as,

P=o I dS x M. = -o J1jf dSpM, (5.78)

- 7reoZ |dpp2Epo (5.79)

p dSMii , (5.80)

7 AdPp{(- - i)(El + iEpl) + (-2 + i)(E(_) - iEp(_l)) 5.81)

The explicit transverse electric fields at z = -d/2 are given by,

Eo, = Z{J(anmp)TfT(-d/2) - Jn(Pnm)TnTm(d/2) (5.82)

Eon = { pJn(anmp)TZ( -d/2) + Jn(nmp)T(-d/2)} (5-83)

where the coefficients TTM(-d/2) and T'TfM (-d/2) represent the mode amplitudes

propagated back to the plane at z = -d/2. These coefficients are half the sum of

the coefficients for even and odd excitations, which represents a field incident from

the -z side of the screen. These coefficients are given by,

TTmM(-d/2) = -isin(k(e)md/2)A + cos(k()md/2)Am (5.84)

= - mEz(0) (5.85)

TTl(-d/2) = -i sin(k(n) d/2)Blm + Cos(k(!md/2)Bl m (
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= -i7okaaf(TH2(0) + iHc(0))

Sf = sinh(aomd/2)A, + cosh(aomd/2)Am,

QOm = sinh(,ld/2)A'n + cosh(#ld/2)A'"

(5.87)

(5.88)

(5.89)

The integrals in the expressions for the electric and magnetic dipole moments involve

the following integrals of the electric field components, which are evaluated in closed

form,

dpp2Epo

1 dppEi = mE

i: dppE±l = E {

2a TM
=-E 2 J(aoma)T OM(z)

1
+ -- [Jo(lma) - 1]TTM(z)

-+ - [Jo(P1ma)- 1]T±T'E(z)

a- [Jo(la)- 1]TTM(z)

i 1 [( )(-( a)2) ]TfiLn(Z)
/2 [J(pm)(1 (1ma ±1

From these we can easily find the electric and magnetic dipole moments, and the

aperture polarizabilities, which are given as,

P, = -2raoz E 2 J(aOma)Ec-(0)
m CEOm

(5.93)

= -oaEZC((O)

(5.90)

(5.91)

(5.92)
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a, - 2ra 3 z -Jl(zm) (5 95)

Pm = 27ra3 E nJo(pma)WH(O) (5.96)
m

= amHC(o) (5.97)

am - 27ra3 E Jo(m) (5.98)
m

In the above formulation we have considered only the moments on the incident side

(z = -d/2). The moments on the () side of the screen can be represented by the

equations,

-P) = ,oa()E'c(0) (5.99)

a) _= 27ra3 E 2 J(zm) (5.100)
m Zm

) = Fa~()Hc(0) (5.101)

am) = 2ra 3 E 'm () (5.102)

where,

/(1) = T sinh(zmd/2a)A. + cosh(zd/2a)A (5.103)

fr ) = F sinh(zmd/2a)A' + cosh(z' d/2a)A' (5.104)

This concludes the analysis of the circular aperture in a thick perfectly conducting

screen. The method can be easily implemented in the FDTD algorithm. Notice

159



FDTD Analysis ... Thick Screens

also that the polarizabilities depend only on the single parameter R = d/2a.

The polarizabilities for an aperture in a thick screen are plotted versus R-

d/2a in Figure 5.1. The polarizabilities are normalized by their thin-screen values.

At R = 0 the thick-screen polarizabilities computed according to the method pre-

sented above match the thin screen values nearly exactly. As the screen becomes

thicker the incident-side polarizabilities, a-). and a(-), become slightly smaller and

approach constant values for large R. This is expected since for thick screens the

evanescent waves do not see the far side of the screen and approach the values for

an infinitely-thick screen. The transmission-side polarizabilities, a(+) and a(+), de-

crease exponentially versus R according to the attenuation of the TMol and TE11

evanescent modes within the aperture.
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Thick Aperture Polarizabilities versus R=d/2a
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Figure 5.1: Polarizabilities for an aperture in a thick screen plotted versus R = d/2a.

The polarizabilities are normalized by their thin-screen values.
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Chapter 6

Analytical Solution to FDTD
Equations for Electric and
Magnetic Dipole and Line Source
Radiation

6.1 Introduction

In the induced dipole approach to aperture scattering we subtract the dipole fields

from the total field, and we are thus interested in the dipole fields at distances

close to the dipole. Since in the continuum solution of the Hertzian dipole we find

that the fields become infinite at the dipole, we expect the FDTD fields to deviate

from the continuum fields close to the dipole. It will be shown below, through

an analytical solution of the FDTD equations, that at such distances the FDTD

dipole fields deviate from the continuum fields by as much as a factor of two. The

analytical FDTD solution is also used to derive the error in total power radiated due

to discretization alone. The analytical solution shows that the deviation in the fields

from the continuum solution, due to the discrete FDTD grid, is small sufficiently far
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from the dipole, and the total radiated power deviates from the continuum power by

only a few percent at high frequencies. In the application of the FDTD technique to

dipole radiation problems in general, we are concerned with the fields radiated by

the current moment II. It is intuitive to assume the length I equal to one grid cell

length, A, but this assumption has not been justified. It is shown, however, that

as frequency approaches zero the discretization error approaches zero if the length

I is chosen to be A.

In Section 6.2 we solve the FDTD algorithm for a z-directed electric dipole

radiating in an infinite computational domain. The magnetic field produced by the

dipole is compared with that of the continuum solution, and the complete solution

for all dipole fields is given. In Section 6.3 a duality transformation is presented and

applied to the fields given in Section 6.2 to derive the fields of a z-directed magnetic

dipole. In Section 6.4 the interaction fields of aperture induced electric and magnetic

dipoles are determined. These equations are used to subtract the dipole fields from

the total fields in the induced dipole method for modeling aperture scattering in

FDTD. In Section 6.5 The total power radiated by an electric dipole in a FDTD

grid is determined. A comparison of the FDTD dipole radiated power with that of

the continuum solution gives the discretization error. In Sections 6.6 the fields of

a line source in a two-dimensional FDTD grid are solved for, and in 6.7 the total

line-source radiated power is derived. Finally, in Section 6.8 an alternate derivation

of total radiated power is given.
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6.2 Analytical Solution for Dipole Radiation

In this section the FDTD algorithm is solved for a z-directed electric dipole radi-

ating in an infinite computational domain. We being by assuming a finite com-

putational domain and expanding all fields through the four-dimensional Discrete

Fourier Transform (DFT), which reduces the FDTD difference equations to alge-

braic equations for the transformed fields. After solving the algebraic equations,

the solution in the spatial and temporal domains is given by the Inverse Discrete

Fourier Transform (IDFT) of the transformed fields. Once we have solved for the

fields we take the limit as the computational domain becomes infinite, eliminating

the need for absorbing boundary conditions. In taking this limit the sums in the

DFT become integrals over the first Brillouin zone of the FDTD lattice. By duality

this problem is equivalent to that of a magnetic dipole in the same environment.

Consider an electric dipole radiating in the center of a large but finite com-

putational domain. The FDTD equations in three dimensions including an electric

current source in the z direction are,

eP(lm,) eP'(l, mn) + AT[hP-(lm,n) - h.-'( m - 1, )

+hP-(l, m,n - 1) - hP,-(l, m,)] (6.1)

eP(l,,m, n) = eP-l(,m,n) + h (l-1,m,n) - hP-l(l,m,n)

+hP7-'(lmn) -h7'(l, h m, n-1)] (6.2)

eP(l,m,n) = eP-'(l,m,n)+ T[hP-(,m,n) - h-(l - 1,m,n)Z Z 7 1 Y
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+h-l'(l,m - 1,n)- hP-'(, m, n)]- A- ( m,n)a a ~~~~~Y (6.3)

hP(, m,n) = hP(l,m,n) -" [eP(1, m, n)- ep(l, m, n + 1)
h:-'(z, ,

+eP(i, m + 1, n) - e(, m, n)]

hP(l, m,n) = hP(l,m,n) - A [eP(, m, n + 1) - e(I, m,n)
a, (/,m,

+eP(I, m,n) - eP(I + 1, m, n)]

hP(l, m,n) = hP'(l, m, n) - r [eP(l, , n) - eP(l, m + 1,n)

+eP(l + 1, m, n) - e, (l, m,n)] (6.6)

The DFT/IDFT pair for the u component of a field w is given by,

(6.7)Wrtq = E wP(, m,n)e-2" (rl+m+tn+qP)/N

1
wU(l,m, n) =N 4 E Wu e2i(rl+m+tn+qp)/N

ratq
(6.8)

We are interested in the steady-state solution, at wavenumber k, for dipole radiation

in a FDTD grid. Hence we assume an impressed electric current,

7fP(l,m,n) = 7rIo.6,o m6 6.e- ekpA1 (6.9)

where the wavenumber k is chosen such that the source frequency belongs to the

set of DFT frequencies. That is, kAr = 2rqo/N, where qo is an integer. Applying

(6.4)

(6.5)
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the above transform to the impressed current gives,

77Ir'tq = 7IzNe-2i(rlo +smo +tno)/N(_O)q (6.10)

Transforming the FDTD equations (6.1)-(6.6) gives us six equations for the six

unknown transformed field components, and we can solve for each of the field com-

ponents. Solving for E;,tq gives,

ii7 oNA ' [(a )2 sin 2( )- sin 2( )] eiwq/Ne-2ri(rlo+,mo+tno)/N6(_)

Erztq = (6.11)2,&2 Ar lnNJ N eq)qEatq- [( A)2 sin 2() - sin2 () -s sin 2 ( ) - sin 2( )] sin(N)

The spatial and temporal domain electric field is then given by the IDFT of the

above expression,

-i7Ior 7-e-iwqo /N
ep(i, m, n) 2N32sin()

[( )2 sin2(o) - sin2( erN )] ,e2ir-4)+(m-mo)+t(n-no )-qop]/N
A N (6.12)

t [( )2 sin2(o) sn 2 () sn 2 (r) - sin2( rt )]

Taking the limit as the computational domain becomes infinite (N -, oo), the DFT

sums become integrals over the first Brillouin zone of the FDTD lattice, and,

rr k.A- , -Ki (6.13)
N 2

is kyA-rs l, A (6.14)
N 2

nrt kA
- , - (6.15)N 2
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1 ( dk dkdk (6.16)
N3 2 dk-7r db, (6.16)

The electric field then becomes,

p ~ Z-i77o,A-e-ik(p+ )a r /A 3e (l, m, n) 2 i
2n2 sin(k -) \27r)

r 2 2
., i .r I' )2 sin2( )-sin 2 ky)]ei[kR(2-1)+ks(- m )+ k.(-0n)], '·J -, / -J-i )sin ')sin( ) sin ()2-si n

The integrand has one pole, which corresponds to the wave velocity equaling the

dispersive wave velocity in the FDTD grid. The kz integration can be evaluated by

integrating over the Sommerfeld integration path shown in Figure 6.1. For n > no

we close the path in the upper half plane with contours at Re{kzl} = +a and a

contour at infinity. The integration along the contours at Re{kz} = +- cancel each

other, and the integration along the path at infinity vanishes. The only contribution,

then, is the residue of the pole at kz = k0o. For n < no and n = no we close the

path in the lower half plane. For n = no the integrand does not vanish over the

contour at infinity, but gives a finite contribution for = lo, m = mo, which can be

evaluated. To avoid this complication we can integrate in either the kc or k planes.

We will have more to say about this later. The final result is,

-71IozAre-ik(p+ )Ar
eP(l,m,n) 

4ir sin(k2 ){

i 2
2 2 (,) lomm n (6.18)

Z 27r
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Im{kz}

- koz
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Figure 6.1: Contour in k, plane for evaluating k, integration. For n > no we close

the path in the upper half plane.
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where,

ko - i )2sin 2 ) - sin2( ) - sin2(k ) (6.19)
r 2 2 2

Im{ko:} > 0 (6.20)

A comparison of the analytical solution with the continuum solution is given in

Figure 6.2. The analytical solution agrees remarkably well with the continuum

solution for distances sufficiently far from the dipole. In evaluating the the above

double integrals a double precision two-dimensional Fast Fourier Transform (FFT)

algorithm was employed. The number of FFT frequencies, N, was increased until

the analytical FDTD and continuum solutions agreed at large distances. In the

figure the analytical FDTD solution is shown for N = 512 and N = 4096.

To illustrate the deviation of the FDTD fields near the dipole we will evaluate

the x component of the magnetic field and compare this with the continuum field.

In the spectral domain we have,

Ht ,-iZoN sin(' )e i lr /N e 2i rq/ N e-2i(rlo+smo+tno)/N(q)q (
rtq (A)2 sin 2 ( -sin2( ) -sin 2 ( ) -sin 2 (.21)

In the spatial domain the magnetic field is then,

hP(mn = -i7N oze -2ir(p+l)qo/N

sin( N ) e27ri[r(-lo)+s(m+ I-mo )+t(n-no )]/N 622N (6.22)
t 2 n - sin 2( -sin2 () -sin 2 ( - )

: -ik(p+l )A- ( / k
2iz 3 kxa J$ -arlloze~ik~p~l ~ A A Alx~ky~k
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Dipole Ez Field versus Distance

0.1

Distance From Dipole (m -1)

Figure 6.2: Comparison of the analytical FDTD solution with the continuum solu-

tion. The analytical FDTD solution agrees with the analytical solution for distances

sufficiently far from the dipole.
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sin( )ei[k (q-o )+ky (m+ L-mO )+k (n-nO ) _(_)2 sin2( )sin2( ) -sin2( sin )sin )
AT sin 2 (7N 2 2 2

-77IozA e-ik(p+l)Ar
4r 2

i i sin(kyA/2) ei[k.(1 1o)+ky(m+i-mo)+koin-no]A (6.24)
sin(kcoA)

The continuum solution for the magnetic field at a distance RmnA close to the

dipole is,

4 Rm 2 + (k) 2 Rj mn (6.25)

Rlmn - J12 + (m +)2 + n 2 (6.26)

And from above we have for the analytical FDTD solution,

IzA 2 rwr7
= 4 |A 2 u jo

sin(u,/2) sin[uy(m +2 )] cos(ul)etlnl (6, 27I
V/p2-sin 2(u,/2)-sin2(uy/2) 1-p2+sin2(u/2)+sin2(u,/2)

Uoz = --sin 2()} (6.28)

Im{uoz} > 0 (6.29)

p = sin( 2 ) (6.30)
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The ratio of the FDTD to continuum magnetic field gives a factor,

almn = 4Rmn du du U
r Im + 1 + (k) 2Rm JO J

sin(uy/2) sin[u,(m +2 )] cos(ul)ei °' lnl (6.31)

p2sin 2 (u,, sin2 ,(/2 s/)p2+sin2(u/2)+sin 2(uy/2 )( .31

The frequency dependence of these factors is given in Figure 6.3, which shows

that the factors are nearly constant with frequency. The factors oo00o, a100 and a0 10o

can thus be approximated by their average values, which are 0.525, 1.086 and 1.217,

respectively. A rectangular rule integration scheme was employed to evaluate the

above coefficients. The step size was decreased until the fractional error was less

than .001.

The remaining field components can be found in a similar way. In the spectral

domain the complete fields are given by,

Ez 4rfoz.(-q)qArAe iq/N 2 7r )
rstq- 2i(2r) 3 sin() N J

sin( ) sin(rt )e-2ri[r(o - )+smo+t(no+- )]/Nsin(rr ) sin( )e 2 2

.t)" sin2( I(6.32)(. )2 sin 2 (,) -sin 2 ( ) -sin 2 ) -sin 2 () 

EY - N4IO77z1o6(qo)qTAeiqr/N (27r 3

Er~stq- -N 4 2i(27r)3 sin( ) NA )

ssin( )e-2r%[lo1+s(mo - )+t(no+ )]/N
(6.33)(.A)2 sin ) -sin 2(r ) -sin 2 () -sin 2 ( rt6.33)

EZ - N4 rIozS(-qo)qATZe//N e r 2 3
rstq- 2i(27r)3 sin-r N
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Error in FDTD Fields Near Dipole
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Figure 6.3: Frequency dependence of coefficients representing the deviation of the

FDTD dipole field near the dipole. Frequency response is flat.
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Analytical Solution for Dipole Radiation

HrstqHrstq

Hyrtq 

[( )2 sin 2 ()- sin2( )] e-2i[rlo+.smo+tno]/N( )2 sin 2 ( N) ( si n ( ) -sin 2 ( )
N4 71Iz(-qO)q A2 e2iwqlN ( 27r 3

2i(27r)3 NA

sin( r )e-2i[rlo+s(mo - )+tno]/N(A )2 sin 2 ( ) -sin 2 ( - sin ( ) -sin ( )
Ar N N N N()-sn2~

(6.34)

(6.35)

-N 4 Iozs(_qo)q A2 e2irq/N
2i(27r) 3

sin(~ )e-2i[r(lo0- )+mo+tno]/N
(6.36)( )2 sin 2 ( ( ) - sin 2 (( )- sin 2 ( )

H~r -0 N N

rstq -=

and in the spatial domain the complete dipole fields are given by,

eP(, m,) n)

(6.37)

7qIozA5re-ik(p+½ )

faP t sin(--)sin(
k/k sin( 2) ei[k(l-lo+)+ko, n-mo +k,(n-no )l]A

-akk --in(ko i ')2J- - sin (kou A)
(6.38)

-Pt 7 .. .\ _ 't'u;n L.
, yk, .,,-,. ,1. -

[i.f k sin(/ d¢ kz (

eP(, z, n) =

] dk sdk (

Z7e-ik(P+½ )At

1r2 sin(k2 )

(6.39)

(oz Ae -ik(p+ )At r
4kr2 sin( 2))

2) + sin ( 2 ) i[k(l-lo)+ky(m-mo)+ko2|n-nol] 
sin(koz A)

+_ 7 (0) 
26 o to Snno

}
(6.40)
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hP (l, m, n) = -7IozA e-ik(p+1)a
4r 2

' f k dk si (k~A/2) ei[k'(l-o)+k,(m-mo+ )+koln-no I]A (6.41)
IN _ IN, sin(koA)

Alo A Oe-ik(p+l)hP(l, m, n) = 7r2 ei(P+l)AT

_dk dk sin(ko/2) ei[k.(l-o+ )+k,(m-mo)+ko. In-nol]A (6.42)
IJN AJ_ sin(kicA)

hhP(I, m, n) = 0 (6.43)

To avoid contributions from the path at infinity we have evaluated the fields eP(l, m, n)

and eP(l, m, n) by integrating in the ky and k, planes respectively. The contributions

from the path at infinity for these fields is more involved than the corresponding

expression for eP(l, m, n). It can be shown, for example, that,

77o .e-ik( p+ ½ )"''
e(l, m,n) = 472sin() {

fdkfA V sin( 2k;A) s(2,a2 )ei[k.(I-Lo+ )+k,(m-mo)+ko, In-no - I]A
cY- sin(kozA)

+(1 + i) () [61 lo- - lo]..mmo.nno(6.44)

which results from integrating in the kz plane. In the above, the plus sign is taken

for n - no - >o and the negative sign otherwise. In the following section a duality

transformation will be applied to the above fields to find expressions for magnetic

dipole radiation in a FDTD grid.
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Analytical Magnetic Dipole Fields From Duality

6.3 Analytical Magnetic Dipole Fields From Du-
ality

Rather than solve independently the problem of magnetic dipole radiation in a

FDTD grid we present and employ a duality transformation, similar to that for

fields in a continuum.

The FDTD algorithm, Equations (6.1)-(6.6), are reproduced by the duality

transformation,

e!(l, m, n)

eP(l, m, n)

eP(1, m, n)

hP(I, m, n)

hP(l, m, n)

hz(1, m, n)

KP(1, m, n)

hP-l(l + 1,m,n-1)

hP-'(l,m + 1,n-1)

hP (1, m, n)

- -eP(l,m+,n)

--4 -eP(I+ 1,m+, n-1)

Kr-(l,m, n)

-774I( + 1,m + 1,n-1)

Applying the above transformation gives the fields for a z-directed magnetic dipole.

Expressions for x and y-directed dipoles can be found through simple coordinate

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

(6.51)

(6.52)
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transformations. For a z-directed magnetic dipole we find,

hP(1, m, n)
KozArTe-ik(p+ )AT

41r2 sin( )2m-r

dk dk sin(k ' -)sin(2 ei[k.(l-lo-)+koylm-moi+k.(n-no+)]
_- _ sin(kouA )

hP(l, m, n)

(6.53)

KozATe-ik(p+ )AT

4w 2 sin( k )
2)

- sin( kA sin(-)~
fkfks, 2 sn )eifkol- ol-+k,(m-mo- )+k(n-no+ )]A

_'j_ A/_~ · sn(koA)

hP(l, m, n)

(6.54)

-KzAre-ik(P+ )' r
4 2 sin( 2)

W W si2( 1 ) ( kf r sin I ) + sin( 2 )ei[k.(-lo )+k,(m-mo )+ko, In-no I]A
dk'- sin(koZ A)

+ 2 () 2 llo mmo bnno
2 A/

eP(l, m, n)

}
(6.55)

Koz A -ikpAr4 2 e
4r2

kfd k sin( ky/2) ei[k(ltO-)+k,(m-mo - )+ko.ln-no l
-A -j sin(koz A)

eP(l, m, n)

(6.56)

-KoA -ikpaT
47r 2

k sin(-ko /2) eik ,(l 1 o - )+k,(m.-mo )+ko. In-no I]A
_ fj sin(koA)

(6.57)

Hence, from the solution for a z-directed electric dipole in a FDTD grid we can

find the solution for any dipole, electric or magnetic, polarized in any direction. In
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the following section the above results are used to find the fields of three interacting

dipoles such as used to model a small aperture.

6.4 Interaction Fields of Induced Electric and Mag-
netic Dipoles

The interaction fields of the three induced dipoles representing the small circular

aperture is here determined from the analytical solution to the FDTD algorithm for

electric and magnetic dipole radiation given in the preceding two sections. Since we

are interested in the dipole fields in the presence of a perfectly conducting short-

circuited screen we must include the fields of the image dipole as well. From Equa-

tions (3.25)-(3.27) it is evident that we need only evaluate the fields e, hz and h,.

For simplicity we choose the induced dipoles to be located at (lo, mo, no) = (0, 0, 0),

with image dipoles at (0, 0, -1).

The fields produced by the induced and image z-directed electric dipoles can

be written,

_771o rlA-re-ik(p+½ ) A T

42, sin( ) {

d, dksi On 2 + e )+ 2 ) } (6.59)

-( ) = 4 l2 e (P+l)Tdkdk, sin(kzA/2)(1 + eikoA) (6.61)
47r2 J-~ sin(kozA)
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The fields produced by the induced and image x-directed magnetic dipoles can be

determined from the expressions given in the preceding section for a z-directed

magnetic dipole through the coordinate transformation xz y, y > z and z

x. The 2-directed magnetic dipole fields can then be written,

-Ko2A k tii in(k A/2)

h(, ) KOZ K 2Ae-ik(P+ )) {hP(0,0,0) -KoAre
47.2 sin( k )

f -kfddk si(2)sin( 2)eikuA/2-iky,/2(l + elkoz) (6.64)A- I Y sin(koA) 2 Ko. re-ik(p+J+½ )A

In the above the dummy variables of integration have also been swapped according

to the transformation. The fields for the y-directed magnetic dipole are similarly

found through the transformation x -- z, y -f x and z -' y, giving,

eh(o, o,) -= 4r2 eikP ,,/ n(lcA/2)e-ka + e-) (665)
4 r2 sin() k 

dk fdk sin( ) s n(2 eikZ e /2+ikyA/2(1 + eikoA) (6.66)

h(-) -as-in(k (c )KOy Are-ik(p+)A r
hP(o, , o) = si

ir Ir sin ( 4A' sin( )
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f dkIA dkn sin2 ( ) ( + e-'k) (6.67)

_ sin(ko A ) 2\ /

Now it is the time derivatives of these fields which we need. The time differ-

entiation operator is 8 = -2ieikAT/2 sin(kAr/2) -ik, for small kLar/2. Applyinga-- A-r

this operator to the above fields and simplifying, we find the following expressions

for the time derivatives of the dipole fields,

Ord - (8(7rAK, (6.68)

had ( )2 {- 2o(-ikA) Iz, + 8[(03 - )K. - K]} (6.69)

Ahd 1 20o(-ikA). * Iz --8[4K - (3 r2 )K]} (6.70)
Or (.-) 2 I

where,

1 - dx f dy{ /(sin2 + sin2 y)(1 + sin2 x + sin2 y)- (sin2 + sin2 y)}

= .9753582 (6.71)

sin 2 Ycos 2 x
O2 d- dy sin2 y Cos 2 = .4877207 (6.72)

° (sin: Z + sin2 y)(1 + sin22x + sin2 y)

1 sin + sin 2 y os (6.73)

03 Jo ° /1 +sin + sin 2+ siny

= .1913744 (6.74)
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In arriving at the above the integrals in (6.59)-(6.67) have been evaluated at q 

__2 sin(2) = 0, which corresponds to a evaluating the integrals in a Taylor series

expansion keeping terms to order q.

In evaluating the the above double integrals Simpson's rule was employed using

double precision, and the integration subinterval size was successively reduced by a

factor of three until the integration converged to within a fractional error of .001.

6.5 Total Power Radiated by a Dipole in a FDTD
Grid

The analytical solution to the FDTD equations can also be used to find the dis-

cretization error in the total power radiated by a dipole in a FDTD grid. Consider

a z-directed dipole at the center of a large but finite computational domain, with

an impressed current given as above. Due to the symmetry of the problem, the

total radiated power is given by twice the integral of the normal component of the

Poynting vector over any plane parallel to the z-z plane. Hence, the fields that we

need to evaluate are e, and h. The expressions for these fields are given above;

however, to evaluate the integral of the Poynting vector it is more convenient to

apply the contour integration to the k integral. The fields cast in this form are

given for m > 0 by,

-7rIozAre-ik(p+)AT
eP(1, m, n) 4i2sin(")

· l dkj k;k2k ( k4) + sin2( 2 ) ei[k l +k om+kn]A (6.75)
_ sin(koyA)
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hP (I, m, n) o ozA e-ik(p+l)Ar
47r 2

Afdk k. sin(koA/2) i[kl+ko (m+ i)+kzn]A (6.76)
-A - sin(koyA)

In the FDTD grid the electric and magnetic fields are displaced by a half grid cell.

In order to evaluate the fields at the same point we take the average of the magnetic

fields on either side of the electric field component that we are interested in. This

gives hP(l,m,n) [hP(1,m,n) + hp(l,m - 1,n)], and we find,

hP( (l, rnn) = - 7 I°zA e-ik(p+l)Ar

*r id sin(koA/2) cos(koA/2)ei(kl+kom+k (677)
a IN sin(kozA)

-8r2 ip+ -]dkjfk eYrzJ (6.78)

Similarly, the electric and magnetic fields are displaced in time by a half time step,

and we take the average hP(l, m, n) - [h(,mn) + hP-(l, m, n)], which gives,

-77IoA eik(p+½)Ac (kArhP (1, m n) =C 2 e(p+f) cos(2
87r2 2

Jgdkdkze2(k-L+kovm+kzn)A (6.79)
A A

The total radiated power, PFDTD, is given by twice the integral of the normal

component of the Poynting vector over a plane parallel to the z-z plane, or,

PFDTD = - Re eP(l,m, n)hP*(, m, n) (6.80)
r7 In

183



Analytical Solution to FDTD Equations

To evaluate this sum we rewrite the integral expressions for the above fields as sums,

eP(l,, n) 7 IozAreik((P+ p+* )

4r2 sin( )

( 2ir 2

INA)

~ ( )2 sin2( k )-si n2 (N) e)i2r(l+tn)/NeiotmA
rt sin(koyrtA)

hP(l, m, n)

(6.81)

-2lIo.A e-ik(p+½)A cos-( kA )
87r2 2

e-2 i2r(r'I+t'n)/N e-iko,, ,mA
E C etitlt (6.82)

The total radiated power then becomes,

A2 772IoAAr os( k( )
/ 321r4 sin(r2)

( 2i ry
VNAJ

e,( A )2sin2E()sin (-) ei2 ( -r')' +(t - t')n]/Nei( Og-'o,. t ),A }
sin(kowtA) In

(6.83)

=I7 A3A r Cos( 2 )
= __ _ _ . ).

2r)2( 2r )2
(~ (-~327r4 sin( " )

Re{ ( )2 sin 2 ( )
rt sin(-o-t

(6.84)

727r,aar COS(2() 2Ar

321r4 sin(ka ) (A)

.Re{
fdjWP k (A S)2 sin'( 2. ) - sin2( ) ei( k)m } (6.85)
-x -z sin(ko1A)

The above double integral is real only over a very small, nearly circular, region in

the k - k, plane, corresponding to real values of kov. This suggests that the integral

can be simplified by transforming from rectangular to polar coordinates. To this

PFDTD

rtr't'
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end we define the transformation,

k = 2 in2( kA) + sin 2 ( k _ )
2

(6.86)

(6.87)= tan{ }sin(2
: t~n -' {,~n(2

The differential area in k-space transforms as the determinant of the inverse Jaco-

bian matrix of the above transformation, which is,

kp

/1- (kpA/2) 2 + (k,A/2)4 sin2 4cos 2
(6.88)

With the substitution kp = uq, the total radiated power becomes,

,7(IoZ a) 2AT cos( '2)
PFDTD -= 327r4 sin(k) q)

1l 2 U

f o - (qA/2) 2u2 + (qA/2)4U4 sin 2 4 Cos2 4

1 - u 2 sin 2 4

V/I 1% -1 - (qA/2)2 (1 - u2)

(6.89)

(6.90)

The above integral can be expanded in a Taylor series, which gives,

= (1)2cos( k ) + 1(qA) 2 +
2 2

(6.91)
10 2

2 kAr
q = sin( 2)

A~r 2
(6.92)
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where Po is the radiated power for a dipole in a continuum,

k2(I ) 2

PO 12r (6.93)

At the highest frequency of interest in FDTD, kAT/2 = .212, and hence the ratio

of the third to second terms in the Taylor series expansion is .06, which is quite

small, and no further terms are needed in the expansion.

This ratio represents the error due to discretization alone. A comparison of

the above Taylor series expansion with the FDTD computed error for a dipole in

the center of a large computational domain is given in Figure 6.4. Both methods

of computing the error show the same upward trend. The same comparison is

also shown in Figure 6.5, except that here the computational domain has been

enlarged from 60 cubed to 80 cubed, reducing the effects of reflections from the

corners of the computational domain. With the computational domain enlarged

the match between the numerically and analytically computed FDTD dipole power

is remarkably close.
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Discretization Error in FDTD Dipole Radiation

ZDz
z
Q

00_0
LL

Q

0

au

0.9
0 0.05

A/X

Figure 6.4: Ratio of FDTD dipole radiated power to continuum dipole radiated

power. Solid line is FDTD computed error; dashed line is analytical FDTD com-

puted error. Both curves show the same trend.
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Discretization Error in FDTD Dipole Radiation
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Figure 6.5: Ratio of FDTD dipole radiated power to continuum dipole radiated
power. Solid line is FDTD computed error; dashed line is analytical FDTD com-

puted error. The computational domain has been enlarged from 60 cubed to 80
cubed, reducing the effect of reflections from the corners of the computational do-

main.
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6.6 Analytical FDTD Solution for Line Source
Radiation

The FDTD equations in two dimensions for the polarization with the electric field

in the infinite(z) direction, including an electric current in the z direction are

ez(l,m) = e:-l(l,m) + a[hPy-(l,m)- hP - 1

+hP-l(l, m - 1) - h-l(1, m)] - ip(l, m) (6.94)

hP(l, m) = hP,-'(l,m)- a [e(l, m + 1) - e(l, m)] (6.95)

Ar
h~(l,m) = hpl(l, )- - e(l + 1, m)] (6.96)

These equations can be solved analytically by transforming the above equations

from the discrete spatial domain to the discrete spectral domain by applying the

discrete Fourier transform. The transformed equations are then algebraic, and the

various field quantities can be easily solved for. The final solution is then the inverse

discrete Fourier transform of the spectral domain fields.

We assume an impressed electric current

iP(,m) = ~Io6l.mm-i (6.97)

The discrete Fourier transform and inverse discrete Fourier transform for the z

189



190 Analytical Solution to FDTD Equations

component of the electric field are given by

(6.98)= E eP(l, m)e-2(rl+m+tp)/N
Imp

ep(l, m) (6.99)- Y- E;,te2i(rl+am+tP)/N
Nrat

Applying the above transform to the impressed current gives

Izrat = 7IoNe - 2 i( lo+mo )/N6( t o)t (6.100)

Transforming the FDTD equations and solving for Ez t gives

EZrat
2,-N s t( -I)e'it / N e- 2 (rl+ o " )/r (to)t-( )2 sin2( ) - sin(t) - sin( )A-r N N Nn(~

(6.101)

The z component of the electric field in the spatial domain, through the inverse

discrete Fourier transform, is found to be

e~p(l, m)
-i7Io { sin( )e-21ri(+ )to/N e21i[r(-lo)+(m - mo )]/N)

2ATrN2 (A)2 sin 2(l tt) -sin 2() - sin:2 () (6102)A-r N N N

The spacing in the wavenumber components is given by

Ak = lAk= 2NrNA (6.103)

so that in the limit as the computational domain becomes increasingly large (N --
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oo), 4 (/ .)dkdky (6.104)
N2 27r A

irr k.s (6.105)

N 2

rs kvA (6.106)
N 2

and the electric field becomes

eP(lm)o I-) sin(-)e-'i(P+ )&

dkJdk ei[k(l-lo)+k,(m-mo)]A6107)

a di ( s )2 Sin2(I '() - sin2( ) - sin (6.107)

The k. integration can be evaluated by integrating over the Sommerfeld integration

path, which is like the path shown in Figure 6.1, except that the integration is in

the k, plane. Within this contour there is a single pole which contributes 27riR(ko),

where R(kov) is the residue at k0o, and is given by

R(kod) = ) =-o (6.108)
(to,,) = idy / (k,) k,=ko,

-2 ei[k(l-lo)+S Im-mo 1] (6.109)
A sin(k~A)

where H(ky) is the above integrand, and koy is the pole given by

2 U k2 __ 1
k sin I( if) 2(k _ _A2)-sin(_ 2 )} (6.110)

Im{ko,} > 0 (6.111)
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Finally, the electric field is given by

eP(, m) = Re 2i71o sin( 2kA k(p+)a

4ir 4dkzl sine( ) 'eif(-'°)+Io°-~m°l] } (6.112)

which, through the substitutions u, = k.,A, uoy = koA, becomes

eP(l,m) = Re 2 7o sin( kA)er (p+)
Ar 2

idu ei[ '( l- °) + l] (6.113)47r E- sin(uoy)

where

uo = 2 sin (q ) 2 - sin2()} (6.114)

Im{uo~} > 0 (6.115)

2 kAr(
-)n 2

The integral above is a function of the single parameter q. A comparison of the

above solution, which we shall call the Analytical FDTD solution, with the an-

alytical(Hankel function) and FDTD solution is given in Figure 6.6. Again, the

Analytical FDTD solution agrees remarkable well with the analytical one. The

same integration scheme as used for the FDTD dipole integration was used here.
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Figure 6.6: Comparison of the Analytical FDTD solution with the analytical (Han-

kel function) and FDTD solution.
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6.7 Total Power Radiated By a Line Source in a
FDTD Grid

The total power radiated by a line source in FDTD can be evaluated as done for

the dipole in Section 6.5 by evaluating the integral of the Poynting vector over an

infinite plane.

From Equation (6.112) the electric field, for mo = lo = 0, m > 0, and,

W

dk
_ 'K

27r) E (6.117)

becomes,

e (l, m)
=2i7Io ksin()e (p+ ) r
Ar 2

2E 1 ei[2wrl/N+ko,,mA ]

4ir NA 1 sin(ko,)4?' NA ~~c~a e[~/~a~~
(6.118)

The x component of the magnetic field in the discrete spectral domain is given by,

Hort (6.119).2 i ei/) sin( )ei '/ 6(-to)t
( )2 sin2( _ sin() - sin( )

Transforming back to the discrete spatial domain, the magnetic field becomes,

hP (l, m) (6.120)- r 7Io e-i(+l)A E sin(korA/2) ei[2.,l/+ko. (.+)A]
NA sin(ko,,A)

Now the magnetic field is half a time step ahead of the electric field. To evaluate

the fields at the same time we take the average of the magnetic field at steps p and
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p-l,

e-ik(p+1)A' - [-ik(p+l) + e-ikpAr ]
(6.121)

Cos( kA)e-ik(p+½)A,.
2

(6.122)

Similarly, the magnetic field is half a grid cell ahead of the electric in space, and so

we average the fields at m and m - 1,

eiko,(m+I )A 2 [eik (+ ) + eOr(m-)a ]

COs( vA )eikOMa
2

(6.124)

The averaged magnetic field then becomes,

hP(I, m) NA cos(-)e-ik(p+)^NA 2

sin( O") cos( 2o0 Aei[2srl/N+'ovmQ

r sin(koy,A)

2NA
Cos( 2 )e-ik(p+)t A Z ei[2vrl/N+0o,,mA]

(6.125)

(6.126)

The total radiated power is then twice the integral of the Poynting power density

over an infinite plane,

-Re{A EeP(,m)hP. (l,m)
77 1

(6.127)

1I A/D esRe 6ikAT/2 1 eiko,. -ko,,r ]mA

4N2Ar sin(k,.)

(6.123)

PFDTD
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* E ei2 (r-r)l/N} (6.128)
i

1I8 A sin(kAr)Re{dk, 1 e i(ko,-ko,)mA '
Jj 2sin(koA) °

_ _ _ _ _ 1

4IrAr sin(kAr) lodk sin(koyA)

p - sin- ( ) sin(( )

This integral can be evaluated through a Taylor series expansion giving,

= sin(kAr) [1
kA-r

1 (q)2 + 5 (qA)4 + ..
2 2 16 2

8

2 kAr
q (-)sin( )

a7 2~
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(6.130)

(6.131)

PFDTD/PO

Po

(6.132)

(6.133)

(6.134)
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6.8 Alternate Derivation of Total Power

In this section we consider an alternate derivation of the total radiated power in

a discrete FDTD grid. Rather than integrating the Poynting vector over a closed

surface, it is possible to integrate the scalar product of the electric field and the

complex conjugate of the electric current. In the analogous continuum problem,

the electric fields at a dipole or line source are infinite and we cannot compute the

radiated power in this way. However, in the FDTD grid the fields are not infinite

at the source, and it can be shown that the aforementioned integral does in fact

give the correct expression for total radiated power. Hence, the finite value of the

electric field at the source determined by the FDTD algorithm is exactly that value

which gives the correct total radiated power. This result is shown below for both

dipole and line source radiation.

Consider first the dipole problem. From Equation (6.85) the total radiated

power can be written as,

71IO2AA-r cos( )
PFDTD 2

87r2 sin( e

-RefAdkAdk( ) sin2( 7) - sin 2() I(k (6.136)
.Re{ A -W sin(kov.,A) (6.136)

Alternately, however, from the complex form of Poynting's theorem we can write
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the total radiated power, P, as,

P = -- Re ||| E.J2 JJJv (6.137)

(6.138)-2Re A3e (l, m, n)JP*(l, m, n)
2 Imn

Now the electric current density is given by,

JP o= 6omonoe-ikp

Taking the average at time steps p and p + 1 gives,

JZ = Io 8O0ImOnO COS(- )e-ik(P+2)THence the total radiated power is given by,
Hence the total radiated power is given by,

P

(6.139)

(6.140)

(6.141)
A kArO,)e+r)

- __Iocos(-2-)Re{eP.(0, 0, 0)e2k(P+*)AT}

From Equation (6.75) we have

e (0o,o,o)
-_7IoATe-ik(p+)T

- 4r2 sin( )

(6.142)L d L ( Ad)( 2sin2(T)- - sin 2( )
a -, sin(koyA)A '

Hence, the total power is given by,

77IAAr cos() Re{
87-2sin( )

IN ( A )2 sin2( k ) - sin 2 (k;zA)
adi, d &, 2 2sin(koyA)A A

}(6.143)
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= PFDTD

Similarly, for the line source the total power is given by,

A kAr
= -Io os( 2 )Re{e(O, O)ei(P+ )aT}

sin( 2 /k n A (k oA)}

= 7IA 2 kA)Re8Asin( )
8'irAr 2

AJ Adk 1
f- sin(koyA)J

= PFDTD
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(6.144)

P

A= -- o
2

kAr
cos( 2 )Re

-77IoA
2rAr

(6.145)

(6.146)

(6.147)

(6.148)



200 Analytical Solution to FDTD Equations



Chapter 7

Nonlinear Transmission Line
Model of Superconducting
Stripline Resonators

7.1 Introduction

Stripline resonators have been widely used [19]-[21] for characterization of the prop-

erties of thin films of superconducting materials at microwave frequencies. Measure-

ments of the surface impedance Z, as a function of frequency and temperature have

been reported. Such resonators also hold promise for a large number of practical

applications where very high quality factors (Q) are needed, for example, in oscil-

lator stabilization and in narrow band filters. However, because of the high Q, the

amplitude of the circulating current at the resonant frequency can be very large,

even at relatively low values of the input power. The large currents lead directly

to nonlinear behavior which has been observed by a number of authors both in

the new high--transition temperature T, materials such as YBa2 Cu3 O7 -_ [56] (for a

review see [57]) and in the conventional low-T, materials such as Nb and NbN[58].
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The primary manifestation of the nonlinear behavior is reduction in the Q, but

other important effects including shifts of the resonant frequency and intermodu-

lation distortion in filters have been seen also. This nonlinear behavior must be

understood in order to better evaluate the material properties and to better model

the nonlinear effects in practical devices as well. Until now no good models of the

superconducting transmission line resonator have been reported in the literature,

although the phenomenon of nonlinear oscillators in general has been treated by

many authors[59][60]. A useful model of the superconducting resonator must be

able to incorporate the extremely high Q of the device (values higher than 106 are

easily achieved) and incorporate explicitly the specific nature of the nonlinearity of

the superconductor.

We present here a nonlinear transmission line model for superconducting

stripline resonators. The model is based on the numerical solution of the nonlinear

transmission line equations describing the resonator. It is able to accommodate

large quality factors and to include the nonlinear inductance and resistance of the

the superconducting material. The solutions of the frequency response are shown.

Simple extensions of the model also allow the evaluation of the intermodulation

products. Since the model is solved numerically, any nonlinear properties can be

included.

7.2 Nonlinear Transmission Line Model

The geometry of the superconducting resonators being modeled is shown in Figure

7.1[19]. A lumped-element transmission line model of the superconducting stripline
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is shown in Figure 7.2. The parallel Lk-R, combination is a two-fluid model of the

superconducting thin film. The inductance Lk represents the kinetic inductance of

the superconducting electron pairs, and R, represents the resistance in the normal

current flow. We assume that the device is operated at a temperature sufficiently

below the critical temperature so that R, > wLk; then the approximate series

rendering shown in Figure 7.3 is valid.

The circuit analyzed is shown in Figure 7.4. The source and load resistors

are represented by R, and R 1 respectively. The input and output coupling circuits

are represented by the capacitive r-networks [61]. The capacitor Ca represents

the coupling capacitance across the gap (see Figure 7.1) , and the capacitors Cb

represent the fringing capacitance of the open circuited stripline. The equations

describing the transmission line are,

V _ -0 (LI)-IR (7.1)az at

(CV) (7.2)

The above equations can be normalized with respect to three parameters: Lo, Co,

and w0 . With these we define,

Ro = /30,IS o = woV Lo C0 (7.3)

and,

I = L/Lo c = C/Co r = R/(/oRo) (7.4)
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A = w/o = wot y =/ oz (7.5)

v = V i = IRo (7.6)

With the above normalization the transmission line equations become,

Ov a
= -i (hi) - ir (7.7)Oy - r

ai 0
ay = -aT(CV) (7.8)

Oy Or

For high Q resonators we expect large fields in the device. These fields tend to

dissociate superconducting electron pairs, resulting in a nonlinear inductance and

resistance. When there in no external magnetic field applied to the device, there

is a symmetry in the positive and negative directions along the transmission line.

Because of this symmetry, both the inductor flux and resistor voltage drop should

be odd functions of the transmission line current. Hence we assume the inductor

flux and resistor voltage drop to be given by

= i = E l i2k+1 (7.9)
k=O

u = i = r2k+i2k+ (7.10)
k=O
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Figure 7.1: Schematic diagram of the stripline resonator showing (a) the cross

section and (b) the top view of the transmission line.
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Lk

I

Figure 7.2: Lumped-element model of a small length of superconducting transmis-

sion line. The elements L and C represent the inductance and capacitance associated
with the electromagnetic field; the parallel Lk, - R, combination represents, respec-
tively, the kinetic inductance in the super current and the resistance in the normal
current.
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Lk L

R = )2 Lk 2/Rn

_-

Figure 7.3: Series approximation to circuit of Figure 7.2, valid for R, > wLk.

207



Nonlinear Transmission Line Model

NONLINEAR

Vso

I- L-y I

Figure 7.4: Complete schematic of circuit, including capacitive coupling sections at

input and output, and input and output impedances.
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7.3 Method of Solution

Harmonic Balance:

We employ the harmonic balance technique [62] to find the frequency domain equa-

tions for the circuit. The solutions can be written:

v = V,(y)sin(Ar) + V(y)cos(Ar) (7.11)

i = I,(y) sin(Ar) + Ic(y) cos()Ar) (7.12)

q= cv = Qo(y)sin(Ar) + Q(y)cos(Ar) (7.13)

= i = = I,(y)sin(Ar) + $c(y)cos(Ar) (7.14)

u = ri = U.(y)sin(Ar) + Uc(y)cos(Ar) (7.15)

The above solutions contain only a single frequency component. For high Q res-

onators we expect the higher frequency resonances to be shifted away from the

generated harmonics by the reactive (frequency dependent) loads, and hence of

negligible amplitude. For low Q resonators, the method presented here can be

modified by including in the spectrum one or more of the harmonic frequencies gen-

erated by the nonlinear transmission line. If only the fundamental frequency terms

are retained, equations (7.9-7.10) become

4P= El 12k+1 4(k + ))! \I(I. + Ic) (7.16)
2k+O (7.17)

00 4kc!(2k + 1)!
4I = l2k+1 4 kk!(k + 1)!I(I2I2k(7.17)

k=O
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(2k + )!
Us = Zr2k+l 4kk!(k + 1) I(I2 + I2)k (7.18)

k=O 4kk!( 1)!

00 (2k + 1)!v r,2k+1 4kk!(k + )!Ic(I )k (7.19)
k=O 4k!(k 1)!

Substituting (7.11-7.15) into (7.7-7.8), we get

d' = A - U, (7.20)
dy

dV= - A - Uc (7.21)dy

dIh
= cAV, (7.22)

dy

dIc -cAV, (7.23)
dy

Once the initial conditions are specified, these equations can be integrated, giving

the voltage and current along the transmission line.

Initial Conditions:

Figure 7.5 shows the circuit of Figure 7.4 with the input and output coupling

circuits replaced by their Thevenin equivalents. If we know the input impedance to

the line, Zin,, we can compute the input voltage and current using

Vin =Z. Vg (7.24)
Z + Z,

'in = Vg (7.25)
Zg + Zin
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where Zin = Vin/Iin. The initial conditions are then given by

=- -AVg- A'V

=- AV' - A"V'

(X + Xin)V - (Rg
(Rg + Rin)2 + (Xg + Xi.) 2

(Rg + Rn,.)Vg + (Xg + Xin)V"
(Rg + R) 2 + (Xg + Xn,)2

Rin,(Rg + Ri) + Xin(Xg + Xin) 

(Rg + Rin)2 + (X + Xin)2 --O

A'o

-Ri,(X + Xin,) + Xin,(R + R,n)
(Rg + Ri,)2 + (Xg + Xin)2

Zg = Rg+jXg

Zin

v9 = Vg + Vg

The Thevenin impedance and voltage are given by,

02 R
tg

(2a. + 9b)2b2 + (a + sb)2

VJ(O)

Vc(O)

(7.26)

(7.27)

(7.28)I.(0)

Ic(O)

where,

A'

A"

and,

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)

(7.34)

(7.35)
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-(O + b)[l + (20 + b)b]R
(20 + b) 2 eb2 + ( + b)2

=V Ga,(, + b)Vo
(20. + ob)2ob2 + ( + eb)2

oeab(20a + b)Vo-(28, + b)2b2 + (, + b)2 (7.38)

where,

8 = AwoRCa (7.39)

Ob = Aw)oRCb (7.40)

Iterative Procedure:

Since, however, the input impedance is not known, we assume an initial value

and then modify this iteratively. From the assumed input impedance we can com-

pute the initial conditions and integrate equations (7.20-7.23) to find the output

voltage and current, V,(LI),V(LI),I.(LI) and I¢(L,). From these we can determine

the output impedance:

RL1 - Ro[V(L1)I.(L) + V.(Lj)I(L)] (7.41)

XLl - Ro[V(L)I.(L)- V.(L1)I(L,)] (7.42)
I,2(L+ ) + Ic2(L7)

ZL1 = RL1 + jXL1 (7.43)
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The equations to be solved iteratively are then,

RLl(Ri., Xi.) - RL

XL1(Ri., Xi.) -XL

- 0

= 0

where RL + jXL is the Thevenin impedance of the output coupling circuit:

RL

XL

9aR1

(28a + Ob)2 b + (a + 8b)2

-(a + Ob)[1 + (20. + b)Ob]Rl

(2s9 + 9 b)2 02 - (a + Ob)2

8a = AwoR1Ca

Ob = AWOR1Cb

Equations (7.44-7.45) can be solved via the Newton-Raphson method:

OXRL1 /OdRn

19XL1 /aORin

dORL / OX, 1
O9XL1/1OXi. 

If in the iteration Ri(+') becomes negative, we modify the iteration by setting,

(7.51)
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(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

(k+l)E Rin]

XinJ [Xi

(k) -1 [Rn
.[Xi.

(k)

(7.50)
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Zin

Figure 7.5: Thevenin equivalent representation of circuit shown in Figure 7.4.
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7.4 Numerical Procedure

The frequency response is computed at 101 frequency points throughout the band of

interest. The computation begins at low frequency and sweeps to high frequency. At

the first frequency the initial input impedance is set to the linear input impedance.

This is usually very close to the actual large signal input impedance since the trans-

mitted power is small away from the center frequency. At subsequent frequencies

the initial input impedance is kept at the large signal value found for the previous

frequency. Alternately, we can begin at the high frequency and sweep down to the

low. At low power levels where the solution is unique, the results found sweeping

down in frequency are the same as those found sweeping up. When multiple solu-

tions are present, however, as is the case for the NbN resonator, the solution found

by sweeping dlown is different than that found sweeping up.

At each frequency the iteration proceeds until

Ze,,ro, /ZL < 0.00005 (7.52)

where Z,,rror = ZLl - ZL. The Jacobian used in the Newton-Raphson method is

evaluated numerically by integrating equations (7.20-7.23) with Rin replaced by

Ri, + A, and then with Xi, replaced by Xi, + A. At first we set A = 0.001Rin.

Every five iterations, if convergence is not reached, the value of A is reduced by

half. The transmission line equations (7.20-7.23) are integrated numerically using

the Runge-Kutta 4th order method with 100 steps per wavelength.
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7.5 Results

To test the model, frequency response curves were calculated and compared with

measured curves for two resonators. The first device considered is an NbN [58]

resonator operated at 4 K and at the second fundamental resonance. The Q of

this resonator is 390,000, and the insertion loss at resonance is -20 dB. To match

these values we find a/ 9 b = 0.03, b = 0.02, and R = 7.268 x 10- 3 Q/m. The

center frequency of the resonator is 1.146 GHz, and the length is 8.32 cm, which

is close to a full wavelength. The nonlinear response is matched by adjusting the

higher-order coefficients in the polynomials which describe the nonlinear elements.

For this resonator a good match is achieved with

R = 7.268 x 10-3 + 1.272 x 10-212 + 1.817 x 10-2I 4 (Q/m) (7.53)

L = 527.1 + 1.845 x 10-212 + 4.282 x 10-314(nH/m) (7.54)

In the above equations, I is the total transmission line current in amperes. A

comparison of the measured [58] and calculated frequency response is given in Figure

7.6. For input power levels above -6 dBm the frequency response exhibits hysteresis

in the frequency sweep. This effect is a common characteristic of nonlinear circuits

[59]. The lower solution is achieved by sweeping up in frequency; sweeping down

in frequency gives the upper solution. The arrows in Figure 7.6 indicate the sweep

direction.

The second device considered is a YBCO [19] resonator operated at 77 K

and at the second fundamental resonance, with Q = 7800 and an insertion loss
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of -43 dBm. For this resonator a/0b = 0.0595, b = 0.02, and R = 1.364 Q/m.

The center frequency of the resonator is 3.0778 GHz, and the length is 1.95 cm,

which again is close to a full wavelength. The large-signal frequency response of

this resonator is single valued for all levels of input drive. A comparison of the

measured and calculated frequency response is shown in Figure 7.7. A good match

with the measured data is achieved with,

R = 1.364 + 74.2812 + 161814(Qf/m) (7.55)

L = 550.0 + 11.9812(nH/m) (7.56)

The functions describing the nonlinear inductance and resistance for the two res-

onators are plotted in Figures 7.8-7.11.

By varying the polynomial coefficients describing the nonlinear inductance

and resistance it is evident that the hysteresis observed in the NbN resonator is due

to the nonlinearity in the inductance, and that the nonlinearity in the resistance

tends to suppress this effect. Increasing the nonlinearity in the resistance of the

NbN resonator suppresses hysteresis. Similarly, hysteresis is observed in the YBCO

resonator if the nonlinearity in the resistance is decreased. The YBCO resonator,

then, does not show hysteresis because the nonlinearity of the resistance is suffi-

ciently strong to counteract the effect of the nonlinear inductor. In part the larger

resistance is a result of operating the YBCO resonator at a higher reduced temper-

ature t = T/TC,, where T is the transition temperature, than the NbN resonator.

For YBCO T. = 86.4 K and for NbN T = 15.3 K . Thus t = 0.89 for YBCO and
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0.27 for NbN. There may, however, be more fundamental reasons for the difference

in behavior for the two materials. The physical reasons for the different nonlinear

behavior in YBCO and NbN are under investigation.
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Figure 7.6: NbN resonator. Transmitted power versus frequency (f - fo) for input

power levels ranging from 0 dBm to -16 dBm in 2 dB increments. Solid curve is

the measured response, and the dashed curve is the calculated response. Arrows

represent the sweep direction. Resonator operated at t = T/Tc = 0.27.
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Figure 7.7: YBCO resonator. Transmitted power versus frequency (f -fo) for input

power levels ranging from 30 dBm to -20 dBm in 5 dB increments. Solid curve is

the measured response, and the dashed curve is the calculated response. Resonator

operated at t = T/TC = 0.89.
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Figure 7.8: Nonlinear surface resistance of NbN resonator versus current amplitude.
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Figure 7.10: Nonlinear surface resistance of YBCO resonator versus current ampli-

tude.
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Chapter 8

Summary and Conclusion

The first part of this thesis considered the application of the FDTD technique

to complex scattering problems. In Chapter 2 a review of the FDTD technique

was given. The problem of modeling the scattering from objects buried in a lossy

halfspace was solved, and the method applied to the detection of rebars and water-

filled cracks in concrete. The water-filled crack was assumed to be of sub-grid

dimensions and was modeled as a frequency-dispersive medium using the Debye

model for water.

Chapters 3 through 5 were devoted to modeling the EMI from dense apertures

arrays. In Chapter 3 a method based on induced electric and magnetic dipoles was

presented and evaluated for apertures of sub-grid dimension. The Simple and Brute-

force methods were also evaluated and shown to be inadequate, whereas the new

method proves to be highly accurate. To achieve this accuracy two errors were

removed. The first error was due to approximating the short-circuit fields at the

aperture by the total FDTD fields. This error depends on the third power of the

aperture radius, but is relatively independent of frequency. Corrected equations
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were derived which effectively subtract out the FDTD dipole fields which are re-

sponsible for the error. For this the analytical solution to FDTD dipole radiation

presented in Chapter 6 was used. The second error, which depends on frequency

but not on aperture radius was similarly removed by effectively extrapolating the

FDTD fields to the plane of the screen. If the above errors are not removed, the

method is accurate to within about ten percent in transmitted power. With the

above corrections the method is accurate to within a few percent over the typical

FDTD frequency range. In addition to accuracy, the method is simple to implement

as well.

In Chapter 4 the method was extended to model an array of interacting aper-

tures. It was shown that for apertures spaced two grid cells apart that the isolated

aperture equations developed in Chapter 3 accurately model the aperture array. If,

however, the isolated aperture equations are applied to apertures spaced every grid

cell, then the isolated aperture equations over correct for the dipole fields, giving

about ten percent error less than the analytical solution. It was shown that for

closely-spaced apertures the FDTD interaction fields are inaccurate. A correction

was developed which in effect subtracts out the inaccurate FDTD dipole fields and

adds back the correct analytical fields. It was also shown that only the fields of

the nearest neighbor apertures needs to be corrected, and hence the correction is

local. It was also shown that in correcting the FDTD dipole fields only the lowest

frequency terms need to be retained. The resulting equations are identical to the

isolated aperture equations except that the constants relating to the interaction of

the equivalent dipoles are different than those for the isolated aperture case. The
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aperture array transmitted power was compared with the power determined through

the dipole approximation to the finite aperture array, and the results show that the

method yields accurate transmitted power for a variety of aperture excitations. The

method was applied to model the EMI from a computer box.

In Chapter 5 an aperture in a thick perfectly-conducting screen was studied.

It was shown that the thin-screen methods apply, except that the dipoles on the

transmission side of the screen are no longer equal in magnitude, but are reduced

due to evanescent fields below cutoff in the aperture. The induced dipole moments

are related to the short-circuit fields through aperture polarizabilities, which are

determined from a mode-matching technique using the Vector Bessel Series and

Vector Hankel Transform. It was shown that for small apertures that only the

TEim and TMom modes are excited, and that the polarizabilities depend only on

the ratio of screen thickness to aperture radius, d/a.

In Chapter 6 an analytical solution of the FDTD equations for electric and

magnetic dipole radiation was presented. The solution was derived by applying a

discrete Fourier transform to the FDTD algorithm for a finite computational do-

main, transforming the difference equations to algebraic equations. The electric and

magnetic fields were then determined by solving for the corresponding transformed

fields and applying an inverse discrete Fourier transform. The limit was then taken

as the computational domain becomes infinite, giving the solution in terms of triple

integrals over the first Brillouin zone of the reciprocal lattice of the FDTD grid. It

was shown that one of the integrations can be evaluated by integrating in the com-

plex plane, which gives a single pole contribution, corresponding to the dispersive
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wave velocity in the discrete grid. It was shown that the FDTD dipole fields near

to the dipole deviate from the corresponding fields of a dipole in a continuum. The

magnetic fields of an electric dipole, for example, deviate from the continuum fields

by as much as a factor of two. It was shown that the analytical FDTD fields ap-

proach the continuum fields away from the dipole. The analytical solution was also

used to determine the total dipole radiated power in a discrete FDTD grid, from

which the discretization error was determined. It was shown that the discretization

error is small, and that as the grid spacing goes to zero the FDTD power equals

the continuum power, provided the dipole length is set equal to the FDTD grid

spacing. The fields and radiated power of a line source in a two-dimensional FDTD

grid were also determined, and for both the two and three dimensional cases, it

was shown that the FDTD radiated power is alternately given as the integral of the

scalar product of the electric field and the conjugate of the electric current density,

as for continuous current distributions. A duality transformation was presented and

applied to the electric dipole expressions to determine the fields of a magnetic dipole

in FDTD. Finally, the interaction fields for electric and magnetic dipoles modeling

a small aperture were determined for use in the induced dipole method to modeling

small apertures in FDTD, which was presented in Chapter 3.

In Chapter 7 a transmission line model was used to model the nonlinear fre-

quency response at high input power levels of stripline resonators fabricated with

NbN and YBa2 Cu3 0 7-x thin films. The resonator was modeled as a transmission

line. Capacitive 7r-networks were used to model weakly-coupled resonators, which

have quality factors of order 106. The transmission line inductor flux and resistor
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voltage drop were assumed to be odd polynomial functions of the transmission line

current, and the polynomial coefficients adjusted to match measured data. Excellent

agreement was found between the measured and calculated results for polynomials

of order 5. In solving for the frequency response, the input impedance was assumed

and adjusted iteratively through the Newton-Raphson technique until the output

impedance converged to the load impedance. Typically only a few iterations were

required for convergence. The above approach also accurately models the hysteresis

effects observed in the frequency response of the NbN resonator. From the model it

was observed that the resistance of the YBCO thin film is a stronger function of the

transmission line current than the inductance, and hence hysteresis is suppressed

in the YBCO resonator.
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