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Abstract
Calibration of an inertial measurement unit is important to the success of accuracy-
sensitive missions. This thesis analyzes calibration techniques for two inertial measure-
ment mechanizations: (1) an inertially stabilized system and (2) an inertially referenced
slew. An inertially referenced slew rotates the inertial measurement unit with respect to
an inertial reference frame independent of the vehicle motion. The appropriate inertially
referenced slew is determined by a proposed optimal calibration method that maximizes
the correlation between a measurement and a covector, specifying a mission performance
indlex. The performances of a six-position dwell calibration (inertially stabilized system)
and an optimal slewing calibration (inertially referenced slew) are determined to be de-
pendent on the mission. The inertially stabilized system is preferred for determining
accelerometer errors and an inertially referenced slew is preferred for calibrating rate-
sensitive gyroscope errors.
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Chapter 1

Introduction

1.1 Navigation and Calibration

Inertial navigation is the process of determining the position, velocity, and attitude of a

vehicle from inertial data. An inertial measurement unit (IMU) is a system of instru-

ments that gathers the necessary navigation data. Specifically, the IMU instruments are

orthogonal triads of accelerometers and gyroscopes that respectively detect the specific

force and angular rate of the vehicle. The instrument outputs are integrated to track the

vehicle's position, velocity, and attitude. The accuracy of the IMU instruments limits the

ability to navigate; therefore, the instruments are calibrated prior to flight.

Calibration is the determination of error characteristics. The relationship between the

instrument outputs and the known, theoretical values is described by error characteristics

or more specifically, instrument errors. Calibration makes the instrument errors observ-

able, distinguishes them, and adjusts the instrument model according to these errors. "A

control system is said to be observable if, for all initial times, the state vector can be de-

termined from the output function, defined over a finite time." [8] Individual instrument

error observability is essential in instrument calibration. Calibration of gyroscopes and

accelerometers for aerospace missions such as missile guidance require tolerances on the
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order of micro g's and microradians.

As a simple example consider accelerometer calibration. If the errors are limited to

bias and scale factor, then these errors can be observed by the following procedure. First,

the accelerometer is placed with its input axis in the vertical direction and the output is

integrated over time. The combined effects of bias and scale factor are observable, but the

errors cannot be distinguished. If the calibration is repeated with the input axis reversed,

the bias and scale factor contributions can be separated. The error characterization of

the accelerometer bias is an additive quantity independent of the acceleration direction;

whereas, the scale factor contribution is proportional to the acceleration that changes sign

when the accelerometer input axis is reversed. This example is a simple case where the

mechanism can be understood exactly.

In the 1960's, Dr. Rudolph Kalman developed a linear estimator or Kalman Filter.

The optimal filter uses initial conditions, system and measurement dynamics, and statis-

tics of system noises and measurement errors to determine the minimum error estimates

of the system [3]. Correlations between the measurements and the instrument errors

produce observable states. The Kalman Filter is used to determine individual errors for

complicated systems with possibly hundreds of instrument errors. The calibration of these

instrument errors yields accurate navigation during the mission.

The two basic navigation methods are a strapdown and an inertially stable system.

Angular velocity of a strapdown system is that of the vehicle with respect to an inertial

reference frame. An IMU on an inertially stable platform has gimbals, which essentially

null the angular velocity with respect to an inertial reference frame. This thesis will not

evaluate a strapdown system; instead, this thesis will compare an inertially stable system

with an inertially referenced slew. An inertially referenced slew is a system that rotates

with respect to an inertial reference frame independent of the vehicle motion.

This thesis will evaluate the initial calibration and the mission navigation. The per-

formance of the calibration method will be compared given a specific method for mission

12



navigation. The mission navigation with an inertially referenced slew is a current area of

interest in navigation [4, 5, 7].

1.2 Initial Calibration

One example of a mission application is a ballistic missile, which requires a high level

of accuracy to hit the target. This level of accuracy requires the accelerometers and

gyroscopes to be calibrated within micro g's and microradians. There are several standard

calibration techniques implemented to calibrate the instruments.

One method uses a shaker table, which vibrates the IMU at a given frequency. The

characteristics of the IMU are compared with the output characteristics of the shaker

table. In order to excite different errors along various axes, the test must be repeated

several times at different orientations.

Another method for calibrating an IMU prior to flight rotates the instruments using

a centrifuge. The IMU position is measured at six points along the centrifuge path to

calibrate the instrument errors. Similar to the shaker table, this test is repeated multiple

times to excite different errors along different instrument axes. This thesis will focus on

evaluating and improving calibration of an IMU prior to flight using a centrifuge.

1.3 Centrifuge Calibration

In a typical calibration of an inertially stabilized IMU, the unit is attached to the arm

of the centrifuge and spun at a specified rate for a given amount of time. Position

measurements of' the IMU are taken at six points along the path of the centrifuge to

calibrate the instruments. The IMU is then reoriented and the test is repeated. This

procedure requires typically six different orientations of the IMU to observe the instrument

errors.

The procedure described above allows for various inaccuracies in the physical testing
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of the IMU. First, the centrifuge must be restarted between each test. Also, it may not

be valid to use the calibration of the previous orientation as the initial conditions for the

next test. In order to accurately calibrate the IMU, this thesis considers slewing the IMU

as it is being spun by the centrifuge. This mode of calibration applies particularly to

missions that navigate using an inertially stabilized slew.

One disadvantage of this technique is the required modeling of more gyroscope states

during an inertially referenced slew, since the IMU is rotating through a trajectory. The

gyroscopes are on an inertially stable platform; therefore, during a test without slewing

these rate-dependent gyroscope errors are not observable. In the slewing system, the

IMU behaves more like a strapdown system than an inertially stable system. In order to

correctly determine the angular rates, it requires modeling the rate-dependent gyroscope

errors.

1.4 Thesis Overview

This thesis will discuss approaches in determining an optimal calibration method given a

mission dynamics profile. The advantages of slewing trajectories for calibration are exam-

ined. Specifically, the baseball stitch slew has inherent advantages and will be evaluated.

The results for using such a trajectory are promising, but could be improved by other

possible slewing trajectories. A method for determining an appropriate slewing trajec-

tory is discussed, which uses prior covariance information. The results of both mission

navigation methods (inertially stable and inertially referenced slew) are discussed to gain

insight into the appropriate calibration technique (inertially stable or inertially referenced

slew) for each.

Chapter 2 is the foundation for the simulation including the navigation equations,

Kalman filter, and mission covector formulation. The following chapter examines a gen-

eral slewing maneuver and looks more closely at the baseball stitch slew. In Chapter 4

14



a method for determining an optimal slewing trajectory is presented based on prior co-

variance information. The theoretical formulation of this optimal slew and an evaluation

of the method is discussed in Chapter 5. Chapter 6 presents the results of the thesis and

the conclusion is discussed in Chapter 7.
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Chapter 2

Kinematics and Estimation

Inertial navigation requires knowledge of the system's kinematics and possibly, additional

external measurements. In centrifuge calibration the difference between the predicted and

measured position creates observability of the instrument errors. An optimal estimator,

or Kalman Filter, uses this observability to determine the minimum variance estimates

and to calibrate the instruments. The calibration performance may be assessed using a

covector or linearized performance index, such as miss distance.

2.1 Inertial Navigation

T'he two basic navigation methods are a strapdown system and an inertially stable system.

A. st:rapdown system is rigidly attached to the body of the vehicle; therefore, the vehicle's

angular velocity is the nominal angular velocity of the gyroscopes. An inertially stabilized

system has a nominal angular velocity of zero, because the gimbals essentially null the

rotational effects. This thesis will consider an inertially referenced slew, a method where

the IMU is isolated from the vehicle attitude with a stabilized platform. The gimbals drive

the platform through a predefined inertial attitude history with nonzero angular rates. In

the inertially referenced slew the gyroscopes nominally output the angular velocity of the

slewing maneuver. This thesis will consider an inertially stabilized system and inertially
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referenced slew.

2.2 Navigation Equations

The centrifuge navigation equations of the position x, velocity v, and attitude q in an

earth centered, earth fixed frame (ECEF) are described by the following differential equa-

tions

: E = VE (2.1)

VE = fPqP- - 22E x vE - QE X (E X XE) (2.2)

qE 12 0 qE (2.3)

where u is the gravitational constant, QE is the angular velocity of the Earth, and Equation

2.3 is a quaternion equation (Appendix A).

The superscript denotes the reference frame, where E is a reference frame that rotates

with the Earth and P is a reference frame rotating with the platform of the IMU. The

accelerometers measure specific force, f in platform coordinates; therefore, this must be

rotated into Earth coordinates (Appendix A). The gyroscope measures angular velocity

with respect to an inertial reference frame. To find the rotation from Earth to platform

coordinates, Earth rate must be subtracted from the gyroscope output (QG).

When the IMU is mounted on the arm of a centrifuge, the earth relative position and

velocity of the IMU at any point in time, t are modeled as

x = ro + ra(cos(wt)uN + sin(wt)uE) (2.4)

v = raWc(-sin(wt)uN + cos(w~t)uE) (2.5)

where UN and UE are the unit vectors point North and East, respectively. r is the
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vector from the center of the Earth to the center of the centrifuge. In this simulation, the

centrifuge arm (ra) is assumed to be 10 m long and rotates at 2.6 rad/s, wc.

The attitude is dependent on whether the IMU is undergoing a slew or not. If there

is no slewing maneuver, then the attitude is inertially constant since the IMU is on an

inertially stabilized platform. If there is an inertially referenced slew, then the attitude

of the IMU is determined by that specific maneuver relative to inertial space.

2.3 Kalman Filter

A Kalman filter uses initial conditions, system and measurement dynamics, and statistics

of system noises and measurement errors to determine the minimum error estimates on

the system [3]. In the following simulation, the performance of the inertial measurement

unit will be described by 33 error states x. Error states 1-9 describe the dynamics of

the system, error states 10-21 describe the gyroscope instrument errors, and error states

22-33 describe the accelerometer instrument errors as shown below. The gyroscope and

accelerometer instrument errors are assumed to be constants.

x = (1-3) position

(4-6') velocity

(7-9 ) attitude

(10-12) gyroscope misalignment

(13-15) gyroscope scale factor

(16-1:L8) gyroscope bias

(19-21) gyroscope non-orthogonality

(22-24) accelerometer misalignment

(25-27) accelerometer scale factor

(28-30) accelerometer bias

(31-33) accelerometer non-orthogonality

19



The Kalman Filter measurement update to the state and covariance, respectively are

Xk= x + Kk(Zk - Hkx ) (2.6)

P+ = (I- KkHk)P (2.7)

where the measurements are

Zk = Hkxz + Vk (2.8)

and the Kalman Gain is

Kk = P Hk (Hk P7 Hk + Rk)- (2.9)

Vk is the measurement error, where E[VkvT = Rk. Hk is a matrix corresponding to the

states that are being measured. In the centrifuge case, the position is measured; therefore,

Hk= /(3x3) o(3x3o) ] (2.10)

The extrapolation of the states and covariance are described by

4+ = TzXXk k (2.11)

(2.12)

where Q is the process noise, which in this simulation is velocity random walk.

For small time steps where F(t) is approximately constant, the Taylor expansion of

the exponential ) can be approximated by:

4?= eFt I + Ft + F2at2
2

(2.13)
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where F is the linearized differential equations satisfying

J = F6x (2.14)

where

0 I 0 0 0 0 0 0 00

-G--[QE] 2 -2[QEx] -[fEx]R 0 0 0 0 [ffEx] f I E

0 0 0 -[QPX] fQGIQG 0 0o 0 0

0 0 0 0 0 0 0 0 00

0 0 0 0 000 0 000

(2.15)

Process noise is not a part of the linearized differential equation, because it is not a

significant factor in calibration. Process noise may increase or decrease the calibration

time necessary, but it will not change the qualitative results of calibration performance.

rThe gyroscope and accelerometer errors are assumed to be random constants indepen-

dent of time. Special notation has been used to denote a diagonal matrix and a symmetric

matrix with zeros along the diagonal as seen below

wI wi 0 0

w= w2 = 0 w2 0 (2.16)

W3 0 0 W 3

and

W/1 /0 W W2

W= W2 w3 0 W1 (2.17)

W 3 W 2 W 0

21



A notation used throughout this thesis is [ x], which denotes

W1 0 -W3 w2

[WX= = W2 X = 3 0 -W1(2.18)

W3 --W 2 i1 0

2.4 Covector Estimation

Instead of estimating the entire state, consider estimating a linear combination of states

or ATx. A is a covector or a linear functional on a vector space. One common performance

index is the circular error probability (CEP) of a ballistic missile, the radius of a circle

into which the projectile will land at least half of the time. Instead of discussing CEP, this

thesis will look at two other costates, the downrange and crossrange miss. Downrange

and crossrange miss is the probability the missile will land within the miss distance away

from the desired target 50 percent of the time.

The trajectory of a ballistic missile is determined by the differential equations for

position x, velocity v, and attitude q in an ECEF coordinate system.

5CE = VE (2.19)

E E
VE = XE 3 + T E -2[QE X]vE- [QEX]2XE (2.20)

1P = 2 * (QG-Q * 1) qE - -(2.21)

where T is the thrust of the vehicle, which is assumed to be 8' g until it reaches an altitude

of 30,000 meters. Once the vehicle has reached 30,000 meters, no external forces are acting

on the vehicle except gravity. The range of this projectile is approximately 650,000 meters.

In the inertially stable mission, the angular velocity of the gyroscope (QG) is 0. In the

inertially referenced slew, the angular velocity of the gyroscope is defined by the slew

22



maneuver with respect to an inertial reference frame.

The unit vectors at impact UDR (downrange), UCR (crossrange), and uup (up) define

a right-handed coordinate system. The earth-relative miss distances at t = tf are defined

by

/XDR = UDRJX(tf)

AXCR = UCRJX(tf)

AXU = UTpJX(tf)

(2.22)

(2.23)

(2.24)

The inertial misses at geometric impact, when the missile hits the earth's surface at

Ixf I = RE are

Ax impact / XD
A~DR AXDR (2.25)

A impact = XCRA~XC1 =-xc (2.26)

nimpact O
UP (2.27)

The covectors A1 and A2 in an ECEF coordinate system are defined as

(2.28)A 1 = UDR j
0

0
(2.29)

(2.30)

Covectors can be propagated backwards in time by the linear transition matrix b

based on the true angular velocity and specific force.

Ak(t) = DT(tf t)Ak(tf) (2.31)
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4D(tf, t) is the state extrapolation matrix used in the Kalman filter from the final time of

the projectile hits its target to the time of launch.
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Chapter 3

Slewing Maneuver

Navigation mechanized with an inertially referenced slew is sensitive to gyroscope errors

that are normally neglected in an inertially stable mechanization. An inertially stabilized

calibration, such as a six-position dwell does not excite the rate-dependent gyroscope

errors. A mission with an inertially referenced slew requires these gyroscope errors to be

calibrated; therefore, a new method for calibration using slewing is required.

The first consideration for improving the six position dwell calibration is to compare

it with a representative slewing maneuver. The so-called "baseball stitch slew" has the

advantage of averaging the accelerometer bias; therefore, separating that error from the

calibration problem. Desensitizing an error during calibration eliminates observability of

this state over long periods of time and also eliminates cross-correlation between this error

and other states. The advantage of eliminating cross-correlation is to improve observabil-

ity of the other states, which as a result will improve calibration.

3;.1 Analysis of Slewing Maneuver

The accelerometer errors are analyzed to improve calibration by desensitizing accelerome-

ter bias. The force error equation in ECEF coordinates, neglecting gravity can be written
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as

6F = R0(t) (ba + saRO(t)F + [(Va + q) x]RT(t)F + (;aR(t)F) (3.1)

where q = RoT is the navigation attitude error expressed in body coordinates which is

nominally constant if the rotation does not vary over short periods of time. R is the

rotation matrix from the platform coordinate system to the ECEF coordinate system.

The accelerometer errors ba, Sa, 4 , and Wa are the bias, scale factor, misalignment, and

non-orthogonality, respectively.

The velocity error can be found by integrating the force equation

v(t) = F(T)d = ( Ro(r)d7 bA

+ i(Ro(T)aRo T(T))F(T)dT (3.2)

+ (RO(T)([(?a + ¢)x] + S)RT(r))F(T)dT

The accelerometer bias contribution disappears if

Ro (T) T= 0 (3.3)

To gain insight into the problem, assume that the force is constant and Equation 3.3 holds

for trajectory Ro(t). In this case, the velocity error can be rewritten as

Av(T)= T MF (3.4)

where M = 1 oT Ro()DR(T)dT with D = SA + [~aX] + [X ] + (a. The velocity error

covariance contribution at the end of one period is

AP = E[Av(T)AV T (T)] = T2 F .2 E[MuFuTFMT (3.5)

26



Given a covector, A, the goal is to minimize

E [(AT V(T))2] = AT AP (3.6)

This is equivalent to minimizing the cost function J(Ro) where

J(Ro) = E [(ATMF)2] (3.7)

such that 0 = fo: Ro(r)dT

If Ro C X = {RI foT R(T)dr = 0}, then the problem can be reduced to finding a vector

vv(t) where

w(t) = Ro(t)DR (t)uF (3.8)

is perpendicular to A for the maximum amount of time.

The above problem seems well-posed, but it has a constraint which makes the sample

space very difficult to evaluate. Eliminating the constraint 0 = oT Ro(r)dT would allow

one to search over the entire space of rotation matrices.

3.2 Baseball Stitch Slew

A baseball stitch slew has the property that 0 = f0T Ro(r)dT, which will null the bias term

of Equation 3.2. The desensitization of the bias term will improve observability of other

accelerometer errors by eliminating cross-correlations. A baseball stitch slewing maneuver

is an inertially referenced slew that is a multiplication of two rotation matrices. The first

rotation is about the z-axis with a frequency of w and the second is about the x-axis with

a frequency of 2w as shown below.
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cos(wt)

sin(wt)

0

- sin(wt)

cos (wt)

0

0

0

1

1 0

O cos(2wt)

O sin(2wt)

0

- sin(2wt)

cos(2wt)

Using the rotation matrix relationship that JR = R[Q x], the angular velocity is

2w

QBB = w sin(2wt)

w cos(2wt)

A baseball stitch slew is periodic, RBB(t + T) = RBB(t), and satisfies

T RBB(T)dTr = 0
o

(3.9)

(3.10)

(3.11)

The baseball stitch is a feasible

not be the optimum. In the next

discussed.

solution to the optimization problem posed, but may

section, improvements on a given trajectory will be

3.3 Example Problem

The baseball stitch slew meets the required constraint that 0 = f T Ro(T)dT; however,

this slew trajectory may not be optimal for observing the remaining terms in Equation

3.2. Changing the total orientation of a feasible slew trajectory can improve observability.

This example problem will examine a given feasible trajectory (R(r)) and find the total

orientation (R) required to increase observability.

The total slew maneuver Ro(T) can be defined as Ro(-)- R(Rr). The total orientation

of the trajectory, R is independent of time. The trajectory itself is defined by R(T)

that satisfies = /T R(-r)dr; therefore, the total slew maneuver satisfies the feasibility

28
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JT oTI TRo(T)dr =
o T

__R(T)dT = Rf TR(T)dr = 0

'The velocity error covariance contribution at the end of one period can be rewritten

AP = T2IF12.E
[(R(JT R(T) DRT (r) d) 1k u) (1 ( T Rt(T)DR T (T7

Using Kronecker products from Appendix C, the above can be rewritten as

[

((uFR (A R)
(IT

R(r)DRT ()dT) R( )DRT(r)dT)

= T2 IF 2(uR 0 R) . [( R()DRT)d) (jT )DRT(~)d) ~T]

(3.14)

where the underline denotes the matrix being written in vector form.

Note that AP is a 3 x 3 matrix, which is the velocity error covariance contribution at the

end of one period T, due to initial scale factor, misalignment, and non-orthogonality errors.

Suppose A is a given vector with norm one that corresponds to the minimum velocity error

covariance contribution. Then, the problem can be formulated as a minimization problem,

min ATAPA over a total orientation A. Substituting in Equation 3.14 for AP creates an

optimization problem shown below.

mi:n T 2 F 2 . T (uj;l ®R).E
A ,RO).

[

R(T)DR T (T )d-) jR( T)DRT(T)dTr) T
(jT

" _

(U T(3.) TA

(3.15)

29
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(3.12)

A/P = T2 F12 .E

-)d (,3T )
(3.13)

T1

-j
I

)i(····-··T
''
-, \

IJ 
/ \-



The above problem is equivalent to

min TWX (3.16)

where xT = AT (uT Ro Ro) and W = E [(f R(T)DRT(T)d - ) (frT R(T)DRT(T)d)].

Note that W is a known matrix based on initial errors and the given trajectory, and

|X| XT = AT(UTFR )(RTUF RT )A

= AT (U4RRT UF X TT)A

= AT(I I)A

= A12

It was assumed that A = 1; therefore, Ix = 1. The solution to this minimization

problem is the eigenvector, x that corresponds to the smallest eigenvalue of the matrix

W. To solve for , one must solve the equation x = (RTuF 0 RT)A, which can be

simplified to ( 0 ) = (UF 0 I)AXT.

Analyzing trajectories and improving observability provides insight into possible new

trajectories that could create more observability. It is difficult to extend the simplified

problem to determine other improvements on the slewing trajectories that are dependent

on time, i.e. the optimal angular velocity. The optimization problem would require min-

imizing over an integral of rotation functions, which cannot easily be accomplished using

linear or nonlinear optimization techniques. Further analysis of the rotational subspace

of slewing trajectories that have the property 0 = foT Ro(r)d - is required to determine if

desensitizing the accelerometer bias is effective in calibration.
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Chapter 4

Problem Formulation

Chapter 3 discussed desensitizing errors to decrease cross-correlations between errors.

Desensitization is only dependent on the kinematics of the vehicle. This chapter will

focus on utilizing the optimal filter estimates to improve the calibration mechanization.

The relationship between the measurements and the kinematics of the vehicle directly

influence the observability of the error states and calibration.

Calibration can be divided into two separate categories. The first category uses only

measurement information to determine the optimal future state. T. Thorvaldsen and

H:. Musoff have addressed this prior-free case at Charles Stark Draper Laboratory using

least-squares estimation. In this formulation, the least squares solution turns out to

be identical to the prior-free Kalman Filter solution assuming no process noise. This

approach lends itself to the six-position dwell calibration (inertially stabilized system),

since the covariance from the previous test may not be appropriate in determining the

next orientation.

The other category uses current state estimates to predict the optimal future state of

the system that will obtain maximum observability. The relationship between the mea-

surements and the kinematics of the system directly influence the observability in the

future states; therefore, this relationship is used to formulate an appropriate optimiza-
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tion problem. The unique work of this thesis uses current probabilistic information to

determine possible directions for improvement.

The categories can be further subdivided into two problems. The first problem min-

imizes the errors over the entire IMU. Optimizing the entire IMU can be difficult and

time consuming. From the error propagation and measurement update equations, it is

very difficult to formulate a strategy to calibrate an IMU in this manner. However, this

method assures that all errors are calibrated to the best ability.

The second problem minimizes the errors based on the final mission trajectory. The

advantage of a mission-specific calibration is the ability to focus on calibrating the most

significant errors, while neglecting those that have less weighting in the final objective,

downrange and crossrange miss. The rate-dependent gyroscope errors are not significant

during an inertially stabilized mission, but they are important in an inertially referenced

slew mission. The most notable disadvantage of using this method, is the necessity for

the trajectory to be fixed. In a ballistic missile trajectory calibrating specific states will

not affect a slight change in mission planning.

4.1 Prior-Free Estimation Problem

To explore the prior-free estimation problem, consider the least squares problem. Let

x E Rn be a Gaussian random variable with unknown statistics, norm x and covariance

P. Suppose we are given measurements z E Rm, then by the Kalman measurement update

z = Hx + v (4.1)

where H is the measurement matrix and is Gaussian noise with known statistics

E[v'T] = R. Assume the measurements form an over-determined system and x is observ-

able. If x is observable, then the Grammian matrix G = HTH is invertible.
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The weighted least-squared problem can be written as

1J(x) = -(z - Hx)TR-l(z - Hx)
2

(4.2)

The solution to J(x) is

x= (HTR-1H)-lHTR-lz (4.3)

Note that the above equation is a function of the measurement and the measurement

noise, not the current covariance or current measurement. This is the same as the Kalman

estimate where the initial covariance matrix is infinite, or no prior knowledge of the states.

The Kalman gain K can be written as

K = (p-l + HTR-lH)HTR-l (4.4)

Since the initial covariance matrix is infinite, then p -l 0 and

K - K = (HTR-1H)HTR-1 (4.5)

The Kalman measurement update is independent of the prior estimate of the state xo,

such that the update is

= (I- KH)xo + Kz -- Koz (4.6)

Therefore, for the Kalman Filter prior-free limit the optimal estimate of x is

x = (HTR-1H)-iHTR-lz (4.7)

Ncote that Equations 4.3 and 4.7 are identical and the least squares update is identical

to the prior-free limit of the Kalman Filter update assuming no noise. The estimated
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covariance of the prior-free estimate is

P = (HTR- 1H)-1 (4.8)

4.1.1 Prior-Free Estimation considering all IMU Errors

Assume the measurement noise covariance is a scalar measurement, R = a2I, then the

prior-free estimate and covariance are given by a pseudo-inverse or

= (HTH)-lHTz (4.9)

P = iV(HTH)- ' (4.10)

Let the measurement matrix, H depend on a control variable u, then the optimization

problem can be formulated as minimizing the trace of the covariance or

mintr ((HT (u)H(u))- 1)

4.1.2 Prior-Free Estimation considering Mission-Specific

jectory

The objective function in Equation 4.11 may not be appropriate in all applications; there-

fore, it may be desirable to have a mission-specific trajectory. As an alternative, suppose

it is of interest to estimate a certain linear function of the state or

L(x) = ATX (4.12)

The estimate and variance of this function are

L = AT(HT(u)H(u))-lHTz (4.13)
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E[(L - L)2] = T(HT (u)H(u))-1' (4.14)

A covector A can determine the crossrange and downrange miss and the new optimization

problem is defined as

min XT(HT(u)H(u))-1A (4.15)

4.2 Calibration with Prior Knowledge

IFuture states of the system can be estimated using the Kalman Filter equations. Using this

estimate, the observability and calibration can be improved by maximizing the correlation

between the measurements and the kinematics. If the trajectory of the IMU is fixed,

consider optimizing the error estimates by controlling the type of measurements. Without

process noise, the problem is to choose scalar measurement covectors H 1, H2, ... , HN so

the measurements

Zk = HTX + Vk (4.16)

optimize the final covariance

1 1
PN=(HPO + HTH +...+ HNHk) -1 (4.17)

However, in the centrifuge calibration the measurements are fixed; therefore, it is ad-

vantageous to control the system kinematics by slewing the IMU. As discussed in Chapter

2, the state transitions are

Xk = kXk-1 (4.18)

The Kalman Filter measurement update is

Zk = HTXk + (4.19)

where H is fixed and E[v2 ] = a2 . Using this relationship, the final covariance can be
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rewritten as

PN= (Po + (4.20)2 =i

4.2.1 Calibration with Prior Knowledge considering all IMU Er-

rors

To optimize the covariance in GPS satellite selection, one maximizes the information

index

J(hl, h2,..., hN) = tr(PN1) (4.21)

For IMU calibration, a similar idea can be used to maximize the information index or

maxtr (Po
n \

+ + E q:iHTHDT)
i=1

(4.22)

4.2.2 Calibration with Prior Knowledge considering Mission-

Specific Trajectory

It is of interest to estimate a linear function of the state such as

L(x) = ATx (4.23)

where A is a performance index to measure mission performance. In terms of the covari-

ance, the cost function is

J(PN) = AXPNX (4.24)

To calibrate the mission-specific trajectory, it is ideal to minimize the objective func-

tion with respect to 4i, or rewritten

n -1

Z oiHTHo ) A
i=1i
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Chapter 5

Theoretical Developments

Thle previous chapter discussed optimization to achieve global observability. Specifically,

the results of Section 4.2 could require a different matrix at every measurement, which

implies a new kinematic configuration to obtain optimality. This global optimization prob-

lem is not practical for the centrifuge calibration. This chapter will focus on formulating

a continuous trajectory based on the results of the previous chapter. The trajectory will

not be predetermined (as in Chapter 3); instead, the slewing trajectory will be specified

by continuous angular rates by maximizing the correlations between the measurements,

the kinematics of the vehicle, and the covector.

5.1 Optimal Angular Velocity to Improve Measure-

ments

The impact of a measurement on mission performance is important to understanding

observability. A scalar measurement update without noise can be written as

z = hTXZ (5.1)
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The measurement update is supposed to determine the errors of interest defined by a

covector, A. A perfect measurement update along this covector would be

z2 = A Tx (5.2)

Taking the product of zl and z 2

Z1 Z2 = h xZTA (5.3)

The expectation of Equation 5.3 results in

E[zl Z2] = hTPnA (5.4)

where Rn = E[XnxT] at measurement n.

For positive definite Pn, the Schwartz inequality ([2], [6]) states

IhTPnA < hTPih ATPA (5.5)

The equality holds when h and A are linearly dependent. If h = KA where K is a scalar

constant, then IhTPnAl has reached its maximum and

IE[zi z2] = I= hTP = hTPh ATPA (5.6)

The maximum correlation exists when the measurement is along the covector of interest,

which will result in a perfect measurement of the desired quantities.

Due to the dynamics of the centrifuge, it is impossible to ensure that h and A are in the

same direction; therefore, the goal is to optimize the correlation between the measurement

and the covector or

max IhTPAX (5.7)

38



Note that h and A are given; therefore, the only variable that can be varied is the

angular velocity of the slewing maneuver, w.

.Pn is defined by the extrapolation of the states or

p = IP_,-1 T (5.8)

where P = eFAt and F is the linearized state equation. The problem can be written as

max IhT P(F(w))I (5.9)

5.2 Optimal Angular Velocity and Steepest Descent

The method described above is similar to the steepest descent algorithm in nonlinear

optimization. The steepest descent algorithm finds the negative of the gradient and

moves in that direction for a given amount of time. This process is repeated at the end of

each time step. The optimal angular velocity method determines the direction of highest

correlation between the measurement and the covector, and moves in this direction for

a given amount of time (the time between measurements). This method is not based on

the error values themselves, but on the variance and probabilistic behavior of the system.

The steepest gradient method and the optimal angular velocity method are alike,

because both are moving in a direction of maximum improvement at a given point. No

topographical knowledge about the objective functions' subspace exists; therefore, global

optimality cannot be proven in either method. As in the steepest gradient method, no

optimality conditions exist unless the subspace is convex or concave. Also, the rate of

convergence of both algorithms is dependent on the topography of the subspace.

In the optimal angular velocity method, it is important to recognize that the sub-

space changes over time. Also, the specific choice in angular velocity determines how

the subspace changes over time. If there are multiple angular velocities that have the
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same cost function at time t, then one is randomly chosen. This choice creates multiple

optimal paths, which may not have the same performance after time t. The optimal

slewing method does not predict the future path of the IMU; therefore, it is impossible

to determine at time t the path with optimal performance.
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Chapter 6

Results

This chapter presents the individual error results and the performance results given a

specific mission. The individual errors provide insight into the general calibration perfor-

mance of an inertially stabilized system as compared to an inertially referenced slew. The

individual error performance solely determines the calibration success, independent of the

mission. The results of the individual error calibration is the foundation of the mission

performance. The mission performance for a slewing mission and inertially stable mission

are evaluated using four calibration methods. The calibration methods include (1) six-

position dwell, (2) baseball stitch slew, (3) optimal slew, and (4) improved optimal slew

(to be discussed in Section 6.2). Initial errors prior to calibration used for the following

results can be found in Appendix B.

6.1 Performance of Individual Errors

The performance of individual errors provides insight into understanding the benefits for

using a specific calibration method. In this section, an inertially stabilized system (the

six position dwell) is compared with an inertially referenced slew (baseball stitch slew).

The six position dwell has six orthogonal orientations each held for five seconds. The

baseball stitch slew rotates with a frequency of 0.8 rad/s. The performance measure of
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an instrument error is the log of the square root of the corresponding diagonal covariance

entry. This performance measure assumes each error is uncorrelated to every other error.

The gyroscope error performance is seen in Figures 6-1 to 6-4. An inertially sta-

bilized system should not be able to observe gyroscope misalignment, scale factor, or

non-orthogonality. These three quantities are multiplicative quantities operating on the

angular velocity. The angular velocity of an inertially stabilized system is zero; therefore,

these are not observable as seen in Figures 6-1, 6-2, and 6-4. The inertially stabilized sys-

tem does not improve the gyroscope misalignment, but the performance measure for the

inertially referenced slew improves between 0.2 and 0.7. The gyroscope scale factor mea-

sure improves 0.08 to 0.3 for the inertially referenced slew; whereas, it does not improve

for the inertially stabilized system. Finally, the measure for gyroscope non-orthogonality

improves 0.4 to 0.8 for the baseball stitch, but does not improve for the six-position dwell.

The gyroscope bias is an additive quantity independent of the nominal angular veloc-
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ity; therefore, it is observable. The inertially referenced slew is advantageous in observing

rate-dependent gyroscope errors, because the slewing maneuver excites the nominal angu-

lar velocity. In the inertially referenced slew, the gyroscope bias (Figure 6-3) is correlated

to other errors and indistinguishable; therefore, unobservable. The gyroscope bias sees

no improvement for the inertially referenced slew, but the inertially stabilized system

improves the performance measure approximately 0.0001.

Figures 6-5 to 6-8 show the acceleration errors during calibration. The inertially

stabilized system is better at observing all accelerometer errors. This enhanced observ-

ability is created by having specific force as the only measurement. This separates the

accelerometer errors from the gyroscope errors to improve observability. The inertially

referenced slew must be able to distinguish identical signatures of distinct instrument

errors. The inertially referenced slew is competitive in determining scale factor, bias, and

non-orthogonality as seen in Figures 6-6 to 6-8. The accelerometer scale factor measure
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is approximately 0.0001 better using the inertially stabilized system as compared to the

ine:rtially referenced slew. The measure for accelerometer bias is between 0.002 to 0.004

better using an inertially stabilized system. The accelerometer non-orthogonality is 0.004

improved using the six position dwell. The inertially referenced slew has accelerometer

misalignment correlated to another error, making it indistinguishable. The inertially sta-

bilized system improves the accelerometer misalignment measure approximately 0.008 to

0.015; whereas, the inertially referenced slew does not improve the accelerometer mis-

alignment measure.

(.2 Slewing Mission

For the slewing mission, a baseball stitch trajectory with a frequency of 0.8 rad/s was

chosen. The covector for this mission is dependent on the calibration method, but in

general, the accelerometer errors and the gyroscope errors are evenly weighted. A per-

formance index to compare the calibration methods is dependent on the covector and

the covariance. The performance is independent of the position, velocity, and attitude of

the vehicle since these are determined by the initial error prior to mission launch. The

performance index is ATPA for the states corresponding to the instrument errors.

The performance of the four calibration methods is shown in Figure 6-9. As stated

above, the performance requires calibration of both accelerometer and gyroscope errors.

The six-position dwell is unable to calibrate rate-dependent gyroscope errors; therefore,

this calibration technique and other inertially stabilized systems will not be competitive

with inertially referenced slews. The final performance index for a six-position dwell is

3.87 x 1017.

The inertially referenced slews are able to calibrate the relevant errors for the inertially

referenced mission. The baseball stitch performance is very good with a performance index

of 3.75 x 1017, because it calibrates the same errors as those needed for the inertially
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Figure 6-9: Performance Index versus Time given a Slewing Mission.

referenced slew mission. The optimal slew trajectory changes the angular velocity of

the trajectory continuously and linearly after each measurement. The angular velocity

is limited to ±0.8 rad/s to prevent gimbal lock. This optimal slew trajectory does not

initially perform as well as the baseball stitch, but near the end of the calibration they

are very similar with a performance index of 3.76 x 1017. The initial lack of improvement

could be due to the necessity to move from one measurement axis to another, which has a

higher correlation with the covector. Note that the baseball stitch and the optimal slewing

trajectory have less improvement near the end of the calibration. The baseball stitch is

observing the errors over a limited set of axes. The optimal slew trajectory reaches a

local optimum, which has the maximum correlation between the measurement axis and

covector. These limitations of the baseball stitch and optimal slew trajectory prevents

future observability. An improvement to the optimal slew trajectory would be to move

to another orientation to find another local optimum.
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The improved optimal slew is identical to the optimal slew trajectory, except at 15

seconds the entire IMU is reoriented 90 degrees about the x-axis. The purpose of this

reorientation is to create observability along another axis. As seen in Figure 6-9, this

method is extremely successful with a final performance index of 3.72 x 1017. The optimal

slew has the ability to find the maximum correlation between the covector and measure-

ment axis. Once that correlation is determined, measurements will continue around a

single axis. If another local/global optimum is along another axis, then the topology of

the subspace may not have a path to find the other optimum. The improved optimal

slew provides an escape from the local optimum. Rotating the IMU 90 degrees is arbi-

trary. This improved optimal slew shows that escaping local optima needs to be further

explored.

6.3 Inertially Stabilized Mission

The inertially stabilized mission requires calibration of primarily the accelerometer errors.

The inertially stabilized mission has a nominal angular velocity of 0 throughout the en-

tire mission without a reorientation of the IMU. This mission is very different than the

slewing mission, because the rate-dependent gyroscope errors are insignificant. As shown

from Section 6.1, the baseball stitch is not able to calibrate the accelerometer errors to

the same accuracy as the six-position dwell. However, the optimal slewing trajectory is

based on improving the correlation between the measurement axis and the covector. This

simulation is to determine whether the optimal slewing trajectory can perform as well as

an inertially stabilized mission.

Figure 6-10 determines that the best way to calibrate accelerometer errors is using

an inertially stabilized calibration system. The performance index for the six-position

dwell, baseball stitch trajectory, optimal slew trajectory, and improved optimal slewing

trajectory are respectively 3.59 x 1017, 3.73 x 1017, 3.75 x 1017, and 3.69 x 1017. Slewing
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the IMU cannot improve the observability of the accelerometer errors to the accuracy of

the six-position dwell calibration.

,2E

a-

Time (s)

Figure 6-10: Performance Index versus Time given an Inertially Stabilized Mission.
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Chapter 7

Conclusion

This thesis examined the inertially stabilized system and found that this is an ideal method

for calibrating the accelerometer errors, but not the rate-dependent gyroscope errors. In

order to calibrate the gyroscope and accelerometer errors, a new system, an inertially

referenced slew, was considered. The inertially referenced slew calibration mechanization

rotates the inertial measurement unit with respect to inertial space independent of vehicle

motion. The advantage of using such a system is the ability to obtain gyroscope and

accelerometer observability.

In this thesis,, the covector measuring the downrange and crossrange miss for a partic-

ular missile flight has been chosen as the performance index. In evaluating an inertially

stabilized mission trajectory, the six-position dwell (an inertially stabilized calibration)

performs the best. Slewing maneuvers were seen as a possible improvement strategy, but

the six-position dwell is a far superior method for properly determining accelerometer

errors during calibration.

Recent literature has proposed performing a slewing maneuver during the mission to

improve accuracy. For this thesis, the baseball stitch slew was considered as a likely can-

didate for the mission slewing maneuver. The baseball stitch slew has the property that

during the mission it desensitizes errors, such as accelerometer bias. Since the mission
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requires observability of the gyroscope and accelerometer errors, the six-position dwell

calibration is not adequate in performing an accurate mission. The baseball stitch slew

was considered to perform the calibration, since it will separate the errors improving

observability. Also considered was an optimal slewing maneuver, which finds the opti-

mal angular velocity to have the maximum correlation between the measurement and

the covector. Maximizing the correlation directly relates to improving observability of

the significant covector errors. The optimal slewing maneuver would often find a local

minimum and not be able to traverse over a large set of angles. In order to improve the

accelerometer observability, the inertial measurement unit was rotated 90 degrees about

the x-axis half-way through calibration and the optimal slewing maneuver was repeated.

This improved optimal slewing maneuver calibration performed the best for a baseball

stitch mission trajectory.

These results validate the importance of having an appropriate calibration method for

a given mission strategy. If the mission strategy focuses on accelerometer errors, then it

is important to disassociate the accelerometer and gyroscope errors. Whereas, a mission

strategy with accelerometer and gyroscope calibration requires excitation of both the

specific force and angular velocity. In this case, it is important to implement a slewing

maneuver, which observes the appropriate errors.

7.1 Future Research

For a given mission strategy, a calibration technique must be specified to improve the

appropriate errors. Calibrating the entire inertial measurement unit requires maximum

observability of both the gyroscopes and accelerometers. None of the calibration tech-

niques in this thesis discuss maximum observability. A future area of research is deter-

mining the ability to create maximum observability for all gyroscope and accelerometer

errors. From the results of this thesis it appears that a combination of dwells and slews
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must be performed. The problem must be restricted further to limit the infinite number

of sequences and the infinite set of rotations to formulate a viable approach.

The reason for performing an inertially referenced slew is to desensitize the calibration

procedure to certain errors. In the baseball stitch, this means desensitizing the calibration

to accelerometer bias. If the baseball stitch is reversed, then one can desensitize it to

gyroscope scale factor. This idea of desensitizing calibration is a dual problem, which can

be seen as an anti-calibration. Eliminating specific errors from the calibration problem

can improve observability of other errors. The success of desensitization has not been

addressed in this thesis. The baseball stitch slew assumes improved observability by

desensitizing the accelerometer bias, but this assumption has not been verified.

Another area of future research is improving the optimal slewing maneuver. The

optimal slewing maneuver finds a local optimum by correlating the covector and the

measurement. Using other heuristic optimization techniques, such as genetic algorithms,

the global optimum could be found to improve observability. However, this may result

in observability only along one axis of the inertial measurement unit. A global optimum

search would be required at every time step in order to have maximum observability over

the entire calibration period.
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Appendix A

Quaternion Algebra

Quaternions can be written in the 1-3 form or

qO

where q is a 3-vector. Quaternion multiplication is defined as

pq [
qOPo - * P

poq + qoP + P x q

(A.1)

(A.2)

I

The set of unit quaternions satisfies q2 + Iq2 = 1. The result of quaternion multipli-

cation of two unit quaternions is a unit quaternion.

The unit quaternion can be extended to an orthogonal linear transformation or rotation

matrix R(q) where

qO0 + q1 - q2 - q3

2(qlq2 + qoq3)

2(qlq 3 - qOq2)

2(qlq 2 - qoq3)

qO2 + q2
2 + q2 _ q3

2(q2 q3 + qoql)

2(qlq3 + qOq2)

2(q 2q3 - qoql)

q0 + q3 - - q2

The basic equation for rotation kinematics dependent on rotation matrices is R =

55

R(q) = (A.3)



[Q x]R. The corresponding quaternion rotational kinematics diffential equation is

1 0

q= 2 q (A.4)
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Appendix B

Initial Errors

position = 10 m

velocity = 0.1 Irl/s

attitude = 0.001 rad

gyroscope misalignment = 5 x 10 - 4

gyroscope scale factor = 2 x 10 - 4

gyroscope bias == 4.8 x 10 - 7 rad/s

gyroscope non-orthogonality = 5 x 10- 4

accelerometer misalignment = 5 x 10- 5

accelerometer scale factor = 1 x 10 - 5

accelerometer bias = 3 x 10- 4 m/s 2

accelerometer non-orthogonality = 5 x 10- 5
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Appendix C

Kronecker Products

The Kronecker of two matrices, where X is an m x n matrix and Y is an k x I matrix, is

a matrix Z of dimension mk x nl of the form

Z=X®Y=

x 11Y x 12Y ..." lnY

x 21Y x 22Y '-- x2nY

XmlY Xm2Y ...Y mnY

Properties of the Kronecker product allow easy transition between a matrix M of

dimension m x n into a mn dimensional vector M. For convenience of notation, let an

underlined matrix denote the vector form of that matrix. The adopted rule for forming

this vector M from the corresponding matrix M is listing the matrix column-by-column

M1

to form an mn column vector. If M = 1 M2 ... , then M =]

MnA property of the Kronecker product is ABC = (CT 

A property of the Kronecker product is ABC = (CT ® A)B.
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