
THE CORE AND THE PERIPHERY IN DISTRIBUTED AND

SELF-ORGANIZING INNOVATION SYSTEMS

by

KARIM R. LAKHANI

B.ENG.MGT. Electrical Engineering and Management
McMaster University, 1993

S.M. Technology and Policy
Massachusetts Institute of Technology, 1999

Submitted to the Alfred P. Sloan School of Management
in Partial Fulfillment of the Requirements for the Degree of

IIJAN2 5 2006

L!BRARIES

DOCTOR OF PHILOSOPHY

at the

Massachusetts Institute of Technology

February 2006

© 2006 Karim R. Lakhani. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic
copies of this thesis document in whole or in part in any medium now known or hereafter created.

Signature of Author:
MIT Sloan Sc anagement

I Tan 13, 2006

Certified by:

Accepted by:

\ -'X - N%, .Eric von Hippel
fessor of Management

Chair, Technology, Innovation and Entrepreneurship Group
Thesis Supervisor

:e -, _ ,

"re"f Birger Wernerfelt
Professor of Management Science

Chair, PhD Program, Sloan School of Management

1

I
I

$ IIC J
V" ;rri _

[This page intentionally left blank]

2

THE CORE AND THE PERIPHERY IN DISTRIBUTED AND

SELF-ORGANIZING INNOVATION SYSTEMS

by

KARIM R. LAKHANI

Submitted to the Alfred P. Sloan School of Management
in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in

Management

Abstract
The internet has enabled the large-scale mobilization of individuals to self-organize and

innovate outside of formal organizations. My dissertation consists of three studies examining the
functioning of such self-organizing and distributed innovation systems. I focus on the differing
roles of core and peripheral participants in the distributed innovation process and explore the
potential generality of this new form of innovating.

The first study explores a systematic method of broadcast search used by corporations to
search for solutions to internal R & D problems by involving peripheral problem solvers - those
who are outside of their organizations. I find that innovative solutions to difficult scientific
problems can be effectively identified by broadcasting problems to a large group of diverse
solvers in different fields. Broadcast search yields innovative solutions by peripheral solvers who
are crossing scientific disciplines. The central characteristic of problems that were successfully
solved is the ability to attract specialized peripheral solvers with heterogeneous scientific
interests.

The second study examines how participants jointly innovate in a Free and Open Source
Software community. I find that members at the periphery - those outside of the core project
team - are responsible for developing a majority of functionally novel software features. In
contrast, core members develop performance-related features. Peripheral members also initiate
the majority of the development activity and provide critical input into the technical problem
solving processes. Ongoing interactions between core and peripheral members are the primary
enablers of collective problem solving. I discuss how core and peripheral members enact six
work practices in jointly producing software in a distributed and virtual setting.

The third study examines the motivation of core participants in 287 Free and Open
Source Software communities. Theorizing on individual motivations for participating in
communities has posited that external motivational factors in the form of extrinsic benefits as the
main drivers of effort. I find that enjoyment-based intrinsic motivation, namely how creative a
person feels when working on the project was the strongest and most pervasive driver of effort. I
also find that user need, intellectual stimulation derived from writing code, and improving
programming skills as top motivators for project participation.

Thesis Supervisor: Eric von Hippel
Title: Professor of Innovation Management

3

Thesis Committee:

Eric von Hippel (Chair)
Professor of Innovation Management
Chair, Technology, Innovation and Entrepreneurship Group
MIT Sloan School of Management

Wanda J. Orlikowski
Eaton-Peabody Chair of Communication Sciences
Professor of Information Technology and Organization Studies
MIT Sloan School of Management

Thomas J. Allen
MacVicar Faculty Fellow
Howard W. Johnson Professor of Management
MIT Sloan School of Management

4

"THE DISUNITY OF THE SCHOLARS IS A MERCY FOR THE NATION"
- attributed to Prophet Mohammed (PBUH)

5

ROOMS ARE NEVER FINISHED
- Agha Shahid Ali

6

FOR PETAL & BEE

7

[This page intentionally left blank]

8

Table of Contents
List of Tables ... 12
L ist of Figures .. 14
Acknowledgements .. 15
Chapter 1: Introduction and Overview .. 18

References .. 22
Chapter 2: Broadcast Search in Scientific and Technical Problem Solving: Finding
Solutions from the Periphery .. 23

2.1: Introduction .. 23
2.2: Problem Solving and Local Search .. 25

2.2.1: Problem solving with experience for Individuals and Teams26
2.2.2: Local Search in Firms .. 28

2.3: Innovation and External Knowledge .. 29
2.3.1: People and Capability for Integrating External Knowledge30
2.3.2: Alternatives to Local Search: Alliances and Mobility as Means of Accessing
External Knowledge .. 33

2.4: Broadcast Search .. 35
2.4.1: Distributed and decentralized problem solving and the importance of the
periphery .. 35
2.4.2: Defining Broadcast Search .. 39
2.4.3: Overcoming Newton's Folly By Broadcast Search ...40
2.4.4: Contemporary Research on Broadcast Search ..41

2.5: Setting and Data Sources .. 42
2.6: Findings .. 45

2.6.1: Broadcast Search Performance and Solver Base Profile 45
2.6.2: Problem Solving Process Used By Solvers ...49
2.6.3: Determinants of a Solver Creating a Winning Solution 56
2.6.4: Determinants of a Problem Being Successfully Solved61

2.7: Discussion 66
2.7.1: Cross-fertilization of Scientific Fields ... 66
2.7.2: Attracting Many Heterogeneous Solvers ...69
2.7.3: Solver Motivations to Participate .. 70
2.7.4: No One Genius Solver .. 70
2.7.5: Seeker Learning and Structuring Ill-Structured Problems71
2.7.6: Value to Seekers 72

2.8: Implications .. 74
2.8.1: Implications for Distributed Problem Solving ..74
2.8.2: Implications for Organizations .. 77
2.8.3: Implications for Science .. 79

2.9: Future R esearch81
References ... 84
Appendix .. 91

Chapter 3: The Primacy of the Periphery in a Distributed Problem Solving Community
... 1 0 5

3.1: Introduction .. 105
3.2: Defining Community .. 107

9

3.2.1: Traditional Communities ... 107
3.2.2: Instrumentally Oriented Communities ... 109
3.2.3: Communities of Practice 111......... 111
3.2.4: Distributed Problem Solving Communities ... 114

3.3: The Periphery and its Value to the Community ... 118
3.3.1: Defining the Periphery .. 120
3.3.2 The Periphery as the Locus of Innovation and Source of Novelty 122
3.3.3 Defining core and periphery in F/OSS communities 126

3.4: A Practice View of Distributed Problem Solving Communities 128
3.5: Research Setting, Data and Methods ... 132

3.5.1: Research Setting ... 132
3.5.2: Data and Methods .. 136
3.6: The Primacy of the Periphery ... 142
3.6.1: Community participation structure .. 142
3.6.2: Contribution to software development and problem solving process 144

3.7: Vignettes of Distributed Core-Periphery Problem Solving 148
3.7.1: Vignette 1 - Periphery Members Develop Novel Feature 148
3.7.2: Vignette 2 - Core Member Improves Existing Feature 161
3.7.3: Vignette 3 - Joint Problem Solving and New Feature Creation by Core and
Peripheral members ... 173

3.8: Distributed Problem Solving Practices in the PostgreSQL Community 188
3.8.1: Collective Practice 1 - Work Broadcasting ... 191
3.8.2: Collective Practice 2 - Building and Using Community Memory 197
3.8.3: Collective Practice3 - Distributed Decision Making201
3.8.4: Individual Practice 1 - Choosing type and level of participation 207
3.8.5: Individual Practice 2 - Using The Community's Output212
3.8.6: Individual Practice 3 - Coordinating Action and Building Trust Through
E vidence .. 215

3.9: Discussion .. 218
3.10: Implications and Conclusion .. 226

3.10.1: Implications for Innovation and Product Development227
3.10.2: Implications for Organization Theory 228

References .. 233
A ppendix ... 240

Chapter 4: Motivation and Effort of Core Developers in Open Source Communities ...250
4.1: Introduction .. 250
4.2: Literature Review - Motivations to Participate ... 251

4.2.1: Intrinsic Motivation ...251
4.2.2: Extrinsic Motivation ..255
4.2.3: Current findings on motivations in F/OSS projects 257

4.3: Research Methods and Sample Characteristics ..259
4.3.1: Sample Selection .. 259
4.3.2: Data Collection 260
4.3.3: Sample Characteristics .. 261

4.4: Findings - Payment Status and Effort in Projects 262
4.5: Findings - Creativity and Motivation in Projects ...265

10

4.6: Findings: Determinants of Effort .. 273
4.7: Discussion and Conclusion .. 280
References .. 282
A ppendix .. 284

Chapter 5: Summary and Conclusion .. 292
5.1: Overview of the empirical studies .. 293

5.1.1: Study 1 - "Broadcast Search and Solution Finding from the Periphery"293
5.1.2: Study 2 - "The Primacy of the Periphery in Open Source Software
Development" .. 298
5.1.3: Study 3 - "Motivations of Core Developers to Contribute to Open Source
Projects" .. 302

5.2: Distributed Information and Knowledge and the Value of the Periphery304
5.3: The Advantage of the Periphery .. 306
5.4: Heterogeneity in Motivations to Participate in Distributed Innovation Systems.309
5.5: Generalizable Conditions for Distributed and Self-Organizing Innovation Systems
.. 3 1 1

5.5.1: Entry and Participation ..311
5.5.2: Decomposable and "Well-Structured" Problems .. 314
5.5.3: Solution Generation 316
5.5.4: Substitutes for "Trust" and "Management" ... 318

R eferences ... 321

11

List of Tables
Table 2.1: Overall Performance Of Broadcast Search By Scientific Disciplines 47
Table 2.2: Profile Of Solver Base ... 50
Table 2.3: Respondents' Familiarity With The Problem ...50
Table 2.4: Respondent Mapping of Problem And Their Own Field Of Expertise52
Table 2.5: Respondents' Solution Information Knowledge Upon Seeing The problem ..52
Table 2.6A and 2.6B: Source Of Solution Information Used by Winning Solvers in Their
Subm ission 54
Table 2.6C: Source And Amount of Modification Of Prior Solutions In Creating Present
Solution By W inning Solvers .. 55
Table 2.7: Motivations To Participate in Broadcast Search Problem Solving, Scores and
Factor Loadings ... 57
Table 2.8: Correlations Between Variables Predicting Solver Being A Winner (N = 295
Respondents) ... 58
Table 2.9: Probit Regression Predicting Which Solver Submits A Winning Solution60
Table 2.10: Correlations Between Variables Predicting Problem Being Solved63
Table 2.11: Probit Regression On Problem Being Solved ..64
Table 3.1: Subtypes of Communities .. 117
Table 3.2: Release History of PostgreSQL Software .. 135
Table 3.3: Community Structure during the PG 7.4 Release Cycle (November 2002 -
November 2003) .. 144
Table 3.4: Core Members Dominate Email Message Traffic 144
Table 3.5: Periphery Drives Community Discussion .. 144
Table 3.6: Feature Type Author by Member Status .. 145
Table 3.7: Source of Initiation of Feature by Community Member Status 146
Table 3.8: Role of Periphery in Community Problem Solving 147
Table 3.9: Code Developed by Periphery Arrives "Pre-Made" 147
Table 4.1: General Characteristics of Survey Respondents .. 264
Table 4.2: Location and Work Relationship for F/OSS Contributions 264
Table 4.3: Hours Spent / Week on F/OSS Projects ... 264
Table 4.4: Creativity in F/OSS Projects ... 266
Table 4.5: Responses to "Flow" questions ... 266
Table 4.6: Motivation to contribute to F/OSS projects ...268
Table 4.7: Project Topics By User Need ... 268
Table 4.8: Cluster results based on motivations and paid status272
Table 4.9: OLS Regression on Log Project Hours/Week .. 275
Table 4.10: Impact of Significant Variable on Project Hours/Week (Standardized
Coefficients) ... 278
Table 4.11: Fixed Effects OLS Regression on Log Project Hours/Week 279
Table 5.1: Probit Regression on Problem Being Solved ...296
Table 5.2: Probit Analyses Predicting Which Solver Submits A Winning Solution 297
Table 5.3: Feature Type Author by Member Status .. 300
Table 5.4: Role of Periphery in Community Problem Solving300
Table 5.5: Practices for Community-Based Distributed Problem Solving 301
Table 5.6: Motivation to contribute to F/OSS projects ... 303

12

Table 5.7: Impact of Significant Variable on Project Hours/Week (Standardized
C oefficients) ... 303

13

List of Figures
Figure 3.1: Skewed Participation in Linux Kernel Email Discussion 119
Figure 3.2: Graphic of Performance Improvement Submitted by Matthew O'Connor... 157

14

Acknowledgements
I have many people to thank for helping me on my intellectual journey as a

doctoral student at MIT. This dissertation would not have been possible without the
attention, care, concern, feedback, ideas, and love of my colleagues, friends, family and
mentors. I am constantly grateful for the fact that I have been lucky enough to be have
been graced by such wonderful people who have willingly shared their best with me. I
would also like to acknowledge the generous financial support of Canada's Social
Science and Humanities Research Council Doctoral Fellowship.

First I would like to thank my colleagues from the open source community for
generously sharing their experiences and lessons. Jeff Bates, Brian Behlendorf, Chris
DiBona and Luis Villa were always available when I had a question or wanted an
explanation about something. Bruce Momjian and Neil Conway were a tremendous help
in my study of the PostgreSQL community. I would not have been able to complete this
dissertation without their input and guidance. Stefano Mazzocchi played a critical role in
helping me understand the patterns of interactions I had observed in open source
communities. The distributed problem solving practices that I outline in Chapter 3 came
about through intense discussions with him. Ben Hyde claims that he is the open source
"native" that I have captured and now tour around the halls of the Academy. Far from
being a naive native, Ben has been a real chum in helping me think through the
intricacies of open source and to be an observer of behavior that I would have mostly
missed on my own. It is always a treat to chat with Ben!

Jill Panetta and Peter Lohse from InnoCentive.com have been very gracious with
their time and ideas. Chapter 2 in the dissertation is a testament to their hard work in
building a new model for innovation. I was delighted when they agreed to my proposal
for a study on their company and appreciated all of their work and insights as we
collected the data. Lars Bo Jeppesen also played an important role in helping to
formulate the research question and data collection for Chapter 2. Our path's crossed
when he was a visitor at MIT and we have struck a fun and friendly research
collaboration.

A special note of thanks to my wonderful colleagues at The Boston Consulting
Group. I never thought it possible that I would be able to be in a doctoral program and
keep working at BCG. I deeply appreciate their sponsorship of my work. Mark Blaxill's
leadership of BCG's Strategy Practice Initiative enabled me to keep pursuing my interest
in open source from both the academic side and the strategy side. He was always a strong
supporter of my work and I have to thank him for pushing through BCG such an
unconventional relationship. Philip Evans provided me with significant intellectual
challenges and food for thought. Many times I would think of an issue one way and
Philip would completely invert it and change my perspective. It was a pleasure to work
with Emily Case. She was a source of immense calm as both of us were fighting our way
through UCINET and social networks. Finally through this process Bob Wolf has
become a great friend and intellectual partner. Bob and I connected on intellectual issues
from day one and we have had a ton of fun exploring new ideas and generally going

15

against conventional wisdom at BCG. Bob was also a co-conspirator in getting the data
for Chapter 4.

Many Professors at MIT and Harvard have played an instrumental role in shaping
my intellectual trajectory. They serve as great role models for patience, intelligence and
scholarship. In particular I would like to thank Stephen Ansolabehere, Lotte Bailyn,
Carliss Baldwin, Pablo Boczkowski, Michael Cusumano, Roberto Fernandez, Rebecca
Henderson, Lee Fleming, Alan MacCormack, Fiona Murray, Siobhan O'Mahony, Ed
Roberts, Stefan Thomke, Jim Utterback, Jesper Sorensen, and Ezra Zuckerman. I also
had a lot of fun and learned a lot through individual reading classes with Paul Carlile and
John van Maanen. They had a tremendous influence in me developing a taste for
qualitative and sociological analysis. Leslie Perlow and her founding of the QUIET
group at Harvard bolstered my confidence in doing both qualitative and quantitative
analyses.

Fellow students at Sloan made this journey fun and exciting. Their support in
coping with the minutiae of problem sets and assignments, the stress of the dreaded
general exam, picking a dissertation topic, and tearing apart bad ideas was essential in
keeping my sanity. I would like to thank the following for their friendship and kindness
through this long process: Lourdes Sosa, Joao Cunha, Maria Quijada, Ruthanne Huising,
Kate Kellogg, Sarah Kaplan, Tony Briggs, Rodrigo Canales, Nicola Lacetera, Kevin
Boudreau, Luis Vives Prada, Steve Kahl, Ethan Mollick, and Sung Joo Bae. I would also
like to acknowledge two chums, Rafel Lucea and Ramana Nanda, for always being there
and helping to co-found the "T"- Club and the Quorum.

Jen Cohen, Wick Sloane and Bob Dunham convinced me that doing a PhD was
the right thing to do and provided me with the courage and the tools to pull it off. I am
very appreciative of their support, encouragement and the care they took by making my
concerns their own concerns. Roy Bivens, my best friend, put up with a lot of missed
phone calls and conversations. He always has been a strong supporter and could
understand why I wanted to go the academic route.

One of the distinguishing features of my dissertation committee is that all three
members have entries profiling their careers and highlighting their scholarship in
Wikipedia.org. It has been a real privilege to work with and learn from Tom Allen,
Wanda Orlikowski and Eric von Hippel. Tom encouraged me to think beyond the
specifics of open source and to connect my research with the broader literature on
technical problem solving. His exhortations to generalize my findings and to speak to a
broader audience still resonates with me. Wanda's doctoral seminar on IT and
Organizations was my favorite formal class in my doctoral studies. I was thrilled when
she accepted my invitation to join the dissertation committee and I sincerely appreciate
her patient input and guidance on this dissertation. Tom and Wanda are tremendous role
models in how to produce careful, considered and ground breaking scholarship.

Eric von Hippel, once again, has played the most important role in my intellectual
maturation. It is because of Eric that I endeavored to do the PhD. As a doctoral student

16

Eric provided me with tremendous latitude to explore many intellectual domains and to
carve out my own particular niche. I aspire to have his skills for identifying interesting
research questions and developing studies that provide clear answers to research
problems. He has tried to train me to find parsimonious and sophisticated explanations
for complex phenomenon. Eric has been a true Doktor-Father to me. He was always
available for advise and counsel on both professional and personal matters. Even though
we still compete on matters of diets and weight, I truly value his concern for my personal
and professional success and well-being. I look forward to our continued collaboration as
we set an academic agenda on distributed innovation.

I have to thank my family members for their love and support throughout this
journey. I suffered a great loss when my grandmother passed away in the second year of
the PhD program. NaniMa was a pillar of faith and encouragement for me. She
encouraged my studies and was very proud that her grandson was at MIT. She constantly
prayed for my success, easement of difficulties and provided me with tremendous moral
support. I miss her terribly. My sister Diloo was full of enthusiasm and encouragement
during the PhD process. Even though she lives more than 5000 miles away, I could
always count on her to say the right things and to make my day. My Mom has been a role
model for academic and personal accomplishment. It was her sacrifices, early on in my
life, that provided our family with the ability to move to the West and to get an education
and a better life. More recently, she selflessly devoted herself to help Shaheen and me
with our new-born daughter. Funny enough, Mom always wanted her kids to be teachers
like her, and in our own way, both my sister and I are following in her footsteps. I can't
thank her enough.

The completion of this dissertation also marks a significant milestone in my
relationship with my beautiful wife and friend, Shaheen. We met as freshmen at
McMaster University in 1988 and have been in a committed relationship since 1989.
Between us we have collected three undergraduate degrees, two masters degrees, and
now two doctorates. I am thrilled that our formal academic training is now finally over!
Shaheen has been through all the ups and downs of the PhD with me and always offered
her unconditional love. I could not have done this without her. In my third year of
doctoral we achieved another milestone in our relationship with the birth of our amazing
daughter, Sitarah Noor. "Situ" has been a source of tremendous joy in our lives.
Watching her grow and learn brings new meaning to the word "thrilling." Petal and Bee
make all of this worthwhile.

17

Chapter 1 - Introduction and Overview

Distributed and self-organizing innovation systems have emerged as a robust
organizational form co-existing with centralized models of innovation and product
development. The success of Free/Open Source Software (F/OSS) communities (e.g.:
Apache, Linux, Mozilla, and Perl) has brought this model to general attention, but it is
also rapidly taking hold in industries as diverse as custom integrated circuits,
biotechnology, pharmaceuticals, music and software development (von Hippel 2005).
Fundamental to the operation of these systems is the recognition that knowledge is
heterogeneously distributed in society (Hayek 1945).

F/OSS communities are a leading example of self-organizing distributed
innovation systems. Software produced by F/OSS communities has been called the
"impossible public good" (Kollock 1999: 230). It has been a major surprise to
researchers to learn that complex software systems, running mission critical applications,
can be designed, developed, maintained and improved by a virtual "collective" of mostly
volunteer computer programmers for "free." Even more surprising, some of the largest
software companies and the biggest holders of intellectual property rights (e.g.: IBM,
Sun, Apple, Oracle) have embraced F/OSS communities by encouraging the participation
of their personnel in these communities, donating software and patents to these
communities, and integrating F/OSS software in their strategic product and service
offerings.

The existence and sustained success of such distributed innovation systems has
not been widely anticipated by the normative and theoretical literatures on innovation and
product development, organizations, and strategy. They present a unique opportunity to
expand our theoretical understanding about the dynamics of the emerging distributed
innovation process and its impact on organizations and strategy. This dissertation
consists of three independent studies examining the functioning of such self-organizing
and distributed innovation systems. In particular I focus on the differing roles of core and
periphery participants in the distributed innovation process and explore the potential
generality and robustness of this new form of innovating.

The dissertation is organized into five self-contained chapters that can be read
independently. This chapter provides an overview of the studies and highlights the main
empirical findings. Chapters 2, 3, and 4 contain empirical findings from the three studies.
Chapter 5 summarizes the findings across all three studies and attempts to generalize the
conditions under which distributed and self-organizing innovation systems operate.

Chapter 21 explores an alternative mechanism of scientific and technological
problem solving that focuses on solution generation from a wide range of dispersed and
peripheral problem solvers. I find that innovative solutions to difficult scientific and
technical problems can be effectively identified by broadcasting problems to a large

Data for this chapter was collected in cooperation with Jill Panetta and Peter Lohse of Innocentive.Com
and Lars Bo Jeppesen of Copenhagen Business School.

18

group of diverse solvers in different fields and providing incentives for external solvers to
solve them. Broadcasting problems to a group of diverse solvers is a radical departure
from traditional problem solving search as it inverts the typical problem solving process
by focusing the efforts of the problem holders (e.g. R&D labs) into attracting solutions
from external solvers instead of creating solutions themselves and that it allows for the
mitigation of some of the negative issues (e.g.: competency traps, excessive reliance on
existing knowledge) associated with "local search" (March and Simon 1958; Nelson and
Winter 1982; Podolny, Stuart and Hannan 1996).

I analyze 166 discrete life sciences and chemistry and applied science problems
that originating in the R &D labs of 26 firms from 10 countries. These problems were
broadcasted to a network of 80,000 independent solvers, for a financial reward for
successful solution, from over 150 countries via InnoCentive.com, an independent
subsidiary of Eli Lilly. The analysis shows that the broadcast search method yields a
29.5% solving rate for problems that well-renowned and large R & D intensive firms had
not been successful in solving themselves. The central characteristic of problems that
were successfully solved is the ability to attract specialized solvers with heterogeneous
scientific interests. A web-based survey of 370 solvers indicated that most of the
winning solvers based their submissions, partially or fully, on previously developed
solutions from their own and/or someone else's work. Solutions to problems that firms
seek to solve encounter their resolution in already existing (complete or partial) solutions
in the distributed solvers' domains, which are then reused or transformed, showing that
broadcast search effectively utilizes existing distributed knowledge.

The probability of being a winning solver is significantly correlated with both a
desire to win the award money as well as intrinsic motivations like enjoying problem
solving and being intellectually challenged. However, even though there was a
substantial prize award for creating the best solution, the effect of intrinsic motivation is
stronger and more significant.

I also find that individuals who are successful problem solvers report that the
broadcasted problem was at the boundary or outside their field of expertise. This has a
positive and significant effect in predicting who becomes a winning solver and may be
due to the ability of "outsiders" from relatively distant fields to see problems with fresh
eyes and apply solutions that are novel to the problem domain. Importantly, it implies
that problem broadcasting to solvers in diverse fields triggers productive cross-
fertilization of knowledge bases between scientific disciplines.

Chapter 3 examines the value of peripheral members to the software development
effort in a F/OSS community. Studies of F/OSS projects have shown participation of
hundreds of individuals in a core-periphery community structure with a relatively small
number of core members contributing most of the software code and dominating the
technical discussions (Koch and Schneider 2002; Lee and Cole 2003; von Krogh, Spaeth
and Lakhani 2003). I analyzed a one year period of software development activity in the
PostgreSQL database community by creating a unique analytic tool called an "innovation
process history." This consisted of matching 241 concrete software features to 2,402

19

changes in the software source code repository and 20,129 email messages exchanged
between 798 individuals.

The analysis shows that peripheral members are responsible for developing a
significant majority of functionally novel software features while core members develop
performance-related features. The code developed by periphery members typically solves
their own local concerns. Periphery members are also responsible for initiating the
majority of development activity in the community and provide critical solution, usage,
and test information during the development process.

I show that ongoing interactions between core and periphery members is the
primary driver of problem solving and knowledge creation in the OSS community.
Specifically, the following six set of work practices enable them to produce software in a
distributed and virtual setting: work broadcasting, building and using community
memory, distributed decision making, choosing type and level ofparticipation, using the
community's output and coordinating action and building trust through evidence. Using
vignettes from the innovation process histories, I demonstrate that these practices are not
separate activities from the work of software development itself. Rather, they are
embodied in the way these communities produce software, and are at the heart of core-
periphery problem solving.

Chapter 42 examines the motivation and effort of core participants in OSS
communities. "What drives F/OSS developers to contribute their time and effort to the
creation of free software products?" is an often posed question by software industry
executives, managers, and academics when they are trying to understand the relative
success of OSS communities. Many people are puzzled by what appear to be irrational
and altruistic behavior by movement participants: giving code away, revealing
proprietary information, and helping strangers solve their technical problems. I used a
web-based survey, administered to 684 software developers in 287 F/OSS projects, to
learn what lies behind the effort put into such projects.

Academic theorizing on individual motivations for participating in OSS projects
has posited that external motivational factors in the form of extrinsic benefits (e.g.; better
jobs, career advancement) as the main drivers of effort (Lerner and Tirole 2002). I found,
in contrast, that enjoyment-based intrinsic motivation (Csikszentmihalyi 1975; Deci and
Ryan 1985; Frey 1997; Lindenberg 2001), namely how creative a person feels when
working on the project (Amabile 1996), was the strongest and most pervasive driver of
effort. I also found that user need (von Hippel 1988), intellectual stimulation (Nakamura
and Csikszentmihalyi 2003) derived from writing code, and improving programming
skills (Lerner and Tirole 2002) as top motivators for project participation.

Chapter 5 summarizes the result of the three studies and concludes with an
attempt to generalize the operating conditions of distributed and self-organizing
innovation systems. I discuss the theoretical underpinnings of the knowledge and
information advantages for peripheral members and then conclude by considering how

2 Data for this chapter was collected with Bob Wolf and colleagues from BCG.

20

entry of participants, heterogeneity in motivations, decomposable problems, diversity in
search mechanisms and substitutes for trust and management form the basis for
distributed innovation systems.

External sources of knowledge have been found to be critical for the innovation
process (Cohen and Levinthal 1989; Cohen and Levinthal 1990). Research has shown
that organizations typically seek knowledge from the outside and solve problems inside.
My dissertation shows that in distributed innovation systems the periphery is an
important source of actual solution generation activity and provides critical problem
solving information. However, instead of gatekeepers (Allen 1977) seeking relevant
information from the outside, peripheral members, on their own accord, deliver complete
solution information.

The reliance on the periphery for innovations and solutions makes sense because
of the distributed nature of knowledge and heterogeneity in skills and abilities in the
general population and the sticky nature of knowledge. Overall, distributed innovation
systems exhibit organizational architectures that enable the periphery to play a central
role in the organization's problem solving effort. This dissertation provides a lens into
understanding their operations and their extension into other spheres of innovation.

21

References
Allen, Thomas, J. 1977. Managing the flow of technology. Cambridge, MA: MIT Press.
Amabile, Teresa M. 1996. Creativity in context. Boulder, CO: Westview Press.
Cohen, Wesley M., and Daniel A. Levinthal. 1989. "Innovation and Learning: The Two

Faces of R & D." The Economic Journal 99:569-596.
-. 1990. "Absorptive Capacity: A New Perspective on Learning and Innovation."

Administrative Science Quarterly 35:128-152.
Csikszentmihalyi, Mihaly. 1975. Beyond Boredom and Anxiety: The Experience of Play

in Work and Games. San Francisco: Jossey-Bass, Inc.
Deci, Edward L, and Richard M Ryan. 1985. Intrinsic motivation and self-determination

in human behavior. New York, NY: Plenum Press.
Frey, Bruno. 1997. Notjustfor the money: an economic theory ofpersonal motivation.

Brookfield. VT: Edward Elgar Publishing Company.
Granovetter, M. 1973. "The strength of weak ties." American Journal of Sociology

78:1360-1380.
Hayek, F. A. 1945. "The use of knowledge in society." American Economic Review

35:519-530.
Koch, S, and G Schneider. 2002. "Effort, Cooperation and Coordination in an Open

Source Software Project: GNOME." Information Systems Journal 12:27-42.
Kollock, Peter. 1999. "The Economies of Online Cooperation." Pp. 220-239 in

Communities in Cyberspace, edited by Peter Kollock and Marc A. Smith. New
York, NY: Routledge.

Lee, Gwendolyn, and Robert E Cole. 2003. "From a Firm-Based to a Community-Based
Model of Knowledge Creation: The Case of the Linux Kernel Development."
Organization Science 14:633-649.

Lerner, Josh, and Jean Tirole. 2002. "Some Simple Economics of Open Source." Journal
of Industrial Economics 50:197-234.

Lindenberg, Siegwart. 2001. "Intrinsic motivation in a new light." Kyklos 54:317-342.
March, James G, and Herbert Simon. 1958. Organizations: Wiley.
Nakamura, Jeanne, and Mihaly Csikszentmihalyi. 2003. "The construction of meaning

through vital engagement." in Flourishing. positive psychology and the life well-
lived, edited by Corey L Keyes and Jonathan Haidt. Washington, DC: American
Psychological Association.

Nelson, Richard R., and Sidney G. Winter. 1982. An evolutionary theory of economic
change. Cambridge, MA: Belknap Harvard.

Podolny, Joel M., Toby E. Stuart, and Michael T. Hannan. 1996. "Networks, Knowledge,
and Niches: Competition in the Worldwide Semiconductor Industry, 1984-1991."
American Journal of Sociology 102:659-689.

von Hippel, Eric. 1988. The Sources of Innovation. New York, NY: Oxford University
Press.

-. 2005. Democratizing Innovation. Cambridge, MA: MIT Press.
von Krogh, Georg, Sebastian Spaeth, and Karim R Lakhani. 2003. "Community, Joining,

and Specialization in Open Source Software Innovation: A Case Study." Research
Policy 32:1217-1241.

22

Chapter 2 - Broadcast Search in Scientific and Technical Problem
Solving: Finding Solutions from the Periphery

2.1: Introduction

How are solutions to scientific and technical problems found? Problem solving

usually involves search (Baron 1988; Cyert and March 1963; March and Simon 1958;

Simon 1969) combined with a process of learning (Allen 1966b; Levinthal and March

1993; Marples 1961; von Hippel and Tyre 1995). Prior problem solving experience often

becomes a natural starting point for a solution search to a new problem (Rosenkopf and

Almeida 2003) as solvers tend to re-apply solutions and methods which were found

successful in one instance to subsequent rounds of problem solving on different problems

(Allen and Marquis 1964), thus resulting in a "local" search of the potential solution

space. The presence of local search effects have been found at the individual level

(Adamson 1952; Birch and Rabinowitz 1951; Duncker 1945; Luchins 1942) as well as at

the organizational level (March and Simon 1958; Nelson and Winter 1982; Stuart and

Podolny 1996), where its effect is a more rapid solution to problems similar to those

experienced in the past and decreased effectiveness in solving novel problems.

Thus re-applying prior experience can yield significant increases in productivity

in repetition-based manufacturing through learning curve effects (Argote and Epple 1990;

Yelle 1979) but it can also lead to obsolescence in new technological domains (Sorensen

and Stuart 2000). Since progress in innovation and R&D, by definition requires solutions

to novel problems (Brown and Eisenhardt 1995; Clark 1985), local search-based

approaches may negatively impact creative solution generation.

The purpose of this chapter is to demonstrate an alternative mechanism of

technological problem solving that focuses on finding solutions from a wide range of

dispersed and peripheral problem solvers. It is based on von Hayek's (1945) central

insight that knowledge is unequally and widely distributed amongst individuals and the

central challenge in society is to find ways to access this knowledge. I show that for

23

certain types of discrete scientific and technical problems, broadcasting a problem to

many heterogeneous potential solvers is a highly effective means of finding solutions and

that it allows for the mitigation some of the negative issues (e.g.: competency traps,

excessive reliance on existing knowledge) associated with local search.

The chapter develops the concept of broadcast search as method of problem

solving consisting of the following four steps: (1) problem definition, (2) problem

broadcast, (3) solution attraction, and (4) solution selection. Broadcast search inverts the

typical problem solving process by focusing the efforts of the problem holders into

attracting "complete" solutions from external sources instead of creating solutions

themselves. Problem holders transform from problem solvers to become solution seekers

by defining and broadcasting problems, attracting many potential solvers from different

domains and evaluating solution submissions. Broadcast search overcomes the limitation

of local search by distributing the problem into different domains and by inducing many

different solvers to engage in problem solving based on their own expertise and skill sets.

The application of broadcast search to 166 discrete scientific problems3 ,

originating from the research and development laboratories of 26 firms, shows a 29.5%

solving rate with novel solutions arriving from a dispersed pool of peripheral solvers not

known to the seeker firms. The problems were broadcasted as "winner-take-all"

challenges with substantial financial reward (average $30,000 US) for the winning

submission. Each problem attracted interest from, on average, 240 individuals and

solution submissions from 10. Seekers firms decided which solution submission(s) best

met their criteria, if any, and picked a winning solution.

The probability of a problem being solved was a function of the number of solvers

submitting solutions and the heterogeneity in the scientific interests of the solvers.

Problems that attracted more specialized solvers were also more likely to be solved.

Most of the winning solvers based their submissions, partially or fully, on previously

3 Data for this paper was collected in cooperation with Peter Lohse and Jill Panetta of InnoCentive.com and

Lars Bo Jeppesen from Copenhagen Business School.

24

developed solutions from their own and/or someone else's work. Winning solvers also

rated the problems to be at the boundary or outside their own field of expertise suggesting

that broadcast search was initiating cross-fertilization amongst scientific disciplines. Past

firm experience and learning with problem articulation and decomposition had a

significant effect on the probability of future problems being solved. Firms using

broadcast search achieved significant value creation in the process of attracting solutions

form the periphery.

I begin by discussing the salient literature on problem solving and local search

(section 2) and the role of external knowledge in innovation (section 3). I then develop a

framework for broadcast search (section 4) and lay out the data sources and setting

(section 5). I then present the empirical findings on the efficacy and functioning of

broadcast search (section 6) and a discussion on their relevance (section 7). Finally,

implications of the findings and further research directions (section 8 & 9) conclude the

paper. The appendix to the paper consists statistical methods and the solver survey.

2.2: Problem Solving and Local Search

The seminal work of Newell and Simon and colleagues (Newell and Simon 1972;

Simon and Newell 1962) has described the problem solving process as an attempt of

getting from the present to desired situation by a process of "searching through a large

maze." The maze depicts the problem space; the nodes of the problem space represent

situations; and the paths joining one node to another are the actions that will transform

one situation into another. A problem space has an initial state and a goal state and a set

of means that allows a solver to move from one state to another. Problem solving is an act

of stepwise search through the problem space (Dunbar, 1998) and decisions by problem

solvers are taken under significant uncertainty (Simon, 1969: 68).

Newell and Simon (1972) characterize the differences in search processes in

problem solving as "trial and error", "hill-climbing", and "means-end analysis". The

three approaches form a succession in which the latter requires information the former

25

does not. Trial and error problem requires solvers to only recognize that they have

reached their goal; hill climbing requires that solvers can assess the relative closeness of

their position to the goal; and means-end analysis requires that the solver be able to

discern the type of difference between the current state and the goal state (Baron 1988).

The problem solving approach used depends on the characteristics of the problem itself,

but also to a large extent on the past experience of the problem solver (March and Simon

1958: 177; Ward 1995).

2.2.1: Problem solving with experience for Individuals and Teams

Research within cognitive and social psychology adds to the above view by

emphasizing the effects of solvers' past experience with a problem, focusing on the

learning that occurs during problem solving and its impact on selection of future problem

solving strategies (Lovett and Anderson 1996). Prior experience with a solution assists in

problem resolution by allowing the solver to see its applicability to the problem at hand,

resulting in a successful conclusion (Saugstad 1955; Staats 1957). However, solvers pay

a price for experience in problem-solving when the problems to be solved are different in

nature from the problem a solver has worked with on the past. The reason for this is that

experience in problem solving has a tendency to produce attitudes and biases that favor

the choice of problem solving strategies found successful in one instance to subsequent

problems irrespective of whether the problem is similar or dissimilar to the one

experienced earlier. This effect is described in the Gestalt tradition of cognitive

psychology as set or "Einstellung" (Luchins 1942; Luchins and Luchins 1959) and it

indicates that past experience biases the problem representation and that a resolution

requires changes in representation and reduction of restraining forces (Lewin 1936).

In studies of the role of experience on problem solving Luchins (1942) found that

individuals exposed to a solution to a complex problem overwhelmingly used the same

(complex) solution methodology to solve simpler problems. In fact, 81% of the subject

who had previously learned a complex solution to a problem utilized it to solve problems

for which less complicated solutions would suffice. Experimental subjects could not

26

"see" the simple method until it was pointed out to them. Subjects were observed saying

"how stupid I am" or "how blind I am" when they were later confronted with the more

effective, but during the experiment, unnoticed solutions.

Similarly, Duncker (1945) and colleagues (Adamson 1952; Birch and Rabinowitz

1951) have shown the existence of "functional fixedness" where problem solvers have

difficulty in using familiar tools in novel ways. In one of Duncker's experiments, he

created five problems which could only be solved by applying a new way of using a tool.

The first of the two groups of experimental subject saw the tool being used in a usual way

while the second group did not. The result of the exercise was that subjects were more

likely to solve the problems requiring a novel way of using the tool if they had not

observed how that tool was used in the usual way while the problem solving success of

subjects that had previously observed it used was hampered. In Duncker's terms the

subjects were "fixated" on the tools' normal function and could not re-conceptualize it in

a way that permitted them to solve the problem. Related work by Gordon (1961) also

pointed to "blindness to solutions" as a main hindrance for effective problem solving and

contemporary research (e.g.: Lovett and Anderson 1996) shows that initial success with

problems causes solvers to cling their "history-of-success" in subsequent solving rounds

with negative effects.

Outside of the laboratory, Allen and Marquis (1964), in their study of teams of

government R & D contractors (Allen and Marquis 1964) found that they

overwhelmingly used prior experience and knowledge in new technical problem solving.

The authors defined a "set" as a bundle of prior experience with tools or approaches that

are transferred across problem situations. The sets can have both positive and negative

biasing effects on problem resolution. In line with the argument above, their research

found, that in a few cases prior experience was helpful in creating a solution to previously

experienced similar problem, however, in many cases, prior experience hindered problem

resolution because it created an inappropriate bias that obfuscated attempts to reach a

more superior solution. Interestingly, Allen and Marquis (1964) did find that team which

27

considered alternative approaches beyond their prior experience increased the probability

of successful outcome from zero to 50 percent.

2.2.2: Local Search in Firms

At the firm level, re-applying experience is likely to increase problem solving

effectiveness if the problems at hand look similar to prior problems that were solved

successfully by the solver organization. The role of experience in increasing productivity

was first observed by aeronautical engineers such as (Wright 1936) noting that the

number of labor hours required to produce an airplane body is a decreasing function of

the number of airplane bodies previously produced. Subsequent work on the concepts of

"learning curve effects" (e.g. Alchain (1963)) and the related concept of"experience

curve effects" (Boston Consulting Group, 1972) has shown this regularity of cost

reduction over time (Arrow 1962); as a function of output (Rapping (1965) and

Sheshinski (1967)); investment (Lieberman 1984); and learning effects variation in

different contexts (Adler and Clark 1991; Argote and Epple 1990). Thus, organizations

whose primary mission is to (re)produce the same type of products and or experience are

likely to benefit from reapplying experience to future problems.

However, a number of researchers studying problem solving at the organizational

level have argued that prior experience leads to a number of biases that block the

organization from seeing potentially more effective alternative problem solving approach

(March and Simon 1958; Nelson and Winter 1982). As demonstrated in the literature on

evolutionary economics (Dosi 1982; Nelson and Winter 1982), organization learning

(Levitt and March 1988) and technology management (Anderson and Tushman 1990) the

search for solutions to novel technological problems often involves a "local search"

process.

Several scholars have systematically demonstrated the presence of local search

tendencies in R & D and new product development activities through empirical studies.

Helfat observed very little variance, over time, in R & D spending on various

28

technologies in energy firms. Stuart and Podolny (1996) showed that nine out of the ten

largest semiconductor firms concentrated their new patenting activity in technological

niches where the firm had previously patented. Martin and Mitchell (1998) demonstrated

that new product introductions from incumbent firms often incorporated designs already

present in their existing products. Similarly, Sorensen and Stuart (2000) have shown that

older firms in the biotechnology and semiconductors industries tend to patent in areas

that are close to their expertise but are considered "obsolete" by the rest of the industry.

2.3: Innovation and External Knowledge

In this chapter I focus on innovation, a process characterized by its requirement

for new knowledge, new combinations of existing knowledge, and non-standard

procedures. Problem solving for innovation thus requires that solutions to novel problems

be found (Clark 1985). Innovation will thus be affected negatively by the local search-

based problem solving approaches and its tendency to re-apply prior successful solutions

to novel problems.

External sources of knowledge have been found to be critical to the innovation

process (Cohen and Levinthal 1989; Cohen and Levinthal 1990). March and Simon

(1958: 188) first posited that, at the organizational level, most innovations result from

"borrowing rather than invention." They contended that borrowing was either a function

of imitation or by importing new personnel into the organization. Regardless of the

mechanism for borrowing, they postulated that the rate and type of innovation was based

on the communication structures of the organization with a special emphasis on external

connections.

For an R & D laboratory, seeking knowledge from the outside has been viewed as

important for getting information about user and markets needs and for the latest in

technological developments. Lab personnel need to understand market requirements

(Meyers and Marquis 1969) and the use conditions for current and future products (von

Hippel 1978; von Hippel 1982; von Hippel 1988) in order to create competitive products.

They also need to keep up to date on the most current developments in science,

29

technology and technical processes in order to stay innovative (Allen 1977; Allen and

Cohen 1969; Utterback 1971). Thus seeking knowledge from the periphery of the focal

innovating unit has been identified and empirically shown as being important to the

innovation process.

2.3.1: People and Capability for Integrating External Knowledge

Studies of R&D activity have shown the emergence of both special individuals

and a generalized capability for the task of integrating external knowledge into the firm.

Technological Gatekeepers

In the 1960's a range of studies on technical organizations found that there was a

consistent inverse relationship between the performance of industrial and governmental

scientists and technical staff and the extent to which thy used people outside of their

organizations as sources of information (Allen 1966a; Allen, Gerstenfeld and Gerstberger

1968; Berul et al. 1965). Equally compelling was the data that showed the intra-

organizational communication had a strong effect on performance (Allen, Gerstenfeld

and Gerstberger 1968; Schilling and Bernard 1964). Allen (1966a) suggested that the

explanation for this inverse relationship was due to the mismatch between the coding

schemes (Katz and Kahn 1966) of the information seeking organization and the

information source. The issue was not the external source of information, rather, the

internal information seekers had not articulated the problem in a manner that allowed

them to seek an appropriate information source.

Allen and Cohen (1969) hypothesized that the mismatch between the coding

schemes could be reduced by individuals who specialized in playing an informal bridging

role between the external environment and the R & D laboratory. Inspired by research on

mass communications (Katz 1960; Katz and Lazarsfeld 1955; Lazarsfeld, Berelson and

Gaudet 1948), they hypothesized a two-step process "through which the average engineer

was connected by an intermediary to information sources outside his laboratory" (Allen

and Cohen 1969: 13). They analyzed the communication pattern in two R & D

laboratories and found that some individuals were more frequently chosen than others for

30

technical discussion. Scientific and technical staff in these laboratories reported using

these sociometric "stars" as sources of information in their critical incident reporting. An

analysis of the communication patterns of the stars showed them to be consulted more

frequently then other internal sources and that they were well connected to both external

individuals and read significantly more professional, scientific and technical journals.

These stars were dubbed technological gatekeepers. Allen (1970) also replicated these

findings in a large aerospace firm. Tushman (1977) showed the importance of"special

boundary roles" in dynamic environment with the observation of a curvilinear

relationship between the number of boundary roles and project performance for teams

facing work-related uncertainty due to changing task environment or high task

interdependence. Tushman also found that work characteristics were not determining the

creation of boundary roles, instead, high-performing teams were evolving the appropriate

number of boundary roles to fit the external information processing demands of their

work.

It is important to note that R&D labs did not necessarily have a formal gatekeeper

role. Rather, Allen and colleagues, discovered a statistical relationship and researched its

implications in terms of internal and external communication and performance. Thus

there was no apriori identification of technological gatekeepers. The crucial function that

gatekeepers perform is to translate between internal organizational codes and external

sources of information. Some may help insiders to better articulate and describe the

research problem and make a match between external information, while others may

simply absorb external information and when necessary translate that into a form that fits

best into the language and culture of the organization (Tushman and Katz 1980). Also

note that the local search problem articulated above still exists. In this case the

gatekeeper is the primary individual that is conducting search to find and absorb relevant

information for the organization. While we can expect the search by the gatekeepers to

be slightly broader, gatekeepers will still be limited by their own prior experience and

success and failures within the organization.

31

Absorptive Capacity

Cohen and Levinthal (1989; 1990) argued that the R&D function in a firm serves

to both create new technologically based products and to leverage external information

for the firm's future competitive advantage. They defined "absorptive capacity" as a

firm-based capability to understand and value external information and to appropriate it

for commercial ends. Cohen and Levinthal posited that absorptive capacity was present

at both the individual and firm level and that prior experience and diversity of expertise

were critical components for effective external knowledge assimilation and exploitation

(Zahra and George 2002). They used findings from cognitive and behavioral sciences to

argue that absorptive capacity, at the individual level, was a type of learning capability

that relied on past experience with the intensity of previous effort being an important

ingredient (pg 131). They also claimed an equivalence between problem solving ability

and learning capability, arguing that both developed in a similar fashion and relied on

prior knowledge for effectiveness, even though problem solving aims to create new

knowledge and learning capability seeks to assimilate existing knowledge (pg 130).

Cohen and Levinthal also argue that diversity of knowledge structures at the

individual and organization level is critical for effective absorptive capacity. Since

absorptive capacity is based on deep prior knowledge having prior access to diverse kinds

of knowledge is essential for the ability to both assimilate and to exploit differing

external knowledge. For the individual, they cite Simon's (1985) contention that diverse

knowledge structures coexisting in the same mind can lead to learning and problem

solving that yields innovation. And for the firm, they use Utterback's (1971) findings

that diversity in the workplace can stimulate the generation of new ideas. Overall they

posit that "interactions across individuals who each possess diverse and different

knowledge structures will augment the organization's capacity for making novel linkages

and associations" (pg 133). Interestingly they also noted that gatekeepers may not be

suitable in conditions of technological uncertainty since centralized interfaces to the

environment are not going to be able to access and assimilate vast amounts of rapidly

changing technological information. Their solution was to recommend that firms expose

a broad and large range of"receptors," i.e. many individuals, to the environment.

32

The strong link between prior knowledge accumulation and absorptive capacity

has been replicated and extend via numerous empirical and theoretical studies (for a

review see Zahra and George (2002)). However this implies that the local search effects

of absorptive capacity will be even stronger. While diversity of searchers focused on

external information and collaboration may have a positive impact on innovation

performance (Cockburn and Henderson 1998) it is also important to note that there is

strong tendency towards homophily in groups (McPherson 1983; McPherson 1981;

McPherson and Smith-Lovin 1987; Popielarz and McPherson 1995) with empirical

evidence showing that hiring practices inside of firms usually ends up either reducing

diversity (Sosa and Fernandez, 2005) or sustaining current structures (Rubineau and

Fernandez, 2005). So a focus on absorptive capacity as a means to bring external

information may end up bringing the same type of information into the organization.

Empirical evidence of the failure of large firms to innovate in new technological domains

seems to support this contention (Christensen, Suarez and Utterback 1998; Utterback and

Suarez 1993).

2.3.2: Alternatives to Local Search: Alliances and Mobility as Means of Accessing
External Knowledge

Alliances

Spanning the boundaries of the focal R & D organization has been suggested as

an alternative to overcoming the negative biases of local search (Rosenkopf and Nerkar

2001). Typically external boundary spanning occurs via formal alliance agreements. Two

dimensions of boundary spanning activity have been posited: 1) technological and

2)organizational. Technological boundary spanning can occur in domains that are similar

or distant to current capability. Stuart and Podolny (1996) showed that in the period

between 1987-1992 changes in semiconductor firms' technological position were highly

and positively correlated with the number of technology-exchange and technology-

development alliance agreements they had consummated. Only one firm, Mitsubishi, was

able to change its technological profile in the semiconductor industry and avoided the

pitfalls of local search by having the greatest number of strategic technology alliances

with other firms. Similarly, Nagarajan and Mitchell (1998) showed that in the lithotripsy

33

industry access to radical technologies occurred through equity-based relationships

between firms.

Organizational boundary spanning can be intra-organizational, i.e. going to a

different unit for access to technology (for example Hansen's (1999) analysis of

technology search and transfer in a high-tech multi-national firm) or inter-organizational

(e.g.: Nonaka and Takeucki's (1995) example of Matsushita learning the art of kneading

bread from a chef in order to build its own electronic home bakery). Rosenkopf and

Nerkar's (2001) patent data-based analysis of boundary spanning activity in the optical

disc industry showed that inter-organizational boundary spanning combined with distant

technological boundary spanning yielded the greatest impact, i.e. future citations from

other firms within the same patent domain.

Boundary spanning via alliances can be used to either converge or diverge

knowledge bases within alliance partners. Mowery et al (1996) have shown that alliances

can be used to transfer capabilities between firms or as a means for complementary

specialization. However, when Rosenkopf and Almeida (2003) excluded arms-length

contracts, the significance of alliance as a predictor of knowledge flows disappeared (pg

763). Thus the general ability of alliances as a means of overcoming local search may

still be limited to search within a rather well-known environment.

Mobility

Mobility of technical and managerial staff has also been proposed as way for

overcoming local search constraints (Rosenkopf and Almeida 2003). The basic

underlying mechanism is that people are a key source of firm-to-firm knowledge

spillovers and as engineers switch jobs and firms they also transfer with them unique, to

the hiring firm, experiences and knowledge (Saxenian 1994). Thus, Almeida and Kogut

(1999) have shown that in the semiconductor industry hiring of a new engineer resulted

in the hiring firm exhibiting higher rates of citing prior patents of the new employee than

would be expected given its current technological niche. Similarly Rosenkopf and

Almeida (2003), study of the semiconductor industry, demonstrated that mobility of

34

patent authors resulted in inter-firm knowledge transfer. However, this needs to be

tempered with the findings that new technical employees in R & D laboratories have the

most difficulty and take a long time in assimilating into pre-existing communication

environment of development organizations (Lee and Allen 1982).

One potential critique of the "alternatives to local search" literature is that from a

theoretical point of view boundary spanning and mobility do not overcome local search

bias at all, rather they simply shift the axis of local search from technological problem

solving to either one of finding the right alliance partners or the best technical staff.

Firms employing these solutions are still going to face local search constraints in the

areas of identifying relevant capabilities and skills in potential firms in the environment

or individuals in the labor force. The characteristics of the problem solving process -

search and learning are now located in strategic and managerial domains instead of the

technological domain.

2.4: Broadcast Search
When innovation requires access to knowledge that is widely distributed then a

local search-based problem solving effort may not yield the most optimal or efficient

solution. There is an inherent tension between the extensive use of local search in

problem solving and the observation that knowledge is widely distributed in society

(Hayek 1945). Although the problem of making optimal use of distributed knowledge is

one that any complex social system confronts, the problem of distributed knowledge is

especially pressing for firms involved in innovative efforts as its relies on its ability to

rapidly access varying knowledge bases often collocated with highly specialized

individuals.

2.4.1: Distributed and decentralized problem solving and the importance of the
periphery

Research on the sources of technological innovation has repeatedly highlighted

that novel innovations arise when problem solving activity is decentralized (von Hippel

1988; von Hippel 2005). Users have been shown to innovate in a variety of consumer,

industrial and scientific settings (von Hippel 2005), often preceding and initiating firm-

35

based efforts (von Hippel 1978; von Hippel 1982; von Hippel 1988; von Hippel 1989).

Here users are on the periphery and the firms who commercialize and sell products which

have innovations are the core. Thus in the field of scientific instruments, Riggs and von

Hippel (1994) found that 44% (n=64) of the innovations emerged from users dispersed in

industry, universities and government laboratories while the remaining 56% of the

innovation emerged from a handful of manufacturers. They further found that the vast

majority of functionally novel innovations, i.e. enabling new technical capability in the

equipment, were developed by dispersed users and "dimension of merit" improvements,

i.e. convenience or reliability, were developed by manufacturers. More recently,

DeMonaco, Ali & von Hippel (2005) have shown that in pharmaceuticals industry, 76%

(n=29) of the new drugs introduced in 1998 had significant "off-label", i.e. novel uses not

in the original drug approval process, applications. They found that 59% (85/144) of the

"off-label" drug therapy innovations were discovered by distributed and peripheral

practicing clinicians via field discovery as compared to the scientists working inside of

the pharmaceutical companies.

One stream of research in the sociology of science has argued that the flow of

ideas and innovation in scientific communities is centripetal instead of centrifugal

(Chubin 1976), that is, the margins of the scientific community are the drivers of change

and progress. Thus Crane (1969: 349) in her study of the "invisible college" in the natural

sciences speculated that "outsiders" were a likely source of new ideas and innovation:

"Most problem areas are open to influence from other fields. The desire for originality

motivates scientists to maintain contacts with scientists and scientific work in areas

different from their own in order to enhance their ability to develop new ideas in their

own areas."

A review of six scientific disciplines, (radio astronomy, bacteriology, psychology,

phage group, physical chemistry, x-ray protein crystallography) by Edge and Mulkay

(1974) (cited by Chubin 1976) showed that innovations from the margins and the

mobility of scientists across fields were the only consistent factors in scientific innovation

and specialty development across these fields. Edge and Mulkay did express concern that

36

very little was known about the social process underpinning their findings: "If we are

correct in suspecting that many major scientific innovations come from the outside, or

from the margins of, established research communities (either from applied research

contexts, or by migration between research networks), then it is surprising that so little is

known about this process" (Edge and Mulkay (1974) cited in Chubin (1976: 457)).

Within sociology, Weiman's (1982) study of the flow of information and

influence in the personal network of an Israeli kibbutz community also shows "the

importance of marginality" or peripheral participation. Weiman gathered sociometric

data from 270 members of the kibbutz regarding conversational ties with other members

of the community yielding 2511 conversation ties. Weiman then used matrix algebra to

determine cliques in the community and then derived a network position of each

individual based on the number of times a person was chosen as a conversational tie by

someone else. "Centrals" and "Marginals" were then determined by using the upper and

lower quartiles of the choice distribution in a clique. As expected centrals, dominated in

all types of communication patterns. In addition centrals, were more efficient in the flow

of information. Information originating from centrals flowed more faster, was deemed

more accurate and more credible than the information activated by the marginals.

However, marginals were key for inter-group or inter-clique communication. Marginals

were both receivers and transmitters of information amongst the 16 distinct groups in the

kibbutz. Weiman showed that marginals were the importers of new information across

groups and that centrals then served as the transmitters of that information within groups.

Implying that centrals rely on marginals for imported information while the marginals

required the enlistment of centrals for spreading the information in the group.

There are two theoretical perspectives underpinning the findings related to the

importance of the periphery. Granovetter's (1973) seminal article on the strength of

weak ties posits that weak ties amongst individuals allow for the transfer of non-

redundant and novel information amongst colleagues as opposed to strong ties amongst

friends. Strong ties imply that the information flow amongst strongly connected

individuals will be homogenous and already known, while weak ties may enable the

37

transfer of new and heterogeneous information. Thus those on the periphery of a

community are more likely to be weakly tied to the core, while they may serve as

"bridges" between other communities and thus transfer novel information amongst them.

This theoretical perspective is the basis for both Weiman's empirical findings about the

importance of marginality and Chubin's assertion regarding the centripetal flow of novel

information in science communities. Although not mentioned by Granovetter, Hayek's

(1945) central insight about the unequal and distributed nature of knowledge in society

explains why non-redundant information may exist in the first place. If knowledge is

both spatially and intellectually distributed - then gaining access to this knowledge via

weak ties may be one mechanism by which peripheral members provide advantages to

communities.

The other theoretical perspective on the value of the periphery arises from von

Hippel's findings about the critical role of users in the innovation process. Here the

theoretical perspective is the relative stickiness of information. Von Hippel argues that

the locus of innovation shifts to where the information is the most stickiest (von Hippel

1994a; von Hippel 1994b; von Hippel 1999). Thus users innovate in areas where they

have needs not met by manufacturers, typically in using technologies in novel ways,

while manufacturers innovate in areas where they have pre-existing expertise, typically

manufacturing the technology or improving it on the dimensions of merit instead of

novelty. It is not just a matter of the presence of non-redundant information. Rather

users or peripheral members in problem solving communities experience novel issues not

foreseen by manufacturers or core members and in many cases the transfer of this use

experience is very difficult and expensive, if not impossible. A strong tie between a core

developer and a peripheral user does not mean the core will now have the information

needed to innovate. Rather the use environment will dictate that such innovation has to

be primarily driven by the periphery. Thus the periphery has to first innovate and then

transfer the newly created knowledge to the core, regardless of the strength of ties.

38

2.4.2: Defining Broadcast Search
A radical departure from local search-based problem solving would be for the

problem holder to not engage in any problem solving activity at all and instead find ways

to interest a heterogeneous set of external actors to attempt solving the problem in their

own particular domains. One possible way to access the widely distributed knowledge

base and potential solvers is to broadcast problems as widely as possible. I call this shift

moving from local search to broadcast search. I define broadcast search as the shifting of

problem solving activity away from the center of the R&D organization to the outside

periphery.

In broadcast search, problem holders do not seek external knowledge and

information in aid of their own local solution creation effort. Instead they distribute their

own problem to many heterogeneous domains and allow solvers in those domains to

create solutions. Thus the problem holder is transformed into a solution seeker. Instead

of doing search through a problem space, the solution seeker defines the problem in a

way that can be understood by outsiders and finds a way to access many diverse potential

solvers. Problem solving and solution generation shifts to the periphery and potential

solvers self-select themselves to participate. Broadcast search depends on the law of

large numbers and diversity in the potential solver base for solution creation. It is not

enough that many solvers attempt to create a solution, rather, there has to be diversity

amongst the solvers so that many different approaches may be attempted and many

different solutions created.

The first element in broadcast search is problem definition. Problems need to be

defined in such a way to allow for the greatest possible openness of the solution space.

This requires that problem definition activity be separated from solution identification

effort because often times problem definition is so closely intertwined with solutions that

there is a suboptimal lock-in between them (Simon 1973). Second, instead of local

search, the key task of is problem broadcasting. To increase the probability of a

successful response, problems are broadcast to a large heterogeneous set of solvers not

necessarily associated with the problem holders or even in the same scientific and

39

technical domains. This way problems can draw on multiple and distributed knowledge

domains for a solution. Third, to attract solutions to a problem an incentive structure

needs to be in place. Incentives can appeal to the solver's extrinsic and/or intrinsic

motivations i.e. monetary rewards (e.g.: prizes (Horrobin 1986)) or personal sense of

creativity (Csikszentmihalyi 1975; Deci and Ryan 1985). Finally, the solution that meets

the problem's resolution criteria needs to be selected.

Broadcast search is different from the traditional problem solving in three distinct

ways: 1) It initiates numerous local searches in different domains by leveraging the

distributed nature of knowledge. Thus instead of one local search by the problem holder,

there are multiple local searches by many solvers. 2) The problem holder's effort shifts

from creating solutions to testing completed submission solutions. 3) Because it rewards

acceptable solutions only it externalizes the cost and failure-risk of problem resolution.

2.4.3: Overcoming Newton's Folly By Broadcast Search
"And I have told you oftener then once that it [the longitude] is not be found by Clock-work

alone. Nothing but Astronomy is sufficient for this purpose. But ifyou are unwilling to meddle
with Astronomy (the only right method and the method pointed at by the Act of Parliament) I am

unwilling to meddle with any other methods then the right one. "- Sir Isaac Newton, 1725
(Andrewes 1996)

Sir Isaac Newton, Western Civilization's most preeminent Natural Philosopher

and scientist, boldly asserted that the solution to finding the exact longitude at sea was

only to be obtained by the methods of astronomy and not by clockwork. Finding a

practical method to obtain the longitude at sea was considered one of the greatest

scientific challenges between the 16th and 18 th centuries. Three theoretical solutions were

proposed: 1) lunar distance method by Werner (1516), 2) clock-based solution by Frisius

(1530) and 3) Jupiter moons method by Galileo (1616). Among the scientists who

attempted, though un-successfully, to create practical solutions included Cassini,

Huyguens, and Haley (Sobel 1996). So severe was the need to obtain the longitude at

sea, that in 1714, the British Parliament passed an act establishing a prize of up to

£20,000 for anyone who could come up with any reliable method to solve the problem.

The parliamentary act defined the range of acceptable solutions (1, 2/3 and /2 degree

40

accuracies) and established the Board of Longitude to evaluate and select the prize

winners (Andrewes 1996).

Newton, as the principal scientific advisor to the Longitude Board repeatedly

rejected all other approaches: "The Longitude will scarce be found at sea without

pursuing those methods by which it may be found at land. And those methods are

hitherto only two: one by the motion of the Moon, the other by that of the innermost

Satellit of Jupiter "(Andrewes 1996: 190). Newton'sfolly was his insistence on an

astronomical solution to the longitude problem, based on his own knowledge and

experience in astronomy and his rejections of alternative proposals and solutions. His

public rejections of any proposals that were based on timekeepers convinced most of the

scientific community at the time, to propose and develop solutions that were based on

astronomy and ignore the domain of clockwork (Andrewes 1996).

The parliamentary act spurred a tremendous outflow of proposals as it had a

handsome reward and scientific prestige. However, contrary to Newton, the ultimate

practical solution was based on clockwork and not astronomy and it was developed by an

unknown carpenter and clockmaker, John Harrison of Yorkshire, England. Harrison's

solution was innovative by two accounts it eschewed astronomy for clockwork and his

design was quite different from existing clocks indicating novel understanding of

materials science and mechanics. Harrison was also on the distant periphery of the

scientific and technical community of the time. Newton's folly was so deeply engrained

in the scientific community and the Longitude Board that it took 40 years of effort and a

special favor by King George III for Harrison to be declared the winner of the Longitude

prize. The longitude episode demonstrates that solutions to difficult scientific problems

can emerge from unexpected areas if they are broadcasted to a diverse solver population.

2.4.4: Contemporary Research on Broadcast Search
To my knowledge there are three studies that have examined variants of broadcast

search as it relates to technical support for computer and software related problems. Two

studies in the late 1980's at Tandem Corporation examined broadcast and public and

41

private replies to requests for help from field engineers (Constant, Sproull and Kiesler

1996; Finholt, Sproull and Kiesler 2002). Constant et al studied know-how questions -

i.e. "How does something work?" about a company's internal products within Tandem's

internal email list. They found that on average each question generated replies from eight

people but only 8 percent of the solution providers knew the person with the problem.

50% of those posting questions had their problems solved. In addition the mean diversity

(geographic location) and resources (being at headquarters or self-admitted expert in the

area) of information providers to any one question significantly predicted the probability

of a question being answered.

Finholt et al's studied the use of archives of previously broadcast peer-to-peer

help discussions and expert-user discussions. They found that the peer-to-peer archives

had more stores of knowledge with the mean number of replies and participants to each

question were significantly higher than the expert-user discussions. In addition they

found that field engineers significantly preferred to use the peer-to-peer archive over the

expert-user archive and that this preference increased with distance from headquarters.

Lakhani and von Hippel (2003) studied the provision of technical help in an

online voluntary community setting outside the boundaries of any one firm. The main

findings indicated that the system was effective in solving problems for users with 63%

of participants noting problem resolution through their use of the online system. They

also found that the majority (67%) of solution providers were not doing any de-novo

problem solving - instead they were simply transferring solution information that they

already had. The benefit to cost ratio in terms of time saved to time invested in the

problem was approximately nine.

2.5: Setting and Data Sources
I explore the functioning of broadcast search examining its application to a unique

data set of 166 discrete scientific problems originating from the research and

development laboratories of 26 firms from 10 countries from June 2001 to January 20054.

4 Information on all the problems analyzed are in the Appendix.

42

The firms were in such diverse industries like agrochemicals, aerospace, biotechnology,

chemicals, consumer products and pharmaceuticals. Most firms had previously tried to

solve the problem within their own laboratories with some exerting several years of prior

effort. The data for the analysis was obtained in cooperation from InnoCentive.com (an

independent venture of the Eli Lilly & Company pharmaceutical firm), whose business

model is centered around broadcasting science problems. InnoCentive.com (IC) acts like

a knowledge broker between "seeker" firms and over 80,000 independent and globally

dispersed "solvers" from 160 countries (Sawhney, Prandelli and Verona 2003). IC's

business model is contingent upon attracting seeker firms to post internal research

problems on its website and encouraging solvers to examine and submit solutions to

those problems for a potential monetary award.

Seeker firms work in consultation with IC's scientific operations staff to articulate

their internal problems in a form that can be understood by an external scientific

audience. Solution requirements for the problems are either "reduction to practice"

(RTP) submissions, i.e. either the actual chemical or biological agent or detailed

experimental results needs to be provided (original research data has to be provided) or

"paper", i.e. a theoretical submission with a validated research proposal needs to be

provided. Problems are posted on IC's website along with a pre-set monetary award for

the "best" solution and a deadline date for submissions. IC then broadcasts the problem

to its entire solver base via email and invites them to participate in solving the problem.

IC solvers do not work collectively to solve the problem. Solvers also do not know who

else is working on the problem and how many solutions have been submitted. IC screens

all submitted solutions to ensure that the problem requirements have been met and then

forwards them to the seekers. Scientists from within the originating R&D laboratory

assess the submissions and then inform IC if they have found one that meets their criteria.

The decision to award the prize money to the best solution rests entirely in the hands of

the seeker firm. The seeker firm can chose to not award any prizes or award multiple

prizes.

43

Seekers and solvers remain anonymous to each other throughout the problem

solving process. Care is taken to protect the intellectual property (IP) rights of seekers

and solvers. When a problem is broadcasted, solvers initially see an abstract of the

problem definition. If they are interested in seeing full details and requirements about the

problem they have to first agree to a solver agreement which outlines the reward and

review period for solutions, confidentiality, and intellectual property transfer clauses for

accepted solutions. Solvers that submit solutions give a temporary license to the seeker

firm to evaluate their solution. If the solution is deemed acceptable by the seeker firm,

the solver then receives the pre-announced award prize and transfers all IP rights to the

seeker company. Before the transfer takes place IC contacts the solver's employer to

ensure that they release any and all IP claims on the solution s. If the solution is not

accepted the seeker firm relinquishes any rights to use the information provided in the

submission in any future work. This is enforced by contracts between IC and the seeker

firm which allow IC rights to initiate audits on the output of the seeker firm's research

laboratories.

I conducted two types of analyses to understand the efficacy of broadcast search

and its functioning. First, I analyzed the problem solving process used to create a

solution and the characteristics and motivations of the solvers. I wanted to understand

how solvers came up with a solution and the determinants of a solver being able to

successfully create a "winning" solution. Information on solvers and the problem solving

process was obtained via an online, web-based survey of individuals who had submitted

solutions to problems6 . The survey was administered in cooperation with IC7 and took

about 20 minutes to complete.

Each solver received a customized email from IC's Chief Scientific Officer

requesting them to participate in the survey. The email asked the solvers to respond to

5 There have been only two cases where the employer of the solver refused to release the IP rights to a
solution. I did not consider those two cases in the analyses.
6 Survey questions are in the Appendix.
7 I first created a pilot survey to ensure that the questions were understandable by members of the survey
population. I administered the pilot survey to two current IC solvers and to three other individuals who had
similar backgrounds (PhD in a science discipline) as the IC solver base. The feedback from the pilot
survey helped me to fine tune the questions and remove ambiguous language.

44

the survey by reminding them of a specific problem for which they had attempted a

solution along with the date of their submission to IC. Solvers who had created

submissions to multiple problems were asked about their most recent submission. Those

who had been successful in at least one attempt were asked to respond to the survey with

regards to their most recent winning submission. Most solvers also had the ability to

review the detailed problem statement and their submission on their personal account

space on IC's website 8. Survey respondents were offered the opportunity to participate in

a random drawing for gift certificates upon completion of the survey. The survey was

sent to 993 individuals and yielded a relatively high response rate of 35.9% (n = 357)

(Sheehan 2001). In all 68% of the winning solvers and 34% of the non-winning solvers

responded to the survey.

Second, I analyzed what determined if a problem was successfully solved by

examining the characteristics of the problems and the solver base attracted to solve it. IC

provided me with all salient information about each of the problems including solution

requirements (RTP vs. paper), scientific discipline, seeker firm (anonymized), award

value, days a problem was open for submission and size of IC's solver network over

time. In addition, IC also provided anonymized information about scientific interests of

the solvers who were submitting solutions. At registration time with IC, solvers are

asked about their scientific interests from a list of 56 options spanning Chemistry and

Applied Sciences and the Life Sciences. The scientific interest information helped me to

understand the types of solvers that were being attracted to the various problems and to

analyze the intellectual heterogeneity of the solver base.

2.6: Findings

2.6.1: Broadcast Search Performance and Solver Base Profile
Table 2.1 shows the overall performance of broadcast search-based scientific

problem solving. Of the 166 problems posted, 49 were deemed solved by the seeker

firms yielding a solve rate of 29.5%. A majority 58%, of the problems required a solution

that entailed "reduction to practice" (RTP) submission with the remaining asking for

8 Solvers who had created submissions in 2001 did not have access to their submission data.

45

theoretical submissions. All problems offered a substantial financial award (Mean:

$29,689, Median: $25,000, Range: $2000-105,000 US). Problem solutions had to be

delivered within a limited number of days (Mean: 166 days, Median: 108 days, Range: 14

to 554 days). Overall 29.5% of problems (49 out of 166) were solved using this approach.

46

0 0EoQ
v X

Q- -~ . -

a) E

z Lt

a)vC's O InZ w

Q t> _3_

o
a)-0

a)0
0.El

a)
(U
r

.C;
-2

cMC NC00

N o - - T C N

7 ° M oo =) , o a - t N d~~~M r

N , , t I t

Ot M0 00 0 0

O ~ O 1 0 0 0

In In
kr) tf) W'

a)
a)

a~~~~~~~a
0~~~~~~1 ~ ~ ~ ~ wC

o oVOO~~r~~~~~~~r

· ·'

~~~n~~~io~~~~~m~ ,,EC LLn:: , c cl E~ o;m

O \\ 00 0 
\ - m N t

0-00C
00 0 NO 0 00
_ ~o m m O ~ n _- _l _ 

O l 0 00

l (n N \O In 

._v,
a)

Q

> _ s:w0 0

H Q _io X r m F S H:



Winning solutions arrived on average within 84 (sd: 65.5 range: 2-262) days of the

problem posting.

On average, 240.7 (s.d.: 195.0, range: 19-1058) individuals examined the detailed

problem statement and 9.9 (s.d.: 14.2, range: 0-103) of them submitted solutions.

Problems that were solved received more than twice (mean: 16.8, s.d.: 21.5) the number

of submitted solutions as non-solved problems (mean: 7.0, s.d.: 8.1) (t=-4.2, p=0.000).

71% of the solved problems had a single "best" solution with one solver getting the

award and the remaining 29% had multiple "best" solutions (range: 2-5) with multiple

prizes awarded per problem. In all there were 75 winning submissions covering 49

solved problems. In a few cases, independent solvers provided partial non-overlapping

solutions to the problem in such a way that the seeker firm could accept all solutions and

combine the result into a full solution.

The data shows that the successful problem solvers are widely distributed with

87.5% of winning solvers have one successful submission and 8% have two successful

submissions 9 . Two contract research labs were successful three and four times, however,

anecdotal evidence suggests that the solvers were different individuals in each case". In

all 59 solvers received prize awards. This wide distribution of solvers and the lack of a

few "genius" solvers is in sharp contrast to other distributed innovation systems. For

example studies of open source software development communities have shown the

presence of a power-law distribution of participation where very few people contribute

disproportionately to the problem solving effort (Lakhani and von Hippel 2003; Mockus,

Fielding and Herbsleb 2002).

In Table 2.2, I provide descriptive statistics on the respondents in the sample.

Most of the solvers who responded to the survey were male (89.1 %), however there were

twice as many female winning solvers (20.0%) as non-winning solvers (10.9%). Solvers

9 I cannot unequivocally state that there is no power law distribution since I do not have enough

observations. It may be possible that given a 1000 attempts at broadcast search a power law distribution
may emerge.
10 Based on discussion with InnoCentive scientific operations staff.

48



were highly qualified with a majority of solvers reporting having PhD degrees and 20%

reporting post-doctoral or habilitation experience. On average, solvers had completed

their formal education 16.3 years (s.d.: 12.9) prior to responding to the survey with no

significant difference between PhD and non-PhD holders. At registration time with IC,

solvers indicated their scientific interests from up to 56 options. In the sample solvers

reported an average of 1 1.1 (sd: 1 1.7, range: 1 - 56) areas of scientific interests with no

significant difference between winning solvers and non-winning solvers. The

respondents took, on average, 39.9 hours of their own time developing a solution with

winning solvers reporting more than twice as many hours (74.1) as non-winning solvers

(35.7).

2.6.2: Problem Solving Process Used By Solvers
To gain insight into the nature of the problem solving process, I asked several

questions regarding solvers' prior knowledge and experience with similar problems and

solutions, source of solution information, match between problem domain and their own

expertise and the number of other people involved in the problem solving effort.

Table 2.3 shows that a majority of the solvers had some experience with similar

problems before. I asked the respondents: "when you first saw the particular InnoCentive

Challenge, what was your experience with similar problems? " This item was rated on a

7-point scale ranging form 1 - This problem was completely new to me, 4 - I was

somewhat familiar to 7 - I had seen the EXACT problem before. The average score was

3.9 (s.d.: 1.6) with approximately 40% of respondents reporting high degrees of

experience with similar problems. There was no significant difference in response

patterns between winning and non-winning solvers.

49



,- N 'IT
Cl m m m

F 00\0
.O 00:0 o

lj O
. 91

0\

F - F
(0660

d o

- I,66Cl
, o

^ _-v

' - n

_, ,,6 V)btcf- enc
V-CCC

Cl N

r-cjoN

O~~~ 

-d
066~~~

'*0 ~

a

a) 

-o o 
a

Cj9 a)

a) a a)

C-,

I.

0

z

aC

-C.t.
C,.O

>0

1 o~

C| . -u- 3a)

O av

3 3
CZ ,

a 3)
ofp

>1 

<v 3h

C,

o

C13~~~~~~~~~~~~~~1- a.)
0 bi

0 

a.)In ll~~Ia) o~n

(UC~~~~~C\I ~ (

c O 00 ;1
0 66

o E~~~~~~~~c

) S
- v

o E

3 
S) O

o 0 a.)

1H c d ~ a
, , ~~~C, -oo as~~~~~ -

I I a ) £ b Z >
- l ~~-11C~0 N 

- a)

j u 

a)

o

z'A 2!

C's

a)

3

z

a)

03cCd

tu

o'A

0ma
r4

3H20
6

cc

0



I also asked the respondents to assess the distance between the problem and their

own field of expertise. Specifically I asked them to rate if the particular challenge was:

"1 - inside your field of expertise, 4 - at the boundary of your field of expertise, 7 -

outside yourfield of expertise. Table 2.4 shows the response pattern comparisons

between winners and non-winners. In both classes a majority of respondents indicated

that the problem was either inside or at the boundary of their field of expertise. However,

while the mean score for this question was 2.86, the winners' mean rating was 3.35 and

non-winners was 2.79, was marginally significantly different (t = -1.87, p=0.06).

Indicating that winners assessed the problems to be more on the boundary our outside of

their expertise as compared to non-winners.

Majority of the solvers also reported that upon seeing the problem statement they

had already access to all or some of the solution information required to solve the

problem. Table 2.5 shows the response pattern to the question about their information

situation at time of seeing problem. Only 14.7% of solvers reported that they had no

information on the solution upon seeing the problem. Interestingly there was no

significant difference in response patterns between winning and non-winning solvers.

Lakhani and von Hippel (2003) have reported similarly high pre-existing solution

information by solvers for problem broadcasting in an online computer help forum.

51



N
0oo0~ - , o o

NC,0 " t - X0Cl-Cl-~ ( 1rC :"Z
- o - 'I "! - -t_ , D_h

Ci
mc

e 00 N C -C
C - - -

a)

4)

0
0I 6-x

0vE
4)~0CAr-Coa)oO

g5

c,

N ^CC

4)

4)

0Pc

4,.

0
I

o

0

i-

00

oo

.C

a)

"lC)

0

C)

0:

o

Ir,\c- z

t,
Cm

r
C

gIL

0..

._

E6 

90 0

O Fu

.2

C)~
11~~0.~~
r--a
(11~a
11~~

4)

0

z

6)

0

.4
a
4)0

U
4)0u

0t

a-

0
-O

C

Cf,3 

6- o '

C,0

N t- ,tO

Cl C

N N N N C6C~OR~CllCM

0
§ '5

3t -o
.Z: .1
4. r
o =a 0

C a

4)I)nu =
5= 3

13 3
4 C)

- )
cp_ 

C l

0

o
Cj'

4)

'0 

0 0

,. !

Ncl

-

00
Cl

0i

0I-00
ClOI-00
ccI1

a-

C,
e4IC

z :

.r.,a

I

4.C0
'4-

C

C

[.LZ

0r

E
4
.C
C
I.

06

C

C
C
.C
9

I

12

9

4

It
9
C
9
41

0

3Ia)s
0z

U)

0H

(I 0C,

.:

(I-C
t,.4-

a;
.i

I



To investigate the origin of solutions being provided, I asked solvers to what

degree their submissions built on pre-existing solutions: "Sometimes solutions build on

previous work. Was your submission to this Challenge based on. 1) A solution you had

already developed in your own work with no modifications, minor modifications, major

modifications or this was not based on any of my previous work. 2) An existing solution

you knew about that could solve the Challenge with no modifications, minor

modifications major modifications or this was not based on anyone else's work. " Table

2.6A shows that 55% of winning solvers reported that their submissions relied on

previously developed solutions they had developed in their own work with 32.5% doing

major modifications to their previous work in the submission generation process.

Similarly Table 2.6B shows that 60% of winning solvers also relied on solutions

developed by others in their submissions with 47.5% reporting major modifications to the

work of others. Table 2.6C shows the overlap in response patterns to both of these

questions. Overall I find that 27.5% of the winning solvers reported doing de-novo

problem solving by not relying on previous solutions developed by themselves and

others. The remaining 72.5% of winning solvers stated that their submissions were

partially or fully based on previously developed solutions from their own and/or someone

else's work. Table 2.6C also shows that when the level of modifications to previous

solutions is considered, regardless of the source, 55% of winning solvers were doing

major modifications to previously developed solutions in their submissions. This

indicates that broadcast search leverages pre-existing knowledge and the creative

(re)combination and transformation of knowledge in the solution generation process. A

similar pattern l of previous solution usage was also reported by non-winning solvers,

thus indicating, that in general, participants in broadcast search rely on previously

developed solutions to a large extent in their problem solving efforts.

" I tested the response patterns between winners and non-winners using a hierarchical log linear model.
The results showed that there was no significant difference in response patterns. Likelihood ratio chi
square = 20.678, df= 15, p =0.147; Pearson chi square = 15.105, df= 15, p = 0.444.

53



o - m. OO5 ~ t o

r

U'

o.o
U '
LS 0 0 W r r z

a E -0
o 

.. )

o 

0 0

o

E
ol

.0

E-

C,

.0

: o

e.

0

*=
0

0

e4o

Ca

o
6

o

H

0

0H

'au
v

;Y0
0.

m .
. 0

0)QM =S

E

OS Oa t-00O Q

2o
a 0
_ E

a-.)

01)E5L

E
0-0
3.i
O 

CP Oo )a >= 'A.

" 3M.

E .o
ea-

0)Q.>

M C

Dll
C14

2;i

Cl

0.)

r. 
_ r-

_ < , ..

.



n 00 o o
- 1 It °

rI r
Cl
N~

O N m m

o~~~~~t

o kr) mf m

o , (-9 \4<0 n n kf)

N 

0

I,~. .11

Ln

0

cR0
o~l: 0

H

as3 aJaqamWoS oj
uo!nloS

C

C0
0c

.-? U

0I...o

0

0r.
C,

C0

0l

L
4

C
V.

.C

C

CL
C

C

C

;o

1;

C

Q

I,

0

0

W.

0
V)

.=
3
0

(I).a0

0

,aOD

c10,I1c

.U0

.o

0

0E
0

.0oc~

Cu

HCj

o

E

c

o

U}

.

11

-iN11
P,

0.
o0
'A

C,

)

a-

Ln)V)0 06 o
1- It



Only 10.6% of the respondents reported working in teams to solve the problem

with 7.5% of winners (n=3) and 11.4% of non-winners (n=36) indicating a team effort.

Average team size was 2.8 members (s.d.: 1.6) with no significant difference in team size

for winning versus non-winning solvers. A vast majority of solvers (79.6%) also

reported that they did not consult others (excluding team members, if any) in the

development of their solution with 83.3% of winners and 73.8% of non-winners reporting

no consultation with others.

2.6.3: Determinants of a Solver Creating a Winning Solution
I studied the probability of a solver having a winning solution as a function of

their motivations to participate and their expertise with the particular problems. Questions

regarding motivations to participate were derived from extensive interviewing with IC

scientific operations staff and an examination of existing economics (Frey 1997) and

psychology (Deci and Ryan 1985) literature. The interviews and literature review

suggested that even though winning the award money was the most obvious reason to

participate, other extrinsic motivations like career and reputation concerns, and peer and

work pressure to submit a solution should not be ignored. Also solvers may also have

participated for the challenge and enjoyment of scientific problem solving, thus intrinsic

motivations needed to be considered as well. Studies have also shown that being the first

to solve a scientific challenge and beat others is a strong motivational driver for scientists

(Stephan and Levin 1992). It could also be that solvers were motivated to participate

because they either had free time/capacity or were simply bored in their current jobs.

I asked the respondents to rate 16 items on the various motivations for creating a

solution and found that 10 of the motivation items loaded onto two separable factors that

could be labeled intrinsic motivations and social/career motivations Table 2.7 shows the

result of the factor analysis on the responses. I then derived values for these factors by

standardizing' 2 the item scores and taking the average score for the corresponding

matching factor items. The remaining items weakly loaded or did not load into additional

factors. For the regression analysis I retained the "to win the award money", "having

12 Mean = 0 and Standard Deviation = 1 for all items.

56



r-
l w

6 =

u 0
M O

6l 

u e0 O

Cci~M 0"O 04

N v) r- C or rIt)r) ) ~0 O(OO 
\Oo r ,r- M r6 6

C,, 0
--: ~o r

rZ
.41
t~1

0
11l

C1 0 -
'I I' r t-o : 0 0\O\DIo

.2
o(n

a)

u

aa
C75

I I "N

* I I I I I I * I * I I 

9)
C/3

X N N O N a, _ ) M O X
o= o ' , _- -_ " =9 oo -_ , M

N - -N oN - _N NN -N -

n v M o= _ o M M ) o X o o M oo 
t N N N o ,, o _ , t X 

M IC mo kn _ - _; _ N rm N N N 

Wl

E ., =,
.F QL.r.

C)
C/i

-q Co ON IC - q C - N ) "T o _q M

N N - 0 X oE N N ..O.-- .'.,- -(.1, , ,~, O(.,, ..1(~ ~- ~O~ ~O(,~I-, -,,I

03 ;7_t C00_o; (= o oM o n0 a t
) X0 o r- I ) n N I _ "t

"t W) t _ M N M M N M tn

a

-t

.> P> E

5 _,

on

t Y U)

_n

Ct on 
; . = sw3- °

u

u

r =

0D 

0 0 - =

C's C O

-J CO O *- ._.0..,~

_.. OS ~0

O e: oE O 

ZFI mB v, s m

.o
©

©

xn

,2©"cl

0(D~o) LOra)
u
C 3

.t CL3

0 -

> r. CO
= C1) Z
a. u C
0j " p

Q . =

Qzo E 6 

e U. * 
Q Q av 

E TC 3 i Yt 
C) Qo 
m m m s E

I-.

O

C) 03

at Q o QO. g,-,,.i

O _

O X Q aooEs r ,c:
0b ,,..

o
O
Vv

o

v

*



*

-0C

0 O
d °

W)
Cl4
0 

ol 0~ 
0: 

00 O-0 ° 

*

-0O

000
0

'0 

CN N 00. N _--O6 6 
- *

- ri
00

- I I

C- Oo o

o,'.0
C)

6

N -00
000666= (= 0C5 6 6

o r- mC) t- W
6 o(:= o 6. 6(: 6

0- 0
r)

o6d
0 -0 0o66

**

6 o06

o, o0 0

0
00
O _

Rxa ,; a 
rO E =°. 

o> 5 c g43:3- 
r_ 'e c EI t b 0t XX/~~ m E w 3 FP 3 3: L ~~~~~c)

.L o ~~~~~~~~~~~~~C~~~~~
hlmVIOW ~~~0Q

0C)C.

Cd,roP)VrO0

C-

0
rOr

.2
-8

0

00

C)

Cl

C)

;.0
-

o
L
u3-
Cu
0

I

o
W-la0.

I-;AE

.

o
kuCu
CA?Q

.?Cu

._

3--.0

U

Q

e._
Clu

occ
2

t

U-

eli

I

C

.I

.r

*
*
*

n

g

._

U
*

cl
09t;
Cf

v
VC'

.*
09_v

'v

I
Cd

-1

00



free time ", "unsatisfactory job " and "trying to beat others" motivational items as

separate independent variables3 .

I used standardized values of the number of scientific interests they had

previously indicated as a measure of the solvers' generalist (more interests) vs. specialist

orientation (fewer interests). I also used the self-rated distance between problem and the

solvers' own field of expertise as an additional independent variable relating to the

solvers' inherent expertise in the problem. I used the submission requirement of the

problem (1 = RTP) and time in hours devoted to the problem solving effort as control

variables. Table 2.8 has the correlations for all the control and independent variables' 4.

I used probit regression models'5, appropriate when the dependent variable is

binary, to understand the correlates for being a winning solver. Table 2.9 contains the

results of the regression analysis. Note that the type of submission required, RTP or

theoretical, is non-significant throughout the analyses (Models 1-6). Solvers are as likely

to win when they respond to a RTP problem as they are to a theoretical challenge.

However time devoted to the problem solving is highly significant through all of the

analyses, indicating that winners are taking more time to create solutions. Model 2

shows the impact of self-reported extrinsic motivations. As expected, being motivated by

winning the award money is a significant predictor of creating a prize winning solution.

This effect gets stronger and stays significant throughout the remaining models. Pressure

from work and social situations to participate in problem solving has a marginally

negative impact on being a winning solver. This result is also consistent through all of

the remaining models. Model 3 shows that intrinsic motivation has the largest and most

significant effect in predicting who becomes a winning solver. The effect remains highly

13 I did not retain "being told by InnoCentive about the problem" as a motivation because all the solvers
were informed about the problem by InnoCentive and it was not something that I considered as being
crucial to the analysis. "Knowing how to get the solution information" as a motivation was also not
considered because, in retrospect, it was more a statement of a person's knowledge state and not
considered a motivations factor. To test the validity of the decision I ran regression analyses with these
items as additional independent variables. The inclusion of these items did not change the significance,
sign or magnitude of the main findings.
14 The appendix contains information on statistical methods and variable construction for this regression.
15 I also ran the regressions under a logit specification and obtained substantively similar results.

59



Table 2.9: Probit Regression Predicting Which Solver Submits
(N=295 Respondents)

A Winning Solution

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Control Variables
RTP Problem Type 0.099 0.096 0.131 0.132 0.161 0.188

(0.214) (0.215) (0.221) (0.221) (0.228) (0.233)

Time to develop solution 0.002* 0.002** 0.002** 0.002** 0.003** 0.002*
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Motivations
Win award money 0.163t 0.217* 0.230t 0.245* 0.263*

(0.096) (0.097) (0.122) (0.107) (0.107)

Social and work related motivations -0.141 -0.256* -0.257* -0.229* -0.243*
(0.099) (0.113) (0.113) (0.111) (0.112)

Intrinsic motivations 0.321** 0.332** 0.359** 0.374**

(0.098) (0.113) (0.107) (0.115)

Beating other solvers -0.209t -0.206t
(0.114) (0.117)

Unsatisfactory job -0.007 -0.033
(0.130) (0.134)

Had free time 0.255* 0.284*

(0.118) (0.119)
Expertise
Interest count (at registration) -0.179t

(0.092)
Problem distance from field of expertise 0.209*

(0.104)

Interaction Effect For Motivations
Money X Intrinsic -0.025

(0.120)
Log Pseudolikelihood -98.428 -96.491 -92.711 -92.7 -87.7512 -85.2697
Wald's Chi Square 6.15* 11.48* 22.85*** 22.71*** 28.29*** 32.37***
Df 2 4 5 6 8 10

Pseudo R Square 0.0281 0.0473 0.0846 0.0847 0.1336 0.1581
Robust standard errors in parentheses

t significant at 10%; * significant at 5%; ** significant at 1%; *** significant at 0.1%

60



significant through the remaining analyses and also remains the strongest predictor. It is

interesting to note the significant presence of both money motivation and intrinsic

motivations in the remaining models. Model 4 shows that the interaction effect between

money and intrinsic motivations is non-significant. Thus these motivations, in the

context, are neither complementary nor are they crowding each other out. Instead, the

significantly negative correlations (Table 2.8) between the two variables indicates that the

solver population has individuals that are driven by either money or intrinsic motivations

but not necessarily both. Both of those motivations are significant correlates of success

in creating winning solutions. Model 5 indicates, not surprisingly, that having free time is

a significantly positive correlate of being a winning solver. This is also consistent with

the finding that winners tend to spend more time developing solutions. Observe that

being motivated by beating other solvers is marginally and negatively correlated with

creating a winning solution.

Model 6 introduces variables related to solvers' self-assessment of the distance

between the problem and their field of expertise and their overall orientation as a

generalist or specialist. Counter-intuitively, I find that the self-assessed distance between

the problem and the solvers' field of expertise is positive and significant. Thus winning

solvers, on the margin, are solving problems that are further away from their own field of

expertise then non-solvers. I expected that winning solvers were solving problems that

were directly in their field of expertise. But this finding along with the high reuse of

previously developed solutions (Table 2.6) suggests that winning solvers are able to re-

apply and modify solutions developed in different fields to the problem at hand. This

model also shows that winning solvers tended to have fewer scientific interests as

compared to non-winning solvers thus those with a specialist intellectual orientation did

better at problem solving than generalists.

2.6.4: Determinants of a Problem Being Successfully Solved
What predicts whether a problem will be successfully solved or not? Recall that

the success rate of obtaining a winning solution for a problem was 29.5%, even though

each problem received, on average, 10 potential solution submissions. The next set of

61



analyses tries to unpack the characteristics of the problems and the solver base that are

related to the probability of a problem being solved. Once again I used Probit regressions

to conduct the analyses.

Table 2.1 shows that there is quite a bit of heterogeneity in solving rates for the

various types of problems. Therefore problem characteristics like scientific discipline,

RTP vs. Paper solution requirements, award size, and the number of days a problem was

open were included in the analyses. Seeker firms posting multiple problems may have

built up experience and learning about problem articulation and decomposition, proper

award size and time limits that may be effective in a broadcast search setting. Thus the

number of previous problems broadcasted by a particular firm may have an effect on

current problem solving potential.

Broadcast search aims to initiate problem solving effort by a relatively large set of

people in heterogeneous domains. Therefore the overall size of the solver network and

the number of submissions received per problem are relevant independent variables in the

analyses. The likelihood of the problem being solved may also be dependent on the

diversity of scientific interests in the solver base attracted to the problem. Some

problems may attract solvers with similar scientific interests and others with substantially

different interests. For these purposes I used the number of distinct scientific interests

indicated by solvers as a measure of the intellectual diversity attracted to solve the

problem. Similarly problems may attract generalist or specialist problem solvers to

engage in creating a solution. A generalist solver base may be able to leverage many

different scientific domains and apply them to the problem at hand, whereas, a specialist

solver base may be more easily able to use their deep understanding of a few scientific

fields to create a unique solution. I measured the generalist/specialist orientation of the

solver base attracted to the problem by taking the average number of interests represented

by the solvers submitting a solution. Table 2.10 contains the correlations of the variables

considered in the analyses.

62



C
C

C. CO v
C

*
*

O c o C_ o-c

o to - e) 
'.4 C5 6 *

0 C- o, ',
*, ,

-o --O cI Id I 

o o,o' o,* *

O+-
*
oa0* '.1

o r*
* *.I-* *

N \0 C
m cN

i i-r Cl* 6 oX

* ,

U, cg

a VcQ ) S 

o = D , 
U, 2t I: c

O 1 N
z o, vZ % F

Or

C

C

C

oI-
0

V

00

U,

0
0

0 

I0

0[. -.

E

N

00

O N
O -

-0

* *

0o 0
-+ 

Ca0

r-ca

*

*C

t

Cr-

0

I/M
r-
M
1;

bi

n
a
73
11

9
A

4
-r
5

ao 

C *t- Lv0 6
.

U,CE w2 s0. .!'n r .T
6az5 
w,IV

M z I~

vm

u
= 0>)
0Y

i._

'-I
-cl U =ECO : 34

o
0.- "

o



rCloOO,10

oOO,

0' 00 

'I i r
rq 21v

_ 0 r- (,E N
'o *00 0 In 0

0o , I _ I o

00 o M

O> - N. . .0-C l666d
I 

C Cl
C I s000C\

* t- 0 nIr e 0:6 O C; C
. 1-1

- r

a'0 °°'t V\00n -

1-d v1- a
F- zc

" !
oM C

* N
t-

0i

,Nt r- - kf -

C'I't F o M
~rr- 6 -

- *0,
i - * -

(N -K N 
Ol Cl 6 ' " v. -, -

t-

- N

- C

--- * 
C', , o oo
( C" oo, en ,'o

O - en N

n o

o -

1 t_
1 1c-

a.

au7

a) 

GJ o

Q 'AaE
O 0X

a )

;> 0. 0 UEOE 5

a. o
'~ C tz CaI-> 6 = 

M Q u P

a. a
0 t

y .,
o

a .) E S C $

.: ce ;0 v
Q . a .)E~ ~ r '

*
i t*

.0 'f >0oef

*

.N C.0

0*
"0\

d *

0\tt C"

o.N- 0

0
-c

C,

* 6O,1 M* m

. C

* *

.O0 00

00 0 - -

0~l0 -,.uo .)

- *
u^ 0 

J
0

Iz
v
0

en,
Izj
IC
C

eq1

IZ
IC
C

0

0t-C

U

.o

._

'A e

'A

._

7._

W _
cd

E.0

o
0

la

0.
IC
C



Table 2. 1 shows the results of the probit regressions 16 . All of the variables are

standardized, allowing for comparisons of strength of effects. Models 1-3 introduce the

variables related to the overall characteristics of the problems. I do find that in Model 1,

when I only consider the scientific disciplines and year effects with the solution type

requirements, that paper problems are significantly more likely to be solved. However in

Model 2, when I include award value, the solution type requirement is no longer

significant and surprisingly the coefficient on award value is negative and marginally

significant. In Model 3, I find that that the type of solution required (RTP vs. Theoretical)

and the pre-announced award are not significant predictors of the ability of the solver

community to create a winning solution. One would have expected that paper problems

were more likely to be solved as compared to RTP and that larger cash awards would

create more incentives for solvers to create a solution. Instead the only significant and

negative correlate is the pre-defined time window in which a problem is open and

solutions accepted. The negative effect of time window stays significant throughout the

remaining models. Discussions with IC's scientific operations staff indicated that the time

window could be considered a proxy for problem complexity as viewed by the seeker

firm. Thus more complex problems get a larger time window for resolution and are also

less likely to be solved' 7.

Model 4 brought in the previous number of problems posted by the firm as an

independent variable'8 . I find marginally positive significance for this effect. The effect

was barely non-significant (p =0.101) in Model 5 and then marginally significant (p =

0.076) in the final model. I also ran a fixed effects regression model' 9, comparing within

firms, to determine if prior experience with broadcast search impacted firm learning

about appropriate solution type, reward size, and solution time windows. The results

16 I also ran the regressions under a logit specification and obtained substantively similar results.
17 I also created and tested various composite variables that had different combinations of solution type,
award value and time window. The overall magnitude and significance of the main effects and findings
were not impacted by the inclusion of these variables.
18 Problems posted within 30 days prior to the posting of the focal problem were not included in this
measure.
19 This was done on the full model under a logit specification. Stata Version 8 does not allow for fixed
effects in a probit specification.



indicated consistently non-significant effects for solution type and reward size and a more

significant effect ( p =0.025) for the number of previous problems posted.

Model 5 shows the impact of the total solver base and number of submissions

received on the likelihood of a problem being solved. I find that the total size of the

solver base is not a significant predictor, but as expected, the number of solution

submissions received is a significant positive predictor. Model 6 includes independent

variables related to the types of solvers attracted to the problem. I find that the greater

the number of distinct interests as reported by the solvers who are submitting solutions

the higher the probability of the problem being solved. This is the most significant and

strongest effect in the model. I also find that problems that attract relatively more

specialized solvers are more likely to be solved. Note that in this model the number of

submissions received is now non-significant. This may be due to the relatively high

degree of correlation (r = 0.59, p < 0.1%) between number of submissions received and

the average number of interests per solver per problem (the generalist orientation).

Model 7 shows that number of submissions is significant again with the removal of the

generalist orientation of the solvers variable.

2.7: Discussion

2.7.1: Cross-fertilization of Scientific Fields
One of the most counter-intuitive findings was the positive and significant impact

of the self-assessed distance between the problem and the solvers' field of expertise on

the probability of being a winning solver. This finding implies that the further the solvers

assessed the problem from their own field of expertise, the more likely they were to

create a winning submission. A concern with this self-assessment may be the ability of

the solvers to accurately rate the distance between the problem and their field of

expertise. This concern can be mitigated by recalling that a majority of the solvers have

doctorates in scientific disciplines and winning solvers spent, on average, over 70 hours

creating a submission to the problem. Given their specialized background and training

and the real effort expended in creating a solution, their self assessment is probably an

accurate judgment of the distance between their own expertise and the problem. I reason

66



that the significance of this effect may be due to the ability of "outsiders" from relatively

further fields seeing problems with fresh eyes and applying solutions that are novel to the

problem domain. In many instances seeker firms had exhausted internal problem solving

efforts with subject matter experts on these problems and were seeking alternative

solutions. Therefore the likelihood of a similar type of external expert creating a winning

solution can be expected to be lower as compared to external experts from other fields

attempting to solve the problem. A recent example saw an aerospace physicist, a small

agribusiness owner, a transdermal drug delivery specialist and an industrial scientist all

submitting solutions to the same scientific question and each winning an award for their

solution. In another case a seeker firm's research and development laboratory did not

understand the toxicological significance of a particular pathology that they had observed

in an ongoing research program. They broadcasted their problem via IC and it was

eventually solved by scientist with a PhD in protein crystallography using methods

common in her field. This particular solver would normally not be exposed to toxicology

problems or solve such problems a routine basis; however, in this case, she successfully

applied knowledge from crystallography to toxicology.

An extreme interpretation of this finding would articulate that the best way to

solve problems is to have experts from vastly different fields attempt solutions. Our

claim would be that even if the scientific fields are different, for example crystallography

and toxicology, there are probably explicit and implicit overlaps between them. In the

explicit case, since both these fields are related to biology, we can expect overlap in

training and methodological experience amongst the practitioners so that a person from a

neighboring discipline can make the leap and create a solution. In the implicit case,

modern finance theory offers a good example of cross fertilization with physics. The

development of modem finance theory is directly linked to the insights of M. F. M.

Osborne, a physicist in the U.S. Navy, who realized in 1959 that financial market prices

followed the equations of Brownian motion that Albert Einstein and Norbert Wiener had

developed many years earlier (Chance and Peterson 1999; Osborne 1959). Furthermore,

the original solution to the Black-Sholes option pricing model relied on a extremely

complex calculation of parabolic partial-differential equation based on the premise that

67



stock prices exhibit Brownian motion. However, Black later realized that the complex

equation could be easily transformed into the heat-diffusion equation of thermodynamics,

for which the solution was already well known and understood(Chance and Peterson

1999).

Underlying this ability to transform knowledge from one field to another is the

role of analogy in reasoning (Dunbar 2001). "In-vivo" studies of scientists working in

laboratory settings have shown extensive use of analogies while problem solving.

Dunbar has found that biologists use analogies for formulating theories, designing

experiments, giving explanation to other scientists and when dealing with unexpected

findings. Dunbar measured the distance between the source and target of the analogies

and found that the vast majority came from either highly similar fields or fields from

common superordinate categories. Recall, however in this context, that solvers were

attempting to create solutions to problems that were, on average, at the boundary of a

their own field of expertise. Thus I can anticipate that the solvers were able to analogize

a solution based on their expertise in their own native field and the problem's field.

Contrary to laboratory-based experimental findings on the failure of analogies in problem

solving, analogies in naturalistic settings work because problem solvers utilize much

richer information on structural features and higher order relations as compared to

superficial similarity between source and target (Dunbar 2001). The ability to generate

an analogy is not necessarily dependent on having subject matter expertise on both target

and source fields. Instead the problem solving context must highlight the structural

relations which can then be equally used by novice or experts in creating the analogy and

the ultimate solution. Note that in this context, winning solvers could be considered

relative novices in the target field but experts with the source field.

Our findings show that a central feature of broadcast search is the relatively high

degree of reuse and recombination of previously developed solutions in the creation of

new submissions. A majority of the winning solvers (55%) had indicated that they had

made major modifications to pre-existing solutions in their submissions with 17.5%

reporting a direct port of previously developed solutions with little or no modifications.

68



In light of the above discussion on the distance between the solvers' field of expertise and

the problem, I speculate that broadcast search exposes potential solvers to problems that

they do not routinely encounter and that it triggers creative analogizing between their

own expertise and knowledge base and the "new" distant problem. This burst of

creativity causes the solvers to either significantly modify and recombine pre-existing

solution knowledge that they already had or come up with entirely new ideas (as done by

27.5% of the solvers) for effective problem resolution20 . The net benefit of the

juxtaposition of a solver and a distant problem is the creation of a solution that is both

novel to the seeker and also to the solver. It also implies that problem broadcasting to

heterogeneous solvers can trigger creative cross-fertilization of scientific disciplines and

knowledge.

2.7.2: Attracting Many Heterogeneous Solvers
My basic framework for broadcast search posited that increasing number of

solvers and the intellectual heterogeneity in the solver base would positively contribute to

a problem being solved. I have empirical support for both conjectures. I find that

increasing number of submissions is significantly and positively related to a problem

being solved. This also consistent with a central maxim in open source communities,

Linus' Law (Raymond 1999), states that: "given enough eyeball, all bugs are shallow."

Thus the larger the solver population attempting solutions the more likely an appropriate

solution will be found. I also find that problems that are able to attract submissions from

a solver base with a more heterogeneous set of intellectual scientific interests are

significantly more likely to be solved. However, the average number of interests per

solver per problem is significantly and negatively correlated with solvability. Thus,

problems that attract specialized solvers (those that select a lower number of interests) are

more likely to be solved. The findings on the specialist orientation of solvers is further

corroborated by noting that likelihood of a solver creating a winning solution was

negatively and significantly effected by the number of scientific interests selected at

registration time with IC by the solver. This indicates that an important inherent

characteristic of solved problems is the ability to attract specialist solvers from

20 1 would like to thank Teresa Amabile for pointing out this interpretation of the findings.

69



heterogeneous fields. It remains a puzzle as to why diverse specialists are attracted to a

certain set of problems? It could be that the problems that attract diverse specialist

solvers are somehow more easier to solve than those that attract more homogenous

specialists. Or these problems could be simply be more interesting to a solver base with

heterogeneous interests thus inducing more solution effort. It may also be that solutions

for these problems could be more amenable via a variety of different fields thus

generating a diversity of solutions and approaches of which one would meet the

requirements.

2.7.3 Solver Motivations to Participate
Broadcast search in scientific problem solving exhibits the ability to attract

solvers who have varied motivations to participate. The probability of being a winning

solver was significantly correlated with both a desire to win the award money as well as

intrinsic motivations like enjoying problem solving and being intellectually challenged.

Surprisingly, even though there was a substantial prize award for creating the best

solution, the effect of intrinsic motivation was stronger and more significant. The

stronger effect of intrinsic motivation is consistent with theory and empirical findings

which indicate that scientists have a "taste" for science (Stephan and Levin 1992; Stem

2004). I did not find the interaction between intrinsic motivation and a desire to win the

award money to be a significant predictor of being winning solver. The significant

negative correlation between intrinsic motivation and the financial motivation indicates

that broadcast search attracts both financially driven and intrinsically motivated solvers

with no crowding out between the motivations. This finding is consistent with results

from studies of scientist working in inside of commercial and university laboratories

(Stephan and Levin 1992) and other distributed innovation systems, for example open

source software, where multiple motivations have been reported to have co-exist (Hertel,

Niedner and Herrmann 2003; Lakhani and Wolf 2005).

2.7.4: No One Genius Solver
It also appears that solvers have a unique interaction between the context of the

problem and their prior experience and solution that allows them to (re)combine existing

solutions or create brand new submissions into a submission for a broadcast search

70



problem. Since there are no "super solvers" in the population, i.e. individuals who are

successfully solving a majority of the problems, I speculate that the uniquely prepared

mind of the winning solver is a matter of circumstance and timing and not a general

purpose skill. The lack of high numbers of repeat solvers shows that solution knowledge

is widely distributed and no-one person or organization can claim exclusive access to it or

be successful in solving all the problems.

2.7.5: Seeker Learning and Structuring Ill-Structured Problems
Finally note that seeker firm experience with broadcast search is positively and

significantly correlated with the probability of a problem being solved. Seeker firms

engaging in broadcast search must do the following four activities: 1) Develop an

appropriate articulation and decomposition of the problem and the solution requirements,

2) Determine reward size, 3)Determine time window for solution acceptance and 4)

Assess submission and select, if appropriate, a winning entry. These activities are not

routinely conducted in a firm's R&D labs and thus firms may learn over time with more

problems how best to do all of them. I found an overall marginally positive effect of firm

learning (as measured by the number of problems previously posted) on the probability of

a problem being solved. The fixed effects regression model, which isolates within-firm

variation, showed that firms with multiple broadcast search problems exhibited an even

more significant learning effect of prior problems on current problem solvability. Within

the fixed effect model, the coefficient on the reward size was non-significant, leading me

to speculate that the primary seeker firm learning were related to firm specific skill

development in problem articulation and decomposition. IC scientific operations staff, in

discussing this finding, have told me that scientists inside seeker firms value the upfront

and separated problem and solution definition stage. For example, a seeker firm, while

searching for its next generation commercial product had come to a significant technical

impasse on further directions for research. They decided to use IC as a means to

overcome the impasse. In developing the problem statement, in collaboration with IC, for

broadcast, the firm realized that molecules with the ability to spontaneously break protein

cross-links were critical to the solution and their technical impasse. Posting this problem

statement on IC eventually provided them with a new solution and approach on how to

71



break such cross-links. The solution provided both a novel mechanism for initiating such

breaks and a new class of molecules that operated via this mechanism (Raynor and

Panetta 2005). Generally speaking, the critical first step for success in a broadcast search

environment is to provide structure to ill-structured problems. I speculate that such an

explicit problem structuring process is not routine inside of firms and thus experience

with this approach may allow for learning over time on how to accomplish it.

Furthermore, this learning around problem articulation may be the driver that allows

specialists from different fields to make the connection between their own domain

knowledge and the problem.

2.7.6: Value to Seekers
Overall, in this context, broadcast search enables 29.5% of problems to be

considered solved by solution seekers. At this point, I am not able to judge the

performance of this solution rate with those of firm-based R&D or university-based

science laboratories. I have been unable to find any comparable published data which

allows me to make comparisons. Most labs are loath to publicize their micro-

performance data due to concerns around intellectual property and competition for

internal and external funding. Anecdotal conversations with firm and university-based

laboratory directors indicates that the performance of broadcast search is equivalent to or

exceeds traditional internal only problem solving. However the 29.5% resolution rate

may be quite remarkable, if we consider that many of the seekers posting problems had

originally been unsuccessful in creating internal solutions21.

The interest and effort exerted by outsiders in solving broadcasted problems is

also quite noteworthy. Most seekers would not be able to find an internal problem

solving process that generated 240 scientists to examine a problem statement and 10 of

them to actually create solutions. In rare cases there may be two or three parallel

attempts at solution creation for the same problem. But it would be highly unlikely to get

between three to five times the number of parallel attempts on a routine basis. Translating

21 Secrecy and intellectual property concerns typically prevented the firms from disclosing to IC - the true
extent of problem solving effort within their internal labs. Often times, due to job protection concerns,
scientists inside of firms would broadcast "very difficult" and hard to solve problems to IC's solver
network.

72



this into actual time spent shows that solved problems and unsolved problems are, on

average, inducing approximately 700 and 245 hours of solver effort respectively. Wage

data22 from the US Bureau of Labor Statistics indicates that the mean annual wage for a

scientist working in life and natural sciences is approximately $75,000 or $36/hour. The

total hourly cost of a scientist given benefits and lab space requirements could be

conservatively estimated at $72/hour. Thus the implied cash benefit to seeker firms is in

the range of $20,711 ($50,400 of effort less $29, 689 average award size) for solved

problems and $17,460 for unsolved problems.

We can expect that the value of the solved problems is most likely higher than the

difference between the implied effort exerted by the solvers and the average award size.

Most seeker firms have not provided IC with a downstream assessment of the value of

the solved solution due to commercial proprietary concerns. However, one seeker firms,

on the condition of anonymity, did allow a downstream value assessment of 12 solved

problems (24.4% of solved problems) by an independent consulting company. Majority

of the problems analyzed required a reduction to practice solution with an average award

of $30,000. The study indicated that the gross downstream value creation of solved

problems was $10.3 million. The seeker awarded $333,500 in prize money and incurred

additional internal administrative costs of $60,000 resulting in a return on investment that

exceeded 2, 175% (Raynor and Panetta 2005).

There is also significant value in unsolved problems. While the firm cannot put

into practice the knowledge from submitted solutions from unsolved problems, just

knowing that on average seven external people attempted solutions and a further 228

individuals examined the problem statement should inform the seeker about the

"solvability" of a problem. Some problems may simply not be solvable given the current

state of scientific and technological knowledge and broadcast search provides seekers

with an external and unbiased evidence of problem solvability. This information can be

very valuable because it allows seekers to shift resources away from "unsolvable"

problems to other more amenable areas. In addition, in this model, the marginal cost of

22 Available from http://www.bls.gov/oes/current/naics5 541710.htm#bl9-0000, visited on July 26, 2005

73



this negative information is zero because firms only pay out the reward money if they

have find an acceptable solution.

2.8: Implications
In this paper, I set out to explore the efficacy and functioning of broadcast search

in scientific problem solving. Broadcast search inverts the typical problem solving

process by focusing the efforts of the problem holders into attracting "complete"

solutions from external sources instead of creating solutions themselves. Problem

holders transform from problem solvers to become solution seekers by defining and

broadcasting problems, attracting many potential solvers from different domains and

evaluating solution submissions. Broadcast search overcomes the limitation of local

search by distributing the problem into different domains and inducing many solvers to

engage in problem solving based on their own expertise and skill sets. I discuss

implications for distributed problem solving, for organizations engaged in science and

technology work and for the general practice of science.

2.8.1: Implications for Distributed Problem Solving
Broadcast search may be applicable only under specific problem solving

conditions. Foss & Foss (2004) have argued that two of Simon's seminal papers "The

Architecture of Complexity" (1969) and "The Structure of Ill Structured Problems"

(Simon 1973) provide a unique lens on possible problem solving approaches in

organizations. Simon's first paper (1969) created a classification of complex systems as

being either decomposable, non-decomposable and nearly decomposable. With

decomposability being a function of the level of interactions amongst subsystems within

a system. Nickerson and Zenger (2004) transform this taxonomy to problem

classification. In their perspective problem decomposability is a function of the level of

interactions amongst knowledge sets within a solution landscape. Decomposable

problems are those that do not have a large number of interactions across various

knowledge domains and that these problems can be sub-divided so that each of the

smaller problem can draw on exclusive knowledge domains. Non-decomposable

problems are those where there is a very high degree of interaction amongst distinct

knowledge set and attempts to sub-divide the problem is no better than a random search

74



across the solution space. In between are nearly decomposable problems where the

interactions are weak but not negligible.

In Simon's second paper he made the strong contention that: "In general, the

problems presented to problem solvers by the world are best regarded as [ill-structured

problems] (ISPs). They become [well-structured problems] WSPs only in the process of

being preparedfor the problem solvers. It is not exaggerating much to say that there are

no WSPs, only ISPs that have been formalizedfor problem solvers. " Thus WSPs are the

result of a problem-defining process for ISPs (Foss and Foss 2004) and that there is a

continuum of problem types between ISPs and WSPs.

Foss and Foss (2004) reason that when real-world problem-solving processes are

considered the two problem dimensions of decomposition and structured 'ness are

interdependent instead of independent. Problem solving typically proceeds with

decomposition and often in the process of decomposition the nature of interdependencies

within a problem space is brought to light (Schaefer 1999). Thus the act of

decomposition enables problem structuring as well. Similarly, one way to move a

problem from ISP to WSP is to impose constraints on the problem. Simon argues that

constraints help define a problem, example when we consider building a house we may

impose a constraints like style, size and location, thus creating both a structure but also

the related sub-problems that need to be tackled. The interdependent nature of both

decomposition and structure is typically resolved through successive iterations of

problem solving effort - where the first stage in the solution search yields new

information on both constraints and sub-problems - meaning that a fully decomposed

problem cannot be laid out from the beginning and a joint process of problem definition

and solution generation needs to take place (Foss and Foss 2004).

In our context, broadcasted problems were discrete, with well-defined constraints

and requirements for solutions, and were articulated in a way that was accessible to

diverse outside solvers. In other words broadcasted problems were both nearly "well-

structured" and suitably well decomposed. Thus finding a "cure for cancer" would not be

75



a suitable broadcast problem but finding "a method for isolating a specific gene" might

be reasonable. Therefore a significant limitation for broadcast search is the ability of the

problem holder to engage in up-front problem definition without investing in solution

generation. This implies that only certain problems that fit the criteria of decomposition

and structure will be suitable for broadcast. Understanding how this occurs and its

applicability to all types of problems would be a significant contribution to the literature

on distributed problem solving.

Closely related to problem decomposition and structure is the actual articulation

of the problem so that solvers in heterogeneous domains can create possible solutions.

The principle challenge here is overcoming the tendency to use native codes in

communication so that outsiders cannot access them (Katz and Kahn 1966). The

challenge here is three-fold; problem articulations need to be general enough so that

individuals outside organizations, in different scientific fields and in different countries

can understand the challenge and create a solution.

Broadcast search relies on solvers' willingness to take on a problem solving task

without a guaranteed reward. Hence it is also important to consider both the intrinsic

motivations and extrinsic incentives for the potential solvers - in this case both intrinsic

motivations and monetary rewards were significant correlates of being a winning solver.

This may not be possible in other contexts. For example, non-profit organizations may

not be able to offer significant financial rewards for external problem solving but could

benefit from the help and solutions from outsiders. They could spur participation by

appealing to potential solvers' sense of altruism and social contribution (Frey 1997).

Similarly an overtly monetary focus may be counter-productive as some psychology

studies have shown that extrinsic rewards may actually dampen intrinsic motivations

resulting in lower productivity (Deci, Koestner and Ryan 1999). Other types of rewards

may include simple recognition of the submission by non-winners, feedback on

performance to improve learning by comparing winning solutions and non-wining entries

and creating a sense of community so that solvers can self-identify with others and

76



participate for the social aspects (Lindenberg 2001) of belonging to a global solver

network.

2.8.2: Implications for Organizations
In this paper I am not claiming that broadcast search should be the only problem

solving strategy to be used by organizations. Rather I propose that organizations need a

portfolio of search strategies and that they decide during the problem solving process

which search strategy may be most appropriate. The portfolio approach implies that

managers understand that the bias in the organization will be to rely on local search.

Local search and its variants may be appropriate for the vast majority of problems

encountered inside the firm. However, problems that appear novel to the organization or

are not easily solved by internal experts, may be appropriate for a broadcast search

approach. Determining which strategy and its timing may not be trivial matters for both

mangers and scholars. In contrast, Nickerson and Zenger (2004) propose a knowledge-

based theory of the firm where the complexity type of the problems faced by the

organization, as defined by Simon, drives the design of the firm. In their theory, fully

decomposable problems are best suited for local search via a market mechanism, near

decomposable problems can utilize within-firm local search and/or cognitive search

(Gavetti and Levinthal 2000) in an authority-based hierarchy and non-decomposable

problems require cognitive search exclusively in a consensus-based hierarchy. They

propose these choices as being exclusive at any one point in time, i.e. a firm can only take

on form. For them, firm structure is based on the types of problems faced by the firm and

that the managers in the firm should optimize their organization to the problem type.

Their theory does not allow for multiple search strategies within the same firm. I contend

that the likelihood of real firms facing only one problem type is going to be fairly low

and that most firms are better off considering a portfolio approach to their problem

solving challenges.

The absorptive capacity literature has equated problem solving and learning as

being indistinguishable from each other (Cohen and Levinthal 1990; Zahra and George

2002). As I have discussed, broadcast search separates problem definition from solution

77



finding, with the solving component relegated to outsiders. This may raise the concern

that organizations that are overly reliant on broadcast search may not get the essential

learning experiences that arise from engaging fully in a problem solving process. An

organization's capacity for future problem solving in related fields may suffer if it is

utilizing the submitted solutions as "black box" modules within its development efforts.

This black box approach may create holes in the essential knowledge structures of the

organization that may be hard to replicate or even comprehend. The risk of broadcast

search without serious effort at knowledge absorption is that the firm may eventually

hollow out its future problem solving capability.

Organizations may also consider doing broadcast search-based problem solving

within its own boundaries and/or with trusted suppliers and partners. Research has

shown that search and transfer of knowledge within firms is a function of the relationship

between relationship strength and knowledge codification. Hansen (1999) has shown

that, within a multi-unit organization, weak ties help to identify novel sources of

knowledge but strong ties are required for effective transfer of non-codified knowledge.

This creates a paradox for the problem solver/searcher because often they will not know

ex-ante what type of knowledge is required and from where. However, it may be

possible to utilize broadcast search within organizations so that potential solvers match

themselves to problems instead of the problem holder searching for solutions. Given a

large enough organization, there may be sufficient diversity of intellectual interests and

abilities that broadcasting with the bounds of the organization may prove to be fruitful.

Concerns around incentives to share knowledge and to solve problems for others will

likely remain, however, in principle large diverse organizations may be able to utilize

broadcast search within their confines. Alternatively, Malone (2004) has proposed

bringing markets and quasimarkets inside of organizations in order to achieve the benefits

of dispersed knowledge and decentralization for a range of activities from funding new

ideas to joining new project teams and allocating manufacturing capacity.

78



2.8.3: Implications for Science
Thomas Kuhn theorized that scientific progress occurred through scientific

revolutions where existing paradigms are overturned and replaced by new paradigms

(Kuhn 1996). Kuhn's mechanism for revolution within a scientific discipline was a sense

of dissatisfaction with long held assumptions by a few scientists in the discipline. These

scientist then declare a crisis with "normal science" in their field and then engage in

anomaly finding and new theorizing that results in a revolutionary science. The

revolutionary science typically does away completely with existing theories and instead

posits new theories for understanding in the field. Kuhn felt that progress only occurred

when normal science was completely replaced with revolutionary science. Quoting Max

Planck, Kuhn noted that: "a new scientific truth does not triumph by convincing its

opponents and making them see the light, but rather because its opponents eventually die,

and a new generation grows up that is familiar with it" (Kuhn 1996: 151).

This view of scientific progress via revolutions that overturn existing paradigms

can be reasonably augmented by considering intellectual hybridization between various

disciplines and paradigms (Dronamraju 1989). The history of science has shown that

innovative solutions to difficult scientific problems can arise when knowledge from one

scientific discipline is applied to another (Heisenberg 1962). For example, Erwin

SchrOdinger's public lectures (SchrOdinger 1951) on the nature of the gene and the

potential relationship between physics and biology have been credited with spurring

physical scientists to study biology and biologists to apply physical principles to life

sciences, resulting in an important contribution towards the initiation of molecular

biology (Dev 1990). Similarly the modem field of human genetics was not created by

revolution, rather a gradual adaptation of new concepts and methods from diverse fields

like biochemistry, cytology, mathematics and embryology set in motion the development

of current understanding (Dronamraju 1989). Thus instead of waiting for revolutions, a

systematic inclusion of diverse perspectives and heuristics may offer advantages over

within-field attempts at problem solving which may be yielding "normal science" results.

Broadcast search is one such mechanism that can enable intellectual hybridization across

disciplines for current scientific problems. It provides a way for scientists in many

79



different fields to examine problems from other fields and to investigate the possibility of

creating hybrid solutions. Furthermore, since one cannot apriori predict which field or

person will be able to make an impact on a particular problem, the wide broadcasting of

the problem statement allows scientists to self-select themselves into becoming solvers,

instead of the problem holder investigating unknown fields.

Broadcast search is based on the premise of sharing of internal scientific problems

with outsiders. It implies that the boundaries between various scientific disciplines need

to be more permeable and the flow of individuals, problems and knowledge across

boundaries actively encouraged. While openness, sharing, and rejection of secrecy are

strong institutional norms in science (Dasgupta and David 1994; Merton 1973), most of

this occurs ex-post, i.e. upon publication of results, once the scientific problems have

been solved and results obtained. Ex-ante, during the process of scientific problem

solving and discovery, there is a high degree of secrecy due to concerns over priority

(Hagstrom 1974) and more recently commercial gains (Walsh and Hong 2003). A recent

empirical study investigating secrecy, measured as unwillingness to discuss ongoing

research with those outside the research group, found that only 14% of experimental

biologists were willing to talk openly about their current research (Walsh and Hong

2003). Another survey found that 47% of academic geneticists who asked other

researchers for additional information, data or materials regarding published research

reported that at least one of their requests has been denied in the preceding three years

(Campbell et al. 2002). Application of broadcast search by the larger scientific

community will then require the invention of innovative institutional structures that lower

the barriers to ex-ante sharing. Such an example can be found in the domain of software,

where the creation of the General Public License (GPL) by Richard Stallman, has been

credited with breaking the commercially imposed secrecy amongst computer

programmers. The GPL is an intellectual property regime which ensures both priority

and credit of authorship and substantially curtails private hoarding of collectively

developed innovations. Similar systems for the sciences need to be developed so that

practitioners will feel comfortable in both sharing problems with outsiders and solving

problems for others. In the context of broadcast search the promise of a substantial

80



financial and the transfer of IP rights does create a substitute institutional structure,

however, this may limit applicability of broadcast search to either commercial firms only

or well-funded non-profit research laboratories.

2.9: Future Research
This study on broadcast search opens several possible avenues for research on

distributed innovation systems and their use by various types of organizations like firms,

non-profits and communities. Research is needed to understand how problem articulation,

decomposition and structured' ness occurs. I have noted above that this is most likely a

critical skill in being successful at broadcasting problems and attracting solutions.

Discovering the elements that allow internal problem holders to translate and transform

(Carlile 2004) internal problems across boundaries would be an important step in

understanding both the mechanisms involved and the types of problems that may be

amenable to this method. In addition an understanding of the problem articulation

process and the untangling of the problem definition and problem solution steps may be

of general benefit to practical problem solving and the literature on innovation.

A direct comparison between broadcast search and local search based problem

solving efforts would help both theory and practice. Problems that were broadcasted in

this study were not being simultaneously being worked on by internal scientists. Indeed

most of the problems in this study had some degree of internal problem solving effort,

mostly failed, prior to being broadcast to outsiders. Indicating a possibly higher level of

difficulty for broadcasted problems as compared to internal problems. I propose

conducting a single-blind experimental design where the same problem statement is used

within a firm as outside and to directly compare effectiveness and approaches used by

internal and external problem solvers. In addition the study should also include

independent evaluation of problem statements and solutions submitted to eliminate any

organization-specific biases.

A further study could examine the consequences to the firms after a problem has

been broadcasted and solutions submitted. For problems that were solved, it would be

81



interesting to explore how the solution was utilized within the organization and the

process by which it was commercially exploited. Of particular interest would be if the

internal personnel were able to absorb the knowledge embedded in the solution for future

solution generation and if they changed their own problem solving routines as a result of

the external solution. In other words, was the solution used as a black-box to solve a

particular problem or did the solution cause changes in how future problems were solved.

For problems that were not solved it would be interesting to investigate if the

organizations used that information as signal of problem insolvability or if they were

ultimately able to create a working solution.

Broadcast search requires an audience of potential solvers for the receipt of the

problems. In this context, IC as the knowledge broker, invested heavily in developing the

solver network over 80,000 scientists from around the world and an information

technology infrastructure to host the problems and solutions. Research is needed to

determine alternative ways of aggregating potential solvers and recipients of broadcasted

problems. Are there other means of identifying and reaching potential solvers that do not

require a significant investment in infrastructure, for example, could journal citation

searches help identify likely candidates for problem resolution? In addition I also need to

understand if there are threshold effects in the number of individuals needed in the

potential solver network for successful broadcast search. Thus determining if a critical

mass of potential solvers is needed for success and the range of growth and new entrants

required for sustained solving rates.

Broadcast search may be extended by incorporating elements of "commons-based

peer production" (Benkler 2004) where individuals openly collaborate in joint problem

solving activity. In this specific application of broadcast search, solvers worked

independently and did not share their knowledge and solutions with each other. It may be

advantageous to bring problem solvers together and encourage them to collaborate on

solutions that leverage multiple knowledge domains. Mathematical modeling and

computer simulations have indicated that groups of diverse problem solvers can

outperform groups of high-ability problem solvers (Hong and Page 2001; Hong and Page

82



2004). Experience from open source software projects (e.g.: Linux and Apache) shows

that transparent broadcast search-like communication and problems solving norms can

effectively self-organize communities creating competitive and robust software (Feller et

al. 2005). Thus research that examines collective problem solving in domains outside

software would significantly add to our understanding of how such distributed innovation

systems work and their application to a broad range of problems.

83



References

Adamson, R. E. 1952. "Functional fixedness as related to problem solving: a repetition of
three experiments." Journal of Experimental Psychology 44:288-291.

Adler, P.S., and Kim B. Clark. 1991. "Behind the learning curve: A sketch of the learning
process." Management Science 37:267-281.

Alchian, Armen. 1963. "Reliability of Progress Curves in Air-frame Production."
Econometrica 31:679-693.

Allen, Thomas J. 1966a. "Performance of communication channels in the transfer of
technology." Industrial Management Review 8:87-98.

Allen, Thomas, J. 1966b. "Studies of the Problem-Solving Process in Engineering
Design." IEEE Transactions on Engineering Management 13:72-83.

Allen, Thomas J. 1970. "Communication networks in R&D labs." R&D Management
1:14-21.

Allen, Thomas, J. 1977. Managing the flow of technology. Cambridge, MA: MIT Press.
Allen, Thomas J., and Stephen I. Cohen. 1969. "Information Flow in Research and

Development Laboratories." Administrative Science Quarterly 14:12-19.
Allen, Thomas J., A. Gerstenfeld, and P.G. Gerstberger. 1968. "The problem of internal

consulting in research and development organization." MIT Sloan School of
Management Working Paper Series 319-68.

Allen, Thomas, J., and D. G. Marquis. 1964. "Positive and negative biasing sets: The
effects of prior experience on research performance." IEEE Transactions on
Engineering Management 11:158-161.

Almeida, Paul, and Bruce Kogut. 1999. "Localization of knowledge and the mobility of
engineers in regional networks." Management Science:905-917.

Anderson, Philip, and Michael L. Tushman. 1990. "Technological Discontinuities and
Dominant Designs: A Cyclical Model of Technological Change." Administrative
Science Quarterly 35:604-633.

Andrewes, William J. H. 1996. "Even Newton could be wrong: The story of Harrison's
first three sea clocks." Pp. 189-234 in The questfor longitude, edited by William
J. H. Andrewes. Cambridge, MA: Collection of Historical Scientific Instruments,
Harvard University.

Argote, L., and D. Epple. 1990. "Learning Curves in Manufacturing." Science 247:920-
924.

Arrow, Kenneth J. 1962. "The economic implications of learning by doing." Review of
economic studies 29.

Baron, Jonathan. 1988. Thinking and deciding. New York: Cambridge University Press.
Benkler, Yochai. 2004. "Commons-based strategies and the problems of patents." Science

305:1110-1111.
Berul, L. H., M.E. Elling, A. Karson, A. B. Shafrity, and H. Sieber. 1965. "Department of

Defense User needs study." Philadelphia: Auerbach Corporation.
Birch, H. G., and H. S. Rabinowitz. 1951. "The negative effect of previous experience on

productive thinking." Journal of Experimental Psychology 41:121-126.

84



Brown, Shona L., and Kathleen M. Eisenhardt. 1995. "Product Development: Past
Research, Present Findings, and Future Directions." Academy of Management
Review 20:343-378.

Campbell, E. G., B. R. Clarridge, N. N. Gokhale, L. Birenbaum, S. Hilgartner, N. A.
Holtzman, and D. Blumenthal. 2002. "Data withholding in academic genetics -
Evidence from a national survey." JAMA-Journal of the American Medical
Association 287:473-480.

Carlile, Paul. 2004. "Transferring, translating, and transforming: An integrative
framework for managing knowledge across boundaries." Organization Science
15:555-568.

Chance, Don M., and Pamela P. Peterson. 1999. "The new science of finance." American
Scientist 87:256-264.

Christensen, Clayton M, Fernando F Suarez, and James M Utterback. 1998. "Strategies
for survival in fast-changing industries." Management Science 44:S207-S220.

Chubin, Daryl E. 1976. "The Conceptualization of Scientific Specialties." The
Sociological Quarterly 17:448-476.

Clark, Kim B. 1985. "The interaction of design hierarchies and market concepts in
technological evolution." Research Policy 14:235-251.

Cockburn, lain M., and Rebecca M. Henderson. 1998. "Absorptive Capacity,
Coauthoring Behavior, and the Organization of Research in Drug Discovery."
Journal of Industrial Economics 46:157-182.

Cohen, Wesley M., and Daniel A. Levinthal. 1989. "Innovation and Learning: The Two
Faces of R & D." The Economic Journal 99:569-596.

-. 1990. "Absorptive Capacity: A New Perspective on Learning and Innovation."
Administrative Science Quarterly 35:128-152.

Constant, David, Lee Sproull, and Sara Kiesler. 1996. "The kindness of strangers: The
usefulness of electronic weak ties for technical advice." Organization Science
7:119-135.

Crane, Diana. 1969. "Social Structure in a Group of Scientists: A Test of the "Invisible
College" Hypothesis." American Sociological Review 34:335-352.

Csikszentmihalyi, Mihaly. 1975. Beyond Boredom and Anxiety: The Experience ofPlay
in Work and Games. San Francisco: Jossey-Bass, Inc.

Cyert, Richard M., and James G. March. 1963. Behavioral theory of thefirm N.J.:
Englewood Cliffs.

Dasgupta, P, and P A. David. 1994. "Towards a new economics of science." Research
Policy 23:487-524.

Deci, Edward L, R Koestner, and Richard M Ryan. 1999. "A meta-analytic review of
experiments examining the effects of extrinsic rewards on intrinsic motivation."
Psychological Bulletin 125:627-688.

Deci, Edward L, and Richard M Ryan. 1985. Intrinsic motivation and self-determination
in human behavior. New York, NY: Plenum Press.

DeMonaco, Harold J., Ayfer Ali, and Eric von Hippel. 2005. "The Major Role of
Clinicians in the Discovery of Off-Label Drug Therapies." MIT Sloan School of
Management Working Paper Series.

Dosi, Giovanni. 1982. "Technological paradigms and technological trajectories."
Research Policy 11:147-162.

85



Dronamraju, Krishna R. 1989. The foundations of human genetics. Springfield, Ill:
Charles C. Thomas.

Dunbar, Kevin. 2001. "The analogical paradox: Why analogy is so easy in naturalistic
settings, yet so difficult in the psychological laboratory." in Analogy: Perspectives
from Cognitive Science, edited by D. Gentner, K.J. Holyoak, and B. Kokinov.
Cambridge, MA: MIT Press.

Duncker, K. 1945. "On problem solving." Psychology Monographs 58.
Edge, David 0, and Michael J Mulkay. 1974. "Case studies of scientific specialties."

University of Edinburgh, Science Studies Unit.
Feller, Joe, Brian Fitzgerald, Scott Hissam, and Karim R Lakhani (Eds.). 2005.

Perspectives on Free and Open Source Software. Cambridge: MIT Press.
Finholt, Thomas, Lee Sproull, and Sara Kiesler. 2002. "Outsiders on the Inside: Sharing

Know-How Across Space and Time." Pp. 357-380 in Distributed Work, edited by
Pamela Hinds and Sara Kiesler. Cambridge, MA: MIT Press.

Foss, Kirsten, and Nicolai J Foss. 2004. "Simon on problem solving: Implications for
new organizations forms." Copenhagen Business School Working Paper.

Frey, Bruno. 1997. Not just for the money: an economic theory ofpersonal motivation.
Brookfield. VT: Edward Elgar Publishing Company.

Gavetti, Giovanni, and Daniel Levinthal. 2000. "Looking Forward and Looking
Backward: Cognitive and Experiential Search." Administrative Science Quarterly
45:113-137.

Gordon, W. J.J. 1961. Synectics: The development of creative capacity. New York:
Harper and Row.

Granovetter, M. 1973. "The strength of weak ties." American Journal of Sociology
78:1360-1380.

Hagstrom, Warren O. 1974. "Competition in Science." American Sociological Review
39:1-18.

Hansen, Morten T. 1999. "The search-transfer problem: The role of weak ties in sharing
knowledge across organization subunits." Administrative Science Quarterly
44:82-111.

Hayek, F. A. 1945. "The use of knowledge in society." American Economic Review
35:519-530.

Heisenberg, W. 1962. Physics and philosophy; the revolution in modern science. New
York: Harper.

Hertel, Guido, Sven Niedner, and Stefanie Herrmann. 2003. "Motivation of software
developers in Open Source projects: an Internet-based survey of contributors to
the Linux kernel." Research Policy 32:1159-1177.

Hong, Lu, and Scott E. Page. 2001. "Problem Solving by Heterogeneous Agents."
Journal of Economic Theory 97:123-163.

-. 2004. "Groups of diverse problem solvers can outperform groups of high-ability
problem solvers." PNAS 101:16385-16389.

Horrobin, D. F. 1986. "Glittering prizes for research support." Nature 324:221.
Katz, D., and R. Kahn. 1966. A Social Psychology of Organizations. New York:

McGraw-Hill.
Katz, E. 1960. "The two-step flow of communication." in Mass communications, 2nd

edition, edited by W Schramm. Urbana: University of Illinois.

86



Katz, E., and P.F. Lazarsfeld. 1955. Personal influence. New York: Free Press.
Kuhn, Thomas. 1996. The structure of scientific revolutions - 3rd Edition. Chicago:

University of Chicago Press.
Lakhani, Karim R, and Robert Wolf. 2005. "Why Hackers Do What They Do:

Understanding Motivation and Effort in Free/Open Source Software Projects." in
Perspectives on Free and Open Source Software, edited by Joe Feller, Brian
Fitzgerald, Scott Hissam, and Karim R Lakhani. Cambridge, MA: MIT Press.

Lakhani, Karim R., and Eric von Hippel. 2003. "How Open Source Software Works: Free
User to User Assistance." Research Policy 32:923-943.

Lazarsfeld, P.F., B. Berelson, and H. Gaudet. 1948. The people's choice. New York:
Duell, Sloan, Pierce.

Lee, Denis M. S., and Thomas J. Allen. 1982. "Integrating New Technical Staff:
Implications for Acquiring New Technology." Management Science 28:1405-
1420.

Levinthal, Daniel A., and James G. March. 1993. "The Myopia of Learning " Strategic
Management Journal 14:95-112.

Levitt, Barbara, and James G March. 1988. "Organizational learning." Annual Review of
Sociology 14:390-340.

Lewin, K.. 1936. Principles of Topological Psychology. New York: McGraw-Hill Book
Company, Inc..

Lieberman, Marvin, B. 1984. "The learning curve and pricing in the chemical processing
industries." The Rand Journal of Economics 15:213-228.

Lindenberg, Siegwart. 2001. "Intrinsic motivation in a new light." Kyklos 54:317-342.
Lovett, Marsha C., and John R. Anderson. 1996. "History of Success and Current Context

in Problem Solving:
Combined Influences on Operator Selection
" Cognitive Psychology 31:168-217.
Luchins, A. S. 1942. "Mechanization in problem solving: the effect of Einstellung."

Psychology Monographs 54.
Luchins, Abraham, S., and Edith Luchins, H. 1959. Rigidity of Behavior. A variational

approach to the effects of Einstellung. Eugene, Oregon: University of Oregon
Books.

Malone, Thomas W. 2004. The future of work . how the new order of business will shape
your organization, your management style, and your life. Boston: Harvard
Business School Press.

March, James G, and Herbert Simon. 1958. Organizations: Wiley.
Marples, D. L. 1961. "The Decisions of Engineering Design." IRE Transactions on

Engineering Management:55-71.
McPherson, J Miller. 1983. "An ecology of affiliation." American Sociological Review

48:519-532.
McPherson, J. Miller. 1981. "A Dynamic Model of Voluntary Affiliation." Social Forces

59:705-728.
McPherson, J. Miller, and Lynn Smith-Lovin. 1987. "Homophily in Voluntary

Organizations: Status Distance and the Composition of Face-to-Face Groups."
American Sociological Review 52:370-379.

87



Merton, Robert K. 1973. The sociology of science: Theoretical and empirical
investigation. Chicago: University of Chicago Press.

Meyers, Sumner, and Donald C Marquis. 1969. "Successful industrial innovation."
Washington DC: National Science Foundation.

Mockus, Audris, Roy Fielding, and James Herbsleb. 2002. "Two case studies of open
source software development: Apache and Mozilla." ACM Transactions on
Software Engineering and Methodology 11:1-38.

Mowery, David C., Joanne E. Oxley, and Brian S. Silverman. 1996. "Strategic Alliances
and Interfirm Knowledge Transfer." Strategic Management Journal 17:77-91.

Nagarajan, Anuradha, and Will Mitchell. 1998. "Evolutionary Diffusion: Internal and
External Methods Used to Acquire Encompassing, Complementary, and
Incremental Technological Changes in the Lithotripsy Industry." Strategic
Management Journal 19:1063-1077.

Nelson, Richard R., and Sidney G. Winter. 1982. An evolutionary theory of economic
change. Cambridge, MA: Belknap Harvard.

Newell, Allen, and H.A. Simon. 1972. Human Problem Solving. Engelwood Cliffs, New
Jersey: Prentice-Hall INC. .

Nickerson, Jack A, and Todd A. Zenger. 2004. "A knowledge-based theory of the firm -
the problem solving perspective." Organization Science 15:617-632.

Nonaka, Ikujir D., and Hirotaka Takeuchi. 1995. The knowledge-creating company: how
Japanese companies create the dynamics of innovation. New York: Oxford
University Press.

Osborne, M.F.M. 1959. "Brownian motion in the stock market." Operations Research
7:145-173.

Popielarz, Pamela A, and J Miller McPherson. 1995. "On the edge or in between: Niche
position, niche overlap, and the duration of voluntary association memberships."
American Journal of Sociology 101:698-720.

Raymond, Eric. 1999. The Cathedral and the Bazaar: Musings on Linux and Open
Source from an Accidental Revolutionary. Sebastopol: CA: O'Reilly and
Associates.

Raynor, Michael E, and Jill A. Panetta. 2005. "A better way to R&D?" Strategy &
Innovation: A newsletter from Harvard Business School Publishing and Innosight
3:14-16.

Riggs, William, and Eric von Hippel. 1994. "Incentives to innovate and the sources of
innovation: The case of scientific instruments." Research Policy 23:459-469.

Rosenkopf, Lori, and Paul Almeida. 2003. "Overcoming Local Search Through Alliances
and Mobility." Management Science 49:751-766.

Rosenkopf, Lori, and Atul Nerkar. 2001. "Beyond local search: Boundary-spanning,
exploration and impact in the optical disk industry." Strategic Management
Journal 22:287-306.

Saugstad, P. 1955. "Problem-solving as dependent upon availability of functions." British
Journal of Psychology 46:191-198.

Sawhney, Mohanbir, Emanuela Prandelli, and Gianmario Verona. 2003. "The Power of
Innomediation." MIT Sloan Management Review:6.

Saxenian, AnnaLee. 1994. Regional advantage : culture and competition in Silicon
Valley and Route 128. Cambridge, Mass.: Harvard University Press.

88



Schaefer, Scott. 1999. "Product design partitions with complementary components."
Journal of Economic Behavior and Organization 38:311-330.

Schilling, C. W., and J. Bernard. 1964. "Informal communication among Bioscientists.
Biological Sciences Communication Project." Washington D. C.: George
Washington University.

Schr6dinger, Erwin. 1951. What is life? The physical aspect of the living cell. Cambridge,
UK: Cambridge University Press.

Sheehan, Kim. 2001. "E-mail Survey Response Rates: A Review " Journal of Computer
Mediated Communication 6.

Simon, H.A. 1969. The Sciences of the Artificial. Cambridge: Massachusetts Institute of
Technology.

Simon, H.A., and Allen Newell. 1962. "Computer Simulation of Human Thinking and
Problem Solving." Monographs of the Societyfor Research in Child Behavior
27:137-150.

Simon, Herbert A. 1973. "The structure of ill structured problems." Artificial Intelligence
4:181-201.

Sobel, Dava. 1996. Longitude: the true story of a lone genius who solved the greatest
scientific problem of his time. New York: Penguin.

Sorensen, Jesper B, and Toby E. Stuart. 2000. "Aging, Obsolescence, and Organizational
Innovation." Administrative Science Quarterly 45:81-112.

Staats, A. W. 1957. "Verbal and instrumental repose-hiearchies and their relationship to
problem-solving." American Journal of Psychology 70:442-446.

Stephan, Paula E., and Sharon G. Levin. 1992. Striking the mother lode in science . the
importance of age, place, and time. New York: Oxford University Press.

Stern, Scott. 2004. "Do scientists pay to be scientists?" Management Science 50:835-854.
Stuart, Toby E., and Joel M. Podolny. 1996. "Local search and the evolution of

technological capabilities." Strategic Management Journal 17:21-38.
Tushman, Michael L. 1977. "Special boundary roles in the innovation process."

Administrative Science Quarterly 22:587-605.
Tushman, Michael L., and Ralph Katz. 1980. "External Communication and Project

Performance: An Investigation into the Role of Gatekeepers." Management
Science 26:1071-1085.

Utterback, James M, and Fernando F Suarez. 1993. "Patterns of industrial evolution,
dominant designs and firm's survival." Research on Technological Innovation,
Management and Policy 5:47-87.

Utterback, James M. 1971. "The Process of Technological Innovation within the Firm."
Academy of Management Journal 14:75-88.

von Hippel, Eric. 1978. "Successful industrial products from customer ideas." Journal of
Marketing 42:39-49.

-. 1982. "Get New Products from Customers." Harvard Business Review 60:117-122.
-. 1988. The Sources of Innovation. New York, NY: Oxford University Press.
-. 1989. "New Product Ideas from "Lead Users"." Research Technology Management

32:24-27.
-. 1994a. "'Sticky information' and the locus of problem solving: Implications for

innovation." Management Science 40:429-439.

89



-. 1994b. "Sticky Information and the Locus of Problem Solving." Management Science
40:429-439.

-. 1999. "Economics of product development by users: Impact of "sticky" local
information." Management Science 44:629-644.

-. 2005. Democratizing Innovation. Cambridge, MA: MIT Press.
von Hippel, Eric, and Marcie J Tyre. 1995. "How learning by doing is done: Problem

identification in novel process equipment." Research Policy 24:1-12.
Walsh, John P., and Wei Hong. 2003. "Secrecy is increasing in step with competition."

Nature 422:801-802.
Ward, T.B. 1995. "What's old about new ideas?" Pp. 157-178 in The creative cognition

approach, edited by S.M. Smith, T.B. Ward, and R.A. Finke. Cambridge, MA:
MIT Press.

Weiman, Gabriel. 1982. "On the Importance of Marginality: One More Step into the
Two-Step Flow of Communication." American Sociological Review 47:764-773.

Wright, T.P. 1936. "Factors affecting the cost of airplanes." Journal ofAeronautical
Sciences 3:122-128.

Yelle, L. E. 1979. "The Learning Curve: Historical Review and Comprehensive Survey"
Decision Sciences 10:302-328.

Zahra, Shaker A, and Gerard George. 2002. "Absorptive capacity: A review,
reconceptualization, and extension." Academy of Management Review 27:185-
204.

90



Appendix

1 - Statistical Methods and Variable Construction

Statistical Methods
I used probit regression models to determine the size and strength of relationship between
dependent and independent variables. A probit model regression model is appropriate
when the outcome variable is binary and is categorical (i.e. the problem was solved or not
solved; solver had a winning solution or not a winning solution). The probit model is
non-linear with an assumption that errors are normally distributed with a variance of the
errors equal to one. Regressions were computed using robust estimates for the standard
errors thus allowing our estimates of the standard errors to be "robust" to failure to meet
assumptions of normality and homogeneity of variance of the residuals.

Construction of variables in Table 9 - "Who becomes a winning solver?"

All variables were standardized except for time to develop solution.

Dependent variable: Who becomes a winning solver. This data was available from the
InnoCentive Database per problem. For each problem there were a number of
submissions and the data indicated which person(s) had a winning solution or not

Independent Variables:

RTP Problem Type: Value = 1 if the solution requirement for the problem was a
reduction to practice submission. Value = 0 if the solution requirement was a paper
submission. Obtained from InnoCentive.com

Time to develop solution: Time in days as reported by solvers required to create a
solution. Obtained from web survey of solvers

Motivations: Please see Table 7 - for details on how the motivation variables were
derived. The two factors, intrinsic motivation and social and work-related motivation,
that were developed from multiple items were constructed by first standardizing
(transforming them so that mean = 0 and variance = 1) each of the items and then added
and averaged and then further standardized. Obtained from web survey of solvers.

Interest Count: Number of scientific interests indicated by solver when first registering
with IC - from a list of 56 options. Obtained from InnoCentive.com.

Problem distance from field of expertise: Based on the answer to the following survey
question: Is the particular challenge: "1 - inside your field of expertise, 4 - at the
boundary of your field of expertise, 7 - outside your field of expertise. Respondents
could choose any value between 1 and 7.

91



Construction of variables in Table 11 - "Which Problems Get Solved?"

Dependent variable: Binary variable = 1 if a solution reward was given out I = 0 if no
solution award is given out. Data from InnoCentive.com

Dependent variables
RTP Problem Type: Value = 1 if the solution requirement for the problem was a
reduction to practice submission. Value = 0 if the solution requirement was a paper
submission. Data from InnoCentive.com

Award Value: Actual value in US dollars for the award money for the problem being
successfully solved. Data from InnoCentive.com

Days Problem Open: The time window in days between the broadcast of the problem and
the deadline for submissions. Data from InnoCentive.com

Previous problems posted by seeker firm: The total number of previous problems
broadcasted by the firm on IC. Summed from 30 days prior to the post of the current
problem. Data from InnoCentive.com

Solver base size: Total number of registered users on IC website at the time of the posting
of the problem. Data from InnoCentive.com

Number of submissions: Number of submissions received at the end of the time window
of a problem. Data from InnoCentive.com

Distinct scientific interests attracted: At registration time with IC, solvers were asked
about their scientific interests from a list of 56 options spanning Chemistry and Applied
Sciences and the Life Sciences. This variable consists of counting the total number of
distinct (unique) scientific interests from the solvers who submitted a solution to the
problem. Double counts of same the scientific interests by different solvers were
eliminated. The higher the number the more unique scientific interests represented in
solving the problem. Data from InnoCentive.com

Generalist orientation of the solver: At registration time with IC, solvers were asked
about their scientific interests from a list of 56 options spanning Chemistry and Applied
Sciences and the Life Sciences. This variable consists of first summing the raw count of
scientific interests indicated by the solvers who submitted a solution to the problem. And
then dividing this sum by the total number of solvers who submitted a solution. Thus
creating the average number of scientific interests per solver per problem. The higher the
number the larger the average number of interests per solver per problem and the more
generalist an orientation of the solver community that is creating a solution. Data from
InnoCentive.com

92



2 - Solver Survey

InnoCentive Solvers Survey INNOCENTIVE

About the
InnoCentive
Challenge:

I When you first saw iO 20 30 40 50 60 70
the particular This problem was completely new to me I was somewhat familiar I had seen the EXACT problem
InnoCentive before
Challenge, what was
your experience with
similar problems?

2 Tell us about your
experience with
these types of
Challenges. How
true are the
following
statements?

10 20 3
not true at all

10 20 3
not true at all

0 40 5 0 60 70
somewhat true very true

0 40
somewhat true

50 60 70
very true

a. i have had
experience
with these
types of
problems
professionally

b. I have had
experience
with these
types of
problems as
a hobby

93

I



20 30 40
somewhat true

3 Please tell usifthis iO 20 30 40 50 60 70
Challenge was Inside your field of expertise At the boundary of your field of expertise Outside your field of expertise

About your
Submission to
InnoCentive:

4 What was your -----select a response from this pulldown menu----
situation when you
encountered this
Challenge?

5 Sometimes solutions
build on previous
work. Was your
submission to this
Challenge based on:

a. Asolution i O 20 30 40 50 60 70
you had No modifications Minor Modifications Major modifications
already

developed in 0 NA - This was not based on any of my previous work
your own
work with:

b. An existing es0 20 30 40 50 60 70
solution you No modifications Minor Modifications Major modifications
knew about

that could 0O NA - This was not based on anyone else's work
solve the
Challenge
with:

6 How much time did it 
take you to develop hours
your submission
(please estimate
hours of effort)

94

c. I have had
experience
with these
types of
problems as
a student

10
not true at all

60 70
very true



7 How much money
(not including your
own labor) did you
spend in developing
your submission (e.
g.: Money spent on
Reagents,
Equipment etc)

I I------select currency-----

8 Tell us about any
additional resources
you needed as you
worked on this
Challenge. How true
are the following
statements? I had to
acquire access to:

a. More
laboratory
equipment
than I
normally
have access
to

b. More
software
than I
normally
have access
to

c. More library
and
literature
resources
than I
normally
have access

10 20 30 40 50 60 70
not true at all somewhat true very true

i0 20
not true at all

10 20
not true at all

to

d. More 0 20
specialty not true at all
databases
than I
normally
have access
to

30 40 50 60 70
somewhat true very true

30 40 50 60 70
somewhat true very true

30 40 50 60 70
somewhat true very true

I

95

I.

!

I - - - -



9 Did you solve the
Challenge as an
individual or as a
team?

9a If you
solved the Challenge
as a team - how
many people were
on your team?

individual: 0 team: 0

F-1

10 How many other
people did you
consult with in your
problem solving
effort (excluding
those that were on
your team in
question 9a)?

11 In your estimation, ------- select a response from this pulldown menu-------
how many others
could have
developed a
submission similar
to yours?

Your reasons for
participating in
the InnoCentive
Challenge:

12 There are many
reasons for
participating in an
InnoCentive
Challenge. Tell us
how true the
following statements
are for you. Please
answer all items. I
submitted a solution:

a. To win the
award
money

iO 20 30 40 50 60 70
not true at all somewhat true very true

96



b. Because 10 20 30 40 50 60 70
others I not true at all somewhat true very true
know have
participated
before

c. Because 10 20 30 40 50 60 70
someone not true at all somewhat true very true
suggested I
participate in
solving this
Challenge

d.Becausemy 1 0 20 30 40 5 0 60 70
boss asked not true at all somewhat true very true
me to work
on it

e. To try to
beat other
InnoCentive
solvers

f. Because my
workjob at
the time was
not satisfying

g. Because
InnoCentive
told me
about this
Challenge

h. Because I
enjoy solving
these types

10 20 30
not true at all

10 20 30
not true at all

40 50
somewhat true

60 70
very true

40 50 0 70
somewhat true very true

10 20 30 40 50 60
not true at all somewhat true

10 20 30 40 50 60
not true at all somewhat true

of
Challenges

i. Toenhance 10 20 30
my skills not true at all

. Toenhance iO 20 30
my career not true at all
prospects

k. To impress i 0 20 30
my not true at all
colleagues

40 50 60
somewhat true

40 50 60
somewhat true

40 50 60
somewhat true

70
very true

70
very true

70
very true

70
very true

70
very true

97



i. Becausel 10 20 30 40 50 60 70
already not true at all somewhat true very true
knew how to
get the
solution

m. For the 10 20 30 40 50 60 70
intellectual not true at all somewhat true very true
challenge of
solving this
Challenge

n. Toleam 10 20 30 40 50 60 70
about these not true at all somewhat true very true
types of
Challenges

o. To gain~o. To gain ~~I 20 30 40 5 O 60 70
scientific not true at all somewhat true very true
recognition

p. Because ~ O 20 30 40 50 O 70
had free not true at all somewhat true very true
time available

q. Other

13 Would you have I10 20 30 40 50 60 7 O
attempted to solve Most definitely Not Maybe Most definitely Yes
this Challenge if
there was no
financial reward
offered?

14 Will you attemptto 10 20 30 40 50 60 70
solve an InnoCentlyesolve an InnoCentive Most definitely Not Maybe Most definitely Yes
Challenge n the
future?

1 How satisfied were 10 20 30 40 50 60 70
you with your Highly Satisfied Neither satisfied or dissatisfied Highly dissatisfied
experience with
InnoCentive

16 Any thing else you
may want to tell us
about your
experience with
InnoCentive?

Your Background:

98

I[ I I I I I~~ ~~~~~~~~~
I I



17 What is your
Gender?

18 What is the highest
academic
qualification you
have received?

19 What year did you
receive your highest
degree?

20 What is the name of
the institution where
you got your highest
academic
qualification?

21 What is the field in
which you have
received your
highest
qualification?

22 What city were you
living in at the time
of your submission?

23 What was your
occupation at the
time of the
submission of the
Challenge (including
student or retired)?

male: 0 female: 0

---- selec

' --

24 May Innocentive Yes: O No: O
contact you via
email if the MIT-CBS
Research Team has
any further
questions on this
topic?

I Submit Survey
v S S A~~d .;--i==SA ......... = _

99

ct ...... 

I I

I I

I I

I __



3 - List of Problems in Analysis
Country of Award

Scientific Originating Value
# Problem Description Discipline Lab (USD)

2062 Cyclohexaneacetic acid Synthesis USA 30000
2068 Challenge #2068 Synthesis USA 80000
2071 Substituted Piperazine Synthesis Belgium 50000
3076 Substituted Cyclopentaneacetic Acid Synthesis USA 30000
3079 1 -Bromo-6-fluoronaphthalene Synthesis UK 45000
3082 Chiral 2-Methyl-4-piperidone Synthesis Belgium 55000

3085 2-Bromo-6-fluoronaphthalene Synthesis UK 45000
3088 Substituted indole Synthesis USA 65000
3091 Substituted pyridine Synthesis USA 50000
3094 Cyclopentenone Synthesis USA 25000
3097 Challenge # 3097 Synthesis USA 100000

3100 Novel Synthetic Route Synthesis USA 50000

3103 Challenge # 3103 Synthesis USA 90000

3106 Challenge # 3106 Synthesis USA 65000
3109 4-(4-Hydroxyphenyl) butanoic acid Synthesis USA 25000
3112 Challenge # 3112 Synthesis USA 80000

3115 Substituted thiophene Synthesis USA 70000
9517 Challenge # 9517 Synthesis USA 2000

9520 Efficient Synthetic Strategy Synthesis USA 2000
9523 Novel Synthetic Route Synthesis USA 2000

24384 Deazaguanine ester Synthesis USA 90000
25580 Fmoc-L-Neo-Trp Synthesis USA 60000
32295 Fmoc-D-2-Me-Trp Synthesis USA 75000
32312 Fmoc-L-2-Me-Trp - enzymatic Synthesis USA 105000
39949 (5-aza-benzofuran-7-yl) acetic amide Synthesis USA 75000
40742 7-Formyl-lndole Synthesis USA 75000
40964 Challenge # 40964 Synthesis USA 65000
43165 D-glucopyranose Synthesis USA 40000
44076 D-xylopy ranose Synthesis USA 40000
55195 Substituted isoquinoline Synthesis USA 20000
59214 Chiral Hexose-nucleoside Synthesis USA 60000
62163 4-AZIDO CHIRAL HEXOSE Synthesis USA 50000

78991 4-hydroxypyrimidine Synthesis USA 15000
Preserved Parenteral Suspension

79007 Placebo Formulation USA 100000
Regio- and stereocontrolled tricyclic

96229 alcohols Synthesis USA 5000

113827 Malononitrile - stable label Synthesis USA 15000
113837 4-nitroacetophenone - stable label Synthesis USA 25000
124675 Surfactant Analysis Analytical USA 40000
196513 cis-PTAP Synthesis USA 40000
200908 Sulfoethoxylates Synthesis USA 2000
205709 Oxidation of parrifins Synthesis USA 2000

100



I Branched alcohols

BTCA

Protein crosslinks
Filtration of a Formulation
Properities of CMC

Stimulus to Elicit Urination by
Untrained Rats of Either Sex
Paracrystalline Arrays
Megamitochondria
1-Azabicyclo [3.2.2] nonan-3-one
1-Azabicyclo [3.2.1] octan-3-one
Vacuum Blood Collection System
N-Boc-7-azabicyclo [2.2.1] heptene
Yeast molecular genetics (1)
Yeast molecular genetics (2)
Alkyl phenyl alkanols
Low Surface Energy Particles for
Reduction of Friction
Efficient synthetic route
Efficient synthetic route
A-MOE
G-MOE

In vitro Bone Formation Assay

Chitosan Life Sciencespolymer
Picolinic acid (Derivative 2)
Picolinic acid (Derivative 1)
Yeast molecular genetics
Crosslinking Polysaccharides and
Polycarboxylic acids
Crosslinking Polysaccharides and
Polycarboxylic acids
Polymer analysis in surfactant
matrices
Trifluoro-lactate Derivative
Pyrrolo-pyrimidine

Seeking Small Molecules Libraries (I)
Analytical Method for Active
Ingredient
Procedure to Develop Artificial
Human Fluid

Stabilization of liquid formulation
Purification of silicone based solvents
Life Scienceslogical Targets for
Inflammation
Life Scienceslogical Targets for
AntiLife Sciencestics
Life Scienceslogical Targets for
Obesity

Synthesis
Medicinal
Chemistry
Formulation
Formulation

Biology
Toxicology
Toxicology
Synthesis
Synthesis
Biochemistry
Synthesis
Molecular Biology
Molecular Biology
Synthesis

Material Science
Synthesis
Synthesis
Synthesis
Synthesis
Biology
Synthesis
Synthesis
Synthesis
Biochemistry

Synthesis

Synthesis

Polymer
Synthesis
Synthesis
Chemical
Diversity

Analytical

Formulation
Formulation
Technology

Biology

Biology

Biology

211113

216128
243737
245802

258354
258382
258387
260715
271659
279618
280053
281657
281662
286857

297790
301277

301277.1

349446
349450
371122
526670
592959
592963
609131

648798

648808

663856
672016
672025

716076

756921

757740
776827
795123

845617

845646

845675

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

Belgium

USA

USA

USA

USA

USA

USA

UK

UK

USA

USA

Italy

Germany
USA

USA

USA

USA

2000

3000
3000
3000

2000
5000

2500
70000
65000
10000
60000
2000

3000
2000

5000

50000
50000
50000
50000
5000

75000
25000
25000

5000

50000

3000

5000
7000

10000

18380

20000

15000

5000

10000

5000

5000

5000

101

207090 Synthesis USA 2000



Life Scienceslogical Targets for
Insulin-Releasing Compounds
Substituted Propionic Acid
Amino Indanol
Incomplete Release of Active
Ingredient
Novel colorant materials #1
Novel colorant materials #2
Elasticity improvement in textiles
Synthesis of dipalmityl- or distearyl-
diketene
Synthesize hexamethylene-1
TMBA (3
Gallic Acid
DNA Extraction Method
Burst Release Formulation
Plant Selectable Marker
Plastid Selectable Marker
Crosslinking Reaction for Polymers
Calcium carbonate nanoparticles in
water
Immortalized Preadipocyte Cell Line
Microbial strain for the production of
an amino acid

Compounding Method
Compounds forming hydrogen-bonds
Cerium containing organic solution

New Chem and Applied Sciencesical
routes to a substituted benzaldehyde

additives
Diagnostic test for Interstitial Cystitis.
Particle Size Reduction
Controlled Encapsulation and
Release of Electrolyte
pH Modification

Full-Length cDNA Isolation
DNA inverted repeat analysis
Food-Grade Polymer
Decrease of Cr (VI) concentration
Bubbling Action
Formulation for a proLife Sciencestic
powder
Stable form of tetrasodium
pyrophosphate
Synthesis of an acrylic acid polymer
(2)
Synthesis of an acrylic acid polymer
(1)
Lowering of CO levels
Substituted Benzenes
Hedonics of Oral Chem and Applied

Biology
Synthesis
Synthesis

Formulation
Formulation

Formulation

Analytical

Synthesis
Synthesis
Synthesis
Synthesis
Molecular Biology
Formulation

Molecular Biology
Molecular Biology
Polymer

Nanotechnology
Molecular Biology

Biochemistry
Polymer
Polymer
Formulation

Synthesis
Material Science
Analytical
Formulation

Formulation
Analytical
Molecular Biology
Biochemistry
Polymer
Formulation

Formulation

Formulation

Formulation

Polymer

Polymer
Material Science
Synthesis
Biochemistry

846919
861088
861093

861628
864721

865198
875122

980996
991141

995380
995385
995443
997488
997602
997637
998108

1058346

1083568

1116521

1116609

1116662
1132113

1160777

1186758

1201783

1222113

1223905
1223933
1225582

1230129

1239328

1335287

1351513

1351519

1375732

1414246

1414254

1470313
1470520

1470565

Germany
USA
USA

USA

USA

USA

Germany

Germany
Germany
Italy

Italy

USA

USA

USA

USA

Germany

Germany
USA

Germany
Germany
Germany
Germany

France

Missing
USA

USA

USA

USA

USA

USA

USA

USA

Germany

USA

USA

Germany

Germany
USA

USA
USA

30000
30000
30000

5000

5000

15000
5000

10000
10000
5000

5000

10000
5000

35000
10000
12000

35000

35000

40000
7500

5000

10000

25000
50000
40000
55000

30000

30000
10000
20000
35000
15000

10000

45000

35000

15000

60000
35000
35000
55000

102



Sciencesesthesis

Synthesis of 2
Porous carbohydrate resin
Gel-forming polymer
Water vapor barrier glue
Lactose Polymerization
2- Specific lipase of microbial origin

Non toxic inhibitor for lipases

Platelet Aggregometry Device
Additive to alter surface properties
Enzyme Stabilizer
Flash point elevation
Ethanol absorbents
Retort stable form of Vitamin C
Water Absorbent Material
Method for peptide bond synthesis
Supplier for MgO
High-throughput format for a Life
Scienceslogical assay
Selective removal of a protecting
group

Method for Addition of a Salt
Non-fluorinated oil and water repellent
Improving Solution Appearance with
Novel Dyes
Visual Modification of an aqueous
dispersion
Life Sciencesfilm Indicator
Water Vapor Permeability

Synthesis of 3-difluoromethyl-1-
methyl-4-pyrazole carboxylic acid
Preservative Degradation
Alternate material to cyclododecane
Iminium ion synthesis from tertiary
amines
New Phase Change Materials
Separation of tolualdehyde-acid
adducts
New applications for silane-
functionalized polyolefins
Photo and Chem and Applied
Sciencesical Passivation of Titanium
Dioxide Nanopart
Thiophene formation
Metals removal from heavy petroleum
fractions
Film-forming polymer

Synthesis
Polymer
Formulation
Polymer
Polymer
Biochemistry
Medicinal
Chemistry
Technology\Kno
wledge
Aggrigation
Analytical
Formulation
Formulation
Formulation
Formulation
Polymer
Synthesis
Formulation

Biology

Analytical
Technology/Che
m Eng

Formulation

Formulation

Formulation
Analytical
Analytical

Synthesis
Formulation
Material Science

Synthesis
Analytical

Synthesis

Polymer

Analytical
Synthesis

Analytical
Polymer

1480505
1508173
1594697
1629166
1650978
1654057

1654065

1712465
1742333
1747283
1748963
1749231

1820210
1841332
1862965
1877388

1894778

1900564

1908792
1913185

1927291

1931590
1949133
1963197

1980008
2014338
2051972

2052063
2052165

2160537

2160626

2171115
2241934

2242777
2257439

USA

USA

USA

Germany
Denmark
Denmark

Denmark

USA

USA

USA

USA

USA

USA

USA

USA

USA

USA

Germany

USA

Missing

USA

USA

USA

USA

USA

USA

UK

USA

Germany

USA

USA

USA
USA

USA

USA

15000

40000
40000
35000
25000
50000

25000

25000
40000
65000
45000
30000
15000

50000
15000

5000

50000

12000

25000
45000

30000

20000
25000
30000

10000
10000
10000

10000
10000

15000

15000

10000
10000

10000
45000

103



Gametoqenesis Inhibitor
Efficient synthesis of a Resorcinol
Derivative
Method to avoid skin sensitization
Seeking anti-nitration additive
Seeking ion channel enzyme
inhibitors
Reduce viscosity of a salt formulation
Chlorine Removal

Seeking formulation development
partners from China and India

Detection of DNA sequences
Analytical Assay for Phytate
Inositol phosphate derivatization
Insect mutant line

Synthesis
Biochemistry
Analytical

Biochemistry
Analytical
Analytical

Formulation

Biochemistry
Biochemistry
Biochemistry
Toxicology

2284488
2318298
2374481

2417892
2421769
2456223

2487239
2489565
2489751

2496322
2566610

USA

USA

UK

USA

USA

UK

USA

USA

USA

USA

USA

I

15000

15000
15000

100000
4000

15000

5000

10000
30000

30000

30000

104

Canada2265185 Analytical 100000



Chapter 3 - The Primacy Of The Periphery In A Distributed Problem
Solving Community

3.1: Introduction
How does complex product development occur in voluntary and virtual online

communities? The sustained ability of Free/Open Source software (F/OSS) communities

to produce, maintain, and distribute, for free, complex software products raises two

interesting questions; 1) Why people participate in such endeavors? and; 2) How are they

able to innovate and problem solve in a virtual and distributed setting?

Considerable scholarly attention has been paid to the question of incentives and

motivations of participants in F/OSS communities. Lerner and Tirole (2002) first asked

the question: "Why would thousands of top-notch programmers contribute freely to the

provision of a public good?" Subsequent empirical research has shown that contributors

to F/OSS projects participate to satisfy both intrinsic and extrinsic motivations.

Participants contribute to projects because they have a direct need and use for the

software (Hertel, Niedner and Herrmann 2003; Lakhani and Wolf 2005; von Hippel

2001), they enjoy the process of software creation (Lakhani and Wolf 2005), and/or the

norms of sharing and openness are paramount with their primary identification with the

hacker community(Ghosh et al. 2002).

Significantly less attention has been paid to the question of how the effort of

individuals is harnessed for distributed problem solving in these communities (exceptions

include Lee & Cole (2003) and von Krogh, Spaeth & Lakhani (2003)). This is surprising

given studies of new product development in general and software development in

particular have identified effective problem solving as one of the most enduring

challenges faced by managers responsible for delivering products to their various

stakeholders (Brown and Eisenhardt 1997; Clark and Fujimoto 1991; Cusumano 1992;

Kraut and Streeter 1995; MacCormack, Verganti and Iansiti 2001; Powell, Piccoli and

Ives 2004). And in a more general sense, a central concern for organization theory has

been how collective action is achieved in complex organizations (Galbraith 1973;



Lawrence and Lorsch 1967; Perrow 1986; Simon 1976; Stinchcombe 1959; Thompson

1967; Weber 1947).

The focus of this chapter is on explaining how distributed and voluntary F/OSS

communities solve technology problems using inputs from hundreds, if not thousands of

participants. The emerging empirical literature on F/OSS communities indicates that a

majority of code writing and communication activity is concentrated with a few

individuals, the "core" (Gallivan 2001), yet these communities allow and encourage wide

scale participation by anybody in their community, the "periphery." My research aim is

two fold:

1. To explain the division of labor amongst the core and periphery in a distributed

problem solving community and in essence to determine the value of the

periphery to the core;

2. To develop a grounded theory-based explanation of how the core and periphery

accomplish technical problem solving and to develop a theoretical perspective on

the social practices used by the community to achieve collective action.

The data from my study are based on a one year "historical" and "virtual"

ethnography of the community that produces the open source PostgreSQL database

management system. I had access to the majority of technical discussions that occurred

in the community along with all of the changes in the software code from November

2002 to December 200323. This allowed me to create a unique analytical tool, the

innovation process history, that showed the detailed micro-interactions behind the

creation of a complex software product. I used this analytical tool to drive my analysis of

the value of the periphery to the community and an practice-based explanation of the

practices that the community members use to get work done.

23 This time line corresponded with one major software release cycle in the community - between versions
7.3 and 7.4. Practicaly speaking I had access to technical discussions and source code changes from 1997 -
forward. I chose the November 2002 to December 2003 time frame as it conicided with my research
window.

106



I begin by first defining the term "community" as it applies to my empirical

context (Section 2). I then examine the literature on "periphery" and its impact on

innovative outcomes (Section 3). In Section 4, I address the elements that go into

creating a robust theory of distributed social action and practice. In Section 5, I provide

details on the research setting, data and methods used in my analysis. Section 6 is

dedicated to a quantitative assessment of the value of the periphery in a distributed

problem solving setting. Then in Section 7, I present three detailed vignettes about

social action and collective problem solving. I then use the data from vignettes in Section

8 to develop a practice-based theory of collective problem solving, Section 9 discusses at

length the quantitative and qualitative findings. I conclude this chapter by discussing the

implication of my research for the literature on innovation and product development and

organizations (Section 10).

3.2: Defining Community
The term "community" has been used as both an aspiration for belonging and

doing good with others and an analytical sociological variable (Calhoun 1980). In this

section I discuss the traditional concept of community and its expansion to include

instrumentally oriented communities. I then consider the application of this definition to

organizational communities as represented by communities of practice and then offer a

definition of problem solving communities as exemplified by open source communities.

3.2.1: Traditional Communities
The German sociologist, Ferdinand TOnnies' ([1887] 1957) theoretical essay,

Gemeinschaft and Gesselschaft, first made the distinction between community and

society. Tnnies argued that the community (Gemeinschaft) represented the childhood of

humanity and society (Gesselschaft) its maturity (Brint 2001). Tnnies viewed

community, ideally represented by a family or village, as grounded in common ways of

life with concentrated ties and frequent interactions with small numbers of people who

were familiar with each other and had long standing emotional bonds. In contrast,

society, as represented by a city, is one where commerce dominates life of people and

where rules and rationality and exchange relations dominated a person's interactions with

107



other individuals. Thnnies viewed individuals in the city as being distant from one and

other and needing external rules and regulations to enforce order and proper behavior.

T6nnies represented the concept of community as an ideal form of living where

communities offered participants a "sense of familiarity and safety, mutual concern and

support, continuous loyalties, even the possibility of being appreciated for one's full

personality and contribution to group life rather than for narrower aspects of rank and

achievement" (Brint 2001: 2). Tnnies' conceptualization of community has not been

without its critics. Empirical studies have shown the presence of inequity in community

relations, power stratification and the discovery of self-interested community leaders who

provide a facade of spontaneously generated consensus (Brint 2001). Tnnies' approach

either invited rebukers of the concept or overly acritical, romantic descriptions of

community resulting in a lack of rigorous analytical approaches to the concept (Calhoun

1980) and an inability to explain how collective action or coordination is achieved in

communities (Glaser 2001).

Emile Durkheim pioneered another conceptual view of community. He

recognized the importance of community for some types of human action but he stepped

away from a sentimental approach to one based on variable properties of human

interaction found as much in small villages as in large cities (Brint 2001). Durkheim's

emphasis was on extracting an element or process associated with communal relations

and its impact on behavior. Thus in Suicide (Durkheim 1966), he argued that dense and

absorbing ties were an antidote to the danger of egoism and the resulting deviant social

behavior. Similarly he noted that joint ritual experience was the basis of a common

definition of the sacred amongst a community of believers (Durkheim [ 1911 ] 1965).

Durkheim's disaggregating approach to collective human behavior has yielded narrowly

defined variables from the community concept. Steven Brint proposes that sociologists

who have followed Durkheim's methods have derived six properties of community

relations that are important as separate variables for sociological analyses (Brint 2001: 3-

4). The first four are structural variables including: )dense and demanding ties; 2) social

attachments to and involvements in institutions; 3) ritual occasions; and 4) small group

108



size. The last two are cultural variables: 5) perceptions of similarity with others

(physical, expressive style, way of life, historical experience); and 6) common beliefs in

an idea system, a moral order, an institution or a group. Brint argues that since all six of

these properties are rarely found in all communities, it makes good analytical sense to

focus on them individually instead of comparing the specific community contexts within

which they are found.

Brint judges the community studies tradition in sociology to be a failure (Brint

2001). Citing Hillery (1955), he notes that as early as the 1950s there were 94 separate

definitions of the word community. He complains that the field has been stuck at the

descriptive level and has primarily gained attention by either supporting or debunking the

traditional concept of Gemeinschaft. He further argues that community studies have

disappeared from contemporary sociology because of a failure to develop generalizations

about human social behavior. In an attempt to rescue the concept, Brint (2001: 8)

attempts to develop a new generic definition of communities as "aggregates ofpeople

who share common activities and/or beliefs and who are bound together principally by

relations of affect, loyalty, common values, and/or personal concern (i.e., interest in the

personalities and life events of one another). "

Although Brint acknowledges that material and social interests (Bourdieu [ 1972]

1977) can be the basis for some interactions in a community, he argues that the primary

basis for relations in a community are affect, loyalty, shared values or personal

involvement in the lives of others. Brint's emphasis on the affectual-relationship basis

for community leads him to discount the existence of communities within work settings

and voluntary interest organizations (2001: 9). He acknowledges that these entities may

display some of the qualities associated with communities, however, he disqualifies them

from the definition because of their instrumental and rational interest orientations.

3.2.2: Instrumentally Oriented Communities
In contrast, Jochen Gliser (2001) aims to develop a definition of community that

explicitly includes an instrumental orientation. His motivation is the disconnect between

109



traditional definitions of community (including Brint) and the long held sociological view

that scientists belong to a worldwide collectivity (Merton [1942] 1973) also known as a

"scientific community." Merton conjectured that the collectivity was governed by

specific scientific ethos consisting of the norms of communalism, universalism,

disinterestedness and organized skepticism. Thomas Kuhn (1970) challenged the

emphasis on norms as a governance mechanism by proposing the role of scientific

paradigms as regulating the collective behavior of scientists thus implying that

knowledge instead of values held together the scientific community (Glaser 2001).

More radically, ethnomethodolgists in the sociology of scientific knowledge have

denied the existence of scientific communities and explicitly excluded them from their

sociological analyses (Knorr-Cetina 1982). Glaiser however persists in showing that the

empirical work of the sociologists of science and scientific knowledge tends to support

the notion that scientists work within a wider collective community. He shows that most

citation analyses of scientific work have shown that scientists are actively "accepting,

adding, rejecting, and changing the knowledge claims of their colleagues" (2001: 4). He

also shows that both the early and more recent works of some of the leading scholars in

the SSK tradition can be interpreted as showing a collective, community-based

knowledge production. For example, Knorr Cetina's 10 year ethnography of CERN

includes distinctions like "post-traditional communitarian structures," "the erasure of the

individual as an epistemic subject," and the presence of"confidence pathways and gossip

circles" (Knorr Cetina 1999).

Glaser then develops a parsimonious definition of community as follows (2001:

6): "A community is an actor constellation that consists of individuals who perceive to

have something in common with others, and whose actions and interactions are at least

partially influenced by this perception." An actor constellation is simply a collectivity of

actors whose interests and action potentials overlap (Scharpf 1997); meaning that there is

some intersection between individuals, their idiosyncratic interests and their action as

related to those interests. Glaser contends that in order to understand and compare and

contrast various communities one needs to consider the following analytical categories:

110



1) basis for relationship amongst participants; 2) rules for how membership is

established; 3) ways in which coordination of action is achieved; and 4) institutions that

support the collective.

In the case of the scientific community, Glaser states that the basis for relationship

among participants is the collective knowledge production amongst the scientists.

Membership is determined by a scientist's own perception of belonging to the community

since most attempts at determining scientific community membership have been strongly

biased by the sociometric measures used (Woolgar 1976). This also implies that

membership in a scientific community "is on a continuum with a few active core

members and many less active, less visible and even invisible members" (Glaser 2001:

6). The primary coordination mechanism is the actual collective work itself. Scientists

engage in decentralized mutual adjustment (e.g., via citations) based on the common

subject matter of the work and through the collective objects that they may produce, for

example, particle accelerators (Knorr Cetina 1999). The institutions that support the

scientific community are formal ones like peer review and informal ones like

methodological and technical rules for experimentation, disclosure of results and citations

of previous work. Ultimately, Gliser labels scientific communities as producing

communities, because their purpose is to produce knowledge.

3.2.3: Communities of Practice
An emerging stream of research within organization theory has shown the

significance of communities inside of organizations as a locus of non-canonical

organizational learning and innovation (Brown and Duguid 1991; Brown and Duguid

2001). The concept of communities of practice originated with Lave and Wenger's

findings that suggested alternatives to formal school-based learning theories (Lave and

Wenger 1991). They were intrigued by the historical practice of apprenticeship and

wanted to develop a theory of learning that took into the account the trajectory of the

journey of a new apprentice to a master, from the margins of a community to its center.

Their theory was grounded in empirical examples of tailors in Liberia, Mayan midwives,

US supermarket meat cutters, US navy quartermasters and non-drinking alcoholics. For

111



them learning is a social practice which occurs in the everyday activity of a community:

"learning is not something about digestion of facts, rather it along with thinking and

knowing are constituted in relations among people who are engaged in activity in the

socially and culturally constructed world" (Lave and Wenger 1991: 51). A community of

practice is one such locale for learning and participating in a particular occupation (e.g.,

being a butcher) or set of interdependent work activities (e.g., navigating a ship).

Central to their perspective on learning is legitimate peripheral participation

(LPP) of newcomers in an already established community of practice. Learning occurs

through LPP in a community. Newcomers in a community start by participating in a set

of practices of the community and it is this participation that makes them legitimate in the

eyes of the community. Initially, practices may be minor or peripheral to the community,

but over time the novices take on more and more complex practices enabling them to

move from the periphery of the community to its core. Once here, they become masters.

Key to LPP and the journey to full membership is the ability of newcomers to gain access

to the practices of the community and to observe how full members perform their

practices. Transparency of the workings of the community becomes a key analytical

variable in studies of communities of practice.

Wenger (1998) states that a community of practice is not equivalent to or

synonymous with group, team or network. Thus membership in a formal or imagined

social group does not constitute membership in a community of practice. The network of

social ties also does not yield a community of practice, and neither does geographical

proximity (Wenger 1998: 74). Instead, Wenger defines a community of practice on the

basis of the following three dimensions: 1) mutual engagement; 2) joint enterprise; and 3)

shared repertoire (Wenger 1998: 73). The dimensions themselves are not independent,

instead they constitute each other and form the basis of the community. Mutual

engagement implies that individuals in a community are continuously engaged in actions

whose meanings they negotiate with one and other. The mutual engagement is around a

joint enterprise that entails not just accomplishing the canonical work but also identity

and meaning as well as belonging. Pursuing a joint enterprise together also builds a

112



shared repertoire amongst the community members. Such a repertoire includes "routines,

words, tool, ways of doing things, stories, gestures, symbols, genres, actions, or concepts

that the community has produced or adopted in the course of its existence and which have

become part of its practice" (Wenger 1998: 83)

Finally Wenger takes a non-romantic and pragmatic view of communities of

practice. He does not fall into the Tbnniesian trap of equating community with morally

good actions. Instead he states that communities of practice are neither intrinsically

beneficial or harmful and can yield both positive and negative effects for both

participants and the surrounding environment (Wenger 1998: 85).

It is important to note that the empirical basis for the communities of practice

literature has emerged from studies of relatively stable occupations and professions, e.g.,

butchers, tailors and insurance adjusters. This does not mean that there is a lack of

novelty or challenge in their work. For example, while most childbirth situations are

routine, there maybe emergency instances where situations require creative problem

solving by midwives. Similarly a navy ship entering an unfamiliar harbor may require

novel and improvised problem solving by its quartermasters. However, the central

imagery is one of reproductive practices enabling a newcomer to become part of an

existing community and its practice (Osterlund and Carlile 2003).

The concept of communities of practice inside of organizations was introduced by

Brown and Duguid's (Brown and Duguid 1991) use of Orr's (1996) ethnography of

Xerox repair technicians and the basic theoretical framework as outlined by Lave and

Wenger. The empirical setting is one where Xerox repair people create and share

narratives about problematic photocopiers and customers. The primary problem solving

approach is one of narration where repair people integrate various facts about the

problem via conversation and storytelling. The stories connect the individual and

collective memories of the repair people along with various tests and machine diagnostics

so that a potential diagnosis and repair can be made. Through ongoing conversations

these stories become repositories of a collective (and local) knowledge about what it

113



takes to repair machines. The stories are about machines, people and techniques for

common problems. The stories are generated by and linked to the shared practice of

fixing the machines. They are also highly situated and improvised and constantly

evolving as the actors and machines change. The distinguishing feature of this

community of practice is its eschewing of the canonical knowledge represented by

Xerox repair manuals and headquarters support staff and the use of non-canonical

narration and storytelling as a way to learn about repairing machines. This context shifts

the focus of the community of practice from one of a newcomer attaining full

membership to that of finding solutions to technical problems while also reinforcing

identity and shared meaning. Practices are now reproductive (stories allow for the

assimilation of new technicians) and also productive (stories allow for novel problem

solving).

3.2.4: Distributed Problem Solving Communities
Free and open source software (F/OSS) communities represent a type of a

community structure with an explicit orientation to innovate, i.e., continuously create

(and support) complex software. This form of community organizing is unique for four

reasons: 1) a mission to create technological products; 2) organization of work and

workers that is loosely coupled and staffed by distributed volunteers in a virtual setting;

3) an intellectual property regime that protects rights of anyone to distribute the outputs

of the community, instead of excluding non-members; and 4) the creation of "free"

software products that directly "compete" with products produced by highly paid

development teams inside of firms (Feller et al. 2005; Lakhani and von Hippel 2003;

Weber 2004).

The mission of F/OSS communities to create software-based products put them

on the instrumental end of the instrumental - affect spectrum of community orientation.

F/OSS communities are deemed successful if they can create and ship software products

(Weber 2004). The empirical literature on product development has identified creative

problem solving as a critical component of successful innovation and new product

development efforts (Allen 1977; Brown and Eisenhardt 1995; Clark and Fujimoto 1991;

114



von Hippel 2005). Thus a primary objective of participants in F/OSS communities is to

solve ongoing and specific technical problems as they relate to their software offering

and the use of that software in production environments.

The other distinguishing organizational feature of F/OSS communities is the

distributed, voluntary and virtual nature of individual participation. Several empirical

studies of various F/OSS communities studies have highlighted the presence of between

hundreds and sometimes thousands of participants in the software development and

support process (Hertel, Niedner and Herrmann 2003; Koch and Schneider 2002; Lakhani

and von Hippel 2003; Lee and Cole 2003; Markus, Mannvile and Agres 2000; Mockus,

Fielding and Herbsleb 2002; von Krogh, Spaeth and Lakhani 2003). Moreover

participation does not occur in a centralized and physical location, instead public email

lists and source code repositories on the Internet enable distributed participation by

community members from around the world. Thus F/OSS communities can be classified

and generalized as distributed problem solving communities.

Applying Glaser's analytical categories for community identification helps in

locating and comparing distributed problem solving communities with other community

types. Table 1 (adapted and modified from Glaser (2001: 7)) shows the relationship

between the various communities discussed so far. In his analysis, Glaser puts F/OSS

communities in the same category as scientific communities and labels them as producing

communities. I make the distinction that any specific F/OSS community is very

different from any specific scientific community because of the need to jointly produce

working technological artifacts. As Kuhn argues, scientific communities work within

paradigms, but within those paradigms there is no need for ex-ante cooperation and

problem solving between community members. The knowledge transfer and joint work

occurs after publication when individual scientists or laboratories have solved particular

problems. In the case of F/OSS, as I will show later in the vignettes section, the need to

produce a jointly developed artifact results in ex-ante information sharing and collective

problem solving activity.

115



The basis for relationships between actors within distributed problem solving

communities is the jointly produced artifact, software in the case of F/OSS. The need to

use the software is the most frequently reported motivation for joining F/OSS

communities with very few participants acknowledging the presence of pre-existing ties

with other community members (Lakhani and Wolf 2005; Lakhani and von Hippel 2003).

Membership is established by participating in the community's e-mail discussion lists

and by contributing in many large and small ways (software code writing, testing, quality

assurance, documentation, website development etc) to the product development effort.

There is no settled agreement in the literature on the basis for coordination of action in

distributed problem solving communities. Weber, using a political economy lens on

F/OSS, has argued that a combination of individual incentives, cultural norms and

leadership practices enable distributed development (Weber 2004: 159). An alternative

conceptualization would be to consider coordination by mutual adjustment as information

about the ongoing development and use of the software artifact is made available to

community members. The institutional framework for distributed producing

communities consists of the sharing of intellectual property which enable free use and

modification by anyone and the norms and convention around credit and attribution

(Raymond 1999).

116



Table 3.1: Subtypes of Communities2 4

Subt es of Communities

Relation to
other actors

Jointly
produced
artifact

Basis of Joint
membership participation

in artifact
creation or
support of
others

Coordination Incentives,
norms,
leadership
Mutual
adjustment
via changes
to artifact
and use of
artifact

Institutions Sharing of
intellectual
property,
credit and
attribution

Examples Free/Open
Source
Software
Communities

Common
subject
matter of
work
Perception of
having
something in
common
with others

Common
subject
matter of
work

Standards
and
procedural
rules for
interactions

Scientific
communities

Common activity and
occupation/profession

Shared practices and
legitimate peripheral
participation

Partially by
institutions

Standards for
individual conduct of
common activity,
procedural rules for
interactions

Xerox service
technicians
community

Common goal

Perception of
having
something in
common with
others

Institutions
and ad-hoc
organizations

Rules defining
situations that
require action,
rules
coordinating
collective
action
Environmental
and peace
movements

Common
norms and
values

Perception of
having
something in
common with
others and
location
Norms and
values

Dependent on
what values
and norms are
shared

Religious
communities

24 Modified and adapted from Glaser (2001:7).

117



3.3: The Periphery and its Value to the Community
The T6nniesian inspired Gemeinschaft tradition has the potential to lead many to

assume that communities are egalitarian, unstratified and open to all members. However

a stable empirical finding in the traditional communities literature has shown the

emergence of status hierarchies and other forms of stratification (Brint 2001: 15). The

reasons for stratification can include: differing levels of contribution, differential skills,

knowledge and abilities related to community activities; social or physical attributes; and

as a means of enforcing social control.

Similar stable findings about stratification have been found in instrumentally

oriented communities in general and distributed problem solving communities in

particular. Participation, as defined by contributing code to the F/OSS community, has

been found to be highly skewed and to follow a power distribution, where majority of the

code writing effort is done by a very small minority of contributors (Koch and Schneider

2002; Lee and Cole 2003; Mockus, Fielding and Herbsleb 2002; von Krogh, Spaeth and

Lakhani 2003). An excerpt from a recent speech by Andrew Morton2 5, one of the core

developers in Linux, starkly highlights this stratification of participation in code writing:

"If we look at the Linux kernel project: 38,000 Changes in three years.

Approx 1,000 individuals. But top 20 contributors provided about half of the

changes. Heavily skewed contribution rate."

Similarly skewed distribution rates are also observed in the communication patterns,

between 1996-2003, of the Linux Kernel email list, the main location for development

activity. Figure 3.1 shows that approximately 75% of all emails (approximately 350,000

messages) were sent by just 11% of individual authors between 1996-2003.

25 Available from http://www.tech-forum.org/upcoming/transcripts/TranscriptOpenSource_07-15-04.pdf

118



Figure 3.1 - Skewed Participation in Linux Kernel Email Discussion

E-malls/year over Cumulative e-mail
1996 - 2003 volume as % of total

',wou 1
/,DW

2,000

1,500

1,000

500

0

I...

100

75
Average e.mallslyear

50 _
Curnul ative

25

0
1 10 100 1,000 10,000 100,000

Contributors ranked In order of descending average
e-malls. log scale

These empirical findings raise several questions about the value of the peripheral

community members in a disturbed problem solving community. If we consider just

code writing in Linux, we need to determine what is the contribution and value of the

remaining 980 participants? At any one time there are approximately 3000 individuals

who are subscribed to the Linux kernel email list. Thus we need to consider the value of

the additional 2000 members who have not contributed code. Even more starkly when

we consider a broader time horizon of participation (1996-2003) on the email list we find

that approximately 20,000 individuals have participated in discussing some aspect of the

Linux kernel. What is the value of the these 20,000 individuals to the extremely small

number of code writers in the community? An economically rational view of

development and participation may argue that much of the periphery is generating noise

in the system and that the top 20-100 developers should instead create a private

discussion list to get the work done and ignore the largely "non-contributing" members.

In this section I discuss how the lower strata of the community, the periphery, has

been defined and the potential role it plays in achieving community objectives. I first

discuss the different conceptualizations of the core and periphery and how they relate to

distributed problem solving communities. I then propose an analytical definition of the

119



core and periphery for distributed problem solving communities, and use that to inform

my subsequent analyses. Finally I discuss the relevant research questions in this study.

3.3.1: Defining the Periphery
Core/periphery interaction structures have been identified in a number of social

science fields. The imagery is prevalent in fields as diverse as political geography

(Gottman 1980), economics (Krugman 1996), sociology (Borgatti and Everett 1999), and

organization studies (Faulkner 1987). Although there is no settled definition of core and

periphery amongst the various fields (Borgatti and Everett 1999), the two most common

ways to distinguish core and periphery are a statistical approach based on the density of

ties amongst participants (Borgatti and Everett 1999), and an approach that examines

authority and knowledge structures in a community and assigns individuals with

authority to the core and those without to the periphery (e.g. Lave and Wenger (1991)).

The field of social network analysis has pioneered statistical approaches to

determining core-periphery structures in human communication networks. The basic

approach is to gather data on ties26 between individuals, often based on some measure of

communication patterns, and then to use matrix algebra techniques to determine cliques,

cores and periphery. The basic intuition is that there are two classes of nodes in a

network, a cohesive set of nodes where actors are "densely" connected to each other, the

core, and set of nodes with actors more loosely connected to the cohesive core and each

other, the periphery (Borgatti and Everett 1999).

Lave and Wenger's (1991) concept of legitimate peripheral participation in a

community of practice informs us of the authority/knowledge approach to determining

core and periphery community structure. Peripheral members in a community of practice

lack both specific knowledge about the community's practices and are also in subordinate

authority positions, that is apprentices working with and for masters. The point of LPP is

to enable peripheral newcomers to become skillful in the practices of the community by

legitimate participation in those practices over time. The acquisition of skill and fuller

26 Ties can also be based on citations in scientific articles or patents.

120



participation in the community also provides access to differential power positions in the

community and thus the journey of a periphery member via LPP is also empowering

(Lave & Wenger 1991: 36).

However Lave and Wenger (1991: 36) also emphasize that: "There is no place in

a community of practice designated as "the periphery," and most emphatically, it has no

single core or center." The metaphorical point that they try to emphasize is that

peripheral participation leads to full participation and not necessarily central or complete

participation. Lave and Wenger's stance of a denial of "the periphery" and "the core" in

a community of practice is understandable but puzzling. They may have fallen into the

trap of Gesselschaft trap of only positive characterization of community. They do

however later acknowledge and recognize the presence of power struggles, conflicts and

the denial of LPP in communities of practice. Thus I would claim that a core and

periphery do exist in communities of practice.

Lave and Wenger's distinctions do help us to think about how to define core and

periphery in other communities. One approach would be to consider the relevant

knowledge base of the practitioners in a community. Those in the core could be

considered more knowledgeable about the community-specific knowledge structures and

practices and have greater ability to demonstrate that to periphery members. Hence by

default periphery members may have less of the relevant community-specific knowledge.

This does not mean that peripheral members lack in general knowledge or are not

knowledgeable about other matters. Indeed as Granovetter (1973) has shown, if we

conceive of the periphery as being weakly tied to the core of the community, weak ties in

a network, can be a source of important non-redundant information to the community.

A related but analytically separate approach would be to consider formal and

informal authority in a community setting. Those with authority can be considered core

and those without authority, the periphery. There are two type of authority-related

actions to consider. The first one is the master-apprentice relationship or in traditional

organizations, supervisor-subordinate relationship. In this type of authority,

121



superordinate individuals can compel action by subordinate individuals on the basis of

their status in the "organizational" hierarchy. In the case of communities of practice, the

apprentices are under the authority of full members and learn by following their

instructions and demonstrations. Another form of authority is having formal decision

rights in a community. The ability to set policy and guide the general direction of the

community. Core members have decision rights on important community-specific

dimensions and periphery members do not have such rights. In this case the authority is

more indirect. While a core community member will not able to directly compel a

peripheral member to do something, there may be instances where their wielding of their

decision rights can change the trajectory of actions from peripheral participants.

3.3.2 The Periphery as the Locus of Innovation and Source of Novelty
The community of practice lens views peripheral participants as trying to learn

the practices of the community and to eventually become full and skillful members of

that community. Peripheral members are learning and seeking knowledge about the

specific ways in which the community acts and performs in the world from the existing

full members. However if, the mission of the community is not just to reproduce existing

practices but create new ones, that is, to innovate and to produce new knowledge and

artifacts (as in the case of producing communities and problem solving communities),

then the interactions between core and periphery members need to be viewed in a

different light. It may be that peripheral members bring forth experiences and knowledge

that can be recombined in interaction with each other and core members so that new

forms of knowledge and innovation can result. Hence, the role of the periphery is not just

to learn about the practices of the community but to fully participate in novel problem

solving and to be a potential source of innovation in a community.

One stream of research in the sociology of science has argued that the flow of

ideas and innovation in scientific communities is centripetal instead of centrifugal

(Chubin 1976), that is, the margins of the scientific community are the drivers of change

and progress. Thus Crane (1969: 349) in her study of the "invisible college" in the natural

sciences speculated that "outsiders" were a likely source of new ideas and innovation:

122



"Most problem areas are open to influence from other fields. The desire for originality

motivates scientists to maintain contacts with scientists and scientific work in areas

different from their own in order to enhance their ability to develop new ideas in their

own areas."

A review of six scientific disciplines, (radio astronomy, bacteriology, psychology,

phage group, physical chemistry, x-ray protein crystallography) by Edge and Mulkay

(1974) (cited by Chubin 1976) showed that innovations from the margins and the

mobility of scientists across fields were the only consistent factors in scientific innovation

and specialty development across these fields. Edge and Mulkay did express concern that

very little was known about the social process underpinning their findings: "If we are

correct in suspecting that many major scientific innovations come from the outside, or

from the margins of, established research communities (either from applied research

contexts, or by migration between research networks), then it is surprising that so little is

known about this process" (Edge and Mulkay (1974) cited in Chubin (1976: 457)).

Research on the sources of technological innovation has repeatedly highlighted

that novel innovations arise when problem solving activity is decentralized (von Hippel

1988; von Hippel 2005). Users have been shown to innovate in a variety of consumer,

industrial and scientific settings (von Hippel 2005), often preceding and initiating firm-

based efforts (von Hippel 1978; von Hippel 1982; von Hippel 1988; von Hippel 1989).

Here users are on the periphery and the firms that commercialize and sell products which

have innovations are the core. Thus in the field of scientific instruments, Riggs and von

Hippel (1994) found that 44% (n=64) of the innovations emerged from users dispersed in

industry, universities and government laboratories, while the remaining 56% emerged

from a handful of manufacturers. They further found that the vast majority of

functionally novel innovations, that is, enabling new technical capability in the

equipment, were developed by dispersed users and "dimension of merit" improvements,

i.e. convenience or reliability, were developed by manufacturers. More recently,

DeMonaco, Ali & von Hippel (2005) have shown that in pharmaceuticals industry, 76%

(n=29) of the new drugs introduced in 1998 had significant "off-label", that is, novel uses

123



not in the original drug approval process, applications. They found that 59% (85/144) of

the "off-label" drug therapy innovations were discovered by distributed and peripheral

practicing clinicians via field discovery as compared to the scientists working inside of

the pharmaceutical companies.

Within sociology, Weiman's (1982) study of the flow of information and

influence in the personal network of an Israeli kibbutz community also shows "the

importance of marginality" or peripheral participation. Weiman gathered sociometric

data from 270 members of the kibbutz regarding conversational ties with other members

of the community yielding 2511 conversation ties. Weiman then used matrix algebra to

determine cliques in the community and then derived a network position of each

individual based on the number of times a person was chosen as a conversational tie by

someone else. "Centrals" and "Marginals" were then determined by using the upper and

lower quartiles of the choice distribution in a clique. As expected centrals, dominated in

all types of communication patterns. In addition centrals, were more efficient in the flow

of information. Information originating from centrals flowed more faster, was deemed

more accurate and more credible than the information activated by the marginals.

However, marginals were key for inter-group or inter-clique communication. Marginals

were both receivers and transmitters of information amongst the 16 distinct groups in the

kibbutz. Weiman showed that marginals were the importers of new information across

groups and that centrals then served as the transmitters of that information within groups.

Implying that centrals rely on marginals for imported information while the marginals

required the enlistment of centrals for spreading the information in the group.

There are two theoretical perspectives underpinning the findings related to the

importance of the periphery. Granovetter's (1973) seminal article on the strength of

weak ties posits that weak ties amongst individuals allow for the transfer of non-

redundant and novel information amongst colleagues as opposed to strong ties amongst

friends. Strong ties imply that the information flow amongst strongly connected

individuals will be homogenous and already known, while weak ties may enable the

transfer of new and heterogeneous information. Thus those on the periphery of a

124



community are more likely to be weakly tied to the core, while they may serve as

"bridges" between other communities and thus transfer novel information amongst them.

This theoretical perspective is the basis for both Weiman's empirical findings about the

importance of marginality and Chubin's assertion regarding the centripetal flow of novel

information in science communities. Although not mentioned by Granovetter, Hayek's

(1945) central insight about the unequal and distributed nature of knowledge in society

explains why non-redundant information may exist in the first place. If knowledge is

both spatially and intellectually distributed - then gaining access to this knowledge via

weak ties may be one mechanism by which peripheral members provide advantages to

communities.

The other theoretical perspective on the value of the periphery arises from von

Hippel's findings about the critical role of users in the innovation process. Here the

theoretical perspective is the relative stickiness of information. Von Hippel argues that

the locus of innovation shifts to where the information is the most stickiest (von Hippel

1994a; von Hippel 1994b; von Hippel 1999). Thus users innovate in areas where they

have needs not met by manufacturers, typically in using technologies in novel ways,

while manufacturers innovate in areas where they have pre-existing expertise, typically

manufacturing the technology or improving it on the dimensions of merit instead of

novelty. It is not just a matter of the presence of non-redundant information. Rather

users or peripheral members in problem solving communities experience novel issues not

foreseen by manufacturers or core members and in many cases the transfer of this use

experience is very difficult and expensive, if not impossible. A strong tie between a core

developer and a peripheral user does not mean the core will now have the information

needed to innovate. Rather the use environment will dictate that such innovation has to

be primarily driven by the periphery. Thus the periphery has to first innovate and then

transfer the newly created knowledge to the core, regardless of the strength of ties.

In the case of distributed problem solving communities we can anticipate that

both theoretical perspectives are applicable depending on the sophistication and use

characteristics of both core and peripheral members.

125



3.3.3 Defining core and periphery in F/OSS communities
The emerging empirical studies on various F/OSS projects have identified the

presence of multiple roles amongst the participants in those communities. These roles

include: 1) project leaders who assume overall "responsibility" for the output of the

community; 2) developers who contribute code; and 3) other individuals who while using

the software identify bugs, submit problem reports and test the code (Gallivan 2001).

Statistical analysis of contribution patterns in terms of code writing and e-mail

communication show a small set of participants who contribute a lot and a much wider

set of individuals with significantly less participation for both coding and emailing (Koch

and Schneider 2002; Lee and Cole 2003; Mockus, Fielding and Herbsleb 2002; von

Krogh, Spaeth and Lakhani 2003). This has led many researchers to make a distinction

in participation between "core developers" and "peripheral developers" (Gallivan 2001:

293).

However this core - periphery distinction as currently used in the literature has

conflated statistical findings with decision rights in the community. For example, many

of the studies use historical logs from the community's public source code repository to

track contribution rates by developers in the community. Contributions are summed by

individual and then rank-ordered to determine the underlying distribution and patterns of

participation. Statistical tests, such as cluster analyses are then used to determine who is

core and who is peripheral e.g., Koch et al. 2002. However, this procedure ignores the

fact that all the individuals listed as contributors in the logs of the source code repository

have full decision rights to commit code to the project repository. Regardless of their

contribution rates and importance, all individuals in the project can commit code any

where in the repository. Mockus et al. 2002 describe the process in the open source

Apache web server community: "Each AG [Apache Group] member is expected to use

his/her judgment about committing code to the base, but there is no rule prohibiting any

AG member from committing code to any part of the server. Votes are generally reserved

for major changes that would affect other developers who are adding or changing

functionality." Thus once given the decision right to commit code to the repository,

participants have a lot of latitude and freedom to make changes. In addition this decision

126



right also allows them to commit code from individuals who do not have these rights. So

a high frequency contributor may simply be playing a functional bridging role between

the core and the periphery by committing code from others. So while we observe a

statistical distinction between high and low frequency contributors to the code writing

effort, from a community point of view, all of them may be seen to have achieved core

status.

Different communities have different rules about how someone gets the right to

make official changes to the source code repository. Von Krogh et al. 2003 have

identified the presence of a joining script whose repeated enactment by newcomers in a

community helps predict their trajectory towards the core group. In some cases, the

community is fairly laissez faire about who gets source code access, for example in

GNOME, a highly sophisticated Linux graphical user interface desktop product, there

were 280 individuals (German 2005) who had full access to the repository in 2002. Here

decisions rights are given as soon as a new individual is submits acceptable code changes

at a high rate (i.e. he/she is continuously asking others for his/her "good" code to be

added to the repository). While in other cases, there may be a formal mentoring and

voting system amongst the current core members as to who gets "promoted" and given

full access to the repository (Mockus, Fielding and Herbsleb 2002). In either situation,

the key element is gaining the decision right to commit code to the repository.

Generalizing to other distributed problem solving communities, the core can be

considered as having the ability to make permanent changes to the joint work output of

the community. The core may serve other functions as well, for example media liaison,

public relations, distribution coordination etc. However, the ability to make changes to

the focal technological object of the community is a status that can be used to

differentiate core and peripheral participation. In my particular empirical context, I

therefore identify core members as those who have full access to make changes to the

source code repository, and peripheral as those who do not.

127



3.4: A Practice View of Distributed Problem Solving Communities

A majority of the academic research on problem solving has focused on the

individual as he/she goes about solving a problem, and most of that research has involved

the use of discrete "puzzles" in artificial domains instead of complex real-world

situations (Dunbar 1998). Two important streams in the individual/cognitive problem

solving domains are the Gestalt-based tradition on important role of insight in problem

solving and the Simonian view of problem solving as a search in a problem space.

The Gestalt tradition, as best represented by the work of Duncker (1945), argued

that solutions occurred when the individual gained "insight" into the problem and not

through a process of trial and error learning (Dunbar 1998). Followers of the Gestalt

tradition referred to four stages of problem solving: preparation, incubation, insight and

verification. Sudden insight enabled problem solvers to discover a crucial part of the

problem and once that was discovered, all other parts fell into place automatically and the

problem was solved.

Duncker (1945) and colleagues (Adamson 1952; Birch and Rabinowitz 1951)

identified the existence of"functional fixedness" - where problem solvers have difficulty

using familiar tools in novel ways as a major source of insight blockage. In one of

Duncker's experiments, he created five problems which could only be solved by applying

a new way of using a tool. The first of the two groups of experimental subject saw the

tool being used in a usual way while the second group did not. The result of the exercise

was that subjects were more likely to solve the problems requiring a novel way of using

the tool if they had not observed how that tool was used in the usual way. The problem

solving success of subjects that had previously observed the tool being used as usual was

hampered.

In Duncker's terms the subjects were "fixated" on the tools' normal function and

could not re-conceptualize it in a way that permitted them to solve the problem. The way

around functional fixedness and the generation of new insight is for the individual solver

128



to work on restructuring the problem so that it is amenable to insight generation.

Restructuring of problems could be facilitated via hints to the problem solver or by the

problem solver rethinking the constraints of the problem description and solving it in

non-obvious ways. In either case it was the individual and his/her own cognitive ability

that determined success in problem solving.

The seminal work of Newell and Simon (Newell and Simon 1972; Simon and

Newell 1962) has described the problem solving process as an attempt to get from the

present to a desired situation through a process of "searching through a large maze." The

maze depicts the problem space, the nodes of the problem space represent situations, and

the paths joining one node to another are the actions that will transform one situation into

another. A problem space has an initial state and a goal state and a set of means that

allows a solver to move from one state to another. Problem solving is an act of stepwise

search through the problem space (Dunbar, 1998) and decisions by problem solvers are

taken under significant uncertainty (Simon, 1969: 68).

Newell and Simon (1972) characterize the differences in problem solving search

processes as "trial and error," "hill-climbing," and "means-end analysis." The three

approaches form a succession in which the latter processes requires information the

former does not. Trial and error problem requires solvers to only recognize that they have

reached their goal; hill climbing requires that solvers can assess the relative closeness of

their position to the goal; and means-end analysis requires that the solver be able to

discern the type of difference between the current state and the goal state (Baron 1988).

Understanding how core and peripheral participants, many of them strangers in a

distributed community, collectively solve problems and create complex technological

artifacts puts the emphasis on the social aspects of the problem solving process. In

particular, collective problem solving implies a relational view of the problem solving

process, that is, how do the various participants relate to each other and what are the

specific individual and collective activities that they undertake so that so that they can

move forward and develop solutions? While the individual approaches may be relevant

129



and applicable in a community setting, there is also a need to identify the collective

mechanisms that enable communities to innovate and solve problems.

A relational view of problem solving implies the application and development of

a theory of social practice. A theory of social practice emphasizes the relational

interdependence of individuals with each other, their ongoing activity and their

interactions with technology and tools as they jointly solve problems (Lave and Wenger

1991: 50). A social practice theory goes further than other theories by focusing on

interactions and relations and it places everyday activity as the locus of production and

reproduction of relations (Osterlund and Carlile 2003: 3). Thus a theory about problem

solving in a collective setting is not about a sudden burst of insight or an individual

search in a problem space, rather it is the articulation and explication of the activities

taken on by the collective in their problem solving process. The focus is not on the

attributes of individuals or groups, rather it is on the relations between people and objects

and how those relations come about. In other words, if we believe systems theorists that

"the whole is greater than the sum of the parts" (Langlois 1983), then understanding the

linkages between parts becomes important.

As is to be expected of an interpretive theory building tradition, "there is no

unified practice approach" (Schatzki 2001: 2). However a key tenet of the diverse

approaches to practice theory identifies practices as "embodied, materially mediated

arrays of human activity centrally organized around shared practical understanding"

(Schatzki 2001: 2). Central to this perspective is the primary focus on human activity,

that is, the concrete actions taken by people. Practices depend on activity, and activity

amongst and between individuals relies on the ongoing development of shared

understandings and agreements. Finally activities are often mediated through material

means, meaning, individuals utilize material objects and relate to material objects to

perform their activities and to develop shared understanding. Practices are thus dependent

on and are constitutive of the material world.

130



Barnes hence concurs with the above view of practice theory by alluding to

Kuhn's proposition about paradigms in the natural sciences (Barnes 2001). Citing Kuhn

he asserts that one can view paradigms as practices and not "theories": "accepted

examples of actual scientific practice - examples include law, theory, application and

instrumentation together; they are examples selected as model achievements, ways of

solving problems known to work in one case and available to guide practice in other

cases" (Kuhn 1970: 10). Hence paradigms represent shared activities constituting

practice and in any "normal" science field they are an indication of agreement about

practices. However, this agreement can be about joint activities alone and thus it is

"perfectly possible for them to press forward cooperatively on the basis of this

agreement, whilst being in radical disagreement with each other at the level of

"philosophy" or in their abstract theoretical ideas" (Barnes 2001: 20). Barnes'

supposition has been empirically supported by Gallison and colleagues (Galison 1999;

Galison and Stump 1996) who have shown that the sciences in many fields are "united in

their disunities," even while producing practical and "proven" outcomes.

Developing a social practice theory grounded in the actual activities of the actors

can provided an analytic lens on how social order and task accomplishment occurs.

Practice theory has been used to study identity formation (Wenger 1998), communally

centered distributed knowledge (Brown and Duguid 1991; Brown and Duguid 2001;

Lave and Wenger 1991; Orr 1996) and distributed organizing (Orlikowski 2002).

Developing a practice theory implies developing a general and abstract account of a

particular empirical phenomenon (Schatzki 2001: 3). Schatzki notes that: "Systems of

generalizations (or universal statements) that back explanations, predictions, and research

strategies are theories. But so, too, for example, are typologies of social phenomena;

models of social affairs; accounts of what social things (e.g., practices, institutions) are;

conceptual frameworks for depicting sociability; and descriptions of social life - so long

as they are couched in general, abstract terms" (2001: 4). Hence one of my aims here is

to develop a general and abstract account of distributed problem solving communities.

131



3.5: Research Setting, Data and Methods

3.5. 1 Research Setting
The PostgreSQL community produces the open source PostgreSQL database

management software (PG from now on). Databases are a critical component of the

modem information infrastructure as they serve as the repositories of much of the data

produced and consumed in the information economy and society. The PG software and

community have a had lengthy evolution and a history going back to the middle of 1970s

27. In the mid 1970s' Michael Stonebraker at University of California, Berkeley started an

academic research project to create a "modern" DBMS called Ingres. In 1982,

Stonebraker left Berkeley to commercialize Ingres, but eventually returned to academia

in 1985. Upon his return, Stonebraker started a "post-Ingres" project to address the

problems with contemporary database systems that had become increasingly clear during

his commercial experience in the 1980s. Hence the term "Postgres."

Starting in 1986, Stonebreaker's academic team released a number of computer

science papers (see Stonebraker, Rowe, & Hirohama (1990) for citations) describing the

basis of the system, and by 1988 the project had a prototype version up and running. That

year, Stonebraker released the prototype under a the Berkeley Software Distribution

(BSD) license, which enabled free copying and modifications by anyone. Over the next

five year's Stonebraker's team released three version of PG. By 1993 a large number

(over 1000) of users existed and began to overwhelm the project with requests for support

and features. After releasing a Version 4 of the software, primarily to cleanup existing

issues, the project ended.

Although the Postgres project had officially ended, the BSD license (under which

Berkeley had released Postgres) enabled Open Source developers to obtain copies and to

develop the system further. In 1994, two UC Berkeley graduate students, Andrew Yu and

Jolly Chen, added a SQL language interpreter to replace the earlier non-standard system,

creating Postgres95. The increasing user demand for improvements to the system resulted

27 1 obtained details on the history from this wikipedia entry: http://en.wikipedia.org/wiki/Postgresql

132



in a decision, in 1996, by Yu and Chen to create an external email list and to decentralize

the software development effort.

Bruce Momjian, one of the earliest core developers in the community describes

the transition from an academic project to a distributed community28:

In the summer of 1996, it became clear that the demand for an open source

SQL database server was great, and a team was formed to continue

development. Marc G. Fournier, in Toronto, offered to host the mailing list

and provide a server to host the source tree. One thousand mailing list

subscribers were moved to the new list. A server was configured, giving a few

people login accounts to apply patches to the source code using cvs.

By this point Jolly Chen had stated, "This project needs a few people with lots

of time, not many people with a little time." With 250,000 lines of C code, it

was easy to understand what he meant. In the early days, there were four

people heavily involved: Marc Fournier in Canada, Thomas Lockhart in

Pasadena, California, Vadim Mikheev in Krasnoyarsk, Russia, and me in

Philadelphia, Pennsylvania. We all had full-time jobs, so we did this in our

spare time. Calling this a challenge was an understatement.

Our first goal was to scour the old mailing list, evaluating patches that had

been posted to fix various problems. The system was quite fragile then and

not easily understood. During the first six months of development, there was

fear that a single patch would break the system, and we would be unable to

correct the problem. Many bug reports had us scratching our heads, trying to

figure out not only what was wrong, but how the system even performed

many functions.

We inherited a huge installed base. A typical bug report was, "When I do this,

it crashes the database." We had a whole list of them. It became clear that

some organization was needed. Most bug reports required significant research

to fix, and many were duplicates, so our TODO list reported every buggy SQL

28 http://www.oreillynet.com/pub/a/network/2000/06/16/magazine/postgresqlhistory.html

133



query. It helped us identify our bugs, and made users aware of them too,

cutting down on duplicate bug reports.

We had many eager developers, but the learning curve in understanding how

the back-end worked was significant. Many developers got involved at the

edges of the source code, like language interfaces or database tools, where

things were easier to understand. Other developers focused on specific

problem queries, trying to locate the source of the bug. It was amazing to see

that many bugs were fixed with just one line of C code. Postgres had evolved

in an academic environment and had not been exposed to the full spectrum of

real-world queries. During that period, there was talk of adding features, but

the instability of the system made bug fixing our major focus."

Table 2 shows the growing complexity of the PG software, in terms of lines of the

source code written since it started to operate in a distributed problem solving

community. Over the seven years of releases the code-base for the project has

approximately tripled in size and 3,393 individuals have participated in the development

email list for the community.

134



Table 3.2: Release History of PostgreSQL Software

10/27/1996

6/8/1997

10/2/1997

3/1/1998

10/30/1998

6/9/1999

5/8/2000

4/13/2001

2/4/2002

11/27/2002

11/17/2003

1.09

6.1

6.2

6.3

6.4

6.5

7

7.1

7.2

7.3

7.4

178,976

200,709

225,848

260,809

297,918

331,278

383,270

410,500

394,274

453,282

508,523

n.a.

224

116

150

243

222

334

340

297

296

355

n.a.

21,733

25,139

34,961

37,109

33,360

51,992

27,230

-16,22629

59,008

55,241

n.a.

97

217

233

153

150

156

80

n.a.

199

156

PG development occurs outside the boundaries of any "formal" organization.

The community is virtual in both the literal and physical sense. There is no formal

organization driving the development of the software and there is no physical space

where the developers work together. PG by itself does not have any employees.

However, many developers do have jobs that allow them to work on PG software - full

time and part-time. The community congregates at three major Internet-based

rendezvous points:

1) The PG website (http://www.postgresql.org) is a portal into the community

with areas for developers, users, and downloading source code;

2) There are 22 e-mail lists related to the various aspects of the project. The

majority of the technology development activity occurs on the "hackers" and

29 In this PG release the community worked to rearchitect the system and not to remove redundanices in the
software code and thus we observe a reduction in the linese of code from the previous release.
30 Some open source projects have incorporated as non-profit organizations (for legal protection purposes)
and often have a formal board of directors.

135



"patches" e-mail list. All of the lists are open except for one which is reserved for

five members of the PG steering committee for their community-related

administrative activities (described below);

3) Public source code repository, also referred to as CVS (Concurrent Versioning

System). Anyone in the world has read access to CVS, that is, they can download

all or some of the files. At the time of my study 11 individuals had decision rights

for "write" access to this repository, that is they had the ability to commit changes

to the software and make these official for the rest of the community.

The "steering committee" is historical and self-appointed and consists of very

active developers. At time of my study the steering committee included the following

five individuals: Peter Eisentraut, Aachen, Germany; Marc G. Fournier, Wolfville, Nova

Scotia, Canada; Tom Lane, Pittsburgh, Pennsylvania, USA; Bruce Momjian,

Philadelphia, Pennsylvania, USA; and Jan Wieck, Germany. Interviews with the steering

committee members (Momjian, Wieck) revealed three primary functions: 1) to determine

the release schedule for software, that is, to declare dates when the software is in beta

testing and when the software is ready for release; 2) to discuss people issues, that is how

to handle unruly individuals in the community (rare) and who to give commit access to in

the community (more common); and 3) to represent the public face of the community to

media and commercial entities looking to establish relationships with the community.

The steering committee members also emphatically noted that none of the technical

problem solving and design discussions happen on their private list. All members of the

steering community have full time jobs with firms that have products or services which

relate to the PG software.

3.5.2 Data and Methods
My research objectives are in the spirit of "bringing work back in" (Barley and

Kunda 2001) for the development of grounded theories of distributed problem solving. I

chose to study one complete technology development cycle as the PG community's

software release went from version 7.3 to 7.4. This entailed collecting data on one year

of technology development activity in the community from November 27, 2002 (the 7.3

136



release date) to November 17, 2003 (the 7.4 release date). During this time period the PG

community added 55, 241 new lines of code to its collective product and created 241 new

features and improvements over the 7.3 code base. As table 2 shows, this amount of code

production is consistent with the previous nine community-based releases. F/OSS

communities are relatively modest in advertising their technological achievements and

the PG community is no exception. Thus the point upgrade from 7.3 to 7.4 should not be

mistaken for an incremental improvement in technology. In a commercial setting

equivalent achievements of code writing and new feature development would merit an

increase of the software version number to an "8.0." Following the entire technology

development cycle allowed me to observe a majority of the situations and conditions that

the community faced during the various phases of the software development process:

design, development, testing, beta release, and user feedback.

I used multiple data collection methods to achieve theoretical triangulation and

insight into the workings of the community. Data collection began after the 7.4 release

was completed. Two unique features of F/OSS communities in general and the PG

community in particular enabled me to "directly observe" the interactional and problem

solving aspects of community activity: 1) all of the technology development occurs via

public e-mail lists and software source code repositories; and the 2) majority of the

technically-related communications and interactions, and related source code changes are

publicly archived. Thus in the 7.4 release cycle there were 20,129 email messages

exchanged between 798 individuals in two development-related emails lists and 2,402

changes committed by 11 individuals to the source code repository. The publicly

archived discussions and changes to the source code repository allowed me to reconstruct

the entire development history of the community as they went from the 7.3 to 7.4 version

and in essence enabled me to conduct detailed historical analyses and to use ethnographic

methods on the interaction history of the community.

I analyzed the problem solving process in the PG community by creating an

analytic tool called an "innovation process history." In the innovation process history, I

matched concrete software features (for example spell checking in a word processor) to

137



actual changes in the software source code repository that enabled the features, and to

related public interactions (on e-mail lists) in the community during that feature's

development.

The innovation process history for PG was created in the following manner. Once

a development cycle is completed, the PG community creates a "release note" for the

user population that lists all the new features and improvements in the newly released

version of the software. Each item in the release note provides details on the new feature

or change in the software along with an acknowledgement of the individuals associated

with that change. The release notes for PG 7.4 listed 241 new features and changes. In

essence, the release note provides an indication of all the relevant technological problems

that are solved by that change. The features and changes in the release note are enabled

via the changes made to the software code repository, CVS. The software repository is a

versioning source code management system that keeps track of all code changes along

with following meta-information: 1) date and time of change; 2) identity of the person

making the commit; 3) names of existing files changed and lines of code added and

subtracted per file; 4) new files added; and 5) any comments made by the person making

the commit, including acknowledgement of the person(s) who wrote the code if it not the

committer.

I worked with a periphery member, Neil Conway, who was an active participant

and coder during the 7.4 release cycle, to match the 241 software feature in the 7.4

release note to the 2402 changes in the software repository. This resulted in the direct

matching of the 574 source code changes to the 241 software features. An analysis of the

remaining 1828 residual changes in the source code revealed that they consisted of

documentation, translation, and technical features that were still under development and

not complete. I choose not to include these residuals in my analysis as they were not

directly related to the technical solving problem effort of completed features.

The matching of the features to the source code changes provided me with an

approximate timeline of development along with key words and names of individuals

138



associated with each feature. I was then able to search the email archives of the two

development related email lists to track all the related technical discussions underpinning

the software changes and ultimately the features. This then enabled me to track the

problem solving process enacted by the participants as they discussed, developed and

jointly converged on a solution. The innovation process history thus provided me with

quantitative and qualitative data on the core-periphery interaction and problem solving

process used in the community. For each feature developed, I was able to determine who

initiated the development process, who provided confirmatory evidence for similar needs,

who participated in the problem solving process, the number and sources of the potential

solutions proposed, what was the configuration and history of the actual solution

developed, what feedback was provided, and what were the overall timing and

community dynamics.

I also worked with Bruce Momjian, a long-standing core developer in the

community, to categorize the types of features and changes developed in the 7.4 release

cycle. One of his tasks in the PG community is to create the release notes for new PG

community software releases. Each release note is developed collaboratively by the

community with Momjian leading the email discussion. Thus he has good ability and a

broad view of all the changes in any particular release note. Lientz and Swanson (1980)

in their study of 487 information technology organizations have identified three reasons

for making changes to software programs: adaptive, corrective and perfective. Adaptive

changes add new features to the software program. They alter the software to meet newly

changing and discovered use requirements. Corrective changes are made to fix problems

with existing features; that is, bug fixing. A bug is defined as a variance between the

expected behavior of the system and its actual behavior in test or use conditions

(Crowston 1997). Finally perfective changes are those related to improving existing

performance of the system. In this change the problem is not unexpected behavior rather

a desire for improved performance of the same behavior (e.g.: making software run

faster). Momjian exclusively assigned each of the 241 items in the release notes to one of

the Lientz and Swanson categories. For reasons of parsimony and comparability I then

transformed the Lientz and Swanson software change categories to an innovation

139



taxonomy developed by Riggs and von Hippel (1994). Their taxonomy consists of

classifying innovations as either beingfunctionally novel, i.e. enabling new technical

capability, or a dimension of merit improvement i.e. performance improvement or fixing

problems. Thus adaptive changes were reclassified as functionally novel and corrective

and perfective changes were reclassified as dimension of merit improvements.

As I was generating the innovation process histories of all 241 new features31 , I

paid paying close attention to the ongoing interactions between community participants

and how they were engaging in joint problem solving activity. As is to be expected, a

detailed exploration into the one year history of development in a community of 798

individuals will yield information on other relevant issues beyond just my narrow focus

on problem solving. Thus I found the community grappling with issues related to

assigning credit to contributors, ways to speed up and streamline the software

development process, competitive information and how to deal with commercial

pressures, explaining to novices how the development process worked and why it was so

different from commercial firms, etc. All of these were interesting and could be fruitful

sources of future reflection and research. However, I chose to remain focused on

exploring the practices of collective core-periphery problem solving.

Once the innovation process histories were completed, I then developed 32

detailed vignettes of the problem solving process enacted in the PG community. Half the

vignettes related to functionally novel changes and the other half related to dimension of

merit improvements. Depending on the scale, scope and length of the change, the

vignettes took up between 5 to 40 pages of notes each, with an average of 15 pages. The

vignettes exhaustively detailed the community discussion underlying the feature

development and included my interpretations of the problem solving process. I consulted

with Conway and Momjian when I encountered interactions amongst individuals which

were not clear and areas that I found to be confusing. Furthermore, since I had email

contact information on all the participants, when I found areas in which I needed more

clarification or context I would reach out to the appropriate person and have an email

31 The appendix contains a list of all the 241 changes and their respective innovation category.

140



exchange with him/her on the particular topic. Most of the time this related to

understanding better their expertise, how they came to be developing solutions and their

reflections on experiences in the PG community. In all, I conducted 25 e-mail based

interviews to further enhance the vignettes.

I used inductive qualitative techniques to analyze the vignettes (Eisenhardt 1989;

Eisenhardt 1991; Glaser and Strauss 1967; Strauss and Corbin 1990) with a focus on

discerning the activities that enabled distributed problem solving. My analysis was geared

towards understanding the commonality and differences in activities that were being

performed by the participants in the vignettes. I used Orlikowski's (2002: 256) definition

of activity; "what members did every day as part of the complex and distributed product

development work;" to guide my open coding of the activities involved in collective

problem solving. Initially I attempted to use the individual problem solving literature and

the traditional software development literature as a guide to assist me in creating

categories and themes. However, I found that to be quite constraining and not reflective

of the actual work being done in the community. I thus abandoned those categories and

decided to let the categories emerge via multiple readings of the vignettes, combined with

examination of the innovation process histories and related development email

discussions, and reflections on my interview notes with the various participants.

I used Orlikowski's (2002) distinction that practices are both individual

(performed by actors in their everyday action) and institutional (they shape and are

shaped by collective norms and structures) to focus on activities that an individual did

and the activities that occurred at a collective level. Individual level activities as those

that were done by participants on their Of course in the empirical setting these are

intertwined in the sense that actors have full agency over their activities, however there

are a set of activities that occur in response and in light of the collective and others that

reflect individual action. Using the individual and collective practice distinction, I then

grouped and combined activities into practices and then created appropriate labels for

those activities and practices.

141



Once my initial set of activities and practices were developed. I individually

consulted with Ben Hyde and Stefano Mazzocchi from the open source Apache

Community to get their reactions and feedback on my categorization. I chose them as

collaborators in fine tuning the practices because they have extensive experience in

building and leading open source communities (Hyde was president of the web server

project within Apache, which has over 60% global market share, Mazzocchi has started

and led four different and successful open source communities and is currently on the

Board of the Apache Software Foundation). Their experience in a different but related

empirical setting helped me to develop categorizations that were robust across distributed

problem solving communities. Hyde and Mazzocchi provided feedback that made me

revisit my categories and to re-examine the data from the vignettes in a new light. Their

input led to a further refinement of the practices and activities and helped me to reframe

the number of practices developed from ten to six. I then presented the activities and

practices to my PG informants, five other members of the PG community and a leader

from one other open source project, GNOME, for their reactions and feedback. Their

commentary helped to refine my interpretations and representations of the distributed

problem solving practices and helped in creating suitable generalizations across

communities.

3.6: The Primacy of the Periphery
In this section I quantitatively analyze the participation patterns of core and

peripheral community members on the development email list ("hackers") and their

contribution to the new software features developed between the 7.3 and 7.4 release

cycle. I used the innovation process histories, where I matched new features in the 7.4

release note to source code changes and email discussion, to generate the data underlying

the core - periphery contribution the software development process.

3.6.1: Community participation structure
Table 3.3 shows that during the 7.4 release cycle there were 792 individuals who

participated in the PG community's "hackers" email list. Eleven of these participants had

CVS commit access, that is, the decision right to make changes to the community's

software repository, and as discussed above were considered core community members.

142



Table 3.4 shows that core members dominate the email message traffic on a per person

basis. While 781 peripheral members were responsible for 61% (16,797) of the emails

generated, two core members, Tom Lane and Bruce Momjian generated 30% of the

email list traffic. On average, core members were generating between 196 times (for

Lane and Momjian) and 13 times (remaining core members) the email traffic from the

peripheral participants.

Email discussion take the form of "threads," where messages are "threaded"

together around a common topic. McDaniel, Olson and Magee offer a useful definition

(1996: 41) "We define a thread as 'a stream of conversation in which successive

contributions continue a topic, following an initial contribution which introduces a new

topic."' Yates, Orlikowski and Woerner (2003) have shown threads are used to establish

and maintain continuity, coherence, and coordination in the collaborative work of a

virtual team. Table 3.5 shows that on an overall basis, peripheral participants were

responsible for initiating 76% of the discussion threads on the development email list.

On a per person basis the core members were still responsible for initiating 23 times the

number of discussions as compared to peripheral participants. However, it is worth

considering that a large majority of the discussions were being triggered by peripheral

members. Starting a discussion implies giving direction and perhaps setting the

intellectual agenda for a conversation. Thus, in this context the distributed peripheral

members help to lead the agenda setting activity for the community. In addition, given

that on a per-person basis the number of discussions imitated is fairly low, three

threads/member, the implied diversity of the discussions initiated can be expected to be

quite high. Many different individuals initiate conversations in the community and this

provides new sources of information into the development activity.

143



Table 3.3: Community Structure during the PG 7.4 Release
Cycle (November 2002 - November 2003)

Core 11 

Periphery 1 781

Total 792 

Table 3.4 - Core Members Dominate Email Message Traffic

Core Group (Lane & Momjian) 5098 30% 2549
Core Group 2 (Remainin 9 members) 1473 9% 164

Periphery (781 Members) 10226 61% 13

Total 16797 100

Table 3.5 - Periphery Drives Community Discussion

Core 790 24%

Periphery 2542 76%

Total 3332 100%

3.6.2: Contribution to software development and problem solving process
Table 3.6 shows the breakdown by innovation type of the 241 features developed

by the PG community and the attribution to the core and peripheral participant in the

release note. Recall that Bruce Momjian, one of the core developers, categorized these

features according to the software change taxonomy developed by Lientz and Swanson

(1980) as adaptive, corrective and perfective. I then took those ratings and transformed

them into the Riggs and von Hippel innovation categorization as functionally novel

(adaptive) and dimension of merit improvement (corrective and perfective). 32 Consistent

with findings from Lientz and Swanson (1980), in their analysis of improvements to

existing software program, a majority of the work done in a mature software project like

PG relate to corrective and perfective changes. Note again that the 11 core developers

appear to do a majority of the work and have been credited for 55% of the software

32 The appendix to the paper contains a listing of all the features and their respective categorization.

144

.

L1 I



coding effort, whereas 74 peripheral members were credited with developing the

remaining 45% of the features.

Table 3.6 also reveals that when considering the innovation categorization of the

features that were developed, as a percentage core members specialize in creating

dimension of merit improvements (62% of dimension of merit features) and peripheral

participants dominate in creating functionally novel changes (62% of functionally novel

features). Thus members from the distributed periphery are a significant source of

novelty and new functionality into the community. This finding is consistent with Riggs

and von Hippel's findings that distributed users are the source of functionally novel

improvements in the chemistry analyzer industry. The primacy of the periphery in

creating a majority of the functionally novel innovations is most likely related to them

being embedded in heterogeneous use and technical environments. Peripheral

community members encounter needs and problems that are not experienced by the core

developers and thus they innovate to solve their own local problems or issues.

Table 3.6: Feature Type Author by Member Status 33

Member Status

Functionally Novel (Adaptive) 27 (38%) 44 (62%) 71
Dimension of Merit (Corrective and Perfective) 105 (62%) 65 (38%) 170

Total 132 (55%) 109 (45%) 241

33 Author here refers to the person given credit on the PG release note.

145



Table 3.7 considers the source of the original initiation of the new feature by

member status. I developed this analysis by tracking down the source of the first email

that triggered work on a particular feature. In this case we see that the peripheral

members, regardless of the final coding attribution in the release, are the largest source of

new feature development in the community with 70% of all features being triggered by

peripheral participants. Peripheral members also lead in triggering both functionally

novel and dimension of merit changes. These results corroborate the data from table 4

where discussion initiation is widely distributed in the peripheral membership. Hence the

peripheral membership, besides being credited as the majority authors of the functionally

novel code, are also key in triggering the majority of coding activity.

Table 3.7: Source of Initiation of Feature by Community Member Status

Total

Besides writing novel code and triggering coding activity, peripheral members

also play an important role in the problem solving process that underlies any particular

feature. In creating the innovation process history I examined the role of the periphery

in:

· triggering the feature development;

* in confirming the need information;

* in helping to formulate the exact problem;

* in proposing potential solution information; and

* in providing information that was used in the final solution

Table 3.8 shows that peripheral members play an equally important role in the entire

problem solving process. As noted above 70% of the changes are triggered by peripheral

participants. In 59% of the cases peripheral participants confirmed that they had the need

146

I Member Status

Functionally Novel (Adaptive)

Dimension of Merit (Corrective and Pe

L'~~.au ME ~s



for the feature and in 58% of the cases the peripheral participants worked with core and

other peripheral participants to help formulate or diagnose the exact problem. In 51% of

the cases the peripheral participants provided potential solution information for the

problem at hand and in 41% of the cases - the solution information was utilized in the

final software code.

Table 3.8: Role of Periphery in Community Problem Solving

Triggered feature development 70

Confirmed need information 59

Helped formulate exact problem 58

Proposed solution information 51

Provided information used in final solution 42

N = 241

In my innovation process history I also tracked the timing of the first software

code submission for each feature. Table 3.9 shows that 39% of the 109 features

developed by the peripheral members arrived "pre-made" to the community, that is, the

peripheral developer submitted code at the time of the first problem statement. This

indicates that a significant portion of the peripheral developers first solve problems

locally and then participate in the larger community. This does not mean that the

software does not evolve or change once it arrives at the community. However, the

arrival of the code, does signal to the rest of the community that a peripheral participant

is motivated enough to make a serious attempt at problem resolution.

Table 3.9: Code Developed by Periphery Arrives "Pre-Made"

Code submitted at time of problem statement 39

Code submitted after problem statement 61

N= 109

147



3.7: Vignettes of Distributed Core-Periphery Problem Solving
In this section I present three vignettes of core-periphery interactions and

collective problem solving effort in creating a complex technological product. The

vignettes are based on analyzing the development process in three distinct phases: 1)

problem definition and solution exploration; 2) solution development; and 3) use and

refinement. These phases are my categorization of the development process and are for

analytic convenience. In reality, the boundaries of the phases are quite blurry and

community participants may not, while in the midst of their work, think of these

categories as being salient.

I chose the vignettes to illustrate representative problem solving and feature

development episodes in the PG community. The vignettes show the complete feature

development history from the time the feature need was first mentioned on the

development list to its entry into the release note. As discussed above, the vignettes were

developed via the innovation process history analysis of PG's 7.4 release note. Two of

the vignettes illustrate novel feature development and one illustrates a major dimension

of merit improvement to the software.34 The first vignette illustrates peripheral

community members dominating the problem solving and code writing effort for a new

feature. The second vignette shows core members leading the problem solving and code

writing related to a dimension of merit improvement (getting better performance for an

existing feature). The third vignette shows significant collaboration between core and

peripheral members as they work towards creating new functionality.

3,7.1: Vignette 1 - Periphery Members Develop Novel Feature
The development of the Auto Vacuum (AV) feature in the PG community

demonstrates how the periphery in a community can take the lead in all aspects of the

software development process. Vacuuming is a routine maintenance function required in

databases so that the system will continue to maintain high performance levels. Databases

provide access to stored data and the ability to update the stored data with new data.

During an update transaction, the PG system creates new entries for the data in the

34 The innovation characterization of the vignettes was based on Bruce Momjian's coding discussed in
Section 5.

148



transaction and then makes them available once the transaction is completed.

Meanwhile, parallel access queries for the same data see the old data for consistency of

results. When the transaction is completed the database now contains both the new

updated data and the old data - with the old data being inaccessible to users. However

this old data takes up memory and hard disk space and can lead to performance

degradations if it is not removed via vacuuming.

There were two significant vacuuming issues with previous PG releases. First,

vacuuming imposed a performance penalty on the database while it was in use. Database

administrators had to carefully time the vacuum function as the entire system would slow

down when vacuuming was initiated. In addition, the database administrator had to

manually determine the areas of the system that needed vacuuming as the operation took

a significant amount of time and would lock out other operations while in process.

Second, many new users did not know that vacuuming was required and would not

initiate the function, and would later complain about performance issues. As one

experienced PG user mentioned3 5:

"We at Company[XYZ] often hear that "postgressql is very slow, and the

files are getting larger" and then "wow! it's so much faster now that

we're regularly vacuuming!" after we let them know about this need (the

RPM install of PostgresSQL is so easy that most people don't read any

docs) ."

Auto Vacuum itself was not on the project's TODO list or anticipated before-hand

by the core team. PostgreSQL users voted AV functionality as most "favorite new

feature" in the 7.4 release cycle. The development of this feature involved participation

by 23 community members over a one year period of time. The feature was initiated,

developed and refined by three peripheral participants with active engagement by core

and other peripheral developers.

35 In the email discussion around the creation of the AV feature.

149



Problem Definition and Solution Exploration (September 3, 2002)

The problem definition and solution exploration phase of this feature took place

over a 24 hour period and comprised eight individuals from six different countries. This

phase in the development cycle illustrates the emergence of a collective problem solving

process where different contributors participate by modifying and changing ideas

generated by others. No one person was actively guiding the discussion or its outcome.

The need for automatic vacuuming was first articulated during the 7.3 beta testing

cycle by Mario Weilguni, a peripheral community member from Germany:

Subject: possible vacuum improvement?

Date: 9/3/2002 2:55 AM

I know everyone is busy with the 7.3beta, but maybe this is something to

think of before releasing the beta. Currently VACUUM will vacuum every

table, but sometimes it's desireable to leave tables untouched because

the're mostly static or protocol tables.

<snip>3 6

VACUUM on the 4GB table needs a long long time and no improvements, it

just hurts performance and fills OS buffers.

If pg_class would have a field for storing misc flags (e.g. a bitfield).

This would allow to set a flag like NO_AUTO_VACUUM and modify the vacuum

code to leave that tables untouched if not specified by hand. <snip>

Weilguni outlined the problem he was facing with the current implementation of PG's

vacuum feature and also proposed a potential work-around solution. He clearly identified

his problem by detailing why and how the current implementation of PG vacuum did not

satisfy his use conditions. Weilguni recognized that "everyone is busy with the 7.3

beta3 7," meaning that the likelihood of attracting attention to his problem was going to be

low, however he still attempted to get other developers to mobilize around him and

recognize the importance of the problem and initiate coding during the beta testing

period.

36 <snip> indicates that I have removed text from the original email message relating to the technical and

software coding details. These details did not directly realte to my social practice analysis of the problem
solving in the community.
37 Typically new features are not submitted during the beta test period.

150



Shridhar Daithankar, a peripheral member from India, with an alternative solution

that he had implemented for a similar problem. Daithankar's post indicated that his

solution of selective vacuuming gave him a significant performance advantage and he

proposed a solution that was based on what he had done in a client environment.

Weilguni, responded to Daithankar's solution by stating that his solution was not

practical for large databases that he encountered. Daithankar immediately responded by

agreeing with the criticism but stating that there were no practical alternatives. A few

hours later, Rod Taylor, a peripheral member from Toronto, responded to Weilguni's

criticisms of Daithankar' s solution by providing a prototype of script that would automate

the vacuuming as proposed by Daithankar. Taylor did not provide a full solution. Instead

he indicated that Weilguni's objections were not well founded and could be easily solved.

Tom Lane, a core member of the PG project from Pennsylvania, responded to

Weilguni's initial e-mail by indicating that nothing would happen in the current (7.3)

release cycle. However he thought that the problem identified by Weilguni was worth

resolving and proposed an outline for how the feature might work:

Mario Weilguni <mweilguni@sime.com> writes:

>38 I know everyone is busy with the 7.3beta, but maybe this is something

> to think of before releasing the beta.

We are already in feature freeze.

In terms of what might happen for 7.4 or beyond, what I'd personally

like to see is some "auto vacuum" facility that would launch background

vacuums automatically every so often. This could (eventually) be made

self-tuning so that it would vacuum heavily-updated tables more often

than seldom-updated ones --- while not forgetting the

every-billion-transactions rule...

Lane's message encapsulated the problems and possible solutions from both Weilguni

and Daithankar as well as creating a name for the feature "auto vacuum." Daithankar

responded to Lane's message by indicating that he would work on implementing auto

38 In email message protocol - when you quote someone else you typicaly have their name at the top of the
message and have the quoted text preceded by a ">" symbol on every quoted line.

151



vacuum and asked for feedback on a detailed design of his proposed solution. His

proposal contained six major elements and he invited feedback on his section. Lane

responded to him with a review of his design.

"Shridhar Daithankar" <shridhar daithankar@persistent.co.in> writes:

> 1)Is this sounds like a workable solution?

Adding a trigger to every tuple update won't do at all.

<snip>

> 4)Is use of threads sounds portable enough?

Threads are completely out of the question, at least if you have any

hope of seeing this code get accepted into the core distro.

<snip>

What I had in the back of my mind was: each backend counts attempted

insertions and deletions in its relcache entries (an update adds to both

counts).

<snip>

Lane's review was highly detailed and specific. He indicated that Daithankar's plan to

use "triggers" would not be a good solution and his plans to implement it via "threads"

would not be acceptable inside the core system. Lane then proceeded to provide an

alternative detailed technical design. His solution was reflective of his deep knowledge

of PG internals with significant interactions across critical components of the software

code. In contrast, Daithankar's design avoided the core software system.

Weilguni responded to Lane's critique of Daithankar's design by proposing yet

another design to accomplish auto vacuuming. His solution was triggered by Lane's

suggestion to allow for selective vacuuming:

>I do not think we need or want a control table for this; certainly I see

>no need for per-table manual control over this process. There should

>probably be a few knobs in the form of GUC parameters so that the admin

>can control how much overall work the auto-vacuumer does. For instance

>you'd probably like to turn it off when under peak interactive load.

152



If (auto)vacuum is clever to check that some tables do not need vacuum

there's really no need for that. That brings me to another point, can't

the statistics collector used for that?

For my database I wrote a statistic display program for web-access, and

all the info autovacuum would need is here.

http://mw.sime.com/pgsql.htm

Weilguni's proposal used an existing feature of PG called "statistics collector" and he

demonstrated the feasibility of his design by providing a URL to his own website that

showed the core of his design idea in operation. Lane indicated that this solution was also

feasible and posed additional technical issues:

"Mario Weilguni" <mario.weilguni@icomedias.com> writes:

> That brings me to another point, can't the statistics collector used

>for that?

Hmm, that would be a different way of attacking the problem. Not sure

offhand which is better, but it'd surely be worth considering both.

<snip>

Matthew O'Connor, another peripheral participant from the US, responded to Lane's

message by indicating that he also planned on implementing Weilguni's design.

There was no further public activity on the discussion list on this matter. The

initial phase of AV development did not come to a certain and absolute conclusion

regarding the final design, expected delivery date, and eventual author of the feature. The

problem definition and solution exploration phase illustrated three important traits of the

community problem solving process. First, we observed that no one individual was

directing the dialog over this issue. Instead individuals participated as they saw fit and

responded to issues that they were interested in. Second, solutions and designs were

continually being modified, challenged and replaced as additional individuals joined the

discussion. In all five alternative solutions were proposed to solve the same problem and

core members did not necessarily present solutions that were eventually adopted. Third,

the person initiating the problem, Weilguni, did not publicly signal that he would work on

solving his own problem, instead two "new" people indicated that they would attempt to

153



create this functionality. But it was not clear if and when they would succeed as the

solution of the first volunteer, Daithankar, was ruled to be impractical by a core member

and the second person, O'Connor, did not provide significant solution information.

Interestingly, the potential solution providers did not have any previous ties or

connections with Weilguni nor did they indicate that they had experienced a similar

problem themselves.

While the development email list was quiet on this issue, activity was ocurring in

the background by the various individuals who had expressed some degree of interest in

the problem posted by Weilguni. As discussed below, there were three independent

attempts to solve the initial problem, with one individual reporting on his initial success.

Solution Development (September 23, 2002 - March 20, 2003)

Twenty days later, on September 23, 2002, Daithankar announced to the

development e-mail list that he had created a program that implemented auto vacuuming

and offered it to others for use and comments. The program he wrote integrated elements

of his initial design proposal and various elements of the cumulative design discussion,

from other individuals. In particular, Daithankar abandoned the use of threads and

triggers in is original proposal and instead embraced the use of the statistics collector as

proposed by Weilguni. However, he made his solution a separate client program

(daemon) instead of a full integration into the PG system, as recommended by Lane:

Subject: Postgresql Automatic vacuum

Date:9/23/2002 9:43 AM

Hello All,

I have written a small daemon that can automatically vacuum PostgreSQL

database, depending upon activity per table. It sits on top of postgres

statistics collector.

<snip>

The project location is

http://gborg.postgresql.org/project/pgavd/projdisplay.php

Let me know for bugs/improvements and comments..

<snip>

154



John Buckman, a commercial user of PG software from Washington D.C.,

indicated that this solution was needed and would be good for attracting new users:

Just an FYI - this kind of thing would be a *great* feature addition to

the generic PostgresSQL release. <snip> Automatic maintenance of database

tables is a Good Thing (tm) and would make more people we introduce to

pgsql favorably disposed toward it. -john

Daithankar then posted to the list a response to a private e-mail from Matthew O'Connor

regarding his implementation:

Date: 9/24/2002 2:16 AM

On 23 Sep 2002 at 13:28, Matthew T. O'Connor wrote:

> Hello Shridhar, sorry I didn't respond to the email you sent me a while

>back. Anyway, I saw this post, and just started taking a look a it. I

>wasn't thinking of doing this as a totally separate executable / code

>base, but perhaps that has advantages I need to think more.

> A couple of quick questions, you are using C++, but all postgres source

code is in C, do you want this to eventually be included as part of the

postges distribution? If so, I think that C might be a better choice.

Well, I wrote it in C++ because I like it. I have lost habit of writing

pure C code. Nothing else.

As far as getting into base postgresql distro. I don't mind it rewriting

but I have some reservations.

1) As it is postgresql source code is huge. Adding functions to it which

directly taps into it's nervous system e.g. cache, would take far more

time to perfect in all conditions.

My application as it is is an external client app. It enjoys all the

isolation provided by postgresql. Besides this is a low priority

functionality at runtime, unlike real time replication. It would rarely

matter it vacuum is triggered after 6 seconds instead of configuerd 5

seconds, for example.

Less code, less bugs is my thinking.

155



I wanted this functionality out fast. I didn't want to invest in learning

postgresql source code because I didn't have time. So I wrote a separate

app. Besides it would run on all previous postgresql versions which

supports statistics collection. That's a huge plus if you ask me.

<snip>

I am Cc'ing this to Hackers because I am sure some people might have same

doubts.

His answer to O'Connor and to the rest of the discussion list indicated that he made two

unique design choices to match his abilities and interest. He programmed the system in

C++ instead of the C because he had better knowledge of that programming language

even though the base PG system was written in C. The program itself was designed to be

completely separated from the base PG system because Daithankar did not have the time

or the inclination to learn all the internal operations of the software. Both of these choices

and Daithankar's explanation for them showed that he preferred a quick working solution

to the initial problem over meeting the programming conventions of the community

and/or following strictly the design outline made by Lane which needed significant

understanding of PG internals.

Weilguni, the initiator of this need and the person who presented the idea to use

the statistics collector as the basis for doing auto vacuum, responded to Daithankar's

email by raising technical issues with his design. He also told the community that he had

made an attempt, but had run out of time, to write something similar as well:

Two weeks ago I began writing a similar daemon, but had no time yet to

finish it.

No further public activity was observed on the email list until 11/26/2002, when

O' Connor announced that he had taken Daithankar's code and implemented it in the C

programming language. He indicated that he had it working on his system and also

provided evidence for its performance via a graph (see figure 3.1):

Several months ago [I] tried to implement a special postgres backend as

an Auto Vacuum Daemon (AVD), somewhat like the stats collector. I failed

due to my lack of experience with the postgres source.

156



On Sep 23, Shridhar Daithankar released an AVD written in C++ that acted

as a client program rather than part of the backend. I rewrote it in C,

and have been playing with it ever since. At this point I need feedback

and direction from the hacker group.

Anyway for you reading pleasure, I have attached a plot of results from

a simple test program I wrote. As you can see from the plot, AVD keeps

the file size under control. Also, the first few Xacts are faster in

the non AVD case, but after that AVD keeps the average Xact time down.

The periodic spikes in the AVD run correspond to when the AVD has fired

off a vacuum.

<snip>

Figure 3.2 - Graphic of Performance Improvement Submitted by Matthew O'Connor

Xact = update all 1000 rows in table

16

14

12

CINv

§-.
C)
wUNC

L
I-

10

8

6

4

2

I I I

600

500

400 ,

v

N

300 ®

.0

200 '

100

0 100 200 300 400 500 600
Transaction Number

700 800 900 1000

In response to O'Connor's posting Daithankar explained the logic of his original program

and also thanked him for his work.

157

tir, e X 3 c I I/ V D I-

ise sie / Xaot w/ieD -
file size / Xaot w/o AVD -

] I I ,

'

1 ./7/

7-

/ '

I

7llI
*_ __ ., , ,- * 
now. · _r ,_·l_ .·__

_'b _·-' _P "'··s'"ee··" L·""·'··-· · · · "·'' Y · ·--. -,-----,----- --- I.-rwrev t-5 I,--,- n. --

_

_

11
I

-- . . ... .. .

I aY.
I � I LIdl � I .1 I I



Between 11/28/2002 and 12/10/2002 five other people gave feedback to

O'Connor on possible new functionality and improvements to the features. O'Connor

continued to work on the program and then sent in an updated version of the software to

the community on 2/3/2003. Bruce Momjian, one of the core developers, indicated that

this was a nice feature to have and asked the community as to "where" in the source code

this program belonged. Between 2/17/2003 - 2/19/2003 discussion ensued on the

patches list, based on Momjian's trigger, as to the best place to put this code. Note that

the modular nature of this code, it only ran as a client, gave the community flexibility in

terms of how to absorb the code. Lane's comments exemplified this:

I agree, it seems like a server-side implementation would be the only

credible way to go for a production-grade version of this feature. But I

don't see anything wrong with building a client-side prototype,

which is what pg_avd looks like from here. (Unless the client is

contorted by not being able to get at things it needs.)

A peripheral user, Magnus Neusland from Germany, entered the discussion by stating

that he was very satisfied with the feature as implemented originally by Daithankar and

that he had actually been using it in production systems (i.e., systems that are running

databases performing real tasks) for months:

Maybe i can provide a datapoint on this matter.

I've been using pgavd from over at gborg (Shridhar Daithankar's (i

think?) code) in production for some months now. I love it.

I was some hazzle to get it up, but once installed everything is smooth

and nice.

The vacuum + analyze seems to affect my system in an only postive way:

1) Everything seems snappier.

2) Weekly vacuum full is faster now.

3) The updates on a table with counters is updated faster nowadays.

4) pgavd is totally automatic, so just install it and run it.

Well i just wanted to say that i don't care if it's an external/client

process, it makes a huge differance to us lazy sob's that always forgets

to vacuum all the time.

158



It's even better that it's using pgstats to determine when to run

vacuum, so after big inserts it gets vacuumed promptly.

Neil Conway, a peripheral developer from Kingston, Ontario, provided a very detailed

review of the code and suggested specific changes in the coding style and logic.

Interestingly the feedback provided by Conway was corrected by Lane on the same day

with issues of coding style and logic.

On 3/3/2002, O'Connor posted an updated version of the code based on the earlier

comments from the community:

I have updated my pg_autovacuum program (formerly pg_avd, the name

changed as per discussion on the patches list).

This version should be a good bit better. It addresses all the issues

pointed out by Neil Conway. <snip> I have moved it from bin to contrib.

More detail on the changes are in the TODO file.

<snip>

As always, any and all feedback is appreciated.

Members of the community revived the discussion relating to the proper location of the

program within the overall PG code structure. Many in the list wanted to have a

core/server-side implementation of the auto vacuuming functionality. This was not a

trivial exercise and would entail a significant amount of change to the original

submission. O'Connor was reluctant to commit to this course of action:

Date: 3/18/2003

Right. I am trying to work on server-side solution but can't promise to

complete it by June 1.39 If I (or someone else) gets a server-side

solution done before the 7.4 feature freeze, then I think we should pull

this out of /contrib. Otherwise, I find it a useful tool, I have it

running in production and have received some positive feedback from

others who are using it, so /contrib seems safe enough.

and Lane, as one of the core developers, was satisfied with the current situation:

39 June 1, 2003 had been announced as the feature freeze date for the 7.4 release cycle.

159



Date: 3/18/2003

I think a server-side solution is the way to go in the long run, but

since one probably won't be available for 7.4, a contrib module seems

like a reasonable stopgap offering. Contrib is our traditional refuge

for "not ready for prime time" code, no? The fact that it's a client

and doesn't touch server-side code actually works in its favor here

--- there's nothing to rip out after we have a better answer

On 3/20/2003, Bruce Momjian, applied the changes to the source code repository so that

O'Connor's program became part of the official PostgreSQL database software.

This phase of the development process shows how the community worked with

donations of time, effort and code from distributed volunteer contributors. Daithankar's

code relied on ideas from others on how to implement the feature and his own

requirements to have the code completed in a short period of time. O'Connor's

transformation of Daithankar' s original submission (without asking his permission) made

it more appealing and useful to the wider PG community and he bolstered his case by

showing compelling graphical evidence of performance differences in production

systems made using his code. Code review from Conway and further discussion on its

precise implementation allowed O'Connor to modify the code and to demonstrate his

flexibility in responding to feedback and being an active community member. Finally

community leaders and members demonstrated a pragmatic sense of inclusion by not

insisting that the code submission be modified so that it reside on the server-side instead

of the current client-side.

Use and Ongoing Refinement (3/21/2003 - 9/13/2003)

The inclusion of AV functionality into the official source repository exposed it

to many more users and initiated further refinement of the implementation. In particular,

some users ran the new functionality on actual production systems and then reported

back issues and concerns with the software. In particular two peripheral community

members, Christopher Browne and Adam Kavan, initiated changes to the AV

functionality based on problems they encountered while running the system. Browne

160



actually made changes to the software to suit his use environment and then generalized

the solution to other users. He then submitted those changes privately to O'Connor, who

acknowledged the contribution on the public e-mail list. Kavan reported problems on his

system which upon further investigation by five other members of the community

showed bugs and design flaws in O'Connor's implementation as well as previously

undiscovered problems in other unrelated subsystems. Kavan's report triggered more

investigation by Browne and he initiated further changes to the AV code, which were

then incorporated by Momjian and O'Connor into the CVS repository.

Use and ongoing refinement became critical components of the ongoing

problem solving process as it exposed the software to heterogeneous production

environments that were not available to any one contributor working in isolation. In

addition, the early deployment of the software on actual production systems by

knowledgeable participants helped to expose bugs and problems and created new

solutions that may not been detected by the developers in their own use environment.

3.7.2: Vignette 2 - Core member improves existing feature (dimension of merit
change)

The development of the "Regular Expressions" update4 0 involved the

participation of eight community members (2 core and 6 periphery) over a one week

period of time. The need for the update was identified by a peripheral community

participant by reporting and providing evidence of a significant performance slowdown

in the latest version of PG. One core member of the community modified software code

from another F/OSS project to provide the updated requirements for the new release (7.4)

of PG. Another core member solved the problem for the existing version of PG. Another

five periphery community members participated in giving ideas and suggestions and also

discussing the user-facing functionality for this feature.

"Regular expressions" (RegEx) are part of the essential tool kit for any advanced

programmer and database analyst. Regular expressions enable the search and

40 This update involved changes to 29 files and included adding 4448 lines of code and removing 2402 lines
of code.

161



replacement of complex patterns in text and enable programmatic functions based on the

detection of specified patterns in text. "Search and replace" functionality available in

most modem word processing and spreadsheet applications is a rudimentary example of

using regular expressions in everyday computing. I first discuss the origins of the RegEx

package and the community's need for an updated version. I then show how the

development process unfolded.

History of RegEx Module

The PG RegEx module was derived from Henry Spencer's 41 (not a member of the

PG community) work on the BSD operating system. The original Berkeley release of PG,

in 1996, included Spencer's RegEx module, suitably modified to fit PG requirements.

Interestingly many of the current members of the PG core team did not know that the

RegEx module in PG was written by Spencer. Bruce Momjian, a core developer, first

discovered its origins in an e-mail exchange regarding the possibility of an alternative

text searching package in early 1998:

Subject: Re: Appended a string of text to each line in a file

Date: 2/23/1998 2:44 PM

<snip>

Henry, I am CC'ing this to the PostgreSQL group. (See

www.postgresql.org for more info.) Hey folks, guess who wrote our regex

stuff.

Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.

Henry, will the new code you write be in the public domain, or only part

of BSDI? Would you recommend we replace our regex stuff with something

else? Do you have any patches you would like us to test?

Momjian, by copying Spencer on the message, informed him of the PG community's use

of his software module and also inquired about the possibility of new faster code from

him. Spencer responded to Momjian and the rest of the community, within an hour,

41 Henry Spencer is recognized in the open source community as the key implementer of Regular
Expressions in various programming applications. Further details on him are available in wikipedia:
http://en.wikipedia.org/wiki/Henry_Spencer.

162



indicating that the new software should be available shortly and would be under a

compatible intellectual property licensing arrangement so that the PG community could

use it as well. He also noted that his package was based on contributions from other

people:

Date: 2/23/1998 3:42 PM

> Henry, will the new code you write be in the public domain, or only

>part of BSDI?

The new regex code will be under essentially the same redistribution

terms as the old stuff (in fact, slightly more generous). BSDI didn't

end up contributing to this particular project, and the folks who did

were all happy with open redistribution.

I should clarify that this code isn't "to be written" -- it already

exists, although I'm not entirely happy with it yet and want to limit

distribution until it's tidied up somewhat.

<snip>

Momjian then added the following item on the PG project's TODO list: "Get faster

regex( code from Henry Spencer." There was one PG-specific modification 42 to Henry's

original code in early 2002 but nobody specifically worked on the TODO item from

1998 to 2003. The lack of work on this item in the five years it was on the project's

TODO list may be because none of the PG users or developers encountered significant

performance problems with the current RegEx module and/or the members of the

community did not have a suitable version from Henry to import into PG. The second

reason is confirmed by Momjian's message to the developer list when a peripheral

member requested an update on the TODO item in 2000:

Date: 3/8/2000

Henry has new code that is faster, and he has put it only in TCL so far.

I am waiting for a library version of it that we can include.

42 Adding locale support (local language support) to character sets.

163



Momjian indicated that although Spencer's new code was available, it was

embedded in another program (TCL is a programming language) and thus he was waiting

for a more modular version (in the form of a library) for import into PG.

Problem Definition and Solution Exploration (1/31/2003 - 2/4/2003)

Active work on updating the Regular Expressions package began when a user

encountered significant slowdown in performance while using the very latest

development version of PG's code. In early 2003, Wade Klaver from Kelowna, British

Columbia, a relatively new peripheral community member (he had posted some bug

reports earlier), posted a message to the development list:

Subject: POSIX regex performance bug in 7.3 Vs. 7.2

Date: 1/31/2003 5:37 PM

Hello,

We recently upgraded a project from 7.2 to 7.3.1 to make use of some of

the cool new features in 7.3. The installed version is CVS stable from

yesterday. However, we noticed a major performance hit in POSIX regular

expression matches against columns using the -* operator.

http://arch.wavefire.com/badregex73.txt has explain analyze output from

7.2 and 7.3.1 respectively. Both of these tables have only 101 rows.

The 7.3.1 install is using the default settings from postgresql.conf.

Any ideas as to why this should be happening?

Should anyone require additional information, please let me know.

Klaver reported the exact issue with PG and provided a web link which contained

evidence of the performance decrease. A drop in performance in the new code over the

old code is something that is not desirable in software development and will raise flags in

the minds of the developer community. Five hours later, Tom Lane, a core member of

PG, provided a possible explanation for the problem:

The only thought that comes to mind is that multibyte character sets are

supported in 7.3 whereas they were optional (and not default) in 7.2.

I'd not have expected a factor-of-150 performance hit from that, though.

Could you rebuild your backend with profiling enabled and get a gprof

summary of where the time is going?

164



Lane acknowledged the severe drop in performance ("factor-of-150") encountered by

Klaver, by examining the web link information, and he requested him to participate in the

problem solving process by starting from scratch ("rebuild your backend") and enabling

options in the system that would allow for proper error detection.

Three days later Klaver asked Lane how to enable "profiling" and then provided

the e-mail discussion list with a web link to the system error information:

Here is the profile information. I included a log of the session that

generated it at the top of the gprof output. If there is any other info

I can help you with, please let me know.

http://arch.wavefire.com/pgregexgmon.txt

Less than 20 minutes later, Lane examined Klaver's web link and then asked him to re-

run the test because the information he provided was not sufficient and gave him details

on how to run the test:

A four-second test isn't long enough to gather any statistically

meaningful profile info. On most machines, gprof samples 100 times per

second, so realistically you need a minute or two of runtime to have

trustworthy numbers.

Please replicate the rows in the table by a factor of ten or twenty or

so and try again.

Klaver responded back in about two hours with further evidence which indicated that

performance problem was quite severe. This allowed Lane to make an initial diagnosis of

the problem at hand. Lane reported the precise change in the source code, from before,

that may have caused the problem to arise in the first place. Lane used the public

archives of the source code repository to identify the change made by another developer

that could be the source of the problem. He also raised the issue that since there was such

a significant drop in performance in the code that a impending incremental release of the

PG 7.3 code may have to be re-done to solve this problem.

165



Although it appeared that Lane had located the source of the problem, he

continued to ask Klaver questions about his particular use environment and also his set up

of PG. Over the course of the evening Lane asked two more questions of Klaver's and

requested him to run a few more tests. The questioning indicated that Lane was no

longer sure that his initial problem identification was correct. The next day, Klaver

replied back to Lane's queries with more specific data from his use environment.

Klaver's further reporting caused Lane to come up with a different reason for the

problems experienced by him:

Date: 2/4/2003 11:46 AM

Right, so the caching of compiled regexps that regexp.c does is of no

help, and any change in its behavior in 7.3 wouldn't have made any

difference anyway. I leapt to a conclusion after reviewing the CVS

logs for pertinent changes, but it was the wrong conclusion. The true

problem is that MULTIBYTE43 is now forced on, and that causes some

loops in the regexp compiler to change from 256 to 65536 iterations.

<snip>

Rather than trying to band-aid a solution like this in the main sources,

I think I shall go investigate Spencer's new regexp code in Tcl, which

reputedly is designed for wider-than-8-bit chars from the get-go. We've

had it on the TODO list for a long time to assimilate that code; it's

probably time to make it happen.

Lane indicated that the problem resided in the current implementation of RegEx in PG

not in his initial diagnoses of blaming another developer's specific changes. He noted

that a quick fix solution did exist to the problem but the real issue was the integration of

Spencer's new RegEx code into PG. He also stated that this had been on the TODO list

for sometime; and that the current situation, a significant drop in performance in a new

software release, compelled him to volunteer to integrate this code into PG. Lane further

noted in another e-mail that the problem lay with the PG community's modification of

Spencer's original code:

43 MULTIBYTE support means that non-Latin languages like Japanese, Chinese, Korean, Hebrew, Arabic
etc can be natively supported within PG

166



The real problem is simply that we're up against design limitations of

the existing regex package, which was never designed for wider-than-8-bit

character sets. It's been rather crudely hacked while it was in our

hands (Henry Spencer would probably disown the code if he saw it now ;-))

so that it sorta kinda does MULTIBYTE, but it's slow and I don't think

it's complete either.

I'm about to go off and look at whether we can absorb the Tcl regex

package, which is Spencer's new baby. That will not be a solution for

7.3.anything, but it could be an answer for 7.4.

Lane's raised the issue that the modifications done to RegEx by the PG community to

support "MULTIBYTE" functionality caused the software to be extremely slow in

certain circumstances. He also noted that the changes he was going to make would only

impact the future 7.4 release and would not be suitable for 7.3.x releases where Klaver's

problem originally came from.

Neil Conway, a peripheral member, responded to Lane's post by indicating that

he had the same idea as Lane regarding Henry Spencer's new code and also provided an

alternative solution that would not be based on Spencer's work.

Date: 2/4/2003 12:15 PM

On Tue, 2003-02-04 at 11:59, Tom Lane wrote:

> I'm about to go off and look at whether we can absorb the Tcl regex

> package, which is Spencer's new baby. That will not be a solution for

> 7.3.anything, but it could be an answer for 7.4.

Sounds like we had about the same idea at about the same time -- I

emailed Henry Spencer inquiring about the new RE engine last night. I

came across a post this post that indicates he was planning to package

the new RE engine separately:

http://infosoc.uni-koeln.de/pipermail/php/1999-February/000019.html

but I wasn't able to find a release of it anywhere -- I'll let the list

know if/when he gets back to me.

Another option is to consider a different regular expression engine. At

167



least according to the benchmarks here,

http://ourworld.compuserve.com/homepages/john maddock/proposals/exregex.h

tm

Spencer's implementation is outperformed by some other RE engines,

notably PCRE (www.pcre.org). But switching to another engine might

impose backward-compatibility problems, in terms of the details of the

RE syntax.

Conway's post showed that the main thing that held him back, and possibly other

individuals before, from utilizing Spencer's code was the availability of a RegEx library

that was separate from the TCL programming language. Conceivably a separate engine

would make the integration task into PG a lot easier instead of an extraction from another

programming language. Thus Neil's proposal to use an alternative pre-packaged engine,

PCRE, was one solution that the community could adopt.

Lane responded to Neil's e-mail by indicating that he too had contacted Henry but

more as a courtesy than a requirement. Lane thought that the task of importing the new

code from TCL was not going to be too difficult and he corrected Neil's contention that

the newer PCRE code might be faster than Spencer's code by referring to a recent book

on regular expressions:

Date: 2/4/2003 12:36 PM

Neil Conway <neilcsamurai.com> writes:

> Sounds like we had about the same idea at about the same time -- I

> emailed Henry Spencer inquiring about the new RE engine last night.

I just did that this morning ;-) ... but more as politeness than

anything else. AFAICT44 from searching the net, packaging his new code

as a separate library is something that's been on Spencer's TODO list

for several years now. We've been waiting for him to do it, but I'm now

thinking that it's time to quit waiting. We can lift the code from Tcl

with probably not all that much more work than if it were an official

separate package.

<snip>

44 AFAICT = As Far As I Can Tell.

168



> Spencer's implementation is outperformed by some other RE engines,

> notably PCRE (www.pcre.org).

AFAICT, that page is benchmarking Spencer's old code (the same library

we started from). His new code is state-of-the-art according to Friedl

in _Mastering Regular Expressions_, 2nd ed 2002 (O'Reilly).

There was further discussion amongst Lane, Neil and three other peripheral participants

about other alternative regular expression packages that could be utilized in PG. However

the onus was on the particular person to do the work to make such a package available for

PG. Lane expressed support for their efforts but indicated that he would spend his time

on Spencer's code, however, he was willing to share his know-how so that another

RegEx package could be utilized in PG.

Solution Development (2/4/2003 - 2/5/2003)

Later that day, Lane, posted to the e-mail discussion list the evidence of his work

on extracting Henry's code from TCL and importing it into PG. He provided time data

indicating how fast the system responded with the old code and new code:

Proof of concept:

PG 7.3 using regression database45:

Regression 1 <snip>

Time: 676.14 ms

Regression 2 <snip>

Time: 3426.96 ms

Regression 3 <snip>

Time: 466344.48 ms

CVS tip46 plus code extracted from Tc147:

Regression 1 <snip>

Time: 472.48 ms

Regression 2 <snip>

Time: 4414.91 ms

45 This is the test with the original code.
46 "CVS tip" refers to the latest version of the software that is currently under development. CVS stands for
concurrent versioning system (the source code repository) and tip implies the most recent version.
47 This is the test of the new code changes made by Lane.

169



regression 3<snip>

Time: 4608.49 ms

<snip>

This is nowhere near ready to commit, but it compiles cleanly and passes

regression tests ...

Note that the above changes were applicable to the upcoming 7.4 code release and

did not solve Klaver's problem with the 7.3.2 release. That problem was solved later in

the day by Tatsuo Ishii, a core developer from Japan:

Ok. The original complain can be sasily[sic] solved at least for single

byte encoding databases. With the small patches(against 7.3.1)

included, I got following result.

testl:<snip>

Time: 113.81 ms

test2:<snip>

Time: 419.36 ms

test3: <snip>

Time: 1633.21 ms

The ratio for test3/testl is now 14.35. Although not great as the

Spencer's new code according to Tom (with the code test3/testl =

9.75), it seems much better than the original 7.3 code (test3/testl =

689.71).

<snip>

Ishii also provided evidence of an approximate 14 fold improvement in performance

based on his modifications and included the source code changes which could be

implemented applied to an existing PG system to get similar results. There was no

explicit coordination between Ishii and Lane regarding his participation in the coding

process. However, Ishii's contribution was not a surprise to the community because he

had previously made changes in the same area of code. The next day, Lane was

appreciative of Ishii's contribution and he requested that Ishii apply the changes to the

official repository. He also requested Klaver to verify that Ishii's changes worked for his

use environment.

170



Date: 2/5/2003 9:59 AM

Nice work, Tatsuo! Wade, can you confirm that this patch solves your

problem?

<snip>

Two hours later, Klaver confirmed the operation of Ishii's code with evidence of success

Date: 2/5/2003 11:50 AM

Confirmed. Looks like a 100-fold increase. Thanx guys.

Explain output can be seen here:

http://arch.wavefire.com/pgregex.txt

Use and Refinement (2/5/2003)

Tom Lane updated the source code repository for the 7.4 release with the changes

that incorporated the new code from Spencer. The following message was generated in

the automated source code repository notification system to the e-mail list:

Date: 2/5/2003 12:41 PM

CVSROOT: /cvsroot

Module name: pgsql-server

Changes by: tgl@postgresql.org 03/02/05 12:41:33

Modified files:

doc/src/sgml : func.sgml release.sgml

src/backend/utils/adt: regexp.c

<snip>

Added files:

src/include/regex: regcustom.h regerrs.h regguts.h

<snip>

Removed files:

src/include/regex: cclass.h cname.h regex2.h utils.h

<snip>

Log message:

Replace regular expression package with Henry Spencer's latest version

(extracted from Tcl 8.4.1 release, as Henry still hasn't got round to

making it a separate library). <snip>

171



Note how the email included information on all the files modified, added and removed

due to this particular change. The log message indicated the problem Lane was trying to

solve and how it was accomplished. Lane then informed the community of his change

and then request their input to test the code and to help him think through various user

parameters:

Subject: Status report: regex replacement

Date: 2/5/2003 1:10 PM

I have just committed the latest version of Henry Spencer's regex

package (lifted from Tcl 8.4.1) into CVS HEAD48. This code is natively

able to handle wide characters efficiently, and so it avoids the

multibyte performance problems recently exhibited by Wade Klaver.

I have not done extensive performance testing, but the new code seems

at least as fast as the old, and much faster in some cases.

<snip>

There's some stuff still to do:

<snip>

Any suggestions about the name of the parameter?

<snip>

Should it be split out as an appendix, or is it okay where it is?

<snip>

Anyone want to try some more extensive benchmarking?

<snip>

The next day Ishii confirmed that the new code worked on his system and that he had

tested it on various language settings. Three other participants discussed with Lane the

proper naming convention for the control parameter. Lane used the discussion on the

naming convention to guide his changes to the RegEx's user-available settings in PG by

making one more change to the source code repository the next day. There was no further

public discussion about the other elements raised by Lane.

48 "CVS HEAD" is a different way of saying"CVS tip" and refers to the latest version of the software that
is currently under development. CVS stands for concurrent versioning system (the source code repository)
and HEAD implies the most recent version.

172



3.7.3: Vignette 3 - Joint problem solving and new feature creation by core and
peripheral members

The development of a new command - -describe-config" to support a

graphical configurator (GC) illustrates novel feature creation and joint problem solving

by core and periphery members. The basic PG software installation is geared towards

advanced database administrators who are comfortable working in a text-based command

line interface instead of the more user friendly graphical user interface (GUI). However,

as PG has gained more adoption and users there have been attempts to create various

GUIs for the database. These GUIs typically require the database to make available

certain parameters that can be adjusted by external applications. The "--describe-

config" feature arose out of a need by one corporate redistributor of PG, Red Hat, in its

attempts to create a more friendly interface for customers. Specifically, Red Hat

engineers wanted the ability to configure the database using friendly GUI menus instead

of command line functionality, ultimately creating a GUI configurator or GC.

The feature was developed by Red Hat engineers in private consultations with

Lane, who is also employed by Red Hat. The feature was then released to the community

along with a request for inclusion into the global repository. While the feature was

designed to pass parameter information between PG and an external GUI, it made several

additions to the core software that had not been discussed. Over the course of four

months much of the initial functionality of this feature, as envisioned by Red Hat was

removed. This removal occurred because there was not sufficient agreement in the

community about the validity of the changes being made by the Red Hat team and the

concern that future flexibility would be compromised. In addition there was significant

concern amongst core and peripheral participants that the "proper" community process

had not been followed. The feature was initially developed by one peripheral member

and then one core member modified it to meet community expectations. Two additional

core members and five peripheral participants were involved in the various discussions

pertaining to the changes.

173



Problem Definition and Solution Exploration (6/26/2003 - 6/27/2003)

Fernando Nasser, a peripheral member and a manager with Red Hat in Toronto,

Canada initiated the feature development process by posting information on a new GUI

utility that his team within Red Hat is developing. Internal development at Red Hat had

made changes to the PG software that enabled the proper functioning of this utility.

Nasser indicated that one of his engineers Aizaz Ahmed had worked closely (but

privately) with Tom Lane on developing the appropriate server-side changes. His hope

was that the community would accept these changes and make them part of the next PG

release:

Subject: pg_guc

Date: 6/26/2003 1:28 PM

Hi Peter49 ,

We have a server side GUI utility that among other things let us

configure GUC variables. We badly need to know what variables exist in

the specific backend version, which are the min and max values and if

possible a description. <snip>

Aizaz have, with hints from Tom Lane, implemented a basic version of such

utility. We thought that this can be used by other tools as well, so it

would be nice to have it added to the 7.4 release.

<snip>

Anyway, I hope you find this useful and people find the motivation to

enhance it. Aizaz is already working on the internationalization.

It is interesting to observe that Nasser broke with convention by addressing the

email directly to "Peter" Eisentraut who was a core developer from Germany and had

worked on other related backend related activities. Eisentraut responded the same day by

giving Nasser suggestion on how to implement the feature in the software along with

recommendations on user-specific options:

In that case I think it's best to put it directly into the server

executable and add an option like --help-long or possibly some variations

if you need specific program-parsable formats. This would certainly

49 This refers to Peter Eisentraut, a steering committee member. Its highly unusual for emails within the
community to be addressed to a particular person.

174



solve a few of the implementation concerns I've heard about, and it's

also a fairly logical place to look for it.

<snip>

Lane joined the conversation by noting that Eisentraut's suggestions had been considered

before and rejected. However, he notes that on second thoughts, they may be more

appropriate and gives instructions to Ahmed on how to implement Peter's

recommendations:

Hm. We had toyed with that idea for a bit but rejected it on the grounds

that it would add bloat to the postgres executable. On the other hand,

two sets of message catalogs would bloat an installation even more.

Maybe that's the best plan after all.

Aizaz, if you look at backend/main/main.c it should be pretty obvious how

to handle this --- it's just like bootstrap mode. main.c kicks off

control to GucInfoMain or whatever we call it, and then that routine can

act pretty much the same as if it were the actual main() of a

standalone pg_guc. <snip> in fact, I think quite a large percentage of

the patch disappears ...

Ahmed and Lane then had three public exchanges on the technical issues related to the

implementation of those issues. Note that these discussion were taking place between

two employees of Red Hat in a public forum. There was no attempt to take the

discussion private and exclude the rest of the community in the solution exploration

phase.

This phase of the vignette is interesting because the feature under consideration

was already developed, in the sense that this was not a proposal or a design conversation,

rather, the work on it had been substantially completed and Red Hat was asking for

inclusion of the code. However Nasser had not submitted any code yet, instead, he

broadly outlined the new functionality. The timing of this feature is also salient because it

was announced to the community three days before a self-imposed feature freeze

deadline of July 1, 2003. During a feature freeze, all new functionality that is developed

by the community is put on hold, that is, it is not committed to the source code repository,

175



and instead the community development effort shifts to beta testing of the existing code

base so that a new official version of the software can be released. This announcement

without the code and the lack of significant discussion about the functionality posed

significant problems during the beta testing phase.

Solution Development (6/30/2003)

On 6/30/2003 Ahmed sent in the computer code to the email list and asked for its

inclusion into the base software:

The attached patch adds the --long-help option5° to the server

executable. This option displays all the available runtime options for

that

particular server version, along with Max, Min and Reset values if

applicable and a description. It also groups the runtime options

together in accordance with the documentation.

The code for this feature arrived on the day of the deadline and Eisentraut within four

hours had more comments and concerns. The feature itself looked rushed because

community members did not have a significant amount of time to discuss its contents.

Eisentraut raised a few issues that seemed to question the detailed design of the

implementation and the changes it was making to the source code. He indicated

significant reservations with what the code was trying to implement and how it was being

done:

Conceptual comments:

If the option is named --long-help, I'd expect a longer version of

--help, which this is not. The name should probably involve "help"

and "config" to make it clearer what you get. (Personally, I think

"help" should go before the qualifying word, but there may be other

opinions.)

Do we really want to encode the notion of option categories into the

source code? This looks like a pretty large burden to me.

176

50 For the GC feature.



<snip>

Code comments:

<snip>

There is already a file guc.c, why should there be a file pg_guc.c

now? That doesn't make sense; the names should be differentiated

better.

Why have various things been moved from guc.h to guc_vars.h, which

seems to just split things up uselessly?

<snip>

Should options not for general use (e.g., session_auth_is_superuser)

be hidden from this tool? Are they? What other provisions of this

kind does this tool make?

Lane responded to Eisentraut's critique with specific answers to each of his questions and

also invited Ahmed to provide some comments. While Lane's answers provided a

justification for each of Eisentraut's concerns, Ahmed provided more background

information on the code writing assumptions he made. There was no further public

discussion on the email list about it and the changes were committed to the source code

repository a few days later. On 7/4/2003 Lane committed the patch to the source code

repository which automatically generated the following message to the rest of the

community:

CVSROOT: /cvsroot

Module name: pgsql-server

Changes by: tgl@svrl.postgresql.org 03/07/04 13:41:22

Modified files:

doc/src/sgml : runtime.sgml

src/backend/main: main.c

src/backend/tcop: postgres.c

src/backend/utils/misc: Makefile guc.c postgresql.conf.sample

src/bin/initdb : initdb.sh

Added files:

src/backend/utils/misc: help_config.c

src/include/utils: guc_tables.h help_config.h

Log message:

Add --help-config facility to dump information about GUC parameters

without needing a running backend. Reorder postgresql.conf.sample

177



to match new layout of runtime.sgml. This commit re-adds work lost

in Wednesday's crash.

Use and Refinement (09/28/2003 - 10/18/2003)

There was no subsequent discussion on the hackers or patches list until 9/28/2003.

The PG 7.4 release was then in active beta testing and work was being completed so that

multiple world languages would have native support. Alvarao Herrera, a peripheral

community developer from Chile, was working on language internationalization for PG,

when he noted some inconsistent results from his tests of the software:

Date: 9/28/2003 3:36 PM

Subject: more il8n/llOn issues

<snip>

Now for something completely different:

The postmaster executable shows --help display perfectly localized.

However I just noted that postgres --help output (the standalone

backend) does not; is it not il8n'ed, or is some sort of missetup?

However, if I try postgres --help-config the localized display is shown,

but postmaster --help-config says

<snip>

So, for some things postmaster is localized, but others are not

supported; and for some things postgres is localized, but for others

it's not. Is this some sort of planned behavior, inconsistency, or

plain oversight?

He then conducted some additional test on this odd behavior and within an hour wrote

some additional software code to provide a temporary stop gap measure:

>Now for something completely different:

Oh, there's another thing about the --help-config option. This option

includes an, er, option to display the items that belong to a given

group.

<snip>

This little patch allows both versions to match, translated and

untranslated.

178



Herrera's identification of this problem and his subsequent code caused Eisentraut to

express significant reservations about the original feature developed by Ahmed and

committed by Lane:

I'm quite unhappy about the --help-config option. It was developed

without discussion, it was installed hastily, we don't have any

information about that interactive configuration application it's

supposed to target, it's not documented, it's full of unfinished

business, it certainly doesn't make the code easier to maintain because

all the documentation is duplicated, but not one-to-one. At this point,

I wouldn't spend a lot of time trying to make sense of it. We can

revisit it again in the next release and investigate how we can eliminate

the duplication of effort between the documentation and the code.

<snip>

Again, I don't think we should worry about that now or we'll end up

spending too much time on this.

Herrera responded back to Eisentraut saying that he would leave it alone and also

wondered about the usefulness of that feature. Lane then joined the conversation two

hours later by providing some context regarding why the feature was created in the first

place:

Alvaro Herrera <alvherre@dcc.uchile.cl> writes:

> If you put it that way :-) I'll leave it alone. I hope it can be

> enhanced in the next release. I'm not sure of it usefulness anyway;

> the documentation seems good enough.

Some guys at Red Hat wanted it to support an admin tool that should see

the light of day Real Soon Now. Peter's right that it could be improved

though; in particular I would not care to defend its i18n behavior.

I've left it undocumented partly because I figure we'll be changing it.

A few hours later, Dave Page, a peripheral community member from the UK and

developer of another GUI tool for PG complained about the special treatment given to

Red Hat and the lack of proper process. His complaint was directly aimed at Lane:

179



Hi Guys,

I find this a little worrying because if we want a feature or tweak for

pgAdmin we usually have to fight tooth & nail to justify getting it

committed (which is not a bad thing), however 'some guys at Red Hat' are

getting switches added to the postmaster without any discussion? I

realise they pay the wages of at least one of the developers many of us

depend on, but surely they should have to justify their modifications as

the rest of us do?

Eisentraut seconded Page's concern and asked, in a general sense, for the Red Hat

employees, to specify what was required for their GC tool because the current

implementation of the feature was not appropriate or "future-proof':

It was not a nice thing to do.

Could whoever is responsible for this admin tool at Red Hat please

specify exactly what data they need out of this interface, so we have a

chance to make the interface a little more future-proof now and possibly

remove some of the unneeded clutter that is giving translators problems?

Surely that would be in everyone's interest, because if we're already set

on changing the feature again pretty soon, it won't do that admin tool

much good.

Lane responded to Eisentraut's (and Page's) concern about not following the community

process by giving evidence of prior discussion on the feature and admitting that perhaps

he had been too hasty in getting the feature included in the source code repository while

also justifying his choices:

Peter Eisentraut <peter e@gmx.net> writes:

> It was not a nice thing to do.

Gimme a break, guys. There *was* discussion, e.g. here,

http://archives.postgresql.org/pgsql-hackers/2003-06/msgO1092.php

and the patch was posted for review, see this thread:

http://archives.postgresql.org/pgsql-patches/2003-06/msgO0420.php

I'll admit that I applied the patch with more than usual speed, but that

was because we were right up against our self-imposed feature freeze

180



deadline for 7.4, and I didn't see any big objections. The biggest

gripe left over at the end of the above-mentioned patches thread was that

the message texts were unpolished, but as even Peter agreed, that could

be fixed later. So MHO is let's fix them now.

<snip>

I would like to think that the patch would eventually allow us to

generate postgresql.conf.sample automatically from the guc.c tables, and

thereby reduce the number of files to maintain, but that didn't get done

yet.

<snip>

Lane's response triggered Page to apologize for relying on Eisentraut's assertions on the

lack of community process and it caused Eisentraut to apologize as well but maintain his

stance that the feature was not appropriate and needed to be corrected:

I confused this with the private mails that we exchanged. Sorry.

<snip>

OK, but does this tool actually need all of the following features:

<snip>

Were some of these just added for "completeness"? With what rationale?

<snip>

Also, --help-config 'foo' outputs all parameters matching 'foo' somewhere

in the string, not only 'foo'. I think that is a misdesign.

Lane responded immediately by noting that he has asked his fellow Red Hat employees

to provide clarification and explanation as asked by Eisentraut:

I've asked the Red Hat folks who did the detail design to respond to

this. I'm not sure if they had specific use-cases in mind for those

behaviors, or were just trying to make the feature useful for manual

invocation. I would think the GUI tool doesn't need most of those

behaviors, but can't swear to it.

On 10/1/2003, Lane posted the reply he received from Nasser regarding all the questions

that Eisentraut had. The reply gave details on the questions raised by Eisentraut with an

explanation for the logic of all the functionality for the GC tool and changes in the PG

source code to accommodate those requirements.

181



On 10/9/2003, Momjian, wrote an email to the developer list expressing his

serious reservations with this particular feature. He outlined that the feature had options

that might curtail future development, lacked proper discussion and documentation and

implied a violation of the norms of the community:

10/9/2003 7:15 PM

Subject: postgres --help-config

Where should I start on this? :-)

The implementation of postgres --help-config has several issues:

o it has options added "just in case someone ever need them"

o it has capital letters to negate, which we have never used

before

o uses GNU message reporting style

o there was little discussion about how this should work

Its biggest "plus" is that it isn't documented :-) --- because the API5'

might change in the next release, and no one wants to stand up for this.

If Red Hat didn't do so much for PostgreSQL by hiring Tom and others, I

would be more upset, but putting something in for the convenience of

some Red Hat tool isn't something I would like to see happen regularly,

and I think we can all agree on that.

I can't even put a mention on the TODO that this has to be cleaned up

because I would then advertise it. I will put it on my personal list

and we can discuss how this is supposed to for 7.5.

Lane fired back at Momjian for missing the prior work in June and not providing specific

issues that needed correcting:

Where should I start on all the people who are complaining now, but

said not a word when the patch was put up for review?

I'm quite annoyed at these claims that procedure wasn't followed.

It's either selective memory or historical revisionism, and either

way I feel it's unfair to me and to Red Hat.

182

51 Application Programming Interface.



Let's see some specific suggestions for improvement, rather than

bootless complaining. I'm quite prepared to agree that the patch

could use improvement. If we can fix it before 7.4 release,

let's do so.

Momjian then responded to Lane by giving him detailed comments on specific areas that

needed to be fixed. On 10/13/2003 Lane responded k to Momjian by agreeing with his

requirements for a fix and outlined a general principle regarding how new functionality is

added to the software:

Bruce Momjian <pgman@candle.pha.pa.us> writes:

> Is that enough feedback? :-)

Yup, thanks for the comments. I am not sure how much of the existing

--help-config functionality is actually needed by Red Hat's tool, so

I've asked those guys to respond.

Personally I agree with the idea of stripping out whatever functionality

isn't immediately necessary. It seems to me we've generally been more

successful by adding features in response to specific demand rather than

inventing things we think might be needed.

The next day Nasser responded specifically to Momjian and provided detailed answers to

his concerns he also raised the point that Momjian should have provided comments on

the submission back in June:

Before I comment on your suggestions, I would like to mention that many

of the things below were added on request by the few people who cared to

comment on it. Aizaz spent most of his time changing here and there to

accommodate these requests. Anyway, we know we can't satisfy all, but I

wish people would be more timely when criticizing things. Aizaz is away

until May and left thinking everything was under control. And we

developed a very nice tool that depends on this feature confident that we

could count on it.

<snip>

Momjian responded to Nasser comments by complaining about process and fairness to

other firms that may be participating with the community. A key concern he noted was

183



that there was significant discrepancy between what were the explicitly discussed

changes and options and the actual code. He also recommended that a stripped down

version of the feature may be most appropriate for the present circumstances:

I understand this is not ideal timing. However, open source is

certainly very fluid and it is hard when someone adds something and then

isn't available for later adjustments.

I knew you were adding --help-config, but I didn't realize the extent of

the "features". The commit message is:

revision 1.1

date: 2003/07/04 16:41:21; author: tgl; state: Exp;

Add --help-config facility to dump information about GUC parameters

without needing a running backend. Reorder postgresql.conf.sample

to match new layout of runtime.sgml. This commit re-adds work lost

in Wednesday's crash.

which I thought was a single option, which we all knew was needed, not

six additional options for output format. Also, with no documentation,

or

a posted list of the flags you wanted to add (at least I never saw it),

it was easy to miss.

<snip>

Let me be clear on this --- your tools is not part of the PostgreSQL

community. We are not required to allow any of this functionality

unless the community decides they want it. The major argument for

keeping it, in my mind, is to be helpful to Red Hat.

My current idea is to keep --help-config as readable output, add

--help-config-raw as machine-readable output, document those, and remove

all the additional flags.

Eisentraut joined the conversation by recommending that the entire new feature be

removed in the upcoming release and to devote more time to it in the future. Momjian

replied to him by stating that Red Hat would be left in a lurch by these late changes and

that he would prefer that they find a way to meet the minimal requirements. Lane joined

184



the conversation by reiterating his stance that the original problem was a lack of timely

participation by Momjian in the original June review process:

>>Let me be clear on this --- your tools is not part of the PostgreSQL

> > community. We are not required to allow any of this functionality

> > unless the community decides they want it.

I'm really having a hard time responding to this line of argument

politely. Where were all these complaints when the patch was proposed

and accepted? If there's not time now to redesign the feature to your

liking, it is *NOT* Red Hat's fault, it is *YOURS*. Yanking the rug out

from under someone else's project just because you didn't review the

patch adequately at the time is not my idea of how a community should

act.

Momjian in reply noted that he did not actively participate in the review process because

he trusted Lane's original judgments. He further reiterated his point that the community

process was not followed by either Red Hat or Lane:

I thought you might have an emotional reaction to this issue.

I did not review these changes thoroughly because:

o There was no proposal on the switches and their usage.

o The commit message didn't mention any switches other than

--help-config.

o There are no docs to show the new flags.

o You were handling it, and I trusted your style, so I didn't

see a reason to study it more thoroughly.

Let's imagine how this would have worked for an outside project/company:

o Project leader comes to us and says they want to make a PostgreSQL

admin tool.

o They explain their needs and we agree on how to implement it.

o we implement the feature as discussed.

Would we have agreed to adding all those flags? I don't think so. We

would have given them a clean output, and asked them to handle the

functionality in their code, which is probably the correct approach.

This procedure is in our developer's FAQ:

The usual process for source additions is:

185



o Review the TODO list.

o Discuss hackers the desirability of the fix/feature.

o How should it behave in complex circumstances?

o How should it be implemented?

o Submit the patch to the patches list.

o Answer email questions.

o Wait for the patch to be applied.

Now, we have Red Hat having you add a patch on July 4 (posted for review

June 30), very near feature freeze, but it meets a discussed need

(--help-config), so it goes in. I only learned about it when Peter saw

the C code handling the new flags and asked questions about it. I do

see the patch submitted, with clear illustration of the flags:

http://archives.postgresql.org/pgsql-patches/2003-06/msgOO420.php

I guess I thought those flags were for Red Hat's tool or a separate

utility, but it clearly states it is part of the postgres binary, so

that was my fault.

<snip>

Lane responded to Momjian's message by asking for group consensus on how to work

with the existing feature and still meet the needs of Red Hat:

It'd be better if we could get it right the first time, with the

understanding that the output format is not very negotiable at this

late hour. But as best I can tell, most of the unhappiness is with the

design of the switch set, which is not something I want to defend in

detail. There's a lot there that isn't needed for the RHDB tool as I

understand it, and I think that altering the switches used to get the

output that the tool does need would still be a feasible change from the

tool's point of view.

I would be in favor of simplifying the supported switch set to the

minimum needed by Red Hat's tool (the equivalent of -G -M if I

understood Fernando correctly), and re-adding complexity in future

when and if it's shown to be needed. But we need to make a decision

about this now. Preferably yesterday.

186



Between 10/15/2003 and 10/18/2003 there was further technical discussion on the list

regarding what would be the minimally acceptable set of option in the new feature that

would satisfy both the community and Red Hat. In the end on 10/18/2003, Eisentraut

makes changes to the source code and committed the revised code to the CVS repository.

His log message on the source code archives stated what was done:

Cleanup on --help-config: Now called --describe-config, no further

options, machine readable, without headers, not sorted. Parameter

descriptions adjusted to fit first sentence + rest convention.

This phase of the vignette showed the operation of a distributed problem solving

system and the dynamics of a community development process. There was an

approximately two and half month gap between the inclusion of the feature into the

global repository and the chance discovery of the associated issues by a periphery

member. It is interesting to note that even though Eisentraut, as a core member, had

initial issues with code as submitted, he never publicly expressed his serious concerns

during the first two phases of the development. Only after Herrera had inadvertently

found concrete evidence of some issues, did he raise strenuous objections. Herrera's

discovery of the offending code highlights the importance of a distributed problem

solving process where many diverse participants "test" the entire software system for

their own particular purpose and report back anomalous findings.

The severe public disagreements between Lane, Eisentraut and Momjian exposed

the expectations of a community development process. Eisentraut and Momjian's main

concern was that the community process had been both short-circuited and violated.

Lane's self-admission of a hasty commit of the code to the CVS repository indicated that

he himself realized that he had perhaps moved too fast in the face of an impeding

deadline. Along with the speed of the commit, there was also concern that the Red Hat

triggered changes had not been fully disclosed. The discussion on the email list along

with the commit message from Lane did not fully reveal the extent of changes within the

base PG system, thus violating the expectation of full disclosure in the community.

187



Lane's specific reaction to this episode also highlighted conflict management

within the community. Without doubt, Lane was remains one of the most important core

contributors to the PG community. However this status was based on current and

specific performance and did not make him immune from being severely questioned and

tested by the community. His own defense regarding this episode was that Momjian and

Eisentraut should have spoken up during the initial phases of the development cycle.

From his perspective, lack of participation implied agreement. However, both core and

periphery members noted that the spirit of the community process had not been followed.

Momjian even went further when he stated that his own lack of participation was due to

the fact that he had trusted Lane's judgment and felt that he could rely on him to make

the correct choices. Lane's response was to both embrace the criticism but also request

specific concrete changes to the code base. Publicly admitting that he was "wrong" and

getting the community to agree on a compromise between what the community needed

and what Red Hat needed was accomplished via his insistence on specific changes. He

did not use his status to push through the changes that were made, even though, his

employer Red Hat, had sponsored those changes and had made adjustments in their own

product road map expecting those changes to be permanent.

3.8: Distributed Problem Solving Practices in the PostreSOL Community

Through my analysis of the innovation process histories and the 32 vignettes I

identified an array of activities that enable the PG community to solve technical

problems. These activities form a repertoire of practices that are recurrently enacted by

the distributed PG membership and enable the community to continuously innovate and

keep producing and reproducing their collective output. Table 3.10 outlines the practices

and their constituent activities for distributed problem solving. I have grouped the

practices as collective and individual to highlight the sociological construct that "work"

is a duality of independent and interactive tasks (Hughes 1971: 304). Hughes argued that

the division of labor implicitly implied interaction because ultimately the divided labor

188



and its constituent actions had to be integrated to form a complete "whole." The act of

integrating the "whole" requires contributing individually and then interacting over those

contributions.

The collective practices are done with and in response to actions from others. The

practice of work broadcasting serves to mobilize the community around problems; to

jointly create, transfer and transform knowledge across the community; and to informally

coordinate action. Building and using community memory is a practice that creates

shared understanding between the various community members. This practice enables

current and future community members to access technological objects and the related

social interactions in order to develop a common sensibility around past and current

activities in the community. The collective practice of distributed decision making helps

the community make choices and too keep options open so that possibilities for

innovation and breakthroughs by members are preserved.

The individual practices are what community members do in response to their

own requirements and the what they observe happening in the community. Ultimately

action at the individual needs to be taken in order for the software to be developed, thus,

choosing type and level ofparticipation is a practice observed in the community.

Individuals need to figure out what to do and then to do it. Since the community is

focused on creating a technological artifact that serves a material purpose, using the

community's output, that is, its software, is a practice that connects individuals to the

community and shapes the future actions and interactions of the membership. It also

serves to "objectively" test the status of the collective output of the community. Finally in

a setting of relative strangers, accomplishing technical tasks, there is a need to provide

evidence of accomplishment and to confirm claims of efficacy. Evidence provisioning is

a practice that enables community members to concretely demonstrate their technological

accomplishments and to confirm claims of efficacy. In a setting of relative strangers,

evidence serves as a social and technical lubricant for continual interaction and the ability

to jointly share and assess knowledge and objects. It is important to note that these

practices should not be seen as completely exclusive or exhaustive. They are not to be

189



viewed as "instrumentable" constructs to be used in an analytical regression. Rather, "in

practice," they are highly intertwined and interdependent. The distinctions are for

analytic purposes and allow us to create a general theory of distributed problem solving.

Table 3.10 - Practices for Community-Based Distributed Problem Solving

__

Work Broadcasting

Building and using
community memory

Distributed decision making

Choosing type and level of
participation

Using the community's
output

Coordinating action and
building trust through
evidence

Collective Practices
Posing issues and problems
Providing ideas and
solution
Contributing code
Providing feedback
Global and local archiving
of community activity
Retrieval and use of
community activity
Incremental and local
planning
Provisional settlements
Lazy consensus

Individual Practices
Identifying tasks
Doing tasks

Using latest code
Integrating latest code

Providing evidence of
claims
Seeking evidence of claims
Testing evidence of claims

Mobilize community
Create, transfer and
transform knowledge

Build mutual understanding
over time and space

Preserving choices and
making choices in the
community

Doing the actual work of
the community

Connects individuals to
community
Testing community output
Enable self and others to
assess claims and outputs
Share and assess knowledge

190



3.8.1: Collective Practice 1 - Work Broadcasting
At the heart of collective problem solving in a F/OSS community is the practice

of work broadcasting through participant interactions on public e-mail lists. The e-mail

list is the "place" where discussion of the software development activity for the

community occurs. E-mail messages become the medium (work happens inside of an e-

mail message) and/or carriers (actual code or signals of code completion) of all the

community work. E-mail becomes the medium of work when community members use

email to respond to a request for help or ask questions. Some of the work of the

community then happens in email messages. Email is a carrier of the community's work

when individuals do activity outside of their community participation and then present

the work through e-mail, for example writing software code on a computer and then

sending it to the community. In either case, the email list then broadcasts all the work to

interested subscribers. Community members can choose their level of immersion in the

stream of work broadcast. They can subscribe to all the e-mail lists of the community

and be continually updated about all the activity at all times, or they can be selective

about which lists they subscribe to and the methods of subscription (individual emails,

daily digests or archived web pages) 52.

The practice of work broadcasting provides an ongoing signal53 to the entire

distributed membership as to current state of affairs in the community. Work and the

communication about the work are not separated. The act of working and participating in

the community becomes the act of communicating as well. The availability of the public

broadcast mechanism allows the peripheral members to participate with the core

members in identifying issues and problems.

I identified four related activities that constitute the practice of work broadcasting;

1) pose issues and problems; 2) propose ideas and solutions; 3) contribute code; and 4)

provide public feedback. Problem solving in the community occurs via members

52 Individuals can be subscribed to receive every email generated on the list, or an autmated digest of all the
email traffic on the list for that day. Others can participate by visiting the email list's archives where all of
the conversations are presereved on a web page.
53 Each community generates approximately 50-75 e-mail messages/day.

191



enacting these activities and responding to the activities of others. Contributors can enact

multiple activities at the same time as part of their interaction with the community.

Pose issues and problem

The e-mail list is the place to raise problems and issues and get community

engagement. The main purpose of this activity is to mobilize the wider developer

community to pay attention to the particular problem faced by the member and to initiate

problem solving within the community. By publicly broadcasting issues, the member

attempts to transfer the ownership of the problem from the individual to the community

and to trigger others to take interest in the problem. Problems or issues can be immediate,

as in "there is a bug in the system," or can reflect a desire for new or improved

functionality, as in "can PG do the following task?"

In the case of a software bug, contributors provide detailed information about the

problem at hand combined with computer generated output regarding the bug and

instructions on how to create it again. As illustrated in the Regular Expressions vignette,

a relatively new community member, Wade Klaver, provided very specific information

about the degrading performance issues he was experiencing along with a URL to

computer generated output that would enable other community members to diagnose the

problem further and provide a solution. Klaver mobilized the attention of the community

by reporting his problem and providing concrete evidence about its impact on his system.

The problem Klaver reported was not of a catastrophic nature, but it was of concern to

the developer community because a new version of the software was performing poorly

as compared to an older version in the same use environment. The indication of a severe

drop in performance created the impetus for other community members to take interest in

the bug and contribute their time and effort in resolving the bug.

Participants also engaged the community by reporting issues that they had with

the software program. Issues were typically related to improvements in the software that

are needed by the participants due to their particular use environment. As observed in the

Auto Vacuum vignette, Mario Weilguni, a peripheral developer, raised the need for better

192



database vacuuming functionality by posting it on the e-mail list. Weilguni explicitly

identified how the current vacuuming feature was not suitable for the large databases that

he was encountering. Community attention was secured by generalizing the issue to other

participants and getting them interested in resolving the issue.

Propose ideas and solution

Solution proposals can be in response to specific issues raised by another

participant or can be combined with an issue statement. The form of solutions and ideas

proposed can vary from general thoughts on how a problem can be solved to very

specific implementation details and a potential plan of attack. The Auto Vacuum vignette

shows that there were five distinct proposals to solving the vacuuming problem.

Weilguni, the person who raised the original issue, embedded a potential solution in the

original e-mail. Daithankar in response to Weilguni's problem statement proposed two

solutions. The first implied creating a computer script54 to automate the existing

vacuuming functionality. This was followed by Rod Taylor's outline of how the script

should be written. Daithankar's second proposal was significantly more detailed and

included his design for the code he planned to write and incorporated suggestions from

Weilguni and Taylor. The fourth proposal was from Tom Lane and it was in response to

and a significant deviation from Daithankar's second proposal. Finally, Weilguni

responded to Lane's critique of Daithankar's design by proposing yet another design to

accomplish auto vacuuming. Weilguni's proposal used an existing feature of PG and he

demonstrated its feasibility by providing a link to his own website that showed the core

of his design in operation.

In the case of the Regular Expressions vignette, Lane's requests for further

testing and evidence was integral to his proposing solutions to Klaver's problem.

Throughout the problem diagnosis phase, Lane continuously proposed new solutions as

new evidence was distributed by Klaver. Once he identified the exact cause of the

problem (the old RegEx package) he then proposed a final solution which involved

54 A script is a very simple computer program that automatically runs various tasks in a pre-specified
manner.

193



replacing the existing module with a newer version. The proposal of this solution

generated further alternative solutions from other peripheral community members. In all,

three different types of RegEx packages were discussed as possible alternatives to

Spencer's module. The open solution proposal process generated alternatives for the

community. Merits of the other systems were discussed and Lane indicated a willingness

to provide an interface to other developers based on his work with Spencer's code if they

so desired.

The broadcasting of proposed ideas and solutions triggered other community

members to review the proposed ideas and if they were not satisfied, to propose their own

alternative or modified solutions. The community members engage in collective problem

solving by building and extending on each other's contribution. The public broadcast of

specific and concrete ideas and solutions coordinated the activity of other participants by

signaling potential areas where work could be done. As before, the expression of the

work (i.e. proposing an idea or solution) became the coordination signal for others

participants. However the signal contained content information only and did not

explicitly specify who might be an appropriate respondent.

Contribute software code

Ultimately, community members' contribution of software code is what creates

and sustains F/OSS communities. Code contribution can occur in indirect and direct

ways. In the Regular Expression vignette we observed Spencer contributing code to the

community in an indirect manner. Spencer was not officially part of the PG community,

however his efforts in another F/OSS project were directly applicable to the needs of the

PG community. He passively contributed code by making it available with an intellectual

property license that enabled appropriation by others. Similarly, Taylor's contribution of

a small script demonstrating how Daithankar's initial ideas on how vacuuming could be

implemented was another indirect way of contributing code to the community.

194



Software code by peripheral community members is typically sent on the public

e-mail lists. Peripheral members create a "patch 55" file and then submit that file in an e-

mail to the appropriate list. The arrival of a patch from peripheral members signals to the

community that someone has done programming work that should be reviewed and

perhaps integrated in the official source code repository. The patch file contains

information so that anyone, who has the appropriate version of the software source code,

can apply the patch to their local machines and assess the veracity of the claims being

made by the potential contributor. In the PG community, patches from the periphery are

usually sent to a dedicated "patches" e-mail list where other interested developers can

provide feedback (see below for more on feedback) on the specific software change being

made. In the AV vignette, we observed that Daithankar placed his code on a website

and provided a link to it for others to try out. O'Connor's subsequent modifications of

the AV code were then posted on the development list until a consensus emerged as to

the appropriate location for it within the existing software code structure.

Core members of the community apply their own software patches directly to the

source code repository and do not necessarily have to go through a community review

process. However, as soon as a patch is applied, the source code repository automatically

generates an e-mail to the development lists indicating the nature of the change being

made, the location of the change, the author of the change and any relevant author

generated message. This automatic generation of the e-mail and its subsequent broadcast

allows other community members to be up to date on the ongoing changes being made to

the source code and to react to it if appropriate. Typically, as a community norm, core

members will inform the development e-mail list that they are going to make a change or

have made already made a change to the source code repository. Tom Lane's

participation in the Regular Expression vignette illustrates how a core member kept the

development community informed of his activity. The accompanying automatic email

message from the source code repository included all the relevant information for a

knowledgeable participant to understand and follow the exact changes that were made.

55 A patch file is a small computer script that contains only the differences needed original source code files
and the modifications desired. A patch file is inserted into the source code of an existing system to create a
new version.

195



Provide public feedback

When participants report issues, propose solutions and/or contribute code they

implicitly or explicitly ask for feedback from the community. Feedback serves as a

coordination and problem-solving function in the community. Coordination occurs

because the request for feedback, the actual feedback and the response to the feedback

facilitates (micro) alignment of effort between different individuals in the community.

The request for feedback signals areas in which an individual needs help and guides

potential help providers to furnish related information. Problem-solving occurs because

the request for feedback allows community members to present alternative solutions for

the problem at hand and/or redefine both problems and proposed solutions.

Asking for feedback can be in the form of a simple courtesy at the end of an email

message or can be related to very specific issues and items. The RegEx vignette

illustrates the typical form, where community members, both core and periphery, closed

their dialog with an invitation for feedback from the community. Depending on the

situation and the individuals, the request for feedback can be very detailed, as observed in

Daithankar's second proposal for Auto Vacuuming where he outlined six areas where he

needed help. Feedback from the community was in the form of questioning some

assumptions in the design of the proposed solution, review of submitted source code,

providing confirmatory or contrary information about issues raised, or acknowledging the

utility of a solution. Lane strongly critiqued Daithankar' s second proposal and indicated

that the solution as proposed was unacceptable to him. This feedback provided

Daithankar, a relatively new peripheral participant, with an understanding of the

challenges he faced in contributing to the community, and encouraged him to consider

information about other potential solutions.

Matthew O'Connor's submission of the updated AV source code provides an

illustration of the feedback process in the community. Momjian, a core developer, and

Magnus Neusland, a peripheral user on the development list acknowledged the general

usefulness of the solution. Bruce Momjian stated that the code submission was good for

196



the community and that it was relevant for the upcoming release. Momjian's approval

provided legitimating for O'Connor's efforts and increased the likelihood that his

changes would be incorporated into the system. Neusland gave direct user feedback

indicating that he had already incorporated the changes into a live running system with

positive results. His feedback was important because it verified the general occurrence of

this problem and the direct utility of the solution being proposed.

Even after all the glowing reviews, O'Connor's code submission also generated

critique of his programming syntax along with specific suggestions for change in the

underlying logical structure and design of the program. Neil Conway, a peripheral

developer, provided feedback on both programming style and logic issues. Conway

specifically identified the areas that needed changes and also suggested how those

changes might be undertaken. Feedback does not occur in isolation and other members

can also further participate by modifying or correcting the previous feedback. Thus we

observed Lane correcting Conway's suggestions to O'Connor. All of the feedback that

O'Connor received results in a further modified code submission and acknowledgement

of the impact feedback.

A concern with this practice may be that the sheer volume of broadcasts may

overwhelm participants. The large volume may cause "weak" but important signals to be

missed by the community. Thus a report of a problem or suggestion for a new feature

may get completely swamped out if both core and periphery community members are not

diligent with all the communications that occur. The large volume may also pose too

high a cost for participation for new members as they may not have the ability or the skill

to be able to navigate a community email list with over 75 technical messages per day.

3.8.2: Collective Practice 2 - Building and Using Community Memory
While a vast majority of community members do not work together at the same

time or in the same place, they still need to engage in collective problem solving and

action coordination in order to jointly produce a highly complex software product. The

197



asynchronous, distributed and virtual nature of community participation becomes an

advantage by utilizing a simple and lean electronic infrastructure that is based on written

text. Written text is both the means of communication about work (emails) and the

ultimate product of the work (software code). This reliance on text in both the work

process and the end-product enable the community to develop a collective memory that is

both local and global, that is, the textual artifacts of communication and software code

are stored on an individual's local machines and community owned websites. Individual

community members can easily store and refer to the community's textual process and

output. At a global level, the community also represents itself via publicly storing the

textual process and output.

The practice of building and using community memory does not entail dedicated

memory creation and management tasks. Rather, the tools that the community uses for

communication (e-mail lists) and software development (software repository), have built

in memory archiving. Thus, community memory is created as part of doing the work

itself and is available for search, reflection and debate by current and future community

members. Two activities constitute this practice: 1) global and local archiving of current

community activity; and 2) retrieval and use of previous community activity.

Archiving community activity

The electronic infrastructure used by the community members enables automatic

global and local archiving of community activity. Community activity centers around

email discussions and changes and updates to the community's software repository. At

the global level, all public email discussions are immediately archived and made

available on the community's website. The email archive enables the creation of a

memory system that allows community members to go back in time and trace the

evolution of decisions and issues inside the community.5 6 Similarly all changes in the

software code are publicly archived and available for analysis. One of the key features of

the software repository is to maintain version control of all the official changes. This

enables the community to reverse any changes that may cause issues or bugs in the

56 It is also the availability of these archives that enables me to do my research!

198



software system. Both the email list archives and the software repository act as virtual

rendezvous points for community activity. Members from around the world

"congregate" at these points and are able to observe the activities of others as they

interact with the community. In addition, members can utilize the latest technologies to

search (e.g. using Google) the archives and access and read previous conversations and

technical changes in the community. Each community member can also maintain a local

archive of the community's activity. All members act in the community via email lists

and can retain community conversations across space and time by storing related email

on their local computers. Similarly, members who develop software in the community

can mirror the global software repository on their own local machines. This enables local

members to be in sync with community activity.

The PG community does not explicitly view its electronic infrastructure as a

source of community memory. However the Frequently Asked Questions (FAQ) of the

PG website57 provides guidance to potential new contributors by highlighting the

importance of the community's memory systems:

1.1) How go I get involved in PostgreSQL development?

Download the code and have a look around. See 1.7.

Subscribe to and read the pgsiql-hackers mailing list (often termed 'hackers'). This is where the

major contributors and core members of the project discuss development.

<snip>

1.3) What areas need work?

Outstanding features are detailed in the TODO list. This is located in doc/TODO in the source

distribution or at http://developer.postgresql.org/todo.php.

You can learn more about these features by consulting the archives, the SQL standards and the

recommend texts (see 1.10).

1.4) What do I do after choosing an item to work on?

Send an email to pgsql-hackers with a proposal for what you want to do (assuming your

contribution is not trivial). Working in isolation is not advisable: others may be working on the same

TODO item; you may have misunderstood the TODO item; your approach may benefit from the

review of others.

<snip>

57 Available at http://developer.postgresql.org/readtext.php?src/FAQ/FAQDEV.html+Developers-FAQ

199



1.7) How do I download/update the current source tree5 8?

There are several ways to obtain the source tree. Occasional developers can just get the most

recent source tree snapshot from ftp://ftp.postqresgl.orq.

Regular developers may want to take advantage of anonymous access to our source code

management system. The source tree is currently hosted in CVS. For details of how to obtain the

source from CVS see http://develoDer.postgresql.or/docs/postgres/cvs.html.

The FAQ recommends that potential code contributors immerse themselves in the

community's memory by downloading the code reading the email list. It also

recommends that they read community email archives and use the code from the CVS

repository (source tree) to participate in the community.

Retrieval and use of community activity

Retrieval and use of previous community activity is an important central

component of working in these settings. Community members refer to the previous work

of others by including snippets of text from the emails of other individuals in their own

communication with the community. This activity has become a norm of participation in

most online communities (Orlikowski and Yates 1994) and has evolved into a standard

way of interacting online. Indeed in most email discussion, there will be at least one

instance where participants will invoke the words of previous individuals, either in the

same discussion, or from another discussion, as way to provide a pointer to all

participants about the community's memory. The use of this activity is further enabled

by most modem email systems which enable "reply to" functionality. Thus participants,

using their local email archives, can reply to others by using extracts (often called

quoting) from the email of others to make their point. This activity can be observed

throughout the vignettes where participants continually quoted others in their responses

during an email conversation. For example in the AV vignette, Lane reviewed Conway's

coding style suggestions to O'Connor by first quoting the precise passages from

Conway's email to O'Connor and then below it providing his critique. The discussion

between Conway and O'Connor became part of the community memory on Lane's local

e-mail archive and he was then able to, seven hours later, use it to contribute back to the

58 Source tree refers to the CVS repository.

200



community and indicated O'Connor his concerns about Conway's suggestions. In the

GC vignette, Lane defended his stewarding of the Red Hat requested feature by giving

explicit url links to prior community discussions about the need and suitability of that

feature.

Community members also retrieve and use the community's memory by

accessing the software repository. The software repository contains information on every

change made in the program by the community. Each software change is archived with

information on who made the change, the date and time of that change, comments by the

author regarding the change and the actual technical change itself. The RegEx vignette

illustrates the enactment of this activity, Momjian, a core developer, initially did not

know the author of the RegEx module. By searching the software repository he was able

to identify Henry Spencer as the author. The repository also contained contact

information about Spencer and thus Momjian was able to get in touch with him with his

questions. Similarly, Lane used the software repository to help him in identify the author

and the logic of the change responsible for his initial diagnosis of the reason for the

RegEx performance degradation. Lane in communicating with the community, used the

repository comment statement to show the link between his diagnosis and the change

from six months before.

The strength of this practice, for retrieval of community discussions, is also its

weakness as discussions that occur in the heat of the moment, may not be worth archiving

or individuals may not be completely forthright in their discussions knowing that it is

publicly archived. Participants lose a sense of privacy because all of their comments are

archived for posterity and accessible to any one.

3.8.3: Collective Practice3 - Distributed Decision Making
There are two types of decisions made by community members. First, at the

individual level, community members have to decide which tasks they are going to

perform and what level of participation they want to have. Individuals make local

decisions about task selection and that is discussed below. Second, the community has to

201



decide which of the code submissions are accepted and which ones are rejected. On the

surface, the core community members have the ultimate decision rights to make these

choices. However, these choices are not made in a vacuum or behind closed doors but

occur via email broadcasts and are visible to the entire community. This means that the

core group is continually justifying to each other and to the community their decisions.

In addition, unlike the benevolent dictatorship model of Linux (Lee and Cole 2003),

where one person has ultimate decisions rights on the code, in the PG case, every

member of the core group of 11 individuals has commit authority and in theory can veto

someone else's choices. I identified three activities that constitute the practice of

distributed decision making in the PG community; 1) incremental and local planning; 2)

provisional settlements and 3) lazy consensus.

Incremental and local planning

The traditional approach to software development emphasizes significant upfront

planning by product managers before any coding starts. There is a strong emphasis on

requirements engineering, product and feature specification and task assignment to

ensure that software engineering projects achieve their goals (Crowston 1997; Cusumano

and Selby 1997; Cusumano and Selby 1996; Weber 2004). In the corporate setting the

best practice in software development emphasizes the significant role of upfront planning

and clear and unambiguous decision making by the managers of the software

team(Cusumano 2004; Cusumano and Selby 1995b). In the open source community

setting, I observed more emphasis on incremental, decentralized and local planning. The

particular dynamics of working in an all-volunteer5 9 setting where there is no ex-ante

information on the community's access to resources, commitment and effort from the

participants means that the PG community did not and could not plan ahead of time. The

only formal coordination device in the community that could serve a planning function is

the TODO list. However, as discussed above, the TODO list was primarily a record

keeping device for assigning ex-post credit to work completed. In an interview, Momjian

noted:

59 From the community's point of view - no one is paid by the community. Individuals are often paid to
participate as seen in Lakhani and Wolf 2005.

202



"At the start of a release cycle we have no clue as to what will be

developed by the community. Everybody has their own personal wish list

as to what needs to be done. But I have no information on what is on

those wish lists. Sometimes we do have discussions about those wish list

items but there is no expectation that those elements will be completed."

Lane expressed a similar view during the Red Hat GC module controversy in an email

message to the entire community:

"Personally I agree with the idea of stripping out whatever functionality

isn't immediately necessary. It seems to me we've generally been more

successful by adding features in response to specific demand rather than

inventing things we think might be needed."

Instead of a significant investment in upfront planning, the core team and the

community is relatively open to peripheral users and developers, gains access to

information about technical needs as they arise in the actual use environment. Core

members may have their own agendas that they need to fulfill due to their various

sponsorship requirements or personal interests, but that does not mean that they attempt

an ex-ante community consensus on what should be done or who should do it. As the

AV and RegEx vignettes illustrate important features get developed or updated via a

close connection with the use environment. Avoidance of global planning does not mean

that local planning by individuals does not take place. We saw evidence of such planning

in Daithankar's proposals for implementing AV and Lane's proposals for fixing the

RegEx module. The local plans of one individuals as they are enacted in software code

then trigger other individuals to create their own micro-plans for action. The AV vignette

provides a good example by illustrating how iterated incremental and local planning by

Daithankar, O'Connor and others created new functionality for PG.

Too much incremental and local planning may cause the community to drift from

issue to issue without making significant progress in creating new functionality and

innovation. The lack of global public plans may also raise the barrier for entry for new

comers who may not be easily able to discern the priorities of the community and where

203



their contributions would be most welcome. It may also cause duplication in effort as

participants may not have a full view of all the planned activities in the community.

Provisional Settlements

Complementary to incremental and local planning is the observed activity of core

group members making provisional settlements (Girard and Stark 2002) of issues by

deferring decisions until they are necessary. Girard and Stark (2002: 1947) in their study

of internet design firms identified a collective decision making activity that "instead of

reaching an agreement, they reach a settlement." In their empirical context, a project

team achieved settlement of an issue by involving a superior or relevant outsider (e.g.,

client). The settlements allowed the relevant parties to continue with their work until

they reached another moment of collective decision making. The settlements were also

provisional in the sense that they were open to future reinterpretation.

In the case of PG, provisional settlements were achieved by deferring decisions

on issues of design and timing of features. Decision to defer some aspects of a

technological implementation are driven by an understanding that multiple ways of

accomplishing the same task are possible. Core members also realize that they are under

no obligation to accept code that does not perform as advertised via public testing.

Another benefit of deferring decisions is that it enables the distributed community

members to pursue multiple design options with the core group having the ultimate

ability to chose the one that performs the best amongst all the trials.

The AV vignette shows how provisional settlements by deferring decision making

work in the PG context. Recall that there were five design proposals that were floated by

various individuals. These proposals matched the local knowledge, ability and interest of

the contributors. Notably, Lane's proposal to create an AV system based on

modifications to the core PG server module was not followed-up by any of the peripheral

contributors. Lane also did not insist on any one particular approach and his view

regarding the contribution from O'Connor confirms a deferring decisions perspective:

204



I think a server-side solution is the way to go in the long run, but

since one probably won't be available for 7.4, a contrib module seems

like a reasonable stopgap offering. Contrib is our traditional refuge

for "not ready for prime time" code, no? The fact that it's a client

and doesn't touch server-side code actually works in its favor here

--- there's nothing to rip out after we have a better answer

It is also interesting to note that besides Daithankar, Weilguni and O'Connor had

also attempted to create solutions for the AV issue. Core team members, by not forcing

designs or picking favorites upfront, allowed the natural experimentation within the

community to take hold and the eventual accepted design to emerge. O'Connor in an

email interview reflected that he had been stuck in his attempts to create a solution to the

vacuuming problem several times, but that Daithankar's code gave him the necessary

ideas to get it going:

My interest in creating an autovacuum program for postgresql predated

the C++ based pgavd work that Shridhar [Daithankar] had done. I had made

a few attempts at starting pg_autovacuum by hacking backend code, each

time I failed due to the complexity of the postgresql internals and my

limited C programming skills. The one thing that I did take away from

the work Shridhar [Daithankar] did was that the autovacuum process didn't

need to be a backend project, it could (at least initially) be a libpq

based client app which I was familiar with. That said, there is no common

code from Shridhar's project and mine. The main reason for that is that

if I was going to fold pg_autovacuum into the backend at some point, then

it needed to be C based, not C++ as all backend postgresql code is in C.

Thus deferring decisions allowed peripheral members to experiment and enabled a local

learning from the work of one member by another.

Another type of deferring decisions relates to initiating work only when it is

absolutely necessary. In the RegEx vignette, the original need to get Spencer's new

RegEx code was added to the TODO list by Momjian in 1998 based on one user

complaint. However nobody took on the task of importing the code until early 2003

when Klaver demonstrated a use situation that was causing a significant performance

drop in new PG code. In the approximate five years in between there was no observable

205



activity by any core or periphery developer to work on this item. Since there were not

any public complaints about this issue within the wider developer and user community

and no one had initiated any work on it there was no reason to pursue completing the

item. The core team let the item stand on the TODO list but did not try to encourage

others to complete it. Instead the decision to import the code was deferred until it was

demonstrably proven, via Klaver, that it should occur.

Ward et al. (1995) have observed a similar delaying decisions tactic at Toyota.

They called it the "Second Toyota Paradox" and defined it as follows: "The second

paradox, in brief, delaying decisions, communicating "ambiguously," and pursuing

excessive numbers of prototypes, enables Toyota to design cars faster and cheaper [pg

44]." They show that mangers in the Toyota Production System encourage the

generation of multiple design sets for each critical component. Toyota issues very

general specifications for the components and then allows the various internal

engineering teams and external suppliers to pursue their own problem solving strategies

until a "winning" design emerges. The winning design is not based on an ex-ante

selection by elite automotive designers. Rather there is a process of constant comparison,

based on actual "field" performance data, that allows the Toyota managers to make a

choice. The winning choice emerges from a process of trial and error and continuous

improvement instead of an upfront bet on the right design.

Deferred decision making may also be confused for or be given as an excuse for

inaction or task laziness. There may be wasted effort in the various parallel trials in the

community and ultimately peripheral contributors may get upset if their contributions are

not accepted. Deferring action on an item because there is no vocal demand for it may

cause the project to ignore important pain-points in the software. It may be the case that

the user base may feel too intimidated to ask for a fix to features that are broken given

that open source communities have a strong "do-it-yourself' attitude towards work.

206



Lazy Consensus

Community-based product development may imply an egalitarian type of decision

making amongst both core and periphery members. The idealized view of such a

community would mean that members, especially core members, would reach consensus

on all decisions that confront the community. In practical terms I observed a leaning

towards much more lazy consensus. By lazy consensus I mean that typically only one or

two core members participated in the decision making process of committing the source

code from peripheral developers to the global repository. Silence by core members

implied tacit agreement and most of the time there was no explicit attempt to gain

agreement from other core members unless the work impinged directly on an area of

known interest of that developer. Lazy consensus thus lowers the threshold of

participation and acceptance of code in the community. Instead of attempting full

consensus on each and every issue, the core members in the PG community express voice

as needed or else refrain from participating in the decision making process.

However, lazy consensus may not be ideal under circumstances when clear and

direct leadership and accountability is needed. In contentious issues, developers may

chose the exit option, that is, stop participating because they are uncertain about the

outcome or the process, instead of voice, that is, persistently staying to participate and

enact changes, resulting in an overall decrease in community effectiveness. The GC

vignette showed that another downside of lazy consensus is that some times even core

developers do not raise objections at the right time and place leading to significant

community friction.

3.8.4: Individual Practice 1 - Choosing type and level of participation
Ultimately to get work done, community members have to undertake the tasks

required to create a complex software product. Formal tasks in developing software

include determining user needs, creating functional specifications and writing, integrating

and testing software code. In formal organizations, these tasks are often pre-determined

and assigned to employees via their unit and functional managers (Cusumano 2004).

However, in the absence of formal authority structures and resource ownership,

207



community members have to determine for themselves the areas that they will work on,

the specific tasks that will engage in, and their level of participation in those tasks. The

two constituent activities of this practice are: 1) identifying tasks; and 2) doing the tasks.

As the analysis below shows, task identification, engagement and participation are

emergent and are dependent on community members selecting activities that match their

own interests and needs with their skills and abilities.

Identifying Tasks

The first activity in task accomplishment is figuring out what things need to be

done. There are four ways in which participants identify tasks that need to be

accomplished; 1) meeting a use requirement; 2) meeting a community need; 3)

conforming to technical architecture and standards and 4) following the project TODO

list.

Tasks get identified when users report to the community their experience with the

software. Thus Weilguni's complaints about poor performance with vacuuming and

Klaver's concerns with decreased system functioning with RegEx informed the rest of the

community of a potential area of work and tasks. Their complaints did not spell out the

tasks that needed to be done, rather it directed the attention of community members to

examine their claims and to determine potential tasks that needed to be accomplished.

Tasks also get accomplished for specific corporate needs that may not be related to direct

user experience. Nasser, as a representative of Red Hat, identified the need for GC

functionality for their own version of the PG database and requested that rest of the

community agree with both the need and their proposed solution. Nasser did not directly

use the database for his own work but was representing a potential use case for Red Hat

customers.

Reports of first and second hand use experience reports other community

members to respond by giving feedback on the legitimacy of the issues being presented

and also to determine if there is a community need that needs to be met. It is easy to

understand why Lane took a deep interest in resolving Klaver's RegEx issues. Lane as

208



one of the core developers noticed that Klaver's identification and proof of a severe

performance penalty in an important use domain had to be resolved in order for stable

future releases. Thus he took it upon himself to diagnose the problem in collaboration

with Klaver and to create a fix for the new version. Similarly, Ishii as a core member

working in the same area as Klaver's problem wanted to ensure that the problems could

also be resolved in the older versions of the software. Besides, core members, who have

a direct interest in ensuring that the software performs as expected, periphery members

also participate based on community need. Daithankar, in an email interview, reported

that his motivation to respond to a community need reflected his view that it was easy:

I joined postgresql project lists due to a project requirement on my day

job. I stayed with it on/off for quite some while. I used to read most of

the mailing list threads there. I still do though my direct contribution

is hardly any.

Oer [sic] the time, one thing became obvious to me that people didn't get

how to run postgresql effectively. There are simple things that needs to

be done with discipline but people just couldn't get the concepts.

Vacuum was one problem that is not a real problem as much it was made out

of it. It prevented postgresql from being 24x7. And large part of blame

was with admins/app. developer.(or So I think)

So I tossed idea of autovacuum on mailing list. Quite a few suggestions

poured in, some of which were really helpful. Looking at the whole issue,

I thought I could do it without much mucking with the core postgresql.

So I said, why not try it?..:-) And it started..

A similar sentiment was expressed by O'Connor regarding his contribution to the AV

module:

[It was a]Nice to have [feature]. While do use pg_autovacuum on my

servers, I don't think I befifit [sic] much from it, nightly vacuums were

fine for my needs.

More specifically, I wrote pg_autovacuum because I had been using

PostgreSQL for a few years, and I wanted to give back to the project. I

identfied autovac as something that PostgreSQL lacked, the community

wanted, and was simple enough for me to work on.

209



While Daithankar and O'Connor did not have a direct need for the AV functionality,

however, they both made the assessment that doing so would be a contribution to the

community and also that it was something that was within their capabilities to execute.

Another source of task identification is conforming to technical and architecture

standards. As contributors broadcast source code to the rest of the community, others

examine it based on their own expertise and experience. This examination allows them

to identify tasks that need to be done based on the degree of alignment of the

technological architecture of the base software and the new code. In all three vignettes,

the new software code submitted needed additional work so that it would fit with the

existing code. Daithankar's original submission was written in C++ and it was used as a

model by O'Connor to create the same functionality in C, the base language for PG.

O'Connor's AV submission was critiqued by Conway for compatibility in coding and

logic conventions within PG. Spencer's new RegEx code had to be adjusted to fit within

the new constraints of PG and Red Hat's GC code had major modifications made to it in

order to satisfy the technological architecture of the system.

Finally, the TODO list by the project serves as another source of task

identification for the community. The TODO list is maintained by Momjian and he has

the decision rights to add items to it. A naive view of the TODO list would be to consider

it as a primary coordination and task identification device for the community. However

this normative explanation does not reflect the actual workings of the community.

Instead the TODO list is viewed as one potential source of task identification within the

community. In interviews core members reported that the TODO list was simply

Momjian's view of what needed to be done in the project and did not reflect consensus

within the community or even a commitment to get things done.

Doing Tasks

Once a task has been identified it also needs to be accomplished. On one level

task identification is also a task within the community. A primary task of the community

is to determine what needs to be done and often identification and accomplishment go

210



hand-in-hand. Thus, Conway's critique of O'Connor's code was both a task

identification and task accomplishment - done in email. He identified the changes that

needed to be done and also how they should be completed.

The vignettes show that contributions from both core and peripheral members

range in intensity and effort. Sproull, Conley, & Moon (2005) have postulated that

micro-contributions, contribution of small textual units (via email) requiring limited time

and attention, are the basic building block of online communities. In the vignettes,

micro-contributions, such as, reporting a bug, sharing an idea, requesting a feature,

participating in a discussion, doing translations, testing software changes, and

contributing code were observed. Micro-contributions allow peripheral members to

problem solve with the core and other community members without the need for

significant upfront investment in time and effort. Micro-contribution does not imply

micro-impact. Weilguni's idea of using the "stats-collector" as the foundation for the AV

module arrived in the form of a micro-contribution. However, it was a critical

component of all the work done in the future versions of the AV module. The small

increments of information also create a significantly smaller cognitive burden on the

participants, allowing them to make an assessment of the shared information and its

implication for the particular technology.

Furthermore, since the micro contributions are relatively small and public, mid-

stream course corrections and changes in directions are more easily accomplished as

compared to making changes to much larger contributions. Micro-contributions from the

range of participants involved in a particular feature accumulate towards the collective

output of the community. Micro-contributions, however, do not occur in a vacuum, but

are instead directly tied to an evolving major code contribution. The significant code

writing effort of Daithankar, O'Connor, Browne, Spencer, Lane Ahmed and Eisentraut

in the three vignettes, made it possible for community members to engage in other tasks

as code review, algorithm design, code use and bug finding and fixing.

211



Community members' ability to choose the type and level of participation does

away with a lot of the bureaucratic means of administration observed in software

development projects within firms (Cusumano 2004; Cusumano and Selby 1995a;

Cusumano et al. 2003). Contributors are exposed to an ongoing stream of activity by

other community members and decide if, when, where and how to participate. The risk

of this practice, however, is that some tasks may not get done. For example, software

from open source communities has often been criticized for not being overly user

friendly, thus tasks that relate to making the software accessible to less sophisticated

users are often neglected or never undertaken by the community members. These tasks

are often viewed as being boring and not sufficiently challenging and will only get

accomplished if a community member has either a commercial or personal need for them.

The RegEx vignette did illustrate that an item can languish for quite some time on the

TODO list. Thus there is a possibility that important tasks may be neglected by over

reliance on this community participants choosing their type and level of participation.

3.8.5: Individual Practice 2 - Using The Community's Output
The collective practice of building and using the community's memory is directly

related to individuals using the community's output. Community members take the

collective outputs, that is, the software, and then integrate it within their own local system

and deploy the software in the use-environment. From a software development point of

view, integration and use are means of finding problems within the design and

construction of the software.

Software integration is defined as an assembly of parts both old and new creating

an updated version of the software. Systems integration, before actual product release, is

a fundamental engineering design activity as it initiates "interference finding" between

various parts and helps to determine unforeseen interactions (Marples 1961). In the case

of software, integration is important because as the various modules developed by

various programmers are integrated, bugs and problems that were not visible in

individual components may become evident as latent interdependencies (Jorgensen

2005).

212



The use of software in actual production environments may also reveal issues

with it. Users stress the software by using it unanticipated ways and in unanticipated

environments revealing new sources of dependencies and lack of functionality within the

software. Most often software developers will have a phase of "beta" testing where

external users will put the software through simulated or near production environments.

In the PG community software integration and use are continuous and

decentralized. Integration is not centralized and there is no one person in charge of the

software build. Similarly although there is a formal "beta" testing phase within the

software release process for PG, many participants were deploying pre-beta, that is using,

software in actual use environments. This individual use of the community's output

helps the participants to identify and rectify issues and interdependencies earlier in the

process and to resolve problems as they arise instead of waiting till much later stage. I

describe two activities: 1) integrating latest code and 2) using latest code that constitute

this practice.

Integrating latest code

The community software resides in both global (community-wide public servers)

and local (participant's own private computers) repositories. As new software gets

developed by peripheral community members, it is first sent via a broadcast email to the

entire community. Other core and peripheral members then examine the software for

obvious flaws and then integrate the code with their own local repositories. If the local

integration is passed then a core member will commit the code to the global repository

and make the changes permanent. The global integration then allows for a much wider

set of individuals to try out the code and observe its effects. This early code examination

and integration helps to find errors in the new code that may have been missed by the

original author and also exposes the code to a diverse technological and intellectual base

for evaluation and testing. In the RegEx vignette, Klaver integrated both Lane's new

code and Ishii's changes immediately with his system to confirm their utility. Similarly

O'Connor's code was first locally integrated by Conway resulting in a request for

213



changes and then the changes were committed to the repository by Momjian. The issues

with Red Hat's GC contribution were discovered when Herrera did an integration of new

code in a previously unrelated section, internationalizations, on his local machine. This

occurred three months after the global integration into the source code repository by

Lane.

Using latest code

After local and/or global integration, many development community participants

start to use the code directly in production environments, before the beta test release or

the final release. This activity provides both need information about the new features

being developed and an indication of potential problems as a variety of users test out the

new features under heterogeneous contexts. As table 3.9 shows, 39% of the code

submitted by the periphery is actually in their local production environment to start with.

Some peripheral developers, as they encounter problems will first try to resolve them in

their local environment before passing on the solutions to the rest of the community. In

other cases, peripheral participants will use the latest code from others in their own

production environment to gain access to critical features that they need prior to a general

stable release. In the AV vignette, O'Connor indicated that his code submission was

already working in his production environment at the time of his code submission.

During the discussion of the AV feature, another peripheral user also endorsed the

general usefulness of the feature and informed the community that he had been running

Daithankar's old AV code for sometime in his production environment. Improvements to

O'Connor's code from Brown also arose because of his usage of that feature in an actual

use setting which led him to discover the abnormal behavior. Similarly Klaver's

identification of the RegEx bug occurred because he was using the latest globally

integrated source code from PG repositories in an actual production setting.

There are three potential risks to the community with this practice. First, the lack

of a centralized integration role may mean that some changes and additions that are not

appropriate may slip by, simply because somebody else did not seek to systematically test

the changes that were committed. This was certainly the case in the GC module where

214



the community trusted Lane's judgment and let him make the changes as needed without

extensive evaluation and testing by others. Second, there is a risk that incremental

integration and continuous use may place the community in a situation where only

incremental improvements are being made in the system and radical changes are being

eschewed. Third, the use of pre-beta code in production systems may cause unexpected

behavior which may result in an unanticipated loss of data or systems failure. Thus those

trying out brand new changes run some risk in using pre-release software in a production

setting.

3.8.6: Individual Practice 3 - Coordinating Action and Building Trust Through
Evidence

The core-periphery interaction in the PG community is essentially one of

strangers interacting with one another over a relatively short period of time using very

lean media. In the absence of pre-existing ties, managerial authority, and a history of

joint experience, the PG community relies on individuals to provide concrete evidence of

their claims and requests. Evidence can be in the form of software code, output of an

error log, a detailed description of the situation that caused an unanticipated breakdown

in the software, the logical reasoning behind a particular request or simply reporting the

presence of similar issues in another use environment. Providing evidence serves both

social, coordination and technical problem solving requirements of the community. From

a social perspective, peripheral participants can gain quick legitimacy within the

community and especially with the core group by giving evidence of the veracity of their

problems and solutions. Core group members provide evidence to demonstrate that they

are acting in the best interests of the community by being inclusive and rational about the

choices they are making. The evidence provided also helps to coordinate the response of

the distributed community members by letting them assess if they need to respond and

how. In addition, it gives guidance as to the location of the appropriate area of technical

interest in a complex technological artifact. The evidence also helps the community to

assess the technical merits of a problem and/or solution by giving them a concrete and

"objective" means of assessing the claims. This practice consist of two complementary

activities; providing evidence of claims and seeking and testing evidence of claims.

215



Evidence Provisioning

Community members who initiate work by posing problems or issues or those

who respond with potential solutions also typically provide evidence of their claims to

the entire community. Problems can be transferred from the individual to the collective

by giving compelling evidence of their impact. In the RegEx vignette, Klaver's posting

the output of his database query provided concrete evidence of a significant drop in

performance (a factor of 150) for a soon-to-be-released PG software version. This was

enough to convince two core group members and six other peripheral members to

participate in problem solving. Similarly, in the AV vignette, Weilguni's articulation of

his unhappiness with the current vacuuming functionality along with a description of its

negative impact on his usage of the software mobilized the community. Weilguni's

evidence was further bolstered by other community members further claiming that

vacuuming was a problem for them as well. Nasser's request to have the new GC

interface code be part of the PG system was based on an articulation of a general need

that would be of use to many others in the community.

Solution providers also need to give evidence of their claims about the usefulness

of their submissions. The most dramatic example of giving such evidence was O'Connor

broadcast of a graph demonstrating how the inclusion of his AV code resulted in a

significant increase in software performance (transactions per second supported) as

compared to similar software without his AV code. O'Connor's comparison of the old

with the new along with the supporting graphs and source code built confidence in the

community that he had a viable solution to the original problem. Similarly Ishii and

Lane, both core members, showed the effectiveness of their solutions to the RegEx

problem by comparing performance of their code on PG-specific regression tests for the

software. They computed time in milliseconds and showed how fixes to the code

improved performance. In this case, stating that the software worked and "compiled

cleanly" was not enough. Rather, since Klaver's original complaint was a drop in

performance, giving evidence of performance results was deemed important by the core

developers.

216



Seeking and testing evidence of claims

In addition to providing evidence, community members also actively seek

evidence of claims to aid in problem diagnosis, issue identification and clarification, and

for specific help with unique circumstances. The request for more evidence can arise

from members who have problems and proposed solutions. In the RegEx vignette,

Klaver and Lane executed four cycles of seeking evidence and providing evidence. Each

iteration helped Lane get closer to the proper problem diagnosis. Since Klaver was in a

unique user setting and experiencing an unexpected failure it was necessary for Lane to

involve him in the problem diagnosis process. Seeking evidence then becomes a way for

the distributed members to participate in the problem solving process. The back and

forth between Klaver and Lane demonstrated to the entire community that the problem

was on its way to being characterized and the first diagnosis was not necessarily correct.

On the other hand in the GC vignette, Momjian complained to Nasser that he had

not provided sufficient evidence for his particular need for the GC software addition.

Momjian noted that Nasser was absent during the second review process and had to be

prodded by Lane to participate. Momjian viewed this as an affront to the community

process because the person behind the solution being implemented was not available to

respond to community questions. Nasser felt that the community process was over when

the code was committed to the repository in July 2003. Instead, Momjian argued that, at

least before a final version is released, all members who have submitted code need to be

able to provide evidence for their claims.

Those creating solutions to problems can also request evidence in the form of

specific testing regarding their software code. Both Lane and Ishii in creating their

changes to the RegEx module, asked Klaver to test their solutions to give evidence to the

community (and themselves) that their solutions performed as expected. Ishii also tested

Lane's code and gave performance evidence that it worked as advertised. In other cases,

claims can be tested directly in code by others. In the AV vignette, Daithankar's initial

proposal for a script-based solution was deemed infeasible by Weilguni. However,

Taylor responded back to Weilguni by linking to an actual script that did what Weilguni

217



had initially thought to be not acceptable. Thus Taylor created new evidence that

debunked Weilguni's claims.

Evidence provisioning forms an important individual practice of participation in

the community. However a concern with this practice may be that the standards of

evidence might be too high for peripheral members who are not experts with the code.

They may not have the experience with the software to generate the correct types of

evidence for their problems. Also there may concerns with disputes over interpretation of

evidence. A severe breakdown for one person may be a trivial situation for another and

"objective" numbers may not be enough to garner mobilization of others to one's

problems.

3.9: Discussion
The motivation for my study has been to explain a central empirical observation

in F/OSS communities that shows the inclusion of many thousands of individuals in

highly complex product development tasks. Most casual observers of such a

phenomenon would predict a breakdown in the social order and not expect much in terms

of community accomplishment. Similarly the observations, recommendations and

theories of scholars of innovation and product development activity inside of formal

organizations have viewed with skepticism the ability of F/OSS communities to innovate,

solve tough technical problems and create, competitive products.

In my study I wanted to understand the value of the periphery in the community

problem solving effort and to develop a grounded theory of how the core and peripheral

members in the community work together to solve technical problems. Andrew Morton's

quotation about code writing participation in the Linux kernel community indicated that

very few individuals contributed actual code to the development effort, in effect, begging

the question why those few individuals allow such an open and transparent development

process along with the participation of thousands of individuals. Yet the core participants

persist in keeping their activities open so that others may participate with them.

218



Momjian, an original and founding core member of the PG community shared this view

with me on an internet relay chat:

"A few core folks might to [do] the majority of the coding, but we are pretty

lost without the support group around us. They give us ideas for features,

report bugs, test stuff, and act as a sounding board for ideas, plus 1-2 folks

usually show up to give major ideas on each major feature, it is usually a

different 1-2 guys, but they are deep thinkers in that area and provide

invaluable input. Doing the coding is only 1/2 the job, in fact perhaps less

than half. The design of how to do something, and how the user should

interact with it, and the testing are keys to our group dynamics."

My quantitative analysis has shown the primacy of the periphery in the PG

community. I find that the periphery is essential for the core in four ways: they provide

use-information about the product, they provide unique pre-made solutions; they provide

solution-related information; and they themselves are a resource for the community.

Practically, peripheral members initiate a majority of code writing episodes; they write

about half the code; they participate in collective problem solving with other code

writers; they test and evaluate newly written code; and they are a source of new core

members. More importantly they are the primary source of new needs and solutions

adopted by the community. The ongoing interactions among core and periphery

interactions are critical to the community's ability to produce working software.

Organizational research on the nature of knowledge has shown that it is both sticky and

leaky (Brown and Duguid 2001). Existing research has shown that when knowledge is

totally sticky and distributed, functionally novel innovation - involving novel need

information - will occur primarily in the periphery (Riggs and von Hippel 1994; Tyre and

von Hippel 1997; von Hippel 2005). When knowledge is totally non-sticky, problem-

solving may occur only in the core. However another perspective on knowledge is to

emphasize that it is not an object but rather "knowing in practice" (Orlikowski 2002).

Thus core and periphery interactions are not about just about transferring knowledge or

the degree of stickiness of knowledge, but instead they represent the practice of sharing

"know how" amongst the participants.

219



My findings are consistent with extant research which highlights the importance

of external information for core team problem solving (e.g.: Allen 1977), the advantages

of"intellectually heterogeneous groups" (Leonard and Sensiper 1998) for innovation, and

the importance of the technical core for task accomplishment (Thompson 1967).

However, I show that the relatively open interaction architecture changes the organizing

logic such that peripheral community members can play an important role in complex

technology development.

In these core-periphery communities, instead of core gatekeepers (Allen 1977)

seeking relevant information from the outside, peripheral members, on their own accord,

bring in both problem need and solution information. Furthermore, peripheral members

work hand-in-hand with core members to jointly solve problems and contribute pre-made

technical solutions. In keeping with Granovetter's (1973) strength of weak ties theory, I

show that the periphery provides unique knowledge not available to the core. However,

tie activation is conducted by the periphery instead of the core. My findings also

demonstrate the importance of the technical core to the collective problem solving effort.

However, unlike Thompson's (1967) recommendations of buffering and sealing the

technical core from the environment, I show that the core's embrace of the use

environment via its interactions with the periphery is critical to community's success.

Along with my quantitative analysis I have attempted to develop a grounded

theory of the social practices that enable distributed problem solving in a community.

The collective practice of work broadcasting, building and using community memory,

and distributed decision making enable public participation and transparency in the

community and are critical for work accomplishment. It is hard to imagine organizations

where a significant majority of work activity occurs in public settings and all work-

related activity is broadcast to any interested party. The cognitive burden of absorbing

information from over 100 community-related e-mails per day and also participating in

220



relevant discussions can appear to be overwhelming. However, this is a sine qua non6 0 of

F/OSS communities. Public participation enables interested members to be updated

about relevant activities and issues across the distributed community. Members are

immersed in a continuous stream of technical, task-related discussion and can choose to

selectively participate or initiate new dialog. Public participation allows for the

possibility of peripheral and hidden (lurking) members to contribute to relevant

discussions and opens up the potential that diverse sources of information may be

accessible to the project. Public participation also ensures that community members who

have alternative perspectives on issues can at least voice their concerns to all other

members.

An important derivative of public participation is the transparency provided of the

work process of the community. Lave and Wenger have noted that transparency of

process and technology-use-in-practice are important considerations towards successful

legitimate peripheral participation. New apprentices need to be able to "see," observe

and participate in all aspects of a community's practice as part of their journey towards

full membership. When transparency is blocked or is difficult, learning is inhibited.

Similarly the technology in use by the community needs to be transparent so that

newcomers can learn to adapt and use the technology for their practices and to enhance

learning, instead of treating them as black boxes. Transparency is manifest in both

community discussions (on e-mail lists) and in the technological objects created.

Members can observe (and participate if needed) in all of the design, problem-solving,

code creation, and decision making processes of the community. Transparency in

process and code builds confidence amongst participants and enables them to collaborate.

Concerns for opportunism and/or subversion from others can be tempered by

transparency enabling a community monitoring system, where the ability to call into

question decisions and choices is available to both core and peripheral members.

60 This does not preclude private discussions amongst members. However my interviews and data analysis
show that this is not a norm for the community and many private discussions do spill over onto the public
side.

221



Another outcome of the collective practices is the sense of collective ownership of

the developed software code and the ideas around the code. Once code is submitted to

the community or is imported from another community, the ownership of the code shifts

from the individual to the collective. This allows other contributors to propose and/or

create further modifications to the donated software code without explicitly asking for

permission from the originator. It also ensures that the responsibility for the viability of

the software code - its quality, maintainability and updates - becomes the responsibility

of the community instead of the individual. Additionally even after a particular

contributor has lost interest in the community's effort - others can take over and evolve

the code submitted by the absent members61 . Collective ownership also allows

community members to leverage each other's contributions and build on top of each

other's work instead of doing a de-novo start.

The collective ownership of ideas means that individuals are free to elaborate and

further expand ideas proposed in the community. "Co-construction" has been proposed

by cognitive and learning scholars as mechanism for effective group problem solving

(Hausmann 2003). Hausman's (2003: 10) review of the extant literature on co-

construction allowed him to proposed the following synthesized definition of co-

construction: "(a) the ideas are not attributable to any one person, but are distributed over

two (or more) speakers, (b) ideas are built up over multiple turns, (c) new information is

generated that neither knew before the interaction, and (d) the co-constructed ideas are

unlikely to have been generated by either individual alone." In the distributed problem

solving community, the collective practices of work broadcasting, building and using

community memory, and distributed decision making enable co-construction to take

place.

At the individual practice level, members also experience relatively low

participation costs for contributing to F/OSS communities. On the social side, the

practice of task self selection and accomplishment means that members do not have to

61 This does not mean that there is no "moral" ownership of the code, that is, if one contributor is public
about working in a particular area of the source code, then making changes in the same area, without
publicly alerting that this is being done - would be considered a breach of community ethics.

222



ask permission to work on any particular part of the software code. Often, members

attempt code changes privately and then reveal their results to the development e-mail list

only if they were successful. Failure6 2 does not have to be publicly revealed thus

lowering the social costs of community participation. If members had to make an ex-

ante revelation of intent or ask for permission before hand - then a lot fewer attempts

would be expected as potential contributors would have their public reputations at stake

and would need to be confident in their ability to deliver on their claims. Even when

contributors publicly announce their intentions to work on something, there are very low

community expectations about timing or even actual completion of effort. Community

members are aware of the voluntary nature of their participation and are very forgiving

with regards to delays and partial or non-completion of work. Some of the negative

consequence of this include: lost lessons about failures, if people are not discussion

failed attempts in public; inefficiency in many people trying the same thing; and the

possibility that work initially done in private may not get accepted by the core team.

The cost of participation from a task point of view can also be low for a

contributor. The threshold of any quanta of contribution can be quite low. In F/OSS

communities, micro-contributions (Sproull, Conley and Moon 2005: 144), in the forms of

reporting a bug, sharing an idea, requesting a feature, participating in a discussion, doing

translations, testing software changes, contributing code are the essential currency of

generalized exchange (Ekeh 1974) and participation. Membership and entry in the

community can take many forms and does not require a significant up-front investment

for initial participation. As Sproull et al. note (2005: 144): "Not only is it easy to make a

helpful contribution, it is also easy to control the extent of further involvement. In the

offline world, a person may hesitate to offer help for fear that helpful response will lead

to further demands on one's time or emotional energy. In the online world, a person

offering help may feel in complete control of how much further involvement will ensue;

he or she can simply ignore further requests." In contrast, formal organizations are not

structured to accept micro-contributions. Individuals are formally assigned to teams and

projects and the possibility of unsolicited participation in the affairs of another team

62 There are many sources of failure: lack of time, lack of interest, lack of knowledge, and limited skill.

223



would is quite remote and may be viewed with hostility. The receiving party may

consider it an intrusion of their workspace and the managers of the contributor may be

concerned that his/her direct reports are contributing to other (extraneous) projects.

Another dimension of an individual choosing the type and level of participation is

that the coordination happens informally. Communities do not attempt to (re)create

bureaucratic modes of organizing as typified in software engineering projects inside of

firms and other formal organizations (Adler 2003). Synchronicity of action in the

community is not primarily determined by plans, schedules and technological road maps

or individuals undertaking these activities for other community members. Instead,

individual members choose the task that they will undertake, how it will be initially

accomplished, and when it will get done. The essential work and task structures are

limited to proposing ideas, writing, testing, and using code, and commenting in

discussions. Coordination occurs primarily via mutual adjustment and by "organizing

work by adaptation" (Hutchins 1991). Adaptation and adjustment are facilitated by the

collective practices discussed and in particular by work broadcasting. Similar to findings

on communities of practice, where learning is not separated from working (Brown and

Duguid 1991), coordination occurs while work is completed and revealed to others and is

not a separate form of activity or specialization within the communities.

The development of trust has been found to be important for success in distributed

and virtual teams (Jarvenpaa and Leidner 1999; Powell, Piccoli and Ives 2004; Sarker,

Lau and Sahay 2001). Nearly all definitions of trust imply that one party, the truster,

must willingly place themselves in a position of vulnerability to or risk from another

party, the trustee (Gallivan 2001: 280). Traditional theories of trust development note

that trust is built through shared social norms, repeated (face-to-face) interactions, shared

experiences, anticipation of future interactions, interpersonal relationship development,

and emotional support (Jarvenpaa and Leidner 1999). F/OSS communities with their

ever changing and continuously flowing peripheral membership could be considered

highly vulnerable to trust issues and an unlikely fertile ground for its development. Some

scholars have eschewed the notion that trust, as traditionally defined and developed, is

224



necessary for effective collective action. Thus, Das & Teng (1998) have argued that

control is an alternative mechanism to ensure cooperative behavior, and Meyerson,

Weick, & Kramer (1996) have suggested that in temporary teams, instead of trust being

developed, it is imported from other contexts and then sustained via visible action -

resulting in what they term "swift trust."

I propose that another alternative to trust development for distributed core and

periphery problem solving is the individual practice of coordinating action and building

trust by providing evidence. For F/OSS communities, the continual public submission of

software code helps to build and maintain trust amongst all parties. Software

development provides for the verification of completed work, that is, "Does it do what

the contributor claims?" via "objective" measures. "Truth in code" is achieved when

others apply submitted changes to their personal copies of the software repository and

then verify if the software works. Verification works at both the basic level, that is, does

the changed system actually work as advertised, and at an advanced level, that is, is there

any degradation in performance (speed, load handling etc) due to the changes. Software

development kits provide standard tools that produce objective measures, about software

changes, which can be shared with others and serve as a basis for further development.

Those submitting problems are also able to utilize "objective measures" to make their

claims. Contributors raising issues provide (or are asked to provide) detailed information

on how specific problems were created along with associated computer-generated log

files and use scenarios which allow others to recreate the exact issues on their own local

machines.6 3 The provision of evidence along with a capacity to share and assess (Carlile

2004) the evidence serves as substitute for traditional forms of trust development.

Finally I note that the practices for distributed problem solving are completely

intertwined with the technology of production, that is, email lists, repositories and

program compilers, and the technological artifacts created by community members, that

is, a working software system is produced by people in the community. Knorr-Cetina

63 In the PostgreSQL project - core developers have been observed asking for remote access to problem
systems so that a better diagnosis can be made or a fix tested.

225



(2001) has critiqued currently defined views of practice as being rule-based routines or

embodied skills with an emphasis on human dispositions and habits and connotation of

procedural routines. Lave and Wenger (Lave and Wenger 1991) stress the reproductive

and historical dimensions of practice and ignore the improvisational and unfolding and

productive aspects of practice in their description of communities of practice (Osterlund

and Carlile 2003). Knorr-Cetina offers an "objectual" orientation towards practice in

which work around and with epistemic or knowledge objects, characterized by their lack

of completeness (for example software is an epistemic object because it is always under

construction with regular new releases), cause practices to continuously unfold and co-

evolve with the epistemic objects. Thus epistemic practices imply a relational view of

actors with themselves and with their use and construction of technology. Practice is not

just about routines and skillful performance of historic activity but when employed

around "incomplete" epistemic objects are consciously being formed and updated. It is

this understanding that undergrids my articulation of the practices for distributed problem

solving. Thus the current articulation of these practices should be not be viewed as

complete or finished. Rather, I leave open the possibility that changes in technology,

changes in the types of people participating, and changes in the use of the technology in

may cause the practices to evolve. Thus in my empirical context, the dynamic nature of

the software industry and the high degree of corporate interest in open source software

communities may lead to modification of work practice64 .

3.10: Implications and Conclusion
For the last nine years, the PG community has been producing, supporting and

updating a free, robust and competitive database management system. Over three

thousand individuals have participated in its development by interacting virtually on

email lists with very few occasions of face-to-face contact. This type of large scale

collaboration and creation is now becoming a routine way of developing complex

software (Weber 2004) with thousands of projects and hundreds of thousands of

64 As I was writing this section of the dissertation, Sun Microsystems announced that they will be including
the PG database as a standard component in all the future releases of the Sun Solaris operating system.
This has brought in a new influx of contributors and I anticipate that the practices should evolve to support
this change.

226



individuals "volunteering" their time and effort in creating public goods. My study has

tried to build towards an initial understanding of how these communities "work," how

they solve problems and achieve coherence and social order without relying on the

scaffolds present in formal organizations. I now turn to a discussion of the implications

of my findings for innovation and product development and organizations.

3.10.1: Implications for Innovation and Product Development
Innovation, is a process characterized by its requirement for new knowledge, new

combinations of existing knowledge, and non-standard procedures. Problem solving for

innovation thus requires that solutions to novel problems be found (Clark 1985). External

sources of knowledge have been found to be critical to the innovation process (Cohen and

Levinthal 1989; Cohen and Levinthal 1990). March and Simon (1958: 188) first posited

that, at the organizational level, most innovations result from "borrowing rather than

invention." They contended that borrowing was either a function of imitation or by

importing new personnel into the organization. Regardless of the mechanism for

borrowing, they postulated that the rate and type of innovation was based on the

communication structures of the organization with a special emphasis on external

connections.

I have shown that the distinction between external and internal is very blurry in

F/OSS communities and possibly not even appropriate. The core - periphery concept

provides a decision rights perspective on who has the final say on the ultimate shape of

the joint output. However, these decision rights are kept in check by a public and

software development process. In a public setting the external-internal distinction

collapses with the boundaries of the community made relatively permeable via the

practices of work broadcasting and building and using community memory. I observed

core developers reaching "outside" the community to appropriate software for use inside

the community, and I observed peripheral participants impinging on the ongoing work of

the core by raising issues, offering solutions and developing technology for their own

particular use.

227



Research inspired by the social networks tradition has shown that weak ties are

critical for obtaining novel innovation (i.e. search), and the literature on innovation and

product development has concluded that tight coupling and extensive communication

between teams, departments and business units is needed for effective product

development (i.e. transfer). Hansen (1999) has shown that, within a multi-unit

organization, weak ties help to identify novel sources of knowledge but strong ties are

required for effective transfer of non-codified knowledge. In either case, search and

transfer are being conducted by the focal innovating team. He has identified this as the

"search-transfer" paradox in innovation and new product development.

I contend that distributed problem solving communities, as exemplified by F/OSS

communities, invert the received logic of organizing for innovation and product

development. The core group in the F/OSS community does not undertake search and

transfer effort for product development. Instead through open and willing engagement

with the peripheral members and joint enactment of distributed problem solving

practices, "search and transfer" gets transformed into interactive and distributed problem

solving. The responsibility for search and transfer are no longer with a small group of

experts, divining knowledge about technology, customer and market requirements. The

core group does not forage outside for ideas and solutions in the external environment.

Instead through their interactions with the peripheral members, the distinction of an

external environment becomes less appropriate. The classic solutions to bringing external

knowledge inside via gatekeepers (Allen 1977), boundary spanners (Tushman 1977),

scouts (Ancona and Caldwell 1992) and building an absorptive capacity capability

(Cohen and Levinthal 1990) are not relevant in this setting. Effective collaboration with

the periphery appears to be more important for innovation.

3.10.2: Implications for Organization Theory
Thompson's (1967) classical work "Organizations in Action," has become the

canonical reference for scholars studying organizations and their attempts at coordination

and work accomplishment (Kamps and Polos 1999; Scott 1998). In the book, Thompson

argues that the environment is a key source of uncertainty for organizations and that

228



much of organizational action can be explained by the need to reduce this uncertainty

(1967: 10). Thompson proposes that an organization is differentiated into three

components; production, managerial and institutional. He specifically argues that the

production component - what he calls "the technical core" - needs to be sealed from the

environment. If sealing is not possible he recommends buffering the core with mediating

specialized units that transmit the signal from the environment into the technical core.

The technical core in Thompson's view was where the organization produced its main

outputs. He used examples like the factory production floor, a bank's primary role of

matching deposits to loans and an emergency room in an hospital as illustrative of a

complex organization's technical core. These examples illustrate that Thompson's view

of the technical core assumes a stability in technology and knowledge use and does not

anticipate an innovation function for the core. The technical core's mission is to

faithfully reproduce the organization's outputs, and thus it makes sense to keep it isolated

from the environment once the organization has evolved its routines.

However, if the goal is to innovate, create new knowledge and new objects then it

may not make sense to follow Thompson's recommendations. The PG example shows

that exposing the technical core to the environment can also lead to productive outcomes.

Buffering may not be necessary or possible in this form of complex organization. More

generally, the open source model of organizing shows that an explicit mission to create

new products and technology inside of the organization, a task imbued with uncertainty,

means that organizations and their actions should not be conceived in terms of

uncertainty reduction. Rather, knowledge generation as the fundamental organizing

principle of organizations may imply embracing uncertainty and developing practices that

enable the organization to perform given high degrees of uncertainty.

The relative success of distributed problem solving communities raises interesting

questions for our understandings about the operations of formal organizations. F/OSS

communities, as currently structured, are free from the formal constraints faced by firms

and formal organizations. These communities do not need to sell anything, make a profit,

and exclude competitors. While many communities have a strong orientation towards

229



supporting their users, they are under no obligation to follow through on any promises of

support or development (e.g., Lakhani and von Hippel 2003). The common answer for

problem statements is an invitation to "do it your self." This freedom allows the

community to only deliver in on a small set of technically focused tasks. However: firms

and mangers inside of firms do have significant resource advantages; they can hire and

fire people, set concrete goals, offer significant material rewards for goal accomplishment

and plan and achieve objectives. Direct technical evaluations of similar products

produced by firms and F/OSS communities have shown no significant difference in

performance, maintainability and quality (Samolados et al. 2004). The ability of two

very different forms of organizing with two very different resource models to produce

similar complex outcomes raises has interesting implications for our theories about

organizing.

Foss'(2003) study of Oticon's "spaghetti organization" structure provides us with

insights into the obstacles that may be present in formal organizations adopting or

attempting to transform into more informal and fluid ways of working and organizing.

Oticon, a Danish maker of hearing-aid devices with revenues of 500M DKR, in 1991,

restructured itself from a functional department based organization to a project-based

organization with a two layer hierarchy, consisting of employees in self-organizing

project teams and a 10 member management team. Employees were free to join any

project that they wanted and project managers could recruit any employee to participate

with them in the project. Wage negotiations and bonuses were also decentralized and

were determined between employees and project leaders. Employees could also join as

many projects that they wanted. The only formal requirement was that projects be

initially approved by the management team and were subject to a progress review every

three months by the management team. The results from this shift were dramatic,

product development time was cut by 50%, 15 new products were introduced in a space

of three years when the previous years had not yielded one new introduction; and the

return on equity for the firm jumped from -1.5% to 30% level. However, even with such

success the Oticon organization in late 1990's shifted to a more traditional matrix form of

organization.

230



Foss attributes this shift back to a more traditional organizational form as a

problem of incentives. In particular, managerial meddling into the delegated decision

rights of the project teams caused a strong loss of motivation in the employees and

pushed the organization back towards more structure. As Foss notes (2003: 337):

The fact that the Projects and Products Committee could veto a project ex ante suggests

that it was the real holder of power in Oticon. Frequent intervention on the part of the

Committee ex post project approval confirms this. Thus, it became increasingly clear that

the Committee could at any time halt, change, or even close projects ...... However, the

way in which the Projects and Products Committee exercised their ultimate decision

rights is more akin to reneging on a contract, perhaps even to performing a "hold-up"

(Williamson 1996). Thus, the Committee effectively reneged in implicit contracts with the

projects as the efforts of project became, in the eyes of the Committee, superfluous (e.g.,

because of new technological developments), moved in unforeseen directions, or were

revealed to have been founded on ill-conceived ideas.

This type of selective intervention by the management team was not welcomed by the

employees and interestingly, it was the employees who requested a more traditional

approach where lines of authority were clearly delineated and understood. In contrast,

the PG community thrives in a spaghetti- like organizational structure. Selective

intervention by management is not possible because there is no "management", that is a

separate authority structure that approves work of others, and community participants are

volunteering their time and effort. The core team does have the right to reject any

submission that they do not like and could be conceived of having the same rights as the

management in the Oticon case. However this right, to reject a submission is tempered

by two factors; 1) the rejection occurs in a public setting and it requires a rational

technically-based explanation and 2) even if rejected the contributor can still, although

with more difficulty, implement the changes on his/her own private version of the

system and thus not face a complete loss of effort.

Foss' work raises the question if self-organizing behavior as observed in the

spaghetti organization and in open source communities are compatible with formal,

231



managerially driven organizations. While many scholars have shown significant

emergent activity and behavior inside of firms (Burgelman 1983; Burgelman 1994;

Mintzberg 1978; Mintzberg and McHugh 1985; Noda and Bower 1996), the role of the

visible hand of management and hierarchy (Chandler 1977) cannot be minimized. It is an

open question whether the distributed problem solving practices in communities could be

adapted by firms.

Even more interesting are attempts by firms to work with communities e.g., IBM

and Sun working with the Linux, Apache and PG communities. And communities

establishing firms e.g., Mozilla Foundation setting up Mozilla Corporation. In these

situations, as members of firms and communities traverse organizational boundaries, the

potential for innovation and change in the distributed problem solving practices are high

along with the commensurate risk of failure if there is no adaptation.

232



References

Adamson, R. E. 1952. "Functional fixedness as related to problem solving: a repetition of
three experiments." Journal of Experimental Psychology 44:288-291.

Adler, Paul S. 2003. "Practice and process: The socialization of software development."
in Academy of Management Best Papers. Seattle, WA.

Allen, Thomas, J. 1977. Managing the flow of technology. Cambridge, MA: MIT Press.
Ancona, Deborah G., and David F. Caldwell. 1992. "Bridging the Boundary: External

Activity and Performance in Organizational Teams." Administrative Science
Quarterly 37:634-665.

Barley, Stephen, and Gideon Kunda. 2001. "Bringing Work Back In." Organization
Science 12:76-95.

Barnes, Barry. 2001. "Practices as collective action." Pp. 17-28 in The practice turn in
contemporary theory, edited by Theodore R Schatzki, Karin Knorr Cetina, and
Eike Von Savigny. New York, NY: Routledge.

Baron, Jonathan. 1988. Thinking and deciding. New York: Cambridge University Press.
Birch, H. G., and H. S. Rabinowitz. 1951. "The negative effect of previous experience on

productive thinking." Journal of Experimental Psychology 41:121-126.
Borgatti, Stephen P., and Martin G. Everett. 1999. "Models of core/periphery structures."

Social Networks 21:375-395.
Bourdieu, Pierre. [1972] 1977. Outline of a theory ofpractice. Cambridge, UK:

Cambridge University Press
Brint, Steven. 2001. "Gemeinschaft revisited: A Critique and Reconstruction of the

Community Concept." Sociological Inquiry 19:1-23.
Brown, John Seely, and Paul Duguid. 1991. "Organizational learning and communities-

of-practice: Toward a unified view of working, learning, and innovation."
Organization Science 2:40-57.

-. 2001. "Knowledge and Organization: A Social-Practice Perspective." Organization
Science 12:198-213.

Brown, Shona L, and Kathleen M Eisenhardt. 1997. "The art of continuous change:
Linking complexity theory and time-paced evolution in relentlessly shifting
organizations." Administrative Science Quarterly 42:1-34.

Brown, Shona L., and Kathleen M. Eisenhardt. 1995. "Product Development: Past
Research, Present Findings, and Future Directions." Academy of Management
Review 20:343-378.

Burgelman, Robert A. 1983. "A Model of the Interaction of Strategic Behavior,
Corporate Context, and the Concept of Strategy." Academy of Management
Review 8:61-70.

-. 1994. "Fading Memories: A Process Theory of Strategic Business Exit in Dynamic
Environments." Administrative Science Quarterly 39:24-56.

Calhoun, C. J. 1980. "Community: toward a variable conceptualization for comparative
research." Social History 5.

Carlile, Paul. 2004. "Transferring, translating, and transforming: An integrative
framework for managing knowledge across boundaries." Organization Science
15:555-568.

Chandler, A.D. 1977. The Visible Hand. Cambridge, MA: Harvard University Press.

233



Chubin, Daryl E. 1976. "The Conceptualization of Scientific Specialties." The
Sociological Quarterly 17:448-476.

Clark, K. B., and T Fujimoto. 1991. Product development performance. Boston: Harvard
Business School.

Clark, Kim B. 1985. "The interaction of design hierarchies and market concepts in
technological evolution." Research Policy 14:235-251.

Cohen, Wesley M., and Daniel A. Levinthal. 1989. "Innovation and Learning: The Two
Faces of R & D." The Economic Journal 99:569-596.

. 1990. "Absorptive Capacity: A New Perspective on Learning and Innovation."
Administrative Science Quarterly 35:128-152.

Crane, Diana. 1969. "Social Structure in a Group of Scientists: A Test of the "Invisible
College" Hypothesis." American Sociological Review 34:335-352.

Crowston, Kevin. 1997. "A Coordination Theory Approach to Organizational Process
Design." Organization Science 8:157-175.

Cusumano, Michael A. 1992. "Shifting Economies: From Craft Production to Flexible
Systems and Software Factories." Research Policy 21:453-480.

Cusumano, Michael A, and Richard W Selby. 1997. "How Microsoft builds software."
Communications of the ACM40:53-61.

Cusumano, Michael A. 2004. The business of software : what every manager,
programmer, and entrepreneur must know to thrive and survive in good times and
bad. New York: Free Press.

Cusumano, Michael A., and Richard B. Selby. 1995a. Microsoft Secrets: How the
World's Most Powerful Software Company Creates Technology, Shapes Markets
and Manages People. New York: The Free Press.

Cusumano, Michael A., Alan MacCormack, Chris F. Kemerer, and William Crandall.
2003. "Software development worldwide: The state of the practice." IEEE
Software 20:28-34.

Cusumano, Michael, and Richard W Selby. 1996. "How Microsoft competes." Research
Technology Management 39:26-30.

Cusumano, Michael, and Robert Selby. 1995b. Microsoft secrets. how the world's most
powerful software company creates technology, shapes markets and manages
people. New York, NY: Free Press.

Das, T. K, and B. Teng. 1998. "Between trust and control: developing confidence in
partner cooperation in alliances." Academy of Management Review 23:491-512.

DeMonaco, Harold J., Ayfer Ali, and Eric von Hippel. 2005. "The Major Role of
Clinicians in the Discovery of Off-Label Drug Therapies." MIT Sloan School of
Management Working Paper Series.

Dunbar, Kevin. 1998. "Problem Solving." Pp. 289-298 in A companion to Cognitive
Science, edited by W Bechtel and G Graham. London, UK: Blackwell.

Duncker, K. 1945. "On problem solving." Psychology Monographs 58.
Durkheim, Emile. 1966. Suicide. A study in sociology. New York, NY: Free Press.
-. [1911] 1965. The elementaryforms of religious life. New York, NY: Free Pass.
Edge, David 0, and Michael J Mulkay. 1974. "Case studies of scientific specialties."

University of Edinburgh, Science Studies Unit.
Eisenhardt, Kathleen M. 1989. "Building theories from case study research." Academy of

Management Review 14:532-550.

234



Eisenhardt, Kathleen M. 1991. "Better Stories and Better Constructs: The Case for Rigor
and Comparative Logic." Academy of Management Review 16:620-627.

Ekeh, Peter P. 1974. Social Exchange Theory: The Two Traditions. Cambridge, MA:
Harvard University Press.

Faulkner, R. R. 1987. Music on demand: Composers and Careers in the Hollywood Film
Industry. New Brunswick, NH: Transaction Books.

Feller, Joe, Brian Fitzgerald, Scott Hissam, and Karim R Lakhani (Eds.). 2005.
Perspectives on Free and Open Source Software. Cambridge: MIT Press.

Foss, Nicolai J. 2003. "Selective Intervention and Internal Hybrids: Interpreting and
Learning from the Rise and Decline of the Oticon Spaghetti Organization."
Organization Science 14:331-349.

Galbraith, J. 1973. Designing complex organizations. Reading, MA: Addison-Wesley.
Galison, Peter. 1999. "Trading zone: Coordinating action and belief." Pp. 137-160 in The

Science Studies Reader, edited by Mario Biagioli. New York, NY: Routledge.
Galison, Peter, and David J Stump (Eds.). 1996. The Disunity of Science: Boundaries,

Contexts and Power. Stanford: CA: Stanford University Press.
Gallivan, Michael J. 2001. "Striking a balance between trust and control in virtual

organization: a content analysis of open source software case studies."
Information Systems Journal 11:277-304.

German, Daniel. 2005. "Software engineering practices in the GNOME project." Pp. 211-
227 in Perspectives on Free and Open Source Software, edited by Joseph Feller,
Brian Fitzgerald, Scott A Hissam, and Karim R Lakhani. Cambridge, MA: MIT
Press.

Ghosh, Rishab Ayer, Ruediger Glott, Bernhard Krieger, and Gregorio Robles. 2002.
"Free/Libre and Open Source Software: Part IV Survey of Developers."
International Institute of Infonomics, University of Maastricht.

Girard, Monique, and David Stark. 2002. "Distributing intelligence and organizing
diversity in new-media projects." Environment and Planning A 34:1927-1949.

Glaser, B, and A Strauss. 1967. The discovery of grounded theory: Strategies for
qualitative research. New York, NY: Aldine de Gruyter.

Glaser, Jochen 2001. "'Producing Communities' as a Theoretical Challenge." Pp. 1-11 in
TASA 2001. The University of Sydney.

Gottman, Jean (Ed.). 1980. Centre and Periphery. Beverly Hills, CA: Sage Publications.
Granovetter, M. 1973. "The strength of weak ties." American Journal of Sociology

78:1360-1380.
Hansen, Morten T. 1999. "The search-transfer problem: The role of weak ties in sharing

knowledge across organization subunits." Administrative Science Quarterly
44:82-111.

Hausmann, Robert G. M. 2003. "Co-construction: A proposed mechanism for
collaborative problem solving (dissertation prospectus)." Pp. 1-48: University of
Pittsburg.

Hayek, F. A. 1945. "The use of knowledge in society." American Economic Review
35:519-530.

Hertel, Guido, Sven Niedner, and Stefanie Herrmann. 2003. "Motivation of software
developers in Open Source projects: an Internet-based survey of contributors to
the Linux kernel." Research Policy 32:1159-1177.

235



Hillery, George A. 1955. "Definitions of Community: Areas of Agreement." Rural
Sociology 20:111-123.

Hughes, Everett C. 1971. The sociological eye. Chicago: Aldine-Atherton.
Hutchins, Edwin. 1991. "Organizing work by adaptation." Organization Science 2:14-39.
Jarvenpaa, Sirkka L, and Dorothy E Leidner. 1999. "Communication and trust in global

virtual teams." Organization Science 10:791-815.
Jorgensen, Niels. 2005. "Incremental and decentralized integration in FreeBSD." Pp. 227-

245 in Perspectives on Free and Open Source Software, edited by Joseph Feller,
Brian Fitzgerald, Scott A Hissam, and Karim R Lakhani. Cambridge, MA: MIT
Press.

Kamps, Jaap, and Laszlo Polos. 1999. "Reducing uncertainty: A formal theory of
organizations in action." American Journal of Sociology 104:1776-1812.

Knorr-Cetina, Karin D. 1982. "Scientific Communities or Transepistemic Arenas of
Research? A Critique of Quasi-Economic Models of Science." Social Studies of
Science 12:101-130.

Knorr Cetina, Karin. 1999. Epistemic Cultures: how the sciences make knowledge.
Cambridge, MA: Harvard University Press.

-. 2001. "Objectual practice." Pp. 175-188 in The contemporary turn in practice theory,
edited by Theodore R Schatzki, Karin Knorr Cetina, and Eike Von Savigny.
London, UK: Routledge.

Koch, S, and G Schneider. 2002. "Effort, Cooperation and Coordination in an Open
Source Software Project: GNOME." Information Systems Journal 12:27-42.

Kraut, Robert E., and Lynn A. Streeter. 1995. "Coordination in Software Development."
Communications of the ACM 38:69-81.

Krugman, Paul. 1996. The self-organizing economy. Oxford, UK: Blackwell.
Kuhn, Thomas. 1970. The structure of scientific revolutions. Chicago, Ill: University of

Chicago Press.
Lakhani, Karim R, and Robert Wolf. 2005. "Why Hackers Do What They Do:

Understanding Motivation and Effort in Free/Open Source Software Projects." in
Perspectives on Free and Open Source Software, edited by Joe Feller, Brian
Fitzgerald, Scott Hissam, and Karim R Lakhani. Cambridge, MA: MIT Press.

Lakhani, Karim R., and Eric von Hippel. 2003. "How Open Source Software Works: Free
User to User Assistance." Research Policy 32:923-943.

Langlois, Richard N. 1983. "Systems theory, knowledge, and the social sciences." Pp.
581-800 in The Study of Information. Interdisciplinary Messages, edited by Fritz
Machulp and Una Mansfield. New York, NY: John Wiley.

Lave, Jean, and Etienne Wenger. 1991. Situated Learning: Legitimate Peripheral
Participation. Cambridge, UK: Cambridge University Press.

Lawrence, P, and J Lorsch. 1967. "Differentiation and integration in complex
organizations." Administrative Science Quarterly 12:1-47.

Lee, Gwendolyn, and Robert E Cole. 2003. "From a Firm-Based to a Community-Based
Model of Knowledge Creation: The Case of the Linux Kernel Development."
Organization Science 14:633-649.

Leonard, D, and S. Sensiper. 1998. "The role of tacit knowledge in group innovation."
California Management Review 40:112-132.

236



Lerner, Josh, and Jean Tirole. 2002. "Some Simple Economics of Open Source." Journal
of Industrial Economics 50:197-234.

Lientz, B. P., and E.B. Swanson. 1980. Software Maintenance Management.' A Study of
the Maintenance of Computer Applications Software in 487 Data Processing
Organizations. Reading, MA: Addison-Wesley.

MacCormack, A, R. Verganti, and Iansiti. 2001. "Developing products on "Internet
Time": The anataomy of flexible development process." Management Science
47:133-150.

March, James G, and Herbert Simon. 1958. Organizations: Wiley.
Markus, Lynne M, Brook Mannvile, and Carole E Agres. 2000. "What make a virtual

organization work? Lessons from the open-source world." Sloan Management
Review Fall 2000, 42:13-26.

Marples, D. L. 1961. "The Decisions of Engineering Design." IRE Transactions on
Engineering Management:55-71.

McDaniel, S., G. Olson, and J. Magee. 1996. "Identifying and Analyzing Multiple
Threads in Computer-Mediated and Face-to-Face Conversations." Proceedings of
the Conference on Computer Supported Cooperative:39-47.

Merton, Robert K. [1942] 1973. The sociology of science. Theoretical and empirical
investigation. Chicago: University of Chicago Press.

Meyerson, D, K. E. Weick, and R. P. Kramer. 1996. "Swift trust and temporary groups."
in Trust in organizations: Frontiers of theory and research, edited by Kramer R.
M. and T. R. Tyler. Thousand Oaks, CA: Sage Press.

Mintzberg, Henry. 1978. "Patterns in Strategy Formation." Management Science 24:934-
948.

Mintzberg, Henry, and Alexandra McHugh. 1985. "Strategy Formation in an
Adhocracy." Administrative Science Quarterly 30:160-197.

Mockus, Audris, Roy Fielding, and James Herbsleb. 2002. "Two case studies of open
source software development: Apache and Mozilla." ACM Transactions on
Software Engineering and Methodology 11:1-38.

Newell, Allen, and H.A. Simon. 1972. Human Problem Solving. Engelwood Cliffs, New
Jersey: Prentice-Hall INC. .

Noda, Tomo, and Joseph L. Bower. 1996. "Strategy Making as Iterated Processes of
Resource Allocation." Strategic Management Journal 17:159-192.

Orlikowski, Wanda J. 2002. "Knowing in practice: Enacting a collective capability in
distributed organizing." Organization Science forthcoming.

Orlikowski, Wanda J, and JoAnne Yates. 1994. "Genre repertoire: Examining the
Structuring of Communicative Practices in Organizations." Administrative
Science Quarterly 39:541-574.

Orr, Julian E. 1996. Talking about machines: an ethnography of a modern job. Ithaca,
NY: ILR/Cornell University Press.

Osterlund, Carsten, and Paul Carlile. 2003. "How practice matters: A relational view of
knowledge sharing." in Communities and Technologies, edited by Marleen
Huysman, Etienne Wenger, and Volker Wulf. Boston, MA: Kluwer Academic
Press.

Perrow, Charles. 1986. Complex Organizations: A Critical Essay, Third Edition. New
York, NY: McGraw-Hill.

237



Powell, Anne, Gabriele Piccoli, and Blake Ives. 2004. "Virtual Teams: A Review of
Current Literature and Directions for Future Research." Database for Advanced in
Information Systems 35:6-36.

Raymond, Eric. 1999. The Cathedral and the Bazaar: Musings on Linux and Open
Source from an Accidental Revolutionary. Sebastopol: CA: O'Reilly and
Associates.

Riggs, William, and Eric von Hippel. 1994. "Incentives to innovate and the sources of
innovation: The case of scientific instruments." Research Policy 23:459-469.

Samolados, Ioannis, Ioannis Stamelos, Lefteris Angelis, and Apostolos Oikonomou.
2004. "Open source software development should strive for even greater code
maintainability." Communications of the ACM 47:83 - 87.

Sarker, S., F. Lau, and S. Sahay. 2001. "Using an Adapted Grounded Theory Approach
for Inductive Theory Building about Virtual Team Development." Database for
Advanced in Information Systems 32:38-56.

Scharpf, Fritz W. 1997. Games Real Actors Play. Actor-Centered Institutionalism in
Policy Research. Boulder, CO: Westview Press.

Schatzki, Theodore R. 2001. "Introduction: practice theory." Pp. 1-14 in The practice
turn in contemporary theory, edited by Theodore R Schatzki, Karin Knorr Cetina,
and Eike Von Savigny. New York, NY: Routledge.

Scott, W. Richard. 1998. Organizations: rational, natural and open systems (4th edition).
Upper Saddle River, NJ: Prentice-Hall.

Simon, H.A., and Allen Newell. 1962. "Computer Simulation of Human Thinking and
Problem Solving." Monographs of the Society for Research in Child Behavior
27:137-150.

Simon, Herbert Alexander. 1976. Administrative Behavior, Third Edition. New York,
NY: The Free Press.

Sproull, Lee, Caryn Conley, and Jae Yun Moon. 2005. "Prosocial behavior on the net."
Pp. 139-162 in The Social Net: Human Behavior in Cyberspace, edited by Yair
Amichai-Hamburger. Oxford, UK: Oxford University Press.

Stinchcombe, Arthur L. 1959. "Bureaucratic and Craft Administration of Production: A
Comparative Study." Administrative Science Quarterly 4:168-187.

Stonebraker, Michael, Lawrence A. Rowe, and Michael Hirohama. 1990. "The
Implementation of Postgres." IEEE Transactions on Knowledge and Data
Engineering 2:125-142.

Strauss, Anslem, and Juliet Corbin. 1990. Basics of qualitative research. Thousand Oaks,
CA: Sage.

Thompson, J. 1967. Organizations in action. New York: McGraw-Hill.
T6nnies, Ferdinand. [1887] 1957. Community and Society. New York, NY: Harper.
Tushman, Michael L. 1977. "Special boundary roles in the innovation process."

Administrative Science Quarterly 22:587-605.
Tyre, Marcie J, and Eric von Hippel. 1997. "The situated nature of adaptive learning in

organizations." Organization Science 8:71-83.
von Hippel, Eric. 1978. "Successful industrial products from customer ideas." Journal of

Marketing 42:39-49.
-. 1982. "Get New Products from Customers." Harvard Business Review 60:117-122.
-. 1988. The Sources of Innovation. New York, NY: Oxford University Press.

238



. 1989. "New Product Ideas from "Lead Users"." Research Technology Management
32:24-27.

. 1994a. "'Sticky information' and the locus of problem solving: Implications for
innovation." Management Science 40:429-439.

. 1994b. "Sticky Information and the Locus of Problem Solving." Management Science
40:429-439.

. 1999. "Economics of product development by users: Impact of "sticky" local
information." Management Science 44:629-644.

. 2001. "Innovation by User Communities: Learning from Open Source Software."
Sloan Management Review 42:82-86.

. 2005. Democratizing Innovation. Cambridge, MA: MIT Press.
von Krogh, Georg, Sebastian Spaeth, and Karim R Lakhani. 2003. "Community, Joining,

and Specialization in Open Source Software Innovation: A Case Study." Research
Policy 32:1217-1241.

Weber, Max. 1947. The Theory of Social and Economic Organization. New York:
Oxford University Press.

Weber, Steve. 2004. The success of open source. Cambridge, MA: Harvard University
Press.

Weiman, Gabriel. 1982. "On the Importance of Marginality: One More Step into the
Two-Step Flow of Communication." American Sociological Review 47:764-773.

Wenger, Etienne. 1998. Communities of Practice. Learning, Meaning and Identity.
Cambridge, UK: Cambridge University Press.

Woolgar, Steve W. 1976. "The Identification and Definition of Scientific Collectivities."
Pp. 235-245 in Perspectives on the Emergence of Scientific Disciplines, edited by
Gerard Lemaine, Roy MacLeod, Michael Mulkay, and Peter Weingart. The
Hague: Mouton & Co.

Yates, JoAnne, Wanda J Orlikowski, and Stephanie L Woerner. 2003. "Virtual
Organizing: Using Threads to Coordinate Distributed Work." MIT Sloan School
of Management Working Paper Series 4320-03.

239



Awpendix - Listing of Features Developed by PostgreSQL Community
# Area Change Change

Categorization

I Contrib Changes * New pgautovacuum allows automatic "VACUUM" Adaptive Periphery

2 Contrib Changes * Prevent crash in xml DOM Periphery

3 Contrib Changes * Fix bug in metaphone[] in fuzzystrmatch DOM Periphery

4 Contrib Changes * Update spi/timetravel DOM Periphery

5 Contrib Changes * Update earthdistance to use cube DOM Periphery

6 Contrib Changes * Update cube DOM Periphery

7 Contrib Changes * Add hash-based crosstab function to tablefuncs DOM Periphery
8 Contrib Changes * Portability improvements to pgcrypto DOM Periphery

9 Contrib Changes * Add serial column to order connectby[] siblings in DOM Periphery
tablefuncs

10 Contrib Changes * Update btree_gist DOM Periphery

11 Contrib Changes * New tsearch2 full-text search module DOM Periphery

12 Contrib Changes * Improve adddepend DOM Periphery

13 Contrib Changes * Improve pgstattuple DOM Periphery

14 Contrib Changes * Add named persistent connections to dblink DOM Periphery

15 Contrib Changes * Improve intarray DOM Periphery

16 Contrib Changes * Fix dbase "-s" option and improve non-ASCII handling DOM Periphery

17 Contrib Changes * Improve earthdistance DOM Periphery

18 Contrib Changes * Make pgbench honor environment variables PGHOST, DOM Core
PGPORT, PGUSER

19 Data Type and Function * Allow cidr data type to be cast to text Adaptive Core
Changes

20 Data Type and Function * New function pg_gettriggerdef-prettyprint- and Adaptive Periphery
Changes pg_constraintis visible

21 Data Type and Function * New hostmask[] function Adaptive Periphery
Changes

22 Data Type and Function * Allow user defined aggregates to use polymorphic Adaptive Periphery
Changes functions

23 Data Type and Function * New array functions array_append, arraycat, Adaptive Periphery
Changes array_lower, array_prepend, array_to_string,

array_upper, stringto_array

24 Data Type and Function * Allow WHERE qualification expr op Adaptive Periphery
Changes ANY/SOME/ALL [array_expr]

25 Data Type and Function * Allow array concatenation with I Adaptive Periphery
Changes

26 Data Type and Function * Allow indexes on array columns Adaptive Periphery
Changes

27 Data Type and Function * Allow proper comparisons for arrays, including Adaptive Periphery
Changes ORDER BY and DISTINCT support

240



28 Data Type and Function * Arrays may now be specified as ARRAY[1,2,3], Adaptive Periphery
Changes ARRAY[['a','b'],[ 'c','d']], or

ARRAY[ARRAY[ARRAY[2]]]
29 Data Type and Function * Allow functions that can take any argument data type Adaptive Periphery

Changes and return any data type, using anyelement and anyarray

30 Data Type and Function * Add md5[] function to main server, already in Adaptive Periphery
Changes "contrib/pgcrypto"

31 Data Type and Function * Add family[] function to report whether address is IPv4 Adaptive Periphery
Changes or IPv6

32 Data Type and Function * Add IPv6 support to the inet and cidr data types Adaptive Periphery
Changes

33 Data Type and Function * New server parameter extra_float_digits to control Adaptive Periphery
Changes precision display of floating-point numbers

34 Data Type and Function * Input date order must now be YYYY-MM-DD - with 4- DOM Core
Changes digit year - or match datestyle

35 Data Type and Function * Prevent interval from suppressing :00 seconds display DOM Core
Changes

36 Data Type and Function * Treat NaN as larger than any other value in min[]/max[] DOM Core
Changes

37 Data Type and Function * Make EXTRACT[TIMEZONE] and SET/SHOW DOM Core
Changes TIME ZONE follow the SQL convention for the sign of

time zone offsets, i.e., positive is east from UTC

38 Data Type and Function * Make float[p] measure the precision "p" in binary DOM Core
Changes digits, not decimal digits

39 Data Type and Function * Trim trailing spaces when char is cast to varchar or text DOM Core
Changes

40 Data Type and Function * Disallow invalid time zone names in SET TIMEZONE DOM Core
Changes

41 Data Type and Function * Allow 60 in seconds fields of time, timestamp, and DOM Core
Changes interval input values

42 Data Type and Function * Trap division by zero in case the operating system DOM Core
Changes doesn't prevent it

43 Data Type and Function * Change EXTRACT[EPOCH FROM timestamp] so DOM Core
Changes timestamp without time zone is assumed to be in local

time, not GMT

44 Data Type and Function * Fix date_trunc-'quarter', ..- DOM Periphery
Changes

45 Data Type and Function * Allow only datestyle field order for date values not in DOM Periphery
Changes ISO-8601 format

46 Data Type and Function * Allow assignments to empty arrays DOM Periphery
Changes

47 Data Type and Function * Make initcap[] more compatible with Oracle DOM Periphery
Changes

48 Data Type and Function * Have SHOW datestyle generate output similar to that DOM Core
Changes used by SET datestyle

49 Data Type and Function * Allow +1300 as a numeric time-zone specifier, for DOM Core
Changes FJST

241



50 Data Type and Function * Fixes for to_char[] and to_timestamp[] DOM Periphery
Changes

51 Data Type and Function * Allow time to be specified as 040506 or 0405 DOM Core
Changes

52 Data Type and Function * Add new datestyle values MDY, DMY, and YMD to DOM Core
Changes set input field order; honor US and European for

backward compatibility

53 Data Type and Function * Change the numeric data type internally to base 10000 DOM Core
Changes

54 Data Type and Function * Make pg_get_constraintdef to support unique, primary- DOM Periphery
Changes key, and check constraints

55 Data Type and Function * Increase date range of timestamp DOM Periphery
Changes

56 Data Type and Function * String literals like 'now' or 'today' will no longer work DOM Core
Changes as a column default. Use functions such as now[],

current_timestamp instead. change required for prepared
statements

57 Data Type and Function * Remove rarely used functions oidrand, oidsrand, and DOM Periphery
Changes userfntest functions

58 JDBC Changes * Support SSL connections Adaptive Core

59 JDBC Changes * Allow executeBatch on a prepared statement Adaptive Core
60 JDBC Changes * Allow setNull on updateable result sets Adaptive Core

61 JDBC Changes * Add refcursor support Adaptive Periphery

62 JDBC Changes * Handle schema names in result sets DOM Periphery

63 libpq Changes * Add function PQexecPrepared and Adaptive Core
PQsendQueryPrepared functions which perform
bind/execute of previously prepared statements

64 libpq Changes * Add ability to pass binary data directly to the server Adaptive Core

65 libpq Changes * Allow access to the current transaction status Adaptive Core

66 libpq Changes * Allow thread-safe libpq with "configure" option "-- Adaptive Periphery
enable-thread-safety"

67 libpq Changes * Allow access to the underlying table and column of a Adaptive Core
query result

68 libpq Changes * Allow new error codes and levels of text Adaptive Core

69 libpq Changes * Make PQsetdbLogin have the same defaults as DOM Core
PQconnectdb

70 libpq Changes * Add function PQfreemem for freeing memory on DOM Core
Windows, suggested for "NOTIFY"

71 libpq Changes * Allow libpq to cleanly fail when result sets are too large DOM Core

72 libpq Changes * Improve performance of function PGunescapeBytea DOM Periphery

73 libpq Changes * Control SSL negotiation with sslmode values disable, DOM Periphery
allow, prefer, and require

74 libpq Changes * Allow function pqInternalNotice to accept a format DOM Periphery
string and arguments instead of just a preformatted
message

75 libpq Changes * Document service capability, and add sample file DOM Core

242



76 Miscellaneous Interface * Allow thread-safe embedded SQL programs with Adaptive Periphery
Changes "configure" option "--enable-thread-safety"

77 Miscellaneous Interface * Add Informix compatibility to ECPG Adaptive Periphery
Changes

78 Miscellaneous Interface * Prevent possible memory leak or core dump during DOM Core
Changes libpgtcl shutdown

79 Miscellaneous Interface * Add type decimal to ECPG that is fixed length, for DOM Periphery
Changes Informix

80 Object Manipulation * Add ALTER TABLE ... CLUSTER ON Adaptive Periphery
Changes

81 Object Manipulation * Add statement-level triggers Adaptive Periphery
Changes

82 Object Manipulation * Add ALTER SEQUENCE to modify minimum, Adaptive Periphery
Changes maximum, increment, cache, cycle values

83 Object Manipulation * Add ALTER TABLE ... WITHOUT OIDS Adaptive Periphery
Changes

84 Object Manipulation * Add "ALTER DOMAIN" Adaptive Periphery
Changes

85 Object Manipulation * Add check constraints for domains Adaptive Periphery
Changes

86 Object Manipulation * Add WITH GRANT OPTION clause to "GRANT" Adaptive Core
Changes

87 Object Manipulation * Disallow dollar signs in operator names, so x=$1 works DOM Core
Changes

88 Object Manipulation * Fix several zero-column table bugs DOM Core
Changes

89 Object Manipulation * Make "CREATE SEQUENCE" grammar more DOM Periphery
Changes conforming to SQL 2003

90 Object Manipulation * Allow copying table schema using LIKE subtable, also DOM Periphery
Changes SQL 2003 feature INCLUDING DEFAULTS

91 Object Manipulation * Have ALTER TABLE ... ADD PRIMARY KEY add DOM Periphery
Changes not-null constraint

92 Object Manipulation * Improve automatic type casting for domains DOM Periphery
Changes

93 Object Manipulation * Allow dollar signs in identifiers, except as first DOM Core
Changes character

94 Performance * Add parameter from_collapse_limit to control Adaptive Core
Improvements conversion of subqueries to joins

95 Performance * Allow join optimization of explicit inner joins, disable Adaptive Core
Improvements with join_collapse_limit

96 Performance * Fix hash indexes which were broken in rare cases DOM Core
Improvements

97 Performance * Use faster and more powerful regular expression code DOM Core
Improvements from Tcl

98 Performance * Improve hash index concurrency and speed DOM Core
Improvements

99 Performance * Allow hash/merge joins on complex joins DOM Core
Improvements

100 Performance * Improve optimizer cost computations, particularly for DOM Core
Improvements subqueries

243



101 Performance * Add ability to inline simple SQL functions DOM Core
Improvements

102 Performance * Improve constant folding DOM Core
Improvements

103 Performance * Make nested-loop joins be smarter about multicolumn DOM Core
Improvements indexes

104 Performance * Add hashing for GROUP BY aggregates DOM Core
Improvements

105 Performance * Allow the postmaster to preload libraries using DOM Periphery
Improvements preload_libraries

106 Performance * Align shared buffers on 32-byte boundary for copy DOM Periphery
Improvements speed improvement

107 Performance * Improve trigger/constraint performance DOM Periphery
Improvements

108 Performance * Data type numeric reimplemented for better DOM Core
Improvements performance

109 Performance * Improve speed of col IN - const, const, const, DOM Core
Improvements

110 Performance * Improve connection startup time DOM Core
Improvements

111 Performance * Use bit-mapped relation sets in the optimizer DOM Core
Improvements

112 Performance * Allow hash joins for more data types DOM Core
Improvements

113 Performance * Deduce that WHERE a.x = b.y AND b.y = 42 also DOM Core
Improvements means a.x = 42

114 Performance * Avoid sort when subquery ORDER BY matches upper DOM Core
Improvements query

115 Performance * Allow most IN subqueries to be processed as joins DOM Core
Improvements

116 Performance * Improve NOT IN - subquery performance DOM Core
Improvements

117 Performance * Allow IN/NOT IN to be handled via hash tables DOM Core
Improvements

118 Performance * Improve GEQO optimizer performance DOM Core
Improvements

119 Performance * Reduce memory usage for queries using complex DOM Core
Improvements functions

120 Performance * Allow multikey hash joins DOM Core
Improvements

121 Performance * Pattern matching operations can use indexes regardless DOM Core
Improvements of locale

122 pg_dump Changes * Make pg_dump preserve column storage characteristics Adaptive Periphery

123 pg_dump Changes * Allow pg_dump to dump specific schemas Adaptive Periphery

124 pg_dump Changes * Prevent pg_dump from lowercasing identifiers DOM Core
specified on the command line

125 pg_dump Changes * Make pg_dump preserve "CLUSTER" characteristics DOM Periphery

126 pg_dump Changes * Multiple pg_dump fixes, including tar format and large DOM Periphery
objects

244



127 pg_dump Changes * Long options for pg_dump are now available on all DOM Core
platforms PostgreSQL now includes its own long-option
processing routines.

128 pg_dump Changes * pg_dump options "--use-set-session-authorization" and DOM Core
"--no-reconnect" now do nothing, all dumps use "SET
SESSION AUTHORIZATION" pg_dump no longer
reconnects to switch users, but instead always uses "SET
SESSION AUTHORIZATION". This will reduce
password

129 pg_dump Changes * Allow pg_dumpall to support the options "-a", "-s", "- DOM Core
x" of pg_dump

130 pg_dump Changes * Have pg_dumpall use "GRANT"/"REVOKE" to dump DOM Core
database-level privleges

131 psql Changes * Add backslash commands for listing schemas, casts, Adaptive Periphery
and conversions

132 psql Changes * New prompt escape sequence %x to show transaction Adaptive Core
status

133 psql Changes * New "\set VERBOSITY" to control error detail Adaptive Core
134 psql Changes * New "\set AUTOCOMMIT off' capability Adaptive Core
135 psql Changes * "\encoding" now changes based on the server parameter DOM Core

client_encoding server

136 psql Changes * Improve tab completion DOM Periphery
137 psql Changes * Save editor buffer into readline history DOM Periphery

138 psql Changes * Long options for psql are now available on all DOM Core
platforms

139 psql Changes * Improve "\d" display DOM Periphery
140 psql Changes * Enhance HTML mode to be more standards- DOM Periphery

conforming
141 psql Changes * Add \pset pager always to always use pager DOM Periphery
142 psql Changes * Reorder \? help into groupings DOM Periphery
143 Query Changes * New SQL-standard information schema Adaptive Core
144 Query Changes * Add option to prevent auto-addition of tables Adaptive Periphery

referenced in query

145 Query Changes * Implement CREATE TABLE AS EXECUTE Adaptive Periphery
146 Query Changes * Add read-only transactions Adaptive Core
147 Query Changes * Fix aggregates in subqueries to match SQL standard DOM Core
148 Query Changes * Print key name and value in foreign-key violation DOM Periphery

messages

149 Query Changes * Allow users to see their own queries in pg_stat activity DOM Periphery

150 Query Changes * Allow UPDATE ... SET col = DEFAULT DOM Periphery
151 Query Changes * Allow expressions to be used in LIMIT/OFFSET DOM Core
152 Server Configuration * Add server parameter regex_flavor to control regular Adaptive Core

Changes expression processing

153 Server Configuration * postgres --describe-config now dumps server config Adaptive Periphery
Changes variables

154 Server Configuration * Add Mac OS X Rendezvous server support Adaptive Periphery
Changes

245



155 Server Configuration * Add ability to print only slow statements using Adaptive Periphery
Changes log_min_duration_statement

156 Server Configuration * Add checkpoint_warning to warn of excessive Adaptive Core
Changes checkpointing

157 Server Configuration * New parameter log_error_verbosity to control error Adaptive Core
Changes detail

158 Server Configuration * New read-only parameter is_superuser Adaptive Core
Changes

159 Server Configuration * Make "pg_ctl" better handle nonstandard ports DOM Periphery
Changes

160 Server Configuration * log_min_messages/client_min_messages now controls DOM Core
Changes debug_* output

161 Server Configuration * Make default shared_buffers 1000 and DOM Core
Changes max_connections 100, if possible

162 Server Configuration * Allow "pg_hba.conf' to accept netmasks in CIDR DOM Periphery
Changes format

163 Server Configuration * Add new columns in pg_settings: context, type, source, DOM Periphery
Changes min_val, max val

164 Server Configuration * New "pg_hba.conf' record type hostnossl to prevent DOM Periphery
Changes SSL connections

165 Server Configuration * Prevent server log variables from being turned off by DOM Core
Changes non-superusers

166 Server Configuration * Change debug server log messages to output as DOM Core
Changes DEBUG rather than LOG

167 Server Configuration * Rename hostname_lookup to log_hostname DOM Core
Changes

168 Server Configuration * Rename show source_port to log_source_port DOM Core
Changes

169 Server Configuration * Rename show * stats to log_* stats DOM Core
Changes

170 Server Configuration * Rename server parameter server_min_messages to DOM Core
Changes log_min_messages

171 Server Configuration * Remove parameter geqo_random_seed DOM Core
Changes

172 Server Configuration * New read-only server parameters for localization DOM Core
Changes

173 Server Operation * New code to detect corrupt disk pages; erase with Adaptive Core

Changes zero_damaged_pages

174 Server Operation *Allow IPv6 server connections Adaptive Periphery
Changes

175 Server Operation * Add binary I/O to client/server protocol Adaptive Core
Changes

176 Server Operation * Add transaction status, table ID, column ID to Adaptive Core
Changes client/server protocol

177 Server Operation * New error message wording, error codes, and three Adaptive Core
Changes levels of error detail

178 Server Operation Fix inconsistent index lookups during split of first root DOM Core
Changes page

179 Server Operation Preserve free space information between server restarts DOM Core
Changes

246



180 Server Operation * Improve free space map allocation logic DOM Core
Changes

181 Server Operation *Update "/tmp" socket modification times regularly to DOM Core
Changes avoid their removal

182 Server Operation *Print lock information when a deadlock is detected DOM Core
Changes

183 Server Operation *Enable PAM for Mac OS X DOM Periphery
Changes

184 Server Operation *Fix SSL to handle errors cleanly DOM Periphery
Changes

185 Server Operation * Add start time to pg_stat_activity DOM Periphery
Changes

186 Server Operation *SSL protocol security and performance improvements DOM Periphery
Changes

187 Server Operation * New client/server protocol: faster, no username length DOM Core
Changes limit, allow clean exit from "COPY"

188 Server Operation * Allow B-tree index compaction and empty page reuse DOM Core
Changes

189 Server Operation *Make B-tree indexes fully WAL-safe DOM Core
Changes

190 Server-Side Language * Add new parameter $0 in PL/pgSQL representing the Adaptive Periphery
Changes function's actual return type

191 Server-Side Language * Allow polymorphic SQL functions Adaptive Periphery
Changes

192 Server-Side Language * Allow polymorphic PL/pgSQL functions Adaptive Periphery
Changes

193 Server-Side Language * Prevent PL/pgSQL crash when RETURN NEXT is DOM Core
Changes used on a zero-row record variable

194 Server-Side Language * Make PL/Python's spi_execute interface handle null DOM Periphery
Changes values properly

195 Server-Side Language * Fix PL/Python's _quote[] function to handle big DOM Periphery
Changes integers

196 Server-Side Language * Allow PL/Tcl and PL/Python to use the same trigger on DOM Core
Changes multiple tables

197 Server-Side Language * Allow PL/pgSQL to declare variables of composite DOM Core
Changes types without %ROWTYPE

198 Server-Side Language * Improved compiled function caching mechanism in DOM Periphery
Changes PL/pgSQL with full support for polymorphism

199 Server-Side Language * Make PL/Python an untrusted language, now called DOM Periphery
Changes plpythonu

200 Server-Side Language * Fixed PL/Tcl's spi_prepare to accept fully qualified DOM Core
Changes type names in the parameter type list

201 Source Code Changes * Add Darwin startup scripts Adaptive Periphery

202 Source Code Changes * Allow libpq to compile with Borland C++ compiler Adaptive Periphery
203 Source Code Changes * Allow OpenBSD to use local ident credentials Adaptive Periphery
204 Source Code Changes * Fix locking code for s390x CPU [64-bit] DOM Core
205 Source Code Changes * Generate a compile error if spinlock code is not found DOM Core
206 Source Code Changes * New function pallocO to allocate and clear memory DOM Core
207 Source Code Changes * Support Intel compiler on Linux DOM Core
208 Source Code Changes * Make query plan trees read-only to executor DOM Core

247



209 Source Code Changes * Prevent need for separate platform geometry regression DOM Core
result files

210 Source Code Changes * Add support for AMD Opteron and Itanium DOM Periphery

211 Source Code Changes * Improved PPC locking primitive DOM Periphery

212 Source Code Changes * Improve Linux startup scripts DOM Periphery

213 Source Code Changes * Add Windows compatibility functions DOM Core

214 Source Code Changes * Allow client interfaces to compile under MinGW DOM Core

215 Source Code Changes * Convert administration scripts to C DOM Core

216 Source Code Changes * Use our own version of getopt long[] if needed DOM Core

217 Source Code Changes * New ereport[] function for error reporting DOM Core

218 Utility Command * Functional indexes have been generalized into indexes Adaptive Core
Changes on expressions

219 Utility Command * Allow "CLUSTER" to cluster all tables Adaptive Periphery
Changes

220 Utility Command * Add ON COMMIT clause to "CREATE TABLE" for Adaptive Periphery
Changes temporary tables

221 Utility Command * Allow cursors outside transactions using WITH HOLD Adaptive Periphery
Changes

222 Utility Command * Implement SQL-compatible options FIRST, LAST, Adaptive Core
Changes ABSOLUTE n, RELATIVE n for "FETCH" and

"MOVE"

223 Utility Command * Add "EXPLAIN EXECUTE" Adaptive Periphery
Changes

224 Utility Command * Have "COMMENT ON DATABASE" on nonlocal DOM Core
Changes database generate a warning

225 Utility Command * Have "SHOW TRANSACTION ISOLATION" match DOM Core
Changes input to "SET TRANSACTION ISOLATION"

226 Utility Command * Prevent possible memory leaks in "COPY" DOM Core
Changes

227 Utility Command * Prevent "CLUSTER" on partial indexes DOM Core
Changes

228 Utility Command * Disallow literal carriage return as a data value, DOM Core
Changes backslash-carriage-return and \r are still allowed

229 Utility Command * Cause "FETCH" and "MOVE" to return the number of DOM Core
Changes rows fetched/moved, or zero if at the beginning/end of

cursor, per SQL standard

230 Utility Command * FETCH 0 and MOVE 0 now do nothing DOM Core
Changes

231 Utility Command * Recover from "COPY" failure cleanly DOM Core
Changes

232 Utility Command * "COPY" changes binary, \. DOM Core
Changes

233 Utility Command * Improve reliability of "LISTEN"/"NOTIFY" DOM Core
Changes

234 Utility Command * Allow "EXPLAIN" on "DECLARE CURSOR" DOM Core
Changes

235 Utility Command * Allow "CLUSTER" to use index marked as pre- DOM Periphery
Changes clustered by default

236 Utility Command * Properly handle SCROLL with cursors, or report an DOM Periphery
Changes error

248



249

237 Utility Command * Make "TRUNCATE" transaction-safe DOM Periphery
Changes

238 Utility Command * Allow DOS and Mac line-endings in "COPY" files DOM Core
Changes

239 Utility Command * Allow "REINDEX" to reliably reindex nonshared DOM Core
Changes system catalog indexes

240 Utility Command * Improve "VACUUM" performance on indexes by DOM Core
Changes reducing WAL traffic

241 Utility Command * Allow prepare/bind of utility commands like "FETCH" DOM Core
Changes and "EXPLAIN"



Chapter 4: Motivation and Effort of the Core Developers in Open
Source Communities 65

4.1: Introduction
Free/Open Source software (F/OSS) communities represent one of the most

unique examples of innovation outside the traditional boundaries of the producing firms.

F/OSS in general and the Linux operating system in particular have been called the

"impossible public good" (Kollock 1999: 230). How could complex software systems,

running mission critical applications, be designed, developed, maintained and improved

by a virtual "collective" of mostly volunteer software hackers (Markus, Mannvile and

Agres 2000)? Even more confounding, the resultant software products are free to use by

anyone and no one organization or person has exclusive legal rights to determine the

future direction of a particular project (McGowan 2001). "What drives Free/Open Source

software (F/OSS) developers to contribute their time and effort to the creation of free

software products?" is a question often posed by software industry executives, managers,

and academics when they are trying to understand the relative success of the F/OSS

movement. Many are puzzled by what appears to be irrational and altruistic behavior by

movement participants: giving code away, revealing proprietary information, and helping

strangers solve their technical problems. Understanding the motivations of F/OSS

developers is an important first step in determining what is behind the success of the

F/OSS development model and other forms of distributed technological innovation and

development.

In this chapter, I report on the results of a of the effort and motivations of core

developers contributing to the creation of Free/Open Source software. I define core

developers as those individuals who have formal decision rights in the project and are

identified as being on the core team by the F/OSS project. I used a Web-based survey,

administered to 684 software developers in 287 F/OSS projects, to learn what lies behind

the effort put into such projects. Academic theorizing on individual motivations for

65 Research done in collaboration with Bob Wolf and colleagues at the Boston Consulting Group. A shorter
version of this paper is in Feller, J., Fitzgerald, B., Hissam, S., & Lakhani, K. R. (Eds.). 2005. Perspectives
on Free and Open Source Software. Cambridge: MIT Press,

250



participating in F/OSS projects has posited that external motivational factors in the form

of extrinsic benefits (e.g., better jobs, career advancement) are the main drivers of effort.

I find, in contrast, that enjoyment-based intrinsic motivation-namely, how creative a

person feels when working on the project is the strongest and most pervasive driver. I

also find that user need, intellectual stimulation derived from writing code, and

improving programming skills are top motivators for project participation. A majority of

the respondents are skilled and experienced professionals working in information

technology-related jobs, with approximately 40 percent being paid to participate in the

F/OSS project.

The paper is organized as follows. I review the relevant literature on motivations

(Section 2) and then describe research methods and sample characteristics (Section 3). I

then report on the findings on payment status and effort in projects (Section 4), creativity

and motivations in projects (Section 5), and the determinants of effort (Section 6) in

projects. I conclude with a discussion of our findings (Section 7).

4.2: Literature Review - Motivations to Participate
What motivates human behavior and action has been a fundamental concern of all

branches of social sciences. The literature on human motivations differentiates between

those that are intrinsic (the activity is valued for its own sake) and those that are extrinsic

(providing indirect rewards for doing the task at hand) (Amabile 1996; Deci and Ryan

1985; Frey 1997). In this section I review the two different types of motivations and their

application to developers in F/OSS projects. I also review current empirical evidence on

motivations in F/OSS projects.

4.2.1 Intrinsic Motivation
The subject of intrinsic motivation has been well studied in psychology (for

comprehensive reviews see Lindenberg 2001). Following Ryan and Deci (Ryan and Deci

2000: 56) "intrinsic motivation is defined as the doing of an activity for its inherent

satisfactions rather than for some separable consequence. When intrinsically motivated a

person is moved to act for the fun or challenge entailed rather than because of external

prods, pressures, or rewards." Core to their theory of intrinsic motivation is a human's

251



need for competence and self-determination. They link the experience of being competent

and self-determined to the emotions of interest and enjoyment (Deci and Ryan 1985: 35).

A strong claim, backed by extensive experimental evidence, is that under certain

circumstances extrinsic rewards, especially monetary, have a negative impact on intrinsic

motivations and task performance that are initially intrinsically based(Deci, Koestner and

Ryan 1999). Thus there is a "hidden cost of reward". Frey (1997) in extending

psychological findings towards a formal economic theory of intrinsic motivation has

called this the "crowding out" effect, where extrinsic rewards crowd out intrinsic

rewards. Frey conceptualized intrinsic motivation as doing a task or activity without

being induced by monetary payment and/or command.

However it may not be analytically easy to distinguish between extrinsic and

intrinsic motivations and their effects on task performance (Frey 1997). Thus for

instance an artist may be handsomely paid for creating works that they enjoy doing

themselves. Lindenberg (2001) has proposed a reconceptualization of the relationship

between intrinsic and extrinsic motivations and further explicated intrinsic motivation. As

a starting point, he notes that recently Deci and Ryan (2000) have stated that: "most of

the activities people do are not, strictly speaking, intrinsically motivated. This is

especially the case after early childhood, as the freedom to be intrinsically motivated

becomes increasingly curtailed by social demands and roles that require the individual to

assume responsibility for nonintriniscially interesting task." Lindenberg proposes that

people have multiple goals while in the midst of completing activities. For example a

person may have a goal to make as much money as possible and a goal to have lots of fun

(Lindenberg 2001: 322). These goals compete for scarce cognitive resources within a

person with one goal eventually taking center stage. The winning goal creates a frame

within which a person chooses actions that are most compatible with that goal. However,

this does not imply that the other goals have disappeared. Rather they exist in the

background and moderate the action alternatives that a person considers within the

dominant frame. Thus a person who values making money and having fun may choose

opportunities that balance economic reward (i.e. less pay) with a sense of having fun (i.e.

more fun). Consistent with extant evidence and theory of intrinsic motivation Lindenberg

252



(2001) separates intrinsic motivation into two components: 1) enjoyment and

2)obligation/community. I consider each of them below.

Enjoyment-based Intrinsic Motivation

Having fun or enjoying oneself when taking part in an activity is at the core of the

idea of intrinsic motivation (Deci and Ryan 1985). Csikszentmihalyi (1975) was one of

the first psychologists to study the enjoyment dimension. He emphasized that some

activities were pursued for the sake of the enjoyment derived from doing them. He

proposed a state of "flow," in which enjoyment is maximized, characterized by intense

and focused concentration; a merging of action and awareness; confidence in one's

ability; and the enjoyment of the activity itself regardless of the outcome (Nakamura and

Csikszentmihalyi 2003). Flow states occur when a person's skill matches the challenge of

a task. There is an optimal zone of activity in which flow is maximized. A task that is

beyond the skill of an individual provokes anxiety, and a task that is below the person's

skill level induces boredom. Enjoyable activities are found to provide feelings of

"creative discovery, a challenge overcome and a difficulty resolved" (Csikszentmihalyi

1975: 181). Popular accounts of programming in general and participation in F/OSS

projects (Himanen 2001; Torvalds and Diamond 2001) in particular attest to the flow

state achieved by people engaged in writing software. Thus F/OSS participants may be

seeking flow states by selecting projects that match their skill levels with task difficulty, a

choice that might not be available in their regular jobs.

Closely related to enjoyment-based intrinsic motivation is a sense of creativity in

task accomplishment. Amabile (1996) has proposed that intrinsic motivation is a key

determining factor in creativity. Amabile's definition of creativity consists of: (1) a task

that is heuristic (no identifiable path to a solution) instead of algorithmic (exact solutions

are known), and (2) a novel and appropriate (useful) response to the task at hand

(Amabile 1996: 36). Creativity research has typically relied on normative or objective

assessments of creativity with a product or process output judged creative by expert

observers. Amabile (Amabile 1996: 40), however, also allows for subjective, personal

interpretations of creative acts. In particular, she proposes a continuum of creative acts,

253



from low-level to high-level, where individual self-assessment can contribute to an

understanding of the social factors responsible for creative output. Thus in our case, a

F/OSS project dedicated to the development of a device driver for a computer operating

system may not be considered terribly creative by outside observers, but may be rated as

a highly creative problem-solving process by some individuals engaged in the project.

Obligation/Community-based Intrinsic Motivations

Lindenberg (2001) makes the case that acting on the basis of principle is also a

form of intrinsic motivation. He argues that individuals may be socialized into acting

appropriately and in a manner consistent with the norms of a group. Thus the goal to act

consistently within the norms of a group can trigger a normative frame of action. The

obligation/community goal is strongest when private gain-seeking (gaining personal

advantage at the expense of other group members) by individuals within the reference

community is minimized. He also suggests that multiple motivations, both extrinsic and

intrinsic, can be present at the same time. Thus a person who values making money and.

having fun may choose opportunities that balance economic reward (i.e., less pay) with a

sense of having fun (i.e., more fun).

In F/OSS projects, there is a strong sense of community identification and

adherence to norms of behavior. Canonical texts like The New Hacker's Dictionary

(Raymond 1996), The Cathedral and the Bazaar (Raymond 1999), and the GNU General

Public License (GPL) (Stallman 1999) have created shared meaning about the individual

and collective identities of the hacker' culture and the responsibilities of membership

within it. Indeed, the term hacker is a badge of honor within the F/OSS community, as

opposed to its pejorative use in popular media. The hacker identity includes solving

programming problems, having fun, and sharing code at the same time. Private gain-

seeking within the community is minimized by adherence to software licenses like the

GPL and its derivatives, which allow for user rights to source code and subsequent

modification.

254



4.2.2: Extrinsic Motivation
Economists have contributed the most to our understanding of how extrinsic

motivations drive human behavior. "The economic model of human behavior is based on

incentives applied from outside the person considered: people change their actions

because they are induced to do so by an external intervention. Economic theory thus

takes extrinsic motivation to be relevant for behavior" (Frey 1997, 13).

Lerner and Tirole (2002) posit a rational calculus of cost and benefit in explaining

why programmers choose to participate in F/OSS projects. As long as the benefits exceed

the costs, the programmer is expected to contribute. They propose that the net benefit of

participation consists of immediate and delayed payoffs. Immediate payoffs for F/OSS

participation can include being paid to participate and user need for particular software

(von Hippel 2001). Similarly, von Hippel and von Krogh (2003) have proposed a "private

- collective" model of innovation in F/OSS projects where developers are motivated to

contribute based on balancing private incentives (need for code) with collective

requirements for disclosure.

Although the popular image of the F/OSS movement portrays an entirely

volunteer enterprise, the possibility of paid participation should not be ignored as an

obvious first-order explanation of extrinsic motivations. Firms might hire programmers to

participate in F/OSS projects because they are either heavy users of F/OSS-based

information technology (IT) infrastructure or providers of F/OSS-based IT solutions. In

either case, firms make a rational decision to hire programmers to con-tribute to F/OSS

projects.

Another immediate benefit relates to the direct use of the software product.

Research on the sources of innovation has shown that users in general and lead users in

particular have strong incentives to create solutions to their particular needs (von Hippel

1988). Users have been shown to be the source of innovations in fields as diverse as

scientific instruments (Riggs and von Hippel 1994), industrial products (Urban and von

Hippel 1988), sports equipment (Franke and Shah 2003), and library information systems

255



(Morrison, Roberts and von Hippel 2000). Thus user need to solve a particular software

problem may also drive participation in F/OSS projects. Similarly, Raymond (1999), with

a participant-observer perspective on open source, has claimed that a primary driver of

F/OSS participation is "scratching a coding itch." User need can be both work related

(e.g.: a librarian improving a library information system) and/or non-work related (e.g.: a

recreational biker adding shock absorbers to a mountain bike). In either case, the users

combine their immediate needs with their own skills to solve problems that they best

understand (von Hippel 2005).

Career concerns, in the form of job market signaling, is another extrinsic

motivation for active participation in F/OSS projects. Participants indicate to potential

employers their superior programming skills and talents by contributing code to projects

where their performance can be monitored by any interested observer 66. Similarly, firms

looking for a particular skill in the labor market can easily find qualified programmers by

examining code contributions within the F/OSS domain. Lerner and Tirole (2002: 214)

(citing Holmstr6m (1999)) indicate that "the signaling incentive is stronger:

1. the more visible the performance to the relevant audience;

2. the higher the impact of effort on performance; and

3. the more informative the performance about talent."

Therefore current effort on projects is expended in the expectation of future (delayed)

payoffs in the form of better a better job. Lancashire(2001) has used a similar labor-

market lens to explain the significantly greater per capita participation in F/OSS projects

(Linux and GNOME) by contributors from outside of the United States. His central

claim is that in 1990s the locus of F/OSS development shifted over to Europe. This shift

is due to the opportunity costs faced by US based software developers-soaring demand

and high wages for computer professionals decrease the attractiveness of unpaid

activities. On the other hand, European developers not only face lower opportunity costs,

but they also benefit by gaining a reputation from participating in open source projects.

66 The widespread archiving of all F/OSS project related materials like e-mail lists and code commits can

allow for a detailed assessment/proof of individual performance.

256



They can then gain access to higher wage jobs abroad. Thus F/OSS participation is a kind

of fixed cost of acquiring reputation and signaling to the job market.

Participants also improve their programming skills through the active peer review

that is prevalent in F/OSS projects (Moody 2001; Wayner 2000). Software code

contributions are typically subject to intense peer review both before and after a

submission becomes part of the official code base. Source code credit files and public e-

mail archives ensure that faulty programming styles, conventions, and logic are

communicated back to the original author. Peers in the project community, software

users, and interested outsiders readily find faults in programming and often suggest

specific changes to improve the performance of the code (von Krogh, Spaeth and Lakhani

2003). This interactive process improves both the quality of the code submission and the

overall programming skills of the participants.

4.2.3: Current findings on motivations in F/OSS projects
There have been three6 7 substantive studies (Ghosh et al. 2002; Hars and Ou

2002; Hertel, Niedner and Herrmann 2003) focused on the motivations of individual

developers in F/OSS. Overall the findings from these studies indicate that there is

significant heterogeneity in motivations for developers in F/OSS projects. The studies

are reviewed below.

Hertel et al. (2003) did a study of the motivation and effort 141 Linux developers

(n=69) and observers/interested readers (n=72) subscribed to the Linux kernel mail list.

Forty three percent of the Linux developers had received payment (salary or other

remuneration) for their contributions. Developers were found on average to have

dedicated 18.4 hours/week on Linux development. Using a social movements framing

they found that developers rated the following seven motivations (Hertel et al. 2003,

table 2, pg 12) in order of importance (scale = 1-5, 1-very unimportant, 5 - very

important): a) hedonistic motives (enjoying programming) - 4.7, b) pragmatic motives

(improve software, enhance career) - 4.3, c) social/political motives (software freedom) -

67 A study by Lakhani and von Hippel (2003) was dedicated to motivations to provide user support for open
source projects and did not focus on developers exclusively.

257



4.1, d) developer identification - 4.0, e) Linux user identification - 3.9, f) norm-oriented

motivations related to the reaction of others (family, friends, colleagues) - 3.9, and g)

tolerance for time loss for time devoted to development - 3.6. In a regression on the

effort expended (hours/week), the authors found that identification as Linux developer

had a significant positive effect (beta =0.28, p<0.01), identification as Linux user had a

significant negative effect (beta = -0.33, p <0.001) and as expected, tolerance for time

losses had a significant positive effect (beta = 0.5, p<0.04(directional)). All other

motivations were found to have no significant effects. Interestingly pragmatic motives

became significant only when considering the likelihood of continued contributions to

Linux. There were also no differences in effects between paid and volunteer

contributors.

Hars and Ou (2002) conducted a study of motivations of 79 developers

participating in 41 different F/OSS projects, with Linux developers constituting 27% of

the sample. They found that 16% of the developers were paid to work on F/OSS projects

and that this group contributed 38% of all hours spent on the projects. Using an

internal/external motivational framing they found the following ranking of their eight

motivational constructs (only those that listed high/very high): a) human capital (skill

improvement) - 88.3%, b) self-determination - 79.7%, c) peer recognition - 43.0%, d)

user need - 38.5%, e) self-marketing - 36.7%, f) community identification - 27.8%, and

g) altruism - 16.5%. They did not conduct any regression analysis to discover which

motivations had significant impact on effort, however in contrast with Hertel et al, they

found a negative correlation between effort and community identification for paid

programmers.

Ghosh et al (2002) conducted a broad based study of users and developers of

F/OSS projects for the European Commission. A component of that study included

understanding motivations for contribution to developers. Their study, based on

snowball sampling on various F/OSS e-mail lists, obtained responses from 2774

developers6 8. They found that the top motivations (>50% agreement) to contribute was

68 Ghosh et al noted that they could only verify 487 respondents as actual developers. However, they
reported results on the entire sample.

258



"to learn and develop new skills" (-70%)and "to share knowledge and skills with others"

(-65%). Based on a preliminary heuristic grouping of all the responses they created four

types of participants within their sample: a) those motivated primarily by social reasons -

53.2%, b) career and monetary concerns - 31.4%, c) political motivations - 12.7%, and

d) product related (user need) 2.6%. The authors did not conduct any regression analysis

to indicate the salience of these motivations in determining effort.

4.3: Research Methods and Sample Characteristics

4.3.1: Sample Selection

Prior studies on motivations in F/OSS projects have been limited by: including

developers and interested non-developers in sample; single project focus; relatively small

size samples; non-random and uncontrolled sample selection. The sample for this survey

was selected from individuals listed as core developers on F/OSS projects hosted on the

SourceForge.net website. Von Krogh et al (2003), in their detailed case study of

community joining scripts of a Sourceforge.net project, have shown that becoming an

core developer requires significant investment in time and effort by the prospective

person. Core developers typically have the authority to change and modify source code,

or integrate non-official developers changes, without seeking permission from the rest of

the project team6 9 . Core developers have also been shown to do a majority of the code

writing effort and communications in F/OSS projects (Koch and Schneider 2002). Thus

the sampling strategy should yield individuals that have significant roles in their

respective projects.

At the start of the study period (Fall 2001), SourceForge.net listed 26, 245 active

projects. The site requires project administrators to publicly disclose their development

status (readiness of software code for day-to-day use) as: Planning, Pre-Alpha, Alpha,

Beta, Production/Stable or Mature. Projects that are in the Planning or Pre-Alpha stage

typically do not contain any source code and were eliminated from the population under

study resulting in 9,973 available projects for the sample. The distribution of the

69 Although most projects discuss changes quite intensely.

259



projects, in terms of their development status, was as follows as follows: Alpha-32%,

Beta-37%, Production/Stable-28% and Mature-3%.

Two separate but identical surveys were launched over two time periods, the first

survey was targeted at Alpha, Beta and Production/Stable projects and the second at the

Mature projects. Due to the large number of Alpha, Beta and Production/Stable projects,

a 10% random sample was chosen from projects that listed more than one developer. The

greater than one developer criteria was used to ensure selection of projects that were not

'pet' software projects parked on SourceForge.net, rather projects that involved some

level of coordination with other members. The above activity led to 1825 e-mail

addresses and 550 projects. A closer examination of the e-mail addresses revealed that

some individuals were on more than one project and were in the sample twice.

Eliminating duplicates resulted in 1648 unique individuals in the first survey's sample

target. The second survey's target sample was selected by obtaining e-mail addresses of

all participants that were on multi-person projects. This identified 103 projects (out of

259 projects) with 573 individuals (out of 997 individuals).

4.3.2 Data Collection

Data collection was accomplished via identical web-based survey instruments

(see Appendix for survey). The survey consisted of 6 sections, consisting primarily of

closed questions. Participants could fill in their own responses if a question had a

response option for "Other". The last section consisted of open questions on the

participant's overall impressions about the F/OSS movement. The survey asked questions

about their participation in the focal project from which their name was obtained as well

as other F/OSS projects that they had participated in. The survey also had demographic,

geographic and attitudinal and motivational questions. The survey questions were pre-

tested by 5 members of the F/OSS community. The web based survey itself was tested

for accuracy in presentation and response recording on three different Internet browsers

(Microsoft, Netscape and Opera). The survey took about 30 minutes to complete.

260



Personalized e-mails were sent to each individual, indicating their first name and

their specific project, inviting them to participate in the survey. Each individual in the

sample was assigned a random personal identification number (PIN) that gave them

access to the survey. The survey form could not otherwise be accessed. The survey

respondents were ensured of complete confidentiality in their responses. The PIN system

also prevented spurious/accidental users from accessing the website and entering false

data into the survey. Respondents were offered the opportunity to participate in a random

drawing for gift certificates upon completion of the survey. As soon as an individual

completed a survey, the data was automatically recorded in a database and to ensure

further back-up, an automatic e-mail was sent to the survey team containing all of the

relevant responses from each individual instance of the survey.

The survey was conducted over two time periods. In both cases the invitation e-

mails to respondents were sent over a period of two days to avoid over loading the web

server hosting the survey. The first survey was from October 10, 2001 to October 30th,

2001. 1530 e-mails reached their destinations and 118 e-mails bounced back due to

invalid accounts at host systems. The survey generated 526 responses resulting in a

response rate of 34.3%. The second survey was from April 8, 2002 to April 28, 2002.

573 e-mails were sent with all e-mails reaching their destinations. The second survey

generated 173 responses resulting in a response rate of 30.0%. Within both the surveys,

98% of the respondents answered at least 90% of all of the questions and 85% of the

respondents answered the open ended questions. Close examination of the data revealed

that 18 respondents had not completed a majority of the survey or had answered the

survey twice (hitting the send button more than once) and were thus eliminated from

analysis. Overall the survey had 684 respondents from 287 distinct projects yielding a

response rate of 34.3%. The mean number of responses per project was 4.68 (sd = 4.9,

median = 3, range = 1-25).

4.3.3 Sample Characteristics
Survey respondents were primarily male (97.5 percent) with an average age of 30

years and living primarily in the developed Western world (45 percent of respondents

261



from North America (U.S. and Canada) and 38 percent from Western Europe). Table 4.1

summarizes some of the salient characteristics of the sample and their participation in

F/OSS projects.

The majority of respondents had training in IT and/or computer science, with 51

percent indicating formal university-level training in computer science and IT. Another 9

percent had on-the-job or other related IT training. Forty percent of the respondents had

no formal IT training and were self taught. Overall, 58 percent of the respondents were

directly involved in the IT industry, with 45 percent of respondents working as

professional programmers and another 13 percent involved as systems administrators or

IT managers. Students made up 19.5 percent of the sample and academic researchers 7

percent. The remaining respondents classified their occupation as "other." As indicated

by Table 4.1, on average the respondents had 11.8 years of computer programming

experience.

4.4: Findings - Payment Status and Effort in Proiects
A significant minority of contributors are paid to participate in F/OSS projects.

When asked if they had received direct financial compensation for participation in the

project, 87 percent of all respondents reported receiving no direct payments. But, as

Table 4.2 indicates, 55 percent contributed code during their work time. When asked: "if

a work supervisor was aware of their contribution to the project during work hours," 38

percent of the sample indicated supervisor awareness (explicit or tacit consent) and 17

percent indicated shirking their official job while working on the project. The sum of

those who received direct financial compensation and those whose supervisors knew of

their work on the project equals approximately 40 percent of the sample, a category we

call "paid contributors."

Effort was measured as the number of hours per week spent on a project. This

measure has been used in previous F/OSS studies (Hars and Ou 2002; Hertel, Niedner,

and Herrmann 2003) and provides an appropriate proxy for participant contribution and

262



interest in F/OSS projects. Other measures of effort can include lines of code contributed

and frequency of changes made to the source code. However, all of them can create a

263



Table 4.1: General Characteristics of Survey Respondents
Std.

Variable Obs Mean Dev. Min Max

Age 677 29.80 7.95 14.00 56.00

Years Programming 673 11.86 7.04 1.00 44.00

Current F/OSS Projects 678 2.63 2.14 0.00 20.00

All F/OSS Projects 652 4.95 4.04 1.00 20.00
Years since first contribution
to F/OSS community 683 5.31 4.34 0.00 21.00

Table 4.2: Location and Work Relationship for F/OSS Contributions
Survey Question: Is supervisor aware of work time spent on the N Percent
F/OSS project?
Yes, aware 254 37.69
No, not aware 113 16.77
Do not spend time at work 307 45.55
Total 674 100

Table 4.3 - Hours Spent / Week on F/OSS Projects
Average Paid Contributor Volunteer t statistic

(sd) (sd) (sd) (p-value)*
Hours/week on all 14.3 (15.7) 17.7 (17.9) 11.7 (13.5) 4.8 (0.00)
F/OSS projects
Hours/week on focal 7.5 (11.6) 10.3 (14.7) 5.7 (8.4) 4.7 (0.00)
F/OSS project

* Two tailed test of means assuming unequal variances

264



bias based on individual styles and habits of programming and committing source code

changes (von Hippel and von Krogh 2003; von Krogh, Spaeth and Lakhani 2003). Hours

per week, on the other hand, provides an indication of individual commitment to F/OSS

projects regardless of skill and style.

Survey respondents were asked how many hours in the past week they had spent

working on all their current F/OSS projects in general and "this project" (the focal project

about which they were asked motivation questions) in particular. Respondents said that

they had, on average, spent 14.1 hours (sd = 15.7, median = 10, range 0-85 hours) on all

their F/OSS projects and 7.5 hours (sd = 11.6, median = 3, range 0-75 hours) on the focal

project. The distribution of hours spent was skewed, with 11 percent of respondents not

reporting any hours spent on their current F/OSS projects and 25 percent reporting zero

hours spent on the focal project. Table 4.3 indicates that paid contributors dedicate

significantly more time (51 percent) to projects than do volunteers.

Overall, paid contributors were spending more than two working days a week and

volunteer contributors were spending more than a day a week on F/OSS projects. The

implied financial subsidy to projects is quite substantial. The 2001 United States Bureau

of Labor Statistics wage data70 indicated a mean hourly pay of $30.23 for computer

programmers. Thus the average weekly financial contribution to F/OSS projects is

$353.69 from volunteers and $535.07 from paid contributors (via their employers).

4.5: Findings - Creativity and Motivation in Projects
Respondents noted a very high sense of personal creativity in the focal projects.

They were asked: "imagine a time in your life when you felt most productive, creative, or

inspired. Comparing your experience on this project with the level of creativity you felt

then, this project is...." Table 4.4 describes the response patterns. More than 61 percent

of the survey respondents said that their participation in the focal F/OSS project was their

most creative experience or was equally as creative as their most creative experience.

The remaining 31% rated the focal projects as "somewhat less creative" and 8% found

the projects to be "much less creative" as compared to their most creative experience.

70 Available at http://www.bls.gov/oes/2001/oes_l5Co.htm, accessed April 2, 2003.

265



Table 4.4: Creativity in F/OSS Projects
Compared to your most creative endeavor, how N Percent
creative is this project?
Much less 55 8.16
Somewhat less 203 30.12
Equally as creative 333 49.41
Most creative 83 12.31
Total 674 100.00

Ratings on "Flow" Variables
Table 4.5: Responses to "Flow" questions

How likely to lose track of time How likely to devote extra hour
when programming (%) in the day to prorammin (%)

Always 21.39 12.92
Frequently 51.33 47.14
Sometimes 22.27 34.51
Rarely 4.28 4.11
Never 0.74 1.32
Total 100 100

266

-



Paid contributors rated the project creativity at a mean of 2.7 (sd = 0.80) and volunteers

rated projects at 2.6 (sd = 0.8), however there was no significant difference between the

means (t = 1.59, p = 0.11, two tailed test.

It may seem puzzling to nonprogrammers that software engineers feel creative as

they are engaged in writing programming code. However, as Csikszentmihalyi (1975;

1990; 1996) has shown, creative tasks often cause participants to lose track of time and

make them willing to devote additional hours to the task, a psychological state he calls

"flow." It appears that our respondents may experience flow while engaged in

programming. Table 4.5 indicates that 73 percent of the respondents lose track of time

"always" or "frequently" when they are programming and more than 60 percent said that

they would "always" or "frequently" dedicate one additional hour to programming ("if

there were one more hour in the day").

Table 4.6 provides a ratings breakdown of the motivations to contribute to the

focal F/OSS project. Respondents were asked to select up to three statements (the table

shows the exact wording used in the survey) that best reflected their reasons for

participating and contributing to "this" project. As discussed in the literature review,

motivations can be put into three major categories: (1) enjoyment-based intrinsic

motivations, (2) obligation/community-based intrinsic motivations, and (3) extrinsic

motivations. We find evidence for all three types of motivations in F/OSS projects.

User needs for the software, both work- and nonwork-related, together constitute

the overwhelming reason for contribution and participation (von Hippel 1988; 2001 a;

2002; 2005), with more than 58 percent of participants citing them as important. But,

since we asked separate questions about work- and nonwork-related user needs, we also

report that 33.8 percent of participants indicated work-related need and 29.7 percent

participants indicated nonwork-related need as a motive for participation. Less than 5%

of respondents rated both types of user needs as important.

267



Table 4.6 - Motivation to contribute to F/OSS projects
Motivation % of respondents % % t statistic

indicating up to volunteer paid (p value)
3 statements that contributors contributor
best reflect their

reasons to
contribute (%)

Enjoyment based Intrinsic Motivation
Code for project is intellectually stimulating to write 44.9 46.1 43.1
Like working with this development team 20.3 21.5 18.5
Economic/Extrinsic based Motivations
Improve programming skills 41.3 45.8 33.2 3.56

(p=0.0004)
Code needed for user need (work and/or non-work)* 58.7 -
- Work need only 33.8 19.3 55.7 10.53

(p=0.000)
- Non-work need 29.7 37.0 18.9 5.16

(p=o.oooo)
Enhance professional status 17.5 13.9 22.8 3.01

(p=0.0000)
Obligation/Community based Intrinsic Motivations
Believe that source code should be open 33.1 34.8 30.6
Feel personal obligation to contribute because use 28.6 29.6 26.9
F/OSS
Dislike proprietary software and want to defeat them 11.3 11.5 11.1
Enhance reputation in F/OSS community 11.0 12.0 9.5
N =679

Table 4.7: Project Topics By User Need
Work Non-work

Project Topic Area* Need Need

Internet 24% 15%

Software Development 17% 10%

System 10% 10%

Multi-media 9% 18%
Office/Business 7% 2%

Communications 6% 14%

Scientific/engineering 5% 4%
Database 5% 4%

Text Editors 4% 3%

Printing 3% 0%
Games/Entertainment 2% 12%

Desktop 1% 6%
Other 6% 3%

Total Topic Counts 221 191
* Projects can be in multiple topics

268



To better understand the differences between work and non-work related projects

I examined the self-reported project topics for all respondents that indicated a user need.

Table 4.7 shows that the top three topics, comprising 44% of all topics, for non-work

projects are in multi-media, communications and games/entertainment, whereas, the top

three topics, comprising 52% of all topics, for work related projects are in Internet,

software development and systems. Interestingly, there is quite a bit of overlap in topics

between work and non-work related needs, for example, 36% of all non-work related

projects are in the same topic categories as the top three topics for work related projects.

An informal follow-up e-mail to 10 participants revealed that the projects initiated for

non-work needs could have been equally done for work related needs in a firm setting.

For example, one participant was developing special hardware device drivers for an

operating system that he used at home, one can imagine a similar effort within a firm

setting doing exactly the same project. Another participant had developed advanced

software to display digital pictures for a family album on the World Wide Web, similar

projects exist within firms to display employee picture books and customer photo albums

(e.g.: AOL, MSN etc). There is therefore a blurring of distinction in the software

produced for work and non-work purposes. The general purpose nature of computing

and software creates conditions such that a similar user need can be high in both work

and non-work settings.

The top single reason to contribute to projects is based on enjoyment-related

intrinsic motivation: "Project code is intellectually stimulating to write" (44.9 percent).

This result is consistent with the previous findings regarding creativity and flow in

projects. Improving programming skills, an extrinsic motivation related to human capital

improvement, was a close second, with 41.8 percent of participants saying it was an

important motivator.

Approximately one-third of the sample indicated that the belief that "source code

should be open," an obligation/community motivation, was an important reason for their

participation. Nearly as many respondents indicated that they contributed because they

felt a sense of obligation to give something back to the F/OSS community in return for

269



the software tools it provides (28.6 percent). Approximately 20 percent of the sample

indicated that working with the project team was also a motivate for their contribution.

Motivations commonly cited elsewhere, like community reputation, professional status,

and defeating proprietary software companies (Lerner and Tirole 2002), were ranked

relatively low.

Another source of an obligation/community motivation is the level of

identification felt with the hacker culture. Presumably self-identification with the hacker

community and ethic should drive participation in projects. Respondents to the survey

indicated a strong sense of group identification with 42% indicating that they "strongly

agree" and another 41% 'somewhat agree" that the "hacker" community was a primary

source of their identity. Nine percent of the respondents were neutral and eight percent

were somewhat to strongly negative about the hacker affiliation.

Table 4.6 also indicates significant differences in motivations between paid

contributors and volunteers. The differences between the two groups are consistent with

the roles and requirements of the two types of F/OSS participants. Paid contributors are

strongly motivated by work-related user need (55.7 percent) and value professional status

(22.8 percent) more than volunteers. On the other hand, volunteers are more likely to

participate because they are trying to improve their skills (45.8 percent) or need the

software for non-work purposes (37%).

To better understand the motivations behind participation in the F/OSS

community, and the fact that no one motivation, on its own, had more than 50%

importance, I decided to do a cluster analysis of the motivations to see if there were any

natural groupings of the individuals by motivation types. I ran a k-means cluster analysis,

with random seeding. I conducted analysis with three, four and five clusters on the cases

which had reported up to three motivations for contribution. The analysis showed that the

three and five cluster solutions were giving unstable and unbalanced clusters. The four

cluster solution provided the best balance of cluster size and motivational aggregation

71 The results were identical when controlling for paid contributor status on a project.

270



and is presented in Table 4.8. The motivations that came out highest in each cluster have

been highlighted.

Cluster membership can be explained by examining the motivation categories that

scored the highest in each cluster. Cluster 3 (29 percent of the sample) consists of

individuals who contribute to F/OSS projects to improve their programming skills and for

intellectual stimulation. None of the members of this cluster noted nonwork-related need

for the project and very few, 12 percent, indicated work-related need for the code.

Members of this group indicated an affinity for learning new skills and having fun in the

process. The actual end product does not appear to be a large concern; both enjoyment-

based intrinsic motivation and career-based extrinsic motivation are important to this

group.

All members of cluster 2 (27 percent of the sample) indicate that nonwork-related

need for the code is an important motive for their participation. The primary driver for

this group is extrinsic user need. Similarly, cluster 1 (25 percent of the sample) represents

individuals who are motivated by work-related need with a vast majority (86 percent)

271



Table 4.8: Cluster results based on motivations and paid status

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Motivations (%) (%) (%) (%)
Work need 91 8 12 28

Non-work need 11 100 0 2

Intellectually stimulating 41 45 69 12

Improves skill 20 43 72 19
Work with team 17 16 28 19

Code should be open 12 22 42 64

Beat proprietary software 11 8 9 19

Community reputation 14 8 11 13

Professional status 25 6 22 18

Obligation from use 23 20 6 83

Paid for contribution 86 18 26 32

Total % of sample in each
cluster 25 27 29 19

n = 679

272



paid for their contributions to F/OSS projects. This cluster can also be thought of as

composed of people with extrinsic motivations. Cluster 4 (19 percent of the sample)

consists of people motivated primarily by obligation/community based intrinsic

motivations. A majority of this cluster report group identity-centric motivations derived

from a sense of obligation to the community and a normative belief that code should be

open.

The cluster solutions should not be viewed as definite and final. By definition,

there cannot be a penultimate cluster solution. The cluster provide an exploratory view

into the data to see patterns of response amongst the motivations and the motivations.

Overall note that the cluster solution has revealed a "logical" grouping of individuals by

their motivations, in particular observe that clusters can be classified by hybrid

intrinsic/extrinsic motivations for intellectual stimulation and skill improvement,

extrinsic user need motivations (both work/non-work), and obligation/community based

intrinsic motivations. A clear finding from the cluster analysis is that the F/OSS

community has distinct heterogeneity in motivations to participate and contribute.

Individuals may join for a variety of reasons and no one reason tends to dominate the

community or cause people to make distinct choices in beliefs. These findings are

consistent with collective action research where group heterogeneity is considered an

important trait of successful movements (Marwell and Oliver 1993).

4.6 Findings: Determinants of Effort
The literature review indicated the potential presence of three motivation types

underlying sustained participation in F/OSS projects: 1)Extrinsic, 2)Enjoyment/Intrinsic

and 3)Obligation-Community/Intrinsic. The findings so far have confirmed the presence

of all three types of motivations with no clear and obvious determinants of effort. Do

note that paid contributors work more hours. However given that there were not that

many significant differences in motivations amongst paid and volunteer contributors

there is still an open question regarding the effect of motivation types on effort in

projects. To address the question I ran an ordinary least squares (OLS) regression on log

273



of hours/week 72 dedicated to the focal project to discover significant effects of

motivations on project effort. The results of the regression are provided in Table 4.9.

Model 1 of the regression introduces control variables to account for hours/week

dedicated to the focal F/OSS projects. Formal training in information technology (IT

Training) can reduce the number of hours/week dedicated to projects as such training

may provide the necessary coding background and experience that non-trained

individuals may not have. An information technology related job may provide the

impetus to contribute more hours as the participant may choose to leverage the F/OSS

community for directly work related projects. Project founders may have an incentive to

make sure that the project succeeds and thus may dedicate more hours to the project as

compared to non-founding developers. Finally, the number of hours spent on other

F/OSS projects may reduce the hours per week spent on the focal project. An individual

may have a set quota of time for such projects and other projects may detract from

working on the focal project. Model 1 shows that IT training has a marginally significant

and negative impact on hours per week spent on the project. A founder will spend

significantly more hours per week on the project as compared to non-founders. Time

spent on other F/OSS projects will significantly (highly) reduce the hours per week spent

on the focal project.

In model 2 extrinsic motivators are introduced to the regression. Now the founder

effect in model 1 becomes non-significant. The only extrinsic motivation that is

significant with regards to hours per week spent on a project is the survey participant's

paid status. Paid developers spent significantly more time on projects as compared to

non-developers. This result is consistent given the differential in hours noted between

volunteers and paid developers in Table 4.3. All other extrinsic motivators like user need

(work and non-work), skill improvement and seeking professional status do not impact

hours per week dedicated to the projects.

72 We chose to use log of project hours/week because of the skewness in the reported data. A log
transformation allows us to better represent the effects of small changes in the data at the lower values of
project hours/week. It is safe to argue that there is significant difference between 2 and 3 project hours/
week as compared to 25 and 26 project hours/week. The magnitude of the effort expended is much greater
at the lower values of the measure and the log transformation allows us to capture this shift.

274



Table 4.9: OLS Regression on Log Project Hours/Week

Variable Model 1 Model 2 Model 3 Model 4 Model 5
Controls Coef S.E. Sig Coef S.E. Sig Coef S.E. Sig Coef S.E. Sig Coef S.E. Sig
IT Training -1.51 0.55 * -1.57 0.55 * -1.52 0.55 * -1.24 0.55 * -1.23 0.55 *
IT Job 0.00 0.54 -0.17 0.55 -0.29 0.55 -0.47 0.54 -0.49 0.54
Founder 1.41 0.68 * 1.33 0.68 1.43 0.69 0.74 0.68 0.73 0.68
Differential hours -0.13 0.02 ** -0.14 0.02 ** -0.15 0.02 ** -0.13 0.02 ** -0.14 0.02 **
Economic/Extrinsic
Paid Status
Work need
Non-work need
Improve skill
Professional Status
Obligation-Community/Intrinsic
Code should be open
Feel obligation
Defeat proprietary software
Enhance community reputation
Like team
Hacker affiliation
Enjoyment/Intrinsic
Intellectual stimulation
Creative project experience
Lose track of time while programming
Devote one more hour to programming
Interaction Effect
Paid Status * Creative
Constant
R Square
N
* p <= 0.05, ** p<=0.01

1.99 0.59 ** 2.04 0.59 ** 1.79 0.57 ** 1.28 0.82
-0.37 0.64 0.21 0.67 0.93 0.71 0.88 0.71
0.03 0.61 0.49 0.67 0.84 0.70 0.85 0.70
0.65 0.55 1.06 0.61 0.94 0.64 0.99 0.64
0.21 0.71 0.78 0.75 0.93 0.78 0.95 0.78

1.00 0.61 1.17 0.66 1.18 0.66
-0.41 0.64 0.13 0.68 0.16 0.68
-0.61 0.86 -0.22 0.89 -0.19 0.89
1.10 0.88 1.81 0.90 * 1.82 0.90
1.88 0.72 ** 2.07 0.75 ** 2.13 0.75 **
0.53 0.27 0.18 0.28 0.18 0.28

-0.87 0.52
0.07

651.00

-1.70 0.70
0.09

646.00

1.17 0.65 1.21 0.65
2.04 0.34 ** 1.95 0.35 **
0,39 0.33 0.37 0.33
0.56 0.35 0.57 0.35

0.27 0.31
-5.07 1.52 -13.69 2.14 -13.53 2.14
0.11 0.18 0.18

642.00 630.00 630.00

275

I



Model 3 includes obligation/community based intrinsic motivators to the

regression. The control and extrinsic motivators remain consistent with the previous

model. The only significant variable relates to a sense of affinity with the focal project's

development team. "Liking the team" has a significant and positive impact on hours per

week dedicated to the project. Other obligation/community based intrinsic motivators

like the belief in source code being open, feeling an obligation towards the community

for using F/OSS software, antagonism towards proprietary software, enhancing

community reputation and strength of the hacker identity did not have any significant

effects.

The regression in model 4 includes enjoyment/intrinsic motivators. The control

and extrinsic motivators have the same impact as model 3. Along with liking the team,

enhancing community reputation gains marginal positive significance in the

obligation/community intrinsic motivation category. Self-assessment of a creative

project experience has the largest and most significant positive impact on hours per week

dedicated to a F/OSS project. Individuals that report a high sense of creativity on the

project spend significantly more time on the project than those that do not. Also note that

the percentage of variance improved greatly between models 3 and 4. Introduction of

enjoyment related motivators caused the R2 value to go form 11% to 18%. Other

motivators like intellectual stimulation and flow related variables like losing track of time

while programming and devoting one more hour to programming are not significant.

Table 4.10 shows the relative impact of each of the significant variables in model

4. I standardized 73 all the variables in model 4 of the regression to allow for direct

comparisons of the magnitudes across variables. Personal sense of creativity on a F/OSS

project has the largest positive impact on hours per week amongst all the variables.

Being paid to write code and liking the team have significant positive effects that are

approximately half the size as a sense of creativity. Caring about reputation in the F/OSS

community has about one third an impact as feeling creative in a project. Hours

dedicated to other F/OSS projects have an equal and negative impact as creativity on

73 All variables transformed so that the mean = 0 and the variance = 1.

276



current project. We can see that various F/OSS projects compete for time and

distractions from other projects can reduce the overall number of hours spent on the focal

project. Having formal IT training also reduces the number of hours spent on a project.

As mentioned in the literature review, proponents of intrinsic motivation theories

have assembled an impressive array of experimental evidence (Deci, Koestner and Ryan

1999) to demonstrate that extrinsic rewards have a negative impact on intrinsic

motivations. An obvious test in the study would be to see the impact of the interaction

between being paid and feeling creative in a project on the number of hours per week

dedicated. Model 5 in Table 4.9 provides the results of the test. There is no significant

impact on the hours per week dedicated based on the interaction of being paid and feeling

creative. Hours per week dedicated to a project do not decline given that those that are

paid to contribute code are also feeling creative in that project.

Researchers engaged in studying creativity have traditionally used third-party

assessments of innovative output as measures for creativity. Thus the findings regarding

a sense of personal creativity as the biggest determinant of effort in F/OSS projects may

have occurred due to the inherent innovativeness of the project itself and not based on

any personal feelings of being creative. Since there are multiple responses from many

projects a test if creativity the felt is endogenous to the project or to the individual can be

utilized. Results from a fixed-effects regression (Greene 2000) on the key variables are

presented in Table 4.11. A fixed effect regression holds constant the project and

determines within project effects of the variables being tested. The results should be read

to indicate the significance of each variable within projects. Creativity in a project is still

positive and significant in the regression, indicating that the sense of creativity is

endogenous and heterogeneous to the people within projects. Concern for gaining a

reputation within the F/OSS community is also positive and significant. Interestingly,

paid status in the fixed effects regression is not significant. This indicates that within

projects being paid does not impact hours/week dedicated.

277



Table 4.10: Impact of Significant Variable on Project Hours/Week (Standardized Coefficients)
Variable Coeff. t-statistic (p-

value)

Creative project 1.6 6.00 (0.000)
experience
Paid status 0.88 3.12 (0.002)
Like team 0.84 2.76 (0.004)
Enhance community 0.56 2.00 (0.046)
reputation
Differential hours -1.6 -6.00 (0.000)
IT training -0.6 -2.28 (0.023)

278



Table 4.11: Fixed Effects OLS Regression on Log Project Hours/Week

Coef S.E. Sig
Controls
IT Training -1.22 0.72

IT Job -0.65 0.74

Founder 1.48 1.03

Differential hours -0.12 0.03 **
Economic/Extrinsic
Paid Status 1.31 0.81

Work need -0.06 0.95

Non-work need 0.20 0.94
Improve skill 0.00 0.86
Professional Status -1.14 1.00

Obligation-Community/Intrinsic
Code should be open 0.34 0.85

Feel obligation -0.36 0.86

Defeat proprietary software -0.26 1.16
Enhance community reputation 2.80 1.21 **
Like team 0.05 1.03

Hacker affiliation 0.00 0.37

Enjoyment/Intrinsic
Intellectual stimulation 0.22 0.84

Creative project experience 2.27 0.46 **
Lose track of time while programming 0.49 0.45
Devote one more hour to programming 0.54 0.44

F Statistic 3.72 **

Constant -11.33 2.78

R Square 0.17
N 511.00

279



4.7 Discussion and Conclusion
The most important findings in the study relate to both the extent and impact of

the personal sense of creativity developers feel with regard to their F/OSS projects. A

clear majority (more than 61 percent) stated that their focal F/OSS project was at least as

creative as anything they had done in their lives (including other F/OSS projects they

might have engaged in). This finding is bolstered by the willingness of a majority of

survey participants to dedicate additional hours to programming, and, consistent with

attaining a state of flow, frequently losing track of time while coding. These observations

are reinforced by the similar importance of these creativity-related factors for both

volunteer and paid contributors.

The importance of the sense of creativity in projects is underscored by

examination of the drivers of effort in F/OSS projects. The only significant determinants

of hours per week dedicated to projects were (in order of magnitude of impact):

* Enjoyment-related intrinsic motivations in the form of a sense of creativity

* Extrinsic motivations in form of payment

* Obligation/community-related intrinsic motivations

Furthermore, contrary to experimental findings on the negative impact of extrinsic

rewards on intrinsic motivations (Deci, Koestner, and Ryan 1999), I find that being paid

and feeling creative about F/OSS projects does not have a significant negative impact on

project effort.

Therefore, work on the F/OSS projects can be summarized as a creative exercise

leading to useful output, where the creativity is a lead driver of individual effort.

Programming has been regarded as a pure production activity typified as requiring

payments and career incentives to induce effort. However, this maybe a limited view. At

least as applied to hackers on F/OSS projects, activity should be regarded as a form of

joint production-consumption that provides a positive psychological outlet for the

participants as well as useful output.

Another central issue in F/OSS research has been the motivations of developers to

participate and contribute to the creation of a public good. The effort expended is

280



substantial. Individuals contribute an average of 14 hours per week. But there is no single

dominant explanation for an individual software developer's decision to participate in and

contribute to a F/OSS project. Thus an interplay between extrinsic and intrinsic

motivations: neither dominates or destroys the efficacy of the other. It may be that the

autonomy afforded project participants in the choice of projects and roles one might play

has "internalized" extrinsic motivations.

Therefore, an individual's motivation containing aspects of both extrinsic and

intrinsic is not anomalous. Dominant motives do not crowd out or spoil others. It is

consistent for someone paid to participate in the F/OSS movement to be moved by the

political goals of free software and open code.

Other issues merit further investigation. The presence of paid participants, 40

percent of the sample, indicates that both IT-producing and IT-using firms are becoming

important resources for the F/OSS community. The contribution of firms to the creation

of a public good raises questions about incentives to innovate and share innovations with

potential competitors. In addition, the interaction between paid and volunteer participants

within a project raises questions about the boundaries of the firm and appropriate

collaboration policies.

In conclusion, this chapter has advanced understanding of the motivational factors

behind the success of the F/OSS community. Findings indicate that the F/OSS

community does not require any one type of motivation for participation. It is a "big

tent." Its contributors are motivated by a combination of intrinsic and extrinsic factors

with a personal sense of creativity being an important source of effort.

281



References
Amabile, Teresa M. 1996. Creativity in context. Boulder, CO: Westview Press.
Csikszentmihalyi, Mihaly. 1975. Beyond Boredom and Anxiety: The Experience of Play

in Work and Games. San Francisco: Jossey-Bass, Inc.
Deci, Edward L, R Koestner, and Richard M Ryan. 1999. "A meta-analytic review of

experiments examining the effects of extrinsic rewards on intrinsic motivation."
Psychological Bulletin 125:627-688.

Deci, Edward L, and Richard M Ryan. 1985. Intrinsic motivation and self-determination
in human behavior. New York, NY: Plenum Press.

Franke, Nikolaus, and Sonali Shah. 2003. "How communities support innovative
activities: an exploration of assistance and sharing among end-users." Research
Policy 32:157-178.

Frey, Bruno. 1997. Not just for the money: an economic theory ofpersonal motivation.
Brookfield. VT: Edward Elgar Publishing Company.

Ghosh, Rishab Ayer, Ruediger Glott, Bernhard Krieger, and Gregorio Robles. 2002.
"Free/Libre and Open Source Software: Part IV Survey of Developers."
International Institute of Infonomics, University of Maastricht.

Greene, William H. 2000. Econometric Analysis. Upper Saddle River, NJ: Prentice- Hall
Inc.

Hars, Alexander, and Shaosong Ou. 2002. "Working for free? Motivations for
participating in Open-Source projects." International Journal of Electronic
Commerce 6:25-39.

Hertel, Guido, Sven Niedner, and Stefanie Herrmann. 2003. "Motivation of software
developers in Open Source projects: an Internet-based survey of contributors to
the Linux kernel." Research Policy 32:1159-1177.

Himanen, Pekka. 2001. The Hacker Ethic and the Spirit of the Information Age. New
York: Random House.

Holmstr6m, Bengt. 1999. "Managerial Incentive Problems: A Dynamic Perspective."
Review of Economic Studies 66.

Koch, S, and G Schneider. 2002. "Effort, Cooperation and Coordination in an Open
Source Software Project: GNOME." Information Systems Journal 12:27-42.

Kollock, Peter. 1999. "The Economies of Online Cooperation." Pp. 220-239 in
Communities in Cyberspace, edited by Peter Kollock and Marc A. Smith. New
York, NY: Routledge.

Lancashire, David. 2001. "Code, culture and cash: The fading altruism of Open Source
development." First Monday 6.

Lerner, Josh, and Jean Tirole. 2002. "Some Simple Economics of Open Source." Journal
of Industrial Economics 50:197-234.

Lindenberg, Siegwart. 2001. "Intrinsic motivation in a new light." Kyklos 54:317-342.
Markus, Lynne M, Brook Mannvile, and Carole E Agres. 2000. "What make a virtual

organization work? Lessons from the open-source world." Sloan Management
Review Fall 2000, 42:13-26.

Marwell, Gerald, and Pamela Oliver. 1993. The Critical Mass in Collective Action: A
Micro-Social Theory. Cambridge, UK: Cambridge University Press.

McGowan, David. 2001. "The Legal Implications of Open Source Software." Illinois
Law Review.



Moody, Glen. 2001. Rebel Code: Inside Linux and the Open Source Revolution. New
York: Perseus Press.

Morrison, Pamela D, J H Roberts, and Eric von Hippel. 2000. "Determinants of user
innovation and innovation sharing in a local market." Management Science
46:1513-1527.

Nakamura, Jeanne, and Mihaly Csikszentmihalyi. 2003. "The construction of meaning
through vital engagement." in Flourishing. positive psychology and the life well-
lived, edited by Corey L Keyes and Jonathan Haidt. Washington, DC: American
Psychological Association.

Raymond, Eric. 1996. The New Hacker Dictionary - 3rd Edition. Cambridge, MA: MIT
Press.

-. 1999. The Cathedral and the Bazaar: Musings on Linux and Open Source from an
Accidental Revolutionary. Sebastopol: CA: O'Reilly and Associates.

Riggs, William, and Eric von Hippel. 1994. "Incentives to innovate and the sources of
innovation: The case of scientific instruments." Research Policy 23:459-469.

Ryan, Richard M, and Edward L Deci. 2000. "Intrinsic and Extrinsic Motivations:
Classic Definitions and New Directions." Contemporary Educational Psychology
25:54-67.

Stallman, Richard. 1999. "The GNU Operating System and the Free Software
Movement." Pp. 53-70 in Open Sources. Voices from the Open Source
Revolution, edited by C DiBona, S Ockman, and Mark Stone. Sebastopol, CA:
O'Reilly.

Torvalds, Linus, and David Diamond. 2001. Just for fun: the story of an accidental
revolutionary. New York, NY: HarperCollins.

Urban, Glen L, and Eric von Hippel. 1988. "Lead User Analyses for the Development of
New Industrial Products." Management Science 34:569-582.

von Hippel, Eric. 1988. The Sources of Innovation. New York, NY: Oxford University
Press.

-. 2001. "Innovation by User Communities: Learning from Open Source Software."
Sloan Management Review 42:82-86.

-. 2005. Democratizing Innovation. Cambridge, MA: MIT Press.
von Hippel, Eric, and Georg von Krogh. 2003. "Open Source Software and the Private-

Collective Innovation Model: Issues for Organization Science." Organization
Science 14:209-223.

von Krogh, Georg, Sebastian Spaeth, and Karim R Lakhani. 2003. "Community, Joining,
and Specialization in Open Source Software Innovation: A Case Study." Research
Policy 32:1217-1241.

Wayner, Peter. 2000. Free For All. How Linux and the Free Software Movement
Undercuts, the High-Tech Titans. New York: HarperBusiness.

283



Appendix - Survey Instrument Used

Survey - Section I file:///C:/Docnmellts°,20andd%2OSettints/lakhani%,O20karil/Des

BCG Free/Open Source softwvare surney
1 2 3 4 5 6

Section - Motivation, inspiration and leadership Section of 6

RW71i do ou connibute to Fre/;Openl Source projects'? This ihfJbirntiot 1ill help us to understad what holds the communit ' together.
W7heln we use "thlis project" in the follotwing questions, lwie Imenll to iniply tilhe Free/Open Source prqject referenced i the ensail !ou
receivledfiolu us.

1) Please select up to 3 statements that best reflect your reasons for contributing to this project (i.e.. the Free/Open Source
project referenced in the cover email). Choose fewer than 3 statements if the 1 or 2 you do select cover all of your significant
motivations.

7] a) My contribution creates specific functionality in the code needed for my work.

[l b) My contribution creates specific functionality in the code needed for my non-work life.

n c) The code for this project is intellectually stimulating to write.

.7 d) My activity on this project improves my progranmming skill.

17, e) I like working with the development team onl this project.

-] f) I believe source code should be open.

I dislike proprietary software or the companies that produce it and wvant to help the Free/Open Source software community
.) defeat them.

j'I h) My contlibutions will enhance my reputation in the Free/Open Source software conlunity.

i) My contributions will enhance my professional status.

Fl j) I feel a personal obligation to contribute since I use Free/Open Source software

'I k) The license for this project forces me to contribute my changes.

_J 1) Other 1. please specify:

!1 m) Other 2. please specify: r
u]j n) Other3. please specify: |

2) Did you know anyone from this project prior to your participation in it?
Please select

3) If you knew members of the project team before, was your decision to participate influenced by knowing these people?
Please select

4) Please indicate the most important way one gains or enhances his or her reputation in the Free'Open Source software
community
Please select ,- <;

If other, please specify -

5) Imagine a time In your life when you felt most productive, creative or inspired. Comparing your experience on this project
with the level of creativity you felt then, this project is:
Please select

6) Please indicate up to 3 important nays In which project leaders can enhance FreeOpen Source projects.

a) Create a plausible promise for the project (vision)

b) Create the initial code base for the project

i c) Continue to contribute code through the duration of the project

I d) Detennine the appropriate (prorlamming & other) tasks for the project

7]i e) Delegate appropriate (progranining & other) tasks for the project

F f Integrate various submissions

['1 g) Initiate constructive dialogue with the developer conmuslit y on project issues

F I h) Open minds to alternative approaches

1 of 2 8!21/2005:

284



file:/,'C:/Docunents%2so0and%2O0SettinsIlalani%2OkariwDesktop/B...

Providing motivation

Help people get started

Provide specific help or responses to questions

IManage the timing of project contributions

Recnlit additional project contlibutors

Not much impact

Other 1. please specify

Other 2. please specify [

Other 3. please specify [

Proceed to the next section I

285

l i)
r:] )
F ] k)

z1 1)

F1] p)

FI q)

Survey- Section 



file:i/!C:/Docmnents. 20and%20OSettingsilakhani%20kariun/Deskt

BCG Free/Open Source software survey
123456

Section 2 - Attitudes and views Section 2 of 6

Howt do ouperceive and identi.' iith the world of coding and programining? 'our responsesf will help us to identifi'
patterns among progranuners.

1) If there were 1 more hour in the day. I would devote it to programming.
Please select

2) Hackers (as in the linked definition from Eric Raymond) are a primalry community with which I idetify.
Please select

3) When I program, I lose track of time.
Please select

4) The folloisng uare statements elated to hacking and the Free/Open Source software community. To focus youl'
attention on the issues in which we ae most interested, some of the quotes have been edited and none have been
attributed. Please select up to 3 statements with which you most strongly agree and uip to 3 with which you most
strongly disagree. Select only those statements about which you feel strongly (i.e. could be fewer than 3).

Strongly Strongly
Statement agree disagree

( i (ax of 3) (maxof3)

a "With enough eyeballs. all bugs are shallow." -] 

b "We reject kings. presidents. and voting. We believe i rough colselsus andb
ruming code."

"Free software matters because all freedoms matter. and software happens to be
C the domain in which I can contribute nlost.

d "Free software is a matter of liberty. not price. Think of'free' as in'free speech.'d 
not as in 'free beer."'

"When we prepare a program. the experience can be just like composing poetry or
Cmusic."

"The classic hacker life: Feats of virtuoso coding that ignore minor irritations like
f times of day or night: sleeping on the floor when exhaustion finally wins out over

inspiration: the countless Chinese meals: the heated conversations: the love of
word-play: the pranks.

g "Open Source is subversive."

"When you lose interest in a program. your last duty is to hand it off to a
h

colmpetent and eager sccessor."

"The next best thing to having good ideas is recognizing good ideas from others.
Somethues the latter is better."

Proceed to the next section I

I i Li 

Iii . L]
i1 ' El

1
i]_ Cli

H-

286

Survey - Section 2



file://!C:iDocumenlts%20and%2OSettimgs/lakhani%2OkarimiDe

BCG Free/Open Source software survey
1 2 3 456

Section 3 - Your Free/Open Source software project contributions Section 3 of 6

We're interested in past, present andti/rre contribtions. This information wilil help us understand how individuals
contribute to the colmnuntlih ol'er tilme. Wfhen we use "this project" in the folloling questions, ive mnean to il!y the
Free/Open Source project referenced in the erail you received frolm is.

1) When did you first contribute to a Free/Open Source softvare project?
(contribute = create. debug. patch. extend program. docunment or provide extensive user support)
Please select I!

2) To howa many Free/Open Source software projects do you currently contribute? # of projects

3) To how many Free/Open Source software projects have you contributed ill total? # of projects

4) For how many months have you been working on this project? r # of months

5) NVhat is your primary role on this project?
Please select

If other. please specify:

6) Please rank the following as sources of code for your project. [=most important. 3=least important. "Don't
know" is also an answer choice for each option]"
a) Project team !uemb e r s developing original code
Please Select

1b) Project team_memnibers 'botTowing' compatible licensed code
Please Select

c) Project users contributing code
Please Select 

7) Have you been financially compensated in any way for participating in this project?
Please select

8) How likely would you be to contribute without compensation to a Free/Open Source software project that delivers
value primarily to users other than you or your peer group?
Please select

9) Under what circumstances would you work on a closed-source software project? Select all that apply:
If it would lead to significant advances in software development
If it would make me famous in the software world
If it would pay me enough to support my lifestyle

Other reason. please specify[

10) Have your contributions to the Open Source community had a substantial impact on you attaining any of the
following? (Please indicate all that apply in the first column and then select the one of those that has been most
important for you in the second column.)

]Benefit All that apply Most important (only
.i ~ ~ ~ ~~ ... ~~~~~~~~one) 

Pai job n offer(s) ies 
iPaid consulting oppomities S/

I of 2 1 2 q005

287

Survey - Section 3



IJob promotion(s) (in current job) LI
I~~ash .reward for work done in the Sourceforge con.....nunity .......

{Casiire~,ard for wok doiiein the sorurcforge co mly ........ [
Stock options or other claims (realized or not) on a company's
future perfonmance

Increased personal knowledge base L

Ihuproved reputation in the Sourceforge comuni ty

ihnprovd reputation in professional arena (outside of the
Sourceforoe conununitv)

Personal sense of accomplis ent r contributions. ....
Personal sense of acconlplisslent for contributions

Personal sense of coimection i the Sourceforge community

Other 1. please specify

[Other 2. please specify

I!
oither 3. please specify

L] 3 J

Li

Li

I]

Li

LZI

)

O

....................................- ........ ........... ..

11) Have your contributions to the Open Source community cost you any of the following? (Please indicate all that
apply in the first column and then select the one of those that has been worst for you in the second column.)

iCost All that apply Worst (only one)

Tie to make money F. C2.

Social timnie : [ )
--... ~~~~~~~-.~~~~....- ~~~~~~~ ...-... __I-_.._..-.~~~~~~~~~~~~~~~~~~~~. __-_._~~~~~~~~ ._.i.~~~~~~~.~~~__ IX.--I--I.I1L_~~~~~~~~~~~~~~,

Social relationship(s)

Professional/career advancement

Aicademic performance

!Sleep

Stresshealth

Cost of hardware. software, or bandwidth dedicated to
[Sourceforge development

[IOther i, please specify 

O t e 2. p... -s.i..... .. ..
iOther 2. please specie'

L i i-I- ... ----------- -..- . ..._...._. _-. - --_._.-,.. ~ ....- - -_..
:11Li i

i I

!I~~~~~ ri

I-

O·----·

Li

Ei

Li 7-)

I : Other 3. please specify 

~~~~~~~~~~~~~~~~~~~~~~~..Proceed to the next section -
Proceed t the ext se!onJ

288

2)
- - - 1 - - - -. 111 - - - 1- .

I - c

I- -.. -... -. ._ ...

�--I' `��-�' �---- -II---"��� �'

·- ··-·- ··· --- ·- ·- · ··- ·------ ···--- ·--- - - - -..... ... -- ···-·· ·-- -· ---····-- -· ·- - ····-~ ·-- -

It

------ ~ -~ll- --.- -,- ' - -- .- ,-- -~--.-`- ~ ~ ~ -----.-..- --- -1 -..-, ---,.- --, - ---,.. --.-.-I" " I"""~.- --,-- ~~---` -- -~

I
11·----- --- ----

f' ' I

- -- -- ------ i-. ------��--�--�---II.--

C,:

file://,C:/Doculents'%2'Oand%2OSettings/lakhani° b20karilsDesktop/

BCG Free/Open Source software survey
1 2 3 456

Section 4 - How you spend your time Section 4 of 6

Holt ilch time and at what location(s) do oln contriblrte to Free/Open Source projects:' Thlis ill help urs to understand
different patterns of involvement in thlis collnllliit'. T7hen 're 11 se "tnlis project" i thefolloicing questions. 'e mean to impyv
the Free/'Open .Source project referenced in the enail von receivedrifiome us.

1) How many hours in the past week have you spent on this project? [hours

21 How many hours per week do you spend on this project at the following locations? Please select:

·work [hours/week

·hoe hours/week

school hours/week

other [hours/week

if other, please specify location

3) How many hourls illn the past week have you spent on all your current Free/Open Source software projects?

[- hours

4) On how many project(s) have you spent >10 hours in the past week? [projects

Qlestions .5- 7pertain to how yol Free/'Open Sonrce .sqftare coniblutions relate to your cirrentj ob. We recogni:e the
poteltial sensititvin in solie workplaces to issues raised in the folloiing qulestions and reiterate that all responses are
colnfidential and il be reported in aggregate onlv.

5) If you spend work time on this project. is your direct supervisor aware of this?
Please select

6) If si/he is awvare of this, does s/he regard this allocation of work time to this project as part of you' core job?
Please select

7) If your work on this Free/Open Source software project is part of your core job, please select the most
appropriate explanation:
Please select

8) Since your initial involvement. how has the amount of time you spend contributing to all Free/Open Source
projects changed?
Please select

Proceed to the next section j

289

Stuvey - Section 4

file:i//C:;Dociunenlts%20and%2OSettigs/lakhai%20kali/Desktop/B..

BCG Free/Open Source software survey
1 23456

Section 5 - About vou Section 5 of 6

Please tell us a bit aboult oon so we can better rilderstand the spectlam qofparticipants in the Free/Open .Sotrce
commnunir. We reiterate that all responses are cofidenttial and 1ill be reported in aggregate onh!.

1) What is your gender?
Please select

2) What is your year of birth?

3) In what country do you reside?
Please select

4) In what greater metropolitan area do you work or attend school? (leave blank if you live iun a rural area)

5) What is your current occupation?
Please select

if other. please specify:

6) How many years have you been programming? y.

7) Have you beenl formally trainedl hi programming?
Please select

Proceed to the next section J

290

Sturvey Sectio 5

file:, //C:/DocULnents o20and2'O Settiigsi/lakhai°
0
o2Okariin/DesktopB.

BCG Free/Open Source software survey
1 2 3 456

Section 6 - Views on the future of the Open Source movement Section 6 of 6

1) What 3 elements are most crucial to the success of the Free/Open Source software movement/community?
a)
b)

c)

2) What 3 Issues most threaten the Free/Open Source software movement/community?

b)

c3) In view of your responses to questions 5 & 6 how do you see the future of the Free/Open Source sof

3) In viem of your responses to questions 5 & 6, how do you see the future of the Free/Opeu Soulce sofhvare
mov ement/communni?

Would you like to participate in our gift certificate draw? v yes no

Would you like to receive our analysis? .. yes) no

If we have further questions, may we contact you via e-mail? yes 1' no

What is your preferred e-mail address?

Submit suvey

END of Survey

291

Sumey - Section 6

Chapter 5 Summary and Conclusion

The purpose of this dissertation has been to examine how distributed and self-

organizing innovation systems operate. In particular I have focused on the differing roles

of core and peripheral participants in the distributed innovation process and how they

jointy contribute towards problem solving effort. Overall I find that heterogeneity in

information, knowledge and use is an important component of a distributed innovation

system. "Traditional" innovation processes emphasize an external search for

heterogeneous information by the problem holder and once found it is brought inside the

organization for problem resolution. In contrast, distributed innovation systems

demonstrate a variety of ways in which internal and external sources of knowledge can be

integrated.

The first study showed that unsolved scientific problems inside the R & D labs of

firm can be solved by a widely distributed population of individuals who may not be

known to the firm. In this system, the laboratory, i.e. the core, poses the problem and

someone not known to the firm solves it. The second study showed an innovation

process where the peripheral members of an open source software community pose a

majority of the problems and these are solved through a collective core-periphery

problem solving effort. Interestingly, the periphery solves a majority of the problems that

add novel functionality to the community's software output. The third study examined

motivations of core contributors in open source communities to participate. Enjoyment-

based intrinsic motivation, namely how creative a person feels when working on the

project, is the strongest and most pervasive driver of effort by core contributors. In

addition user need, intellectual stimulation derived from writing code, and improving

programming skills are top motivators for project participation. Similar motivations were

also reported by peripheral participants in the first study.

In this chapter I summarize the results of the three studies and then link the

findings to extant literature with the aim towards developing an understanding of the

possible generality and robustness of this form of innovating.

292

5.1: Overview of the empirical studies

5.1.1: Study 1 - "Broadcast Search and Solution Finding from the Periphery"
The first study explores an alternative mechanism of scientific and technological

problem solving that focuses on solution generation from a wide range of dispersed and

peripheral problem solvers. It is based on the von Hayek's (1945) central insight that

knowledge is unequally and widely distributed amongst individuals and the central

challenge in society is to find ways to access this knowledge.

I find that innovative solutions to difficult scientific and technical problems can

be effectively identified by broadcasting problems to a large group of diverse solvers in

different fields and providing incentives for external solvers to solve them. Broadcasting

problems to a group of diverse solvers is a radical departure from traditional problem

solving search as it inverts the typical problem solving process by focusing the efforts of

the problem holders (e.g. R&D labs) into attracting solutions from external solvers

instead of creating solutions themselves and that it allows for the mitigation of some of

the negative issues (e.g.: competency traps, excessive reliance on existing knowledge)

associated with "local search" (March & Simon, 1958; Nelson & Winter, 1982; Podolny,

Stuart, & Hannan, 1996).

I analyzed 166 discrete life sciences and chemistry and applied science problems

that originating in the R &D labs of 26 firms from 10 countries. These problems were

broadcasted to a network of 80,000 independent solvers, for a financial reward for

successful solution, from over 150 countries via InnoCentive.com, an independent

subsidiary of Eli Lilly. The analysis shows that the broadcast search method yields a

29.5% solving rate for problems that well-renowned and large R & D intensive firms had

not been successful in solving themselves.

Table 5.1 shows the probit regression results of the likelihood of a problem being

solved as a function of its characteristics (e.g.: solution requirement (RTP or paper),

award size, time window to solve problem) and the characteristics of the solver base

293

(e.g.: total number of potential solvers, number of solution submissions, diversity of

scientific interests and generalist/specialist orientation of solvers) that each problem

attracted. I find that the problems that can attract a solver base with more heterogeneous

scientific interests the more likely they will be solved. I also find that the average number

of scientific interests per solver per problem is significantly and negatively correlated

with solvability, implying that problems which attract relatively more specialized solvers,

i.e. those that express fewer scientific interests, are more likely to be solved. This

indicates that the problems that end up being solved are able to attract specialists from

different fields.

Table 5.1 also shows that the number of days a particular problem is open for

resolution is negatively and significantly correlated with problem solvability. The

number of days a problem is open is an indication of problem complexity as assessed by

the seeker firm. Thus, controlling for all other variables, the more days a problem is

open, the more complex it is, and the less likely it is to be solved. Since broadcast search

is a nontraditional method of problem solving, research and development labs inside

firms may learn over time how to become better at broadcast searches. I measured seeker

learning by counting the number of previous problems a firm had previously broadcasted

with IC. The results show a marginally positive effect of seeker learning. That is, firms

are learning over time how to select and articulate appropriate problems for

heterogeneous solvers.

A web-based survey of 370 solvers indicated that 72.5% of the winning solvers

based their submissions, partially or fully, on previously developed solutions from their

own and/or someone else's work. Solutions to problems that firms seek to solve

encounter their resolution in already existing (complete or partial) solutions in the

distributed solvers' domains, which are then reused or transformed, showing that

broadcast search effectively utilizes existing distributed knowledge.

Table 5.2 shows that the probability of being a winning solver is significantly

correlated with both a desire to win the award money as well as intrinsic motivations like

294

enjoying problem solving and being intellectually challenged. However, even though

there was a substantial prize award for creating the best solution, the effect of intrinsic

motivation is stronger and more significant. I also find that individuals who are

successful problem solvers report that the broadcasted problem was at the boundary or

outside their field of expertise. This has a positive and significant effect in predicting who

becomes a winning solver and may be due to the ability of "outsiders" from relatively

distant fields to see problems with fresh eyes and apply solutions that are novel to the

problem domain. Importantly, it implies that problem broadcasting to solvers in diverse

fields triggers productive cross-fertilization of knowledge bases between scientific

disciplines.

Consistent with the finding about specialization (Table 5.1), I find a significant

negative correlation between the number of scientific interests expressed and the

probability of being a winning solver. Thus, on the margin, being more specialized

(expressing fewer scientific interests) results in a higher probability of creating a winning

solution. In this context, specialists from outside the problem domain bring knowledge

and solutions from their own "distant" domains to create winning solutions.

The broadcast search methodology draws on distributed knowledge for solving

problems and changes the problem holder's task of problem solving and solution creation

to that of defining the problem and attracting a large and diverse pool of capable problem

solvers. Problems which attract submissions from a solver base with a more diverse set of

scientific interests are more likely to be solved. Problems which attract, on average, more

specialized solvers are also more likely to be solved. This thus indicates that in broadcast

search, the central characteristic of readily solved problems is the seeker firm's ability to

articulate problems in a way that attracts specialists from different fields. Further,

solutions to problems that firms' seek to solve encounter their resolution in already

existing (partial) solutions in the distributed solvers' domains. Problems are more likely

to be solved by solvers who report themselves to be experts in fields outside or at the

boundary of the problem field. Thus, broadcast search may not only effectively reuse

knowledge, but also transfer and transform (25) knowledge from one field to others.

295

Table 5.1: Probit Regression on Problem Being Solved
(N=132 Problems)

Robust
Coefficient Standard Error

Problem Characteristics
RTP Problem Type 0.305 0.224

Award Value -0.256 0.247

Days Problem Open -0.956** 0.278
Seeker Firm Experience
Previous problems posted by seeker firm 0.362t 0.204

Solver community

Solver base size -1.044 0.637

Number of submissions 0.041 0.175
Types of Solvers Attracted

Distinct scientific interests attracted 1.260** 0.367
Generalist orientation of solvers -0.915** 0.326

Log Pseudolikelihood -50.52

Wald's Chi Square 57.02***

Df 19

Pseudo R Square 0.39

t significant at 10%; * significant at 5%; ** significant at 1%; *** significant at 0.1%
Controlled for year effects and scientific disciplines of problem

296

Table 5.2: Probit Analyses Predicting Which Solver Submits A Winning Solution
(N=295 Respondents)

Robust
Coefficient Standard Error

Expertise
Interest count (at registration) -0.179t 0.092
Problem distance from field of expertise 0.209* 0.104

Motivations
Win award money 0.263* 0.107
Social and work related motivations -0.243* 0.112
Intrinsic motivations 0.374** 0.115
Beating other solvers -0.206t 0.117
Unsatisfactory job -0.033 0.134
Had free time 0.284* 0.119

Interaction Effect For Motivations
Money X Intrinsic -0.025 0.120

Control Variables
RTP Problem Type 0.188 0.233

Time to develop solution 0.002* 0.001

Log Pseudolikelihood -85.27
Wald's Chi Square 32.37***
Df 10

Pseudo R Square 0.16

t significant at 10%; * significant at 5%; ** significant at 1%; *** significant at 0.1%

297

5.1.2 Study 2 - "The Primacy of the Periphery in Open Source Software
Development"

The second study examines the problem solving and software development

process in an open source community to gain insight into the differing roles of core and

periphery community members. Empirical studies of OSS projects have shown

participation of hundreds of individuals in a core-periphery community structure with a

relatively small number of core members contributing most of the software code and

dominating the technical discussions (Koch & Schneider, 2002; Lee & Cole, 2003; von

Krogh, Spaeth, & Lakhani, 2003). Using both quantitative and qualitative analyses, my

study examines the value of the peripheral members to the software development effort

and the community work practices that enable core-periphery integration.

I define core members as those who have full access to make official changes to

the community's source code repository and periphery as those community members who

do not. I analyzed a one year period, from November 2002 to November 2003, of

software development activity in the PostgreSQL (PG) database community by creating

an analytic tool called an "innovation process history." This consisted of matching 241

concrete software features to 2,402 changes in the software source code repository and

20,129 email messages exchanged between 798 individuals.

My quantitative analysis shows the primacy of peripheral participants in the PG

community. As Table 5.3 shows, periphery members are responsible for developing a

majority of the functionally novel innovations in the community. While core members

concentrate on developing dimension of merit (performance) features. Beyond writing

novel code, as table 5.4 shows, peripheral members play a critical role in the collective

problem solving effort by initiating the majority of development activity in the

community and byproviding critical solution and, use information during the

development process.

Overall I find that the periphery members are essential to the community in three

ways: they provide new use information about the product, they provide unique pre-made

solutions and they provide solution-related information. Practically, periphery members

298

initiate a majority of code writing episodes; they write about half the code; they

participate in collective problem solving with other code writers; they test and evaluate

newly written code; and they are a source of new core members. More importantly they

are the primary source of new needs and solutions adopted by the communities and that

ongoing core and periphery interactions are critical to community success. This finding

makes sense. Organizational research on the nature of knowledge has shown that it is

both sticky and leaky (Brown & Duguid, 2001). Existing research has shown that when

knowledge is totally sticky and distributed, functionally novel innovation - involving

novel need information - will occur primarily in the periphery (Riggs & von Hippel,

1994; Tyre & von Hippel, 1997; von Hippel, 2005). When knowledge is totally non-

sticky, problem-solving might occur only in the core. However another perspective on

knowledge is to emphasize that it is not an object but rather "knowing in practice"

(Orlikowski, 2002). Thus core and periphery interactions are not about just about

transferring knowledge or the degree of stickiness of knowledge, but instead they

represent the practice of sharing "know how" amongst the participants.

I show that ongoing interactions between core and peripheral members are the

primary driver of problem solving and knowledge creation in the OSS community.

Specifically, as Table 5.5 shows, the following six set of work practices enable core and

periphery members to produce software in a distributed and virtual setting: 1) work

broadcasting; 2) building and using community memory; 3) distributed decision making,

4) choosing type and level ofparticipation, 5) using the community's output; and 6)

coordinating action and building through evidence. Using vignettes from the innovation

process histories, I demonstrate that these practices are not separate activities from the

work of software development itself. Rather, they are embodied in the way these

communities produce software, and are at the heart of collective problem solving in a

distributed innovation setting.

299

Inno

Funct

Dimension of

Table 5.3: Feature Type Author by Member Status 74

Member Status
ovation Categorization Core Periphery
ionally Novel (Adaptive) 27 (38%) 44 (62%)

Merit (Corrective and Perfective) 105 (62%) 65 (38%)

Total 132 (55%) 109 (45%)

Table 5.4: Role of Periphery in Community Problem Solving

Actions Taken by the Peripheral Participants

Triggered feature development

Confirmed need information

Helped formulate exact problem

Proposed solution information

Provided information used in final solution

% of Changes

70

59

58

51

42

N = 241

74 Author here refers to the person given credit on the PG release note.

300

Total
71

170

241

�

Table 5.5: Practices for Community-Based Distributed Problem Solvin

I iMM In

Work Broadcasting

Building and using
community memory

Distributed decision making

Choosing type and level of
participation

Using the community's
output

Coordinating action and
building trust through
evidence

Collective Practices
Posing issues and problems
Providing ideas and
solution
Contributing code
Providing feedback
Global and local archiving
of community activity
Retrieval and use of
community activity
Incremental and local
planning
Provisional settlements
Lazy consensus

Individual Practices
Identifying tasks
Doing tasks

Using latest code
Integrating latest code

Providing evidence of
claims
Seeking evidence of claims
Testing evidence of claims

Mobilize community
Create, transfer and
transform knowledge

Build mutual understanding
over time and space

Preserving choices and
making choices in the
community

Doing the actual work of
the community

Connects individuals to
community
Testing community output
Enable self and others to
assess claims and outputs
Share and assess knowledge

301

5.1.3 Study 3 - "Motivations of Core Developers to Contribute to Open Source

Projects"

The third study examined the motivation and effort of core participants in OSS

communities. "What drives OSS developers to contribute their time and effort to the

creation of free software products?" is an often posed question by software industry

executives, managers, and academics when they are trying to understand the relative

success of OSS communities. Many people are puzzled by what appear to be irrational

and altruistic behavior by movement participants: giving code away, revealing

proprietary information, and helping strangers solve their technical problems. I used a

web-based survey, administered to 684 software developers in 287 OSS projects, to learn

what lies behind the effort put into such communities.

Core members were contributing on average 14 hours per week to F/OSS projects

with about 40% being sponsored or paid by their employers to participate. Table 5.6

provides data on the core member's motivation to contribute to OSS projects. I find that

user need (von Hippel, 1988), intellectual stimulation (Nakamura & Csikszentmihalyi,

2003) derived from writing code, and improving programming skills (Lerner & Tirole,

2002) are the top motivators for project participation and contribution. Interestingly

motivations like an ideological belief in defeating proprietary software or personal gain

like trying to enhance professional and/or community reputation were not widely

reported.

A significant findings in the study relates to both the extent and impact of the

personal sense of creativity core members feel with regard to their F/OSS projects. A

clear majority (>61%) stated that their focal F/OSS project was at least as creative as

anything they had done in their lives (including other F/OSS projects they might engage

in). This finding was bolstered by the willingness of a majority of survey participants

willingness to dedicate additional hours to programming and, consistent with a state of

flow (Csikszentmihalyi, 1975), the observation of frequently losing track of time while

programming. Academic theorizing on individual motivations for participating in OSS

projects has posited that external motivational factors in the form of extrinsic benefits

302

(e.g.; better jobs, career advancement) as the main drivers of effort (Lerner et al., 2002).

In contrast, as table 5.7 shows, enjoyment-based intrinsic motivation (Csikszentmihalyi,

1975; Deci & Ryan, 1985; Frey, 1997; Lindenberg, 2001), namely how creative a person

feels when working on the project (Amabile, 1996), was the strongest and most pervasive

driver of effort (hours per week devoted to a project).

Table 5.6: Motivation to contribute to F/OSS projects
Motivation % of respondents % % t statistic

indicating up to volunteer paid (p value)
3 statements that contributors contributor
best reflect their

reasons to
contribute (%)

Enjoyment based Intrinsic Motivation
Code for project is intellectually stimulating to write 44.9 46.1 43.1
Like working with this development team 20.3 21.5 18.5
Economic/Extrinsic based Motivations
Improve programming skills 41.3 45.8 33.2 3.56

(p=0.0004)
Code needed for user need (work and/or non-work)* 58.7
- Work need only 33.8 19.3 55.7 10.53

(p=O.0000)
- Non-work need 29.7 37.0 18.9 5.16

(p=0.00o0)
Enhance professional status 17.5 13.9 22.8 3.01

(p=0.0000)
Obligation/Community based Intrinsic Motivations
Believe that source code should be open 33.1 34.8 30.6
Feel personal obligation to contribute because use 28.6 29.6 26.9
F/OSS
Dislike proprietary software and want to defeat them 11.3 11.5 11.1
Enhance reputation in F/OSS community 11.0 12.0 9.5

Table 5.7: Impact of Significant Variable on Project Hours/Week (Standardized Coefficients)
Variable Coeff. t-statistic (p-

value)

Creative project 1.6 6.00 (0.000)
experience
Paid status 0.88 3.12 (0.002)
Like team 0.84 2.76 (0.004)
Enhance community 0.56 2.00 (0.046)
reputation
Differential hours -1.6 -6.00 (0.000)
IT training -0.6 -2.28 (0.023)

303

5.2: Distributed Information and Knowledge and the Value of the Periphery
The first two studies have demonstrated the important role of peripheral

participants in two different distributed innovation settings. Findings from research on

the sources of technological innovation, the sociology of science, and information flow in

communities have indicated that peripheral participants provide novel information and

innovations and are thus critical to the advancement of knowledge in dynamic settings.

Underlying these findings is the notion that information and knowledge are widely

distributed and finding ways to access this knowledge is a central challenge for society

(Hayek, 1945).

Research on the sources of technological innovation has repeatedly highlighted

that novel innovations arise when problem solving activity is decentralized (von Hippel

1988; von Hippel 2005). Users have been shown to innovate in a variety of consumer,

industrial and scientific settings (von Hippel 2005), often preceding and initiating firm-

based efforts (von Hippel 1978; von Hippel 1982; von Hippel 1988; von Hippel 1989).

Here users are on the periphery and the firms that commercialize and sell products which

have innovations are the core. Thus in the field of scientific instruments, Riggs and von

Hippel (1994) found that 44% (n=64) of the innovations emerged from users dispersed in

industry, universities and government laboratories, while the remaining 56% emerged

from a handful of manufacturers. They further found that the vast majority of

functionally novel innovations, that is, enabling new technical capability in the

equipment, were developed by dispersed users and "dimension of merit" improvements,

i.e. convenience or reliability, were developed by manufacturers. More recently,

DeMonaco, Ali & von Hippel (2005) have shown that in pharmaceuticals industry, 76%

(n=29) of the new drugs introduced in 1998 had significant "off-label", that is, novel uses

not in the original drug approval process, applications. They found that 59% (85/144) of

the "off-label" drug therapy innovations were discovered by distributed and peripheral

practicing clinicians via field discovery as compared to the scientists working inside of

the pharmaceutical companies.

304

One stream of research in the sociology of science has argued that the flow of

ideas and innovation in scientific communities is centripetal instead of centrifugal

(Chubin 1976), that is, the margins of the scientific community are the drivers of change

and progress. Thus Crane (1969: 349) in her study of the "invisible college" in the natural

sciences speculated that "outsiders" were a likely source of new ideas and innovation:

"Most problem areas are open to influence from other fields. The desire for originality

motivates scientists to maintain contacts with scientists and scientific work in areas

different from their own in order to enhance their ability to develop new ideas in their

own areas."

A review of six scientific disciplines, (radio astronomy, bacteriology, psychology,

phage group, physical chemistry, x-ray protein crystallography) by Edge and Mulkay

(1974) (cited by Chubin 1976) showed that innovations from the margins and the

mobility of scientists across fields were the only consistent factors in scientific innovation

and specialty development across these fields. Edge and Mulkay did express concern that

very little was known about the social process underpinning their findings: "If we are

correct in suspecting that many major scientific innovations come from the outside, or

from the margins of, established research communities (either from applied research

contexts, or by migration between research networks), then it is surprising that so little is

known about this process" (Edge and Mulkay (1974) cited in Chubin (1976: 457)).

Within sociology, Weiman's (1982) study of the flow of information and

influence in the personal network of an Israeli kibbutz community also shows "the

importance of marginality" or peripheral participation. Weiman gathered sociometric

data from 270 members of the kibbutz regarding conversational ties with other members

of the community yielding 2511 conversation ties. Weiman then used matrix algebra to

determine cliques in the community and then derived a network position of each

individual based on the number of times a person was chosen as a conversational tie by

someone else. "Centrals" and "Marginals" were then determined by using the upper and

lower quartiles of the choice distribution in a clique. As expected centrals, dominated in

305

all types of communication patterns. In addition centrals, were more efficient in the flow

of information. Information originating from centrals flowed more faster, was deemed

more accurate and more credible than the information activated by the marginals.

However, marginals were key for inter-group or inter-clique communication. Marginals

were both receivers and transmitters of information amongst the 16 distinct groups in the

kibbutz. Weiman showed that marginals were the importers of new information across

groups and that centrals then served as the transmitters of that information within groups.

Implying that centrals rely on marginals for imported information while the marginals

required the enlistment of centrals for spreading the information in the group.

5.3: The Advantage of the Periphery
There are two theoretical perspectives underpinning the findings related to the

importance of the periphery. Granovetter's (1973) seminal article on the strength of

weak ties posits that weak ties amongst individuals allow for the transfer of non-

redundant and novel information amongst colleagues as opposed to strong ties amongst

friends. Strong ties imply that the information flow amongst strongly connected

individuals will be homogenous and already known, while weak ties may enable the

transfer of new and heterogeneous information. Thus those on the periphery of a

community are more likely to be weakly tied to the core, while they may serve as

"bridges" between other communities and thus transfer novel information amongst them.

This theoretical perspective is the basis for both Weiman's empirical findings about the

importance of marginality and Chubin's assertion regarding the centripetal flow of novel

information in science communities. Although not mentioned by Granovetter, Hayek's

(1945) central insight about the unequal and distributed nature of knowledge in society

explains why non-redundant information may exist in the first place. If knowledge is

both spatially and intellectually distributed - then gaining access to this knowledge via

weak ties may be one mechanism by which peripheral members provide advantages to

communities.

The other theoretical perspective on the value of the periphery arises from von

Hippel's findings about the critical role of users in the innovation process. Here the

306

theoretical perspective is the relative stickiness of information. Von Hippel argues that

the locus of innovation shifts to where the information is the most stickiest (von Hippel

1994a; von Hippel 1994b; von Hippel 1999). Thus users innovate in areas where they

have needs not met by manufacturers, typically in using technologies in novel ways,

while manufacturers innovate in areas where they have pre-existing expertise, typically

manufacturing the technology or improving it on the dimensions of merit instead of

novelty. It is not just a matter of the presence of non-redundant information. Rather

users or peripheral members in problem solving communities experience novel issues not

foreseen by manufacturers or core members and in many cases the transfer of this use

experience is very difficult and expensive, if not impossible. A strong tie between a core

developer and a peripheral user does not mean the core will now have the information

needed to innovate. Rather the use environment will dictate that such innovation has to

be primarily driven by the periphery. Thus the periphery has to first innovate and then

transfer the newly created knowledge to the core, regardless of the strength of ties.

Underlying this perspective is the that when knowledge is totally sticky and distributed,

functionally novel innovations - involving novel need information - will occur primarily

in the periphery (Riggs et al., 1994; Tyre et al., 1997; von Hippel, 2005). When

knowledge is totally non-sticky, problem-solving might occur only in the core. The

stickiness of knowledge then determines the locus of innovation and peripheral users who

experience novel use conditions provide functionally novel innovations.

Another advantage that the periphery has is that novel problems in one field may

have related solutions or solution information in another field. An example from modem

finance theory illustrates the applicability of solutions developed in a distant field, i.e.

physics. The development of modern finance theory is directly linked to the insights of

M. F. M. Osborne, a physicist in the U.S. Navy, who realized in 1959 that financial

market prices followed the equations of Brownian motion that Albert Einstein and

Norbert Wiener had developed many years earlier (Chance & Peterson, 1999; Osborne,

1959). Furthermore, the original solution to the Black-Sholes option pricing model relied

on a extremely complex calculation of parabolic partial-differential equation based on the

premise that stock prices exhibit Brownian motion. However, Black later realized that

307

the complex equation could be easily transformed into the heat-diffusion equation of

thermodynamics, for which the solution was already well known and understood (Chance

et al., 1999). Peripheral members may be able to then bring unique solutions to

problems in distant fields.

Findings from the first study show that a central feature of a periphery-centered

problem solving system is the relatively high degree of reuse and recombination of

previously developed solutions in the creation of new submissions. A majority of the

winning solvers (55%) indicated that they had made major modifications to pre-existing

solutions in their submissions with 17.5% reporting a direct port of previously developed

solutions with little or no modifications. A periphery-centered problem solving system

exposes potential solvers to problems that they do not routinely encounter and it triggers

creative analogizing between their own expertise and knowledge base and the "new"

distant problem. This burst of creativity causes the solvers to either significantly modify

and recombine pre-existing solution knowledge that they already had or come up with

entirely new ideas (as done by 27.5% of the solvers) for effective problem resolution.

The net benefit of the juxtaposition of a solver and a distant problem is the creation of a

solution that is both novel to the seeker and also to the solver. It also implies that

problem broadcasting to heterogeneous periphery participants can trigger cross-

fertilization of knowledge fields.

Periphery members may also incur low social costs for innovative activity. Edge

and Mulkay have noted that in a scientific discipline the centripetal flow of innovations

occurs either through low status individuals in the discipline or through migration of high

status individuals from outside the disciplines. Low status individuals have low visibility

in the dense communications networks of the discipline's core participants and are thus

free to innovate with radical ideas and have relatively little to loose if their work does not

deliver. Whereas high status individuals inside of a field may not be able to experiment

as much with new ideas because the cost of failure and embarrassment is much higher.

High status outsiders can make a contribution to another field by bringing tools and

techniques to bear on the target field that have been developed elsewhere. Typically this

308

migration is from a field that has high paradigm coherence to one that has low paradigm

coherence. Schr6dinger's Dublin lectures on "What is Life" (Schrodinger, 1951) can be

seen as a migration from physics to biology of a high status individual bringing with him

the tools of the physical sciences to biology.

Peripheral users often need to solve their own problems and thus can gain high

benefit by innovating for themselves. It may not be feasible for them to transfer the

problem to the core membership due to time constraints, i.e. they need a solution right

away and may not want to wait for someone else to create a solution or it may be too

difficult to explain or recreate the problem for others. In either case, once the problem

has been solved, the periphery member has the option to give the solution to the core for

possible inclusion into the base system. Work by Harhoff, Henkel and von Hippel (2003)

indicates that there is strong economic rationale for periphery users to freely reveal their

innovations to others in a distributed setting.

5.4: Heterogeneity in Motivations to Participate in Distributed Innovation Systems
The first and third study have highlighted that both peripheral and core members

in distributed innovation settings indicated heterogeneous motivations to participate. In

both settings, peripheral or core members participate voluntarily and exert effort without

an explicitly guaranteed reward. Thus incentives to contribute need to appeal to both

intrinsic and extrinsic motivations of the participants. Across both studies, intrinsic

motivational factors had a statistically more significant and stronger effect on effort and

outcomes over financial other extrinsic motivations.

The first study showed that broadcast search in scientific problem solving attracts

solvers who have varied motivations to participate. The probability of being a winning

solver was significantly correlated with both a desire to win the award money as well as

intrinsic motivations like enjoying problem solving and being intellectually challenged.

Surprisingly, even though there was a substantial prize award for creating the best

solution, the effect of intrinsic motivation was stronger and more significant. The

stronger effect of intrinsic motivation is consistent with theory and empirical findings

309

which indicate that scientists have a "taste" for science (Stephan & Levin, 1992; Stem,

2004), that is, they will sacrifice financial gain for the chance to do the type of work they

prefer.. There was significant negative correlation between intrinsic motivation and

financial motivation indicating that broadcast search attracted solvers who were either

financially driven or intrinsically motivated with no crowding out between the

motivations (Deci, Koestner, & Ryan, 1999).

The third study on motivations of core members to participate in OSS

communities also demonstrated heterogeneity in motivations to contribute. As table 5.6

shows there was no one majority preference for motivations (user need was split between

work and non-work). Exploratory cluster analysis of the motivation response patterns

revealed the existence of four stable cluster grouping amongst the respondents

corresponding to motivations classified by hybrid intrinsic/extrinsic motivations for

intellectual stimulation and skill improvement, extrinsic user need motivations (separate

clusters for work and non-work), and obligation/community based intrinsic motivations.

Core members may participate for a variety of reasons and no one reason tends to

dominate the community or cause people to make distinct choices in beliefs or activities.

These findings are consistent with collective action research where group heterogeneity is

considered an important trait of successful social movements (Marwell & Oliver, 1993).

However it is important to note that that most significant and strongest correlate

of effort (hours/week spent) was a contributor's own sense of creativity in their work on

the project. A majority of the respondents had noted that their work in the OSS

community was the most creative or equivalent to most creative activity that they had

done in their lives. The effect of this response was significant across and within the

various OSS communities studied. Indicating that the sense of creativity is not related to

the type of project but a function of the work that was being accomplished by the

participant.

310

5.5: Generalizable Conditions for Distributed and Self-Organizingi Innovation
Systems

In this dissertation I have sought to develop insight into the problem solving

mechanisms and motivations of participants in two distinct, distributed and self-

organizing innovation systems. The first system utilized problem broadcasting to a

distributed and "unknown" periphery of scientists in the hope of solving previously

unsolved and commercially valuable scientific problems. Potential solvers self-selected

themselves to undertake the problem solving activity and to submit innovative solutions

for evaluation and possible financial reward. The second system, as typified by open

source software communities, is a completely decentralized distributed innovation setting

where the product development process integrates core and peripheral members in

collective problem solving episodes. Here peripheral members create a majority of the

functionally novel solutions and play an active and collaborative part with other members

(core and periphery) who are also attempting to create software. In both systems,

participants indicated heterogeneous motivations to participate with intrinsic motivations

being significant correlates of both successful output and effort.

In this final section of the dissertation I will discuss the generalizable conditions

under which distributed and self-organizing innovation systems operate and their

potential robustness and extensions to other domains. My discussion will center around

the problem solving approach utilized in these settings and will specifically consider the

circumstance of the entry of participants, the problem definition phase, the solution

generation phase, and how trust and management are established.

5.5.1 Entry and Participation
A key component of distributed innovation systems is entry and participation by

diverse individuals who may not necessarily be formally affiliated with the focal

innovating entity. Three elements appear to be common in both the setting and need to be

considered: 1) self-selection onto tasks and problems; 2) lowering social and technical

barriers to participation; and 3) allowing for heterogeneity in motivations by participants.

311

Participation and activity in distributed innovation systems is not typically driven

by managers who are commanding employees to follow orders and execute on pre-

prepared tasks or optimally matching employees to tasks. Instead, members (both core

and periphery) participate by voluntarily self-selecting themselves onto the problems at

hand. Members determine for themselves if they have the ability, inclination, need or

motivation to participate in the problem solving process. Self-selection then distributes

the resource allocation problem to individual solvers instead of centralized managers.

Since problem solving resources are not owned by the focal innovating entity, distributed

members make their own decisions regarding participation in the process and bear the

risk of failure (not solving the problem or not having a submission accepted) or reap the

benefits of success.

Distributed innovation systems demonstrate relatively lower social and technical

costs for participation and entry. These systems require a continual influx of new

members to bring forth new ideas and concepts and consequently have entry

requirements that are designed to encourage participation. On the social side, in the

F/OSS community setting, members do not have to first ask permission to work on any

particular part of the software code on their own. Often, periphery members attempt code

changes privately and then reveal their results to the development e-mail list only if they

were successful. Failure does not have to be publicly revealed thus lowering the social

costs of community participation. If members had to make an ex-ante revelation of intent

or ask for permission before hand - then a lot fewer attempts would be expected as

potential contributors would have their public reputations at stake and would need to be

confident in their ability to deliver on their claims. Similarly in the broadcast search

setting, individuals can become members of the solver network by simply signing up for

a user name and password on InnoCentive.com's website. There is no ex-ante pre-

qualification and credentialing process. In addition, solvers remain anonymous to both

seekers and to other solvers, thus if an attempt at problem solving is unsuccessful, there is

no concern that others will know about their failed attempts. This lowering of social

costs may encourage risk taking and innovative solution development as members will

not be constrained by the social setting.

312

On the technical side, the costs of participation in a distributed setting are also

relatively lower as well. In F/OSS communities, micro-contributions (Sproull, Conley,

& Moon, 2005: 144), in the forms of reporting a bug, sharing an idea, requesting a

feature, participating in a discussion, doing translations, testing software changes,

contributing code are the essential currency of generalized exchange (Ekeh, 1974) and

participation. Membership and entry in the community can take many forms and does not

require a significant up-front investment for initial participation. As Sproull et al note

(2005: 144): "Not only is it easy to make a helpful contribution, it is also easy to control

the extent of further involvement. In the offline world, a person may hesitate to offer

help for fear that helpful response will lead to further demands on one's time or

emotional energy. In the online world, a person offering help may feel in complete

control of how much further involvement will ensue; he or she can simply ignore further

requests."

Another reason for relatively low technical costs is the participants are typically

using information at hand for a majority of problem solving effort. Thus most

participants do not invest in any significant de-novo problem solving effort instead their

knowledge at hand, and in some cases, combined with the knowledge of others helps to

solve problems. Lakhani and von Hippel (2003) have shown that F/OSS community

participants are typically providing information that they have readily at hand for solving

technical support problems. The broadcast search study also demonstrated that the

majority of winning and non-winning solvers were using solution information that they

had developed themselves or obtained from others. In either case the relatively low

technical costs for participation means that there is a significant asymmetry in costs and

benefits for participation. Problem solvers in the distributed setting incur relatively low

or trivial costs for participation - whereas - those with solutions obtain significantly high

benefit. Raynor and Panetta (2005) have shown that firms can obtain an ROI of up to

2175 % for winning solutions in the broadcast search setting and do not have to pay for

the effort of unsuccessful solutions.

313

The ex-ante risk of an unsuccessful submission and wasted effort is borne by the

individual participants in a distributed innovation setting. Thus the incentives to

participate need to appeal to a wide set of motivations amongst individuals with no one

type of motivation dominating in the explicit or implicit incentive scheme. Just as

individuals self-select on to tasks - they will also select the task based on their own

internal assessment of the costs and benefits for participation. The primary direct cost of

participation is the time required to create a submission, however, the benefits of

participation need to accrue to individuals regardless of a successful or unsuccessful

submission. The statistically significant results for intrinsic motivations in both

distributed innovation settings indicate that individual participation is driven by factors

that appeal to a personal sense of creativity, enjoying the problem solving process and the

associated learning. This does not mean that other motivations, example financial or

reputational are not important. Indeed in the commercial setting of broadcast search,

being motivated by the award money was also a significant correlate of creating a

winning solution. Rather, distributed innovation systems in their requirement for

periphery participation need to be able to absorb heterogeneity in participant motivations

and ensure that situationaly appropriate extrinsic and intrinsic rewards are available.

5.5.2 Decomposable and "Well-Structured" Problems
Simon's work on problem decomposability (Simon, 1969) and the structure of ill-

structured problems (Simon, 1973) provide a lens into thinking about the types of

problems that may be suitable for solving in a distributed innovations setting. Simon's

first paper (1969) created a classification of complex systems as being either

decomposable, non-decomposable and nearly decomposable. With decomposability

being a function of the level of interactions amongst subsystems within a system. In

Simon's second paper he made the strong contention that: "In general, the problems

presented to problem solvers by the world are best regarded as [ill-structured problems]

(ISPs). They become [well-structured problems] WSPs only in the process of being

preparedfor the problem solvers. It is not exaggerating much to say that there are no

WSPs, only ISPs that have been formalizedfor problem solvers. " Thus WSPs are the

314

result of a problem-defining process for ISPs (Foss & Foss, 2004) and that there is a

continuum of problem types between ISPs and WSPs.

A central feature of both the distributed innovation settings in my dissertation

research was the presence of relatively well structured and discrete "problems." Thus

finding a "cure for AIDS" would not be a suitable broadcast search problem but finding

"a method for isolating a specific gene" might be reasonable. Similarly, in the F/OSS

example, trying to implement a particular software feature or solving a particular

software bug drove the community activity instead of generalized requests for abstract

new features. Underlying these settings is a process of decomposing and structuring

problems that enable multiple heterogeneous solvers to attempt to create solutions.

In the F/OSS setting, problem decomposition and structuring occurred in a

completely distributed fashion. Typically peripheral members would initiate the

collective problem solving episodes by reporting system bugs or desire for new

functionality to all members in the community. Subsequently, interested community

members would first attempt to characterize the exact nature of the problem and then

work towards creating a solution. Substantial effort was put forth in defining the exact

source of the problem report and/or the proper requirements of a new feature need. In

other cases, when the software code was already pre-developed, periphery members

would first articulate the problem they had attempted to solve and provide evidence of

their solution. In either case effort was put forth in creating a bounded and solvable

problem.

In the broadcast search study, problem decomposition and structuring was done

exclusively by the scientists inside of seeker firms in cooperation with InnoCentive.com.

Hence the core in this distributed innovation setting does problem definition by itself. I

found an overall marginally positive effect for firm learning (as measured by the number

of problems previously posted) on the probability of a problem being solved.

Innocentive.Cpm scientific operations staff in discussing this finding have told me that

scientists inside seeker firms value the upfront and separated problem and solution

315

definition stage. Generally speaking, the critical first step for success in a broadcast

search environment is to provide structure to ill-structured problems. I speculate that

such an explicit problem structuring process is not routine inside of firms and thus

experience with this approach may allow for learning over time on how to accomplish it.

Furthermore, this learning around problem structuring and decomposition may be the

driver that allows specialists from different fields to make the connection between their

own domain knowledge and the problem.

5.5.3 Solution Generation
Two important streams in the individual/cognitive basis of problem solving are

the Gestalt-based tradition on important role of insight in problem solving and the

Simonian view of problem solving as a search in a problem space. Both of these

traditions provide a lens into the solution generation process within a distributed

innovation setting.

The Gestalt tradition, as best represented by the work of Duncker, argued that

solutions occurred when the individual gained "insight" into the problem. Sudden insight

enabled problem solvers to discover a crucial part of the problem and once that was

discovered all other parts automatically fell into place and the problem was solved.

Duncker (1945) and colleagues (Adamson, 1952; Birch & Rabinowitz, 1951) have shown

the existence of "functional fixedness" where problem solvers have difficulty in using

familiar tools in novel ways as a major source of insight blockage. In one of Duncker's

experiments, he created five problems which could only be solved by applying a new

way of using a tool. The first of the two groups of experimental subject saw the tool

being used in a usual way while the second group did not. The result of the exercise was

that subjects were more likely to solve the problems requiring a novel way of using the

tool if they had not observed how that tool was used in the usual way while the problem

solving success of subjects that had previously observed it used was hampered.

In Duncker's terms the subjects were "fixated" on the tool's normal function and

could not re-conceptualize it in a way that permitted them to solve the problem. The way

316

around functional fixedness and the generation of new insight is for the individual solver

to work on restructuring the problem so that it is amenable to insight generation.

Restructuring of problem could be done via hints to the problem solver or by the problem

solver rethinking through the constraints of the problem description and solving it non-

obvious ways.

Distributed innovation and problem solving settings have the potential to

overcome functional-fixedness from prior experience by distributing the problem to many

potential solvers. Core and periphery members in a distributed innovation setting would

have different prior experiences and would thus attempt to create solutions that were

different from the one created by the problem holder. Accessing the periphery may also

enable multiple attempts at insight generation or the leveraging of existing insights into

new problems. Thus increasing the probability of a successful outcome.

The work of Newell and Simon and colleagues (Newell & Simon, 1972; Simon &

Newell, 1962) has described the problem solving process as an attempt of getting from

the present to desired situation by a process of"searching through a large maze." The

maze depicts the problem space; the nodes of the problem space represent situations; and

the paths joining one node to another are the actions that will transform one situation into

another. A problem space has an initial state and a goal state and a set of means that

allows a solver to move from one state to another. Specifically, Newell and Simon

modeled the problem solving process as following two steps: representation of the

problem, a perspective, and the application of a search heuristic (Hong & Page, 2001).

Thus solution generation requires the use of a perspective-heuristic pair, where the

potential solution space is defined by the internal problem representation, the perspective,

and a search algorithm to find the solution through the space, a heuristic (Hong & Page,

2004).

In a distributed innovation setting, the independence of problem holders and

problem solvers allows for the existence of multiple perspective-heuristic pairs and in

collective settings the inter-mingling of pairs across individuals. Thus parallel searches

317

through a variety of solution landscapes and the utilization of diverse heuristics increase

the possibility of the creation of a successful solution. The strongest evidence for this

conjecture was obtained in the broadcast search study where the relative scientific interest

heterogeneity of the solver base was a significant predictor of problem resolution. In

addition, one can interpret the counter-intuitive finding of relative outsiders solving

problems that are at the boundary or outside of their field of expertise as the enactment of

a sufficiently novel perspective-heuristic pair by a periphery member that was not within

in the domain of the core problem holders.

5.5.4 Substitutes for "Trust" and "Management"
The development of trust has been found to be important for success in distributed

and virtual teams (Jarvenpaa & Leidner, 1999; Powell, Piccoli, & Ives, 2004; Sarker,

Lau, & Sahay, 2001). Nearly all definitions of trust imply that one party, the truster,

must willingly place themselves in a position of vulnerability to or risk from another

party, the trustee (Gallivan, 2001: 280). Traditional theories of trust development note

that trust is built through shared social norms, repeated (face-to-face) interactions, shared

experiences, anticipation of future interactions, interpersonal relationship development,

and emotional support (Jarvenpaa et al., 1999).

In distributed innovation settings, where many individuals with no prior

relationships participate, traditional methods of trust development may not be entirely

possible. Instead "substitutes" for trust need to be found so that collective action and

problem solving can still take place. One substitute for trust is to require objective

measures of performance and means of assessing task accomplishment. In the broadcast

search setting, this is easily accomplished by the rules of the game which stipulate that

only successful submissions, i.e. those that meet the solution criteria as determined by the

seeker firm, are given an award. Seeker firms do not have to monitor and follow up on

the activities of the over 200 solvers that may be attempting to develop solutions on any

one problem. Objective evidence of successful task accomplishment is the only means

by which awards are given out.

318

For F/OSS communities, the continual public submission of software code

provides a substitute for traditional forms of trust. Software development provides for the

verification of completed work, i.e. "Does it do what the contributor claims?" via

"objective" measures. "Truth in code" is achieved when others apply submitted changes

to their personal copies of the software repository and then verify if the software works.

Verification works at both the basic level, i.e. does the changed system actually work as

advertised, and at an advanced level, i.e. is there any degradation in performance (speed,

load handling etc) due to the changes. Software development kits provide standard tools

that produce objective measures, about software changes, which can be shared with

others and serve as a basis for further development. Those submitting problems are also

able to utilize "objective measures" to make their claims. Contributors raising issues

provide (or are asked to provide) detailed information on how specific problems were

created along with associated computer-generated log files and use scenarios which allow

others to recreate the exact issues on their own local machines.

Another dimension of distributed innovation systems is that is that coordination

happens informally and there is very little explicit management of work and activities of

the participants. In the broadcast search example there is no possibility of managing the

activities of potential solvers who are attempting to create submissions. In the case of

F/OSS, communities do not attempt to (re)create bureaucratic modes of organizing as

typified in software engineering projects inside of firms and other formal organizations

(Adler, 2003). Synchronicity of action in the community is not primarily determined by

plans, schedules and technological road maps or individuals undertaking these activities

for other community members. Instead, individual members choose the task that they

will undertake, how it will be initially accomplished and when it will get done. The

essential work and task structures are limited to proposing ideas, writing, testing, and

using code, and commenting in discussions. Coordination occurs via mutual adjustment

and primarily by "organizing work by adaptation" (Hutchins, 1991). Adaptation and

adjustment is facilitated by the collective practices and individual practices discussed in

section 5.2.1 and in particular by work broadcasting. These practices can be viewed as

substitutes for traditional management where planning and doing are considered separate

319

functions. Similar to findings on communities of practice, where learning is not

separated from working (Brown & Duguid, 1991), coordination and management occurs

while work is completed and revealed and is not a separate form of activity or

specialization within the communities.

In this dissertation I have attempted to build an initial understanding about how

distributed and self-organizing innovation systems operate. Beyond open source and the

broadcast search model, there are now a multitude of natural experiments with distributed

innovation systems. Wikipedia has established itself as a viable alternative to closed

models for knowledge assembly. The X-Prize has shown that complex aeronautical and

space engineering can be accomplished by distributed teams. In a more mundane setting,

a company called threadless.com relies on a vast periphery of designers to submit and

rate t-shirt designs. As I close this dissertation I would like to reflect on what I consider

to be one of the essential attributes of these distributed innovation system; openness to

outsiders. Distributed information systems require an organizational architecture that

will allow access to peripheral individuals not necessarily affiliated with the focal

innovating unit. Ex-ante openness in the problem solving process is an important feature

of these systems and will require traditional organizations to re-think how boundaries are

conceived. New organizations may as a start be designed so that boundaries for

innovation are permeable in both directions. That is, internal members should be free to

go outside and external participants are given opportunities to directly innovate on

internal issues. members One way or the other distributed innovation systems require

openness so that outsiders can participate. Free and open source software communities

have shown how this can be done and now the challenge is for more traditional

organizations to adapt to this new way of innovating.

320

References

Adamson, R. E. 1952. "Functional fixedness as related to problem solving: a repetition of
three experiments." Journal of Experimental Psychology 44:288-291.

Adler, Paul S. 2003. "Practice and process: The socialization of software development."
in Academy of Management Best Papers. Seattle, WA.

Amabile, Teresa M. 1996. Creativity in context. Boulder, CO: Westview Press.
Birch, H. G., and H. S. Rabinowitz. 1951. "The negative effect of previous experience on

productive thinking." Journal of Experimental Psychology 41:121-126.
Brown, John Seely, and Paul Duguid. 1991. "Organizational learning and communities-

of-practice: Toward a unified view of working, learning, and innovation."
Organization Science 2:40-57.

. 2001. "Knowledge and Organization: A Social-Practice Perspective." Organization
Science 12:198-213.

Chance, Don M., and Pamela P. Peterson. 1999. "The new science of finance." American
Scientist 87:256-264.

Chubin, Daryl E. 1976. "The Conceptualization of Scientific Specialties." The
Sociological Quarterly 17:448-476.

Crane, Diana. 1969. "Social Structure in a Group of Scientists: A Test of the "Invisible
College" Hypothesis." American Sociological Review 34:335-352.

Csikszentmihalyi., Mihaly. 1975. Beyond Boredom and Anxiety: The Experience of Play
in Work and Games. San Francisco: Jossey-Bass, Inc.

Deci, Edward L, R Koestner, and Richard M Ryan. 1999. "A meta-analytic review of
experiments examining the effects of extrinsic rewards on intrinsic motivation."
Psychological Bulletin 125:627-688.

Deci, Edward , and Richard M Ryan. 1985. Intrinsic motivation and self-determination
in human behavior. New York, NY: Plenum Press.

DeMonaco, Harold J., Ayfer Ali, and Eric von Hippel. 2005. "The Major Role of
Clinicians in the Discovery of Off-Label Drug Therapies." MIT Sloan School of
Management Working Paper Series.

Duncker, K. 1945. "On problem solving." Psychology Monographs 58.
Edge, David O, and Michael J Mulkay. 1974. "Case studies of scientific specialties."

University of Edinburge, Science Studies Unit.
Ekeh, Peter P. 1974. Social Exchange Theory. The Two Traditions. Cambridge, MA:

Harvard University Press.
Foss, Kirsten, and Nicolai J Foss. 2004. "Simon on problem solving: Implications for

new organizations forms." Copenhagen Business School Working Paper.
Frey, Bruno. 1997. Not just for the money: an economic theory ofpersonal motivation.

Brookfield. VT: Edward Elgar Publishing Company.
Gallivan, Michael J. 2001. "Striking a balance between trust and control in virtual

organization: a content analysis of open source software case studies."
Information Systems Journal 11:277-304.

Granovetter, M. 1973. "The strength of weak ties." American Journal of Sociology
78:1360-1:380.

321

Harhoff, Dietmar, Joachim Henkel, and Eric Von Hippel. 2003. "Profiting from voluntary
information spillovers: How users benefit by freely revealing their innovations."
Research Policy 10:1753-1769.

Hayek, F. A. 1945. "The use of knowledge in society." American Economic Review
35:519-530.

Hong, Lu, and Scott E. Page. 2001. "Problem Solving by Heterogeneous Agents."
Journal of Economic Theory 97:123-163.

-. 2004. "Groups of diverse problem solvers can outperform groups of high-ability
problem solvers." PNAS 101:16385-16389.

Hutchins, Edwin. 1991. "Organizing work by adaptation." Organization Science 2:14-39.
Jarvenpaa, Sirkka L, and Dorothy E Leidner. 1999. "Communicaion and trust in global

virtual teams." Organization Science 10:791-815.
Koch, S, and G Schneider. 2002. "Effort, Cooperation and Coordination in an Open

Source Software Project: GNOME." Information Systems Journal 12:27-42.
Lakhani, Karim R., and Eric von Hippel. 2003. "How Open Source Software Works: Free

User to User Assistance." Research Policy 32:923-943.
Lee, Gwendolyn, and Robert E Cole. 2003. "From a Firm-Based to a Community-Based

Model of Knowledge Creation: The Case of the Linux Kernel Development."
Organization Science 14:633-649.

Lerner, Josh, and Jean Tirole. 2002. "Some Simple Economics of Open Source." Journal
of Industrial Economics 50:197-234.

Lindenberg, Siegwart. 2001. "Intrinsic motivation in a new light." Kyklos 54:317-342.
March, James G, and Herbert Simon. 1958. Organizations: Wiley.
Marwell, Gerald, and Pamela Oliver. 1993. The Critical Mass in Collective Action: A

Micro-Social Theory. Cambridge, UK: Cambridge University Press.
Nakamura, Jeanne, and Mihaly Csikszentmihalyi. 2003. "The construction of meaning

through vital engagement." in Flourishing: positive psychology and the life well-
lived, edited by Corey L Keyes and Jonathan Haidt. Washington, DC: American
Psychological Association.

Nelson, Richard R., and Sidney G. Winter. 1982. An evolutionary theory of economic
change. Cambridge, MA: Belknap Harvard.

Newell, Allen, and H.A. Simon. 1972. Human Problem Solving. Engelwood Cliffs, New
Jersey: Prentice-Hall INC. .

Orlikowski, Wanda J. 2002. "Knowing in practice: Enacting a collective capability in
distributed organizing." Organization Science forthcoming.

Osborne, M.F.M. 1959. "Brownian motion in the stock market." Operations Research
7:145-173.

Podolny, Joel M., Toby E. Stuart, and Michael T. Hannan. 1996. "Networks, Knowledge,
and Niches: Competition in the Worldwide Semiconductor Industry, 1984-1991."
American Journal of Sociology 102:659-689.

Powell, Anne, Gabriele Piccoli, and Blake Ives. 2004. "Virtual Teams: A Review of
Current Literature and Directions for Future Research." Database for Advanced in
Information Systems 35:6-36.

Raynor, Michael E, and Jill A. Panetta. 2005. "A better way to R&D?" Strategy &
Innovation. A newsletter from Harvard Business School Publishing and Innosight
3:14-16.

322

Riggs, William, and Eric von Hippel. 1994. "Incentives to innovate and the sources of
innovation: The case of scientific instruments." Research Policy 23:459-469.

Sarker, S., F. Lau, and S. Sahay. 2001. "Using an Adapted Grounded Theory Approach
for Inductive Theory Building about Virtual Team Development." Database for
Advanced in Information Systems 32:38-56.

Schrodinger, Erwin. 1951. What is life? The physical aspect of the living cell. Cambridge,
UK: Cambridge University Press.

Simon, H.A. 1969. The Sciences of the Artificial. Cambridge: Massachusetts Institute of
Technology.

Simon, H.A., and Allen Newell. 1962. "Computer Simulation of Human Thinking and
Problem Solving." Monographs of the Societyfor Research in Child Behavior
27:137-150.

Simon, Herbert A. 1973. "The structure of ill structured problems." Artifical Intelligence
4:181-201.

Sproull, Lee, Caryn Conley, and Jae Yun Moon. 2005. "Prosocial behavior on the net."
Pp. 139-162 in The Social Net: Human Behavior in Cyberspace, edited by Yair
Amichai-Hamburger. Oxford, UK: Oxford University Press.

Stephan, Paula E., and Sharon G. Levin. 1992. Striking the mother lode in science . the
importance of age, place, and time. New York: Oxford University Press.

Stern, Scott. 2004. "Do scientists pay to be scientists?" Management Science 50:835-854.
Tyre, Marcie J, and Eric von Hippel. 1997. "The situated nature of adaptive learning in

organizations." Organization Science 8:71-83.
von Hippel, Eric. 1978. "Successful industrial products from customer ideas." Journal of

Marketing 42:39-49.
-. 1982. "Get New Products from Customers." Harvard Business Review 60:117-122.

. 1988. The Sources of Innovation. New York, NY: Oxford University Press.

. 1989. "New Product Ideas from "Lead Users"." Research Technology Management
32:24-27.

-. 1994a. "'Sticky information' and the locus of problem solving: Implications for
innovation." Management Science 40:429-439.

-. 1994b. "Sticky Information and the Locus of Problem Solving." Management Science
40:429-439.

-. 1999. "Economics of product development by users: Impact of "sticky" local
information." Management Science 44:629-644.

-. 2005. Democratizing Innovation. Cambridge, MA: MIT Press.
von Krogh, Georg, Sebastian Spaeth, and Karim R Lakhani. 2003. "Community, Joining,

and Specialization in Open Source Software Innovation: A Case Study." Research
Policy 32:1217-1241.

Weimann, Gabriel. 1982. "On the Importance of Marginality: One More Step into the
Two-Step Flow of Communication." American Sociological Review 47:764-773.

323

