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Abstract 

Nuclear strl.~cture and the underlyi~lg internucleon (NN) interaction are central to 
the understanding of how nucleons interact. However, despite decades of research, 
Quantum Chromodynamics, which governs the interactions of quarks making up nu- 
cleons, continues to evade a fully tractable solution. As a result, understanding of 
the nucleon and how it interacts with other nucleons is not complete. 

Due to its simple composition, the deuteron has long been important in under- 
standing the structure of the NN potential. In particular, the tensor asymmetry, AT, 
a-nd beam-vector asymmetry, A z ,  from deuteron electrodisintegrat,ion, 21?(~, e 1 N ) N 1  , 
asre sensitive to the existence of a tensor component in the NN interaction. 

The Bates Large Acceptance Spectrometer Toroid (BLAST) provides a unique 
opportunity to measure deuteron electrodisintegration asymmetries at  low momentum 
transfer. BLAST combines a high-duty polarized electron beam, an Atomic Beam 
Sollrce (ABS) target of highly-polarized deuterium atoms, and a large-acceptance 
spectrometer detector. This work reports on measurements of '4: and A: for Q2 
ranges between 0.1 and 0.5 ( G ~ V / C ) ~ .  Comparisons with Monte Carlo simulations 
based on the current understanding of the deuteron are made, and conclusions are 
drawn. 
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Chapter 1 

Theoretical Motivation 

1.1 Introduction 

Nuclear structure and the underlying internucleon (NN) interaction have always 

played a central role in nuclear physics. However, despite decades of research, cal- 

culations of the NN interaction based on Quantum Chromodynarnics, which governs 

the interactions of quarks in nucleons, continue to evade solution. Since nucleons in- 

teract with each other via the strong force, which ultimately takes the form of quarks 

interacting via gluon exchange, understanding of the nucleon and how it interacts 

wit'h other nucleons is not complete. 

The te~lsor component of the NN interaction is one such area currently under 

study. The observation that certain nuclei exist in multiple orbital angular momen- 

tum admixture states with AL = 2 provides evidence of the existence of a tensor 

component in the NN interaction. However, the relative strength and effective range 

of t'his component arc still under debate. 

The deutc!ron is in many ways the ideal nucleus for studying the NN interaction. 

Consisting of a single proton and neutron in an I (J ' )  = O ( l f )  state, it is the simplest 

nucleus. In particular, since the deuteron lies in an admixture of S- and D- wave 

states, it is an ideal candidate for obtaining information about the tensor component 

of the NN interaction. 

In this chapter,   no ti vat ion is given for using polarized electrodisintegration as 



a measure of tensor effects and deuteron structure in general. The non-relativistic 

deuteron wave function is examined in depth in both position and momentum space 

in order to gain an understanding of how the tensor component of the NN interaction 

manifests itself. Deuteron electrodisintegration using a polarized beam and target 

is then discussed, and observables emphasizing deuteron structure are examined. It 

is concluded that the electrodisintegration tensor asymmetry, A:, and beam-vector 

asymmetry, AL, are both viable observables to examine in order to study tensor 

effects as well as reaction mechanism contributions from meson exchange currents 

and nucleo~i excitation. 

1.2 Deuteron Wave Functions in Position-Space 

The NN interaction conserves only total angular momentum; conservation of respec- 

tive intrinsic and orbital angular momenta are guaranteed only to the extent of con- 

sistency with total angular momentum conservation. As such, the deuteron wave 

function, consisting of two spin-112 nucleons coupled in an overall J = 1 state, is 

an admixture of S- and D-state components. In position-space, the non-relativistic 

polarized deuteron wave function takes the following form [25]: 

Here, Ro(r) r u(r) / r  and Rz(r)  r w(r)/r  are the respective S- and D-state radial 

wave functions1, r n ~  denotes the projection of the deuteron's total spin vector onto 

'In keeping with pre-existing notation conventions [25] ,  physics quantities in this chapter will 
be expressed in terms of two position vectors. The first vector, the internucleon position vector, is 
defined as the difference between the deuteron's proton and neutron constituent position vectors: 

The second vector is defined as the difference between the proton position vector and that of the 
deuteron's center-of-mass: 

The relations between these vectors are: r = 2r1 and 52, = Or! .  These variables will be used 
interchangeably throughout this chapter. 



Figure 1-1: 'The S- and D-state radial wave functions, &(r)  and R2(r)  , for the Bonn 
potential [4Ct]. 

its polarization axis (taker1 to be the i axis), and, for any r n ~  value, yJmL(Rr) is 

the corresponding spin-angle function for a state with respective total, intrinsic, and 

orbital angular momenta J ,  S, and L. 

Plots of the S- and D-state radial wave functions for a recent formulation of the 

Bonn potential [40] are shown in Fig. 1-1. From the plots, a drop in amplitude at  

small r  originating from the presence of the nuclear core is readily apparent. Both 

radial wave functions reach a maximum around r  - 1 fni and then fall off quickly 

with increasing r. The rapid fall-off is consistent with the fall-off at  large r  due to the 

one-boson exchange interpretation. It should be noted that the radial wave functions 

in these plots have been normalized so that: 

Lrn r2 [RO (r  ) + RZ ( r )  ' 1  dr = 1 

Using the Clebsch-Gordon formalism along with the fact that the deuteron is a 

spin-1 nucleus, the results in (1.1) can be used to write down an explicit form for the 



position-space polarized deuteron wave functions in each r n ~  substate: 

3 2 
T )  - h R 2  ( r )  (i ms - :)I 11.0) 2 

+ - R2 ( r )  sin Or cos 0,. [e-"~ I1,l) - e i 4 ~  11, - I)] fi 

f - ~2 ( T )  e i i4~ sin Or cos 0, I 1 , O )  /: 

Equations for the corresponding probability densities, p&nJ (r") *TJ* (fIIPrJ (3, 
follow directly: 

where: 

1 
( r )  - R2(r) ( J Z R O ( ~ )  - , ~ 2 ( r ) )  

and where P2(cos 0 )  cos2 19 - $ is the Legendre polynomial of order 2. It  should 

be noted that the wave functions and probability densities have been normalized in 

the standard manner [25] so that: 

Symmetries of the deuteron densities can be seen from examining these equations. 

The dependence in the wave functions disappears in the density calculations. The 

densities themselves are functions of only two of the spherical position variables, 



pTJ  (r") = pTJ  (r', Or / ) ,  and thus possess azimuthal symmetry about the deuteron's 

polarization axis. Additionally, the densities are symmetric about a flip of the posi- 

tion vector according to r" - (r', Or/ ,  $, I )  -+ -7 = (r' ,  .rr - O r / ,  .rr + $ , I ) .  This latter 

symmetry is enforced by the experimental observation that the deuteron exists in a 

positive parity state. 

To help visualize the deuteron's densities, it is useful to change from spherical to 

cylindrical coordinates via x' = r' sin 0,. and 2' = r' cos Or/. Plots of pTJ  (x', z') are 

shown in Fig. 1-2. In the r n ~  = 0 state, there is high density near the x' axis but 

very low density along the 2' axis (i.e., the polarization axis). Since the deuteron 

densities are azimuthally symmetric about the polarization axis, it follows that the 

m,, = 0 densitv distribution resembles a toroid (a "donut" shape) with most of its 

density lying in or near the x' - y' plane and with very low density along the z' axis. 

On the other hand, the r n ~  = f 1 distributions have significant densities along the z' 

axis but less-dominant densities in the x' - y' plane. It follows that the m , ~  = 411 

densities form two identical but nearly disjoined lobes (a "dumbbell" shape) centered 

on either entl of the polarization axis. 

Examining (1.5) - (1.8) shows that all of the polar angle dependence in p y J  (r") 

disppears when Cz(r)  = 0, or, equivalently, when Rz(r)  = 0. Thus, in the limit of an 

L = 0 deuteron, the corresponding densities are radially symmetric and form degen- 

erate spherical equidensity shells. The extent to which this degeneracy is broken and 

causes the dcuteron densities to form respective donut and dumbbell shapes is tllus 

a direct consequence of the deuteron possessing a nonzero D-state component. The 

existence of a nonzero D-state component implies the existence of a tensor component 

in the NN interaction, as such a component allows for AL = 2 admixture2. 

2A straightforward mathematical argument showing how the simultaneous existence of both an 
S- and D-state implies the existence of a tensor operator in orbital angular momentum space car1 be 
found in Section 3-4 in Ref [57]. 



Figliro 1-2: 1 1 -= 0. il (loutclron p ro l~a  t)ility rlvrrsit ifis f o i  t lie Boil11 i)ot,clr~ti;ll 
[ JO] as w filuc.tiolr o f  .I.' = i*'sill H,., a ~ l ( l  ;.' = r.' cos # , > I .  



Profiles of the densities in parallel (Or/  = 0) and perpendicular (Orl = 5) directions 

can be seen in Fig. 1-3. From examining the properties of deuteron wave functions, 

the r n ~  = 0 density as a function of r' is largest for Orl  = 5 and smallest for Or/ = 

0 while the r n ~  = f 1 densities' extrema are just the opposite. In particular, as 

concluded from (1.5) and (1.6)) all three densities reach the same maxima as a function 

of r', though for diffcrent O r / :  

These maximum-density functions reach an absolute maximum value of pd N 0.35 

fm-3 at  r 0.5 frn. The fact that this absolute maximum density is approximately 

twice that of normal nuclear mat'ter (- 0.16 fm-" is not completely understood. 

The ratio p: (r', Or# = :) /p: (r', Or/ = 0) has a maximum of - 4.5 whereas the ratio 

p:' (r', Or/ = 0) /p;' (r',  Or/ = ;) has a maximum of N 1.6, though less pronounced. 

Both ratios reach their respective maxima at r' - 0.7 fm ( r  - 1.4 fm). 

Figure 1-3: Plots of p r J  (r', O r / )  as a function of r' for r n ~  = 0, f 1 and Or/ = 0 , ; .  



The conclusion that can be reached from these results is that measurements of the 

deuteron's spin-dependent densities carry information on the D-state component of 

its wave function, which implies the existence of and carries information regarding the 

tensor component of the NN interaction. This information is maximized by probing 

deuteron properties a t  small r' (- 0.7 fm). 

1.3 Static Property Measurements of the Deuteron 

Attempts to probe nuclear properties typically fall into one of two categories: static 

property measurements a,nd scattering measurements. Static property measurements 

return information in position-space. Scattering measurements, on the other hand, 

which involve utilizing high-momentum particles to probe nuclei, return information 

in momenturn-space. 

The root-mean-square radius, r:, gives a measure of the size of the charge distri- 

bution in the deuteron: 

Measurements of this observable, though, are insensitive to D-state aspects of the 

deuteron, since the S-state component completely dominates the D-state one. 

The electric quadrupole moment, Qo, measures to lowest-order a nucleus's devia- 

tion from sphericity: 

The quadrupole moment operator is a spherical tensor of rank 2. As such, any nucleus 

with total spin J < 1 must have zero quadrupole moment. However, the traditional 

non-relativistic quadrupole operator operates only in orbital spin space; in the usual 

non-relativistic picture of the NN system, one can thus further conclude that any 

nucleus with orbital angular momentum L < 1 also has a vanishing quadrupole mo- 

ment. Thus, in the traditional non-relativistic picture, measurement of a nonzero 



quadrupole moment in the deuteron is direct evidence of a nonzero D-state com- 

ponent. This fact can also be seen by noting that the integrand in (1.12) vanishes 

if w(r) O. Despite this fact, the electric quadrupole moment is not an optimal 

measure of the D-state contribution. The corresponding integrand is weighted by r2 

which thus tends to lend weight towards large r wave function contributions. Since 

one must probe low r in order to access D-state information, measurements of the 

electric quadrupole moment are limited in the amount of D-state information that 

they return. 

Another important static observable is the magnetic moment of the deuteron. In 

the independent-particle model, the magnetic moment can be expressed as: 

where 11, = 2.79285pN and p, = - 1 . 9 1 3 0 4 ~ ~  are the respective proton and neu- 

tron magnetic moments expressed in units of the nuclear magneton, p ~ ,  and PD - 
J w2 (r)dr is the D-statoe probability. From recent experiments [28], the deuteron mag- 

netic ~noment is found to be pd = 0 . 8 5 7 4 4 ~ ~ .  Substituting this value directly into 

(1.13) returns PD = 0.0393, implying a D-state contribution of N 4%. However, due 

to meson-exchange corrections, isobar configurations, and relativistic corrections, one 

cannot use (1.13) to obtain more than an estimate of the D-state contribution. 

1.4 Deuteron Wave Functions in Momentum-Space 

The canonical momentum partner to the relative position, r '  FP - Fn, is the relative 

moment~um3, p' zz (6, - A). Starting with the position-space wave functions listed in 

(1.3) and (1 A),  a standard application of a Fourier transform gives the corresponding 

3The factor of 1/2 in the definition of the relative moment~im is needed in order to satisfy the 
canonical conlniutation relations defining the pair: 



polarized deuteron wave functions, @,"J (8, in momentum-space: 

The corresponding momentum-space density functions, j3rJ (3 = @&nJ * ($)!b~~ (3, 
take on a form similar to that of the position-space densities, (1.5) and (1.6): 

The &(p) terms are defined in a similar manner as the CL (r) ones, (1.7) and (1.8): 

In these equations, R~(J I )  is the Fourier-transformed radial wave function: 

where jL(x) is the spherical Bessel function of order L. It should be noted that the 

following conventional normalization has been chosen here: 

Plots of the magnit udes of the Fourier- transformed radial wave functions, 1 R~ (p) 1, 
are shown in Fig. 1-4. At low p, the S-state is completely dominant. However, the 

dominance decreases as p increases until p 0.3 GeV, where both states have nearly 

equal magnitudes. Above p - 0.3 GeV, the D-state is dominant. High p must thus 

be probed in order to obtain D-state information. Probing the deuteron a t  high p is 

equivalent to probing the low r region. 



Figure 1-4: The magnitudes of the Fourier-transformed S- and D-state radial wave 
functions, I& ( p )  ( and 1 R* ( p )  I, for the Bonn potential [40]. 

Figure 1-5: Plots of fiyJ (p, O p )  for the Bonn potential (401 for n z ~  = 0, f 1 and 8, = 
7r 0, 5 .  



Plots of pyJ($ are shown in Fig. 1-5. Similar to the position-space densities, 

analysis of (1.16) and (1.17) shows that ~$(J I ,  9, = ~ / 2 )  = p:' (p, 8, = 0). For all three 

m~ states, there is a difference in densities for relative momenta parallel (0, = 0) and 

perpendicular (0, = ;) to the polarization axis. This difference is most noticable for 

p N 0.3 GeV. Also shown in this graph is the average momentum-space density: 

Frorn (1.16) and (1.17), all polar angle dependence in the ~ A J  substate densities 

cancels out in the average momentum-space density; thus, the average density is 

only a function of p. The average density defined above is also equal to the density 

that would exist in the limit of an L = 0 deuteron, as, in this case, ~ ~ ( p )  = 0. The 

existence of a D-state component in the deuteron is thus responsible for nonzero 0, 

dependence in the jyJ (8, which in turn is responsible for differences in &(@) and 

b$'($ for the same values of 5 

In order to measure D-state deuteron properties, quantities that provide sensitivity 

to the differences in the various momentum-state densities need to be arialyzed. The 

tensor asymmetry, A;, is one such measure: 

- - - *  " ( P )  p2 (cos 0) 
G (PI 

- - 
JilZZ(p) (&I (p) - & M p ) )  

& ( P ) ~  + ~222(P)~ 

A plot of A: is shown in Fig. 1-6, and projections of AT with respect to p and OP are 

shown in Fig. 1-7. From the functional form of A:, the tensor asymmetry vanishes 

when P2 (cos 6,) = 0, or, equivalently, when cos Op = f &. With respect to p, the 

tensor asymmetry is extrernized when R ~ ( ~ )  = f i ~ ~ ( p ) ,  which occurs at  p - 0.3 

GeV. 

Due to the R&) factor in its numerator, the tensor asymmetry must vanish if 



Figure 1-6: Plot of A$ for the Bonn potential 1401 as a function of p and cos 6,. 

there is no D-state contribution (i.e., in the limiting case of an L = 0 deuteron, where 

R ~ ( ~ )  = 0). Furthermore, to the extent that & (p) >> ~ ~ ( p ) ,  the tensor asymmetry 

is directly PI-oportional to the ratio & (p)/ R0 (p). 

However, in order to reconstruct A: experimentally as has been discussed here, 

one must be able to measure the internal momenta of the nucleons while still in the 

bound deuteron nucleus. Due to the fact that the nucleons in the deuteron are bound 

(albeit weakly), any attempt to measure the bound nucleons' momenta must involve 

the use of some other "probing" particle in order to break up the nucleus. Such a 

process inherently introduces contamination in the form of four-momenta, Q = (w,  3 ,  
transferred from the probing particle to either of the nucleons. 



Figure 1-7: The top figure contains plots of AT for the Bonn potential [40] as a 
function of 8, for various p values. The bottonr figure shows plots of A: as a function 
of p for various 8, values. 



Furthermore, exchange processes also exist where the struck nucleon is not the one 

detected. Silch processes occur because the nucleons in a nucleos are bound and thus 

possess nonzero internal momenta. In addition, reaction mechanism processes, such 

as meson-exchange currents (MEC) and isobar configurations (IC), can also intro- 

duce contamination into measurements. Finally, outgoing nucleons may themselves 

interact with each other via final state interactions (FSI). In practice, there exists 

no method of completely ruling out all such occurrances with complete certainty. As 

such, the "i~lternal" nucleon momenta that are measured are only approximations to 

the internal momenta. To the extent that one can rule out the above-listed sources 

of contamination, one can directly compare the theoretical results derived here to 

experimental ones. The set of approximations necessary for such theoretical com- 

parison is commonly referred to as the Plane Wave Impulse Approximation (PU71A) 

[45]. The question of how well the PWIA describes the total model is one that needs 

to be quantized. This will be discussed later on when "full" theoretical models are 

considered. 

Because the internal nucleon momentum is not directly observable, a "missing 

momentum" vector, gM, is used to approximate it. It is defined as the difference of 

the measured proton momentum, $p,M, and the momentum transfer, g': 

To the extent that nucleons retain their individual identity within the deuteron, bound 

state effects of the deuteron cause the bound nucleons to possess a nonzero (Fermi) 

momentum inside the nucleus. Since the proton's final (measured) ~nomentum is equal 

to the sum of its initial (bound) momentum, flp,l, and the momentum it receives from 

the virtual photon. pp,,, and since the sum of the nucleons' momenta before interaction 

is zero (i.c., + = 0), it follows that: 



where the identification of p' = (FP,I - has been made. To the extent that 

all of the momentum transfer is transferred to the proton (and thus gPy7 - $ = O),  

the missing momentum vector will equal the bound relative nucleon momentum. In 

such a situation, the deuteron target is effectively reduced to a proton target with a 

"spectator" neutron. Such scattering is referred to as quasi-elastic (QE) scattering 

from the proton. Kinematically, it occurs when Q2 = 2mpw,  where m, is the mass 

of the proton. By imposing QE kinematics constraints, the PWIA can be studied; 

relaxing the constraints allows non-PWIA effects to be measured, such as MEC, IC, 

and FSI. QE scattering becomes increasingly dominant as p~ -+ 0. 

1.5 Electron-Deuteron Scattering 

Both elastic electron-deuteron (e-d) scattering as well as deuteron electrodisintegra- 

tion scattering return D-state information. Due to the success of quantum electrody- 

namics, the electron contribution to these processes is well known. This allows for a 

cleaner, more direct comparison of theoretical and experimental deuterium analyses 

than more complex probing particles would provide. 

Since the deuteron is a spin-1 nucleus, it can be polarized in two ways: vector and 

tensor [19, 471. The vector polarization, P,, is given by P~ = fi~' = &n+ - n-), 

where n* is the relative population of deuterons in the m d  = kl state. Similarly, 

the tensor polarization, P ~ , ,  is given by P~ ,  = fipZ = fi(1 - 3no), where no 

is the relative population of deuterons in the m d  = 0 state. All deuterons rnust 

exist in one of these three polarization states which thus leads to the constraint 



n+ + n- + n,o = 1. This constraint enforces relations between achievable simultaneous 

vector/tensor polarization states of the deuteron (see Fig. 1-8). In particular, a 

large positive tensor polarization can exist with a wide range of positive and negative 

vector polarizations, but maximum negative tensor polarization can exist only with 

zero vector polarization. 

Pzz 

Figure 1-8: Accessible vector/tensor deuteron polarization region. The boundaries 
are shown as broken lines. 

1.5.1 Elastic Electron-Deuteron Scattering 

In the Born approximation, the cross section for elastic e-d scattering with a longitu- 

dinally polarized electron beam of helicity h and a deuterium target with respective 

vector and tensor polarizations, pZ and pZz, is given by [9, 43, 591: 

Here, So is the totally unpolarized cross section: 



where ($$)M is the Mott cross section for scattering from a spin-0 point particle, and 

f r 1 + 2(Ee/md) sin2(Qe/2) is the recoil factor in terms of the electron's incident 

energy, Ee, and polar scattering angle, 0,. The A(Q2) and B(Q2) structure functions 

are kinematically-weighted linear combinations of the squares of the deuteron's charge 

monopole (Gc (Q2)), magnetic dipole (GM (Q2)), and charge quadrupole (GQ (Q2)) 

form factors: 

where q r q. The I? and A terms in (1.25) are given by: 
4md 

r ZE & [($ cos2 Qd - $) T20 - fi sin 2Qd cos $dTJ1 + fi sin2 od cos 2$d~22] (1.29) 

n z fi [& cos o d ~ f 0  - sin od cos $d~;] (1.30) 

where the deuteron is polarized in the direction ad - (Od, 4 d )  with respect to the 

momentum transfer vector. The various T,',") terms are kinematically-weighted com- 

binations of the deuteron's three form factors: 

where S A(Q2) + B(2) tan2 9 and E = (1 + 7) tan2 9. 

Comprehensive measurements of all three of the deuteron's form factors are re- 

quired for detailed understanding of the deuteron. Using totally unpolarized e-d 



scattering and applying Rosenbluth techniques to the resulting cross section, (1.26) 

can be decomposed to provide information on A(Q2) and B(Q2). However, to sepa- 

rate all three form factors, it is necessary to include a measurement of one of the T$) 

observables by utilizing either a tensor polarized target or tensor polarization transfer 

or else beam polarization with a vector polarized target. Because of its relative size, 

T20 is often chosen for the third measurable. 

In the non-relativistic impulse approximation, where the virtual photon is assumed 

to interact with only the individual nucleons in the deuteron, GQ(Q2) vanishes in the 

limiting case of an L = 0 deuteron [59]. Thus, measurements of GQ(Q2) can provide 

information of the deuteron D-state contribution. From (1.31), one sees that T20 

contains a term that, is linear in GQ(Q2), thus making it more sensitive to D-state 

effects. 

1.5.2 Deuteron Electrodisintegration 

The tensor asymmetry in (1.23) is expressed as a function of variables requiring 

knowledge of the relative nucleon momenta in the deuteron: p = -&I  and 

cos 8, = i . @ d d  To measure such quantities, the deuteron nucleus needs to be 1% -@n l ' 
probed (i.e., broken up) on a nucleon level. This leads one to consider deuteron 

electrodisintegratiorl. 

Within the formalism of the one-photon exchange PWIA, the kinematics of the 

21?(~,  ,elp)n reaction in the rest frame of the deuteron are shown in Fig. 1-9. An 

electron of initial (four-) momentum K = (E, i) and final momentum K' = (E', 2)  
-# + 

tlransfers a m.omentum Q = (w,  q3 = ( r  - t', k - kt) to a deuteron nucleus of initial 

rnomentum Pd = (md, 0). At relativistic electron energies, the magnitude of the 

rnomentum transfer can be expressed in terms of the incident and scattered electron 

energies and t!he angle, O,, into which the electron scatters with respect to the incident 



direct ion4 : 

The momentum transfer breaks up the deuteron into its two nlicleon constituents. 

The resulting proton and neutron scatter with respective momenta Pp = (Ep, pp) and 

Pn = (En,  A). To ease the theoretical calculations [55], observables relating to the two 

emerging nucleons are evaluated in the proton-neutron center of mass (CM) system 
-+ 

moving with velocity /3 = $/(w + md) with respect to the laboratory frame. In this 

cnl +CM CM frame, the relative proton-neutron momentum is denoted by5 P,, = (E,, ,ppn ). 

The incident and scattered electron (three-) momentum vectors, and c, respec- 

tively, as well as the momentum transfer vector, q7 all lie in a plane referred to as the 

scattering plane. The following "q" coordinate system is defined using these vectors: 

With respect to the q coordinate system, the remaining planes are defined. The 

orientation plane is defined by i, and the deuteron's polarization vector, d = ( B d ,  q5d). 

Here, Od and #d are the respective polar and azimuthal angles that the deuteron 

polarization vector makes with respect to the q coordinate system. The reaction 

plane is defined by Zq and the relative proton-neutron momentum vector, GEM. This 

latter vector has respective polar and azimuthal angles of O,","' and 4p, with respect 

to the q coordinate system6. In general, one does not expect $pn and 4d to be equal. 

Their difference is defined as 4 - 4,, - # d .  

4 ~ i t h  a slight abuse of notation, Q2 will be used to indicate the negative of the square of the 
monientum transfer, that is Q2 = q2 - w2,  not Q2 = w2 - q 2 .  Doing so guarantees that Q2 > 0, 
which is the convention in nuclear physics. 

5Throughout this section, observables evaluated in the proton-neutron CM frame will carry 
a "CM" superscript; variables without such a superscript are evaluated in the rest frame of the 
deuteron (i-e., the lab franie). 

'Since the boost to the proton-neutron CM frame is entirely along the 2, axis, azimuthal angles 
defined in the q coordinate system are not altered by the Lorentz boost. As such, to simplify the 
notation, the "CM" superscript on relevant azimuthal angles will be dropped. 



ORIENTATION PLANE 

SCATTERING PLANE 

REACTION PLANE 

Figure 1-9: Geometry of exclusive deuteron electrodisintegration with longitudinally 
polarized electrons and oriented deuteron target. The respective incoming (outgoing) 
electron four-momenta are denoted by K (K'), the virtual photon four-momentum 
is denoted by Q, the relative proton-neutron momentum is denoted by Pnp, and the 
deuteron's orientation axis vector is denoted by d. 

The differential cross section for deuteron electrodisintegration can be written 

as a sum of asymmetries weighted by different combinations of beam and target 

polarizations [6, 71: 

do 
dwdQ,dR$:* 

= s (h, P,, P,,) 

Here, h is the helicity of the electron beam, and P, and P,, are the respective vector 

and tensor polarizations of the deuteron target as described above. Also, Re r 

(eeqb,) and (2;:' ( O F ,  6,) are the respective scattered electron and proton-neutron 

spherical angles. So is the totally unpolarized cross section: 



and A:, A:, A,, A;, and ATd are the respective vector, tensor, beam, beam-vector, 

and beam-tensor asymmetries: 

lhf+ cos 24,) sin &I$ +pLTfLFf+ cos 4 p n  + PIT~TT 

+ (pLTf,!:! sin 4 p n  + fky- sin 2 4 p n )  cos M J ]   LO (Od) (1.39) 
0 

-pkT f ;f,"" sin 4,, sin M$] d a o  (0,) 

+pkT f I"$'+ sin 4 p n  COS M 61 d L o  (Od) 

Here, the d$,(Od) are Wigner rotation matrices [SO]: 

3 2 d$)(Od) G C O S  2 8,-' 2 '  d ~ ( ~ ~ ) - f i S i n O d C o S O d ?  d $ ) ( & )  6 S i n 2 O d  (1.45) 

and c is a kinematic variable: 
a 8 c - -- 

67r2 cQ4 

where a is the fine structure constant. The various P(fiL)(T) terms in (1.38) - (1.43) are 

the spherical components of the virtual photon density matrix. In the q coordinate 



system, they take the following forms: 

where B = I , ~ I  = Id/(w + md) is the boost from the laboratory to the CM frame and 

= Q2/ld2 and q = tan2 (8,/2) are kinematic variables. The "L" and "T" refer to 

the respective longitudinal and transverse polarization states of the virtual photon. 

The various f ('::$/') are the nuclear structure functions. In general, a dynamical 

model is needed in order to calculate them. Such a dynamical model has been created 

by Arenhovel et al. [6, 7, 551. In their model, the nucleons are considered to behave 

non-relat ivistically thus allowing for a non-relativistic expansion of the relativistic 

electromagnetic nucleon current in orders of (pp/mN), where mh- is the mass of the 

nucleon. A consistent non-relativistic calculation was made by solving the Schrodinger 

equation using a potential model for the NN interaction. Additionally, relativistic 

corrections (RC), final state interactions (FSI) between the outgoing nucleons, meson 

exchange currents (MEC) due to the exchange of a, p, or w mesons, and nuclear 

isobar configurations (IC) such as NA(1232), NA(1470), and AA were also accounted 

for. Exchange contributions, wherein the detected nucleon is riot the one scattered 

from, were taken into account by appropriate symmetrization of the wave functions; 

the Plane Wave Born Approximation (PWBA) refers to the PWIA with nucleon 

exchange reactions accounted for. Examples of lowest-order Feynman diagrams for 

these various effects are shown in Fig. 1-10. 

Sensitivity to the PWBA and to non-PWBA reaction mechanisms change depend- 

ing on the kinematic region probed. Sensitive regions can be identified by examining 

a plot of the relative proton-neutron CM kinetic energy, TgM, versus the square of 

the CM three momentum transfer magnitude, (qC")2: 



(dl (el 

Figure 1-10: Lowest-order Feynman diagrams for 2H(e, e'p)n scattering. (a) PWIA 
e-p scattering (b) PWIA e-n scattering (c) final state interaction between the ex- 
iting nucleons (d) a K exchange current, and (e) an N* isobar excitation. Proper 
symmetrization of the wave function over diagrams (a) and (h) leads to the PWBA. 

In these kinematics, for T p  << 4mN where miv (mp + m,) /2 ,  the QE ridge can 

be shown to approximately obey the following 1551: 

A plot of TgM versus (qchf)2 is shown in Fig. 1-11. Four regions can be identified in 

which specific effects dominate [6]. In the neighborhood of the QE ridge, as defined by 

(1.49), MEC, IC, and FSI are all expected to be small due to the neutron being essen- 

tially removed from the scattering. In the disintegration threshold region, located at  

low TgM, MEC are dominant. In the intermediate region, between the disintegration 



threshold and QE regions, FSI are important while MEC and IC are sizable. Finally, 

as one proceeds to even higher T:~ ,  IC, such as A-excitation, become increasingly 

dominant. 

Figure 1-11: Kinematic plane showing TP versus ( q c M ) 2 .  The boxes represent 
data weighted by the kinematic acceptance of the BLAST detector. QE kinematics 
dominate the acceptance, but the acceptance of BLAST is such that data in all 
kinematic sectors is attainable. 

By varying the beam and target polarizations, it is possible to separate each of 

the asymmetries in (1.38) - (1.43). In particular, six independent polarization states 

sufficient to completely separate So and the five asymmetries: 



Once an asymmetry has been separated, the various structure functions internal 

to it can be separated or emphasized by appropriate use of kinematics. For ex- 

ample, when the momentum transfer vector, if, is aligned parallel to the deuteron 
n 

polarization axis, d, then Od = +d = 0 and thus sin Od = 0. Due to (1.44) - (1.45), 

asymmetries measured in this configuration will contain information regarding only 

those component structure functions weighted by cosOd. If the outgoing proton is 

further restricted to also lie along 6 then +pn = 6 = 0. Eq. (1.40) and (1.42) then 

reduce to the following: 

On the other hand, if the momentum transfer is restricted so that Od = ~ / 2  and 

qbd = T, then only those terms weighted by sin Od will contribute. If the proton is 
- 

further restricted to lie along q7 then = 0 and 4 = 0 - T = -T. Eq. (1.40) and 

(1.42) then reduce to the following: 

As will be discussed in Section 2, the acceptance of the BLAST detector is such that 

detected electron-proton coincidences from 2.1?(e', ee'p)n have the electron and proton 

in opposite detector sectors. As such, electron-proton coincidences with the electron 



in the left (right) sector will have corresponding momentum transfer vectors directed 

into the right (left) sector. With the deterium target polarized to point in-plane into 

the left sector, it  then follows that, to first order, an electron-proton coincidence with 

the electron scattering into the left sector in BLAST will have respective tensor and 

beam-vector asymmetries dominated by (1.58) and (1.59). Similarly, an electron- 

proton coincidence with the electron scattering into the right sector in BLAST will 

have asymmetries dominated by (1.56) and (1.57). For this reason, asymmetries 

generated by an electron in the left (right) sector are referred to as perpendicular 

(parallel) asymmetries throughout this work. 

The Tensor Asymmetry, A: 

As discussed in Section 1.4, the 21?(E', elp)n electrodisintegration tensor asymmetry, 

AT, as expressed in (1.40) vanishes in the limit of an L = 0 deuteron in the PWBA. 

The tensor asymmetry thus provides information on the D-state contribution to the 

deuteron, or, equivalently, on the tensor component of the NN interaction. 

In addition to ~ont~ributions from the D-state, A$ will in general also have con- 

tributions from the various non-PWBA reaction mechanisms (MEC, IC, and FSI). 

On the QE ridge, such mechanisms are expected to be small. However, as one pro- 

gresses kinematically away from QE scattering, reaction mechanism effects play an 

ever i~icreasi~ig role. Plots of the tensor asymmetry, AT, versus missing momentum 

magnitude, p ~ ! ,  are shown in Fig. 1-12 for different Q2 regions accessible in BLAST. 

The data for these plots were generated from the deuteron electrodisintegration model 

from Arenhovel et al. using the Bonn potential 16, 71; the data have also been weighted 

for acceptance in tihe BLAST detector. 
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Figure 1-12: Plots of the tensor asymmetry, A ', versus missing momentum, PM, for
perpendicular and parallel kinematics in BLAST. All plots were generated using the
model in [7] with the Bonn potential.

46

*PWBA
PWBA+FSI

-PWBA+FSI+MEC
PWBA+FSI+MEC+IC

1,A 0.1 0.15 0.2 0.25 0.3 O.26 0A OAS 0.

PWBA
PWBA+FSI

-PWBA+FSI+MEC
PWBA+FSI+MEC+IC
PWBA+FS+#MEC+IC+RC

0.2 - 0 40GeV/c) 2 < 0.3
...I .... I .... I .... I .... I .... i .... I .... I .... I ....

PWBA+FSI
-PWBA+FSI+MEC
SPWBA+FSI+MEC+IC
PWBA+FS5+MEC+§C+RC

0.3 < O JtGeVWI) 'c0.4
.. I...I .. ....I.... I. I .... I .... , ..h..

PWBA
PWBA+FSI

-PWBA+FSI+MEC
PWBA+FSI+MEC+1C
PWBA+FSIS+MECIC+RC

0.4 -< O 'QGeV/) < o.s
.... I... .Ian..ldasa...h .. ,....I...... .. ,,

&As ..

-LZ 40A

0.1 < - O*GV/c) < 0.2
I . ... h I,. ,l .. .. .... Ih , .... I.. .I L.... I...

.n
.... n .. ... 

.

I POMIM Kkmaet
, A

--

.aA

...

-- s I

€

aA



Each plot in Fig. 1-12 shows a comparison of the relative reaction mechanism 

contributions to A:. The contributions due to FSI, MEC, IC, and RC are progres- 

sively added onto the PWBA. The total model is equal to the model incorporating 

PWBA, FSI, MEC, IC, and RC contributions. From examining the plots, the follow- 

ing conclusions are apparent: 

At low Pnf (5 0.25 GeV/c), AT is consistent with zero in all kinematics. 

As p~ increases, nonzero structure begins to appear. On the whole, the asym- 

metries in all kinematics reach a maximum IAzl value around p~ - 0.35. The 

onset of this structure around p~ was predicted from D-state arguments in 

Section 1.4. 

In perpendicular kinematics, away from the QE ridge (i.e., phf > O), the contri- 

butions to A: from non-PWBA reaction mechanisms are of the same magnitude 

as the PWBA ones. At low Q2, the contributions from FSI, MEC, and IC are 

all of the same size. At high Q2, FSI dominate. 

In parallel kinematics, away from the QE ridge, FSI contributions dominate the 

non-PWB.4 contributions at  low Q2. However, at  high Q2, the contributions 

between FSI, MEC, and IC once again become nearly equal. 

RC are negligible for all kinematics. 

Plots of A: versus cos BAl, where BAr is the angle between the deuteron polarization 

and missing rnomenturn vectors, are shown in Fig. 1-13 for the same kinematics and 

setup as in Fig. 1-12. Since A: vanishes in the limit of an L = 0 deuteron, the 

presence of the D-state causes deviation from zero. It should also be noted that, as 

seen in (1.16) and (1.17) as well as Fig. 1-7, A: is a purely even function of Bhf in 

the PWIA. To the extent that AT is dominated by the PWBA in the plots in Fig. 

1-13, it then follows that any deviation from symmetry when OM --+ ---OM is a result 

of proton-neutron exchange processes. 
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Finally, it sholild be noted that experimentally only the total tensor asymmetry 

is measurable and thus directly observable. As such, D-state effects are convoluted 

with those from non-P WBA reaction mechanisms. In general, this places constraints 

on how definitively information can be extracted on any one particular contribution 

to an asymmetry. 

The Beam-Vector Asymmetry, A& 

Similar to the tensor asymmetry, the *l?(e', ,efp)n electrodisintegration beam-vector 

asymmetry, 4 2 ,  as expressed in (1.42), has structure influenced by the D-state and 

the various reaction mechanism contributions. Fig. 1-14 compares A$ versus p~ for 

various progressive models [44]. In the PWIA, in the limit on an L = 0 (i.e., S-state 

only) deuteron, ilkd is approximately constant and negative for all p,,. However, 

when a nonzero D-state component is added in, a large rise at  high p~ appears. 

Smaller (but still significant) contributions from the various reaction mechanisms 

further increase the rise. 

Figure 1-14: The 'f?(i?. elp)n electrodisintegration beam-vector asymmetry, AL, ver- 
sus missing momentum, p&l, for subsequent models: PWIA with only an S-state; 
PWIA with S- and D-states; PWBA with FSI; PWBA with FSI and MEC; PWBA 
with FSI, MEC, and IC; and the full model (i.e., PWBA with FSI, MEC, IC, and 
RC). The experimental data were taken at NIKHEF with the BigBite spectrometer. 
This plot is reprinted from [44]. 



For BLAST kinematics, the 21?(Z, e lp )n  beam-vector asymmetry, AL, versus the 

missing momentum, p ~ ,  is plotted in Fig. 1-15 for the same kinematics and setup as 

in Fig. 1-12. The following conclusions are apparent: 

For all kinematics, in the QE limit (phi t 0), contributions from the various 

non-PW BA reaction mechariisms disappear, and the total model is consistent 

with the PWBA one. 

As p~ increases, A$ starts to rise in general in all kinematics. This rise occurs 

around p~ N 0.35 GeV/c which is conistent with the onset of the D-state as 

discussed in Section 1.4. 

Unlike the tensor asymmetry results in Fig. 1-12, non-PWBA reaction mecha- 

nism contributions to A s  at high p~ are smaller in magnitude than the general 

rise due to the existence of the D-state (i.e., the PWBA). For this asymmetry, 

the PWBA is to first order consistent with the total model; the various non- 

PWBA reaction mechanism contributions are more perturbative than radically 

struct ure-changing. 

RC are negligible for all kinematics. 
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pu, for perpendicular and parallel kinematics in BLAST. All plots were generated
using the model in [7] with the Bonn potential.
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As seen from Fig. 1-15, in the QE limit (i.e., as p~ -+ 0), non-PWBA contribu- 

tions to A 5  become negligible. Additionally, as shown in Fig. 1-14, D-state effects 

also disappear in this limit. Thus, 2d(e', e1N)N' in the QE limit effectively reduces to 

z (Z ,  e'N) with a spectator nucleon, N'. In this limit, the 2fi(Z, ee'N) N' beam-vector 

asymmetry takes the following form [6]: 

1 
- cos ed + 2- PLT sin od cos Od%/n (1.60) 

PT I 
where the "p/nV subscript refers to whether the proton/neutron is detected. F'urther- 

more, %,, is directly proportional to the ratio of the proton's/neutron's electric and 

~ / n  G ~ / n .  magnetic form factors, GE / . 

If the kinematics are chosen so that Od = a /2  and +d = 0, then the e l N )  N' beam- 

vector asymmetry is directly proportional to the corresponding detected nucleon form 

factor ratio: - 

Due to the absence of free-neutron targets, the above equation is frequently used 

to extract measurements of G s i a  QE neutron scattering 1611. Such measurements 

require knowledge of the beam-vector polarization, hpZ, in order to extract GE SUC- 

cessfully. To reduce uncertainties, QE scattering from the proton can be used to 

extract a value for hPZ via normalization of the measured beam-vector asymmetry to 

the theoretical one. This measurement extracts h R  with small model uncertainty, 

since D-state effects as well as reaction mechanism effects are negligible in the QE 

limit. Additionally, the relatively large value for QE proton scattering as well as the 

high detector efficiency for proton detection guarantee small statistical errors in the 

extraction. 



Chapter 2 

The BLAST Experiment 

2.1 Introduction 

The experiment discussed in this thesis was undertaken with the Bates Large Accep- 

tance Spectrometer Toroid (BLAST) detector at  the MIT-Bates Linear Accelerator 

Center in Middleton, MA. In this chapter, the BLAST experiment is described in 

detail. 

2.2 Stored Polarized Electron Beam 

Longitudinally polarized electro~is are produced by photoemission using a X = 810 

nm circularly-polarized multimode fiber-coupled diode array laser system incident on 

a GaAso.95Po.05 crystal. The polarization state of the beam is determined by a half- 

wave plate in the path of the laser source; the plate is moved in or out with each fill, 

thus resulting in alternating fills having opposite polarization. 

After an initial 360 keV acceleration away from the crystal, the electrons enter 

into a linear accelerator consisting of 190 m of accelerating RF cavities. A recirculator 

transports the beam back to the beginning of the accelerator for a second pass through 

the RF cavities. The polarized beam leaves the linear accelerator at an energy of 0.850 

GeV. 

The electron beam is injected into the South Hall Ring (SHR) shown in Fig. 2-1. 



Figure 2-1: Overhead view of the MIT-Bates South Hall Ring. 

The SHR operates as either a storage ring for internal target experiments (such as 

BLAST) or as a pulse stretcher ring to produce nearly continuous-wave beam for 

external target experiments [14]. In storage mode, currents in excess of 200 mA are 

achieved by stacking beam pulses of a few mA head-to-tail at an injection rate of 

2 - 20 Hz. This head-to-tail injection results in the storage ring having a duty factor 

of 99% [20]. 

The SHR has an oval, racetrack design with sixteen dipole magnets, each bending 

the beam by 22.5O. An RF cavity internal to the ring is used to stabilize the beam 

energy as well as to compensate for synchroton radiation loss. Near the interaction 

region, four beam-quality monitor scintillators are placed to assist in tuning the beam 

fills. A listing of the SHR parameters for the BLAST experiment is given in Tab. 2.1. 

The beam tune must accomodate the storage cell in the center of the west straight 

section of the ring (the left side of Fig. 2-1). Due to the small radius of the storage 



Table 2.1: South Hall Ring Parameters. 

SHR Parameter 
Energy Range 
Circumference 

Revolution Frequency 
Bend Radius 

Stored Current 
Internal Duty Factor 
Injection Frequency 

RF Frequency 
Harmonic Number 

cell, a low P-function of the beam is required within this region to minimize scattering 

from the cell walls. To decrease background scattering further, a tungsten collimator 

with a radius slightly smaller than that of the target cell was placed slightly upstream 

of it. The collimator also helps to protect the target cell's coating from damage caused 

by the electron beam and synchrotron radiation [61]. 

The current in the ring is measured non-destructively with a zero-flux DC current 

transformer (LDCCT) [54]. It has a frequency response from DC to 100 kHz and an 

absolute accuracy of 0.05%; the output voltage is proportional to the beam current 

and is routinely calibrated. The output voltage goes to a 16 bit ADC and broadcasts 

it to EPICS [18], the slow-control system utlized in the project. It then goes to a 

voltage-to-frequency converter which is then digitized in a scaler. 

Value 
300 - 1000 

190.204 
1.576 
9.144 
2 100 

99 
1 - 1000 

2.856 
1812 

The longitudinal polarization of the electron beam in the storage ring is preserved 

by a Siberian snake [62] located on the opposite side of the ring from the target. The 

snake rotates the electron's spin vector to the opposite side of the momentum vector 

so that the g - 2 precession in the north arc of the ring cancels that in the south arc. 

Units 
MeV 

m 
MHz 

m 
mA 
% 
Hz 

GHz 

A Compton polarimeter is used to monitor the beam polarization in a nondestruc- 

tive manner [26]. The Compton polarimeter exploits the spin asymmetry of back- 

scattered polarized photons. Circularly polarized photons from a 5 W laser at  532 

nm are incident on the stored electron beam in a section of the ring upstream of the 

target. Photons are scattered into a narrow cone centered around the incident photon 

path. By alternating the polarization of the incident photons via a Pockels cell [2], 
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Figure 2-2: Daily measurement results of the polarization of the stored electron beam
over the BLAST running period.

the spin-dependent asymmetry for this reaction can be measured. Normalization to

the theoretical asymmetry gives the beam polarization. A set of absorbers, sweep

magnets, and charged-particle veto counters reduce the charged particle and synchro-

ton radiation backgrounds. The energy spectrum of the back-scattered photons is

measured by a CsI calorimeter. The average polarization during the experiment as

determined by the Compton polarimeter was 65 ± 4%. The uncertainty in this mea-

surement is dominated by the internal systematic uncertainties of the polarimeter.

2.3 The Polarized Deuterium Gas Target

BLAST utilizes an Atomic Beam Source (ABS) to inject polarized deuterium atoms

into an internal storage cell [61]. The ABS was originally used in the AmPS Ring

at the NIKHEF laboratory [24, 60] and modified to operate efficiently in the BLAST

toroidal magnetic field [29].

The physical layout of the ABS is shown in Fig. 2-3. Molecular deuterium is

pumped into a dissociator. An RF frequency of 27.12 MHz is applied, and the molec-

ular gas dissociates into its atomic constituents. The atomic beam is then ejected

from the nozzle; the nozzle is cooled to ,- 70 K to inhibit molecular recombination of

the dissociated atoms as well as to reduce the individual atomic thermal velocities for
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more efficient focusing. The ejected beam is focused by the sextupole magnet system

and passes into the ABS RF transition units.

Figure 2-3: Schematic representation of the ABS and target storage cell.

Polarization of the atomic beam is achieved by exploiting the hyperfine degeneracy

of deuteron spin states in the presence of a magnetic field (see Fig. 2-4). By applying

a superposition of a time-varying and static magnetic field, transitions between the

hyperfine states can be induced. Atoms populating undesired hyperfine states are

defocused by a sextupole (6-pole) magnet and removed from the atomic beam using

the Stern-Gerlach effect [11]. Depending on the desired polarization state, the atomic

beam passes through three kinds of transitions: a strong field transition (SFT), a



Figure 2-4: The hyperfine structure of deuterium. In the presence of an external 
magnetic field, B, the hyperfine energy levels, v;,, become nondegenerate. Here, 
I is the nuclear spin, S is the electron spin, and F is the total atomic spin. The 
various rnx (X = I, S, F) are the corresponding azimuthal spin projections along 
the polarization axis. B$ = 117 G is the characteristic magnetic field for hyperfine 
interactions in deuteriurrl. 

weak field transition (WFT), and a medium field transition (MFT). The SFT uses 

a time-varying magnetic field directed perpendicular to a static one to cause atoms 

to switch populations between different hyperfine multiplets; the WFT and MFT 

use a time-varying magnetic field directed along the static one to cause population 

changes within a hyperfine multiplet. By applying the correct sequence of transitions, 

it is possible to  produce positively and negatively vector/tensor (Pz/Pzz) polarized 

deuterium beam. As an example, the series of transitions that result in deuterium 

having a PZ = Pzz = +1 vector/tensor polarization is shown in Table 2.2. 

Upon leaving the ABS chamber, the polarized atomic beam enters the target cell 

within the scattering chamber. The target cell is internal to the SHR and is cylindrical 

in shape. It has a diameter of 15 mm and runs 60 crn parallel to the beam-line. The 

target cell is used to maximize the luminosity of the polarized atomic beam while 

preserving the stored electron beam in the SHR. The atomic beam enters via the 
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Table 2.2: The ABS transitions and sextupole magnet process for producing deu-
terium with positive vector and tensor polarization. The six ni entries in the leftmost
column correspond to the populations in the six hyperfine states in Fig. 2-4 as they
enter the ABS transition region. As the atomic beam progresses through the ABS,
various states are switched and/or removed.
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Figure 2-5: Plot of the target vector polarization, PD, over the course of the experi-
ment.

inlet tube at the middle and disperses throughout the entire 60 cm length of the

cell. The density profile along the cell is approximately triangular [48]. To decrease

depolarization within the target cell, the inside of the cell is coated with Drifilm and

kept at -- 100 K. A holding field magnet is used to define the target polarization axis.

It is capable of generating longitudinal and transverse magnetic fields. The holding

magnet is limited in length, however, to 40 cm. As such, only the innermost 40 cm

of the target cell contain reliably polarized atoms.

Over the course of the experiment, the ABS achieved an average intensity of

2.6x 1016 atoms/sec corresponding to a target thickness of , 4.5 x 1013 atoms/cm 2 [61].
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Figure 2-6: Plot of the target tensor polarization, PD, over the course of the exper-
iment.

The respective vector and tensor polarization magnitudes, Pz and P,,, were obtained

through known electron scattering reactions. The vector polarization was determined

from quasi-elastic 2H'(, e'p)n scattering and will be discussed in detail in Chap. 4.

The tensor polarization was determined from elastic 2H(e', e'd) scattering [58]. Both

polarizations were monitored daily during the experiment; weekly polarization results

are shown in Figs. 2-5 and 2-6.

2.4 The Toroid Magnet

The magnetic field used in BLAST is generated by eight copper conductor coils ar-

ranged symmetrically around the beam line (see Fig. 2-7). The resulting magnetic

field is toroidal about the beam line and serves to provide curvature to the trajecto-

ries of charged particles in the detector region. Such curvature is required to measure

particles' momenta and charge sign. Each coil consists of two adjacent layers of thir-

teen windings of 1.5 x 1.5 in2 hollow copper conductor. The operating current of a

coil is 6731 A. The maximum field produced by the coils is ,- 3800 G and occurs ~ 1

m from the beam line in the vicinity of the drift chambers.

The magnetic field has been extensively mapped in the target and detector regions

[20, 53]. The resulting map is used to reconstruct the trajectories of charged particles.



Figure 2-7: Magnetic coils in BLAST. Beam runs along the z-axis. 

Fig. 2-8 is a plot comparing the vertical component of the magnetic field with that 

of a Biot-Savart calculation assuming the coils are in their ideal, designed positions. 

The plot shows measurements in-plane (y = 0) and is plotted versus increasing per- 

pendicular distance from the center of the target ( z  = 0). Good agreement with the 

Biot-Savart calculatiori assuming ideal coil placement is seen. The major source of 

discrepancy is due to misalignment of the coils, which was not accounted for using the 

Biot-Savart calculation. In addition, some ferro-magnetic hardware has been added 

(e.g., iron shielding for the Cerenkov counters; see Sec. 2.5.1) since the mapping 

was performed; the presence of such material will also cause some deviation from the 

:results in the plot. 4 re-mapping of the field in the presence of the ferro-magnetic 

hardware is scheduled in the near future. 

2.5 The BLAST Detector 

The BLAST detector is designed to accommodate the geometry of the toroidal mag- 

netic coils (see Fig. 2-9). As discussed in Section 3.5, the drift chambers are designed 

t'o lie between the magnetic coils. To maximize acceptance, the chambers' entrance 
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Figure 2-8: Vertical component of the magnetic field along the in-plane axis perpen-
dicular to the beam axis at y = 0 and z = 0. Comparison is shown to the (ideal)
Biot-Savart field calculation. The difference between the measured value and that of
the corresponding Biot-Savart calculation, multipled by 10 (to aid in visualization),
is also shown.

plane is adjacent to the exit windows of the target chamber. Directly behind the

drift chambers is a layer of Cerenkov counter (CC) detectors followed by a layer of

time-of-flight (TOF) scintillators. Neutron counters are behind the TOFs. The drift

chambers, CC detectors, and TOFs in either sector are mounted onto a subframe.

The subframe can be moved away from the magnetic coils to allow detector mainte-

nance and access to the target chamber. The neutron counters have their own support

frame'.

High voltage is supplied to all of the detectors by remotely controlled HV modules

(LeCroy 1458 HP [37]). The HV is controlled using the EPICS [18] slow-control

system. Since this system also operates the South Hall Ring, integration of the two

is straightforward. The integrated package is named Automatic Ring Fill (ARF)

software. The ARF software allows for the safe, automatic injection of electron beam

into the South Hall Ring [23]. The automated beam fill procedure starts by sending

an electronic inhibit to stop data taking. The detector HV is next lowered to safe

'The neutron counters are installed for neutron-sensitive measurements such as that of the neu-
tron electric form factor, GI [61]. They are not relevant to the research done in this thesis, however,
and will not be discussed here.



Figure 2-9: Views of the BLAST detectors. The top picture shows the various de-
tectors with respect to the target in the absence of the magnetic coils. The bottom
picture shows the same setup as it actually is seen in the presence of the magnetic
coils.
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standby values. Once in standby, a set of beam scraping slits is moved out of the 

path of the beam, and any remaining beam in the ring is dispersed by targets placed 

in its path. The polarized source is turned on, and the state of the half-wave plate 

is reversed from its previous state. The resulting polarized beam is then stacked in 

the South Hall Ring to N 200 mA. Once fully stacked, the slits are moved back in 

to predetermined background-optimized positions, and the detector HV is ramped 

back up to operating values. Finally, the data inhibit is removed, and data taking 

commences once more. The entire ARF process is automated and takes - 1.5 min; 

it starts when the beam current drops below a preset value determined to maximize 

luminosity. By automating the process, data-taking time is used efficiently, and data 

acquisition dead time is minimized. 

2.5.1 Cerenkov Counter Detectors 

The Cerenkov counter (CC) detectors in BLAST discriminate electrons from pions. 

At sufficiently high pion energies, the timing resolution of the TOFs is not sufficient to 

discern between electrons and pions. Furthermore, since both particles have the same 

charge and thus similar curvatures in the BLAST magnetic field, the drift chambers 

also cannot discriminate between them. 

The CC detectors exploit the phenomenon of Cerenkov radiation [30]. A rela- 

tivistic particle traveling at a velocity, ,B, will emit Cerenkov radiation in the form of 

light when it passes through a medium with a velocity greater than that of light in 

that medium. If n denotes the index of refraction of the medium, then it follows that 

Cerenkov radiation will be emitted by the traveling particle when: 

or, equivalently, when: 

where E a-nd m, are the respective energy and mass of the particle. By choosing 



a medium with an appropriate index of refraction, one can make it kinematically 

possible for only one type of particle (electrons, in the case of BLAST) to emit 

radiation. 

0*55k Right Sena 
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Figure 2-10: Plot of CC detector efficiency as a function of TOF number. The TOF 
number increases as one goes further upstream. The falloff in Cerenkov efficiency for 
TOFs #3, #7, and #10 is due to edge-effects. 

There are four CC detectors used in each sector of BLAST2. The most downstream 

one in either sector contains 7 cm of radiator (silica aerogel) with an index of refraction 

of 71 = 1.02; the other ones all contain 5 cm of radiator with n = 1.03. The smallest, 

most-downstream counter has six photomultiplier tubes (PMTs) attached to it. The 

second counter has eight PMTs while the third has twelve. The size (width x height 

x depth) of the largest CC detector is 100 x 150 x 19 cm3. All of the CC detectors' 

PMTs were shielded with iron to avoid losing efficiency due to the BLAST magnetic 

2The fourth CC detector is used in front of the back-angle scintillators (BATS; see Sect. 2.5.2) 
and is not corisjdered in this work. 



field. 

The efficiencies of the CC detectors for electron detection are obtained from elastic 

electron scattering on hydrogen. Scattered electrons are identified by coincidences 

between drift chamber tracks (with appropriate elastic cuts) and scintillator hits in 

the TOFs behind the CC tletectors. The resulting efficiencies are plotted in Fig. 2-10. 

On average, the CC detectors are - 85% efficient with a slight falloff in efficiency 

with increasing TOF number. The falloff in efficiency is due to the fact that the 

downstream-curved electrons hitting the most upstream TOFs miss the corresponding 

Cerenkov box. 

2.5.2 Time-Of-Flight Scintillators 

Timing for the trigger as well as particle identification is provided by the time-of- 

flight (TOF) scintillators. Sixteen TOFs are situated in both of the left and right 

sides of the detector3 immediately behind the three forward-most Cerenkov counter 

detectors. The acceptance of the TOFs covers the entire acceptance of the drift 

chambers; particles passing through the drift chambers will thus also pass through 

the TOFs. 

The TOFs all consist of 2.5 cm thick Bicron BC-408 scintillator [49]. The four 

most downstream TOFs are each 120 cm tall; the remaining twelve TOFs are each 

180 cm tall. The variation in TOF height is due to the fact that the azimuthal 

acceptance of the drift chambers decreases with decreasing polar angle. 

On either end of each TOF, a photomultiplier tube (PMT) is mounted. Assuming 

the velocity of light to be constant within a TOF, the hits in each TOF7s two PMTs 

can be mean-timed together to return a time independent of position along the TOF. 

All thirty-two TOFs have their (delayed) mean-timed hits 'OR'ed together so that the 

earliest TOF hit provides the common stop by which to reference the drift chamber 

hits in the event. 

The TOFs have an intrinsic timing resolution of N 350 ps [17]. At kinetic energies 

3An additional four backward-angle TOF scintillators (BATs) are located at extreme backward 
angles to allow large Q2 measurements. However, the BATs are not considered in this work. 



of 0.400 GeV or lower, the time difference between a pion and a proton traveling from 

the target to a TOF is - 7 ns. Thus, the TOFs can reliably be used for particle 

identification. 

2.6 Trigger and Data Acquisition 

The BLAST trigger is a programmable trigger capable of accepting the simultaneous 

physics channels arising in the large-acceptance BLAST spectrometer. A schematic of 

the trigger is shown in Fig. 2-11. Although originally developed in conjunction with 

JLab Hall A,  the trigger software has been updated and overhauled for the BLAST 

project. 

Raw signals from each detector are split into two signals. One signal is delayed 

and passed into a FASTBUS ADC module (LeCroy 1881 M [35]) for integrated charge 

measurement. The other (non-delayed) signal is sent to a detector-specific discrimina- 

tor (a LeCroy 3412 Constant Fraction Discriminator 1381 for the TOF scintillators and 

a LeCroy 3420 Leading Edge Discriminator 1361 for the CC detectors). The output of 

the PMT a t  the top of each TOF is mean-timed with that of thr  PMT at the bottom 

of the TOF; the CC detectors' output for all CC detectors is 'OR'ed together before 

discrimination. The resulting signals for the detectors in a sector are then passed into 

LeCroy 2373 Memory Lookup Units (MLUs) [33]. The outputs of these two units are 

connected to a cross sector memory lookup unit (XMLU), which is programmed for 

various desired left/right sector detector combinations. The output of this unit is 

referred to as the first-level trigger. 

After initial analysis of the data, it was discovered that the data for the majority 

of the first-level triggers did not reconstruct into drift chamber tracks. The source of 

the large number of such events is presumed to be upstream electron-positron showers 

from the collimator that scatter into the detectors. In order to reduce the number of 

t; hese trackless events, a second-level trigger was instituted. The second-level trigger 

demands at  least one hit in each of the three drift chambers in a sector. Usage of the 

second-level trigger lowered the data readout deadtime from -- 4 0 % ~  to -- 1 5 % ~ .  
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Figure 2-11: h schematic of the BLAST trigger logic. Only one circuit is shown 
for each detector type, and only the left sector circuit is shown. The logic from the 
left sector (LMLU) and the right sector (RMLU) are combined into the cross MLU 
(XMLU) to form the total trigger. 



1+ TOF in one sector, a NC in the other 
2+ TOFs in the same sector with a CC 

2+ TOFs in the same sector 
1+ TOF in one sector, a BAT in the other 

1+ of the four upstream TOFs in one sector 
1+ TOF in one sector with a CC 

Flasher 

Trigger 

0 

Table 2.3: Listing of recorded XMLU physics triggers: TOF = time-of-flight scin- 
tillators, CC = Cerenkov counter, NC = neutron counter, BAT = back-angle-TOF 
scintillator. 

A listing of the various classes of triggers recorded in BLAST is shown in Tab. 

Description 

I+ TOF in each sector 

2.3. Some of the higher-rate triggers were prescaled in order to not lose lower-rate 

Prescale Value 

1 

events due to deadtime. 

2.7 The BLAST Monte Carlo 

Simulation of the BLAST experiment is divided into two components: event genera- 

tion and particle propagation. Event generation is handled by the DGen event gen- 

erator, a C++ object'-oriented library developed specifically for the BLAST project. 

Originally designed for elastic and quasi-elastic deuteron target event generation only 

(hence the name DGen), it has since grown to include hydrogen target event gener- 

ation as well as more exotic deuteron reaction channels (e.g., A resonances and pion 

creation). Given a reaction type and target, DGen generates initial event kinematics 

for all particles in the reaction consistent with current theory (see below). Events can 

he distributed according to cross section or else in a flat "white" distribution. 

Particle propagation is handled by a GEANT [16] Monte Carlo code simulating 

the beam, target, and detector hardware as well as physics processes occuring during 

propagation (e.g., energy loss, multiple scattering, hadronic interactions, etc.) . De- 

tectors are positioned within a master coordinate system referred to as the BLAST 



coordinate system with Cartesian axes defined as follows: 

iB : points in the direction of electron beam flow (i.e., downstream) 

yB : points towards the ceiling of the South Hall Ring 

2B : points in the remaining direction so as to form a right-handed coordinate 

system with the yB and iB vectors (i.e., 90" left of the beam direction) 

The center of the BLAST system is defined to coincide with the center of the target 

cell. Each detector also has its own detector-specific coordinate system and origin. 

The detector's origin is positioned within the BLAST coordinate system, and the 

detector's coordinate system is then oriented about that point. The detectors were 

surveyed to provide realistic position and orientation information. 

Event generation for deuteron electrodisintegration is based on the formalism of 

Arenhovel et al. [6, 71. Events are generated in a six-dimensional phase space4: 

: azimuthal angle of the scattered electron 

#FnM : azimuthal angle of the proton in the p - n center-of-mass frame 

oC" : polar angle of the proton in the p - n center-of-mass frame Pn 

w : energy transfer 

19, : polar angle of the scattered electron 

t : event vertex position along the iB axis 

When using the "white" generator, for each event, a spin-dependent cross section is 

assigned as a weight (see (1.37)). The various deuteron electrodisintegration struc- 

ture functions have dependence on Be, and w ;  the asymmetries, composed of 

kinematically-weighted linear combinations of the structure functions, have additional 

dependence on $;f? and, indirectly5, on 4e. The structure functions are calculated 

by Arenhovel and collaborators on a grid of 0,: OgM, and w relevant to the BLAST 

acceptance. The sixth variable, z ,  is generated using a triangular distribution func- 

4Additionally, the beam energy is taken to be a known constant of 0.850 GeV 
5The asymmetries have direct dependence on O d ,  the polar angle of the deuteron's polarization 

vector with respect to the three-momentum transfer vector, (7. However, in order to specify q' 
completely, the polar angle of the scattered electron, 4,, must be known. 



tion in accordance with the target density distribution. A map of the target holding 

field is used to calculate the target polarization angle along the iB axis. 

The particles in the events are then propagated outward through the BLAST de- 

tector. All physics interactions are allowed6 including secondary particle generation. 

Hits in the detectors are txacked and recorded at the end of each event. Depending 

on the desired reaction (21?(e', ee'p)n or 21?(e', ee'n)p), various detect,or hit combinations 

are demanded; events passing those cuts are deemed "good" events. Detector kine- 

matic resolutions are determined from real data and then convolllted into the Monte 

Carlo event list. 

60ne  exception to this is radiative effects which are absent in GEANT. 
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Chapter 3 

The BLAST Drift Chambers 

3.1 Introduction 

Drift chambers are designed to return position information on the trajectory of 

charged particles. Such position information can be used to extract information 

regarding the particle's momentum and charge and as well as information regarding 

the corresponding track's vertex position. When used in tandem with other detectors 

(e.g., time-of-flight detectors), drift chambers can be an effective particle identification 

mechanism. 

In this chapter, the BLAST drift chambers are discussed in detail. A short sum- 

mary of the physics behind drift chambers is first presented. Afterwards, an individual 

BLAST drift cell is described, followed by a general layout of the drift chambers and 

details of their construction. Finally, calibration, operation, and performance of the 

(drift chambers are discussed. 

3.2 Overview of Drift Chamber Theory 

This section gives a short summary of the essential ideas and physics behind the 

principles of a drift chamber. Refs. [15] and [51] provide a more comprehensive 

tfescript ion of their properties. 

Charged particles traversing a gas leave a trail of stochastically-distributed free 



electrons. By applying an electric field, the electrons "drift" from their origination 

sites to designated readout wires in a series of repeated accelerations and decelera- 

tions. The electrons accelerate for an average distance given by the gas's mean free 

path (- 1 pm) and decelerate by colliding with gas molecules. The net effect is a 

fairly constant, calculable drift velocity as a function of the applied field. Gas mix- 

tures used in drift chambers have drift velocities on the order of - 1 - 2 cm/ps. With 

drift distances of - 3 - 4 cm, drift times around N 2 - 4 ps are typical. By measuring 

the drift time, the position of the ionization can be determined. The limitation on 

drift distance is the diffusion of ionized electrons in the gas: longer drift dist,ances 

have larger diffusion which worsens the resolution. 

At low gas densities, the energy lost by the traversing particle is relatively very 

small (- 1 keV/cm of gas), and the particle's momentum is not significantly per- 

turbed. Such a quality is essential in a momentum-determining detector since any 

momentum change is inherently convoluted into the measurement. 

To detect the electrons reaching the readout wires, a mechanism must exist for 

their amplification. Gain factors of - lo6 are desirable. The electric field near the 

readout wires goes as - l l r .  Very close to the wires, the electric field is strong 

enough to accelerate the electrons enough to ionize the gas. This ionization produces 

another free electron, and the pattern repeats, evolving into an electron "avalanche". 

For typical drift chamber gas densities and corresponding mean free paths, the field 

starting the avalanche is of the order of - 10 kV/crn. To achieve such high fields and 

allow for sufficient ionizations, the readout wires must be very thin (N  10 - 30 pm). 

The region in which the avalanche occurs is small (within 75pm of the readout 

wires), and it takes - 1 ns to occur. Thus, the total time between ionization and 

charge collection on the wire is dominated by the drift time. 

3.3 Drift Chamber Gas 

The gas mixtures used in drift chambers typically consist of two gases: an ionization 

gas and a quenching gas. The ionization gas produces most of the ionization caused 



Figure 3-1: Plot of efficiency as a function of the electric field, E, at  the surface of a 
readout win:. 

by traversing charged particles. Typically, the ionization gas is a noble gas; helium, 

argon, and krypton are common. Because of their high excitation energies, noble gas 

molecules excited by a traversing charged particle can ionize quenching gas molecules, 

thus leading to further ionized electron production via secondary reactions. 

Recombination effects in the avalanche region produce a large number of energetic 

photons. These photons, left unchecked, would cause more ionization, resulting in 

constant electric discharge and breakdown. To avoid this problem, a quenching gas is 

used to absorb the resulting photons. Quenching gases are typically large hydrocarbon 

molecules, such as methane, ethane, propane, and isobutane. Such large molecules 

:have numerous rotational and vibrational excitation states which allow them to absorb 

many of the unwanted photons. However, the quenching gas also tends to absorb the 

(wanted) ionized electrons, becoming worse for longer drift distances. For this reason, 

i3 balance must be achieved to provide sufficient quenching but retention of efficiency 

1;hroughout the drift region. 

Due to sniall differences in the wires and their geometry, it is not possible to have 

all wires with exactly the same gain. It is therefore important to use a gas mixture 

with a plateau of voltages over which detection is efficient. A typical efficiency curve 

is shown in Fig. 3-1. At low electric fields, the gas gain is not large enough to 
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Figure 3-2: Overhead view of a drift cell in BLAST. 

be detected, and the efficiency is thus low. At too high an electric field, the gas 

becomes ionized near the readout wires without an initial ionization electron, and 

the detector is "noisy". Between the li~nits, a plateau region exists along which the 

gains are sufficient for efficient detection. The wires' voltages are adjusted to lie on 

this plateau. For argon the plateau region is large (N  500 V) while for helium it is 

only 100 - 200 V in width. Lighter gases, however, cause less multiple scattering 

of the traversing particles which improves the position resolution. There thus exists 

a tradeoff in plateau voltage range and position resolution. 

3.4 Drift Cell Design 

The drift chambers used in BLAST are made up of "drift cells." The drift chambers 

can be understood by studying an individual drift cell. In BLAST, a drift cell is a 

rectangular array of thirty-nine wires (see Fig. 3-2). A cell has transverse dimensions 

of 4.0 crn x 7.8 cm. 

The wires in a cell fall into one of three functional categories: sense, field, and 

guard. Sense wires are the readout wires. The charge from ionization amplified 

by the gas gains acculumates on them and is read out via amplifier-discriminator 



Figure 3-3: Drift lines in a drift cell in the absence of an external magnetic field. 

cards. There are three sense wires in each cell. The sense wires consist of 25 pm-thick 

tungsten wire with 3% rhenium alloy; the wire was electrolytically cleaned to remove 

oils used in its manufacture. Neighboring the sense wires are guard wires. Adjusting 

the guard wire voltages allows the gains to be matched on all three sense wires and 

helps to contain the electric field. The guard wires consist of 100pm-thick berilium 

copper alloy. The remaining wires are collectively referred to as field wires and are 

used to shape the electric field. The field wires are also 100 pm-thick berillium-copper. 

The drift cell geometry and wire voltages must be optimized to achieve sufficient 

gas gain on the sense wires and to transport ionization electrons from all parts of the 

drift cell to the sense wires. In the absence of a magnetic field, the electric field for 

i2 drift cell is shown in Fig. 3-3. The electric field resembles two oppositely-directed 

"jets" for each sense wire. Ionized electrons produced within the cell drift along the 

electric field lines to one of the sense wires. Increasing guard wire voltages would 

make the jets narrower and simplify reconstruction but reduce the efficiency of the 

electron collection. In practice, a tradeoff must be reached. 

In BLAST, the voltages on various cell wires are as indicated in Fig. 3-5. The 

voltage on the middle guard wires was chosen to make the gain on the central sense 

wire the same as the other two. The voltage drop between field wires was chosen to 



Figure 3-4: Drift lines in the presence of a 3800 G magnetic field. 

make the drift region uniform. 

In BLAST there is an external magnetic field. In general, in the presence of 

arbitrary electric and magnetic fields, I? and 2, the resulting velocity, v', tha,t a 

particle of mass m and charge q achieves satisfies: 

dv' 
m - = q ( E + v ' x z ) - K C  dt 

Here, a frictional force proportional to v' has been assumed. In the steady state, the 

general solution to this equation is given by: 

where w - (ql 1 B l lm is the electron's cyclotron frequency and r - m / K  is the char- 

acteristic time of the system. In BLAST, the magnetic field is approximately perpen- 

dicular to the electric field (i.e., E B = 0). Taking this into account reduces (3.2) 

to: 



The presence of a nonzero magnetic field causes the ionized electrons to travel at  an 

angle, q ! ~ ~ ,  with respect to the electric field. This angle is commonly referred to as 

the Lorentz angle: 

Figure 3-5: Wire voltage distribution within a cell. 

In BLAST, the magnetic field varies over a range between - 700 - 3800 G. Thus, the 

Lorentz angles vary from cell to cell. Typical Lorentz angles in BLAST are 2 - 8". 

A plot of the drift lines with a 3800 G magnetic field (i.e., the maximum magnetic 

field in BLAST) is shown in Fig. 3-4. 

Due to various reaction processes that occur during photon recombination, positively- 

ionized quenching gas molecules are produced after an ionization avalanche occurs. 

These ions drift to wires containing a net negative charge. If the electric field on the 

surface of these negatively-charged wires is too high, quenching gas ions can attach 

and develop "whiskers", i.e., chains of ionized quenching gas molecules. Over time, 

whiskers can grow long enough to cause breakdown with the sense wires and make 



a drift chamber inoperable. To prevent the growth of whiskers, the electric field on 

the surface of these wires should be as low as possible. This is accomplished by using 

large diameter wire to ensure that the surface field is small (< 30 kV/cm). Such low 

fields are sufficient to inhibit whisker growth. 

Figure 3-6: Different views of a drift chamber sector in BLAST. Starting from the 
top picture and going clockwise: 1) an overhead view, 2) a sideways view, and 3) a 
front view. 

3.5 Drift Chamber Design 

The six drift chambers in BLAST are arranged into two assemblies of three-chamber 

"sectors". The basic schematics of a sector are shown in Fig. 3-6. 
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Figure 3-7: View of the two drift chamber sectors as positioned in BLAST between 
the magnetic coils. 

Figure 3-8: Overhead view of the drift chambers in BLAST. The left picture shows 
the chambers with hidden lines visible. The right picture shows the same setup as it 
actually is seen. 



Figure 3-9: View of the coils' shadow regions inside which the drift chambers lie. 

The three drift chambers in a sector form a cornmon gas volume. The volume 

is made gas-tight by placing double layers of 25 pm-thick mylar over the sector's 

entrance and exit planes. Between the two mylar sheets nitogren gas is flowed to 

flush away drift chamber gas that escapes. By making a common gas volume out 

of three drift chambers, energy loss due to the addition of entrancelexit windows is 

minimized. 

The physical design of the drift chambers is largely determined by the geometric 

restrictions imposed by the magnetic coils. Two opposing sectors are each instru- 

mented with a three-chamber sector as shown in Figs. 3-7 and 3-8. The drift cham- 

bers are positioned downstream of the target center and inclined towards the beam 

line at  their downstream side. This is done so that particles coming from the target 

traverse the chambers at angles of N 90". Such positioning requires the chambers to 

be trapezoidal in all three perpendicular directions. 

Due to the 3.5" thickness of the magnetic coils, there exists a "shadow" region 

behind each coil (Fig. 3-9) into which particles originating from the target cell do 

not propagate. To achieve the maximum acceptance between the coils, the drift 

chambers' frames are designed to lie within these shadow regions. The limited size of 

the shadow region forces the chambers to have relatively thin cross sections as shown 

in Fig. 3-10. 

Each drift chamber sector subtends a polar angular range of 0 20" - 80". At the 



Outer Chamber 

Middle Chamber 

Inner Chamber d 

Figure 3-10: Cross section of the drift chambers. Compare with the shadow regions 
in Fig. 3-9. 

downstream side (the 19 - 20' side), the sector subtends an azimuthal angular range 

of q!~ - -15' - 15'; at  the upstream side (the 0 - 80" side), this range increases to 

4 - -22O - 22'. The total solid angle subtended by each chamber sector is - 0.50 sr. 

Each of the three drift chambers in a sector contains multiple drift cells arranged 

into two parallel rows of "superlayers". In each of the two sectors, there is a total of 

159 drift cells distributed as in Tab. 3.1. Each cell consists of 39 wires, three of which 

:%re sense wires. In total, there are 9,648 wires in the six BLAST drift chambers; 954 

I Middle Chamber 1 26 1 27 11 53 1 
Inner Chamber 

Table 3.1: Number of drift cells per superlayer. 

Superlayer 

Outer Chamber 
Total 

Inner 
18 

34 
78 

Outer 
19 

Total 
37 

35 
81 

69 

159 



of these are sense wires. 

The drift chamber gas is Helium:Isobutane(82.3%:17.7%). Within a sector, the 

drift chamber gas flows into the gas-tight region through multiple holes located on 

the upstream side of the chambers. Exit holes are located only on the downstream 

side. The gas entrance and exit holes are arranged to minimize pockets of unrecycled 

gas. A flow rate of 3 l/min is typical. 

3.6 Drift Chamber Construction 

The aluminum frames for the drift chambers were built by Allied Mechanical in 

Ontario, CA, and the disassembled pieces were shipped to the MIT campus where 

they were later assembled. Dowel pins ensured the alignment of the pieces. 

The drift chambers were strung on the NIIT campus. Each wire was strung under 

tension primarily to resist movement in the chambers' electromagnetic field and sec- 

ondarily to resist gravitational effects. Sense wires were strung at a tension of 50 g 

while the remaining wires were strung between 50 - 800 g, depending on the length 

of the wire. 

Because of the large number of wires in the chambers, a fully strung chamber is 

under significant tension (N  1 ton). Such large tensions cause deflections of up  to a, 

few millimeters in the frame. The chambers were thus pre-stressed by piano wire at  

tensions simulating the fully-strung chamber. 4 s  stringing progressed from one end 

of the chamber to the other, the piano wires were gradually removed. 

The actual stringing of the chambers followed a detailed, systematic method to 

guarantee uniformity and cleanliness of the chambers. The chambers' frames were 

cleaned with acetone to remove grease and then with isopropanol to remove any 

residue. Each hole was also cleaned using clean-room swabs. Temporary 0.25" thick 

plastic windows were then attached to enclose the chamber. These windows helped 

keep the chamber interior clean during wiring and protected the wires from accidents. 

The wiring took place inside a clean-room (class - 1000) at MIT. First, a long, 

thin needle (up to 1.4 m) was inserted through the proper holes on each side of 



Figure 3-11: A feedthrough used to hold a drift wire. (a) View of the feedthrough 
(b) A crimped feedthrough holding a wire (c) Dimensions of a feedthrough 

Pin 

the chamber. A feedthrough was then threaded onto the proper wire (tungsten or 

copper), and the wire was attached to one end of the needle. The needle and wire 

were then pulled through to the other side of the chamber. The wire was cut from 

the needle, and a feedthrough was threaded onto it. The feedthrough on the first side 

was then installed into the hole and crimped. A weight hung over a pulley was then 

attached to the free end of the wire to tension the wire. The second feedthrough was 

then installed into the remaining hole and crimped. This process was repeated for all 

of the wires; the pre-stressing piano wires were gradually removed as the permanent 

wires were installed. 

- 

The schenlatics of a feedthrough are shown in Fig. 3-11. Each feedthrough consists 

of a gold-plated copper tribe inserted into Delrin [22] insulator. They are designed to 

stand 1 cm from the chamber frame to avoid sparking between the (grounded) frame 

and the wires. The feedthroughs are a press-fit in the holes in the chamber. An RTV 

epoxy resin, Sylgard [21], was applied to the external feedthrough area to make them 

gas-tight . 

i i 

Base 

To check that the wires were at the desired tensions, the following method was 



3.7 Drift Chamber Electronics 



wire voltage drops are handled by a chain of resistors connected to ground. 

Figure 3-13: Circuit diagram showing drift cell signal readout. A differential amplifier 
is used to reduce noise. 

To reduce noise, the signal readout from each sense wire is connected via a dif- 

ferential amplifier to a neighboring guard wire (see Fig. 3-13). A 31' threshold is 

supplied to tl he amplifier for further signal discrimination. The resulting ECL signals 

are then passed to FASTBUS TDC modules [34]. 

All electronics for the drift cells lie in copper boxes in the recesses between the 

chambers (see Fig. 3- 10). Each box distributes HV and supplies readout electronics 

for up to five adjacent drift cells in a particular superlayer. 

3.8 Drift Chamber Calibration 

To reconstruct tracks accurately, the sense wire positions must be known very pre- 

cisely. Additionally, since the drift chambers are designed to have a resolution of 

N 120prn, knowledge of the sense wire positions to an accuracy much smaller than 

tjhis is required. To satisfy these constraints, the drift chambers need to be accurately 

calibrated. 

The time, ti, at  which ionization for a hit on sense wire i in a drift cell reaches 

the sense wire is related to the in-plane position, xi, of particle traversal according to 

the relation: 

Xi = X i  fi d ( T ,  - t i )  , = 0,1,2 (3.6) 
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Figure 3-14: Drift chamber TDC spectrum.

Here, Xi and Ti are calibration constants specific to the sense wire, and d(Ti - ti)

is the functional form for the time-to-distance relation for the drift chamber gas in

terms of the drift time, Ti - ti. The value of the sign in front of d(Ti - ti) depends on

which side of the sense wire plane the particle traversed; the i subscript is necessary

since, in general, the side can change for each wire within a drift cell depending on

the particle's trajectory. All of these aspects are described in more detail below.

The calibration constant Ti can be interpreted as the time at which the ionizing

charged particle crossed the plane of sense wire i. Drift chamber TDC data in BLAST

were taken in common stop mode, the stop being provided by the earliest event

in the top/bottom mean-timed photomultiplier signal of the time-of-flight (TOF)

scintillators (see Sect. 2.5.2). As a result, ti < Ti for all ti and the appropriate form

of the drift time is Ti - ti.

A typical TDC spectrum for a sense wire is shown in Fig. 3-14. Since data

were taken in common stop mode, hits closest to (farthest from) the wire appear

at high (low) TDC values. The peak at high TDC values arises from the large

variation in isochrones (i.e., lines of constant drift time) in the immediate vicinity of

the sense wire which, when coupled with the stochastic nature of ionization, results

in an enhancement of drift times slightly away from the wire. Moving away from the

____O220002



Figure 3-15: Rack reconstruction without any sense wire stagger (top) and with 0.5 
mm sense wire stagger (bottom). Without stagger, the side of the traversing particle 
cannot be determined. With stagger, the three hit distances form a straight line only 
if the correct side is chosen. 

sense wires, the TDC values plateau until the edge of the drift cell is reached; the 

signals then drop back into the noise. The flatness of this plateau is a measure of the 

efficiency of the gas mixture to allow for ionization propagation all throughout the 

cell. The entire TDC distribution has a width of - 4000 channels. Since one side of 

a drift cell is 39 mm long and since 1 ns = 2 TDC channels, the average velocity of 

drifting electrons in the gas is 20pm/ns. 

To first order, Ti can be considered constant for all sense wires and equal to the 

(undela~ed) time of the common stop. The relative timing of all of the TOFs has 

been set up to be the same (within 1 ns) for any relativistic particle coming from 



the target. However, since a relativistic particle crosses different planes of sense wires 

at  different times, Ti is, in practice, different for each sense wire. 

The calibration constant Xi represents the in-plane position of the center of sense 

wire i. It is made up of two components: a 0.5 mm stagger and deviation about that 

stagger. The first (i = 0) and third ( i  = 2) sense wires in a cell are each staggered 

0.5 mm in the -2 direction while the middle sense wire (i = 1) is staggered 0.5 mm 

in the +it direction. In the absence of such a stagger, TDC information would not 

be sufficient to determine which side of the sense wire plane the particle traversed. 

However, when a stagger is introduced, the three xi distances form a straight line only 

if the correct f signs have been chosen for all three sense wires. This phenomenon is 

shown in Fig. 3-15. There are 23 - 1 = 7 sign combinations1 that need to be tested. 

The second contribution to Xi comes from deviations of the wire from its ideal 

position. Due to machining tolerances during construction, feedthrough holes can lie 

up to - 20pm away from their ideal positions. Additional deviations can arise from 

manufacturing errors causing the copper tube in a feedthrough to lie preferentially 

away from the center of the Delrin insulator as well as from biases due to the actual 

crimp of the tube. Collectively, these deviations can add up to a total deviation of 

- 100pm. In order for the drift chambers to have a resolution of - 120pm, these 

deviations must be accounted for. 

The time-to-distance relation, d(T, - ti), listed in (3.6) is a very complicated 

function in principle. In general, it depends on multiple parameters: the sense wire 

within the cell, the angle that the ionizing particle makes with the i axis, the magnetic 

field along the sense wire, the side from which the ionization came, and the drift 

time, Ti - ti. For realistic time-to-distance relations, the magnetic field program 

MAGBOLTZ [8, 131 is used, explicitly taking into account all of these variables. 

A typical time-to-distance distribution is shown in Fig. 3-16. At small times, the 

distance is approximated by a cubic polynomial in Ti - ti; at large times, a linear 

relation is sufficient. Where the two regions meet, continuity is demanded in both 

' ~ u e  to the orientation of the staggers, one of the combinations (f = +, f = -, and f = +) 
is unphysical and thus is not checked. 



Figure 3-16: Typical plot of drift distance versus drift time. The relation, in general, 
depends on the sense wire within the cell, the angle that the ionizing particle makes 
with the 2 axis, the magnetic field along the sense wire, the side from which the 
ionization came, and the drift time, Ti - ti. A cubic polynomial is fitted to each 
relation a t  low drift times; a linear relation is fitted at  high drift times. 

the approxinlations as well as in their first derivatives. A higher-order polynomial is 

needed close to the wire due to the nonlinearities in the magnetic field that appear 

there. 

Approxinlate values for the Xi and T, calibration constants are found by using 

the lowest order approximation for the time-to-distance relation: 

In this approximation, the velocity, v, of ionized electrons in a cell is assumed to 

be everywhere constant. More accurate determinations of Xi and Ti utilize iterative 

techniques involving higher-order polynomial fits. 

With appropriately calibrated drift chambers, the intrinsic resolution can be mea- 

sured. A straight line is fitted to the three sense wire hits within a cell, and the 

variation in hit position from that line is determined. The process is repeated for nu- 

rnerous events, resulting in a variation distribution. With correctly chosen calibration 



const ants and time-to-distance relations, the distribution is Gaussian and centered a t  

zero. In BLAST, such analysis returns an intrinsic resolution of - 130pm, which is 

very close to the ideal resolution of 120pm. 

3.9 Drift Chamber Reconstruction 

Ideally, a charged particle passing through a BLAST drift chamber sector causes hits 

on eighteen wires2: 3 chambers x 2 superlayers per chamber x 3 sense wire hits per 

superlayer = 18 hits. The information from these hits is collectively used to return 

an overall momentum and vertex position for the particle causing the hits. The 

procedure for the drift chamber reconstruction is outlined below: 

1. Cell proximity checks are made on hits within a particular superlayer. Groups 

of hits lying in sufficiently close cells are identified and collectively referred to 

as a "cluster". Hits not satisfying the proximity checks are discarded. 

2. For each of the hits in a cluster, the corresponding distance, (3.6), is determined. 

Good-fit planes are found; such planes are referred to as "stubs". Within a 

superlayer, stubs all run parallel to the sense wire planes. 

3. Stubs in the two superlayers within each cell are collectively used to determine 

overall good-fit lines for the chamber referred to as a L'segment". In order to 

extract vertical position information for the particle trajectory, adjacent super- 

layers lie at  a f 5' stereo angle with respect to the vertical. 

4. A circle is fitted to the three segments in a sector (one for each chamber) to 

extract an initial approximation to the track of the particle. To the extent 

that the magnetic field is constant within the particle's trajectory, a circular 

fit is a reasonable first-order assumption. From this fit, approximate values are 

determined for the momentum and vertex position of the particle trajectory. 

21nefficiency of the wires as well as noise hits can change this number. 
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Table 3.2: Electron and proton resolutions in BLAST along with design resolutions. 

electron 
proton 
design 

5. Once initial kinematics have been found, an iterative process begins wherein 

the particle is swum out from the target in small steps to the drift chamber 

region using the measured magnetic field. The corresponding hit distances are 

determined and compared with the actual ones. Kinematics are corrected using 

the Newton-Rhapson method [46], a multi-dimensional version of the more- 

commonly known one-dimensional Newton's method. The swimming process 

then starts over again; iteration continues until a sufficiently low X 2  value is 

achieved. 

High wire efficiency is necessary for reliable, quick reconstruction. While eighteen 

hits per track is optimal, track reconstruction is possible, with some restrictions, for 

tracks down to twelve hits. The combinatorics associated with such tracks, though, 

are large, and these tracks thus have worse resolutions. Each sense wire in BLAST 

is N 98% efficient. Of the eighteen hits possible in an ideal track, this value implies 

that -- 70% of all tracks have eighteen hits and that > 99% of all tracks have at  least 

sixteen hits. 

Kinematic resolutions in BLAST are determined from elastic electron scattering 

from the proton. Non-azimuthal momentum kinematics in this reaction (i.e., 0,, OP, 

p,, and p,) are all determined from one variable. As a result, reconstructed values of 

these variables can be plotted against calculated ones. The widths of the resulting 

histograms return information directly related to the resolutions of these kinematics. 

Additionally, resolution information for azimuthal angles (i.e., 4, and $p) is returned 

from coplanarity histograms of their sum; vertex resolutions (i.e., z, and 2,) come 

from the single vertex position requirement. The resulting kinematic resolutions for 

the electron and proton are shown in Tab. 3.2 along with design values. 
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Chapter 4 

Data Analysis 

4.1 Overview of the Experiment 

This work is based on 1100 hours of data taken from the scattering of polarized 

electron beam off the polarized internal deuterium target in the South Hall Ring. 

The time-averaged stored current in the ring for the entire experiment was 95 mA. 

As improvements in the beam and tune were made, the maximum injected beam 

current per fill increased over the lifetime of the experiment from 100 mA to 140 mA. 

Beam fills had an average lifetime of N 20 min. 

The total accumulated charge using the polarized beam and deuterium target was 

N 400 k c .  In order to reduce systematics resulting from extended running in the same 

polarization state, the beam's helicity was flipped with every fill (- 20 min), and the 

target polarization state was switched every 5 min between the vector plus, vector 

minus, and tensor minus states. At the beginning of a target polarization sequence, 

the initial target polarization state was randomly chosen, and the remaining two 

states sequentially followed. Switching the beam and target polarization states in 

this manner resulted in data being taken in all six beam-target polarization states 

during every hour of run-time. 



4.2 Identification of 2 ~ ( ~ ,  e'p)n Events 

Data returned from reconstruction were incomplete in discriminating *I?(e', erp)n 

events from all of the reaction channels open to the BLAST detector acceptance. 

Instead, kinematics cuts had to be imposed on the data to separate the desired 

events. Since the electron and proton are both charged particles, only events with 

coincident drift chamber tracks in each sector were considered for possible 21?(e', erp)n 

events. For these events, the information returned from reconstruction consisted of 

the following: 

a The spherical coordinates for the reconstructed momentum vectors, p' = (p, 0, $), 

for both of the leftlright sector coincident tracks as well as vertex z positions 

for each track along the target. 

a Drift chamber TDC information as well as the charge of the particle in each of 

the tu70 coincident tracks in the event. 

a TDC and ADC information in each sector for the event for the time-of-flight 

(TOF) scirltillators and Cerenkov counter (CC) detectors. 

Due to detector acceptance constraints, the scattered neutron from the reaction was 

not detected in general when the electron and proton both are. Instead, neutron 

information was deduced from an event's electron and proton information (see Sec. 

4.2.3). 

4.2.1 Particle Identification Cuts 

The most basic cuts applied to the data were electron-proton (e - p) particle iden- 

tification cuts. Reconstructed e - p events have coincident tracks with respective 

charges of - 1 and +l. Additionally, hits were demanded in the time-of-flight (TOF) 

scintillators in both sectors. To help eliminate unwanted T-  - p coincident events, 

a Cerenkov Counter (CC) detector hit was demanded (refused) in the sectors with 

negative (positive) charge. 
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Figure 4-1: TOF scintillator distribution for each of the three downstream Cerenkov
counter detectors for electrons originating from the target region. The total distribu-
tion for all Cerenkov counter detectors is the sum of the three separate distributions
and is shown as the black outline.

4.2.2 Vertex Cuts

Vertex cuts were imposed to ensure that the event originated within the target region

as well as to assure that coincident tracks corresponded to the same physical event.

Due to the presence of the tungsten collimator upstream of the target region, electron-

positron showers originating in the collimator can scatter off hardware surrounding the

target region, producing e - p events which scatter into the detector. Such unwanted

events were minimized by imposing cuts on the vertex position of each track. The

target is 60 cm in length. However, holding field magnets cover only the inner 40 cm.

Thus, to ensure reliably polarized deuterons, data were restricted to that 40 cm of

target. Additionally, a cut on the relative distance between the vertices in the two

coincident tracks was imposed.

To further constrain the region of e - p vertex origination, pairwise cuts were

placed on the hit TOF scintillator and CC detector in the electron sector. The

CC detectors lie directly in front of and nearly adjacent to the TOF scintillators.

Physical restrictions thus exist between which CC-TOF combinations can be hit by a
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passing electron originating in the target,. CC-TOF combinat ions through which an 

electron coming from the target region can pass are shown in Fig. 4-1. In general, 

the acceptance of each CC detector covers that of four consecutive TOF detectors. 

4.2.3 Missing Mass Cut 

Application of e - p particle identification and vertex origination cuts only ensure 

that 21?(e', ,efp)X events remain in the data. Although dominated by X = n, the 

~I!f(e', ee'p)X reaction can also have undetected multiple-particle states (e-g., X = nno 

and px-). Additional cuts thus had to be imposed to ensure tlhat X = n. 

The missing energy, EM, and missing momentum, gM, are defined as the respective 

total energy and total momentum not accounted for by the detected proton1: 

In terms of these variables, the missing mass, mu,  is defined as: 

By demanding that the missing mass be equal to that of the neutron (mM = m, = 
0.940 GeV/c2), an undetected single neutron final state can be enforced. 

Plots of the missing mass are shown in Fig. 4-2 for perpendicular (left-sector 

electron) and parallel (right-sector electron) kinematics2. In both sectors, the peak at  

m~ = m, is visible followed by the undetected multiple-particle continuum. Gaussian 

lThe missing momentum vector is sometimes seen in the literature defined to equal the negative 
of the missing momentum vector as it is defined in (4.2), that is, TM r q' - f lp .  However, in the QE 
limit, FM -+ p', whereas fi' -+ -fin. From the results in Section 1.4, the internucleon momentum 
vector equals the negative of the neutron momentum. Thus, the definition in (4.2) is the consistent 
one to use. For results expressed with regards to only the magnitude of the missing momentum, 
both definitions are equivalent: p b  = p ~ .  

2See Section 1.5.2 for an explanation of the "perpendicular" and "parallel" terminology. 



Figure 4-2: Missing mass spectra for perpendicular and parallel kinematics. The peak 
a t  m~ = m, x 0.940 Gev/c2 along with the multiple-particle continuum at higher 
m~ are both visible. 

fits to the r n ~  = m, peaks in each sector give: 

The uncertainty quoted here (0.025 GeV/c2) is the a value resulting from fitting a 

Gaussian to the peak distribution, not the uncertainty in the determination of the 

peak. 

After the single neutron undetected state, the next lowest-lying undetected missing 

mass state for 21?(~, e'p)X is X = nr0. It is a multiple-particle state and thus 

corresponds to a continuum of missing mass values. The lowest missing mass value 

this state can have is mbf = mm, + m , ~  x 1.075 GeV/c2. Since an undetected neutron 

corresponds to mhf = m, x 0.940 GeV/c2, pion contamination is minimized by 

ensuring that, the cuts around the r n ~  = m, peak are sufficiently below the pion 

threshold. Since the a from the Gaussian fit is 0.025 GeV/c2 x im,, a full 3-sigma 

cut was placed around the missing mass peak in the data. For this analysis, the 

contamination from pion events is thus believed to be small. 



4.3 Momentum Corrections 

To compensate for reconstruction errors as well as to account for energy loss (which is 

currently not included in the reconstruction), corrections to the electron and proton 

momenta were imposed. For a series of bins exhausting the desired Q2 range, the 

reconstructed electron and proton momenta were each compared with their respective 

Monte Carlo momentum plots. In each Q2 bin, the quasi-elastic electron (proton) 

momentum peak in the data was multiplied by a correction factor, fe(Q2) (fp(Q2)), 

causing it to coincide with the Monte Carlo electron (proton) momentum peak: 

~e (q2)  1 M C  QE peak = fe (Q2) X pe ( Q ~ )  (Data QE peak (4.5) 

pp(Q2) ~ M C  QE peak = fp(Q2) X P ~ ( Q ~ )  l ~ a t a  QE peak (4.6) 

For each of the sets of electron and proton momentum correction factors, a polynomial 

of best-fit was then calculated in terms of the discretized correction factors. 

For electrons and protons passing through the left drift chamber sector, the cor- 

rections are on the order of 5% and 3%, respectively; electrons and protons passing 

through the right drift chamber sector have corrections on the order of 2% and 8%, 

respectively. Since the BLAST detector is a leftlright symmetric detector, energy 

loss in both sectors is expected to be approximately the same for similar particles. 

The disagreement between the correction factors in either sector for the same particle 

is thus mostly attributed to leftlright disparities in the reconstruction. Plots of the 

corrected momenta are included in Sec. 4.4. 

4.4 Reconstructed Kinematics 

Data were analyzed in a momentum transfer range of 0.1 ( G ~ V / C ) ~  < Q2 < 0.5 

( G ~ V / C ) ~ .  Although the BLAST detector is capable of returning information up 

to Q2 - 0.8 (GeV/c)*, the Cerenkov counter detector cut as well as cross section 

considerations imposed lower bounds on this upper limit. 

A plot comparing the reconstructed Q2 range versus Monte Carlo calculations is 
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Figure 4-3: Comparison of the reconstructed square of the momentum transfer, Q2 ,
versus Monte Carlo calculations for perpendicular and parallel kinematics in BLAST.
The normalization in the plots is to the maximum peak.

shown in Fig. 4-3. Since detector efficiencies are not measured in BLAST, the nor-

malization of the Monte Carlo to the data is arbitrary; normalization to the maximum

peak in each distribution is used for the plots shown here. Overall, good agreement

is achieved in both perpendicular and parallel kinematics. The disagreement at in-

termediate Q2 values is due to reconstruction inefficiencies in the regions between

adjacent CC boxes; attempts to compensate for it are currently being looked into.

Physics results in this analysis are divided into four Q2 regions:

0.1 (GeV/c) 2 < Q2 < 0.2 (GeV/c) 2

0.2 (GeV/c) 2 < Q2 < 0.3 (GeV/c) 2

0.3 (GeV/c) 2 < Q2 < 0.4 (GeV/c) 2

0.4 (GeV/c)2 < Q2 < 0.5 (GeV/c)2

For each of these Q2 regions, plots comparing electron and proton kinematics as com-

pared with Monte Carlo calculations are shown in Figs. 4-4 to 4-7. Good agreement

between the (corrected) electron and proton momenta is seen for all Q2 regions. The
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disagreement in the electron and proton extreme azimuthal angles is attributed to 

inefficiencies in the reconstruction. 

As discussed in Chap. 1, asymmetry results in this work are expressed in terms 

of p,, the missing momentum magnitude and in terms of O M ,  the angle between the 

deuteron polarization vector and the missing momentum vector. Plots of the missing 

momentum along with its component projections along the "q" coordinate system 

(see Sec. 1.5.2) are shown in Figs. 4-8 to 4-1 1. Plots of OM are shown in Fig. 4-12. 
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culations for 0.200 (GeV/c) 2 < Q2 < 0.300 (GeV/c) 2. From top to bottom, plots
are shown of the electron momentum (Pe), the proton momentum (pp), the electron
azimuthal angle (0,), and the proton azimuthal angle (0p). The normalization in the
plots is to the maximum peak.
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4.5 Determination of Asymmetries 

Data were recorded in one of six beam-target polarization states. For each of these 

states, the total accumulated events were divided by the accumulated charge in that 

state to get a rate (events per unit charge): 

where h, P,, and P,, are the respective beam helicity and target vector and tensor 

polarization. The five deuteron electrodisintegration asymmetries, A!, A:, A,, AL, 
and AFd, can all be expressed as independent linear combinations of these six rates: 

where F is the average of the rates in the six polarization states. By expressing results 

in terms of asymmetries, the luminosity explicitly cancels and is thus not needed. 

4.6 Background Asymmetry Corrections 

Asymmetries computed from (4.8) are subject to corrections due to background 

rates. The dominant source of background was quasi-elastic e - p scattering from 

the aluminum target walls. Since such events originate along the target chamber, the 



previously-mentioned vertex cuts were not sufficient to exclude them. Instead, these 

background rates were accounted for by measuring the quasi-elastic e - p rate with 

an empty target. 

Each of the (real) asymmetries in (4.8) can be written in the following form: 

where the various rf correspond to the six real polarization-state rates listed in (4.7) 

and where the gi are scalar constants specific to a particular asymmetry. What is 

measured, however, is not the real rate but the total rate, rT, equal to the sum of the 

real rate and the background rate, r:. Since the background rate is the same in each 

polarization state, the substitution rf = rT - r: = rT - rB can be made in (4.9) to 

get the following equation: 

where AT is the total (measured) asymmetry and f is the ratio of the real rate to the 

total rate: 

By design, xi gi = 0 for each asymmetry; this fact has been used to reach the above 

result. Since f has no dependence on the various gi terms, it follows that this equation 

is valid for all five of the deuteron electrodisintegration asymmetries. 

Plots of f versus p~ and cosOM are shown in Fig. 4-13. At low p ~ ,  the back- 

ground rate is very srnall (< 1%); however, as p~ increases, the background becomes 

larger until it plateaus around a 5% contribution. The onset of increased back- 

grouricl a t  higher is consistent with the large Fermi momentum in aluminum. The 



background rate versus c o d M  is roughly constant at N 1%. The constancy of this 

background is due to the fact that all p~ values are averaged over for each c o d M  

bin. The low background rate seen in the plots is attributed to good beam tune as 

well as to good beam halo cleanup from the collimator. 

Figure 4-13: Plots of the ratio of the real event rate to the total event rate as a 
function of p ~ ,  the missing momentum (top plot), and cosOM, the cosine of the 
angle between the deuteron's polarization vector and the missing momentum vector 
(bottom plot). 

The data in Fig. 4-13 are for N 40 kC of empty target data taken at  periodic points 

throughout the run period. In each case, a polynomial of best-fit was computed, and 

the reconstructed asymmetries were scaled by its inverse, as shown in Fig. 4.10. 



4.7 Target Polarization 

As seen in ('4.8)) knowledge of the beam helicity and target vector and tensor polar- 

izations is required in order to extract measurements of the various asymmetries. As 

discussed in Chap. 2, the beam helicity was determined via a Compton polarimeter. 

The target vector and tensor polarizations, however, were determined through data 

analysis. 

4.7.1 The Beam-Vector Polarization 

The product of the beam helicity and the target vector polarization, hP,, was ex- 

tra4cted from the beam-vector asymmetry, A;, for 21?(Z, ee'p)n in the quasi-elastic 

(QE) limit bv calculating the ratio of the calculated beam-vector asymmetry, ~ l i , ~ ~ ~ ~ ,  
to that of the Monte Carlo one, AL,MC: 

In this limit, the reaction reduces to elastic e - p scattering with a spectator neutron. 

Since elastic e - p scattering at  low momentum transfers is well understood [lo], 

the theoretical uncertainties due to the choice of internucleon potential and various 

reaction mechanism contributions are minimized in this limit. Additionally, due to 

the relatively large cross section of the QE 21?(Z, ee'p)n reaction as well as the high 

detector efficiency for electrons and protons, the statistical uncertainties of such events 

are small. With small theoretical and statistical errors, the value of hP' can be 

accurately extracted. 

To ensure QE scattering, fits of the data to the Monte Carlo asymmetries were 

confined to missing momentum values such that p~ < 0.100 GeV/c. For each of the 

four consecutive Q2 intervals between 0.100 ( G ~ V / C ) ~  and 0.500 ( G ~ V / C ) ~ ,  a value 

for hPz was extracted in both sectors. Missing mass cut dependence was checked 

by varying the allowed missing mass peak width from 0 . 5 0 ~ ~ ~  to 3.0am,, where 

or , ,  = 0.025 GeV/c2 as discussed in Sec. 4.2.3. A listing of the extracted hPz values 



h P, for Perpendicular Kinematics 

Table 4.1: Extracted hPz values and statistical errors for perpendicular (top table) 
and parallel (bottom table) kinematics as a function of Q2 bin and multiples of the 
missing mass peak width. As discussed in Sec. 4.2.3, a,, = 0.025 GeV/c2. 

Q2 Range 
( G ~ V / C ) ~  

0.100 < Q2 < 0.200 
0.200 < Q2 < 0.300 
0.300 < Q2 < 0.400 
0.400 < Q2 < 0.500 

hP, for Parallel Kinematics 

is shown in Tab. 4.1, and a plot of them is shown in Fig. 4-14. For the lowest Q2 

region (0.100 ( G ~ V / C ) ~  < Q2 < 0.200 ( G e v / ~ ) ~ ) ,  the dependence on the missing 

rnass peak width cut is minimal. Additionally, the extracted hPz values for both 

Q' Range 
( G ~ V / C ) ~  

0.100 < Q2 < 0.200 
0.200 < Q2 < 0.300 
0.300 < Q2 < 0.400 
0.400 < Q2 < 0.500 

perpendicular and parallel kinematics are in statistical agreement. Furthermore, due 

I ~ M  -mnl < F * a m ~  

to the large amount of data at  low Q2, high confidence can be placed in the extraction 

I ~ M  - mn( < F * om,bl 

of the applied kinematic corrections (see Fig. 4.3). For these reasons, the extracted 

hP, values for 0.100 ( G ~ V / C ) ~  < Q2 < 0.200 ( G ~ V / C ) ~  are believed to be the most 

reliable. Quoted values for hPz are thus taken from this Q2 range alone. 

F  = 3.0 
0.572 f 0.005 
0.522 f 0.005 - 
0.515 f 0.006 
0.500 f 0.009 

F = 0.5 
0.573 f 0.008 
0.531 f 0.009 
0.546 f 0.014 
0.535 f 0.024 

Correcting for the Dipole Approximation 

F = 3.0 
0.564 f 0.004 
0.540 f 0.004 
0.530 f 0.006 
0.526 f 0.011 

F = 0.5 
0.569 f 0.007 
0.553 f 0.007 
0.564 f 0.013 
0.516 f 0.033 

As previously discussed in Chap. 1, the Monte Carlo asymmetries are computed 

F = 1.0 
0.575 f 0.006 
0.535 f 0.006 
0.533 f 0.009 
0.537 f 0.014 

using the formalism of Arenhovel et al. [6, 71. In this formalism, the proton's electric 

F = 2.0 
0.573 f 0.005 
0.527 f 0.005 
0.527 f 0.007 
0.508 f 0.010 

F  = 1.0 
0.566 f 0.005 
0.552 f 0.005 
0.566 f 0.009 
0.551 f 0.020 

and magnetic form factors, GE(Q2) and G ~ ( Q ~ ) ,  are assumed to have a dipole form 

F = 2.0 
0.564 f 0.004 
0.548 f 0.004 
0.545 f 0.006 
0.538 f 0.013 
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Figure 4-14: Extracted beam-vector polarizations, hPz, for each of the four consec-
utive 0.100 (GeV/c)2 Q 2 regions between 0.100 (GeV/c) 2 and 0.500 (GeV/c)2. The
different colored plots correspond to cuts with increasing multiples of the missing
mass width. As discussed in Sec. 4.2.3, aM = 0.025 GeV/c 2.

where p, = 2.79 is the magnetic moment of the proton and A2 = 0.71 (GeV/c) 2 . More

recent analysis [17], however, indicates that deviations from the dipole form exist in

the Q2 range of interest here. Empirical fits to all of the available proton form factor

data were recently performed by Friedrich and Walcher [27]. Their resulting fits were

modeled as a sum of dipoles and exponentials, necessarily deviating from the (single)

dipole form approximation.

In order to account for the observed deviation from the dipole form, the hPz values

extracted from the Monte Carlo must be corrected accordingly. In the QE limit, the

2il(-, e'p)n beam-vector asymmetry reduces to that of the elastic e - p one, which

has the following empirical form:

AvIE -4 A = cos 0* + a(Q2 ) sin 0* cos O*R(Q 2) (4.14)
QE e Q) + y(Q2)R(Q2) 2

Here, a(Q 2), 3(Q2), and 7(Q 2) are kinematic functions, and 0* and 0* are the re-

spective polar and azimuthal angles that the proton polarization vector makes with

respect to the three-momentum transfer vector, q. The remaining term, R(Q2), in
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Figure 4-15: Plot of the ratio, R, of the proton's electric and magnetic form factors 
versus Q2 using the fit from Friedrich and Walcher [27]. 

(4.14) is the ratio of the proton's electric and magnetic form factors, scaled by pp: 

In the dipole approximation, '(Q2) z 1. However, as shown in Fig. 4-15, the fit by 

Friedrich and Walcher (FW) shows deviations of R(Q2) from 1 of around 1% in the 

0.1 ( G ~ V / C ) ~  < Q2 < 0.2 ( G e v / ~ ) ~  range. 

Defining Ak&,A.IC,Dipole and A,Vd7MC,Flv to be the beam-vector asymmetries deter- 

mined using the dipole form factors and those from the FW fit, respect,ively, the 

extracted hP, value from the FW fit can be expressed in terms of the dipole hPz 

value: 
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Figure 4-16: Plot of the ratio, r, of the QE beam-vector pe', e'p) asymmetry using
the FW nucleon form factor fits [27] to that of using the dipole nucleon form factors.
The left plot is for perpendicular kinematics while the right is for parallel.

1
= - hPzIDipole (4.16)

where r -- Ae,MC,FW/AeV,MC,Dioe is the ratio of the FW beam-vector Monte Carlo

asymmetry to that of the dipole one. Plots of r versus Q2 for perpendicular and

parallel kinematics (0* = and 0* = 0, respectively) are shown in Fig. 4-16. In the

0.1 (GeV/c) 2 < Q2 < 0.2 (GeV/c) 2 region, r ; 1.01 for perpendicular kinematics

while r ; 1.02 for parallel. Adjusting the hPz values in Tab. 4.1 for 0.1 (GeV/c) 2 <

Q2 < 0.2 (GeV/c)2 gives:

hPIW, = .• 0.572 = 0.567

hP I1w = -0.564 = 0.553

A statistically weighted average of these two values gives hP_ = 0.558 + 0 .0 0 9 stat.
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Table 4.2: Systematic error contributions to hP,. The total systematic error is cal- 
culated by adding the separate errors in quadrature. 

r 
Source 

Target Polarization Angle 
Dipole Approximation 

NN Potential 
Missing Mass Cut 

TOTAL 

Systematic Errors of hPz 

Contribution 
0.004 
0.003 
0.003 
0.002 
0.006 

A summary of the various sources of systematic error in the determination of hP' is 

shown in Tab. 4.2; the separate systematic errors have been added in quadrature to 

determine the total systematic error. 

The largest source of systematic error in hP, came from the uncertainty in the 

determination of the target polarization angle, Od. AS will be discussed in detail in 

Sec. 4.8.1, the spin angle of the target is known to - lo .  A measure of the resulting 

systematic error in hP' is found by studying how the extracted hP, value changes with 

different assumed spin angle values. Fig. 4-17 shows a comparison of the extracted 

hP, values for deviations of Bd of lo from the nominal value of 32". 

An additional contribution to the systematic error of hPz came from assuming a 

single value for the ratio of the FW form factor parameterization to the dipole one 

over the entire 0.1 ( G ~ V / C ) ~  < Q2 < 0.2 ( G ~ V / C ) ~  range where the hPz extraction 

is made (see Fig. 4-16). Variations in the NN potential were also considered; a 

comparison of the beam-vector asymmetries using the Bonn 140, 411, V18 [56], and 

Paris [32] potentials is shown in Fig. 4-18. The actual extraction of hPz was done 

with respect to the Bonn potential. Finally, error due to the missing mass width 

cut was estimated by examining how the extracted hPz value changed with differing 

missing mass width cuts, as shown in Tab. 4.1. Due to the small variation in the 0.1 

( G ~ V / C ) ~  < Q2 < 0.2 ( G ~ V / C ) ~  range, a full 3om, cut was used in the extraction of 

hP,. The final extracted value for hPz with full statistical and systematic errors is: 
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Figure 4-17: Plots of the beam-vector asymmetry, Al, as a function of the square of
the four-momentum transfer, Q2 , for various deuteron spin angles: Od = 310, 320, and
33 .

where the total systematic error is given by the quadratic sum of the individual

systematic errors.

4.7.2 The Tensor Polarization

The tensor polarization, Pzz, was extracted from fits of the elastic electron-deuteron

T20 observable (see Sec. 1.5.1) at low Q2 [58]. A parameterization of the three

deuteron form factors, Gc, GQ, and GM, was recently performed [1], using both un-

polarized and polarized deuteron cross section data, which modeled the form factors

as Fourier transforms of sums of Gaussian charge distributions. The tensor polariza-

tion was extracted from normalizing to T20 constructed from this parameterization

(see (1.31)). Fig. 4-19 shows a plot of the resulting fitted T20o observable from elastic

e - d data taken simultaneously with the 2/H(•, e'p)n data [58]. The resulting tensor

polarization value is:

Pzz = 0.680 ± 0 .0 16 stat ± O.060sst (4.18)

The dominant source of systematic error in the determination of Pzz is due to
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Figure 4-18: Plots of the beam-vector asymmetry, AVd, as a function of the miss-
ing momentum, PM, for different internucleon potentials: Bonn [40, 41], V18 [56],
and Paris [32]. Each potential includes all reaction mechanism effects (i.e., meson-
exchange currents, isobar configurations, final-state interactions, and relativistic cor-
rections).

model uncertainty in the determination of T20. As seen in Fig. 4-19, the spread of

the large number of models for T20 leads to a large systematic model uncertainty in

Pzz.

4.8 Asymmetry Systematic Uncertainty

The various asymmetry systematic error contributions are listed in this section. Ac-

tual asymmetry results are shown in Chap. 5. There, deuteron electrodisintegration

tensor asymmetry data are plotted versus the missing momentum magnitude, pM,

and the cosine of the angle, cos OM, between the missing momentum vector and the

deuteron polarization axis. Additionally, deuteron electrodisintegration beam-vector

asymmetry data are also plotted versus the missing momentum magnitude.

The dominant sources of systematic error for the tensor asymmetry results plotted

versus pm are the uncertainty due to target spin angle determination (see Sec. 4.8.1)

and the uncertainty due to determination of Pz (see Sec. 4.8.2); both contributions
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Figure 4-19: Plots of the elastic electron-deuteron T20 observable (bottom set of
curves) and the T21 observable (top set of curves). The BLAST fitted data are in red;
the Q bins used to extract the tensor polarization are in red stars. See [58] for a list
of references for the various plotted models.

are of comparable magnitude3 . The dominant source of systematic error for the tensor

asymmetry results plotted versus cos 8M is the uncertainty due to the tensor polariza-

tion determination (see Sec. 4.8.2). Finally, the dominant source of systematic error

for the beam-vector asymmetry results is the uncertainty due to reconstruction (see

Sec. 4.8.3).

4.8.1 Spin Angle Uncertainty

Asymmetry results in general depend on the angle, Od, of target polarization. Any

systematic shift or deviation between the actual target polarization angle and the

value used in analysis thus leads to errors.

3In general, the amount of systematic error due to various contributions varies on a bin-by-bin
basis. For this reason, it is difficult to quote one particular value or percentage effect for a systematic
error for all bins. Instead, a complete listing of the numerical values for all of the asymmetries and
their respective statistical and systematic error contributions for each plotted bin is shown in the
Appendix.
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Figure 4-20: Target spin angle distribution versus the vertex position, z. The results
of the survey of the holding field are shown in black; the corresponding results from
the tensor asymmetry analysis are shown in magenta.

The target polarization angle is fixed by the holding field magnet along the target.

Although the polarization angle was nominally set at 320 (relative to the direction of

beam flow), variation with vertex position, z, exists on the order of a few degrees. For

a more realistic polarization angle distribution, the target holding field was mapped

with the BLAST toroid field on. A plot of the resulting polarization angle distribution

is shown in Fig. 4-20.

The best analytical measurement of the target polarization angle comes from ten-

sor polarization observables from concurrent elastic electron-deuteron scattering. The

corresponding tensor asymmetry has opposite sign for events with electrons scatter-

ing into the left and right sectors. In this analysis, the target polarization angle

was varied until the extracted tensor polarization, Pzz, was equal in both sectors.

Using this method, the average deuteron polarization angle was found to be [58]

Od = 31.40 ± 1.00. This value is in good agreement with the average polarization

angle value of Od = 31.320 ± 0.51' extracted from the holding field measurements. +

The estimated uncertainty in the target polarization angle is4 , 10. To quantify
4To be conservative, the uncertainty of 10 from the T2 0 analysis is assumed here as opposed to

the 0.50 from the holding field map.
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the systematic error in the various asymmetries as a result of this uncertainty, de-

viations in the asymmetries were studied by varying the average target polarization

angle, as shown in Fig. 4-21. From the plots, the tensor asymmetry versus PM is the

most susceptible to spin angle errors.
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Figure 4-21: Target spin angle variation of the beam-vector asymmetry versus PM
(top), the tensor asymmetry versus PM (middle), and the tensor asymmetry versus
cosOM (bottom). Average target spin angles of OD = 310, 320, and 330 are shown.
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4.8.2 Target Polarization Uncertainty 

Since all of the asymmetries of interest are normalized by either the beam-vector 

polarization, hP,, or the tensor polarization, P,,, it follows that any errors in these 

calculated values lead directly to errors in the calculated asymmetries. In particular, 

if the actual polarization value, PA, is different from the calculated one, PC, then the 

actual asymmetry, AA4, will differ from the calculated one, Ac, according to: 

The corresponding systematic error in the determination of the asymmetry due to 

the uncertainty in the polarization determination is thus: 

Frorn Sec. 4.7, the beam-vector polarization is found to be5 hP, = 0.558 f 0.009. 

Using PC = 0.558 and PA = 0.558 + 0.009 = 0.567, one finds that the systematic 

error due to uncertainty in hP, is 1.6%. Similarly, since P,, = 0.680 f 0.062, the 

systema*tic error due to the uncertainty in P,, is 8.4%. 

4.8.3 Reconstruction Uncertainty 

Kinematic bin drift of data due to misreconstruction errors is a source of systematic 

error. In particular, kinematic drift in regions where the asymmetry either changes 

value rapidly or else has a change of sign is notably susceptible to kinematic misre- 

construction. 

To account for this drift, kinematic correction factors (see Sec. 4.3) were incorpo- 

rated into the analysis. One noted deficiency, however, of these corrections is that they 

are derived in the quasi-elastic (QE) kinematic regime. At present, comprehensive 

kinematic corrections (i.e., QE and non-QE corrections) are not, fully implemented 

5The hP, statistical and systematic error results from See. 4.7 were added in quadrature to 
obtain this total error. 



into analyses. However, to the extent that the data are dominated by QE events, 

the currently-applied corrections can be expected to be adequate. An estimate of 

the effect of kinematic drift on the asymmetries is found from considering the change 

of the asymmetries with different kinematic correction factors in regimes with large 

asymmetry change and/or zero crossings. A conservative 3% contribution is placed 

on the systematic error contribution until a more comprehensive set of kinematic 

corrections can be implemented. 

4.8.4 Radiative Correction Uncertainty 

Radiative corrections account for corrections to the tree-level deuteron electrodis- 

integration Feynman diagram assumed in Chap. 1 where the incident or scattered 

electron radiates a real or virtual photon, thus changing the kinematics of the scat- 

tering. The radiated cross section, a ~ ,  can be expressed in terms of the unradiated 

one, 00. as follows [4]: 

= (1 + 6) 00 + 01 (4.21) 

Here, 6 is the factorized correction and a, is the unfactorized bremsstrahlung contri- 

bution to the total cross section. 

The factorized component, 6, has minimal influence on asymmetries. This can be 

seen by calculating the explicit form for the difference between radiated and unradi- 

ated asymmetries: 

where the "u" and "p" superscripts on the cross sections stand for "unpolarized" 

and "polarized", respectively. If one defines 6 (UI~)  G C T ~ ~ P ) / O ~ / P ) ,  then the relative 

difference betiween the radiated and unradiated asymmetries takes on the following 



Figure 4-22: Plot of the relative difference between the radiated and unradiated elastic 
electron-proton asymmetries as a function of Q2 [42] 

simplified form: 

A plot of AR versus Q2 is shown in Fig. 4-22. The plot was generated using 

electron-proton elastic scattering with the MASCARAD code developed by Afanasev 

et a1 [3]. The results, however, are still applicable to QE scattering using deuterium. 

The difference between the radiated and unradiated asymmetries is < 1% over the 

entire Q2 range. Thus, to the extent that QE events dominate the asymmetries, the 

radiative effects are expected to be negligible. However, until the effects of radiative 

corrections for both QE and non-QE reactions can be incorporated into the analysis, 

a conservative 1% contribution is placed on the radiative systematic uncertainty. 

4.8.5 Cut Dependence Uncertainty 

Cut dependence arises from possible enhancements of certain kinematic regions in 

which the desired asymmetries differ from the calculated ones. To study such de- 

pendence, asymmetries were extracted by imposing various missing mass cuts on the 

data. As discussed in Sec. 4.2.3, a resolution of a,, = 0.025 GeV/c was found in 



plots of the missing mass. Comparisons of the various asymmetries of interest with 

respective cuts of 2omM and 3omM are shown in Fig. 4-23. One observes negligible 

dependence in the beam-vector asymmetry plots and in the tensor plots with respect 

to cosBAfi In the tensor plots with respect to p ~ ,  some variation is seen at  high 

p ~ .  The ~a~riat ion,  though, is smaller than the corresponding decrease in statist(ica1 

uncertainty achieved in going from a 2om,, to a 3om, cut. 

4.8.6 False Asymmetry Uncertainty 

As previously discussed in Chap. 1, the vector, beam, and beam-tensor deuteron 

electrodi~int~egration asymmetries (A:, A,, and A:~, respectively) are all expected 

to be small. One possible reason why these asymmetries would not reconstruct to 

small values is incorrect assessment of the amount of collected charge in the various 

polarization states. Another reason is failure of the target deuterons to lie in states 

with equal vector or tensor polarization magnitudes6, which is assumed when the 

target polarization states are rotated during data taking. 

Plots of these three asymmetries are shown in Fig. 4-24 for 0.1 ( G e v / ~ ) ~  < Q2 < 

0.2 (GeV/c)'. All false asymmetries are observed to be small and consistent with 

zero. Similar trends are found in the higher Q2 range data. The contribution to the 

uncertainty in the asymmetry determinations due to false asymmetries is thus small 

and estimated to be less than N 1%. 

The target produces deuterons polarized in three (vector, tensor) states: ( - P, , + Pzz ) , 
(+ P, , + P,,), axid (0, -2P,,). The magnitude of the vector polarization in the first two states is 
designed to  be the same while the magnitude of the tensor polarzation in the third state is designed 
to be twice that of the first two. 
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Figure 4-23: Missing mass cut variation of the beam-vector asymmetry versus PM
(top), the tensor asymmetry versus PM (middle), and the tensor asymmetry versus
cos OM (bottom). As discussed in Sec. 4.2.3, a = 0.025 GeV/c 2.
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Chapter 5 

Results and Conclusions 

5.1 Introduction 

Results of measurements of the deuteron electrodisintegration tensor (AT) and beam- 

vector (AL) asymmetries for a momentum transfer range of 0.1 ( G ~ V / C ) ~  < Q2 < 0.5 

( G ~ V / C ) ~  art. presented here. Tensor asymmetry results are plotted versus the missing 

momentum magnitude, p ~ ,  and the cosine of the angle, cos OM, between the missing 

momentum vector and the deuteron polarization axis1. The beam-vector asymmetry 

is plotted versus the missing momentum magnitude, p ~ .  Numerical values for all of 

the data shown in this chapter can be found in the Appendix. 

5.2 The Tensor Asymmetry, A:, Versus p~ 

Figs. 5-1 and 5-2 show tensor asymmetry results for the BLAST data plotted versus 

p~ for Q2 ranges between 0.1 ( G ~ V / C ) ~  and 0.5 ( G e ~ / c ) ~ .  As discussed in Chap. 1, 

the perpendicular (parallel) heading in these plots refers to 2Z?(e', ee'p)n events where 

the detected electron is in the left (right) sector. Each graph also includes plots of 

the correspo~lding theoretical Monte Carlo predictions based on the Bonn potential 

[40, 411 in the formalism of Arenhovel et al. [6, 71. The colored curves in these plots 

As shown in Chap. 1, it is possible in the PWIA to express the deuteron electrodisintegration 
tensor asymmetry completely in terms of these two variables. 



correspond to successive contributions from various reaction mechanisms to the basic 

Bonn potential Plane Wave Born Approximation (BONN PWBA) model: 

FSI : Final State Interactions 

MEC : Meson Exchange Currents 

IC : Iosbar Configurations 

RC : Relativistic Contributions 

The total Bonn potential model in these graphs corresponds to the "BONN PWBA 

+ FSI + MEC + IC + RC" plot. 

Figs. 5-3 and 5-4 show the tensor asymmetries versus phf plotted along with 

various total potential models (i.e., potentials with all reaction mechanisms included). 

Three total potential models are plotted in these graphs: Bonn [40, 411, V18 [56], and 

Paris [32]. 

Finally, Figs. 5-5 and 5-6 show the residuals for each p~ bin of the reconstructed 

tensor asymmetry as compared with the total Bonn potential model. The residuals 

in these graphs are defined as the reconstructed asymmetry value minus that of the 

total Bonn potential model: 

Values of the corresponding residuals resulting from comparison with the total V18 

and total Paris models, defined analogously, are listed in the Appendix2 

"he variation between total potential models is not large in general; for conciseness and clarity, 
only the Bonn residual is shown here. However, numerical values for the residuals from all three 
models are listed in the Appendix. 
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Figure 5-1: Plots of the reconstructed tensor asymmetry, AT, versus the missing
momentum, PM, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.1 (GeV/c)2 < Q2 < 0.2 (GeV/c) 2;
the bottom set is for 0.2 (GeV/c)2 < Q2 < 0.3 (GeV/c)2 . data are shown in black;
the inner (outer) error bars on each data point correspond to the statistical (total)
error for that point. Numerical values for all of the data shown are listed in the
Appendix. The colored lines correspond to Monte Carlo plots of the tensor asymmetry
using the Bonn potential with successively added-in contributions from the various
reaction mechanisms. BONN PWBA = Bonn potential in the Plane Wave Born
Approximation, FSI = Final State Interactions, MEC = Meson Exchange Currents,
IC = Isobar Configurations, and RC = Relativistic Contributions. The total Bonn
potential model (i.e., BONN PWBA + FSI + MEC + IC + RC) is shown in purple.
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Figure 5-2: Plots of the reconstructed tensor asymmetry, A , versus the missing
momentum, PM, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.3 (GeV/c) 2 < Q 2 < 0.4 (GeV/c) 2;
the bottom set is for 0.4 (GeV/c)2 < Q2 < 0.5 (GeV/c) 2. The setup of these plots is
the same as that of Fig. 5-1.
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Figure 5-3: Plots of the reconstructed tensor asymmetry, A', versus the missing
momentum, PM, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.1 (GeV/c) 2 < Q2 < 0.2 (GeV/c) 2;
the bottom set is for 0.2 (GeV/c) 2 < Q2 < 0.3 (GeV/c) 2 . data are shown in black; the
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for that point. Numerical values for all of the data shown are listed in the Appendix.
The colored lines correspond to Monte Carlo plots of the tensor asymmetry from
different potentials. BONN = Total Bonn potential, V18 = Total V18 potential, and
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Figure 5-6: Plots of the residuals, ~Ar, of the reconstructed tensor asymmetry,
AI, versus the missing momentum, PM, for perpendicular (left) and parallel (right)
kinematics in BLAST as compared with the total Bonn potential model. The top set
of plots is for momentum transfers of 0.3 (GeV/c)2 < Q2 < 0.4 (GeV/C)2; the bottom
set is for 0.4 (GeV/C)2 < Q2 < 0.5 (GeV/C)2.
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5.2.1 Discussion of the Tensor Results Versus p~ 

The overall structure predicted by the (total) theoretical models is observed in the 

reconstructed asymmetries over nearly the entire p~ and Q2 ranges analyzed. For 

each Q2 range, the reconstructed asymmetries have small values at  low p, (phf < 0.2 

GeV/c); at  I arger p,, the asymmetries' "peaks" and "troughs" (corresponding to per- 

pendicular and parallel kinematics, respectively) are in overall consistent agreement 

with the theoretical predictions. 

Figs. 5-1 and 5-2 support the necessity of including reaction mechanisms in theo- 

retical analyses. The data are overall consistent with the total Bonn potential model 

results and inconsistent with the Bonn PWBA approximation ones. As seen most 

noticably in both of the perpendicular kinematics plots in Fig. 5-1, contributions due 

to FSI, MEC, and IC are significant at  low Q2. For this reason, realistic models of 

the various reaction mechanisms must be taken into account. 

Figs. 5-0 and 5-4, which compare the data results to the three total potential 

models considered, indicate the onset of D-state structure at lower missing momenta 

(AphI - 0.020 GeV/c) than that predicted by the theories, part,icularly at  low Q2. 

All four of the plots in Fig. 5-3 show deviations between the data and theories in the 

0.150 GeV/c < phf < 0.300 GeV/c range. The shift in the onset of D-state structure 

is supported most stxongly by the p,, = 0.170 GeV/c reconstructed asymmetry point 

in the 0.1 ( G ~ V / C ) ~  < Q2 < 0.2 ( G ~ V / C ) ~  parallel kinematics plot (i.e., the top right 

plot in Fig. 5-3). This point lies N 50 below the theoretical prediction. As can be 

inferred from the plot,, such a disagreement would be greatly diminished by a theory 

with D-state effects manifesting themselves at lower PA!. This statement is further 

supported by the remaining higher p~ data points in this plot which collectively show 

an overall shift of D-state effects as compared to theory. 

X 2  tests to the three total potential models considered in Figs. 5-3 and 5-4 are 

shown in Tab. 5.1. The (reduced) X 2  values are determined according to 1121: 



Table 5.1: X2 fit values of the reconstructed tensor asymmetries versus p ~ .  Each 
x2 value was determined by comparing to one of the three total potential models 
considered: Bonn, V18, and Paris. 

where AzDATa,i and AzTHEORY,i are the respective reconstructed and theoretical 

asymmetry values for the ith bin,  DATA,^ is the uncertainty in the reconstructed 

asymmetry value for that bin, and n is the number of bins. 

Q~ Range ( G ~ V / C ) ~  

0.1 < Q2 < 0.2 
0.2 < Q2 < 0.3 
0.3 < Q2 < 0.4 
0.4 < Q2 < 0.5 

In perpendicular kinematics, reasonable x2 values near 1.0 are observed for low 

Q2. The difference in x2 for the Bonn potential model and the other two models for 

this Q2 range is primarily due to the asymmetry points at intermediate p~ (0.200 

GeV/c < phf < 0.350 GeV/c) where the Bonn curve rises higher than the other two 

and thus produces a better agreement. At higher Q2 in perpendicular kinematics, 

the excessively good X2 values (x2 << 1.0) are associated with the large error bars in 

the data. More data as well as better systematics will help lower the errors and thus 

increase the predictive power here. 

Par Kine 

In parallel kinematics, relatively high x2 values are seen for the lowest Q2 range; 

the other Q' ranges, however, produce reasonable X2 values overall. For parallel 

kinematics at  the lowest Q2 range (0.1 ( G ~ V / C ) ~  < Q2 < 0.2 ( G ~ V / C ) ~ ) ,  a more 

thorough analysis shows that the resulting high X2 value is largely attributable to the 

previously-discussed measured asyrn~netry value at pnd = 0.170 GeV/c. The - 50 

deviation of the theory from this point biases the x2-test for the entire asymmetry. 

The residuals plots (Figs. 5-5 and 5-6) show basic agreement with theory at low 

phf (pkI < 0.150 GeV/c). At intermediate p,, (0.150 GeV/c< p~ < 0.300 GeV/c), 

the data show an increase (decrease) in the theoretical predictions for perpendicular 

(parallel) kinematics, particularly at lower QVFig.  5-5). At even higher phf (pnf > 

0.3 GeV/c), this pattern reverses, and the data come into agreement with the theory 

XLONN 
4.565 
1.465 
1.869 
0.512 

Perp Kine 

x280NN 

0.981 
0.981 
0.394 
0.404 

xF18 

3.714 
1.169 
1.601 
0.433 

X ~ A R I S  

3.794 
1.165 
1.615 
0.454 

~ $ 1 8  

1.651 
1.477 
0.516 
0.427 

x;ARIS 

1.490 
1.547 
0.573 
0.430 



again at  the highest values. 

The proposed shift of D-state structure to lower p n ~  values is most noticeable in 

the lowest Q2 parallel and perpendicular plots of the residuals (i.e., the left and right 

top plots in Fig. 5-5). Here, a clear oscillatory pattern exists in the residuals for 

p~ > 0.150 GeV/c. This oscillatory nature would be greatly diminished by such a 

shift of structure. 

5.3 The Tensor Asymmetry, A:, Versus cos OM 

Figs. 5-7 and 5-8 show tensor asymmetry results for the BLAST data plotted versus 

cos OA4 for Q2 ranges between 0.1 (GeV/# and 0.5 ( G ~ V / C ) ~ .  Figs. 5-9 and 5-10 

show the tensor asymmetry results along with only the total Bonn potential model3. 

Finally, Figs. 5- 11 and 5- 12 show the residuals between the reconstructed asymmetries 

and those predicted by the total Bonn potential model, as defined in (5.2). 

3There is very little deviation between the three total potential models considered (i.e., Bonn, 
V18, and Paris) when plotted versus cos OM. For clarity, only the total Bonn potential model 
asymmetries art. shown in these plots. 
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Figure 5-7: Plots of the reconstructed tensor asymmetry, AT , versus cos OM in BLAST.
The top plot is for momentum transfers of 0.1 (GeV/c) 2 < Q2 < 0.2 (GeV/c) 2; the
bottom one is for 0.2 (GeV/c)2 < Q2 < 0.3 (GeV/c) 2. The setup of these plots is the
same as that of Fig. 5-1.
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Figure 5-8: Plots of the reconstructed tensor asymmetry, A', versus cos On in BLAST.
The top plot is for momentum transfers of 0.3 (GeV/c)2 < Q2 < 0.4 (GeV/c) 2; the
bottom one is for 0.4 (GeV/c) 2 < Q2 < 0.5 (GeV/c) 2. The setup of these plots is the
same as that of Fig. 5-1.
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Figure 5-9: Plots of the reconstructed tensor asymmetry, AT , versus cos OM in BLAST.
The top plot is for momentum transfers of 0.1 (GeV/c)2 < Q2 < 0.2 (GeV/c) 2; the
bottom one is for 0.2 (GeV/c) 2 < Q 2 < 0.3 (GeV/c) 2. The setup of these plots is the
same as that of Fig. 5-3.
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Figure 5-10: Plots of the reconstructed tensor asymmetry, AT , versus cos 8n in
BLAST. The top plot is for momentum transfers of 0.3 (GeV/c)2 < Q2 < 0.4
(GeV/c) 2; the bottom one is for 0.4 (GeV/c) 2 < Q2 < 0.5 (GeV/c) 2. The setup
of these plots is the same as that of Fig. 5-3.

147



-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
c

Figure 5-11: Plots of the residuals, AAT, of the reconstructed tensor asymmetry, A',
versus cos OM in BLAST as compared with the total Bonn potential model. The top
plot is for momentum transfers of 0.1 (GeV/c)2 < Q2 < 0.2 (GeV/c) 2 ; the bottom
one is for 0.2 (GeV/c)2 < Q2 < 0.3 (GeV/c) 2.
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Figure 5-12: Plots of the residuals, AA', of the reconstructed tensor asymmetry, AT,
versus cos OM in BLAST as compared with the total Bonn potential model. The top
plot is for momentum transfers of 0.3 (GeV/c) 2 < Q2 < 0.4 (GeV/c) 2; the bottom
one is for 0.4 (GeV/c) 2 < Q2 < 0.5 (GeV/c) 2 .
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Table 5.2: x2 fit values of the reconstructed tensor asymmetries versus cosBkI. Each 
X2 value was determined by comparing to the total Bonn potential model. 

5.3.1 Discussion of the Tensor Results Versus cosOM 

The reconstructed tensor asymmetries versus cos Bhf are consistent with the total 

Bonn potential model over nearly all of the cos On{ and Q2 ranges analyzed. The only 

significant disagreement between the data and theory is at 0.0 < cosOhf < 0.6 for 

0.1 ( G ~ V / C ) ~  < Q2 < 0.2 ( G ~ V / C ) ~ ,  where the data show slightly smaller asymmetry 

values in general than what the theory predicts. 

These plots once again support the necessity of including reaction mechanism 

contributions in theoretical analyses. In particular, for the lowest two Q2 ranges (i.e., 

the top and bottom plots in Fig. 5-7), the data are seen to be consistent with the 

total Bonn potential model at  cos OM < -0.4. The meson exchange current (MEC) 

contribution in this region is significant; without including the contribution from 

this reaction mechanism, the data would be significantly larger than the theoretical 

predict ion. 

Reduced X2 test values are shown in Tab. 5.2. Reasonable X2 values are achieved 

overall; the relatively large X2 value for 0.1 ( G ~ V / C ) ~  < Q2 < 0.2 ( G e ~ / c ) ~  is due 

to the previously-mentioned disagreement between the data and theory for 0.0 < 

cosOnf < 0.6. However, in general, the total Bonn potential model appears to be 

a consistent predictor of the deuteron electrodisintegration tensor asymmetry with 

respect to cos OM over the Q2 ranges considered here. 

5.4 The Beam-Vector Asymmetry, AZ, Versus p~ 

Figs. 5-13 and 5-14 show beam-vector asymmetry results for the BLAST data plotted 

versus p , ~  for Q2 ranges between 0.1 and 0.5 ( G ~ V / C ) ~ .  Figs. 5-15 and 5-16 show the 



beam-vector asymmetry results along with the total Bonn, V18, and Paris models. 

Finally, Figs. 5-1 7 and 5-18 show the residuals between the reconstructed asymmetries 

and those predicted by the total Bonn potential model, as defined in (5.2). 
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Figure 5-13: Plots of the reconstructed beam-vector asymmetry, A', versus the miss-
ing momentum, PM, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.1 (GeV/c)2 < Q2 < 0.2 (GeV/c)2 ;
the bottom set is for 0.2 (GeV/c) 2 < Q2 < 0.3 (GeV/c) 2 . The setup of these plots is
the same as that of Fig. 5-1
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Figure 5-14: Plots of the reconstructed beam-vector asymmetry, A', versus the miss-
ing momentum, PM, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.3 (GeV/c) 2 < Q2 < 0.4 (GeV/c) 2;
the bottom set is for 0.4 (GeV/c) 2 < Q2 < 0.5 (GeV/c) 2. The setup of these plots is
the same as that of Fig. 5-1.
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Figure 5-15: Plots of the reconstructed beam-vector asymmetry, A', versus the miss-
ing momentum, PM, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.1 (GeV/c) 2 < Q2 < 0.2 (GeV/c) 2;
the bottom set is for 0.2 (GeV/c) 2 < Q2 < 0.3 (GeV/c) 2. The setup of these plots is
the same as that of Fig. 5-1.
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Figure 5-16: Plots of the reconstructed beam-vector asymmetry, A , versus the miss-
ing momentum, PM, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.3 (GeV/c)2 < Q2 < 0.4 (GeV/c)2;
the bottom set is for 0.4 (GeV/c) 2 < Q2 < 0.5 (GeV/c)2 . The setup of these plots is
the same as that of Fig. 5-3.
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Figure 5-17: Plots of the residuals, iAA', of the reconstructed beam-vector asym-
metry, A'd, versus the missing momentum, PM, for perpendicular (left) and parallel
(right) kinematics in BLAST as compared with the total Bonn potential model. The
top set of plots is for momentum transfers of 0.1 (GeV/c)2 < Q2 < 0.2 (GeV/c)2 ; the
bottom set is for 0.2 (GeV/c)2 < Q2 < 0.3 (GeV/c) 2.
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Figure 5-18: Plots of the residuals, AAVd, of the reconstructed beam-vector asym-
metry, ATd, versus the missing momentum, PM, for perpendicular (left) and parallel
(right) kinematics in BLAST as compared with the total Bonn potential model. The
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5.4.1 Discussion of the Beam-Vector Results Versus p~ 

The reconstructed beam-vector asymmetries have the general form predicted from 

theory: a relatively flat plateau at low p~ (pM < 0.150 GeV/c) followed by an 

upward rise in all kinematics at higher p ~ .  

Similar to the tensor asymmetry plots, evidence is once again seen in the beam- 

vector results supporting the necessity of including reaction mechanism effects into 

theoretical analyses. At high pm in particular, the low Q2 plots in perpendicular 

and parallel kinematics (Fig. 5-13) show consistency with the total Bonn potential 

model. In the absence of such reaction mechanism contributions, the data would be 

inconsistent with the theory 

The data at low Q2 (0.1 ( G e ~ / c ) ~  < Q2 < 0.2 ( G e ~ / c ) ~ )  agree very well in both 

perpendicular and parallel kinematics with the theoretical predictions over the entire 

pb, range analyzed4. However, a rise is seen (Figs. 5-15 and 5-16) in the data as 

compared to the total potential models as Q2 increases. This rise is most noticeable 

in perpendicular kinematics and is visible already by the 0.2 ( G ~ V / C ) ~  < Q2 < 0.3 

( G ~ V / C ) ~  range. This rise is also clearly seen in the plots of the residuals (Figs. 5-17 

and 5-18 ) which show significant deviations in perpendicular kinematics for the 0.2 

( G ~ V / C ) ~  < Q2 < 0.3 ( G ~ V / C ) ~  and 0.3 ( G ~ V / C ) ~  < Q2 < 0.4 ( G ~ V / C ) ~  ranges. 

One obvious cause for such a rise in the reconstructed asymmetries as compared 

to the theoretical ones is a Q2-dependent background incorrectly taken into account. 

Since the reconstructed asymmetries are modified according to (4.10) in the presence 

of background rates, it thus follows that background rates depending on Q2 w o ~ l d  

modify asymmetries differently; such modifications could then help decrease the ob- 

served rise in the reconstructed data. However, Q2-dependence in the background 

has been analyzed. In general, the variation i11 background rates with Q2 is small 

(- 1%). In order to remove the observed discrepancies between the data and the 

theory, variations of the order of N 10% are needed. Background variation is thus 

not believed to be responsible for the observed rise. 

4Note that the data has been fit to the total model in this Q2 bin for pbf < 0.15 GeV/c in order 
to determine hPz for all beam-vector asynimetries. 



Another possible reason for such a rise in reconstructed data as compared to theory 

could be modification of the bound nucleon form factors inside the deuteron from what 

is assumed in the theory. As previously discussed in Sec. 4.7, the form factors used in 

the theory for the bound rlucleons in the deuteron are the (free) nucleon dipole form 

factors. The bound nucleon form factors could, in principle, differ from the free dipole 

ones in two ways: modification due to differences from the dipole approximation and 

modification due to being bound within the deuteron. Due to complications in the 

theory, it is not in general straightforward to determine the amount of form factor 

modification by determining ratios of the reconstructed and theoretical asymmetries. 

For a more accurate analysis, more realistic nucleon form factor models need to be 

used in producing theoretical results. 

5.5 Conclusion 

In this work analysis has been presented on the deuteron electrodisintegration ten- 

sor (A:) and beam-vector (A;) asymmetries for Q2 between 0.1 and 0.5 ( G ~ V / C ) ~ .  

Overall, the general form of these asymmetries predicted by theory is consistent with 

the reconstructed ones. The high-pM D-state structure predicted by theory is also 

seen in the data. However, both the reconstructed tensor and beam-vector asymme- 

try results presented here show evidence of an overall shift of high-pM structure to 

slightly lower p~ than that predicted by theory. One possible reason for such a shift 

could be a nlodification of the nucleon form factors in the deuteron from the dipole 

ones assumetl in the theory. However, before bound-state nucleon form factor mod- 

ificat,ions can be discerned, more realistic (free) form factors need to be introduced 

into the theory. 





Chapter 6 

Appendix 

Numerical values for all of the results shown in Chap. 5 are listed in this appendix. 

6.1 Systematic Error Values 

The following set of tables gives bin-by-bin numerical values for all of the systematic 

errors discussed in Sec. 4.8. The headings in each table refer to the following: 

Bin : bin number 

PM : average p~ value for the bin 

cos On, : average cos BhI value for the bin 

God : error due to determination of the spin angle (see Sec. 4.8.1) 

O ~ M  : error due to missing mass cut (see Sec. 4.8.5) 

o h  pz : error due to target polarization (see Sec. 4.8.2) 

o : error due to reconstruction (see Sec. 4.8.3) 

: error due to radiative corrections (see Sec. 4.8.4) 

opalJe : error due to false asymmetries (see Sec. 4.8.6) 
Syst  oT,,,, : total systematic error 



Systematic Errors in AT Vs. p~ for Perp Kine, 0.1 < Q2/(GeV/c)2 < 0.2 

Systematic Errors in A$ Vs. p~ for Para Kine, 0.1 < Q2/(GeV/c)2 < 0.2 

QFalse 

0.000 
0.000 
0.000 
0.000 
0.001 
0.001 
0.002 
0.002 
0.001 
0.002 

g ~ a d  

0.000 
0.000 
0.000 
0.000 
0.001 
0.001 
0.002 
0.002 
0.001 
0.002 

, 'YS 
O;otil 
0.002 
0.003 
0.003 
0.003 
0.039 
0.023 
0.051 
0.021 
0.023 
0.077 

0 R a d  

0.000 
0.000 
0.000 
0.000 
0.001 
0.003 
0.003 
0.001 
0.001 
0.001 

e  

0.000 
0.001 
0.001 
0.000 
0.003 
0.009 
0.008 
0.003 
0.003 
0.004 

 oh^, 
0.001 
0.002 
0.002 
0.001 
0.008 
0.009 
0.014 
0.015 
0.012 
0.015 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
- -  

o ~ e e  

0.000 
0.001 
0.001 
0.000 
0.003 
0.003 
0.005 
0.005 
0.004 
0.005 

0 6 ,  
0.000 
0.000 
0.000 
0.000 
0.025 
0.005 
0.006 
0.012 
0.019 
0.054 

PM (GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.270 
0.323 
0.371 
0.418 
0.471 

0Fal se  

0.000 
0.000 
0.000 
0.000 
0.001 
0.003 
0.003 
0.001 
0.001 
0.001 

o m M  
0.000 
0.001 
0.002 
0.004 
0.015 
0.003 
0.034 
0.030 
0.012 
0.000 

o m M  
0.001 
0.001 
0.001 
0.003 
0.028 
0.021 
0.048 
0.006 
0.006 
0.052 

YS 
o o t i l  - 
0.001 
0.002 
0.004 
0.004 
0.064 
0.030 
0.045 
0.037 
0.026 
0.016 

0.000 
0.002 
0.003 
0.001 
0.010 
0.025 
0.023 
0.009 
0.008 
0.011 

~ A I  (GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.271 
0.320 
0.371 
0.424 

- 

0.471 

00, 
0.000 
0.001 
0.001 
0.000 
0.062 
0.013 
0.015 
0.020 
0.021 
0.011 



Systematic Errors in AT V ;. p~ for Perp ~ i n e , ~ ~  

Systematic Errors in AT V i. nhr for Para Kine, 0.2 < Q2 

Bin y~ (GeV/c) 06, 

1 0.035 0.001 



Systematic Errors in A: Vs. p~ for Perp Kine, 0.3 < Q2/(GeV/c)2 < 0.4 

Systematic Errors in AT Vs. for Para Kine, 0.3 < Q 2 / ( G e ~ / c ) 2  < 0.4 

o ~ a l s e  

0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.002 
0.001 
0.001 
0.003 

o ~ a d  

0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.002 
0.001 
0.001 
0.003 

Y S  
o;ot:l 

0.000 
0.001 
0.004 
0.014 
0.013 
0.011 
0.067 
0.016 
0.020 
0.123 

o ~ e e  

0.000 
0.000 
0.001 
0.001 
0.001 
0.002 
0.007 
0.004 
0.004 
0.008 

o h d  

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.003 
0.001 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

ph4 (GeV/c) 
0.035 
0.074 
0.121 
0.171 
0.221 
0.273 
0.323 
0.368 
0.422 
0.469 - 

Phd (GeV/c) 
0.036 
0.074 
0.121 
0.171 
0.221 
0.271 
0.322 
0.374 
0.416 
0.480 

o ~ a l s e  

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.003 
0.001 

00, 
0.001 
0.001 
0.000 
0.000 
0.027 
0.000 
0.002 
0.017 
0.054 
0.007 
- 

 oh^, 
0.000 
0.001 
0.003 
0.003 
0.003 
0.004 
0.019 
0.011 
0.010 
0.023 

00, 
0.000 
0.000 
0.000 
0.002 
0.009 
0.002 
0.009 
0.009 
0.016 
0.087 

Y S  
ogo& 
0.001 
0.002 
0.001 
0.000 
0.028 
0.000 
0.005 
0.031 
0.066 
0.010 

omM 
0.000 
0.000 
0.001 
0.000 
0.007 
0.000 
0.004 
0.025 
0.031 
0.000 

 oh^, 
0.001 
0.002 
0.001 
0.000 
0.004 
0.000 
0.003 
0.008 
0.022 
0.006 

o m M  
0.000 
0.001 
0.002 
0.014 
0.010 
0.010 
0.063 
0.004 
0.005 
0.083 

o ~ e c  

0.000 
0.001 
0.000 
0.000 
0.001 
0.000 
0.001 
0.003 
0.008 
0.002 



I w m a t i c  Errors in AT Vs. p~ for Perp Kine, 0 

m i a t i c  Errors in A$' Vs. p~ for Para Kine, 0.4 < Q2/ (Ge~ /c )2  < 0.5 



Systematic Errors in A5 Vs. p~ for Perp Kine, 0.1 < Q2/ (Ge~ /c )2  < 0.2 

Systematic Errors in A 5  VS. p~ for Para Kine, 0.1 < Q 2 / ( G e ~ / c ) 2  < 0.2 

O ~ a l s e  

0.002 
0.002 
0.002 
0.001 
0.001 
0.001 
0.000 
0.002 
0.004 
0.002 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Y8 
($ot:l 
0.006 
0.006 
0.006 
0.006 
0.005 
0.005 
0.002 
0.006 
0.016 
0.047 

g ~ e c  

0.005 
0.005 
0.005 
0.004 
0.003 
0.002 
0.000 
0.005 
0.011 
0.006 

O ~ P ,  

0.002 
0.002 
0.002 
0.002 
0.001 
0.001 
0.000 
0.002 
0.004 
0.002 

O ~ a l s e  

0.002 
0.002 
0.002 
0.002 
0.002 
0.001 
0.000 
0.001 
0.002 
0.003 

o ~ a d  

0.002 
0.002 
0.002 
0.001 
0.001 
0.001 
0.000 
0.002 
0.004 
0.002 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

YS 
~ ~ o t ~ l  
0.007 
0.007 
0.007 
0.008 
0.006 
0.003 
0.000 
0.025 
0.024 
0.014 

pM(GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.271 
0.320 
0.371 
0.424 
0.471 

0 0 ,  
0.002 
0.002 
0.002 
0.002 
0.002 
0.001 
0.000 
0.001 
0.001 
0.001 

phi (GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.270 
0.323 
0.371 
0.418 
0.471 

r n  
0.001 
0.001 
0.001 
0.001 
0.003 
0.004 
0.002 
0.002 
0.010 
0.047 

0 0 ,  
0.002 
0.002 
0.002 
0.001 
0.001 
0.001 
0.000 
0.014 
0.005 
0.006 

r n  
0.000 
0.002 
0.001 
0.005 
0.001 
0.001 
0.000 
0.020 
0.022 
0.003 

 ah^, 
0.002 
0.002 
0.002 
0.002 
0.002 
0.001 
0.000 
0.001 
0.002 
0.004 

ORec 

0.005 
0.006 
0.006 
0.005 
0.005 
0.002 
0.000 
0.002 
0.006 
0.010 

ORad 

0.002 
0.002 
0.002 
0.002 
0.002 
0.001 
0.000 
0.001 
0.002 
0.003 



s. p ,  for Perp Kine, ( Svstematic Errors in A 2  \ 

- 
:matic - Errors in A; VS. pbf for Para Kine, 0.2 < Q2/(GeV/ 

PM (GeV/c) 00 ,  a m M  ohpZ o ~ e c  d OFalse 

0.035 0.002 0.000 0.003 0.008 0.003 0.003 

Syst 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 



Systematic Errors in A 5  Vs. p~ for Perp Kine, 0.3 < Q 2 / ( G e ~ / c ) 2  < 0.4 

Systematic Errors in A 5  Vs. pw for Para Kine, 0.3 < Q2/(GeV/c)2 < 0.4 

g ~ o l s e  

0.003 
0.003 
0.003 
0.002 
0.002 
0.001 
0.000 
0.000 
0.003 
0.008 

3s 
ggot:l 

0.012 
0.012 
0.011 
0.010 
0.009 
0.004 
0.001 
0.000 
0.014 
0.190 

g ~ e c  

0.009 
0.009 
0.009 
0.007 
0.006 
0.002 
0.000 
0.000 
0.009 
0.024 

, Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g ~ a d  

0.004 
0.004 
0.003 
0.003 
0.002 
0.002 
0.001 
0.001 
0.000 
0.005 

g ~ e c  

0.011 
0.011 
0.010 
0.009 
0.007 
0.007 
0.003 
0.004 
0.000 
0.015 

g h d  

0.003 
0.003 
0.003 
0.002 
0.002 
0.001 
0.000 
0.000 
0.003 
0.008 

O m M  

0.001 
0.001 
0.002 
0.003 
0.005 
0.004 
0.001 
0.000 
0.009 
0.188 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

g h ~ ,  

0.004 
0.004 
0.003 
0.003 
0.002 
0.001 
0.000 
0.000 
0.004 
0.010 

PM (GeV/c) 
0.036 
0.074 
0.121 
0.171 
0.221 
0.271 
0.322 
0.374 
0.416 
0.480 

OF'alse 

0.004 
0.004 
0.003 
0.003 
0.002 
0.002 
0.001 
0.001 
0.000 
0.005 

god 
0.003 
0.003 
0.003 
0.002 
0.002 
0.002 
0.000 
0.026 
0.000 
0.008 

PM (GeV/c) 
0.035 
0.074 
0.121 
0.171 
0.221 
0.273 
0.323 
0.368 
0.422 
0.469 
- -  - 

god 
0.004 
0.004 
0.004 
0.004 
0.003 
0.001 
0.000 
0.000 
0.001 
0.005 

3s 
g;ottl ' 

0.013 
0.013 
0.012 
0.014 
0.009 
0.009 
0.004 
0.046 
0.001 
0.020 

omM 
0.000 
0.003 
0.002 
0.009 
0.002 
0.003 
0.001 
0.038 
0.001 
0.005 

,ahz 

0.004 
0.004 
0.004 
0.004 
0.003 
0.003 
0.001 
0.002 
0.000 
0.006 



I Systematic Errors in A5 Vs. p~ for Para 

Systematic Errors in A 5  Vs. for Perp Kine, 0.4 < Q2/ (Ge~ /c )2  < 0.5 

Kine, 0.4 < Q2/(GeV/c)2 < 0.5 1 

Bin 
1 
2 

phf (GeV/c) 
0.035 
0.074 

0.005 
0.005 

o m ,  

0.001 
0.002 

 oh^, 
0.005 
0.004 

o ~ e c  

0.011 
0.011 

o ~ a d  

0.004 
0.004 

DF'alse 

0.004 
0.004 

YS 
ogot:l 
0.014 
0.014 



Q ~ / ( G ~ v / c ) ~  
O~olrne 

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.001 
0.001 

< 0.2 
'YS 

~ $ ~ t t [  
0.004 
0.003 
0.000 
0.004 
0.003 
0.003 
0.004 
0.004 
0.004 
0.004 
0.004 
0.004 
0.004 
0.003 
0.001 
0.001 
0.003 
0.005 
0.008 
0.011 

in A: Vs. 

o m M  
0.003 
0.002 
0.000 
0.004 
0.000 
0.002 
0.001 
0.000 
0.001 
0.000 
0.001 
0.000 
0.001 
0.000 
0.001 
0.000 
0.001 
0.000 
0.000 
0.000 

Errors 

Oed 

0.000 
0.000 
0.000 
0.001 
0.000 
0.000 
0.000 
0.000 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Bin 
1 
2 
3 
4 
ti 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Systematic 
c o s 0 ~  
-0.900 
-0.850 
-0.750 
-0.650 
-0.550 
-0.450 
-0.350 
-0.250 
-0.150 
-0.050 
0.050 
0.150 
0.250 
0.351 
0.450 
0.550 
0.651 
0.750 
0.851 
0.950 

O R a d  

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.001 
0.001 

cos 
u h ~ ,  

0.002 
0.001 
0.000 
0.000 
0.002 
0.003 
0.003 
0.004 
0.004 
0.004 
0.004 
0.003 
0.003 
0.003 
0.001 
0.001 
0.003 
0.005 
0.007 
0.011 

OM, 0.1 < 
O ~ e e  

0.001 
0.001 
0.000 
0.000 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.000 
0.000 
0.001 
0.002 
0.003 
0.004 







Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

SystematicErrorsin 
Cos OM 
-0.951 
-0.851 
-0.751 
-0.651 
-0.551 
-0.449 
-0.350 
-0.250 
-0.150 
-0.051 
0.052 
0.149 
0.250 
0.349 
0.450 
0.551 
0.652 
0.749 
0.852 
0.950 

god 

0.001 
0.001 
0.002 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

A; Vs. 

OmM 

0.010 
0.008 
0.004 
0.000 
0.000 
0.002 
0.001 
0.000 
0.001 
0.000 
0.001 
0.000 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

C O S B ~ ,  
ghPz 

0.008 
0.006 
0.004 
0.000 
0.000 
0.003 
0.003 
0.004 
0.005 
0.003 
0.004 
0.005 
0.003 
0.000 
0.000 
0.001 
0.001 
0.001 
0.007 
0.006 

0.4 

g ~ e e  

0.003 
0.002 
0.001 
0.000 
0.000 
0.001 
0.001 
0.001 
0.002 
0.001 
0.001 
0.002 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.002 
0.002 

<Q2/(GeV/c)2 
o ~ a d  

0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.000 
0.000 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.001 

g ~ a l s e  

0.001 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.000 
0.000 
0.001 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.001 
0.001 

< 0.5 - 

'Y s 
g$ot:i 

0.013 
0.010 
0.006 
0.000 
0.000 
0.004 
0.003 
0.004 
0.006 
0.003 
0.004 
0.005 
0.003 
0.000 
0.000 
0.001 
0.001 
0.001 
0.007 
0.006 



6.2 Asymmetry Values and Total Errors 

The following set of tables gives bin-by-bin numerical values for all of the asymmetry 

values as well as their corresponding statistical, total systematic, and total overall 

errors. The headings in each table refer to the following: 

Bin : bin number 

PM : average p~ value for the bin 

c o d M  : average c o d M  value for the bin 

A: : tensor asymmetry value 

Ayd : beam-vector asymmetry value 

astat : total statistical error 

os,,, : total systematic error 

Q T O ~  : overall total error 



A: Values Vs. p~ for Perp Kine, 0.1 < Q 2 / ( G e ~ / c ) 2  < 0.2 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A: Values Vs. pnf for Para Kine, 0.1 < Q 2 / ( G e ~ / c ) 2  < 0.2 
Bin 
1 
2 
3 

6 

10 

PlLf (GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.270 
0.323 
0.371 
0.418 
0.471 

P M ( G ~ V / C )  
0.035 
0.072 
0.120 
0.170 
0.221 
0.271 
0.320 
0.371 
0.424 
0.471 

A:' 
-0.016 
-0.024 
-0.024 
0.008 
0.097 
0.104 
0.167 
0.175 
0.137 
0.173 

A: 
0.006 
0.021 
0.031 
-0.011 
-0.114 
-0.302 
-0.271 
-0.110 
0.101 
0.127 

ostot  

0.003 
0.003 
0.005 
0.009 
0 . 0 1 7  
0.028 
0.039 
0.054 
0.084 
0.129 

astat 

0.003 
0.003 
0.005 
0.009 
0.016 
0.030 
0.043 
0.054 
0.071 
0.101 

Osyst 

0.002 
0.003 
0.003 
0.003 
0039 
0.023 
0.051 
0.021 
0.023 
0.077 

a ~ o t  

0.004 
0.004 
0.005 
0.010 
0.043 
0.036 
0.064 
0.058 
0.087 
0.150 

asyst 

0.001 
0.002 
0.004 
0.004 
0.064 
0.030 
0.045 
0.037 
0.026 
0.016 

o ~ o t  

0.003 
0.003 
0.006 
0.010 
0.066 
0.043 
0.062 
0.065 
0.075 
0.102 



A: Values Vs. p~ for Perp Kine, 0.2 < Q 2 / ( G e ~ / c ) 2  < 0.3 

A: Values Vs. p~ for Para Kine, 0.2 < Q 2 / ( G e ~ / c ) 2  < 0.3 ' 

o s y s t  

0.002 
0.002 
0.004 
0.009 
0.025 
0.033 
0.053 
0.012 
0.033 
0.136 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

O T O ~  

0.005 
0.004 
0.007 
0.016 
0.022 
0.030 
0.051 
0.087 
0.146 
0.183 

B i n  
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

a ~ o t  

0.005 
0.004 
0.008 
0.016 
0.034 
0.047 
0.078 
0.135 
0.245 
0.438 

A 
-0.015 
-0.020 
-0.036 
-0.025 
0.063 
0.149 
0.176 
0.102 
0.194 
-0.307 

PM (GeV/c) 
0.035 
0.073 
0.121 
0.170 
0.221 
0.272 
0.319 
0.371 
0.416 
0.471 

o s t a t  

0.005 
0.004 
0.007 
0.013 
0.022 
0.034 
0.057 
0.135 
0.243 
0.417 

P M ( G ~ V / C )  
0.035 
0.073 
0.121 
0.171 
0.22 1 
0.271 
0.320 
0.369 
0.426 
0.469 

A;f 
0.014 
0.015 
0.029 
0.032 
-0.019 
-0.044 
-0.097 
0.041 
0.278 
0.334 

o ~ t a t  

0.005 
0.004 
0.006 
0.011 
0.019 
0.030 
0.048 
0.086 
0.127 
0.178 

o ~ y s t  

0.001 
0.002 
0.003 
0.012 
0.011 
0.004 
0.016 
0.014 
0.072 
0.042 



A: Values Vs. p~ for Perp Kine, 0.3 < Q 2 / ( G e ~ / c ) 2  < 0.4 
. Bin 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A: Values Vs. p~ for Para Kine, 0.3 < Q2/(GeV/c)2 < 0.4 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

PM (GeV/c) 
0.036 
0.074 
0.121 
0.171 
0.221 
0.271 
0.322 
0.374 
0.416 
0.480 

PA4 (GeV/c) 
0.035 
0.074 
0.121 
0.171 
0.221 
0.273 
0.323 
0.368 
0.422 
0.469 

0.002 
-0.011 
-0.033 
-0.039 
-0.033 
0.052 
0.221 
0.134 
0.119 
0.276 

A: 
0.012 
0.018 
0.008 
-0.001 
-0.050 
0.003 
0.030 
0.093 
0.257 
0.077 

astat 

0.009 
0.006 
0.010 
0.020 
0.037 
0.065 
0.085 
0.157 
0.250 
95.819 

a s t o t  

0.009 
0.007 
0.011 
0.022 
0.040 
0.069 
0.076 
0.132 
0.256 
0.389 

a.5g~t  

0.000 
0.001 
0.004 
0.014 
0.013 
0.011 
0.067 
0.016 
0.020 
0.123 

a ~ o t  

0.009 
0.006 
0.01 1 
0.024 
0.039 
0.066 
0.109 
0.157 
0.250 
95.819 

a s y s t  

0.001 
0.002 
0.001 
0.000 
0.028 
0.000 
0.005 
0.031 
0.066 
0.010 

a ~ o t  

0.009 
0.007 
0.01 1 
0.022 
0.049 
0.069 
0.076 
0.136 
0.264 
0.389 



A: Values Vs. p~ for Perp Kine, 0.4 < Q 2 / ( G e ~ / c ) 2  < 0.5 

A: Values Vs. p, for Para Kine, 0.4 < Q2/(GeV/c)2 < 0.5 

. Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A&' 
-0.002 
0.005 
-0.040 
-0.060 
-0.088 
0.026 
0.078 
0.268 
0.253 
0.397 

PM (GeV/c) 
0.035 
0.074 
0.122 
0.171 
0.222 
0.271 
0.323 
0.370 
0.418 
0.473 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Ostot 

0.014 
0.010 
0.019 
0.057 
0.244 
2.091 
0.181 
0.266 
0.311 
2.380 

O T O ~  

0.019 
0.013 
0.030 
0.608 
0.146 
0.135 
11.938 
2.904 
1.063 

178.654 

p~ (GeV/c) 
0.035 
0.074 
0.121 
0.171 
0.219 
0.273 
0.323 
0.369 
0.419 
0.475 

Ostat 

0.019 
0.013 
0.030 
0.608 
0.145 
0.135 
11.938 
2.904 
1.063 

178.654 

A:' 
0.001 
0.004 
0.020 
0.039 
0.027 
0.057 
-0.063 
-0.138 
0.016 
0.712 

Osyst  

0.000 
0.000 
0.002 
0.014 
0.015 
0.006 
0.010 
0.046 
0.004 
0.090 

Osy8t 

0.000 
0.001 
0.004 
0.022 
0.035 
0.006 
0.024 
0.032 
0.043 
0.176 

O T O ~  

0.014 
0.010 
0.020 
0.061 
0.247 
2.091 
0.183 
0.268 
0.314 
2.387 



A ! ~  Values Vs. p~ for Perp Kine, 0.1 < Q 2 / ( G e ~ / c ) 2  < 0.2 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A$ Values Vs. p,, for Para Kine, 0.1 < Q2/(GeV/c)2 < 0.2 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

PA! (GeV/c) 
0.035 
0.072 
0.120 
0.170 

PM (GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.271 
0.320 
0.371 
0.424 
0.471 

A r d  
-0.162 
-0.164 
-0.165 
-0.142 

0.221 
0.270 
0.323 
0.371 
0.418 
0.471 

A,Vd 
-0.180 
-0.185 
-0.194 
-0.169 
-0.155 
-0.076 
0.011 
0.076 
0.208 
0.336 

o s t o t  

0.004 
0.004 
0.006 
0.013 

-0.115 
-0.071 
-0.011 
0.164 
0.355 
0.203 

o ~ t a t  

0.004 
0.004 
0.006 
0.012 
0.021 
0.034 
0.051 
0.071 
0.104 
0.149 

o s y s t  

0.006 
0.006 
0.006 
0.006 - - -  

0.024 
0.041 
0.058 
0.081 
0.126 
0.195 

O T O ~  

0.008 
0.007 
0.009 
0.014 

0 s y s t  

0.007 
0.007 
0.007 
0.008 
0.006 
0.003 
0.000 
0.025 
0.024 
0.014 

mr ot 

0.008 
0.008 
0.010 
0.015 
0.022 
0.034 
0.051 
0.076 
0.106 
0.150 

0.005 
0.005 
0.002 
0.006 
0.016 
0.047 

0.025 
0.041 
0.058 
0.081 
0.127 
0.200 



AZ Values Vs. p,  for Perp Kine, 0.2 < Q ~ / ( G ~ V / C ) ~  < 0.3 

A s  Values Vs. p ,  for Para Kine, 0.2 < &2/(GeV/c)2 < 0.3 

D ~ y s l  

0.009 
0.009 
0.009 
0.007 
0.006 
0.004 
0.002 
0.013 
0.020 
0.100 

Bin 
1 
2 
3 
4 
5 
6 
r7 
1 

8 
9 
10 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

OTO~ 

0.012 
0.010 
0.013 
0.019 
0.033 
0.049 
0.084 
0.221 
0.434 
0.574 

d4rd 

-0.240 
-0.225 
-0.223 
-0.184 
-0.145 
-0.055 
0.014 
0.336 
0.441 
0.427 

PM (GeV/c) 
0.035 
0.073 
0.121 
0.170 
0.221 
0.272 
0.319 
0.371 
0.416 
0.471 

A,Vd 
-0.270 
-0.271 
-0.270 
-0.254 
-0.195 
-0.168 
-0.119 
0.048 
0.263 
0.431 

P M ( G ~ V / C )  
0.035 
0.073 
0.121 
0.171 
0.221 
0.271 
0.320 
0.369 
0.426 
0.469 

o ~ t ~ t  

0.007 
0.006 
0.009 
0.017 
0.032 
0.049 
0.084 
0.221 
0.433 
0.565 

%tot 

0.007 
0.006 
0.009 
0.016 
0.027 
0.041 
0.065 
0.122 
0.196 
0.288 

0syst 

0.010 
0.010 
0.010 
0.012 
0.007 
0.006 
0.004 
0.016 
0.030 
0.017 

q o t  

0.012 
0.012 
0.013 
0.020 
0.028 
0.041 
0.065 
0.123 
0.198 
0.288 



AFd Values Vs. p,, for Para Kine, ( 
Bin I pnr (GeV/c) II A I astat 

A s  Values Vs. p ~ 1  for Perp Kine, 0.3 < Q2/(GeV/c)2 < 0.4 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

 PA^ (GeV/c) 
0.036 
0.074 
0.121 
0.171 
0.221 
0.271 
0.322 
0.374 
0.416 
0.480 

4 
-0.312 
-0.304 
-0.287 
-0.249 
-0.201 
-0.062 
0.008 
0.010 
0.306 
0.814 

astot 
0.013 
0.009 
0.014 
0.028 
0.053 
0.092 
0.122 
0.222 
0.415 

333.056 

aspst 
0.012 
0.012 
0.011 
0.010 
0.009 
0.004 
0.001 
0.000 
0.014 
0.190 

O T O ~  

0.018 
0.015 
0.018 
0.030 
0.054 
0.092 
0.122 
0.222 
0.415 

333.056 



AL Values Vs. p~ for Perp Kine, 0.4 < Q2/(GeV/c)2 < 0.5 

A5 Values Vs. p~ for Para Kine, 0.4 < Q2/(GeV/c)2 < 0.5 

O ~ o t  

0.025 
0.020 
0.032 
0.111 
0.574 
11.362 
0.255 
0.328 
0.423 
1.998 

a ~ o t  

0.031 
0.025 
0.058 
4.774 
0.363 
0.207 
37.199 
2.706 
1.481 

121.324 

D ~ t a t  

0.020 
0.015 
0.030 
0.110 
0.574 
11.362 
0.255 
0.328 
0.423 
1.997 

A,Vd 
-0.378 
-0.357 
-0.333 
-0.295 
-0.239 
-0.152 
-0.061 
-0.136 
-0.176 
0.222 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

osyst 

0.015 
0.016 
0.014 
0.015 
0.008 
0.005 
0.006 
0.032 
0.001 
0.016 

(?Syst 

0.014 
0.014 
0.013 
0.012 
0.011 
0.010 
0.010 
0.005 
0.008 
0.052 

I)*! (GeV/c) 
0.035 
0.074 
0.122 
0.171 
0.222 
0.271 
0.323 
0.370 
0.418 
0.473 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A,V, 
-0.420 
-0.425 
-0.388 
-0.330 
-0.220 
-0.119 
-0.169 
0.099 
0.011 
0.408 

PM (GeV/c) 
0.035 
0.074 
0.121 
0.171 
0.219 
0.273 
0.323 
0.369 
0.419 
0.475 

g ~ t a t  

0.027 
0.020 
0.056 
4.774 
0.363 
0.207 
37.199 
2.706 
1.481 

121.324 











6.3 Residual Values 

The following set of tables gives bin-by-bin residual values for all of the asymmetry 

values as well as their corresponding total overall errors. The headings in each table 

refer to the following: 

Bin : bin number 

PM 

cos Oh* 

 BONN 

OAABO N ,V 

A4rrls 

OAAV 18 

~ A P A R I B  

C T ~ ~ ~ ~ ~ l ~  

average p~ value for the bin 

average cosOnf value for the bin 

residual as compared to the total Bonn model 

total error for the Bonn model residual 

residual as compared to the total V18 model 

total error for the V18 model residual 

residual as compared to the total Paris model 

total error for the Paris model residual 



AT Residuals Vs. p~ for Perp Kine, 0.1 < Q ~ / ( G ~ V / C ) ~  < 0.2 

A: Residuals Vs. p~ for Para Kine, 0.1 < Q2/(GeV/c)2 < 0.2 

AAPARIS 
-0.000 
-0.001 
0.005 
0.013 
0.076 
0.096 
0.077 
-0.016 
-0.055 
0.063 

~ A A ~ ~ ~  
0.004 
0.004 
0.005 
0.010 
0.043 
0.036 
0.064 
0.058 
0.087 
0.150 

o ~ ~ p A R I S  

0.004 
0.004 
0.005 
0.010 
0.043 
0.036 
0.064 
0.058 
0.087 
0.150 

~ A P A R I S  
-0.005 
-0.000 
-0.014 
-0.047 
-0.040 
-0.065 
0.019 
0.062 
0.047 
-0.084 

g a d B O N N  
0.004 
0.004 
0.005 
0.010 
0.043 
0.036 
0.064 
0.058 
0.087 
0.150 

~ A B O N N  
-0.000 
-0.002 
0.002 
0.005 
0.060 
0.076 
0.059 
-0.043 
-0.101 
0.002 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

~ A A ~ ~ ~ ~ ~  . 
0.003 
0.003 
0.006 
0.010 
0.066 
0.043 
0.062 
0.065 
0.075 
0.102 

AAv18 
-0.005 
0.000 
-0.012 
-0.048 
-0.046 
-0.073 
0.010 
0.057 
0.048 
-0.083 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

AAvl8 
-0.000 
-0.001 
0.005 
0.013 
0.079 
0.102 
0.081 
-0.020 
-0.068 
0.041 

PM (GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.270 
0.323 
0.371 
0.418 
0.471 

~ A A ~ ~ ~  
0.003 
0.003 
0.006 
0.010 
0.066 
0.043 
0.062 
0.065 
0.075 
0.102 

AABONN 
-0.005 
0.000 
-0.014 
-0.052 
-0.051 
-0.070 
0.026 
0.091 
0.097 
-0.032 

PM (GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.271 
0.320 
0.371 
0.424 
0.471 

~ A A ~ ~ ~ ~  
0.003 
0.003 
0.006 
0.010 
0.066 
0.043 
0.062 
0.065 
0.075 
0.102 



I AT Residuals Vs. p~ for Perp I ine, 0.2 < Q2/(Gt 

A: Residuals Vs. for Para Kine, 0.2 < Q2/(GeV/c)2 < 0.3 
Bin 
1 
2 
3 
4 
5 

PM (GeV/c) 
0.035 
0.073 
0.121 
0.171 
0.221 

0.426 
10 0.469 

AABONN 
0.002 
-0.006 
-0.006 
-0.021 
-0.062 

~ A A ~ ~ ~ ~  
0.005 
0.004 
0.007 
0.016 
0.022 

-0.010 
-0.049 
-0.077 
-0.017 
-0.022 

AAvis 
0.002 
-0.006 
-0.005 
-0.018 
-0.052 

0.030 
0.051 
0.087 
0.146 
0.183 

0.002 
-0.047 
-0.102 
-0.051 
-0.056 

~ A A , , ,  
0.005 
0.004 
0.007 
0.016 
0.022 
0.030 
0.051 
0.087 
0.146 
0.183 

AAPARIS 
0.001 
-0.006 
-0.006 
-0.017 
-0.048 

~ A A ~ ~ ~ ~ ~  
0.005 
0.004 
0.007 
0.016 
0.022 

0.01 1 
-0.042 
-0.106 
-0.059 
-0.061 

0.030 
0.051 
0.087 
0.146 
0.183 



A; Residuals Vs. p, for Perp Kine, 0.3 < Q 2 / ( G e ~ / c ) 2  < 0.4 

A: Residuals Vs. p, for Para Kine, 0.3 < Q2/(GeV/c)2 < 0.4 

g ~ ~ p a n l s  
0.009 
0.006 
0.01 1 
0.024 
0.039 
0.066 
0.109 
0.157 
0.250 
95.819 

AAPARIS 
0.012 
0.005 
-0.000 
0.017 
0.018 
0.043 
0.132 
0.077 
0.210 
0.544 

~ A A ~ ~ ~  
0.009 
0.006 
0.011 
0.024 
0.039 
0.066 
0.109 
0.157 
0.250 
95.819 

AAPARIS 
-0.001 
-0.007 
-0.033 
-0.037 
-0.068 
-0.023 
0.024 
0.079 
0.066 
-0.330 

AAv18 
0.012 
0.005 
-0.001 
0.016 
0.014 
0.035 
0.123 
0.069 
0.205 
0.539 

O A A ~ ~ ~ , ~  
0.009 
0.007 
0.011 
0.022 
0.049 
0.069 
0.076 
0.136 
0.264 
0.389 

AAv18 
-0.001 
-0.006 
-0.032 
-0.038 
-0.072 
-0.029 
0.015 
0.071 
0.065 
-0.325 

' Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

~ A A ~ ~ ~ ~  
0.009 
0.006 
0.011 
0.024 
0.039 
0.066 
0.109 
0.157 
0.250 
95.819 

0 ~ . 4 ~ l g  

0.009 
0.007 
0.011 
0.022 
0.049 
0.069 
0.076 
0.136 
0.264 
0.389 

AABONN 
-0.002 
-0.008 
-0.034 
-0.041 
-0.080 
-0.048 
-0.01 1 
0.053 
0.067 
-0.313 

PA4 (GeV/c) 
0.035 
0.074 
0.121 
0.171 
0.221 
0.273 
0.323 
0.368 
0.422 
0.469 

AABONN 
0.01 1 
0.004 
-0.002 
0.013 
0.008 
0.024 
0.110 
0.051 
0.172 
0.494 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

~ A A ~ ~ ~ ~  
0.009 
0.007 
0.011 
0.022 
0.049 
0.069 
0.076 
0.136 
0.264 
0.389 

PM (GeV/c) 
0.036 
0.074 
0.121 
0.171 
0.221 
0.271 
0.322 
0.374 
0.416 
0.480 



T A T  Residuals VS. P M  for Perp Kine. 0.4 < B2 /iGeV/ci2 < 0.5 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A: Residuals Vs. p~ for Para Kine, 0.4 
Bin PM (GeV/c) AABONN oaABoiVN AAv18 

1 0.035 -0.015 0.019 -0.013 
2 0.074 -0.024 0.013 -0.023 



A5 Residuals Vs. p~ for Para Kine, 0.1 < Q2/(GeV/c)2 < 0.2 
oAAvls 
0.008 
0.008 
0.010 
0.015 
0.022 
0.034 
0.051 
0.076 
0.106 
0.150 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

AABONN 
0.005 
0.004 
0.001 
0.015 
-0.010 
-0.004 
0.01 1 
-0.003 
0.026 
0.083 

PM (GeV/c) 
0.035 
0.072 
0.120 
0.170 
0.221 
0.271 
0.320 
0.371 
0.424 
0.471 

a A ~ ~  R I S  

0.005 
0.004 
0.001 
0.013 
-0.014 
-0.006 
0.011 
-0.006 
0.019 
0.077 

~ A A ~ ~ ~ ~ ~  
0.008 
0.008 
0.010 
0.015 
0.022 
0.034 
0.051 
0.076 
0.106 
0.150 

~ A A ~ ~ ~ ~  
0.008 
0.008 
0.010 
0.015 
0.022 
0.034 
0.051 
0.076 
0.106 
0.150 

AAv18 
0.005 
0.004 
0.001 
0.014 
-0.012 
-0.003 
0.013 
-0.007 
0.009 
0.057 



A 5  Resic 
Bin p~ (GeV/c) , 

.AZ Residuals Vs. for Perp Kine, 0.2 < Q2/(GeV/c)2 < 0.3 

uals Vs. p~ for Para Kine, 0.2 < Q2/(GeV/c)' < 0.3 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

PM (GeV/c) 
0.035 
0.073 
0.121 
0.170 
0.221 
0.272 
0.319 
0.371 
0.416 
0.471 

AABONN 
0.012 
0.028 
0.031 
0.060 
0.044 
0.075 
0.077 
0.243 
0.222 
0.171 

~ A A ~ ~ ~ ~  
0.012 
0.010 
0.013 
0.019 
0.033 
0.049 
0.084 
0.221 
0.434 
0.574 

AAv18 
0.012 
0.028 
0.032 
0.061 
0.047 
0.077 
0.072 
0.224 
0.196 
0.145 

g a A V 1 8  
0.012 
0.010 
0.013 
0.019 
0.033 
0.049 
0.084 
0.221 
0.434 
0.574 

~ A P A R I S  
0.012 
0.028 
0.031 
0.061 
0.046 
0.076 
0.073 
0.237 
0.226 
0.185 

~ A A ~ ~ ~ ~ ~  
0.012 
0.010 
0.013 
0.019 
0.033 
0.049 
0.084 
0.221 
0.434 
0.574 



AS Residuals Vs. p~ for Perp Kine, 0.3 < Q 2 / ( G e ~ / c ) 2  < 0.4 

A; Residuals Vs. p~ for Para Kine, 0.3 < Q2/(GeV/c)2 < 0.4 

~ A A ~ ~ ~ ~ ~  
0.018 
0.015 
0.018 
0.030 
0.054 
0.092 
0.122 
0.222 
0.415 

333.056 

AAAPARIS 
0.025 
0.035 
0.051 
0.075 
0.092 
0.113 
0.084 
0.032 
0.246 
0.661 

~ A A ~ ~ ~ ~ ~  
0.018 
0.016 
0.020 
0.036 
0.061 
0.106 
0.109 
0.200 
0.341 
0.822 

AAvia 

0.025 
0.035 
0.051 
0.076 
0.094 
0.115 
0.085 
0.028 
0.230 
0.629 

~ A A ~ ~ ~ ~  
0.018 
0.015 
0.018 
0.030 
0.054 
0.092 
0.122 
0.222 
0.415 

333.056 

oAAvle  
0.018 
0.016 
0.020 
0.036 
0.061 
0.106 
0.109 
0.200 
0.341 
0.822 

. Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

~ A A ~ ~ ~  
0.018 
0.015 
0.018 
0.030 
0.054 
0.092 
0.122 
0.222 
0.415 

333.056 

AABONN 
0.025 
0.035 
0.050 
0.074 
0.091 
0.112 
0.085 
0.034 
0.244 
0.638 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

~ A P A R I S  
0.021 
0.028 
0.047 
0.053 
0.067 
-0.015 
0.048 
-0.026 
0.01 1 
0.298 

~ A A ~ ~ ~ ~  
0.018 
0.016 
0.020 
0.036 
0.061 
0.106 
0.109 
0.200 
0.341 
0.822 

PM (GeV/c) 
0.036 
0.074 
0.121 
0.171 
0.221 
0.271 
0.322 
0.374 
0.416 
0.480 

AAv18 
0.021 
0.028 
0.047 
0.054 
0.071 
-0.007 
0.059 
-0.021 
-0.001 
0.266 

PM (GeV/c) 
0.035 
0.074 
0.121 
0.171 
0.221 
0.273 
0.323 
0.368 
0.422 
0.469 

~ A B O I V N  
0.022 
0.028 
0.047 
0.055 
0.075 
0.008 
0.084 
0.004 
0.018 
0.262 



.AZ Residuals Vs. p,  for Perp Kine, 0.4 < Q 2 / ( G e ~ / c ) 2  < 0.5 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

A$ Residuals Vs. p~ for Para Kine, 0.4 < Q2/(GeV/c)2 < 0.5 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I 

10 

PM (GeV/c) 
0.035 
0.074 
0.122 
0.171 
0.222 
0.271 
0.323 
0.370 
0.418 
0.,473 

PM (GeV/c) 
0.035 
0.074 
0.121 
0.171 
0.219 
0.273 
0.323 
0.369 
0.419 
0.475 

AABONN 
0.042 
0.057 
0.070 
0.081 
0.056 
0.016 
0.036 
-0.059 
-0.112 
0.273 

A A ~ ~ ~ ~  
0.043 
0.034 
0.067 
0.107 
0.137 
0.107 
-0.005 
0.259 
0.219 
0.677 

~ A A ~ ~ ~ ~  
0.025 
0.020 
0.032 
0.11 1 
0.574 
11.362 
0.255 
0.328 
0.423 
1.998 

g a A B O N N  
0.031 
0.025 
0.058 
4.774 
0.363 
0.207 
37.199 
2.706 
1.481 

121.324 

AAv18 
0.042 
0.057 
0.071 
0.083 
0.059 
0.020 
0.043 
-0.055 
-0.113 
0.265 

AAv18 
0.043 
0.034 
0.067 
0.107 
0.134 
0.089 
-0.042 
0.215 
0.185 
0.660 

~ A A ~ ~ ~  
0.025 
0.020 
0.032 
0.111 
0.574 
11.362 
0.255 
0.328 
0.423 
1.998 

gAAvla  
0.031 
0.025 
0.058 
4.774 
0.363 
0.207 

37.199 
2.706 
1.481 

121.324 

A A ~ ~ ~ ~ s  
0.042 
0.058 
0.070 
0.082 
0.056 
0.014 
0.036 
-0.058 
-0.112 
0.272 

g ~ ~ p A R I s  

0.025 
0.020 
0.032 
0.111 
0.574 
11.362 
0.255 
0.328 
0.423 
1.998 

AAPARIS 
0.043 
0.035 
0.067 
0.105 
0.128 
0.079 
-0.058 
0.200 
0.178 
0.662 

~ A A ~ ~ ~ ~ ~  
0.031 
0.025 
0.058 
4.774 
0.363 
0.207 
37.199 
2.706 
1.481 

121.324 



A$ Residuals Vs. cosOM, 0.1 < Q ~ / ( G ~ v / c ) ~  < 0.2 ' 
C r ~ ~ ~ ~  N N 

0.006 
0.005 
0.005 
0.006 
0.005 
0.006 
0.006 
0.006 
0.006 
0.007 
0.006 
0.006 
0.006 
0.005 
0.005 
0.005 
0.005 
0.007 
0.009 
0.012 , 

Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

cosOM 
-0.900 
-0.850 
-0.750 
-0.650 
-0.550 
-0.450 
-0.350 
-0.250 
-0.150 
-0.050 
0.050 
0.150 
0.250 
0.351 
0.450 
0.550 
0.651 
0.750 
0.851 
0.950 

AABONN 
0.013 
0.010 
0.004 
-0.001 
0.005 
-0.000 
-0.003 
-0.002 
-0.004 
-0.005 
-0.010 
-0.009 
-0.001 
-0.003 
-0.008 
-0.011 
-0.012 
-0.010 
-0.007 
-0.008 



AT 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Residuals 
cosOnf 
-0.951 
-0.851 
-0.751 
-0.651 
-0.550 
-0.449 
-0.350 
-0.250 
-0.150 
-0.050 
0.050 
0.150 
0.250 
0.350 
0.450 
0.550 
0.650 
0.751 
0.851 
0.951 

Vs. cos OM, 
AABoNN 

0.014 
0.005 
-0.009 
-0.003 
-0.007 
-0.012 
0.006 
-0.000 
-0.010 
-0.014 
-0.001 

0.002 
0.001 
-0.002 
-0.005 
-0.005 
-0.002 
-0.005 
-0.024 

0.2 < Q2/(GeV/c)* < 0.3 

OAABONN 
0.01 1 
0.009 
0.007 
0.007 
0.007 
0.007 
0.009 
0.009 
0.009 
0.008 
0.009 

-orr 0.009 
0.008 
0.008 
0.007 
0.007 
0.007 
0.008 
0.009 
0.013 



0.3 < Q ~ / ( G ~ V / C ) ~  < 0.4 

OAABONN 

0.016 
0.012 
0.012 
0.013 
0.010 
0.01 1 
0.01 1 
0.011 
0.012 
0.011 
0.011 
0.011 
0.011 
0.010 
0.010 
0.010 
0.009 
0.01 1 
0.010 
0.013 

Vs. cos OM, 
AABONN 

-0.000 
0.006 
-0.021 
-0.011 
-0.008 
-0.008 
-0.004 
-0.008 
-0.001 
-0.018 
-0.005 
-0.008 
0.004 
-0.005 
-0.008 
-0.008 
-0.000 
-0.024 
-0.008 
-0.028 

A: 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Residuals 
COSOM 

-0.951 
-0.851 
-0.750 
-0.651 
-0.550 
-0.450 
-0.350 
-0.250 
-0.150 
-0.050 
0.050 
0.151 
0.250 
0.349 
0.450 
0.551 
0.650 
0.750 
0.851 
0.950 



A: 
Bin 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Residuals 
c o d M  
-0.951 
-0.851 
-0.751 
-0.651 
-0.551 
-0.449 
-0.350 
-0.250 
-0.150 
-0.051 
0.052 
0.149 
0.250 
0.349 
0.450 
0.551 
0.652 
0.749 
0.852 
0.950 

Vs. cos O M ,  
AABONN 

-0.021 
-0.022 
-0.029 
-0.004 
-0.017 
0.004 
-0.016 
-0.006 
0.001 
-0.026 
-0.015 
0.005 
-0.006 
-0.034 
-0.021 
-0.004 
-0.009 
0.010 
-0.047 
-0.016 

0.4 < Q2/(GeV/c)2 < 0.5 

OAABONN 
0.028 
0.028 
0.026 
0.025 
0.024 
0.024 
0.024 
0.025 
0.025 
0.025 
0.026 
0.028 
0.027 
0.027 
0.027 
0.028 
0.026 
0.029 
0.034 
0.031 
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