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Abstract

This research presents novel techniques for acoustic-source location for both
actively triggered, and passively detected signals using pervasive, distributed net-
works of devices, and investigates the combination of existing resources available
in personal electronics to build a digital sensing 'commons'. By connecting per-
sonal resources with those of the people nearby, tasks can be achieved, through
distributed placement and statistical improvement, that a single device could not
do alone. The utility and benefits of spatio-temporal acoustic sensing are presented,
in the context of ubiquitous computing and machine listening history. An active
audio self-localisation algorithm is described which is effective in distributed sensor
networks even if only coarse temporal synchronisation can be established. Pseudo-
noise 'chirps' are emitted and recorded at each of the nodes. Pair-wise distances
are calculated by comparing the difference in the audio delays between the peaks
measured in each recording. By removing dependence on fine grained temporal
synchronisation it is hoped that this technique can be used concurrently across a
wide range of devices to better leverage the existing audio sensing resources that
surround us.

A passive acoustic source location estimation method is then derived which is
suited to the microphone resources of network-connected heterogeneous devices
containing asynchronous processors and uncalibrated sensors. Under these con-
straints position coordinates must be simultaneously determined for pairs of sounds
and recorded at each microphone to form a chain of acoustic events. It is shown
that an iterative, numerical least-squares estimator can be used. Initial position es-
timates of the source pair can be first found from the previous estimate in the chain
and a closed-form least squares approach, improving the convergence rate of the
second step.

Implementations of these methods using the Smart Architectural Surfaces de-
velopment platform are described and assessed. The viability of the active ranging
technique is further demonstrated in a mixed-device ad-hoc sensor network case
using existing off-the-shelf technology. Finally, drawing on human-centric onset
detection as a means of discovering suitable sound features, to be passed between



nodes for comparison, the extension of the source location algorithm beyond the
use of pseudo-noise test sounds to enable the location of extraneous noises and
acoustic streams is discussed for further study.
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CHAPTER 1

INTRODUCTION

Imagine we meet in a cafe and I put my phone on the table along with
yours and the phones of everyone in else our group. We now have enough
microphones to map the temporal and spatial history of our conversation
and the sounds around us.

Far more pervasive than desktop computers with broadband internet connec-

tion are the personal electronic devices many of us carry, such as mobile phones,

handheld game consoles and music players. Network-connected, digital technolo-

gies have become integral parts of our everyday lives for communication, enter-

tainment and organisation of our information, and as essential work-platforms and

fashion items. How can we use these collections of devices for public good and per-

sonal reward? If individuals choose to allow shared use of whatever embedded re-

sources the devices they carry in their pockets can share, such as their microphones,

cameras, speakers, screens, processing power, storage, GPSI and communication,

then a new family of applications can be built that draw these information-collection

and output mechanisms together to form a collaborative whole. The network must

have the facilities to adapt to its continuously changing state. This category of dis-

tributed systems, although still challenging to implement, carries benefits of flexi-

bility and potential that grows with the number of participants.

We are surrounded by digital devices that can communicate, listen and learn.

Although they share many features, we carry multiple processors each with a specific

primary use. These devices are often equipped with a microphone and speaker, and

many can establish wireless connections to communicate with other devices near

by. They need computational power for their primary tasks, but spend most of their

time underused. When we meet with someone, the total count of locally available

sensors doubles, when we gather in a group the number goes up further. These

clusters of devices offer the resources of a distributed audio sensor network. If

their owners desired, the impromptu collection of sound sensing nodes could share

information and leverage their spatial distribution in order to locate themselves

Global Positioning
System - now beginning
to be added to some
mobile phones.



14 INTRODUCTION

and the audio sources around them and begin to identify patterns, build models

and respond to this information effectively.

The aim of this research is to establish a basis for audio-based spatial localisa-

tion as an easily accessible tool in distributed processing sensor networks and to

investigate some of the uses of the information such a tool provides. What is de-

sired is a system that works across platforms and processors, functioning equally on

our personal devices, on the digital objects in our daily habitats and on distributed

ad-hoc networks such as the Smart Architectural Surfaces project[5] developed at

the Media Laboratory.

A practical approach to self-localisation, that is not reliant on fine grain timing

synchronisation, which has been demonstrated in both acoustic[46] and electro-

magnetic[54] ranging systems, is presented here. In requiring only a microphone, a

speaker, a timer and some form of inter-node communication, but no access to low

level hardware, it becomes possible to utilise any device with these basic resources

as part of an auditory scene analysis sensor network. A microphone array can be

built on-the-fly from these pervasive components.

The intention of the current research has been to implement a robust version

of this auto-localisation algorithm, demonstrating its viability as a cross-platform

ranging mechanism, and investigate extending these techniques to the estimation of

external sound event positions. Performance and fault tolerance are discussed. An

implementation across nodes of the Smart Architectural Surfaces is presented that

establishes the framework for collecting and interpreting long-term spatial sound

event patterns from the busy environment in which they are installed.

The thesis of this work is that sound can be used to establish a practical common

coordinate system between sensor equipped, but heterogeneous, everyday devices.

This information can then be used to enable the impromptu collection to act as a

distributed microphone array, spatially mapping unknown acoustic events, which

are naturally linked to human activity and scale. This research is discussed in the

context of existing audio sensing techniques and the many uses location through

sound can play in the context of ubiquitous computing and in response to everyday

life.

1.1 ALGORITHMIC CONTRIBUTIONS

This work describes how spatial information can be derived from sound mea-

surements taken at dispersed sensors and the techniques to collect and use this in-

formation from the microphones of devices. Methods for estimating sound source
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locations are developed, motivated by the central role acoustic positioning can play

in inferring human activity and context, and by the benefits that pervasive im-

promptu sensing networks could provide. Two algorithms are presented, one to

use sounds intentionally emitted from sensor locations to range between them, and

a second to use an array of sensors at known locations to estimate source positions

for any sounds occurring around them.

Collaborative Colocalisation

Actively emitted reference sounds from each device in a space are used to mea-

sure the ranges between them. It is shown that comparison of the length of the

delays between detected sounds at two devices gives the flight time of the sounds

across the distance separating the sensors. The delays can be calculated without

synchronisation between devices or from recording taken at unknown times. From

pair-wise flight times and an assumption of the speed of sound in air, relative device

positions can be estimated, using multidimensional scaling to establish a common

coordinate system. In tests the ranging is shown to have an uncertainty of a few cen-

timetres dependent on the accuracy with which sounds can be found in a recording

at the sampling rate used.

Passive Source Location

A novel approach is presented for extracting spatial information from record-

ings of sounds arriving at a number of sensor devices. A method is developed for

simultaneously estimating the positions of two acoustic sources. This draws on the

relative delay-timing approach of the active ranging technique for asynchronous

devices described above and the field of research on source location in synchro-

nised microphone arrays. Parametric estimation of a pair of sounds uses a two step

process. A closed-form least squares estimate of the newest sound is found based on

the position of the previous sound, providing an initial guess that aids iterative nu-

merical least squares estimation for the nonlinear signal model for the two sources.

Simulation of this approach shows the estimates to be clustered with a standard

deviation of - 20 cm for the expected uncertainty in timing measurements. This

method is then tested using a series of reference chirps emitted at two locations.

The positions of the two sound sources are determined to within half a meter, with

the separation of the pair estimated to within a few centimetres.
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2.2 OUTLINE OF WORK

In Chapter 3, motivation for acoustic based location is grounded in the roles of

human vision and audition. Sound and light, because of their linear propagation of

energy, are important in sensing the world around us. Further, audio is unique in

its strong link to activity, and although it provides sparser detail than vision, with

most static scene information lost - merely implied by reverberation and filtering

- movement and events are nearly always tied to associated sounds. Sound is also

marked by the ease with which it can be generated, in our actions, our commu-

nication and entertainment, tying a specific location to each one of these acoustic

events. Coupled with the simplicity with which it can be measured, this places

sound in a unique position for collecting spatial estimations of audio signatures

associated with exact moments of human centric activity or meaning.

In Section 3.2 an overview is given of how machine listening, focused on de-

tecting sounds linked with people, has developed from early voice recognition to

music processing and audio scene analysis. These fields can all use expectation,

based on assumptions from prior listening or the properties of sound, to improve

performance in recognising and extracting meaning from waveforms. The expecta-

tion models can be augmented with additional information in the form of acoustic

position estimation. The part that spatial estimates can play in aiding segmen-

tation and categorisation of sounds is highlighted. Other uses of spatial acoustic

features are discussed including as metadata to mark up long audio recordings, in

aiding memory and in understanding otherwise ephemeral sound information. For

example human social dynamics and patterns of dialogue can evoked, and better

understood, by examining the traces of spatial history collected from audio.

Chapter 4 highlights the parallels between the information that can be deter-

mined from a scene using audio based localisation and the core goals and needs cen-

tral to ubiquitous computing. The proposed embedding of computing and sensing

resources into the fabric and woodwork of our everyday habitats, work and living

spaces, with the aim of interpreting situational information of a space, is discussed.

A core goal of ubiquitous computing is to estimate the needs of the people in a

space and to react in useful ways, and with seeming common sense. The require-

ment of spatial context - detection of activity and sensing specific to exact locations

- matches closely the short range, architecturally contained properties of sound.

Some of the ways in which sound can be used in these pervasive sensor and output

systems are identified, as a means of determining social context, of complimenting

interaction or of recording and retaining information on the use of a space and its

acoustic history. Sensors and computing, although not connected or responding as

a cohesive whole, have become pervasive in our lives. These resources could be put



OUTLINE OF WORK 17

to use, to begin to effectively sense people and their actions.

Detecting a sound and estimating source position requires collection and pro-

cessing of audio captured from spatially separated locations. Chapter 5 examines

how the collection of audio can be approached in either a centralised or distributed

manner, and how, looking at a number of network approaches, a distributed sys-

tem carries the advantages of scalability, and tolerance to change and node failure.

Key features derived from an architecture that treats sensors as autonomous nodes

are identified. The implied constraints of such a system include an emphasis on

local information processing, the need to assess changing network topology and

neighbourhood resources, and limitations of communication to only salient infor-

mation. Further constraints are imposed by the use of heterogeneous collections of

devices, sharing resources to build an impromptu microphone array. These include

a detachment of the algorithm from assumptions of low level hardware properties or

communications methods, and designing with code-portability in mind. The Smart

Architectural Surface platform is then described, including its role as a testbed for

re-configurable hardware and software, and support of distributed acoustic sensing.

The typical resources and constraints of current consumer electronics devices such

as mobile phones are highlighted, and compare closely to those of the tile testbed.

Given the spatial properties of sound, there exist a number of implemented,

and theoretically possible, approaches to the challenge of collaborative colocation

of devices in a distributed sensor networks. In Chapter 6 this is discussed, and

the motivation for selecting active, pair-wise ranging is given. The use of easily

detectable, broadband, deterministic 'chirps', overcoming the challenges of fine

grained timing requirements in time of flight measurements, and the steps from

range measurements to a complete coordinate system, are outlined. The techniques

necessary to determine the network conformation from sounds emitted at each of

the devices are given. The selected method for subsequent determination of spatial

arrangement from node-to-node ranging is detailed and justified. Evaluation both

on the Smart Architectural Surface tiles and using the resources of a collection of

other, heterogeneous devices, is given in the final section of this chapter.

Building on the success of colocalisation in asynchronous devices described in

the previous chapter, the derivation and testing of a source localisation strategy in

the same distributed sensing conditions is then described. The history and theo-

retical background are presented for source estimation based on time difference of

sound arrival, and the use of the given resources given in a distributed microphone

array to determine the position of unknown sound emission points. Measurements

of sound arrival times at each of the nodes defines a system of equations that describe

the intersection of a number of hyperboloid surfaces. Solving these equations, in
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the presence of noise, is a nonlinear problem whose solution has seen improved so-

lution methods over the years. A description is given of a currently used technique,

in centralised, fixed microphone arrays. The use of this closed-form, spherical

model, least squares method, in an asynchronous system, as an estimator, prior to

a numerical, iterative error minimisation step, for each pair of sounds from a series

recorded by each device is then determined. Experimental evaluation is presented,

which demonstrate that coarse position estimation is possible in systems that lack

the fine grained synchronisation necessary for typical acoustic tracking.

In the discussion of this research, future directions for this work are given,

including possible ways of improving collaborative localisation for real time per-

formance in heterogeneous devices, and the steps necessary to progress the source

estimation from proof-of-concept to the robust tracking and mapping of arbitrary

audio events. A means of extending this technique to identify arbitrary sounds in

real-room conditions is presented, with preliminary practical results. This includes

the successful selection of target sounds, based on onset detection, for accurately de-

termining arrival times. Possible improvements to the system towards distributed

and real time solutions are suggested. Finally, a description of the novel forms of

sensing and collaboration these tools can enable are explored, and how building

impromptu sensors from resources we are already carrying can benefit how people

interact and use their personal devices is considered.



CHAPTER 2

SPATIAL LISTENING

For computing-embedded objects to know where they are, without having to tell

them, is a desirable core feature in sensor networks[2], ubiquitous computing[48],

robotics and other self-organising device clusters. It will be shown in the follow-

ing chapters that spatial information can be derived by measuring differences in

arrival times of identifiable sounds. Specifically, the relative positions of devices

equipped with both a microphone and a speaker can be found, under the constraint

that no initial fine-grained time synchronisation or sensor calibration is known.

This is the case for a collection of existing sensor equipped devices such as mobile

phones. With this inter-node coordinate system, information on the locations of

other sounds occurring around the sensors can also be found by selecting audio

events as common references, and using the implied constraints from their arrival

times to discover their positions. Motivations for choosing audio analysis as an

approach to localisation and related work in the field of spatial listening are given

below.

2.1 SOUND

It is argued here that the role and importance of sound sensing in machine

listening is derived not only from its technical facility but from the central part it

plays as an indicator of human activity and communication. The strengths and

limitations of acoustic positioning are given in this section. An overview of the

spatial information a sound carries from its point of creation to a sensor is then

described. The end of this section addresses the technical aspects of digital sound

detection and production.
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Motivation for Auditory Sensing

"Auditory events tell us about the surrounding world. What is charac-
teristic about these events is that they are spatial and temporal; the infor-
mation specifying the event consists of variations in the sound over both
short and long time periods." -Stephen Handel[21]

In designing sensor systems for humans, and in considering the extent of the

information that can be gained through machine learning from an environment,

much can be discerned from how animals have evolved to detect and use this infor-

mation. We are sensor rich entities, collecting and processing a large proportion of

the available environment changes that occur around us. We develop robust models

for interpreting and combining this information. We primarily sense the world be-

yond our reach through measurements of sounds and light arriving at our ears and

eyes respectively. Vision and audition play particularly central roles because the

linear propagation of these phenomena enable us to collect information not only

locally to our bodies, but from as far as these energy changes can travel. Both sound

and light have wave-like properties and travel in a predictable way from their points

of creation or reflection, allowing us to determine spatial information from them.

Light provides the greatest detail, scattering from the surfaces of our physical sur-

roundings. The useful light we see is mostly reflected from the surfaces of objects,

with wavelengths on a scale that interacts with the materials to give an indication

of properties in the form of colour. By comparison, sounds are mostly event based

- longitudinal pressure waves of compression and rarefaction created by a sudden

change or action of possible interest to us. The short temporal signatures, varia-

tions in the strength of the pressure waves over time, carry rich information on the

corresponding temporal process that caused the sound. These are the results of col-

lisions, breakages, air turbulence and resonance. We recognise and categorise these

sounds, inferring a great deal about their creation. Patterns of consecutive sounds

also carry meaning, in their timing and changing direction of arrival. We can deter-

mine source positions and some information on the surrounding scene from how

the sounds streams vary as they move through space and over time. With our eyes

closed, static objects and terrain become barriers, detectable only through touch.

The dynamic world, marked by sound, is still very much detectable, as those who

are visually impaired can attest to. Sound is significant as it is closely linked to activ-

ity, and can be generated by us and machines with ease. In our daily lives we leave

trails of sounds in almost everything we do. Turning on a light switch, talking to

friends, walking down the stairs, listening to music - these are marked by distinct

sounds emanating from the point at which they occur.

The structure of the ear is designed to collect and respond to the local sound

perturbations that have propagated to it as pressure waves through the air. What
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we hear is the brain's interpretation of the measurements of these pressure changes

that reach our ears over time. Organisms evolved the ability to detect the constantly
varying pressure levels we call sound as it gave them a distinct advantage. Hearing

was primarily a method of characterising and locating possible danger as well as a

means of collecting background information. Location estimation from distinctive

sounds gives an indication of approaching threats and possible prey, while tracking

the direction of persistent sound sources over time allows us to update our models

of our position within the scene. We maintain a concept of our local acoustic

environment by positioning ourselves from measurements within a cloud of sound

streams and the corresponding activity they indicate. Our use of sound has enabled

us to develop complex forms of voiced communication and musical expression.

The range of frequencies we can detect are indicative of human scale events, and

sound has been appropriated culturally to carry many messages, subtle meanings

and information. Through spoken language, sound has become our main form of

communication and through experimentation in the production and ordering of

sounds we have developed rich artistic applications in music and beyond.

Sounds can be characterised by variations in amplitude of regularly oscillating

and disordered components, that is, the temporal changes in their frequency and

noise-like elements. The time between peaks of sinusoidally varying elements of

signals, are produced by rapid vibration or oscillation. These frequency compo-

nents, and how they vary within the signal, indicate properties of the sound source,

as do attack and decay rates and noise elements. Our physiology is particularly

suited to detection of onsets. These provide clues to new sound elements and are

sharp, feature-rich signatures that aid timing estimation. Our ears are wide angle

collectors. The sound processed by our brains, or passed to a computer from a mi-

crophone, is a constant stream consisting of mixtures of sounds. By taking repeated

measurements of the pressure variation over time, the waveforms can be interro-

gated. The properties of the human auditory system offer clues into effective ways

to approach audio event detection and position estimation. Our ears and brains

have evolved to make sense of the layered spectral components through acous-

tic assumptions. As an example two spectral components starting at the same time

tend to be perceived as being part of to the same sound. Such assumptions may also

be beneficial for machine listening analysis, and require some form of probabilistic

management when conflicts occur between acoustic common sense assumptions.

As an example of the information and acoustic clues we are constantly process-

ing, imagine emerging from an underground subway onto a busy city street. By

analysing the audio arriving at our ears from the many sound sources in the scene

we are able to quickly start to make sense of the environment. Cars, people, trees

are all generating sound. We move from the enclosed, reverberant space to a wide
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open one. As each of the sounds reach us we also detect small differences between

the signals at each of our ears, this adds information on the direction of the sounds

and our position relative to them. The paths along which the sounds travel also add

information that we can recognise and use. Sound travelling away from us can be

reflected back to arrive later than the direct path, adding a number of repeated over-

lapping signals in a reverberation tail. We also interact with the acoustic streams,

moving through the space, shifting our body, head and pinnae, and listening to the

changes this makes.

Estimating Distance and Position with Sound

Listeners are clearly capable of extracting considerable information on the peo-

ple and activity around us from the sounds heard. We use the spatial separation

of our ears to gain further information from the sound mixtures they collect. De-

tecting the passage of sound through a space, as it passes by the sensors capable of

measuring it, provides a spatial component model of the sound, and the possibility

of using that to infer information about its source. We identify and group compo-

nents within the sound mixture stream at our ears that belong to one source, these

can be compared inter aurally for timing, volume and frequency variation. By sam-

pling the waveform originating from a single source as it passes two positions, the

differences in the two signals indicate direction of wave propagation, environmental

filtering and the effects of our ears, heads and bodies on the sound.

A local pressure change in air will propagate at a speed which depends on the

temperature and pressure of the medium. The wave front spreads out spherically

from its point of creation or reflection, and assuming a static, constant-density

medium, reaches all points on the surface of the sphere at the same time. As the

energy of a sound wave spreads out over the surface, the measured signal amplitude

decreases further form the source. This volume change is inversely proportional to

the square of the distance from the source. From the arrival times and volume of a
direct signal at each ear we can therefore infer the azimuthal direction of the source

in the plane in which our ears lie. The volume is further varied by occlusion of the

head. We use this learned volume change to strengthen our direction and position

estimations.

Inter-aural comparison provides a number of indicators of direction which

combine to corroborate their agreement - or are assessed in combination to reach

a single solution. For nearby sounds, an estimate of position can be triangulated
by combining a number of direction estimates from different positions as we move

Our sense of our own our heads, and our proprioceptiont . This requires a number of sounds to be emit-
movements.
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ted in succession from a single sound source. If we could compare what others in

the room hear with the same accuracy that we compare the signals from each of

our ears, we could establish even more fine grained spatial sense from the acoustic

information. Turning a number of direction estimations from pairs of detectors

into a triangulated position estimate of the sound source. Recording sounds across

an array of microphones allows this to be achieved. As we will see, the challenge

is then how best to create such a network of microphones with known separation

distances.

A sense of distance can also be construed from prior modelling of the expected

sound and the effects of distance. Higher frequencies are absorbed more readily

by the air than lower frequencies, so the degree of filtering can indicate distance

travelled. Modelling of multi-path components of a sound as it is reflected back to

the ear from surrounding surfaces can be combined with a knowledge of a space

to further ascertain a sense of distance. Through microphone detection and pro-

cessing of the signal, these signifiers of sound direction are possible constituents of

machine listening. Repetition of audio sensors allows us to use the relative filtering,

loudness or timing differences to infer a great deal about direction and position of

sounds, as well as allowing suppression of unwanted noise and background sounds.

As with our own hearing, building estimates based on several different estimators

of position are inherently more robust to measurement errors. Of the indicators of

position that audio offers, timing is well suited to machine listening. Delay mea-

surements can be made with significantly more accuracy than comparative volume

level measurements, and are less likely to require calibration between detectors of

varying characteristics. Timing measurements are general to any spacet , there is

no need to determine the transfer function - the filtering due to a microphone

position and surrounding relative to others - of a particular environment, or relate

measurements to proprioception. Modelling an acoustic environment in a machine

listening system requires prior assumptions about sound properties and consider-

able iterative prediction building.

Source location information can be inferred from the delay between spatially

sampled measurements. Direct distance measurements can be made if both the

emission and arrival times of a sound are know, or the time of flight can be deduced.

Once the length of the path along which a sound has travelled can be measured,

sounds can be actively produced to act as a ranging mechanism. It will be shown in

Chapter 6 that this technique is suitable to a number of independent sound sensors

which are able to share information to determine spatial estimations.

The benefits of audio ranging advanced in this chapter show it to be a potentially

robust, room scale form of information gathering. However, there are constraints

However, as described in

Chapter 6, the speed of

sound varies with the

local properties of the

air.
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to audio based localisation. Sound travels through a medium such as air at a finite

speed, which varies with local temperature, pressure and air movement. A pos-

sible source of error is the fluctuation in the speed of sound with air temperature

throughout a room. Multipath reflections and signal occlusion can cause sound

path lengths to appear longer than they are. Sounds are muffled or stopped by

physical blocks. Compared to radio frequency electromagnetic signals, sound has

limited penetration of solid barriers. However, the wavelength range of audio is

large, so that scattering from features of a certain size is likely to only affect a small

component of a signal. A further source of confusion is multipath through different

materials, such as a knock on a table travelling both through the air and through

the wood.

In ranging between devices, we will see, generation and emission of reference

sounds is a typical approach. Ultrasound, beyond the threshold of human audibility,

offers the promise of signals that can pass undetected by people sharing the space

with the system. Generating sharp onsets to accurately establish timing requires

broad band signals which means that ultrasound chirps contain audible frequencies

that lead to a click heard with each emitted pulse. The alternative, sounds in the

detectable frequency range, must then address the questions of coexisting in this

acoustic channel. That sounds made by technology can be both so effective at

catching attention and so irritating when inappropriate further demonstrates the

importance we placed on detecting key audio.

Activity and Scale

Sound is a natural choice for human-scale, people-centric sensing. It is closely

linked to physical activity, indicating movement, tasks and interaction. Every-

day sounds are easily detected within a limited area, having a human scale range

of dispersion and architectural containment. The importance of audio, for social

communication, entertainment and context make it an information rich channel.

The use of sound in computer-human interaction benefits from its people-

centric properties. Since sound waves are intentionally attenuated in our living,

social and work environments and drop off in volume over a short range, sensors

using sound are naturally bounded to similar near-field attention range as their

human users. Sounds measured in a room consist of the local context and hu-

man presence, and characteristic dampening and reverberant properties. It may be

possible to start to model the local space in addition to recognising distinctive au-

dio signatures of human speech and movement in information gathered from both

coarse and fine time-scale analysis.
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Technical Aspects of Sound Detection

Throughout this chapter the facility of detection and creation of sounds has

emerged as a key feature in its uses. The ease with which sounds can be processed,

stored and transmitted technically, and the information that can be gained from

relatively simple analysis, together make sound sensing a viable approach using

current technology.

The process of digitising an continuously-varying analogue signal into discrete

representations of time step and amplitude level carries the inherent considerations

of sufficient representation and aliasing effects. Care must be taken to obey the

Nyquist-Shannon sampling theorem[50], which states:

"When sampling a signal, the sampling frequency must be greater than
twice the bandwidth of the input signal in order to be able to reconstruct
the original perfectly from the sampled version",

The incoming microphone signal must be filtered appropriately. Digitisation of

an audio signal enables storage, analysis and transmission of the resulting waveform

with ease. It is common for signal analysis and digital filters to run in real time, for

example, and many hours of audio information, using lossless compression, can be

stored in small, pocket-sized, devices. A typical audio sampling rate of 44100 Hz

yields a spatial resolution on the order of a few centimetres.

The success of the telephone has motivated the development of practical, low

cost, low power and physically robust microphones and speakers. The development

of a practical foil electret t microphone at Bell laboratories in 1962 has lead to small

package microphones with a broad frequency range, sufficient characteristics and

negligible costs. Technology reached the point, at the beginning of this decade, at

which the resources necessary for analysing sound are compact, energy efficient

and low cost. Relatively large amounts of audio information can also be stored eas-

ily. Many of the consumer electronic devices we use are reaching the point at which

advanced signal processing techniques can be implemented, some executing in real

time. The inclusion of audio capabilities in a wide spectrum of consumer electron-

ics devices is also driven by benefits that can be offered at a low extra cost. Further

to primary sound functions such as telephone, music or meeting recording, exam-

ples include voice notes and sound alerts in many devices. It is even conceivable to

build large numbers of microphones and speakers with associated in-place process-

ing, into many architectural and household objects. It is this vision of widespread,

distributed sensing that will be examined in the next chapter.

Permanent electrical

polarisation of foil which

acts as unpowered

capacitor.
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3.2 SOUND SENSING

This research is focused on providing methods of inferring distance and location

using acoustic sensing. In this section a description is given of the ways in which

estimates of positions of sounds, and the events that cause them, can be useful to

people. The machine listening tools that have been developed to support daily living

are presented, and the ways in which these can be enriched by position information

are given. If the location of objects and actions that make sounds can be determined,

then this provides a basis for recognising, recreating or interpreting them. Devices

can emit and record sounds as a means of self location and begin to map the audio

context and history of a space. Tracking and clustering of this data could then allow

longer-term patterns to be found, which in turn can be used to perhaps develop a

better understanding of situations and daily rhythms. 'These resources, which use

sound as a ruler to measure out space and distance, are valuable to systems that

intend to track and draw meaning from the actions of people. Records of transient

audio signatures can also be gathered, made more permanent and presented back

directly to people in ways that allow them to reflect on and use this information.

As humans, we tend to forget how much we use our auditory system to monitor

our surroundings. As described in the previous section, we are able to track and

identify sounds, such as the words spoken to us, by using binaural differences, and

hence we learn models of sounds occurring around us which augment an expecta-

tion of the sound waveform properties. It has been shown that learned assumptions

about how the acoustic events in living habitats occur, and the ways in which sen-

sory systems have evolved play a strong part in how sounds heard are interpreted.

For example several frequency components arriving at our ears with differing inter-

aural delays are naturally assumed to have come from different sources. The posi-

tion of sounds are then an important component in listening, and can be used to

augment the models of sound spaces implicit in the assumptions on which acoustic

sensing technologies are developed.

Machine Listening

Sound analysis is well suited to human-centred contextual information gath-

ering[13]. The same benefits of sound sensing in living organisms are true for

machine listening. It is clear that a broad range of information is available in sound

measurements. Acoustic machine analysis is motivated by the success of human

audition. This spans low-level waveform signatures indicative of the properties
of individual sound sources, analysis of sound clusters and ordering patterns that

mark a physical event, and high level semantic or aesthetic meaning, from speech
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recognition to mood analysis. Methods of machine analysis reflect this, low level

phase and frequency, through onset detection to higher level ordering and compo-

sition estimation. Machine listening in everyday life tends to fall into three fields.

Speech recognition focuses specifically on features that can be used to estimate the

semantic content of spoken words. Music analysis extracts on tonal and tempo-

ral patterns, often drawing on assumptions of certain musical styles. Audio scene

analysis which is a more general, recent, approach to identifying sound events and

modelling sound environment. Inferring where a sound originated, and the jour-

ney taken from source to capture can play a part in aiding understanding in each of

these cases.

Three concepts central to processing the spatio-temporal acoustic information

from a room, 'event', 'context' and 'history', reflect three corresponding scales of

both time and space. The terms are given here in relation to this research:

e Event - Describes a single action or short series of steps (such as the series

of clicks made when open a drink can, for example) which we recognise as a

single sound. These are distinct features in time and space.

* Context - Encapsulates concepts of situation, place and time. Activity lead-

ing up to and following a sound. Audio location cues hint at current place,

tasks, emotions, etc.. Determination of context has become a central goal in

human-computer interaction.

* History - Shifting in context or patterns of events over time. Use of space, and

both recent and long term patterns. Inferring normality and abnormality

through clustering and modelling from past observations.

Sound Recognition and Audio Scene Analysis

The recognition or transcription of speech by machines is a core challenge in

the Alt and interface design communities, and was one of the first areas of audio

scene analysis to be thoroughly explored. Here an approach must be developed

that focuses on a single sound source, excluding the distracting features of many

others, in a real room environment, in order to extract the meaning from the words

we ourselves find so easy to understand. The techniques popular today are starting

to make use of the approaches it is believed support our own listening. It seems

we develop an expectation of the sounds arriving that greatly aids comprehension.

This is evident in the theory of glimpses too, where it is proposed that we use the

redundancy of information in spoken words to recognise the meaning even when

the word is masked by noise in parts. We also use expectation in the meaning of the

Artificial Intelligence
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words to predict what makes sense for someone to say next. Music analysis too, has

benefited from expectation built on prior examples, in that case, of musical genre

or composition.

The concepts used in voice recognition are being extended to audio scene anal-

ysis in general. For example, how can a machine recording a street scene, or the

sounds in a park, pick out and identify separate audio events and streams. A number

of recent attempts to enable machines to listen, in the sense that we ourselves take for

granted, identifying distinct sounds as they arrive, are based on building effective

models of the expected sounds, and the types of sounds that the system expects to

encounter. This reflects the ways in which our own brains may approach listening.

The key to human success at a cocktail party, for example - the ability for someone

to track a single conversation in a chaotic acoustic environment - seems to be the

redundancy of information in the system we have developed. It is worth noting that

this example is tempting and possibly misleading, as we do not extract a completely

separated audio stream before comprehending it, but rather extract meaning from

the mixture of sounds we hear. The time and amplitude differences between ears,

allow us to focus on sounds at a single point in space. Visual information, such as

the movement of someone's lips in time with the sounds we hear, further aid our

comprehension. This successful approach of robustness from redundancy can be

used to improve machine listening. Expectation can be aided by clues of position.

Although we can listen to a monophonic recording of a conversation, and pick out

the participants and meaning, our accuracy is reduced as the channels of informa-

tion become limited. Estimates of spatial information of incoming sounds are then

not only useful as a separate sense, for mapping or tracking sounds, but also become

a valuable component of a robust 'listening' system. This entails collecting partial

information on the nature of the sounds recorded to be combined with knowledge

of the statistical features of the sounds, video, prior assumptions and models of a

scene and a wide variety of other sensing techniques. Spatial analysis stands out

as demanding little resource overhead or prior assumptions in microphone array

systems.

Extracting Acoustic Events

The goals of Blind Source Separation (BSS) are to extract a single sound from

others that overlap it, and from complex filtering effect of passing through an en-

vironment. Westner, for example, examines the extraction of sounds in a room to

aid an object-based audio approach[61]. In a single recorded stream BSS is possi-

ble for mixtures of statistically independent sounds using Independent Component
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Analysis. Smaragdis et al. provide a recent overview[49] of the current abilities

and applications of ICA in machine listening, and its constraints. In real room

environments the technique is degraded by non-localised noise, reverberation and

non-stationarity of the source. Attempts have been made to more fully model these

interactions in order to account for them, but an effective combination to perform

robustly in real room separation cases has yet to be demonstrated. It is also unclear

where the distinction of room filtering should end, as the human body, for example,

also adjusts sound as it is produced or detected. The inspiration for complete sepa-

ration comes from our own ability to focus on single sounds in noisy environments,

but it is clear that we do not completely separate sounds, just extract the meaning

we need.

For cases in which several sensors can be used, the signals from each can be

compared to aid source separation. Focusing on a sound at one point in space

involves, in part, adjusting the delays in a signal to match those caused by the sep-

aration of our ears and the angle of sound arrival. This causes sounds from other

directions to lose phase coherence and therefore prominence, and is the principle

behind beam forming[37]. This often accompanies a pre-formed model of the ex-

pected positions in which the sounds may have occurred. Beam forming can be

applied concurrently on any number of positions in a room given the resources to

track target sounds. Beamforming is used to focus on a sound stream from a single

position, by degrading the other sounds, with different delays, that arrive at the

separate sensors. From the delay that delivers the strongest target signal, an esti-

mate of where the source is can be obtained. In larger microphone arrays, repeat

matches from a stream of sounds further improves position guesses, strengthen-

ing the recorded sounds as they combine in phase. Other sounds, which do not

arrive at each microphone in phase, and microphone noise, average toward zero

and are suppressed. Performance in delay estimation for unknown source location,

can quickly degrade if the effects of reverberant environments and non-stationary

sources such as people speaking while moving their heads are not taken into ac-

count. This is a fine grained source location problem. It will be shown in Chapter

7 that given looser position accuracy constraints, real-time passive localisation sys-

tems have been made. Acoustic event positioning has a long history in SONARt

and ballistics location (for examples see [8] and [17]). It is now beginning to be

used to mimic our own ability to track and concentrate on a single sound source,

for implying attention in robot gaze and other affective computing scenarios.

Sound navigation and

ranging.
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FIGURE 3.1. (a) In the work of Basu et al [3], plotting delay estimations

from two microphones yields clusters corresponding to conversation
participants. (b) DiMicco[14] presents a method for displaying
conversation participation to those involved.

Using Spatial Information from Sound Signals

Localisation of sonic events can play a unique part in many computer tasks

involving categorising acoustic scenes. Looking again at ourselves as a successful

example, our understanding of the environment we are in is enriched as we track

groups of sounds temporally and spatially. Imagine the case of someone approach-

ing you, from behind, through a forest. They will make a large variety of sounds

as they move, breaking sticks, rustling leaves, breathing, etc., but each sound oc-

curs along a slowly varying spatial path. We are able to easily identify these as a

related stream, and concentrate on them closely. Spatial information also allows

us to separate two otherwise similar sounds because of the variation in their ar-

rival times and volumes. If these 'common sense' assumptions of listening can be

applied with spatial information collected with sound recordings, scene analysis

may become better able to correctly interpret confusing recordings. Dan Ellis[16]

describes how his prediction driven approach to auditory scene analysis could be

effectively augmented with position information if it could be collected.

Spatial acoustic mapping can provide a means of tagging features in audio

recordings to aid ease of browsing and comprehension. For example, interpre-

tation of long term audio recordings. We have the resources to store continuous

streams of audio from our lives. This form of memory aid and information collec-

tion is potentially very useful. However, effective methods of searching these audio

AIM . ............ ........
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FIGURE 3.2. Informal, unplanned conversations form many of our
work and social interactions. How can spatial machine listening
compliment this? (after David Rees)

streams are currently limited, with high speed audio only effective up to a certain

speed, and direct visualisation of waveforms or spectrograms only cryptically use-

ful. Approaches to this problem have tended to focus on the extraction and use

of semantic information from audio for memory aids and rapid retrieval. Spatial

information plays an important part in memory and provides an extra channel of

information. For example, Basu[3] used a body-worn, synchronised, three micro-

phone array to estimate azymuth of incoming sounds, based on cross-correlation.

The data collected exhibited clustering of the positions of talkers. Attempts to seg-

ment and categorise the recording based on situation and place could benefit from

partial maps of the arriving sounds. Work on labelling and segmenting personal

audio as a memory aid or as a searchable record of events, could use spatial flow

as a method of quickly visualising or clustering the sounds recorded. Presenting

back information on conversation turn taking, based on acoustic participation, has

proven effective in aiding groups who consider their information sharing process

to be in trouble. In the research of DiMicco[14], groups were presented with spa-

tial representations of their relative participation in a meeting. It was found that

information exchange in groups was encouraged by this spatio-temporal acoustic

analysis. The system used close-talk microphones for each participant, and spatial

position was manually entered. People read rich social aspects into very simple

transcriptions of audio cues.





CHAPTER 3

AUDIO SENSING EVERYWHERE

Knowledge of sound location is a valuable component in systems that attempt to

track, model and pre-empt people's actions and needs. Examples include the pro-

vision of location specific content, environments that respond appropriately to the

people moving through them, covert surveillance, health monitoring and 'smart'

rooms. Location plays two main roles, the first is self-calibration. In systems in-

tended to contain large numbers of sensors and independent processing objects,

manual calibration becomes impractical and undesirable, and yet position within

a space is desired information to allow objects to adapt or best fit their situation.

This need reoccurs in many systems involving numerous separate subsystems or

disparate processors. The use of self-localisation is two fold, not only does this al-

low objects to calibrate their positions, but it also enables them to track themselves

as they are moved. The second vital use of the ability to locate is to identify and

respond to people and events in an environment. Not only to focus on one person

speaking to gain meaning from those sounds, for example, but also in developing a

general impression of awareness and modelling context of a scene.

3.1 UBIQUITOUS COMPUTING

The field of ubiquitous computingt explores the possibility of pervasive in-

visible processing, sensing and actuation, built into the fabric of the objects and

architecture around us, activating everything. Accompanying this shift from per-

sonal fixed computing to universally accessible computing commons, was proposed

a corresponding shift from users translating their needs into the language and ar-

chitecture of the computer, to ubiquitous computing, monitoring the context and

actions of people and modelling their intentions to determine how best to intervene

and offer assistance. By adding computing to everything, it is argued, it is always

at our fingertips. Van Kleek offers a recent overview of the field[56]. Core chal-

The origin of the term

and the concept is

generally attributed to

the late Mark Weiser

from the Xerox Palo Alto

Research Center (PARC)

in the early 1990's.
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lenges include embedding resources into the environment, organising information

from a scene and inferring situation and intent in useful ways. As we will see in

chapter 4, a large body of research has investigated how processing hardware can be

shrunk, embedded and organised. An early experiment in ubiquitous computing

was Xerox PARC's CoLab Project[58], which used 'inch', 'foot' and 'yard' scale de-

vices throughout an office environment, interconnecting all three over wireless net-

works. A considerable body of work has been developed into how semiautonomous

programs can operate in this environment, acting on behalf of people to monitor

needs and provide pertinent information. The Agent-based Intelligent Reactive En-

vironments (AIRE) group part of the CSAIL Oxygen project at MIT, for example,

uses the Metaglue programming framework [11] - a system of co-operating agents

that monitor external information, the space and the people within it, negotiating

confidence and usefulness of the information they can provide.

The tools that spatial audio listening offer, of sensor calibration, tracking and

space monitoring, are central to ubiquitous computing environments and 'smart

agent' systems. Attempts to cluster this behaviour information, such as use of space

over time, can reveal patterns from which predictions can be made. Sound posi-

tioning can play a role in fine grained detection of space usage history. Positioning

of objects within a space and estimation of human speakers and other sound sources

facilitates the determination of social context. Machine learning offers the tools to

draw together sensor data. For example, in his research, Gorniak[ 19] describes how

situational modelling and semantic grounding can be used to link position infor-

mation and speech recognition to disambiguate a phrase directed at a 'intelligent

environment' such as "help me with this" through interpretation of context. Re-

search into effective tracking through spaces and buildings suggest that by combin-
ing predictions of position determined from a number of sensing modalities, robust
estimates of the movement of people can be found[22]. Noisy measurements can
be combined in a failure tolerant method using Bayesian statistical descriptions of
the confidence in each measurement.

The study of the spatial elements of human dynamics include how people move

relative to one another and the space they are in. In Weiser's paper[60] outlin-

ing the dreams and initial achievements of ubiquitous computing, he describes a

scene from a future world in which someone can look out of their window in the

morning and see the activity of the last few hours imprinted on the ground of their

neighbourhood. Sound sensing lends itself well to collecting audio footprints of

activity which can be displayed as digital patina, mapping routes through a space.

It is worth noting the fields of psychogeography and location based content, which

study people's interactions with their geography, and how to enable the marking

up of these spaces with 'just-in-place' information, respectively. The relationship
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--
FIGURE 4.1. Examples of personal and public mapping and memory.
(a) Image taken from the memorymaps pool on Flickr, in which people
mark Google satellite images with personal memories of the space. (b)
Partial map of New York based on everywhere one person walked in the
city. (c) Street installation made by tracking and then exaggerating
pedestrian movement.

between personal mapping and memory is already being explored in a number

of projects. Figure 4.1 shows examples of Google maps with childhood memories

added in Flikr[25] to create 'memory maps', New York walking map [24] and a street

art piece derived from the usage of the space[31].

Common Resources on Heterogeneous Devices

The pocket tab and note pad size devices in PARC's project, envisaged in daily

use by Weiser, are now commonplace in the form of laptops and mobile phones.

The hardware is still used as single entities, with programs running in isolation on

a person's devices. There is some synchronisation offered between an individual's

computers. Online services such as Gmail.com and creative tools such as PLW's

Open Attache[62] are shifting data into accessible-anywhere, networked formats.

However, the interconnected information sharing networks and the location, situ-

ation and context awareness have proven difficult to coordinate and deploy. The

resources needed for ubiquitous computing are not yet built into everything in our

environment, but they are being carried into our work and living spaces in our

personal devices.

As mobile devices become common place, the formation of impromptu dis-

tributed networks is possible. The resources to connect are also available in these

consumer electronics components. Examples of protocols that support clustered

connectivity include Bluetooth, which can form piconet clusters and supports rout-
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ing between these, and the resource discovery protocols of Rendezvous ('Apple

Bonjour') and UPnP (Universal Plug and Play). Organising the use of these re-

sources remains a challenge to be implemented and adopted. The nodes of these

networks should be able to offer up spare resources such as sensors, processing

power, output, storage and access to alternative communication channels. Most of

these devices also serve in their primary role, telephone, music player, camera for

only a small amount of time. This is not fully ubiquitous computing, the devices are

still devices, each sold with a primary application, but just as distributed comput-

ing can use unused processing time in many machines, running across the PCs of

people looking for signs of extra terrestrial life, so too, our existing devices can con-

tribute resources to a pervasive computing ecology. These impromptu resources

can compliment dedicated sensor environments that have been built to adapt to

new components and resources.

There seems, then, to be a strong motivation for nomadic architectures, subsys-

tems that can function on a number of disparate infrastructures and can offer up

their resources to unknown systems. It can be argued that it is unlikely that any

single networking protocol will be pervasive. The needs of people using the system,

seem to always be changing, and evolving. The current economic and academic

models do not fit with the needs of an open connected system. Competition and

new ideas always complicate a single, sufficient protocol. Further, an agreed pro-

tocol must be fixed, and so may not be beneficial to the growth of new capabilities.

Successful systems such as the internet and email, tend to be augmented as their lim-

its are discovered for example RSS[1], BitTorrent[12] and Instant Messenger[45].

So too, in distributed audio sensing systems, heavy reliance on network or device

architecture should be avoided to flexibly fit with future systems.



CHAPTER 4

SENSOR NETWORKS

Our daily acoustic environments are information rich and linked to activity, with

audio localisation playing a core role, or able to enrich many listening tasks. Chap-

ter 2 and 3 described the ways in which sound position information has been used

in machine listening and the part it can play in the emerging field of ubiquitous

computing. This chapter outlines the motivation for using distributed sensor net-

works as a means of collecting and using sound, and identifies the suitability of

the features of viral networks for organising distributed microphone arrays. The

assumptions introduced by distributed systems are discussed, as are the further

assumptions implied in the use of generic systems and existing personal devices.

4.1 ORGANISING DISTRIBUTED SENSING

Predictions of pervasive computing present an appealing future in which re-

sources are spread through our daily habitats and establish close links to personal

or wearable computing. Sensors must be abundant enough to detect situation and

connected enough to interpret context and react with 'common sense' to our needs.

In order to support effective sensing and interpretation of results, especially appar-

ent in large densely populated collections of sensors, it is clear that an infrastructure

that can adapt to a regularly changing ecology of resources is desirable. If the sys-

tem is to reflect the modular way in which our living environments are built and

used, then an approach based on sensors as autonomous nodes, with individual

processing and communication seems potent. The system must then self-organise

- sharing tasks and identifying new resources on the fly. The current technology

in our pockets and living spaces is composed of heterogeneous and largely un-

connected devices, but the resources for communication and sensing are already

pervasive. The aim of this research is to formulate tools that can build on existing

mobile computing towards a ubiquitous sensor environments.
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Microphone Arrays

Microphone networks use their spatial distribution to sample propagating sou-

nds at a number of locations and infer information from the differences in these

measurements. From timing of sound arrival at each sensor, they can collect in-

formation on their own spatial positions or other sound sources. Measurements of

sound arriving at a point in space will contain a mixtures of all the sounds crossing

that place at that time. It is by comparing sound arrival times and other properties

at several separate positions that information on source positions and paths can be

inferred. The challenge then is to capture these signals at each place and transfer

the parts that are of most interest for comparison amongst each of the sensors.

Viral Computing

Organising distributed networks of sensors to coordinate detection and tracking

of sound, and to collect together useful information requires a dynamically adapting

architecture. Taking the end-to-end principles that have proved so successful in the

growth of the internet, Andy Lippman and David Reed describe networks that can

operate without central authority, in a scalable and agile way, 'viral networks'[34].

The driving motivation in viral communication is to produce systems which can be

incrementally complimented with additional resources, providing new information

or connectivity to the ecology, in such a way that increasing the number of partic-

ipants improves the overall performance of the system. Many existing networks

demonstrate the opposite property; as the number of elements increases, the load

on centralised components of the system increase. Valuable information collected

becomes unwieldy, or the communication or processing requirements scale directly
with the number of nodes, and bottle necks are formed. Some of the key properties
of a successful distributed network can be explored in several simple examples of

current networks. Examples of these standard, centralised systems include many
security cameras feeding live video to a single monitoring facility and mobile phone
networks. By examining how these centralised systems can benefit from decen-

tralised infrastructure, through developing an understanding of distributed sensor

networks, the constraints on tools implemented in such a system can be established.

1. In the case of a camera network, full frame video is streamed from each of

the cameras to a central system for analysis. Not only does this demand high

network bandwidth, but a single processor, or human, must sort through and
identify points of interest on the multiple streams, in real time. The alternative

is to process or analyse the video at each of the cameras, passing only key



ORGANISING DISTRIBUTED SENSING 39

information or scenes of interest back to the central monitoring facility. This

leaf node processing reduces communication bandwidth considerably. It is

a key element in scalable systems, allowing for further nodes to be added on

the fly, with little increase in central overhead.

2. In current cellular telephone systems, as the number of phones using a single

cell tower increases, the overall performance is eventually degraded. In phone

usage at a large music festival, for example, many people are placing calls

locally, and yet they must all be routed through the central system. In a peer-

to-peer alternative, the devices must negotiate routing between nodes in an

ever changing system.

From the above examples the desired properties of a distributed sensor network

begin to become apparent. Processing at each node, passing only salient infor-

mation improves performance and limits communication bandwidth whatever the

network size. Spreading computational, storage and routing load across the net-

work may reduce bottlenecks and can allow the system to increase in performance

as it scales. A decentralised network structure is required that can self organise

on-the-fly, adapting to addition and removal of nodes.

Related Work: Distributed Sensor Networks

The limits and benefits of large systems of collocated sensor devices have been

explored in a number of recent research projects. Building working prototype sys-

tems motivate strategies and programming solutions that are invaluable as the size

of processors and devices continues to shrink to the point at which they can be

scattered onto or embedded in the surface of objects of every room.

" Paintable Computing - Butera imagined grain sized computing that could be

mixed with a medium and painted on to any surface[7]. An ecology of re-

sources scattered through dense network is formed. This very constrained

system demands distributed programming and code execution across asyn-

chronous processors.

" Smart Dust and the NEST Project -Working towards self contained millime-

tre packages, with the aim of eventually suspending a cloud of nodes in the

air. Smart dust embodies many of the challenges of small sensor devices [30].

How to distribute power or whether energy can be collected or stored locally.

Programming environment must conserve power and exhibit redundancy to

failure. TinyOS, a limited operating system specifically for small nodes in a
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sensor network has been developed.

" Pushpin Computing - Provides a test bed for the paintable computing project,

this system solves power constraint by pushing into wall and power substrate,

power harvesting by mounting in to power and ground layers below a surface.

Lifton describes the localisation capabilities of the system using ultrasound

from a single beacon and colateration[33]. Stackable modules can add re-

sources. Local neighbourhood infrared (IR) communication is used, which

allows simulation of much larger node systems through local neighbour infra

red communication. Timing is established through external IR beacon.

" Crickets and Motes - Small battery powered devices. Based on research

into active badge tracking, crickets provide location-support to aid device

positioning [44]. Devices maintain privacy, using map and beacon location

information. Motes were built as a testbed for smart dust development. These

nodes often work in collaboration with higher resource hub nodes, such as

iPaqs. They tend to use infrared communications and ultrasound ranging.

" Robomote and Eye Society - These projects explore proprioception-like feed-

back to sensor reading with dynamic nodes and the effects of varying sensor

position. These move to improve sensor readings and scene understand-

ing, or use movement through space to compliment readings and infer path.

Robomotes are free to move on a surface, ranging using the mote ultrasound

system [51]. Eye Society investigates mounting camera and microphone sen-

sors on ceiling tracks, that are free to adjust positions to update measurements

through spatial variation[38].

" Swarm Computing - Much more dynamic systems, practically exploring the

same constraints as those identified in the air borne smart dust system. Rout-

ing, sensing and code execution must be formulated in a constantly changing

neighbourhood. These problems of flocking behaviour and dynamic graph-

ing are beginning to be addressed in swarm computing systems such as the
helicopter cloud proposed by Owen et al. [23], that approaches this problem

using devices with greater individual resources and hence autonomy.

Many systems are constantly dynamic, requiring a running update of graph
information such as shortest route and local neighbours. Group forming strategies
allow for temporary allegiances to be formed.

Auto calibration and self-organisation are clear benefits to an organic network

of sensor nodes. These properties become vital in many circumstances, for exam-
ple as the number of nodes increases beyond practical manual calibration, or in

remote deployment, or indeed where including a calibration interface on each node
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is unfeasible. Position and synchronisation are core system information, sensitivity

level, orientation and knowledge of capabilities of local neighbours may also be use-

ful to determine. Coarse timing is necessary for many network interactions, such as

maintaining version history in file systems, and logic flow in distributed program-

ming. Position and fine synchronisation, as we will see, are vital to many sensing,

and particularly acoustic analysis tasks. Many devices are characterised by short

term timing accuracy, but lack long term synchrony with neighbours. Sensing of-

ten relies on gathering information from a change in measurements over time, this

question of how to compare the times at which recognisable changes occur will be

a common theme in the following chapters.

Strategies must then be developed not only for inferring the resources available

in a network - tracking and adapting to their changes over time - but also ways of

determining how best to balance the local processing and storage of nodes and the

cost and performance of passing information between nodes. The limited resources

of memory, computation, power and bandwidth, may also be time varying, further-

ing the challenge to organising tasks in such a system. New coding approaches are

required, that have adaptation and optimisation at their core. Ultimately a system

that seeks to discover resources, assess costs and elect tasks is sought.

Assumptions Imposed

An algorithm must fit certain criteria in order to be usable in distributed, dy-

namic systems such as those described above. By considering the constraints that

collaborative, impromptu sensing with device nodes implies, successful tools can

be implemented.

A distributed, viral communications system implies a topology and local neigh-

bourhood that is unknown. Microphones should be associated with a local proces-

sor and semiautonomous resources, in such a system emphasis is placed on analysis

at the nodes as this reduces communication bandwidth and support scalability of the

ecology. Communication is minimised, with deterministic calculation of reference

signals or digital compression of sounds, limited by the information that must be

retained for it to be meaningful. Practically this relates to sampling frequency and

then processing the result, compression perhaps even down to just a few key arrival

times. With no centralised tracking or maintenance of nodes, resource discovery

is desired; sensors, communication links or processing may be added or removed.

System stability can only be assumed in certain cases, such as short term stability if

mobile devices are placed on a table, or longer term stability if they are embedded

into a room. Motivation for distributed algorithms for large computation is clear.
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autonomous processing node, enables scalable, distributed systems

Where possible, algorithms than can be calculated in clusters and then grown to

global solutions are sought. For the centralised tasks that remain, leader election

must be accomplished.

Further assumptions are introduced with generic systems of heterogeneous de-

vices. No low level hardware access can be depended upon nor the addition of spe-

cialised resources. Microphone, speaker and wireless connection typically included

in many electronics goods. Layered communication with hardware resources must

be assumed as code may not have direct access or control of settings. Constraints of

synchronisation and position and the accuracy with which these can be determined

must be considered.

5.2 SMART ARCHITECTURAL SURFACE

The Smart Architectural Surface (SAS) is conceived as a distributed system built

from unit elements in the form of large wall tiles, which can be affixed to any surface

to form an acoustically and visually actuated, sensor rich surface. Drawing together

inspiration from smart rooms, distributed sensor networks and responsive archi-

tectural building materials research. Devices that cover surfaces can be decorative

and non-invasive, but are easily in view and can sense many positions in a room

and cover a large real estate.

The goals of the SAS are a physically and logically re-configurable environment
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FIGURE 5.2. Many consumer electronics devices carry the resources
necessary to establish a distributed sensing network.

that is fault resistant to addition, removal or failure of components. Tiles can oper-

ate in isolation, but benefit from connection and collaboration. As a viral network,

the performance of the tiles should grow with their numbers.

Two strata of sensor networks are currently pervasive in research, centralised

smart rooms and distributed sensor networks built from low cost, limited capabil-

ity nodes. Benefits of the latter have been discussed in this chapter. They are very

cheap, disposable and can be deployed in high density and wide coverage, being

small enough to attach to objects and scatter though an environment. They act as

test systems for a new scale of tiny computing of the sort proposed in the Smart Dust

and Paintable Computing projects. However, limited processing and communica-

tion capability currently available heavily constrains the computational tasks that

can be achieved locally at each node. On the other hand, augmented and smart

room research has pioneered the use of high resolution, specialised sensors and

hardware. Following a typical computing infrastructure and centralised approach,

information is collected from fixed locations in a room and then transported back

to a central processing system. These sensors are networked, synchronised and

hand calibrated. They have central failure points, but powerful computation. For

example the Large Acoustic Data (LOUD) microphone array[59] is built to pass

....... ...
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FIGURE 5.3. Each tile has a large front screen face, and is enclosed in a
thin plastic casing. Sensors are mounted along one side.

vast quantities of measurement data efficiently back for processing.

The SAS tiles fulfil a third sensor category, and fit between the first two. They

are equipped enough to operate in a self-sufficient manner, but are built on a dis-

tributed architecture to reap the benefits of re-configurability and rapid installation.

The device capabilities are equivalent to currently pervasive consumer hardware,

which are already reaching pocket sized devices. So methods developed on the SAS

architecture will soon be on Mote size devices. This system addresses how clusters

semiautonomous components can share resources for mutual gain and investigates

programming of existing consumer electronics for secondary use of the technol-

ogy. In his thesis on the SAS architecture[43], Pilpre outlines a number of mutually

compatible roles the tiles can perform:

" a network of dense sensor nodes (a microphone and a camera array)

" a wall of effecters (a giant screen or an array of speakers)

" a cluster of PDAs

" a testbed for distributed sensing applications.

The tiles can be placed through a room, and quickly rearranged in a practical
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FIGURE 5.4. Example of SAS tiles mounted on a frame along two glass
walls. A distributed data display can be seen across the screens of one
wall.

way. They are designed to be tested in real room environments, and must demon-

strate a tolerance for 'real world' problems. Humans present difficult systems to

model and respond to, we multi task and have multiple uses of a space. Acous-

tically, rooms are very different to test conditions, they contain many sources of

background noise and are reverberant spaces. Constructing a system in this busy

habitat motivates the research to meet these challenges.

The hardware used is relatively low power, with the screen backlight consuming

the largest fraction of the energy. The associated heat benefits result in a solely con-

vection cooled system in a slim wall mounted package. The parts are also relatively

low cost, so that large numbers can be constructed and used. The SAS tiles are seen

as a testbed for future devices with similar characteristics.

The tiles run the Linux operating system, and offer typical resources of com-

munication, and microphone and speaker performance. Appendix A details the

technical specifications of the SAS tile design. The tiles are installed in multipur-

pose space, used as a conference room, research lab, social area, cinema, dining area,

etc., along two glass walls which meet at a corner. There are currently 25 tiles with a

range of performance characteristics, due to the non-uniformity across each batch

of hardware components. Wireless performance, microphone level, noise level,

speaker level are all varied. Figure 5.2 shows a typical layout of tiles in a roughly

aligned wall grid. Each tile is capable of an acoustic sensing and a broadcast range

of several meters at standard volume levels.

The face of each tile is predominantly a screen, so that by tessellating the rect-

angular units, a display surface is constructed. A small structural element along

the short side each tile supports the sensors in place, exposing them to the room.
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The processor, screen power inverter electronics and wiring are enclosed in a case

behind the screen. The tiles are 405 x 270 x 40 mm, and are designed to slot in

and out of a support grid. They can also be hung from a structure or on the wall

like a framed painting, or stand freely on a surface. The tiles will tend to be static

in a space during use, but are easily repositioned or reconfigured for current needs.

The tiles are limited in processing performance for intensive applications and by

bandwidth for communication. The devices are plugged in to power, but smaller

screen, battery operated devices match the power constraints of handheld systems.

As we will see, levels of accuracy of synchronisation in these tiles, similar devices

and network architectures play a significant part in sound sensing.

5.3 HETEROGENEOUS DEVICE NETWORK

The SAS tiles are similar, in resources, to many handheld consumer electronics

devices. Given common communication protocols, or methods of routing between

them, a single network of sensors can be built by combining the resources of both

architectural surfaces and personal devices. These devices are carried into prime

locations in a room - where the people are. They are battery powered, but are

carefully maintained and charged, and constantly carried because of their proven

primary uses.

Mobile phones have been a primary driving force in placing resource rich de-

vices into the pockets of large populations of most wealthier counties on the planet.

Low cost of deployment is also spreading mobile phones into regions where wired

telephony and computer use have been impractical or unprofitable. As the develop-

ment of these devices begins to become widely accessible to third-party companies

and the public, the resources of the primary telephone function, can become tools

for secondary unexpected uses. These include screen, microphone, speaker, cam-

era, GPS, memory, processing, mobile network wireless, keypad, camera flash, FM

radio, infra red or bluetooth. The code is moving to open systems, the Symbian pro-

gramming environment, for example, offers both Java and C++ APIs. Both long and

short range communication are well established, GSMt and similar standards for

communication for example provides consistent connection for Europe and much

of America and the world, while the Bluetooth short range communication protocol

supports room range discovery and connection between many devices.

Table 5.1 lists the properties of some of the currently most popular personal

devices. We can expect many of these functions to merge in future devices as the

hardware becomes cheaper still, and the chips more generic, while new niche use

devices are also likely to emerge. The capabilities of PDAs (Personal Digital Assis-
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TABLE 5.1. Resources in current consumer electronics devices.

Mic Speaker Communication Processing Memory

PDA yes often often bluetooth/IR and wifi capable large
Laptop often yes some bluetooth, generally wifi large v. large

Camera often often generally wired only for now small specific large
Musicplayer maybe just in ear not often small specific large

Game maybe often bluetooth or IR, maybe wifi small medium
Phome yes yes long range and bluetooth/IR small small

tants), for example, are converging with those of mobile phones, and are the closest

in resources to the SAS tiles. As with the SAS tiles, continuity in performance

between microphones, speakers and other hardware resources of identical and dis-

parate devices can vary significantly. Audio frequency range sensitivity variation,

for example, is inherent in the low-cost manufacture process. It is not economically

viable or necessary for manufacturers to maintain exact sensitivity correspondence

between devices, especially as they tend to be used in isolation.





CHAPTER 5

COLLABORATIVE COLOCALISATION

Many sensing tasks are based on the assumption that the position of each of the

sensors is known. A group of sensor nodes must also form and self organise based

on knowledge of proximity. Determining connection and location is an inher-

ent problem in any sensor network in which the topology is not precisely fixed or

pre-calibrated. As described in this chapter, self-calibration steps are further com-

plicated by challenges to ranging in a system with unspecialised or varied hardware

nodes, and the constraints these imply.

Justification for using sound for ranging was presented in the first chapter of

this document. Audio is easy to produce and sense, with microphones and speakers

already prevalent in many devices, and low cost associated with adding it to new

technology. Acoustic sensing is predominantly human-scale and activity-centric.

It has been shown that the linearity and steady speed of sound can be used to infer

direction and position of sources, as can the relation of volume to distance and

spatial filtering features. These properties of sound can be used in a variety of ways

to establish device topology and a coordinate system between nodes.

In this chapter a colocalisation approach is formulated, in the context of a num-

ber of possible techniques, and the corresponding assumptions and properties they

imply. Drawing on previous research in these areas, the key challenges of measur-

ing distances between devices and then establishing a common coordinate system

across an asynchronous network of sensors are detailed. A practical implementa-

tion of this method is described and assessed in the Smart Architectural Surface

architecture and a mixed device system.

5.1 ASSUMPTIONS AND APPROACHES TO LOCALISATION

A taxonomy of possible approaches to ranging and building connected graphs,

and the assumptions and network infrastructure required for each, is presented
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here. Given the linear progression of sound at a constant speed through air as a

reference by which distances can be determined, a number of possible transmitter

and receiver combinations and timing strategies exist in order to establish ranging

measurements. A brief account of the scope of approaches is given here accom-

panied by some infrastructure requirements. A overview of ranging performance

including non-acoustic mechanisms is given by[22] and the references therein.

Systems can be classified according to whether the nodes to be located contain

the means to emit sound, or the means to detect it, or both. The sensor nodes can

be either active or passive; either actively actuating the environment in order to

aid ranging, or simply monitoring locally occurring sounds in an attempt to infer

position. Active ranging predicates a transmitter sensor pair at each node. Many

distributed sensor networks make use of dedicated beacons, which act as reference

emitters. Beacons can be fixed, attached to the corners of a room for example, or

dynamic, and can be at known or deterministic positions or in unknown locations.

Beacons can also be unintentional - a system of sensors can be imagined that estab-

lish an estimated conformation by comparing timing measurements from a number

of unknown, arbitrary acoustic events. Ranges can be determined from a number

of sensors to a reference beacon, and used to establish a common co-ordinate sys-

tem using lateration[6]. Taylor et al. [55] perform Simultaneous Localisation And

Tracking (SLAT) with a single moving reference node.

The number of components in a network can also be important. Ranges to

four reference node points are needed for triangulation in three dimensional space

in order to solve reflection ambiguity. Further nodes provide redundancy that can

aid synchronisation or accuracy. Some colatteration techniques that rely on a two-

dimensional sensor geometry can succeed with a single beacon, while much larger

numbers of beacons can corroborate and strengthen estimates of position over time.

The level of collaboration is another dimension in which systems can vary, and

is dependent on resources for communication and considerations such as privacy.

Information, such as position of beacons or timing, can be passed in the ranging

signal itself, or precalculated, and can permit nodes to localise independently. Al-

ternatively, nodes can communicate with beacons to establish this information, and

this can often be openly available or can be broadcast to maintain privacy of node

existence. With global communication, it is also possible for sensors to be fixed and

nodes to merely act as emitters, being positioned by collaborative sensors which

then transmit this information back to the nodes. In sensor node cases, passing

measurements between elements in a sensor network is the basis for establishing

relative timing, and common coordinates.

Accuracy with which timing or spatial positions of known beacons or sensors
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can be determined plays a central role in the estimation algorithms that must be em-

ployed. If the timing is accurately known between sensors, or the signals collected

can be passed with negligible latency, then timing measurements can be compared

to a common reference zero. Equally, knowing or being able to determine the

position of transmitters or receivers can greatly simplify localisation equations.

The positioning detail a system seeks to establish spans from fine-grained cen-

timetre scale resolution to coarse room presence detection. The resolution of rang-

ing measurements also plays a part in the infrastructure requirements. Given

Boolean values for audible connection to neighbours, for example, a coordinate

system can be derived in dense networks which uses the resulting graph and ver-

tex information. Fine grained ranging, on the other hand, can be used to establish

relative positions of nodes, subject to rigidity constraints, in even sparse networks.

While this research is focused on the room-range and audible frequencies of

human-scale sensing, audio can include infrasonic and seismic frequency pressure

waves, and ultrasonic, high frequency signals. Low frequencies can travel great

distances and pass around features smaller than the wavelength, while high fre-

quency emitters tend to be highly collimated beams, that are easily reflected and

occluded. High frequencies inherently carry greater phase timing information, and

broadband signals can encode sharp onset signals.

Systems with certain fixed geometries can build knowledge of their constraints

into the algorithm. Assuming nodes are bound to a line, surface, limited volume

or fixed geometry, for example, can greatly simplify the calculations. Near and

far field cases can also affect the assumptions that can be made. For example, the

hyperboloid functions defined by difference of arrival time measurements can be

approximated as a cone if the distance from the microphone pair is much greater

than the distance between them.

A single node can emit and detect probe signals and measure round trip time

to establish echo location. Active echo ranging, which enables a device to map the

topology of the surfaces around it, but requires a collimated beam and rotational

degrees of freedom to scan through. Mapping requires subsequent comparison

with prior maps of the space. Time of flight between two nodes can be established

with ping and response measurements. As we will see, this requires synchronisation

between nodes or relative timing and self-monitoring. Global or relative coordinate

systems can be sought. The former rely on known beacons, or prior models or maps

of a space to fix node estimates and the latter can be determined up to global rotation

and translation ambiguity.

Several acoustic ranging mechanisms remain unexplored here, such as the use

of spectral filtering or reverberation information as a means of estimating distance
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by modelling the multipath and frequency dependent effects. Corroboration, by

many fixed echo sensors, of moving objects passing through their beams, tied to

assumptions of steady or only slowly varying object speeds may also provide a means

of positioning.

Group Finding

Prior to fine resolution acoustic ranging, nodes must establish which of the

neighbours in a communication group are in direct line of sound and within de-

tection range, establishing a graph of connectivity through coarse audibility tests.

Clustering based on wireless communication radius may provide an initial approx-

imation of possible neighbours (such as common connection to a single wireless

router). In cases of long range communication infrastructure, such as GPRS t ,
in which wireless proximity provides little guarantee of sound sensitivity range,

a common point of interest may provide clues to which nodes share a common

acoustic environment. Test signals can be actively generated to determine nodes

that are within range of detecting them. As no timing information need be carried

in this group forming and graphing step, it has been shown [4] that slowly ramped

near-ultrasonic reference tones can clearly establish acoustically collocated nodes

without producing audible clicks.

6.2 PAIR-WISE RANGING AND RELATIVE LOCALISATION

Measuring the flight time of sound as a method of mapping and ranging has
matured in the fields of location and imaging using echo return time, such as med-

ical ultrasound and marine sonar, and position estimate and tracking of unknown

sound sources, such as passive sonar and ballistics location.

The task of ranging is simplified for cases in which signals can be actively emit-

ted and detected at both ends of a distance to be measured. In pair-wise ranging

between active nodes, sounds can act as synchronisation and time of flight delay

references. Sound signals can be selected with properties that aid detection and

passed to the receiver before the sound is emitted. The characteristics that improve

arrival detection and timing accuracy are described below. Sensor equipped de-

vices must then establish some common time frame or comparison model in order

to calculate time of flight between emission and detection.
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Signal Detection

Finding the arrival time of a sound at a sensor relies on accurately identifying

when the emitted waveform appears in the recorded signal, against a background

of other sounds arriving at a microphone, as well as noise and information loss

inherent in both the detection and digitisation processes. The simplest detection

method is to use sudden changes in sound level, such as the sharp onset of a loud

click generated at the emitter, as a timing reference point. A sharp rise in sound can

be easily timed with almost no processing by finding the first sound sample to rise

above a threshold level. However, with no further spectral or timing information in

the chirp, it can become lost among other loud sounds or background noise. Longer

chirps containing specific spectral characteristics can be used to improve detection

and reject noise. A matched filter can be run across the recorded waveform to find

the closest correlation to the expected signal. This can be hindered by distortion

and change in the properties of the waveform as it passes through a space from an

emitter to a detector. Filtering of certain frequencies can occur, and reverberation

can lead to a number of delayed copies of the signal mixed with the first.

By broadening the transmission frequency band to be much greater than the

narrow bandwidth needed for the data improves the detection accuracy and per-

formance. A number of chirps fulfil the criteria for good correlation properties.

A signal such as a frequency sweep or white noise are suitably broadband and dis-

tinct. If the reference signal used is deterministic, then it can be generated at both

the transmitter and the receiver, rather than passed in full over the network. Such

signals benefit from processing gain, achieving increased signal detection perfor-

mance at the cost of greater computational complexity. A sweep frequency chirp,

that linearly or logarithmically increases in frequency between two values, for ex-

ample, can be detected with the corresponding matched filter even if some of the

frequency components are missing. The sharpness (kurtosis) of the auto-correlation

peak is dependent on the extent of the highest frequency components transmitted.

Sarwate[47] outlines the desired properties of reference signals:

"Each signal in the set is easy to distinguish from a time-shifted version
of itself and each signal in the set is easy to distinguish from (a possibly
time-shifted version of) every other signal in the set."

Maximal length sequences are a family of binary sequences characterised by

a sharp peaked auto-correlation function. They are pseudo-random bit sequences,

with white noise-like qualities, which can be easily generated using a linear feedback

shift register. Taps (which specify the necessary feedback pattern) are selected such

that every possible state is produced by the register, hence 'maximal length' or 'm'-

sequences. For an r-stage register these sequences are 2r - 1 in length, which can
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be shown is the maximum period. The number of sequences for a given power

value varies. These sequences are balanced, containing 2 (- 1) ones and 2 (r -1) - 1

zeros. The bitwise sum of an m-sequence and a shifted version of itself produces

a third phase of the same sequence. If each zero is mapped to a -1 and each one

to +1 then the resulting autocorrelation function is unity for zero delay and falls

off as a triangular peak to a constant value of - 1/22 - 1 for more than one sample

offset. In an environment with a number of such chirps occurring in an unknown

order, a further desired property is that each signal be as different from the others

as possible, that the cross-correlation between signals be low. The cross-correlation

between m-sequences is bounded. As discussed in [47], if it is possible to use only

a few sequences, a 'maximal connected' subset of sequences offer improved bounds

on cross-correlation properties. In a coarsely synchronised system, a small number

of sequences could be looped with little ambiguity, and so a maximal connected set

of m-sequences could be used. These signals are used considerably to drive spread

spectrum radio communication because of their robustness to noise and jamming

and the protection from interception they can offer. Given that the signals are

wideband they are less likely to be lost due to the scattering, and filtering in air, of

certain frequency bands.

Clock accuracy

To calculate the time of flight of a single acoustic chirp emitted from one device

and detected at another, the pair of nodes must maintain a common time frame

so that transmission and arrival times can be meaningfully compared. High ac-

curacy clocks are currently an expensive option. Typically processors use quartz

clocks which are accurate to about 1 second per day (i.e. 1 part in 86, 400) due

to crystal oscillation properties and temperature dependance. This is possible to

correct, in network connected devices, by adjusting in comparison to a reference

clock server. Compensating for drift using a given communication network, is then

dependent on the timing accuracy of the connection. Variable latency is present in

most standard communication methods. Delays can occur in the MAC t layer,

network card, network driver and context switching of application process, among

others. Through repeat measurements it may be possible to estimate the unknown

timing jitter in the communication between devices in order to better synchronise

them. Network Timing Protocol[39] has become the internet standard for syn-

chronisation and timing correction. It has proven effective in both small and large

networks; using jitter estimation, redundancy and averaging to set and maintain

synchronisation with a reference server. Where a processor kernel provides sup-

port for precision timing signals, such as a pulse-per-second (PPS) signal, accuracy
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can be achieved down to one nanosecond uncertainty. However, in typical usage

today, "NTP provides accuracies generally in the range of a millisecond or two in

LANs I and up to a few tens of milliseconds in global WANst " . At the speed of Local Area Network

sound, this corresponds to an uncertainty of between half a meter to several meters. (LAN)

NTP is useful for coarse synchronisation, but currently not accurate enough for Wide Area Network
precise acoustic timing measurements. (WAN)

In some device architectures it may be possible to bypass communication pro-

tocol timing overhead and directly use a reference Radio Frequency (RF) packet to

recalibrate clock times with each acoustic broadcast. This requires determining the

precise emission and arrival times of the electromagnetic pulse. The flight time at

the speed of light can be considered instantaneous over the ranges for which audio

can be detected. In an acoustic sensor network absolute time may not be needed,

only relative synchronisation between every device. In this case Reference Broad-

cast Synchronisation (RBS) can be used. In RBS, one node emits a reference RF

pulse, and all other nodes use the arrival time as a common zeroing point. There

may still be delay in the detection and flagging of the arriving pulse, but the time

the pulse was transmitted is no longer important, and so any buffering or delay

in transmission is not of concern. In a system designed by Estrin and Girod[18],

for example, an interrupt triggered through a modified network card is used to

tag arriving packets with local time. Comparing the difference in arrival times at

each node establishes a common time frame. Reference broadcasts can be emitted

synchronously with the sound pulse or energy conservation can be improved by

shutting down all resources apart from the low power microphone, and then, once

a chirp has been received, using post-facto synchronisation.

Reference Broadcast Synchronisation is a popular choice for low resource sys-

tems, in which memory for storing sound and processing is limited, but access to

low-level hardware timing allows exact arrival and emission times to be measured.

Direct interrupts from changes in hardware state can be time coded to improve ac-

curacy. Examples of self-localisation systems using dedicated ad-hoc wireless sen-

sor network hardware layers such as the Mica motes or Crickets have demonstrated

1 - 2 cm accuracy with this approach, and robust performance in real-room[40],

urban[52] and natural[57] environments. These systems use either audible or ul-

trasound pulses.

Further timing uncertainty occurs in the emission and detection of acoustic

chirps. Sound card latency, audio buffering and code execution delay, and to a lesser

extent microphone response time and speaker activation time can all contribute. It

is clear that precise synchronisation can be achieved, but requires low-level hard-

ware access to time stamp both the acoustic and electromagnetic incoming signals
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in order to overcome variation in delays due to buffering in the communications

layer. If the device is not dedicated to timing measurements, but instead communi-

cation, the raw timing of pulses may be abstracted by several communication layers,

each of which may contain inherent delays. So while this solution is convenient in

specialised hardware and operating systems, it requires a solution specific to each

processor, and so does not migrate easily from one platform to the next.

Further improvements to the challenge of maintaining synchronisation are be-

ing made, driven by the need for fine grained timing agreement for many distributed

sensing applications. Delay jitter can be modelled and estimated, or included as a

nuisance parameter in a system of equations describing the measured results. This

global calibration can yield improved synchronisation at the cost of increased com-

plexity in modelling and calculation. It is clear that synchronisation will continue

to be improved in terms of reliability, portability between operating systems and

efficiency in power and bandwidth consumption, as it is a core resource for many

tasks.

Asynchronous Time of Flight Ranging

Can localisation through audio timing measurements be achieved on a network

lacking fine grained synchronisation? Chapter 4 predicted a growing prevalence

of sensor networks formed from loosely connected, impromptu, heterogeneous

devices connected across several communication protocols. In such an infrastruc-

ture, where audio and electromagnetic resources may have other primary functions,

hardware solutions are impractical, and, further, uniform adoption of a wired syn-

chronisation protocol would be unlikely. The benefits of not having to establish

precise synchronisation are clear. The communication mechanism between devices

may also not support direct reference broadcast pulses. An example is the GPRS

data connection in mobile phone communication, which must pass data through a

centralised system, even if both phones are in the same room.

The key to ranging between nodes in an unsynchronised network lies in the sym-

metry of emission and detection for each device pair. The assumption is made that

the distance between the microphone and the speaker in each device can be consid-

ered negligible compared to the distance between devices. Taking long recordings

of a chirp emitted from one node, and then, some unknown time later, a second

returning chirp, provides a direct comparison of the actual emission and arrival

times of the two sounds at each of the devices. The time of flight is equal in both

directions. The time delay is calculated by subtracting the second arrival time from

the first. As Figure 6.1 shows, for two nodes a and b, the time delay between peaks
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FIGURE 6.1. The sounds recorded at two nodes, a and b, are
represented as progressing with time vertically downwards, with
distance between the times represented horizontally.

measured at the device that chirps first (labelled a) is the arbitrary time Tab between

when the two chirps actually occurred, plus the time of flight, ToF, between a and

b:

A = Tab + ToF-

While the delay recorded at b is Tab minus the ToF from a to b:

B = Tab - ToF.

Clearly, calculating the difference between the peak-to-peak delays measured at a

and b therefore yields twice the time of flight,

A- B =Tab Tab+2ToF

thus essentially subtracting out the arbitrary time between the two auditory events

from the calculation without any knowledge of the absolute synchronisation of the

two recordings. Given the signal detection times at a, tAi and tA2, and at b, tBi
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and tB2 the time of flight, ToF can then be found from:

TF =(tA2 - tAl) - (tB2 - tB1)

2

at each of the nodes. The separation distance is then given by:

6AB -oF

where v is the speed of sound in air.

The algorithm described uses relative timing between the sounds emitted by

a pair of devices. This information can be collected in a single recording of both

sounds arriving at a microphone, but does not necessitate comparison to an internal

clock or local reference measurement. This approach supports the possibility of

asynchronous communication. Recordings can be made at a physical location, but

then streamed and processed elsewhere or stored for later.

Acoustic Ranging Error

Gaussian error due to uncorrelated noise sources arises from a number of fac-

tors in signal detection including external background sounds, air noise on the

microphone, thermal noise in the detector and nondeterministic jitter in emission

and detection of sounds. The latter is all but removed by taking relative timing

measurements between two arriving signals in a recording. The other noise sources

act to mask and degrade the chirp signal, but are largely overcome by the processing

gain of the maximal-length sequence. In cases of low signal to noise ratio (SNR)

the sequences tend to be detected accurately, or not detected at all. False detection

can be handled by outlier rejection[42] and through through iterative estimates.

Quantisation error due to discrete time steps of sampling result in linearly random

error of up to one sample length, in the position of the correlation peak. The total

error in the range measurement depends on the uncertainty in the position of each

of the four peaks detected. Any drift between the clocks at the two nodes during

the measurement time can also introduce error, although drift at this time scale is

minimal.

Diffraction of sound can lead to excess path lengths on individual range mea-

surements. These will tend to be overcome in comparison to other range measure-

ments between nodes in the determination of a coordinate system. The occlusion of

a direct sound path and subsequent detection of a strongly reflected path can lead
to unbounded error up to the furthest detectable sound range (errors up to sev-

eral meters) and consistent over multiple measurements. Comparison with other,
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FIGURE 6.2. Raykar et al., use this asynchonous ranging and a closed
form estimator, that is then improved by solving for the delay jitters [46].

non-occluded ranges may identify these spurious results in some cases. In [18]
the authors suggest a number of alternative sensing mechanisms for detecting these

cases. However, occlusion remains a serious complication for acoustic ranging.

The assumption that the microphone and speaker are collocated introduces a

consistent offset error up to the actual separation length of the two, depending on

the orientation of the device. For the SAS tiles, this distance is 4 cm, in handheld

devices it is typically about 10 cm. The work of Raykar et al. [46] on position-

ing calibration shares goals and constraints close to those described here. Their

work establishes separate coordinates of both the microphones and speakers for a

collection of heterogeneous devices, which they term General Purpose Computers

(GPCs). They introduce the technique used for inferring time of flight used here;

closed-form position estimation of sensor-emitter pairs, using it as a close initial

guess in an iterative nonlinear least squares minimisation of position error func-

tions, accounting for the synchronisation offset in each measurement. The method

is demonstrated in a 5 laptop, two-dimensional case 6.2. The current work does

not apply this optimisation step, assuming that the separation of the microphone

and speaker at each device, and the uncertainty introduced by this, is small. Sugar

and Kloper[54] describe the use of this closed form localisation technique in an

unsynchronised wireless radio environment. The comparative accuracy of using

electromagnetic and acoustic signals depends on the ranging distance and the tim-

ing detection accuracy of the devices. As argued in Chapter 3, the slow speed of

sound makes results in accurate measurements on generic, low accuracy equipment,

and ideally suited to room range localisation.

Solving Geometric Conformation

For the task of estimating coordinates of points given inter-point distances,

Classic Multidimensional Scaling describes a family of algorithms for mapping a set
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of estimated Euclidean distances, connecting points, to an optimal conformation

of those points that best fits the pair-wise measurements. A conceptually simple

example of this is to build a particle system spring model of the nodes, assigning

the measured distances between two points to the desired length of a corresponding

spring. Relaxing to local minima can result in erroneous results. By tuning drag and

elasticity the nodes can relax to an optimal coordinate system given noisy distances

between positions in Euclidean space. Simulated annealing, random perturbations

applied to the system, can be used to overcome local minima. The scaling is a

minimisation problem, and least squares or gradient decent methods can be used.

Folding ambiguity in non-rigid systems can result in solutions which are locally

correct but globally flawed. Rigidity is defined by the number of edges at each

node in the graph. For systems containing large numbers of devices, a distributed

approach to MDS is desired, rather than passing all range measurements to a single

elected processor. Moore et al. [40] propose a method that establishes ranges within

local clusters growing this into a complete solution.

6.3 COLOCATION METHOD

The approach presented here is intended for devices with sufficient computa-

tional and storage resources to record and process several seconds of sound. Full

duplex audio is required for simultaneous input and output of sound, allowing a

device to record the sounds it emits. Some form of communication protocol is

necessary; 802.11 * WiFi, short range Bluetooth, mobile telephone protocols such as

GSM (Global System for Mobile Communications), or even infrared are all suitable

candidates, as are combinations of these with multi-modal devices to act as inter-

mediaries. It is even conceivable to use an entirely audio based system although the

rates possible for transfer of data between devices is inefficient [36].

Initial device discovery and group forming steps are necessary to establish the

available resources in an environment and give a count of the nodes, assigning an

arbitrary sequential ordering to each of the devices. It is also possible to use other

unique information (for example least significant digits of IP address in a local

subnet) to establish chirp order.

Unique reference signals for each of the nodes are generated by calculating

pseudo-random sequences. These are phase-shift encoded onto a carrier frequency

and emitted as noise-like chirps. Maximal-length sequences are used because of

high auto-correlation and bounded cross-correlation properties[47]. Using 511 bit

length sequences yields 48 unique identifiers, which are assigned sequentially to the

nodes.
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A synchronisation technique implemented over the available communication

protocol is then used to establish initial coarse timing agreement, allowing each de-

vice to chirp in order without overlap. In the experiments conducted here Network

Timing Protocol (NTP) is used. It is desirable to have as accurate synchronisation

as possible, to reduce the overall recording buffer length. However discrepancies in

synchronisation can be tolerated with sufficient recording memory. The limiting

assumption, however, is that any drift in synchronisation between the clocks in each

device, over the length of the recording, must be negligible. The chirp sequences

are uniquely identifiable and can therefore occur in any order, further reducing the

need for exact synchronisation.

A single recording of all the sequentially arriving chirps is made on each de-

vice to remove the significance of any audio circuitry or API buffer latency that can

otherwise cause an unknown delay between the arrival and detection of a sound.

By correlating the recordings against each of the known pseudo-random sequences,

strong peaks are identified at the arrival of each of the sounds. Correlation is per-

formed using a Fast Fourier Transform (FFT) technique. Each device first finds

the chirp it emitted, this significantly louder part of the audio is then suppressed

before searching for the other chirps, as the volume at such proximity to the speaker

otherwise overwhelms the other peaks in the correlation measurements. Follow-

ing the approach of Girod et al. [18], a running threshold, found by correlating the

recording with a noise-like sequence first, suppresses false peaks, despite varying

background noise levels, and so improves robustness. The most direct path for an

arriving sound is found, in most cases, as the first peak and is generally detected,

even in reverberant and noisy real-room conditions.

The remaining peaks, having been precomputed from the corresponding maximal-

length sequence, are found in the order they were meant to emit. The time delay, in

samples, is measured between the chirp emitted at a node and each of the remaining

peaks detected in the recording. The number of samples between the two chirps of

a node pair, the time between their arrivals, are exchanged between devices over the

communication layer (in this case WiFi). From the difference between these two

measured delays, the time of flight can be found, and using an estimate of the speed

of sound in air, a separation distance can be calculated. Procedure 6.1 describes the

generation of reference chirps, recording of sounds emitted from each neighbour,

detection of peaks to calculate delays between sounds and finally a multidimen-

sional scaling step to establish relative conformation.

PROCEDURE 6.1: COLOCALISATION CODE AT EACH DEVICE

1: generate a unique chirp for each node in cluster. chirps 1 to n

2: plus one more to act as running threshold. chirp 0
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3: create duplex audio buffer

4: wait until an agreed time, based on NTP synchronisation

5: start audio stream

6: while there is space in the record array do

7: store data from buffer in record array

8: if current time is myID * chirpgap then

9: fill buffer with chirp

10: else

11: fill buffer with zeros

12: end if

13: end while

14: stop and close audio stream

15: correlate control chirp with recording to find running threshold

16: correlate own chirp with recording to find own peak

17: mute this section of the recording

18: for each of the remaining chirps do

19: correlate to find arrival time

20: end for

21: pass own and neighbours' arrival times between neighbours to compute ranges

22: pass pairwise ranges to an elected processor

23: run classic multidimensional scaling to estimate coordinates of each node {up
to global rotation and translation}

A cross-platform audio API (application programming interface) was chosen

to maintain as great a separation of the algorithm and code from the specific device

hardware interface and requirements of any specific platform. RtAudio is a C++
API supporting distinct features of OSS and ALSA with Jack on Linux, CoreAudio

on Apple, and DirectSound on the Windows operating system. By extending this

API to other platforms used on new devices, the code should then remain portable.

Duplex audio is supported in RtAudio and available on most modern sound cards.

The C++ programming language is suitable for high performance real-time au-

dio code, is largely portable between platforms and has few complex requirements

which makes it suitable for constrained devices. Both blocking and callback ac-

cess to the incoming and outgoing audio buffers are offered by RtAudio and can

be used by this algorithm. Callback is suited to cases in which the code must run

concurrently with other processes (such as updating screen content). NTP is run

independently as a background process. The program then uses an absolute timing

cue to star recording and chirp time on each device. Enough delay is left between

chirps to account for clock error and room reverberation (reverberation time in a

large room is ~ 0.73 s).
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FIGURE 6.3. Ranging uncertainty in measurements at a 7.1m device
pair separation.

Ranging accuracy using the SAS tiles was examined using repeated pair-wise

measurements. A series of 24 chirp arrival times were taken over ~ 20 minutes in a

large meeting room space from two tiles facing each other at a separation of 7.1 m.

In three measurements peaks were not found and were automatically rejected. The

remaining peaks are plotted, against time in Figure 6.3. The pseudo-random se-

quences are phase shift encoded onto a 11025 Hz bit rate carrier wave, and are

emitted and detected at 44100 samples per second. One sample corresponds to a

distance of 8 mm. The variance of these measurements is 3 cm, which corresponds

to +2 sample steps. The data seem to display two distinct additive error modes, one

is a small, one or two sample size uncertainty, which is thought to arise from error

in detecting the peaks. An uncertainty of ±1 sample in each peak would cause

an error in the calculated time of flight of +2 samples in steps of half a sample.

Slight atmospheric changes between the two chirp times, such as air movement,

could also contribute to this. The results also oscillate between strata separated by

a unity sample step size. Variations in the time of flight, for example due to slight

temperature change between each ranging which cause the time of flight length to

cross a sampling threshold, are exaggerated by a factor of two resulting in a step

of one sample. A separate set of ranging measurements taken over a longer time

period demonstrate a slow, long term drift in the values which reflect the variation

in room temperature over that length of time due to air conditioning cooling, after

the door was closed. Taking a series of measurements at regular steps over several

meters demonstrates the inherent linearity of this approach. In Figure 6.4 the re-

sults for ranging measurements, incrementally stepped, up to the length of a room

are given. In this case, the two devices were moved apart in the plane perpendicular

to the direction the microphone and speaker are mounted. The background sound

level in the room was measured giving a signal to noise ratio of 16 dB. The ranging

has an uncertainty of 3.5 cm. A small offset from zero is due in part to estimation
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FIGURE 6.5. Variance in speed of sound with temperature, pressure and
humidity (after [18]).

error in the speed of sound, which, as Figure 6.5 shows, can vary by 10% indoors

due to temperature, humidity and pressure changes. A further offset is introduced

by the nonzero distance between the microphone and speaker in each device. The

calculated range is shortened from the centre to the edge of an ellipsoid bounded

along the major axis by the microphone and speaker, with a minor axes half as long.

A minor offset could also be caused by clock drift of one device relative to the other,

but drift is negligible on the order of chirp timing. The peak finding performs well

despite a stronger reflection signal than the line of sight signal, from a flat surface

parallel to the plane in which the tiles lie.
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FIGURE 6.6. The node arrangement derived from range measurements
and subsequent multidimensional scaling, globally rotated and
translated to fit back onto the tiles used

Using these SAS tiles, a 6 device system, occupying two walls, ran the self-

localising algorithm to establish the position of each device relative to the others.

The range measurements were calculated taking the speed of sound, in air, at sea

level to equal 340.29 ms-'. All measurements were passed to a single elected device

to iteratively calculate likely relative positions. Figure 6.6 shows the experimental

set-up overlaid with the sensor layout determined from the range measurements.

Neither the grid layout nor planes of position were used as constraints. It was found

that even the furthest nodes were detected despite the noise and reverberation levels

in this real-room case, leading to a fully connected graph. Rotated and translated

onto the actual positions, the average distance between actual and estimated po-

sitions was 3.3 cm. A multidimensional scaling approach is used to determine a

likely three-dimensional conformation from the Euclidean range information be-

tween each pair of nodes in the graph. While this performs well for a small number

of well connected nodes, as the device count and complexity of the graph increase,

the minimisation of errors can settle on local minima and in non-rigid systems,

folding ambiguity remains. Moore et al. propose a distributed approach to local-

ising nodes from noisy range data[40], by building rigidly connected clusters. The

algorithm avoids flip ambiguities and scales linearly with the size of the network.

Heterogeneous Devices

Although the code has not been fully migrated to a number of small device

programming platforms, it has been possible to demonstrate its effectiveness across

a range of hardware. As proof of concept, and for brevity, the devices are used to
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FIGURE 6.7. Peak finding, cross-correlation performance despite 8kHz
recording rate and subsequent linear interpolation upsampling to
44.1kHz.

record the signals, but the 44 kHz chirp is generated and played from a co-located

SAS speaker. A test set of devices consisted of an HP iPAQ running Familiar Linux,

a Dell Axim running Windows Mobile and a Nokia Symbian Series phone, plus

two SAS tiles. These devices span a range of microphone performance levels, sound

circuit jitter and delays, and compression algorithms. Both the Axim and the Nokia

provide basic recording programs that sample at a low 8 kHz rate. Figure 6.7

shows the performance of cross-correlation peak detection on the 8 kHz Axim

recording, upsampled to 44100 Hz, correctly detecting the first chirp. The phone

also uses the AMR, adaptive multi-rate, lossy speech compression file type. These

factors reduce the success rate of the peak detection algorithm, and spread the

correlation peak, however, peaks can still often be found over a reduced sensing

range. Figure 6.8(a) shows the positions of the devices and the calculated estimates.

Input compression degrades the detection of chirps, but seems to only contribute a

small error to measurements in cases when peaks are found. Figure 6.8(b) shows a

comparison of tile only and tile-phone ranging.

The performance of the maximal-length sequences at 8 kHz sampling rate, that

the signals can be effectively detected even for heavy compression, demonstrates the

broadband nature of the chirps. Sampling at 8 kHz is equivalent to filtering out the

high frequency components. This has the effect of spreading the correlation peak,

but the centre can still be obtained. The signal must still be emitted at 44.1 kHz,

however, to maintain the sharp onset, and timing information.
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CHAPTER 6

SOURCE LOCALISATION

This research proposes a method of estimating the positions from which sounds

have originated, using measurements across a number of asynchronous sensor de-

vices. This necessitates measuring the delay between two consecutive sounds at

each microphone and solving for the two source locations simultaneously.

Passive source localisation is the detection, and subsequent position estima-

tion, of unpredicted acoustic events. Whereas collaborative colocation involves

ranging between self-organising nodes by emitting chirps and comparing arrival

times, source localisation seeks to discover the positions of any sound that can be

identified arriving at a number of sensors. By comparing signal arrival times at the

microphones of a network of devices at known positions a solution for the originat-

ing points of the sounds is sought. This challenge has been explored in a large body

of literature, and it is closely related to the calculations of sonar, seismology, ballis-

tics ranging and GPS. Section 2.2 described how source location is beginning to be

applied in robotics, human-computer interaction and situated computing among

FIGURE 6.1. Passive and active source localisation training manual
from WWII US submarine[41].
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others. Given here is an overview of currently applied method of solving for source

position for systems in which time synchronisation between microphones has been

established. Changes to this approach are then proposed to build an algorithm

which will work across a network of heterogeneous devices.

Passive localisation has seen considerable use and development in covert naval

tracking, and in particular in submarine craft, in which passively detecting others

without revealing position is key. Talking with a submarine sonar operator from

the second world war, he described listening, in training, to large catalogues of en-

gine, sea life and propellor noises. These enabled him to pick out enemy craft noises

from the ocean acoustic background. Having identified a sound, an estimation of

its position could be determined from its arrival times at each of a number of micro-

phones. A linear array of hydrophones is often used, dragged on a line behind the

submarine, with all the wires running back to the operator. The equal spacing in this

linear array makes for a simplified calculation. The use of time difference of arrival

was introduced in the context of beam forming in Chapter 2. We will look further

at the positioning of unknown sound sources using collections of microphones in

this chapter.

6.1 INFERRING POSITION FROM MULTIPLE RECORDINGS

An algorithm suited to a distributed sensor network is presented, drawing on

the history of approaches to locating a radiative point source using stationary, pas-

sive sensors. Phased array source localisation has been investigated considerably in

the fields of beamforming and radar[37], although the far-field assumptions, based

on considerable distance between points, do not hold for room acoustics. Some

sound based application examples include passive underwater acoustics[91, ballis-

tics positioning[17] and wearable computing[3]. Generally the microphone config-

uration is known and a solution must be found for the range differences calculated

from the arrival times of a sound wave at each sensor. Arrival time differences

measured at a number of spatially distributed points are related to the array geom-

etry and the originating sound source. For each microphone pair, the difference in

path lengths from a single start point to each of the sensors is fixed. This is pro-

portional to the difference in radial distance from the source to two nodes, termed

Time Difference of Arrival (TDOA) and results in a hyperbolic constraint for possi-

ble position from each difference calculated. A hyperbolic curve is defined in a two

dimensional case and a hyperboloid surface in three dimensions. A function can

similarly be defined for each microphone pair. For noiseless measurements, the so-

lution then lies at the intersection of these hyperboloids. For a system constrained
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FIGURE 7.2. Plot of the hyperbolic function defined by difference
between two range measurements (after Basu[3])

to a surface, three microphones are required, whereas for a system in free space four

are needed. The challenge however, is that each of the arrival time measurements

is corrupted by noise. The hyperbolic function can vary significantly with small

changes, and so a guess must be obtained for the closest point of intersection of

each of the curves. This can be solved, and becomes more certain as the number

of nodes increases. Measurement uncertainty in practical applications have been

addressed in a number of off-line and real-time techniques[27].

Finding a solution for the intersection of hyperboloids corrupted by noise is a

nonlinear problem. An additive measurement error model can be used to describe

how the data relates to each of the time delays and the uncertainty components.

A number of techniques have been proposed for solving this system using maxi-

mum likelihood or least-squares approaches. The method employed depends on

the constraints implied by the intended application. In particular, how the noise is

modelled and whether the system is to run in real-time must be considered. Huang,

Benesty and Elko reviewed the recent literature on use of the additive measurement

error model, assessing criteria including linear approximation as opposed to direct

numerical optimisation, and iterative or closed-form techniques.

Maximum Likelihood

Use of a maximum likelihood estimator (MLE) has been historically popular,

performing well in systems with larger numbers of microphones, and reaching a
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stable solution (asymptotically consistent). It is constrained, however, by requiring

assumptions of the distribution of the errors to be made. Often these uncertainties

are assumed to be Gaussian, which has been justified by [20] for continuous-time

signals, but does not take into account the non-Gaussian sampling error associated

with digitising the signal. Coupled with the difficulty of convergence to the correct

minima, without a good initial guess, using typical iterative root finding algorithms

such as Newton-Raphson, Gauss-Newton or Least-Mean-Squares linear approxi-

mation approaches, has made MLE problematic, especially for real-time use.

Least Squares Estimator

To support real-time or close to real-time processing, closed form algorithms

are desired. Methods that include, and make use of, redundancy in sensor infor-

mation perform better in cases with measurement error. Time difference of arrival

measurements can be modelled and expressed in a least squares form. The Least

Squares Estimator (LSE) can be used to minimise the squared error between the

model and the measured data. With an accurate model, in the absence of noise, the

square error function should be zero. The form of the error criteria derived from

the source localisation problem can effect the computational complexity of finding

a solution.

The hyperbolic error function is formulated from the difference between the

observed range differences and the those calculated for the estimated source loca-

tion. As described above, the range difference between a pair of sensors defines

a hyperboloid, with a solution for each point on the surface. Minimising the hy-

perbolic least squares criterion places a sound source estimate as close to all of the

hyperboloids as possible but these functions are unstable in the presence of noise,

becoming mathematically intractable as the number of sensors grows large.

In order to overcome these problems a second error function, based on the in-

tersection of spheres centred at each of the microphone locations, can be derived.

By substituting in a further unknown variable, the range from each of the micro-

phones to the unknown source position R 1, a linear set of equations is obtained with

a quadratic constraint linking the source coordinates and range estimation. Several

techniques for solving for the source co-ordinates using this set of equations have

been proposed with progressively improved performance and simplicity. Optimum

performance is defined by calculating the Cramer-Rao lower bound on the variance

of each estimated coordinate. Substituting in for the intermediate variable, R1 to

give N - 2 linear equations in x, y and z, or solving for the coordinates first, to give

equations in terms of R1 only first, result in solutions which can be shown to be
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mathematically equivalent. This is termed the Spherical Interpolation (SI) method.

Redundant information in the source range is not used with this method, and there

is a large variance relative to the Cramer-Rao lower bound.

Chan and Ho [10] suggested using a second least squares estimator to make use

of the redundancy in the measurements. Their approach takes advantage of the

relation of the source coordinates to the range to improve the estimation efficiency

using quadratic correction. This is termed the Quadratic-Correction Least-Squares

(QCLS) method. Huang, Benesty, et. al[27] propose further changes to this ap-

proach, that no longer require an assumption on the measurement error covariance

matrix to be made. A perturbation approach in the quadratic correction of QCLS,

which results in a limit on the error magnitude, is also overcome. This method is

termed Linear-Correction Least Squares (LCLS).

Derivation of Closed Form Estimator

Following the derivations of Chan and Ho[10], Hui and So[53], and Huang and

Benesty[27] the problem can be stated as follows. Let the positions of the N + 1

microphones, in Cartesian coordinates be denoted by

'ri A [X,, y,' , ] T, i = 0, 1, 1...,1 N,

where (.)T denotes the transpose of a vector. The first microphone is set to be the

origin, ro = [0, 0, O]T and the source coordinates sought are r, A [X8, ys, zS]T.

The range between the i-th microphone and the source is given by the Euclidean

norm

Di A |r - rill = /(z - zx) 2 + (ys - yi) 2 + (zs - zj) 2. (7.1)

The corresponding range differences, for microphones i and j in a pair, to the source

are given by

di A D -D, ij=0,...,N. (7.2)

This is related, by the speed of sound v, to the time difference of arrival, ri, mea-

sured in synchronised microphone arrays by

dij= V - Tij.

It is noted[27], that there are (N + 1)N/2 distinct delay measurements, rij, ex-

cluding the i = j case and repetition arising from rij = -Tji, but any N linearly

independent rij values determine all the others in the absence of noise. For sim-

plicity, at the cost of improved accuracy in noisy systems, the N time differences of
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arrival with respect to the first sensor, Tio, i= 1,... , N are selected. The range dif-

ferences measured between connected microphones, dio are modelled as the actual

value and an additive noise term ei, assumed to be zero-mean:

dio = dio + ei, i = 1, . .. , N (7.3)

where,

dio =_ |rs -ri|l - ||rs||.

From the range difference (7.2) and distance definitions (7.1) we have

di 0 + \(x)2 + (y8)2 + (z8 )2
_ _ _2_+_ _ Z _ _2_(7 .4 )

(Xs - Xi) 2 + (ys - y,) 2 + (zS - z,) 2  i = 1 . N.

The solution to this set of hyperbolic functions is nonlinear and sensitive to mea-

surement noise. Instead, a spherical error function can be formulated.

The distances from ro at the origin to the remaining microphones and to the

source are denoted by Ri and Rs respectively, where

Ri = ||rill = +y+ z, i = 1,... , N (7.5)

R8  1 -| /2 + y2 + z2. (7.6)

Squaring both sides of (7.4) and substituting in Rs as an intermediate variable yields

a set of linear, spherical signal model, equations:

ri rs + dioRs = (R. - dioi= 1,... N. (7.7)
2

Writing this spherical least squares error function in vector form,

GO = h, (7.8)
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where,

X1 Y1 zi

X2 Y2 Z2

.XN YN ZN]

22dA Ys 1 R2 - 20

z8 2.

.Rs_ LR2 _d2

5 A P 10 $20 -. - N - IN T

(7.9)

(7.10)

(7.11)

and [-|-] implies adjoining of two matrices. Solving the corresponding least squares

criterion is a linear minimisation problem

min (GO - h)T(GO - h) (7.12)

subject to the quadratic constraint

(7.13)

where E Adiag(1, 1, 1, -1) is a diagonal and orthonormal matrix. The technique

of Lagrange multipliers can be used yielding the constrained least squares estimate:

5 = (GTG + AE<) GTh, (7.14)

where A is still to be found.

An unconstrained spherical least squares estimator can be derived by not en-

forcing the quadratic constraint (7.13) which is equivalent to assuming that the

source coordinates and distance to the origin x., ys, zs, and Rs are mutually inde-

pendent. An estimate of 0 is then given by

$1 = Gth, (7.15)

where

Gt = (GTG)-lAT

is the pseudo-inverse of the matrix G. This estimate has been shown [26] to be

accurate in some cases, but the source range information redundancy (7.13) can be

exploited to improve this estimate.

6TE6 = 0,1



76 SOURCE LOCALISATION

Simultaneous, Two-Sound Solution

The heterogeneous, impromptu networks envisaged in Chapter 5 are subject to

the constraints of unsynchronised member devices. As with the case of collabo-

rative colocation discussed in the previous chapters, this means that arrival times

determined at each of the nodes cannot be directly compared as there is no com-

mon reference time. Instead the delay lengths between two successive sounds are

sought. Comparing these relative timings from each of the nodes yields a system of

equations describing the interaction of possible positions for the two sound sources.

If the sounds occurred in separate spatial locations then each of the delays will con-

tain timing offsets dependent on the difference in path lengths from each of the

two sources to that node. Subtracting the delay measured at one node from that at

another, removes the unknown time between the two sounds.

An iterative nonlinear least squares approach can be applied for direct numerical

optimisation. No attempt is made, in this case, to formulate a linear approximation

or closed form. An interior, trust region approach to nonlinear minimisation is

employed, as implemented in the Matlab function lsqcurvefit. This provides a proof

of concept test as to whether the error on combined measurements, for a sound

source pair, can be minimised concurrently, with the additional cost of algorithm

complexity and computational time. If an approximate initial guess can be given

for the two source locations, then the solution is more likely to converge correctly

and quickly. By adapting the closed form linear-correction least square estimation

to estimate one source location, given the other, an initial position guess can be

derived from the previous source position and the delay between source sounds

measured at each of the devices. Using only this method, without the global cali-
bration nonlinear least squares approximation step - chaining a number of source
position estimates, each based on the output of the last - would quickly propagate

any large errors, as an erroneous output becomes the fixed source position for the

next sound source pair.

PROCEDURE 7.1: SOURCE LOCATION ESTIMATION FOR A CHAIN OF SOUNDS

1: at each sensor, record a series of sounds

2: if chirp signals are used then

3: correlate to find peaks of each

4: else

5: salient features must be selected from the audio stream (not implemented)

6: detect onset features

7: pass short onset recording to other nodes

8: correlate around onset to find precise timing

9: end if
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10: pass chain of sound arrival times to elected processor node

11: at elected, collect sensor locations {from colocalisation step or grid position}

12: pick centre of sensor distribution for guess of first sound position

13: for each remaining sound in chain do

14: calculate estimate of this second sound in pair from the estimate of the first

sound using the closed form least squares approximation

15: compute the numerical least squares minimisation for the positions of both

sounds in pair iteratively until a stopping criteria is met.

16: set the new estimate of the second sound as the first sound of the next pair.

17: end for

7.2 EVALUATION OF METHOD

A chain of sounds, emitted alternatively, from two points in front of a typical

SAS array geometry was simulated. The microphone positions reflected those of

the tiles mounted in a wall grid, with 17 tiles, space over a corner of two walls. The

tiles are 43.2 x 26.7 cm in size, resulting in equivalent microphone spacing. The

simulated sources were placed in the same positions as the experimental test case

below, with one emitter at a height of zi = 144 cm, and a distance xi = 85 and

y1 = 110 cm from the corner of the room, with the second at z2 = 139, X2 = 5.8

and y2 = 152 cm. An error was added to each of the calculated delay observations

between the two sounds, consisting of a typical 1 cm Gaussian noise and an error

of 2, 3 or 6 samples. Positions of each sound pair were computed using the iterative

numerical least squares estimator, from randomly chosen initial source coordinate

guesses. Shown in Figure 7.3 are the three distributions obtained for a chain of

100 sounds at three sample uncertainty levels. At each step two randomly chosen

starting positions were selected, bounded within a room-sized region around the

microphones. The standard deviation in position estimates is U2 = 18.7 cm, Us =
21.7 cm and U5 = 41.7 cm, where Uk denotes the mean of the standard deviation

in each dimension of the position coordinates, for the simulation case of k samples

of measurement error. The mean pair-wise range estimates lie close to the actual

distance s = 50.2 cm, with s2 = 53.4 ± 13.3 cm, s3 = 52.9 ± 16.1 cm and

s6 = 57.5 ± 27.8 cm, where sk denotes a pair-wise range ± one standard deviation,

for the simulation case of k samples of measurement error. The resulting spread of

estimations reflects the microphone array geometry. The mean position estimates

are offset from the true positions, by ~ 5 cm in each case.

The closed form least squares spherical interpolation step was then added, esti-

mating a starting point for each new sound from the final estimate of the previous
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FIGURE 7.3. Clustering of sound pair position estimates for 100 sound
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FIGURE 7.4. Two step source estimation, shows an improvement with
the initial closed form positioning. Plot is rotated to reveal spread of the
data through the space. All coordinates x 10- 2m

one. Although limited in accuracy, this estimation provides a correct region for

the new sound and establishes an approximate pair separation. For measurements

with, low, 2-sample error on each delay, corresponding to 1.5 cm, the closed form

step provides significant improvement in position accuracy and computation time.

For example, along the direction in which the microphone distribution is sparsest,

the mean value falls from 63.4 cm to 59.5 cm, with a correct value of 58.0 cm, with

the standard deviation falling from 28.7 to 9.8 cm. The mean number of iterations

before one of the stopping conditions is reached reduces from 122 to 72 steps. As

the measurement error increase, the improvement becomes less significant, but still

results in fewer mean iterations, and smaller standard deviation. Figure 7.4 shows

a plot of the pair-wise estimates in the room space in front of the wall mounted

microphones.

In order to practically test the two step approach to source pair position es-

timation, two handheld-sized XScale processors were used to alternatively emit a

series of reference sound signals at two positions in front of a wall mounted array of

Smart Architectural Surface tiles. As with the active, pair-wise ranging algorithm,

maximal-length sequence chirps were used as test sounds for their proven accuracy

in arrival time detection, and their deterministic nature, allowing them to be cal-

culated separately at both emitters and each of the detectors in the sensor network.

The uncertainty in peak detection for the delay between two chirps is on the order

of two samples. In the next chapter a discussion on extending this approach from
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FIGURE 7.5. Sound pair source location results for an 8 noise test using
SAS tiles (key as above). All coordinates x 10- 2m

identifying and positioning pseudo noise chirps, to tracking arbitrary sounds. By
alternating the sounds between the two test positions a number of spatially sep-

arated source pair delay measurements were made. In noiseless conlitions, each

estimate of the two source positions should be identical to the last. An 8-chirp

series of 512 bit sequences was used, each phase shift encoded onto a 11025 Hz

carrier rate and emitted from alternating positions, 50.2 cm apart, every sixth of a

second. The number of chirps in this test is limited to 8 by the record buffer avail-

able on each SAS tile. The signals were transmitted and captured at 44.1 kHz. Of

the 16 microphones were used one device exhibited much lower sensitivity than the

others, failing to register the arriving signals, and so is not included in the calcula-

tion and results. By testing audibility of signals between nodes in an initial group

forming step, unresponsive sensors and emitters should be easy to detect automat-

ically. Figure 7.5 shows the plan view of the microphones in the room and the

results for the estimated positions. For each pair, the new node coordinates were

first estimated from the previously guessed node position using the least squares,

closed form, solution. Following this the numerical, nonlinear, least squares step

is then applied using the estimates from the first step as initial conditions. The es-

timates of position converge towards the actual positions in this step, and lie close

after falling below the error threshold or reaching a specified maximum number

of iterations. The inter-pair distances tend to the exact measurement, the mean

measured value is 53.8 ± 3.0 cm, in comparison to an actual value of 50.2 cm.

The mean value in the simulated case for equivalent measurement uncertainty is
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53.4 cm. The absolute position of the pair has a mean of the standard deviation in

each dimension of o-ep = 13.0 cm, with an average Euclidean distance between

the estimated positions and the actual coordinates of 35.2 cm.





CHAPTER 7

DISCUSSION

The thesis of this work, introduced in the first chapter, is that sound can be used

to establish a practical common coordinate system between sensor-equipped, but

heterogeneous, devices, such as those already in our pockets. The information

collected can then be used to enable this impromptu collection to act as a distributed

microphone array, spatially mapping unknown acoustic events, which are naturally

linked to human activity and scale. The tools of collaborative colocalisation and

subsequent source location have been developed and tested, under the constraints

of real-room sensing and practical hardware. In this document the case has been

presented for the novelty and utility of these algorithms, the distributed, ubiquitous

systems that motivate them and the human centred applications that will benefit

from robust range estimation between devices and activity triggered sounds.

7.1 COLOCALISATION

A simple method for finding pair-wise range measurements between only coarsely

synchronised devices, equipped with microphones and speakers, has been described

and demonstrated. Correcting for the effect on the speed of sound of environmen-

tal conditions, error in the measurements is close to the uncertainty in the sampling

rates used. For 44.1 kHz samples in the tests described, this is approximately 3

and 5 cm. Direct face-to-face and lateral sensing test cases are presented. In the

lateral ranging case, sensors and emitters are directed perpendicularly to their plane

of separation. Pseudo-noise chirps are calculated and correlation peaks found in

the recordings at each of the nodes, yielding calculations of ranges. These can be

passed to a number of existing algorithms, for example [29], to accurately establish

a common co-ordinate system across the sensors in an ad-hoc system. It is shown

that using a multidimensional scaling approach, the sensor network positions can

be retrieved up to global rotation and reflection of the system.
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At each node, a peak finding search passes through a single recording of all

the reference chirps emitted from each device. In comparison to streaming data to

a central processor, only a small amount of information, the length of the delays

between peaks, has to be passed over the communication channel. The current

results were taken using a correlation algorithm that runs over the entire length of

the recording and thus proportionally scales the processing time with the number

of nodes. Running an initial peak-finding step on a down-sampled version of the

recording to identify areas of interest first may increase the speed of the algorithm.

As the number of nodes in a densely populated system grows, the approach can

be modified so that each sensor looks for peaks in a constrained time window,

such as the time for 6 chirps to have occurred before and after the nodes own

chirp. Multidimensional scaling methods that improve performance in networks

containing a large number of nodes with a degree of connectivity on the order of 10

neighbours or more, such as Moore et al. [40] which avoids settling on false minima

in possible conformation, can be used in this case.

The Smart Architectural Surfaces platform has been used in these tests, pro-

viding distributed processor and sensor resources, and group-forming and com-

munications protocol. The algorithms have been developed to function, with little

modification, over a large range of electronic devices. This is demonstrated in a

multi-device, real-room, test case. Despite degradation in peak finding perfor-

mance due to compression of the audio recordings, accurate range measurements

are still obtained with outlier rejection and careful tuning of the threshold levels.

Optimisation of the code to use fixed-point only calculations, which improve speed

on the limited resources of processors on the SAS, phones and similar devices, is

currently work in progress. The authors are also looking to use the temperature

and humidity sensors available in the test platform as a possible way to correct for

global variations in sound speed, however it has been observed[18] that local varia-

tions, such as air outlets between nodes can have a significant effect in sound based

ranging approaches. Statistical analysis of repeat measurements and calibration for

a known separation between a sensor pair may provide effective scaling in future

tests on generic sensor networks.

Improvements

Although conformation can be found, one thing that cannot be determined is

the relative orientation of each device. On specialised hardware, two microphones

could be used to find this, but on typical consumer electronics, and the SAS tiles

orientation cannot be found with acoustic timing. It is possible that some spectral
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information indicative of direction could be used, but modelling this would be com-

plex. Similarly, occlusion, may lead to a secondary reflected path being detected,

but mapping reflected images of a source back to the original is difficult. The need

for orientation information arises, in the tile case for example, in which a num-

ber of screens could display elements of a large image or visualised dataset, but the

viewpoint correction on each screen must be calculated to accommodate the tile ori-

entation relative to the others. Currently the tiles are assumed to be constrained to

be facing perpendicularly to two flat surfaces on which they are mounted to achieve

this. Direction and common screen view can be found by comparing video images

from the camera on each of the tiles. Extracting prominent features, for example

SIFTt , present in each of the frames, and comparing the relative shift, a view point

and relative rotation and translation between the two tiles can be calculated.

This code currently takes 30 s to determine a single pair-wise range measure-

ment. A large component of this time is spent performing cross-correlation, first

with the control chirp and then using the two expected chirps, with the recording.

This calculation is currently performed using a floating-point implementation of

the FFTt , which without corresponding floating point handling on the processor,

must be handled inefficiently in code. Converting this to a fixed point implemen-

tation would increase speed with little effect on accuracy. This would also aid code

portability, by supporting other small devices that do not offer hardware floating

point.

The ear uses onset detection to identify possible new sounds, and fine grained

inter-aural timing comparison for direction estimation. Computing time of the

correlation component may be greatly reduced if a rough estimate of when the

chirps occur can be found first, before more accurately fine tuning the arrival time

based on correlation. This initial step could involve downsampling the recording to

reduce the data points the correlation algorithm must parse, or by looking for onset

or zero crossing rate patterns for chirp like sounds and subsequently correlating

around those times only, rather than the whole recording.

8.2 SOURCE LOCATION

Estimating the position of the sources of unknown sounds from the time differ-

ence of arrival at a number of microphones is a challenging problem, which involves

solving an unstable system of equations in the case of noise corrupted measure-

ments. This is further complicated in a system of unsynchronised devices, in which

direct arrival time comparisons are not possible. A technique has been presented

that uses the relative timing between two unknown sounds, attempting to solve for

Scale-Invariant Feature

Tracking[35]

Fast Fourier Transform



86 DISCUSSION

both source positions at once. By stepping through a series of sounds in this way,

estimations for previous positions can be used to estimate the next. This approach

uses the collaborative localisation presented to establish the relative position of each

of the microphones, which is then used in the source localisation algorithm. A two

step estimation process is developed, in which a closed-form approximation is first

used to estimate the second sound in a pair. These two source positions are then

used as initial guesses in a numerical, iterative least squares minimisation. Perfor-

mance was simulated for a typical sensor layout, demonstrating convergence to the

correct location coordinates for a range of sound source positions. The approach

was then tested using recordings from a microphone array composed of tiles in the

Smart Architectural Surfaces platform. A maximal-length chirp sequence was used

to aid accurate detection of the arriving signals. A series of chirps were emitted,

alternating between two positions in front of the array. The sound pair separation

is estimated with a 3.0 cm uncertainty. The absolute position of the pair is less ac-

curate, but successive measurements vary by a standard deviation of 13.0 cm, with

a mean distance to the actual pair position of 35.2 cm. The solution is susceptible

to sign error of the reference sounds. This suggests that more than two sounds

could be used to strengthen absolute positioning at the cost of increased compu-

tation. The use of separation estimates between pairs, only, may also be used to

yield a relative coordinate system between sounds. These algorithms for estimating

source position from sensor timing measurements are currently centralised in de-

sign. They require each sensor node to pass measured recording times to a single

node for estimation.

Using the Information

The accuracy of the position estimates is relatively coarse in comparison to that

attained in the device localisation case. By selecting the most prominent sounds it

is hoped that correlation performance similar to that achieved with the maximal-

length sequence chirps can be attained. Sound streams, in which many sound events

connected with a single source and location can be found, can iteratively improved

in accuracy, by clustering the estimated coordinates of each source. This approach

also requires sounds to occur at several different locations in succession in order

for the delays measured to contain position information. Such is the case for busy

audio scenes, conversations and activity generated sounds along a path through

space. A large body of research has investigated ways to combine many position

estimates over time into accurate estimates of a number of repeating sound sources.

Clustering over short and long time periods reveals a range of information from turn

taking by talkers to long-term use of a space. For example, the size of a room and
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the permanent obstacles within it are likely to become apparent from the sparseness

of sounds originating from those positions.

8-3 SOUND EVENT SELECTION

Most beamforming and source localisation approaches use the entire record-

ing from each microphone, comparing correlation between each in small sections

to pick out a running estimate of sound source position. This is unsuitable for a

distributed system in which streaming each of the recordings to the other nodes in

a network, or to an elected central point for processing rapidly becomes unfeasi-

ble as the network scales. Instead, to implement source location on a distributed

sensor network, a means of picking features to match between recordings must be

established. The focus is then shifted from estimates of position for each moment

in the recording, to locating key acoustic events, and building longer term patterns

of position. It is proposed that such a system, although using less of the signal

information is more robust to real room reverberation and better reflects an event

focus.

Jehan[28] has presented an effective onset detection algorithm primarily in-

tended for audio segmentation and beat detection in music. The technique is driven

by analogy to human experiences of listening, with a number of steps to better match

our own acoustic perception of sound onset. This same technique can be used to

detect the unknown sound onsets sought, which promise to act as effective markers

for timing measurements in room recordings. The onset of new sounds is marked

by sharp increases in spectral power. The human centric focus of Jehan's approach

compliments the human scale focus of the acoustic sensing and localisation pre-

sented in this work. The method, we will see, shifts focus of the analysis to better

match the frequency range and temporal response our own auditory systems em-

phasise. Not only does this favour sounds with significant human meaning but

also reflects our evolution to concentrate on initial onset rather than following re-

verberation, and to pick out onsets that are likely to correspond to new acoustic

events.

Taking a waveform recorded from a room, our first step is to compute the Short

Term Fourier Transform (STFT) allowing us to monitor frequency information over

the length of the signal. Short windows are selected to increase timing information,

at the cost of frequency precision. The regularly spaced frequency bins of the STFT

are mapped to a nonlinear Bark scale that better matches our hearing, placing less

emphasis on low frequency components. Alternatively the Mel scale may also be

used. Temporal smoothing is then applied across the spectrogram, by convolving
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each critical band with a half-Hanning window [sparkline]. This reflects the tem-

poral masking response of the ear, but has the effect of placing emphasis on initial

sounds while smoothing rapidly successive peaks that follow the attack, such as

multipath reflections. Frequency masking between the critical bands is matched by

smoothing across the frequency bins. Jehan terms the resulting spectrogram "what-

you-see-is-what-you-hear", with just visible in the spectral plot corresponding to

just audible for human listeners. The frequency bins are then summed across each

window to determine a loudness function. Sharp increases in loudness are found

by taking the derivative of this curve. These peaks are smoothed to remove close

secondary subpeaks, again reflecting the perceptual fusing of such quickly repeated

onset transients, and favouring the arrival of sounds marking new acoustic events.

The local maxima which rise above a small threshold, mark each of the candidate

sounds. These onsets can be found in the recordings of each device, and locate

sound arrival times on a ms scale. A small sample can be taken around this point

from one recording, and used to correlate against the corresponding onset markers

on the other recordings of the same sound to determine exact timing offset. This

improves code efficiency, by only applying fine correlation to short sections of the

recording, and suits distributed sensing environment, in which only small reference

clips are passed between devices, rather than streaming an entire signal.

Shown in Figure 8.1 is a short recording of room noises - tapping, talking and

clapping - taken from one of two microphones separated by a distance of 160 cm,

recorded as two channels to maintain common timing between them. The wave-

form is translated to a Bark scale auditory spectrogram, below that is the loudness

curve, the peaks marking onset transients, and finally the smoothed peaks with the

onsets detected marked in as vertical strokes. An implementation of the onset de-

tection algorithm by Lieberman[32] is used here. Figure 8.2 shows the correlation

of an onset sample selected automatically in this way with the corresponding onset

region in the second channel. The sound was created at a point on the axis of the

two microphones. The time delay between the two sounds was measured as 190

samples. This sound flight time corresponds to a distance of 150 cm, close to the

actual distance of 160 cm. Further quantifying the error in this technique remains

as future work.

Work must still be done to select, transmit and match these candidate onset

samples in a robust way. Each sensor may not detect all of the possible peaks, for

example, so a means of matching the patterns of sound onsets to find which ones

correspond to which between nodes must be developed.

Zero crossing rate and running entropy calculations can provide indications of

highly variant sections of a waveform, indicative of noise-like components that may
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FIGURE 8.1. Onset detection using the approach of Jehan[28] and
Lieberman[32] for a short room recording of 4 claps and the word
"batfink" spoken twice. Background noise included computer noise and
a recording of a dog growling. Onsets are found for each of the claps
and two parts of the words, and three background noises.

match the properties of the maximal-length pseudo noise sequences [15]. However,

in real room recordings this is often the reverberant part of a signal, leading to poor

correlation with other recordings of the same event. Zero crossings, in particular

are very efficient to calculate, and so may be able to compliment an onset detection

algorithm.

8.4 ENABLING IMPROMPTU SENSING

Borrowing the digital resources from the devices of the strangers around us in-

volves challenges of both technical implementation and social negotiation. These

are issues that this research raises, addressing concepts of technological and digital

commons. Building tools that enable people to share the resources they already
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FIGURE 8.2. Correlation between an automatically selected onset
sample and two recordings of the sound. Sharp peaks occur at the
correct timing points, showing the spatial separation of the two
microphones.

carry allows friends and colleagues to achieve tasks that one person's digital de-

vices could not, and challenges strangers to collaborate, when it could be of ben-

efit to them and sharing devices could yield information than any single devices.

Two related areas of ad-hoc collaboration, spatial mapping and power structures in

surveillance, are briefly introduced below, as future avenues of investigation.

Context and Connectedness

This research uses the properties of sound to build tools that can begin to map

the history and context of a space. One long term goal is to investigate how technol-

ogy can compliment conversations. An open question in this research is whether

these resources can aid interaction between people. As we saw in Section 3.2, re-

cent research has shown that group discussions can be effected positively through

the display of participation information and history as people talk [14] - this work

has been developing the resources for the collection of this spatial and temporal

acoustic information using impromptu networks of the microphones inside hand-

held computers and mobile phones of meeting participants.
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Surveillance and Sousveillance

Any work on aiding the tracking of people by machines must address questions

of civil rights, ethics and any potentially harmful uses of the tools. Our personal de-

vices and city surveillance infrastructures are already capable of considerable track-

ing and eavesdropping. We look to those who control them to offer us protection.

Throughout our history, the control of information channels has raised important

questions on how these systems will be used and misused. Can systems be designed

for methods of trust and empowerment in surveillance and security? People may be

able to create ways of actively improving their safety and sense of openness without

surrendering their civil liberties and without propagating mistrust and fear. The

tools presented in this work mandate collaboration of devices and their owners for

sensing to occur. Negotiated, informal information collection in our communities

may provide a means of empowering people in the use of this information.
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APPENDIx A

TECHNICAL SPECIFICATIONS

The Smart Architectural Tile processor is a handheld sized, single-board computer,

the Applied Data Systems XScale Bitsy with 400 MHz RAM and 64 Mb of onboard

memory. Network connection is established through a standard PCMCIAt wireless

802.11b card. With no onboard floating point support, any floating point calcula-

tions must be handled in code, leading to slow processing in these cases. However,

many algorithms can be optimised for fixed point systems.

A USB driver and 'smart IO' socket enable connection of resources. Sensors at-

tached to most tiles include a camera, a microphone, an ultrasound sensor, 2.4 GHz

electromagnetic signals via the wireless card, temperature, humidity and baromet-

ric sensors. Effecters through which a tile can actuate the room include a screen,

an ultrasound emitter, 2.4 GHz wireless emission and an acoustic speaker. The

microphones are low-cost Panasonic electret capsules, in small 10 mm and 6 mm

diameter packages. Tiles use either omnidirectional RF noise-resistant types or a

unidirectional model although both exhibit similar wide directional detection. The

microphones have a sensitivity of -47 t 4 dB with a signal to noise ratio quoted

as more than 60 dB. The frequency response is flat over a frequency range of

200 Hz to 20 kHz increasing down to 20 hz in the omnidirectional case. The

microphones have a built-in FET amplifier circuit, and consume under 0.5 mA at

a standard operating voltage of 1.5 V. Resistance to radio frequency interference is

provided by a - 10 pF capacitor. The speaker is a Panasonic EAS3P127A 'micro

speaker' which is a slim 4 mm deep, and 36 mm in diameter. It has a broad fre-

quency response extending from 500 Hz to 4 kHz. Audio sampling and emission

is handled by an on-board sound card chip, the CirrusLogic CS4202 audio codec,

which meets the Audio Codec'97 2.2 component specification. This includes an in-

tegrated microphone pre-amplifier circuit, and uses 20-bit digital-to-analogue and

18-bit analogue-to-digital and internal sample rate conversion.

The board runs the 2.4.19 ARM t branch Linux kernel, which is held in flash

Personal Computer

Memory Card

International

Association standard

Acorn RISC Machine

architecture
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GNU Compiler

Collection

memory, and boots in - 30 s. This version of the kernel does not support the

Advanced Linux Sound Architecture (ALSA), but does support the older Open

Sound System (OSS) which provides a comprehensive sound card driver system.

For ease of development and testing, programs compiled for the system, using the

GCC t cross-compiler, are stored and loaded from an NFS (Network File System)

mounted directory. With the addition of slightly larger Flash memory, however the

executables could easily be stored locally.

Communication is via a typical TCP/IP connection over an 802.1 lb network.

Interaction is currently implemented via a single router, rather than direct broad-

cast/multicast protocol, a system that is limited in scalability. Applications are

developed with flexibility to use either the former or latter interaction in mind.

Streaming raw audio with a sampling rate of 44100 Hz leads to data loss, especially

if the network is busy. Streaming mp3 compressed audio is handled successfully in

most instances.
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