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Abstract

Nuclear structure and the underlying internucleon (NN) interaction are central to
the understanding of how nucleons interact. However, despite decades of research,
Quantum Chromodynamics, which governs the interactions of quarks making up nu-
cleons, continues to evade a fully tractable solution. As a result, understanding of
the nucleon and how it interacts with other nucleons is not complete.

Due to its simple composition, the deuteron has long been important in under-
standing the structure of the NN potential. In particular, the tensor asymmetry, AJ,
and beam-vector asymmetry, AY,, from deuteron electrodisintegration, 2H (€, &' N)N' ,
are sensitive to the existence of a tensor component in the NN interaction.

The Bates Large Acceptance Spectrometer Toroid (BLAST) provides a unique
opportunity to measure deuteron electrodisintegration asymmetries at low momentum
transfer. BLAST combines a high-duty polarized electron beam, an Atomic Beam
Source (ABS) target of highly-polarized deuterium atoms, and a large-acceptance
spectrometer detector. This work reports on measurements of AL and AY, for Q?
ranges between 0.1 and 0.5 (GeV/c)?. Comparisons with Monte Carlo simulations
based on the current understanding of the deuteron are made, and conclusions are
drawn.

Thesis Supervisor: Robert P. Redwine
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Chapter 1

Theoretical Motivation

1.1 Introduction

Nuclear structure and the underlying internucleon (NN) interaction have always
played a central role in nuclear physics. However, despite decades of research, cal-
culations of the NN interaction based on Quantum Chromodynamics, which governs
the interactions of quarks in nucleons, continue to evade solution. Since nucleons in-
teract with each other via the strong force, which ultimately takes the form of quarks
interacting via gluon exchange, understanding of the nucleon and how it interacts
with other nucleons is not complete.

The tensor component of the NN interaction is one such area currently under
study. The observation that certain nuclei exist in multiple orbital angular momen-
tum admixture states with AL = 2 provides evidence of the existence of a tensor
component in the NN interaction. However, the relative strength and effective range
of this component are still under debate.

The deuteron is in many ways the ideal nucleus for studying the NN interaction.
Consisting of a single proton and neutron in an I(JF) = 0(1%) state, it is the simplest
nucleus. In particular, since the deuteron lies in an admixture of S- and D- wave
states, it is an ideal candidate for obtaining information about the tensor component
of the NN interaction.

In this chapter, motivation is given for using polarized electrodisintegration as
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a measure of tensor effects and deuteron structure in general. The non-relativistic
deuteron wave function is examined in depth in both position and momentum space
in order to gain an understanding of how the tensor component of the NN interaction
manifests itself. Deuteron electrodisintegration using a polarized beam and target
is then discussed, and observables emphasizing deuteron structure are examined. It
is concluded that the electrodisintegration tensor asymmetry, AL, and beam-vector
asymmetry, AY, are both viable observables to examine in order to study tensor
effects as well as reaction mechanism contributions from meson exchange currents

and nucleon excitation.

1.2 Deuteron Wave Functions in Position-Space

The NN interaction conserves only total angular momentum; conservation of respec-
tive intrinsic and orbital angular momenta are guaranteed only to the extent of con-
sistency with total angular momentum conservation. As such, the deuteron wave
function, consisting of two spin-1/2 nucleons coupled in an overall J = 1 state, is
an admixture of S- and D-state components. In position-space, the non-relativistic

polarized deuteron wave function takes the following form [25]:
Vg (7) = Ro(r)W1g (§2r) + Ra(r) W11z (1) (1.1)

Here, Ry(r) = u(r)/r and Ra(r) = w(r)/r are the respective S- and D-state radial

wave functions', m; denotes the projection of the deuteron’s total spin vector onto

'In keeping with pre-existing notation conventions [25], physics quantities in this chapter will
be expressed in terms of two position vectors. The first vector, the internucleon position vector, is
defined as the difference between the deuteron’s proton and neutron constituent position vectors:

F= (ra Qr) = (7‘,01-, ¢T‘) = FP - Fn

The second vector is defined as the difference between the proton position vector and that of the
deuteron’s center-of-mass:
- 1

1 1
7= () = (1,0, b)) Sy = 5 (B ) = 5 (7 =) = 57

The relations between these vectors are: r = 2r' and 2, = Q,.. These variables will be used
interchangeably throughout this chapter.
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R (tm™?)
o
[}

Figure 1-1: The S- and D-state radial wave functions, Ry(r) and Ry(r) , for the Bonn
potential [40].

its polarization axis (taken to be the Z axis), and, for any m, value, Y7¥. () is
the corresponding spin-angle function for a state with respective total, intrinsic, and

orbital angular momenta J, S, and L.

Plots of the S- and D-state radial wave functions for a recent formulation of the
Bonn potential [40] are shown in Fig. 1-1. From the plots, a drop in amplitude at
small r originating from the presence of the nuclear core is readily apparent. Both
radial wave functions reach a maximum around r ~ 1 fm and then fall off quickly
with increasing r. The rapid fall-off is consistent with the fall-off at large r due to the
one-boson exchange interpretation. It should be noted that the radial wave functions

in these plots have been normalized so that:

/0°° r? [Ro(r)? + Ro(r)?] dr = 1 (1.2)

Using the Clebsch-Gordon formalism along with the fact that the deuteron is a

spin-1 nucleus, the results in (1.1) can be used to write down an explicit form for the
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position-space polarized deuteron wave functions in each mj substate:

(R = @[mm—ﬁma (5e0t6, - 5)] 110

9 , .
+\/;R2(r) sin 8, cos 0, [e"“’” |1,1) — e 1, —1)] (1.3)

\/% |:RO(T) + \/%Rz(r) (g C082 0, — %):l llv 1 (1’ _1)>

:i:\/gRQ(r)eiid” sin 6, cos 6, |1, 0)

I

¥i()

9 )
+ %Rg(r)eﬂ“”’ sin? @, |1, -1 (1,1)) (1.4)

Equations for the corresponding probability densities, py* (7') = W3*(F) 77 (7),

follow directly:

4
pY(F") = - [Co(r) — 2C5(r) Pa(cos 6)] (1.5)
4

PN = - [Co(r) + Ca(r) Pa(cos 8)] (1.6)
where:

CQ(T) = }Zg('l‘)2 + RQ(T‘)2 (17)

1

Colr) = Ralr) (VERo(r) - 5Falr)) (18)

and where Py(cosf) = g-cos2 0 — % is the Legendre polynomial of order 2. It should

be noted that the wave functions and probability densities have been normalized in

the standard manner [25] so that:

e ”

Symmetries of the deuteron densities can be seen from examining these equations.
The ¢, dependence in the wave functions disappears in the density calculations. The

densities themselves are functions of only two of the spherical position variables,
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pa (7)) = pg? (r',0,), and thus possess azimuthal symmetry about the deuteron’s
polarization axis. Additionally, the densities are symmetric about a flip of the posi-
tion vector according to 7' = (7,0, ¢) - —7F = (r',7 — 0,7 + ¢). This latter
symmetry is enforced by the experimental observation that the deuteron exists in a
positive parity state.

To help visualize the deuteron’s densities, it is useful to change from spherical to
cylindrical coordinates via ' = r'siné, and 2z’ = r'cos8,.. Plots of pJ’ (', 2') are
shown in Fig. 1-2. In the m; = 0 state, there is high density near the z’ axis but
very low density along the 2’ axis (i.e., the polarization axis). Since the deuteron
densities are azimuthally symmetric about the polarization axis, it follows that the
my = 0 density distribution resembles a toroid (a “donut” shape) with most of its
density lying in or near the =’ — ' plane and with very low density along the 2’ axis.
On the other hand, the m; = +1 distributions have significant densities along the 2’
axis but less-dominant densities in the =’ — ¢’ plane. It follows that the m,; = +1
densities form two identical but nearly disjoined lobes (a “dumbbell” shape) centered
on either end of the polarization axis.

Examining (1.5) - (1.8) shows that all of the polar angle dependence in p}'’ (7)
disppears when Cy(r) = 0, or, equivalently, when R,(r) = 0. Thus, in the limit of an
L = 0 deuteron, the corresponding densities are radially symmetric and form degen-
erate spherical equidensity shells. The extent to which this degeneracy is broken and
causes the deuteron densities to form respective donut and dumbbell shapes is thus
a direct consequence of the deuteron possessing a nonzero D-state component. The
existence of a nonzero D-state component implies the existence of a tensor component

in the NN interaction, as such a component allows for AL = 2 admixture?.

2A straightforward mathematical argument showing how the simultaneous existence of both an
S- and D-state implies the existence of a tensor operator in orbital angular momentum space can be
found in Section 3-4 in Ref [57)].
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Profiles of the densities in parallel (,» = 0) and perpendicular (f,» = ) directions
can be seen in Fig. 1-3. From examining the properties of deuteron wave functions,
the m; = 0 density as a function of r’ is largest for 6, = 7 and smallest for 6, =
0 while the m; = +1 densities’ extrema are just the opposite. In particular, as
concluded from (1.5) and (1.6), all three densities reach the same maxima as a function
of 7/, though for different 6,.:

pa (r',0,1) =pg (7,0, =0) (1.10)

_of. LI RS BV
MAX = Pd (Tva'r’ - 2) = Pg (r70'r’)

MAX

These maximum-density functions reach an absolute maximum value of p; ~ 0.35
fm~2 at r ~ 0.5 fm. The fact that this absolute maximum density is approximately
twice that of normal nuclear matter (~ 0.16 fm~?) is not completely understood.
The ratio p (T’ O = ’2—‘) /0% (', 0,» = 0) has a maximum of ~ 4.5 whereas the ratio
x

pt (v, 0 = 0) /p3! (r’ 0 = 5) has a maximum of ~ 1.6, though less pronounced.

Both ratios reach their respective maxima at v’ ~ 0.7 fm (r ~ 1.4 fm).

pg" (tm™)
e
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-
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Figure 1-3: Plots of p3" (r',6,) as a function of ' for m; = 0,+1 and 6, = 0, 5.
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The conclusion that can be reached from these results is that measurements of the
deuteron’s spin-dependent densities carry information on the D-state component of
its wave function, which implies the existence of and carries information regarding the
tensor component of the NN interaction. This information is maximized by probing

deuteron properties at small r’ (~ 0.7 fm).

1.3 Static Property Measurements of the Deuteron

Attempts to probe nuclear properties typically fall into one of two categories: static
property measurements and scattering measurements. Static property measurements
return information in position-space. Scattering measurements, on the other hand,
which involve utilizing high-momentum particles to probe nuclei, return information
in momentum-space.

The root-mean-square radius, 7/, gives a measure of the size of the charge distri-

bution in the deuteron:

(r)? = %/000 [u(r)2 + ’(U(’I‘)Z] ridr (1.11)

Measurements of this observable, though, are insensitive to D-state aspects of the
deuteron, since the S-state component completely dominates the D-state one.
The electric quadrupole moment, )y, measures to lowest-order a nucleus’s devia-

tion from sphericity:
Qo = (U7 Qo(?) ¥ @) ~ [~ wr) [VBulr) - w(r)] r*dr (1.12)

The quadrupole moment operator is a spherical tensor of rank 2. As such, any nucleus
with total spin J < 1 must have zero quadrupole moment. However, the traditional
non-relativistic quadrupole operator operates only in orbital spin space; in the usual
non-relativistic picture of the NN system, one can thus further conclude that any
nucleus with orbital angular momentum L < 1 also has a vanishing quadrupole mo-

ment. Thus, in the traditional non-relativistic picture, measurement of a nonzero
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quadrupole moment in the deuteron is direct evidence of a nonzero D-state com-
ponent. This fact can also be seen by noting that the integrand in (1.12) vanishes
if w(r) = 0. Despite this fact, the electric quadrupole moment is not an optimal
measure of the D-state contribution. The corresponding integrand is weighted by r2
which thus tends to lend weight towards large r wave function contributions. Since
one must probe low 7 in order to access D-state information, measurements of the
electric quadrupole moment are limited in the amount of D-state information that
they return.

Another important static observable is the magnetic moment of the deuteron. In

the independent-particle model, the magnetic moment can be expressed as:

3 1
ﬂd:ﬁ‘p+/1'7z“§(“p+ﬂ'n—§)PD (1-13)
where p, = 2.79285un and p, = —1.91304uy are the respective proton and neu-

tron magnetic moments expressed in units of the nuclear magneton, puy, and Pp =
J w?(r)dr is the D-state probability. From recent experiments [28], the deuteron mag-
netic moment is found to be pug = 0.85744uy. Substituting this value directly into
(1.13) returns Pp = 0.0393, implying a D-state contribution of ~ 4%. However, due
to meson-exchange corrections, isobar configurations, and relativistic corrections, one

cannot use (1.13) to obtain more than an estimate of the D-state contribution.

1.4 Deuteron Wave Functions in Momentum-Space

The canonical momentum partner to the relative position, 7 = 7, — 7, is the relative
momentum?, ' = % (Pp — Pn)- Starting with the position-space wave functions listed in

(1.3) and (1.4), a standard application of a Fourier transform gives the corresponding

3The factor of 1/2 in the definition of the relative momentum is needed in order to satisfy the
canonical commutation relations defining the pair:

() + o) = 5 (i) = i (1.14)

- L L . 1
(7P = 7'p_"'nai(pp_pn) =‘2‘
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polarized deuteron wave functions, ¥7* (), in momentum-space:
im 1 R T
vy () = —3/2/6 PTG (T) (1.15)
(27m)

The corresponding momentum-space density functions, g (5) = ¥77*(B) ¥ (p),

take on a form similar to that of the position-space densities, (1.5) and (1.6):

A = 1 [Colp) — 2C5(0) Pafcos) (1.16)
D = 1 [Co) + Calp)Paleosy)] (1.17)

The Cp(p) terms are defined in a similar manner as the Cy(r) ones, (1.7) and (1.8):

Co(p) = Ro(p) + Ra(p)? (1.18)
Ro(p) (VER®) - 5Ro(0)) (1.19)

£
=
S
il

In these equations, Ry (p) is the Fourier-transformed radial wave function:

Ri(p) = Z.L\/g/()‘” r?jr(pr)Ru(r) (1.20)

where ji(z) is the spherical Bessel function of order L. It should be noted that the

following conventional normalization has been chosen here:

[ o @dr=1 (1.21)

Plots of the magnitudes of the Fourier-transformed radial wave functions, {fZL (p)|,
are shown in Fig. 1-4. At low p, the S-state is completely dominant. However, the
dominance decreases as p increases until p ~ 0.3 GeV, where both states have nearly
equal magnitudes. Above p ~ 0.3 GeV, the D-state is dominant. High p must thus
be probed in order to obtain D-state information. Probing the deuteron at high p is

equivalent to probing the low r region.
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Figure 1-4: The magnitudes of the Fourier-transformed S- and D-state radial wave
functions, |R0(p)‘ and ’Rg (p)|, for the Bonn potential [40].
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Figure 1-5: Plots of 53/ (p,6,) for the Bonn potential [40] for m; = 0,+1 and 6, =
0,2,
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Plots of 47 (p) are shown in Fig. 1-5. Similar to the position-space densities,
analysis of (1.16) and (1.17) shows that p(p, 6, = 7/2) = 53" (p, 6, = 0). For all three
my states, there is a difference in densities for relative momenta parallel (6, = 0) and
perpendicular (6, = %) to the polarization axis. This difference is most noticable for

p ~ 0.3 GeV. Also shown in this graph is the average momentum-space density:

(63 + A3 &) + pz" (7)) (1.22)

W=

Pa’(P) =

From (1.16) and (1.17), all polar angle dependence in the m; substate densities
cancels out in the average momentum-space density; thus, the average density is
only a function of p. The average density defined above is also equal to the density
that would exist in the limit of an L = 0 deuteron, as, in this case, Ry(p) = 0. The
existence of a D-state component in the deuteron is thus responsible for nonzero 6,
dependence in the g7/ (p), which in turn is responsible for differences in 53(p5) and

=1(p) for the same values of 7.

In order to measure D-state deuteron properties, quantities that provide sensitivity
to the differences in the various momentum-state densities need to be analyzed. The

tensor asymmetry, Ad , is one such measure:

L[53 (0.05) + 53" (9.6,)] — 2% (P, )
pa’ (0, 6y) + Pz (0, 0p) + 53 (P, 6p)
Cs(p)

= PQ(‘OSG
Gotp) 7

V2R, (p (RO(P fR2 ) ( cos?6, _l) (1.23)
Ry(p)? + Ry(p)? 2 2

I

Arg (p’ 9?)

A plot of AY is shown in Fig. 1-6, and projections of AL with respect to p and 6, are
shown in Fig. 1-7. From the functional form of A7, the tensor asymmetry vanishes
when Ps(cosf,) = 0, or, equivalently, when cosf, = :i:\/—g. With respect to p, the
tensor asymmetry is extremized when Ry(p) = v2Ry(p), which occurs at p ~ 0.3

GeV.

Due to the R,(p) factor in its numerator, the tensor asymmetry must vanish if
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Figure 1-6: Plot of AL for the Bonn potential [40] as a function of p and cos6,.

there is no D-state contribution (i.e., in the limiting case of an L = 0 deuteron, where
Ry(p) = 0). Furthermore, to the extent that Ro(p) > Ry(p), the tensor asymmetry
is directly proportional to the ratio Ry(p)/Ro(p).

However, in order to reconstruct A7 experimentally as has been discussed here,
one must be able to measure the internal momenta of the nucleons while still in the
bound deuteron nucleus. Due to the fact that the nucleons in the deuteron are bound
(albeit weakly), any attempt to measure the bound nucleons’ momenta must involve
the use of some other “probing” particle in order to break up the nucleus. Such a
process inherently introduces contamination in the form of four-momenta, Q = (w, §),

transferred from the probing particle to either of the nucleons.
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Figure 1-7: The top figure contains plots of A} for the Bonn potential [40] as a
function of 6, for various p values. The bottom figure shows plots of AT as a function
of p for various 6§, values.
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Furthermore, exchange processes also exist where the struck nucleon is not the one
detected. Such processes occur because the nucleons in a nucleus are bound and thus
possess nonzero internal momenta. In addition, reaction mechanism processes, such
as meson-exchange currents (MEC) and isobar configurations (IC), can also intro-
duce contamination into measurements. Finally, outgoing nucleons may themselves
interact with each other via final state interactions (FSI). In practice, there exists
no method of completely ruling out all such occurrances with complete certainty. As
such, the “internal” nucleon momenta that are measured are only approximations to
the internal momenta. To the extent that one can rule out the above-listed sources
of contamination, one can directly compare the theoretical results derived here to
experimental ones. The set of approximations necessary for such theoretical com-
parison is commonly referred to as the Plane Wave Impulse Approximation (PWIA)
[45]. The question of how well the PWIA describes the total model is one that needs
to be quantized. This will be discussed later on when “full” theoretical models are
considered.

Because the internal nucleon momentum is not directly observable, a “missing
momentum” vector, Py, is used to approximate it. It is defined as the difference of

the measured proton momentum, p, », and the momentum transfer, ¢:

Pm = Dpm — G (1.24)

To the extent that nucleons retain their individual identity within the deuteron, bound
state effects of the deuteron cause the bound nucleons to possess a nonzero (Fermi)
momentum inside the nucleus. Since the proton’s final (measured) momentum is equal
to the sum of its initial (bound) momentum, pj, ;, and the momentum it receives from
the virtual photon, p, ., and since the sum of the nucleons’ momenta before interaction

is zero (i.e., Pp s + Pn,; = 0), it follows that:
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= (Bpg +Dpy) — 4

1 o 1, . » .
= § (pp,l - pn,I) + 5 (pp,l + pn,[) + Ppy — 4
= ﬁ+ ﬁp,v -q

where the identification of 5 = 1 (P, s — Pns) has been made. To the extent that
all of the momentum transfer is transferred to the proton (and thus p,, — ¢’ = 0),
the missing momentum vector will equal the bound relative nucleon momentum. In
such a situation, the deuteron target is effectively reduced to a proton target with a
“spectator” neutron. Such scattering is referred to as quasi-elastic (QE) scattering
from the proton. Kinematically, it occurs when Q% = 2m,w, where m, is the mass
of the proton. By imposing QE kinematics constraints, the PWIA can be studied;
relaxing the constraints allows non-PWIA effects to be measured, such as MEC, IC,

and FSI. QE scattering becomes increasingly dominant as py; — 0.

1.5 Electron-Deuteron Scattering

Both elastic electron-deuteron (e-d) scattering as well as deuteron electrodisintegra-
tion scattering return D-state information. Due to the success of quantum electrody-
namics, the electron contribution to these processes is well known. This allows for a
cleaner, more direct comparison of theoretical and experimental deuterium analyses
than more complex probing particles would provide.

Since the deuteron is a spin-1 nucleus, it can be polarized in two ways: vector and
tensor [19, 47]. The vector polarization, P,, is given by P, = \/ng = \/g (ny —n_),
where ny is the relative population of deuterons in the my = +1 state. Similarly,
the tensor polarization, f’zz, is given by P, = \/ng = \/g (1 —3ng), where ny
is the relative population of deuterons in the my = 0 state. All deuterons must

exist in one of these three polarization states which thus leads to the constraint
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ny +n_+mnge = 1. This constraint enforces relations between achievable simultaneous

vector/tensor polarization states of the deuteron (see Fig. 1-8). In particular, a

large positive tensor polarization can exist with a wide range of positive and negative

vector polarizations, but maximum negative tensor polarization can exist only with

zero vector polarization.
Pzz

(Pz, Pzz) = (-1, +1) (Pz, Pzz) = (+1, +1)

A S i

}7 (Pz, Pzz) = (0, -2)

Figure 1-8: Accessible vector/tensor deuteron polarization region. The boundaries

are shown as broken lines.

1.5.1 Elastic Electron-Deuteron Scattering

In the Born approximation, the cross section for elastic e-d scattering with a longitu-

dinally polarized electron beam of helicity h and a deuterium target with respective

vector and tensor polarizations, P, and P,,, is given by [9, 43, 59

do - - ~
oo (h, P, Pu) =S, (1 + P,.T + hP,A) (1.25)
Here, Sy is the totally unpolarized cross section:
(1.26)

d") E [A(Q?) + B(@?) tan? %}
M

_do
So= =5 (0,0,0) = (E 7
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where (92 1s the Mott cross section for scattering from a spin-0 point particle, and

f=1+ 2(Ee /mg) sin®(6,/2) is the recoil factor in terms of the electron’s incident
energy, E,, and polar scattering angle, .. The A(Q?) and B(Q?) structure functions
are kinematically-weighted linear combinations of the squares of the deuteron’s charge
monopole (G¢(Q?)), magnetic dipole (G(Q?)), and charge quadrupole (Gg(Q?))

form factors:

A(Q%) = G&(QY) + §n°GH(Q%) + §nG1,(Q7) (1.27)
B(Q*) = 3n(1 +n)G3,(Q%) (1.28)

. The I' and A terms in (1.25) are given by:

T= L [(3cos? s — L) Too — /2 5in 204 cos gaTo + /2 sin? By cos 26Tz (1.29)
A=+3 [% cos 04T, — sin B4 cos ¢de1] (1.30)

where the deuteron is polarized in the direction 4 = (64, ¢4) with respect to the
momentum transfer vector. The various TZ}(;) terms are kinematically-weighted com-

binations of the deuteron’s three form factors:

To = Y2 [1Go(@)Ga(@) + Loa@)+ (5 +) Gui@] (s
Ty = %/@GQ(@%GM(Q% (132
Tyy = 5 ~GM(Q2) (1.33)
T, = % §(1+n) (14—7731112 %e—>GM(QQ)2sec%tan%E (1.34)
m = 725\/77 (1+7)Gu(Q) (Gc(Q"’) + %nGQ(Qz)) tan% (1.35)

where S = A(Q?) + B(*)tan’ % and e = (1 + ) tan® &.

Comprehensive measurements of all three of the deuteron’s form factors are re-

quired for detailed understanding of the deuteron. Using totally unpolarized e-d
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scattering and applying Rosenbluth techniques to the resulting cross section, (1.26)
can be decomposed to provide information on A(Q?) and B(Q?). However, to sepa-
rate all three form factors, it is necessary to include a measurement of one of the Ti(f)
observables by utilizing either a tensor polarized target or tensor polarization transfer
or else beam polarization with a vector polarized target. Because of its relative size,

Ty is often chosen for the third measurable.

In the non-relativistic impulse approximation, where the virtual photon is assumed
to interact with only the individual nucleons in the deuteron, G¢(Q?) vanishes in the
limiting case of an L = 0 deuteron [59]. Thus, measurements of Go(Q?) can provide
information of the deuteron D-state contribution. From (1.31), one sees that Ty
contains a term that is linear in Go(Q?), thus making it more sensitive to D-state

effects.

1.5.2 Deuteron Electrodisintegration

The tensor asymmetry in (1.23) is expressed as a function of variables requiring
knowledge of the relative nucleon momenta in the deuteron: p = |p, — P,| and
cost, = % - %’%. To measure such quantities, the deuteron nucleus needs to be
probed (i.e., broken up) on a nucleon level. This leads one to consider deuteron

electrodisintegration.

Within the formalism of the one-photon exchange PWIA, the kinematics of the
2f (€, e'p)n reaction in the rest frame of the deuteron are shown in Fig. 1-9. An
electron of initial (four-) momentum K = (e, k) and final momentum K’ = (¢, k)
transfers a momentum Q = (w,§) = (¢ — €,k — k') to a deuteron nucleus of initial
momentum P; = (my,0). At relativistic electron energies, the magnitude of the
momentum transfer can be expressed in terms of the incident and scattered electron

energies and the angle, 6., into which the electron scatters with respect to the incident
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direction*:

0
Q* = 4dee’ sin? —25 (1.36)

The momentum transfer breaks up the deuteron into its two nucleon constituents.
The resulting proton and neutron scatter with respective momenta P, = (E,, p,) and
P, = (E,,P,). To ease the theoretical calculations [55], observables relating to the two
emerging nucleons are evaluated in the proton-neutron center of mass (CM) system
moving with velocity § = ¢/(w + mg4) with respect to the laboratory frame. In this
CM frame, the relative proton-neutron momentum is denoted by® P,, = (ESM, gSM).

The incident and scattered electron (three-) momentum vectors, k and k' , respec-
tively, as well as the momentum transfer vector, ¢, all lie in a plane referred to as the

[P™

scattering plane. The following “¢” coordinate system is defined using these vectors:

s 4

Aq = l?_,’
. k. X ko
TR
Ty = Yq X 2q

With respect to the g coordinate system, the remaining planes are defined. The
orientation plane is defined by Z, and the deuteron’s polarization vector, d= (B4, Ba)-
Here, 6; and ¢, are the respective polar and azimuthal angles that the deuteron
polarization vector makes with respect to the ¢ coordinate system. The reaction
plane is defined by 2, and the relative proton-neutron momentum vector, ;™. This
latter vector has respective polar and azimuthal angles of Og’nM and ¢,, with respect
to the g coordinate system®. In general, one does not expect ¢,, and ¢4 to be equal.

Their difference is defined as ¢ = Gpn — Ga-

4With a slight abuse of notation, Q? will be used to indicate the negative of the square of the
momentum transfer, that is Q% = ¢> — w?, not Q? = w? — ¢%. Doing so guarantees that Q% > 0,
which is the convention in nuclear physics.

5Throughout this section, observables evaluated in the proton-neutron CM frame will carry
a “CM” superscript; variables without such a superscript are evaluated in the rest frame of the
deuteron (i.e., the lab frame).

6Since the boost to the proton-neutron CM frame is entirely along the 2, axis, azimuthal angles
defined in the g coordinate system are not altered by the Lorentz boost. As such, to simplify the
notation, the “CM” superscript on relevant azimuthal angles will be dropped.
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Figure 1-9: Geometry of exclusive deuteron electrodisintegration with longitudinally
polarized electrons and oriented deuteron target. The respective incoming (outgoing)
electron four-momenta are denoted by K (K'), the virtual photon four-momentum
is denoted by @, the relative proton-neutron momentum is denoted by P,,, and the

~

deuteron’s orientation axis vector is denoted by d.

The differential cross section for deuteron electrodisintegration can be written
as a sum of asymmetries weighted by different combinations of beam and target
polarizations [6, 7]:

d .
dwTQ:WH = S(hP,P,)

pn

= So(1+P.A] + P.A] + h(A. + P.AY, + P..AL)) (1.37)

Here, h is the helicity of the electron beam, and f’z and P,, are the respective vector
and tensor polarizations of the deuteron target as described above. Also, 2, =
(Bede) and QSM = (65M, ¢,n) are the respective scattered electron and proton-neutron

spherical angles. Sy is the totally unpolarized cross section:

So = 5(0,0,0) = c(pLfr + prfr+ prrfir €os dpn + prrfrr cos 2¢,,) (1.38)

39




and AY, AL, A,, AV, and AI, are the respective vector, tensor, beam, beam-vector,

and beam-tensor asymmetries:

1
: c
Aj = 2 [(ee M + prfi
So 10
+prr fir T €os ¢pn + prrfiy T cos 2¢,m) sin M ¢
+ (pLrfiA'™ sin dpn + prrfiy~ sin 2pn) cos M| dyyo(6a)  (1.39)
¢
A7 = o X [(pudiM + oo s
0 M=0
+pur T €08 Gpm + prrfEYT €08 24m) cOS M
— (pLr 24~ sin dpn + prrf7' ™ sin 20pm) sin M@| diyo(fa)  (1.40)
c ,
Ae S—pLTf;,T Sin @pn (1.41)
0
; C ! ’ ' _ ~
At = g 3 [(Aef™ o+ P fiit"™ cos dym) cos M
— Pl FL sin o sin M| diy(6a) (1.42)
2
A%, < [(p M o f2M cos qbpn) sin M ¢
So 4=
0, [ sin ¢pn COS Md;] d2,0(84) (1.43)
Here, the dY) _(64) are Wigner rotation matrices [50]:
1) 1,
s (64) = cosby , d (0,1) = —y/3sin 64 (1.44)

dsy) (84) =

cos® 0, — -;— d?(8,) = —\/gsin Bacosby , d2)(6,) = \/gsin2 64 (1.45)

| W

and c is a kinematic variable:

a €

= 6_W§€Q4

(1.46)

where « is the fine structure constant. The various p!’ Z 1y(r) terms in (1.38) - (1.43) are

the spherical components of the virtual photon density matrix. In the ¢ coordinate
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system, they take the following forms:

, €2 1
=B =P =@ (14
n 27
L& 1, [E+
prr=-Qp . hr=3Q% . =3¢ —nﬂ

where 8 = |B| = |§]/(w + mq) is the boost from the laboratory to the CM frame and
€ = Q?/|§* and n = tan?(,/2) are kinematic variables. The “L” and “T” refer to

the respective longitudinal and transverse polarization states of the virtual photon.

The various fU 221)??)&) are the nuclear structure functions. In general, a dynamical

model is needed in order to calculate them. Such a dynamical model has been created
by Arenhovel et al. [6, 7, 55]. In their model, the nucleons are considered to behave
non-relativistically thus allowing for a non-relativistic expansion of the relativistic
electromagnetic nucleon current in orders of (p,/mpy), where my is the mass of the
nucleon. A consistent non-relativistic calculation was made by solving the Schrédinger
equation using a potential model for the NN interaction. Additionally, relativistic
corrections (RC), final state interactions (FSI) between the outgoing nucleons, meson
exchange currents (MEC) due to the exchange of 7, p, or w mesons, and nuclear
isobar configurations (IC) such as NA(1232), NA(1470), and AA were also accounted
for. Exchange contributions, wherein the detected nucleon is not the one scattered
from, were taken into account by appropriate symmetrization of the wave functions;
the Plane Wave Born Approximation (PWBA) refers to the PWIA with nucleon
exchange reactions accounted for. Examples of lowest-order Feynman diagrams for

these various effects are shown in Fig. 1-10.

Sensitivity to the PWBA and to non-PWBA reaction mechanisms change depend-
ing on the kinematic region probed. Sensitive regions can be identified by examining
a plot of the relative proton-neutron CM kinetic energy, TpﬁM , versus the square of

the CM three momentum transfer magnitude, (¢“)?2:

Tpc,;M = \/(w +mg)? — g2 — (mp + my,) (1.47)
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(a)

(d) (e

Figure 1-10: Lowest-order Feynman diagrams for 2H (e, €'p)n scattering. (a) PWIA
e-p scattering (b) PWIA e-n scattering (c) final state interaction between the ex-
iting nucleons (d) a 7 exchange current, and (e) an N* isobar excitation. Proper
symmetrization of the wave function over diagrams (a) and (b) leads to the PWBA.

oM Mad (1.48)
\/(w +mg)? — ¢ '

In these kinematics, for TﬁlM < 4mpy where my = (my, + my,)/2, the QE ridge can
be shown to approximately obey the following [55]:
m .
TEM ~ —3(q°M)? = 0.267(¢°M)? (1.49)

m3

A plot of Tpc,;M versus (gcar)? is shown in Fig. 1-11. Four regions can be identified in
which specific effects dominate [6]. In the neighborhood of the QE ridge, as defined by
(1.49), MEC, IC, and FSI are all expected to be small due to the neutron being essen-
tially removed from the scattering. In the disintegration threshold region, located at

low Tpc,;M , MEC are dominant. In the intermediate region, between the disintegration
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threshold and QE regions, FSI are important while MEC and IC are sizable. Finally,

TCM

as one proceeds to even higher 7™,

IC, such as A-excitation, become increasingly

dominant.

0.5
>
30.45

- 0.4

llllllllllIllllfn[ﬁlr{lﬁll’ﬂ”’llﬂl

0.8 1
(Q™)? [(GeV/c)*2)

Y 2
Figure 1-11: Kinematic plane showing TI%M versus (qCM . The boxes represent

data weighted by the kinematic acceptance of the BLAST detector. QE kinematics
dominate the acceptance, but the acceptance of BLAST is such that data in all
kinematic sectors is attainable.

By varying the beam and target polarizations, it is possible to separate each of
the asymmetries in (1.38) - (1.43). In particular, six independent polarization states

are sufficient to completely separate Sy and the five asymmetries:

1

SO - 6 [S(ha pza pzz) + S(_h7 f)za Pzz) + S(h'a _i)27 Pzz)
+8(=h, =P, P..) + S(h,0,-2P..) + S(=h,0,-2P.;)]  (1.50)
1 - - . . -
de = gra [S(h P P) = S(=h, P., P.o) + S(h, — P, P.)
—S(=h,—P,, P..) + S(h,0,-2P,;) — S(~h,0,-2P,.)| (1.51)
1 - - - -
AV = = Sh,PZ’PZZ’ +S_h7Pz7PZZ
i = s [S( )+ S( )
—S(h, "‘Pz’ Pzz) - S(—ha "Pz, pzz)] (152)
, 1 .~ - o~ ~ o~
AT - = Sh’aPzapzz S‘haPzaPzz Sh7_PzaPzz
: 12P“SO[ ( )+ S( )+ S( )
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+S(=h, =P,, P.;) = 2[S(h,0, —2P..) + S(=h,0,-2P,.)]]  (1.53)

AV = = S h',pzaf)zz -5 —h, ~zapzz
o= b 15 )= 5( )
-S(h7 —Pz’ Pzz) + S(—h, "pzy f)zz)] (154)
; 1 ~ s .~ - -
Al = ———[S(h, P, P..,) = S(=h, P, P,,) + S(h,—P,, P,,
“ = Tps SC )= S(- )+ 5 )
—S(=h, =P, P.;) — 2[S(h,0,-2P,.) — S(~h,0,-2P,,)]]  (1.55)

Once an asymmetry has been separated, the various structure functions internal
to it can be separated or emphasized by appropriate use of kinematics. For ex-
ample, when the momentum transfer vector, ¢, is aligned parallel to the deuteron
polarization axis, cf, then 6; = ¢4 = 0 and thus sinf; = 0. Due to (1.44) - (1.45),
asymmetries measured in this configuration will contain information regarding only
those component structure functions weighted by cosé,. If the outgoing proton is
further restricted to also lie along §, then ¢,, = ¢ = 0. Eq. (1.40) and (1.42) then

reduce to the following:

(Aﬁ?)n = SL [PLf pri® + prrfist + PTTf20+] (1.56)
(Agt)” = SL [pr + plLTf}}TO—] (1.57)

On the other hand, if the momentum transfer is restricted so that §; = 7/2 and
¢q = m, then only those terms weighted by sinf; will contribute. If the proton is
further restricted to lie along ¢, then ¢,, = 0 and ¢=0-—m=—m Eq. (1.40) and
(1.42) then reduce to the following:

(Af)l = \/gSio [po1%2 + prfF + purfir + prr f22+] (1.58)
(ak%), = \/g EC}} o fit + pr Frit ] (1.59)

As will be discussed in Section 2, the acceptance of the BLAST detector is such that
detected electron-proton coincidences from g (€, e'p)n have the electron and proton

in opposite detector sectors. As such, electron-proton coincidences with the electron
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in the left (right) sector will have corresponding momentum transfer vectors directed
into the right (left) sector. With the deterium target polarized to point in-plane into
the left sector, it then follows that, to first order, an electron-proton coincidence with
the electron scattering into the left sector in BLAST will have respective tensor and
beam-vector asymmetries dominated by (1.58) and (1.59). Similarly, an electron-
proton coincidence with the electron scattering into the right sector in BLAST will
have asymmetries dominated by (1.56) and (1.57). For this reason, asymmetries
generated by an electron in the left (right) sector are referred to as perpendicular

(parallel) asymmetries throughout this work.

The Tensor Asymmetry, A

As discussed in Section 1.4, the 2H (€, €'p)n electrodisintegration tensor asymmetry,
AT, as expressed in (1.40) vanishes in the limit of an L = 0 deuteron in the PWBA.
The tensor asymmetry thus provides information on the D-state contribution to the
deuteron, or, equivalently, on the tensor component of the NN interaction.

In addition to contributions from the D-state, AL will in general also have con-
tributions from the various non-PWBA reaction mechanisms (MEC, IC, and FSI).
On the QE ridge, such mechanisms are expected to be small. However, as one pro-
gresses kinematically away from QE scattering, reaction mechanism effects play an
ever increasing role. Plots of the tensor asymmetry, AJ, versus missing momentum
magnitude, pys, are shown in Fig. 1-12 for different Q? regions accessible in BLAST.
The data for these plots were generated from the deuteron electrodisintegration model
from Arenhével et al. using the Bonn potential [6, 7]; the data have also been weighted

for acceptance in the BLAST detector.
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Figure 1-12: Plots of the tensor asymmetry, AJ, versus missing momentum, p,;, for
perpendicular and parallel kinematics in BLAST. All plots were generated using the

model in [7] with the Bonn potential.
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Each plot in Fig. 1-12 shows a comparison of the relative reaction mechanism
contributions to 4%. The contributions due to FSI, MEC, IC, and RC are progres-
sively added onto the PWBA. The total model is equal to the model incorporating
PWBA, FSI, MEC, IC, and RC contributions. From examining the plots, the follow-

ing conclusions are apparent:
o At low pys (X 0.25 GeV/c), AT is consistent with zero in all kinematics.

e As pys increases, nonzero structure begins to appear. On the whole, the asym-
metries in all kinematics reach a maximum |A%| value around pps ~ 0.35. The
onset of this structure around pys was predicted from D-state arguments in

Section 1.4.

e In perpendicular kinematics, away from the QE ridge (i.e., par > 0), the contri-
butions to A from non-PWBA reaction mechanisms are of the same magnitude
as the PWBA ones. At low Q?, the contributions from FSI, MEC, and IC are
all of the same size. At high Q?, FSI dominate.

e In parallel kinematics, away from the QE ridge, FSI contributions dominate the
non-PWBA contributions at low Q?. However, at high 2, the contributions

between FSI, MEC, and IC once again become nearly equal.
e RC are negligible for all kinematics.

Plots of Ag versus cos #yr, where 0,4 is the angle between the deuteron polarization
and missing momentum vectors, are shown in Fig. 1-13 for the same kinematics and
setup as in Fig. 1-12. Since AY vanishes in the limit of an L = 0 deuteron, the
presence of the D-state causes deviation from zero. It should also be noted that, as
seen in (1.16) and (1.17) as well as Fig. 1-7, A7 is a purely even function of 6, in
the PWIA. To the extent that A} is dominated by the PWBA in the plots in Fig.
1-13, it then follows that any deviation from symmetry when 6, — —6,, is a result

of proton-neutron exchange processes.
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f the tensor asymmetry, AL, versus cos ), where ), is the angle
between the deuteron polarization and missing momentum vectors. All plots were

model in [7] with the Bonn potential.
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Finally, it should be noted that experimentally only the total tensor asymmetry
is measurable and thus directly observable. As such, D-state effects are convoluted
with those from non-PWBA reaction mechanisms. In general, this places constraints
on how definitively information can be extracted on any one particular contribution

to an asymmetry.

The Beam-Vector Asymmetry, AY,

Similar to the tensor asymmetry, the 2H (€, e'p)n electrodisintegration beam-vector
asymmetry, AV, as expressed in (1.42), has structure influenced by the D-state and
the various reaction mechanism contributions. Fig. 1-14 compares AY, versus pys for
various progressive models [44]. In the PWIA| in the limit on an L = 0 (i.e., S-state
only) deuteron, AY, is approximately constant and negative for all py;. However,
when a nonzero D-state component is added in, a large rise at high p,, appears.

Smaller (but still significant) contributions from the various reaction mechanisms

further increase the rise.

PR W N [ T ST S SN N U ST ST U NN S S S

[} 100 200 300 400
Pr MoV

Figure 1-14: The 2H (&, ¢'p)n electrodisintegration beam-vector asymmetry, AY,, ver-
sus missing momentum, py;, for subsequent models: PWIA with only an S-state;
PWIA with S- and D-states; PWBA with FSI; PWBA with FSI and MEC; PWBA
with FSI; MEC, and IC; and the full model (i.e., PWBA with FSI, MEC, IC, and
RC). The experimental data were taken at NIKHEF with the BigBite spectrometer.
This plot is reprinted from [44].
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For BLAST kinematics, the 2f (€, €'p)n beam-vector asymmetry, AY, versus the
missing momentum, pyy, is plotted in Fig. 1-15 for the same kinematics and setup as

in Fig. 1-12. The following conclusions are apparent:

e For all kinematics, in the QE limit (py — 0), contributions from the various
non-PWBA reaction mechanisms disappear, and the total model is consistent

with the PWBA one.

e As p)s increases, AZd starts to rise in general in all kinematics. This rise occurs
around pps ~ 0.35 GeV/c which is conistent with the onset of the D-state as

discussed in Section 1.4.

e Unlike the tensor asymmetry results in Fig. 1-12, non-PWBA reaction mecha-
nism contributions to A}, at high pjs are smaller in magnitude than the general
rise due to the existence of the D-state (i.e., the PWBA). For this asymmetry,
the PWBA is to first order consistent with the total model; the various non-
PWBA reaction mechanism contributions are more perturbative than radically

structure-changing.

e RC are negligible for all kinematics.
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Figure 1-15: Plots of the beam-vector asymmetry, A}, versus missing momentum,
Pum, for perpendicular and parallel kinematics in BLAST. All plots were generated

using the model in 7] with the Bonn potential.
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As seen from Fig. 1-15, in the QE limit (i.e., as pys — 0), non-PWBA contribu-
tions to AY, become negligible. Additionally, as shown in Fig. 1-14, D-state effects
also disappear in this limit. Thus, i (€,¢'N)N' in the QE limit effectively reduces to
N (€,€'N) with a spectator nucleon, N'. In this limit, the 2H (€,¢'N)N' beam-vector

asymmetry takes the following form [6]:

2 1 Pr LT .
AZd (64 qﬁd)p = —\/j————— [— cosfy + 2 sin 6, cos ¢4 R, (1.60)
) /Tl L 2 /n

3 (1 + p;RP/n) pr pr
where the “p/n” subscript refers to whether the proton/neutron is detected. Further-
more, R,/ is directly proportional to the ratio of the proton’s/neutron’s electric and

magnetic form factors, G%" /GE/™:

\/§m,,/n G’,;/"
n= 1.61

If the kinematics are chosen so that 8; = 7/2 and ¢4 = 0, then the g (€, N)N' beam-

vector asymmetry is directly proportional to the corresponding detected nucleon form

factor ratio:
4 m 2.01 Pp/n
AY (0 = —, 4= o) = —2\ﬁ”’—”R 1.62
ed \ Vd 2 Pd o/ 3 or p/n ( )

Due to the absence of free-neutron targets, the above equation is frequently used
to extract measurements of G%, via QE neutron scattering [61]. Such measurements
require knowledge of the beam-vector polarization, hf’z, in order to extract G suc-
cessfully. To reduce uncertainties, QE scattering from the proton can be used to
extract a value for AP, via normalization of the measured beam-vector asymmetry to
the theoretical one. This measurement extracts AP, with small model uncertainty,
since D-state effects as well as reaction mechanism effects are negligible in the QE
limit. Additionally, the relatively large value for QE proton scattering as well as the
high detector efficiency for proton detection guarantee small statistical errors in the

extraction.



Chapter 2

The BLAST Experiment

2.1 Introduction

The experiment discussed in this thesis was undertaken with the Bates Large Accep-
tance Spectrometer Toroid (BLAST) detector at the MIT-Bates Linear Accelerator
Center in Middleton, MA. In this chapter, the BLAST experiment is described in
detail.

2.2 Stored Polarized Electron Beam

Longitudinally polarized electrons are produced by photoemission using a A = 810
nm circularly-polarized multimode fiber-coupled diode array laser system incident on
a GaAsggsPo.o5 crystal. The polarization state of the beam is determined by a half-
wave plate in the path of the laser source; the plate is moved in or out with each fill,
thus resulting in alternating fills having opposite polarization.

After an initial 360 keV acceleration away from the crystal, the electrons enter
into a linear accelerator consisting of 190 m of accelerating RF cavities. A recirculator
transports the beam back to the beginning of the accelerator for a second pass through
the RF cavities. The polarized beam leaves the linear accelerator at an energy of 0.850
GeV.

The electron beam is injected into the South Hall Ring (SHR) shown in Fig. 2-1.
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Figure 2-1: Overhead view of the MIT-Bates South Hall Ring.

The SHR operates as either a storage ring for internal target experiments (such as
BLAST) or as a pulse stretcher ring to produce nearly continuous-wave beam for
external target experiments [14]. In storage mode, currents in excess of 200 mA are
achieved by stacking beam pulses of a few mA head-to-tail at an injection rate of
2 — 20 Hz. This head-to-tail injection results in the storage ring having a duty factor

of 99% [20].

The SHR has an oval, racetrack design with sixteen dipole magnets, each bending
the beam by 22.5°. An RF cavity internal to the ring is used to stabilize the beam
energy as well as to compensate for synchroton radiation loss. Near the interaction
region, four beam-quality monitor scintillators are placed to assist in tuning the beam

fills. A listing of the SHR parameters for the BLAST experiment is given in Tab. 2.1.

The beam tune must accomodate the storage cell in the center of the west straight

section of the ring (the left side of Fig. 2-1). Due to the small radius of the storage
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SHR Parameter Value Units
Energy Range 300 — 1000 | MeV
Circumference 190.204 m

Revolution Frequency 1.576 MHz
Bend Radius 9.144 m
Stored Current > 100 mA
Internal Duty Factor 99 %
Injection Frequency 1 — 1000 Hz
RF Frequency 2.856 GHz
Harmonic Number 1812

Table 2.1: South Hall Ring Parameters.

cell, a low S-function of the beam is required within this region to minimize scattering
from the cell walls. To decrease background scattering further, a tungsten collimator
with a radius slightly smaller than that of the target cell was placed slightly upstream
of it. The collimator also helps to protect the target cell’s coating from damage caused

by the electron beam and synchrotron radiation [61].

The current in the ring is measured non-destructively with a zero-flux DC current
transformer (LDCCT) [54]. It has a frequency response from DC to 100 kHz and an
absolute accuracy of 0.05%; the output voltage is proportional to the beam current
and is routinely calibrated. The output voltage goes to a 16 bit ADC and broadcasts
it to EPICS [18], the slow-control system utlized in the project. It then goes to a

voltage-to-frequency converter which is then digitized in a scaler.

The longitudinal polarization of the electron beam in the storage ring is preserved
by a Siberian snake [62] located on the opposite side of the ring from the target. The
snake rotates the electron’s spin vector to the opposite side of the momentum vector

so that the g — 2 precession in the north arc of the ring cancels that in the south arc.

A Compton polarimeter is used to monitor the beam polarization in a nondestruc-
tive manner [26]. The Compton polarimeter exploits the spin asymmetry of back-
scattered polarized photons. Circularly polarized photons from a 5 W laser at 532
nm are incident on the stored electron beam in a section of the ring upstream of the
target. Photons are scattered into a narrow cone centered around the incident photon

path. By alternating the polarization of the incident photons via a Pockels cell [2],
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Figure 2-2: Daily measurement results of the polarization of the stored electron beam
over the BLAST running period.

the spin-dependent asymmetry for this reaction can be measured. Normalization to
the theoretical asymmetry gives the beam polarization. A set of absorbers, sweep
magnets, and charged-particle veto counters reduce the charged particle and synchro-
ton radiation backgrounds. The energy spectrum of the back-scattered photons is
measured by a Csl calorimeter. The average polarization during the experiment as
determined by the Compton polarimeter was 65 + 4%. The uncertainty in this mea-

surement is dominated by the internal systematic uncertainties of the polarimeter.

2.3 The Polarized Deuterium Gas Target

BLAST utilizes an Atomic Beam Source (ABS) to inject polarized deuterium atoms
into an internal storage cell [61]. The ABS was originally used in the AmPS Ring
at the NIKHEF laboratory [24, 60] and modified to operate efficiently in the BLAST
toroidal magnetic field [29].

The physical layout of the ABS is shown in Fig. 2-3. Molecular deuterium is
pumped into a dissociator. An RF frequency of 27.12 MHz is applied, and the molec-
ular gas dissociates into its atomic constituents. The atomic beam is then ejected
from the nozzle; the nozzle is cooled to ~ 70 K to inhibit molecular recombination of

the dissociated atoms as well as to reduce the individual atomic thermal velocities for
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more efficient focusing. The ejected beam is focused by the sextupole magnet system

and passes into the ABS RF transition units.
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Figure 2-3: Schematic representation of the ABS and target storage cell.

Polarization of the atomic beam is achieved by exploiting the hyperfine degeneracy
of deuteron spin states in the presence of a magnetic field (see Fig. 2-4). By applying
a superposition of a time-varying and static magnetic field, transitions between the
hyperfine states can be induced. Atoms populating undesired hyperfine states are
defocused by a sextupole (6-pole) magnet and removed from the atomic beam using
the Stern-Gerlach effect [11]. Depending on the desired polarization state, the atomic

beam passes through three kinds of transitions: a strong field transition (SFT), a
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Figure 2-4: The hyperfine structure of deuterium. In the presence of an external
magnetic field, B, the hyperfine energy levels, v5, become nondegenerate. Here,
I is the nuclear spin, S is the electron spin, and F is the total atomic spin. The
various my (X = I,S,F) are the corresponding azimuthal spin projections along
the polarization axis. BY = 117 G is the characteristic magnetic field for hyperfine
interactions in deuterium.

weak field transition (WFT), and a medium field transition (MFT). The SFT uses
a time-varying magnetic field directed perpendicular to a static one to cause atoms
to switch populations between different hyperfine multiplets; the WFT and MFT
use a time-varying magnetic field directed along the static one to cause population
changes within a hyperfine multiplet. By applying the correct sequence of transitions,
it is possible to produce positively and negatively vector/tensor (Pz/Pjzz) polarized
deuterium beam. As an example, the series of transitions that result in deuterium
having a Pz = Pz; = +1 vector/tensor polarization is shown in Table 2.2.

Upon leaving the ABS chamber, the polarized atomic beam enters the target cell
within the scattering chamber. The target cell is internal to the SHR and is cylindrical
in shape. It has a diameter of 15 mm and runs 60 cm parallel to the beam-line. The
target cell is used to maximize the luminosity of the polarized atomic beam while

preserving the stored electron beam in the SHR. The atomic beam enters via the
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Table 2.2: The ABS transitions and sextupole magnet process for producing deu-
terium with positive vector and tensor polarization. The six n; entries in the leftmost
column correspond to the populations in the six hyperfine states in Fig. 2-4 as they
enter the ABS transition region. As the atomic beam progresses through the ABS,
various states are switched and/or removed.
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Figure 2-5: Plot of the target vector polarization, P2, over the course of the experi-
ment.

inlet tube at the middle and disperses throughout the entire 60 cm length of the
cell. The density profile along the cell is approximately triangular [48]. To decrease
depolarization within the target cell, the inside of the cell is coated with Drifilm and
kept at ~ 100 K. A holding field magnet is used to define the target polarization axis.
It is capable of generating longitudinal and transverse magnetic fields. The holding
magnet is limited in length, however, to 40 cm. As such, only the innermost 40 cm
of the target cell contain reliably polarized atoms.

Over the course of the experiment, the ABS achieved an average intensity of

2.6x10'6 atoms/sec corresponding to a target thickness of ~ 4.5 x 10" atoms/cm? [61).
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Figure 2-6: Plot of the target tensor polarization, P2,, over the course of the exper-
iment.

The respective vector and tensor polarization magnitudes, P, and P,,, were obtained
through known electron scattering reactions. The vector polarization was determined
from quasi-elastic 2H (€, ¢'p)n scattering and will be discussed in detail in Chap. 4.
The tensor polarization was determined from elastic 2H (€, ¢'d) scattering [58]. Both
polarizations were monitored daily during the experiment; weekly polarization results

are shown in Figs. 2-5 and 2-6.

2.4 The Toroid Magnet

The magnetic field used in BLAST is generated by eight copper conductor coils ar-
ranged symmetrically around the beam line (see Fig. 2-7). The resulting magnetic
field is toroidal about the beam line and serves to provide curvature to the trajecto-
ries of charged particles in the detector region. Such curvature is required to measure
particles’ momenta and charge sign. Each coil consists of two adjacent layers of thir-
teen windings of 1.5 x 1.5 in? hollow copper conductor. The operating current of a
coil is 6731 A. The maximum field produced by the coils is ~ 3800 G and occurs ~ 1
m from the beam line in the vicinity of the drift chambers.

The magnetic field has been extensively mapped in the target and detector regions

(20, 53]. The resulting map is used to reconstruct the trajectories of charged particles.
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Figure 2-7: Magnetic coils in BLAST. Beam runs along the z-axis.

Fig. 2-8 is a plot comparing the vertical component of the magnetic field with that
of a Biot-Savart calculation assuming the coils are in their ideal, designed positions.
The plot shows measurements in-plane (y = 0) and is plotted versus increasing per-
pendicular distance from the center of the target (z = 0). Good agreement with the
Biot-Savart calculation assuming ideal coil placement is seen. The major source of
discrepancy is due to misalignment of the coils, which was not accounted for using the
Biot-Savart calculation. In addition, some ferro-magnetic hardware has been added
(e.g., iron shielding for the Cerenkov counters; see Sec. 2.5.1) since the mapping
was performed; the presence of such material will also cause some deviation from the
results in the plot. A re-mapping of the field in the presence of the ferro-magnetic

hardware is scheduled in the near future.

2.5 The BLAST Detector

The BLAST detector is designed to accommodate the geometry of the toroidal mag-
netic coils (see Fig. 2-9). As discussed in Section 3.5, the drift chambers are designed

to lie between the magnetic coils. To maximize acceptance, the chambers’ entrance
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Figure 2-8: Vertical component of the magnetic field along the in-plane axis perpen-
dicular to the beam axis at y = 0 and z = 0. Comparison is shown to the (ideal)
Biot-Savart field calculation. The difference between the measured value and that of
the corresponding Biot-Savart calculation, multipled by 10 (to aid in visualization),
is also shown.

plane is adjacent to the exit windows of the target chamber. Directly behind the
drift chambers is a layer of Cerenkov counter (CC) detectors followed by a layer of
time-of-flight (TOF) scintillators. Neutron counters are behind the TOFs. The drift
chambers, CC detectors, and TOFs in either sector are mounted onto a subframe.
The subframe can be moved away from the magnetic coils to allow detector mainte-
nance and access to the target chamber. The neutron counters have their own support

frame!.

High voltage is supplied to all of the detectors by remotely controlled HV modules
(LeCroy 1458 HP [37]). The HV is controlled using the EPICS [18] slow-control
system. Since this system also operates the South Hall Ring, integration of the two
is straightforward. The integrated package is named Automatic Ring Fill (ARF)
software. The ARF software allows for the safe, automatic injection of electron beam
into the South Hall Ring [23]. The automated beam fill procedure starts by sending

an electronic inhibit to stop data taking. The detector HV is next lowered to safe

1The neutron counters are installed for neutron-sensitive measurements such as that of the neu-
tron electric form factor, G} [61]. They are not relevant to the research done in this thesis, however,
and will not be discussed here.
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Figure 2-9: Views of the BLAST detectors. The top picture shows the various de-
tectors with respect to the target in the absence of the magnetic coils. The bottom
picture shows the same setup as it actually is seen in the presence of the magnetic
coils.
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standby values. Once in standby, a set of beam scraping slits is moved out of the
path of the beam, and any remaining beam in the ring is dispersed by targets placed
in its path. The polarized source is turned on, and the state of the half-wave plate
is reversed from its previous state. The resulting polarized beam is then stacked in
the South Hall Ring to ~ 200 mA. Once fully stacked, the slits are moved back in
to predetermined background-optimized positions, and the detector HV is ramped
back up to operating values. Finally, the data inhibit is removed, and data taking
commences once more. The entire ARF process is automated and takes ~ 1.5 min;
it starts when the beam current drops below a preset value determined to maximize
luminosity. By automating the process, data-taking time is used efficiently, and data

acquisition dead time is minimized.

2.5.1 Cerenkov Counter Detectors

The Cerenkov counter (CC) detectors in BLAST discriminate electrons from pions.
At sufficiently high pion energies, the timing resolution of the TOF's is not sufficient to
discern between electrons and pions. Furthermore, since both particles have the same
charge and thus similar curvatures in the BLAST magnetic field, the drift chambers
also cannot discriminate between them.

The CC detectors exploit the phenomenon of Cerenkov radiation [30]. A rela-
tivistic particle traveling at a velocity, 8, will emit Cerenkov radiation in the form of
light when it passes through a medium with a velocity greater than that of light in
that medium. If n denotes the index of refraction of the medium, then it follows that

Cerenkov radiation will be emitted by the traveling particle when:

or, equivalently, when:

E >

\1—1/n?

where E' and m are the respective energy and mass of the particle. By choosing
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a medium with an appropriate index of refraction, one can make it kinematically
possible for only one type of particle (electrons, in the case of BLAST) to emit

radiation.
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Figure 2-10: Plot of CC detector efficiency as a function of TOF number. The TOF
number increases as one goes further upstream. The falloff in Cerenkov efficiency for
TOFs #3, #7, and #10 is due to edge-effects.

There are four CC detectors used in each sector of BLAST?. The most downstream
one in either sector contains 7 cm of radiator (silica aerogel) with an index of refraction
of n = 1.02; the other ones all contain 5 cm of radiator with n = 1.03. The smallest,
most-downstream counter has six photomultiplier tubes (PMTs) attached to it. The
second counter has eight PMTs while the third has twelve. The size (width x height
x depth) of the largest CC detector is 100 x 150 x 19 cm3. All of the CC detectors’

PMTs were shielded with iron to avoid losing efficiency due to the BLAST magnetic

2The fourth CC detector is used in front of the back-angle scintillators (BATs; see Sect. 2.5.2)
and is not considered in this work.
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field.

The efficiencies of the CC detectors for electron detection are obtained from elastic
electron scattering on hydrogen. Scattered electrons are identified by coincidences
between drift chamber tracks (with appropriate elastic cuts) and scintillator hits in
the TOF's behind the CC detectors. The resulting efliciencies are plotted in Fig. 2-10.
On average, the CC detectors are ~ 85% efficient with a slight falloff in efficiency
with increasing TOF number. The falloff in efficiency is due to the fact that the
downstream-curved electrons hitting the most upstream TOF's miss the corresponding

Cerenkov box.

2.5.2 Time-Of-Flight Scintillators

Timing for the trigger as well as particle identification is provided by the time-of-
flight (TOF) scintillators. Sixteen TOFs are situated in both of the left and right
sides of the detector® immediately behind the three forward-most Cerenkov counter
detectors. The acceptance of the TOFs covers the entire acceptance of the drift
chambers; particles passing through the drift chambers will thus also pass through
the TOFs.

The TOFs all consist of 2.5 cm thick Bicron BC-408 scintillator [49]. The four
most downstream TOFs are each 120 cm tall; the remaining twelve TOFs are each
180 cm tall. The variation in TOF height is due to the fact that the azimuthal
acceptance of the drift chambers decreases with decreasing polar angle.

On either end of each TOF, a photomultiplier tube (PMT) is mounted. Assuming
the velocity of light to be constant within a TOF, the hits in each TOF’s two PMTs
can be mean-timed together to return a time independent of position along the TOF.
All thirty-two TOF's have their (delayed) mean-timed hits ‘OR’ed together so that the
earliest TOF hit provides the common stop by which to reference the drift chamber
hits in the event.

The TOF's have an intrinsic timing resolution of ~ 350 ps [17]. At kinetic energies

3An additional four backward-angle TOF scintillators (BATs) are located at extreme backward
angles to allow large Q2 measurements. However, the BATs are not considered in this work.
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of 0.400 GeV or lower, the time difference between a pion and a proton traveling from
the target to a TOF is ~ 7 ns. Thus, the TOFs can reliably be used for particle

identification.

2.6 'Trigger and Data Acquisition

The BLAST trigger is a programmable trigger capable of accepting the simultaneous
physics channels arising in the large-acceptance BLAST spectrometer. A schematic of
the trigger is shown in Fig. 2-11. Although originally developed in conjunction with
JLab Hall A, the trigger software has been updated and overhauled for the BLAST
project.

Raw signals from each detector are split into two signals. One signal is delayed
and passed into a FASTBUS ADC module (LeCroy 1881 M [35]) for integrated charge
measurement. The other (non-delayed) signal is sent to a detector-specific discrimina-
tor (a LeCroy 3412 Constant Fraction Discriminator [38] for the TOF scintillators and
a LeCroy 3420 Leading Edge Discriminator [36] for the CC detectors). The output of
the PMT at the top of each TOF is mean-timed with that of the PMT at the bottom
of the TOF; the CC detectors’ output for all CC detectors is ‘OR’ed together before
discrimination. The resulting signals for the detectors in a sector are then passed into
LeCroy 2373 Memory Lookup Units (MLUs) [33]. The outputs of these two units are
connected to a cross sector memory lookup unit (XMLU), which is programmed for
various desired left/right sector detector combinations. The output of this unit is
referred to as the first-level trigger.

After initial analysis of the data, it was discovered that the data for the majority
of the first-level triggers did not reconstruct into drift chamber tracks. The source of
the large number of such events is presumed to be upstream electron-positron showers
from the collimator that scatter into the detectors. In order to reduce the number of
these trackless events, a second-level trigger was instituted. The second-level trigger
demands at least one hit in each of the three drift chambers in a sector. Usage of the

second-level trigger lowered the data readout deadtime from ~ 40%s to ~ 15%s.

67



> to ADCs

)

to scale
to TDC

T

4 from other sector

3420 4518
h /100
T | cF »{ C 561
del
1-16->1-16 "’/"—Ld mean-
timer
4518
Scintillator A1-16 4516 /100
Detectors (TOFs) B1-16 AND delay/Fq, 4
1-16
1-16->1-16 | 3420 e
B E D delay/F(
to scaler
delay 1
o 4532 to scaler
> to ADCs to TDC to TDC
PAIR
5-16 / o
» C 561
mean- AMA Flasher
(—————t-t0 ADCS | timer
to scaler
T1-4->1-4 Al-8
3420 4518 1-8[ 4518 15
Back Angle o /100 4516 /100 1-¢
TOFs (BATS) delay/rq AND delay/Fd GATES
»> —>] —> p-10] 2373 2373 %
Bl-4->1-4 Bl-8 1-6 STARTS
scaler 1564 il 3 —%¢
»to ADCS MLU My > —
D OR !
12
16
—>
to ADCs
7-12
scaler - — ]
D From Other
2X10ns Sector
CAEN . 3412 4518 \‘532 2nd Level
Cerenkov N407 /100 Trigger
Detectors 1-12°] 24 ch discr delay/r ]Pm (diaggam
1-4 adder : OR on next
2 units page)
——pto ADCS
o scalers
——pto scalers
o) !
‘g —> |
Neutron ] 1
LE Disc AND OR
Detectors 1 x8 %8 1
it :
v o|o o Mimo Medule _ __ _ -
*]l II » to TDCs
t————pt0 ADCS
G PER SECTOR >4 FINAL LOGIC ==

note: * all analog signal division in matched impedance passive splitters

Figure 2-11: A schematic of the BLAST trigger logic. Only one circuit is shown
for each detector type, and only the left sector circuit is shown. The logic from the
left sector (LMLU) and the right sector (RMLU) are combined into the cross MLU

(XMLU) to form the total trigger.
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‘ Trigger \ Description w Prescale Value—|

0 14 TOF in each sector 1
1 1+ TOF in one sector, a NC in the other 1
2 2+ TOF's in the same sector with a CC 10
3 24+ TOFs in the same sector 100
4 14+ TOF in one sector, a BAT in the other 1
5 1+ of the four upstream TOF's in one sector 1000
6 14+ TOF in one sector with a CC 9
7 Flasher 1

Table 2.3: Listing of recorded XMLU physics triggers: TOF = time-of-flight scin-
tillators, CC = Cerenkov counter, NC = neutron counter, BAT = back-angle-TOF
scintillator.

A listing of the various classes of triggers recorded in BLAST is shown in Tab.
2.3. Some of the higher-rate triggers were prescaled in order to not lose lower-rate

events due to deadtime.

2.7 The BLAST Monte Carlo

Simulation of the BLAST experiment is divided into two components: event genera-
tion and particle propagation. Event generation is handled by the DGen event gen-
erator, a C++ object-oriented library developed specifically for the BLAST project.
Originally designed for elastic and quasi-elastic deuteron target event generation only
(hence the name DGen), it has since grown to include hydrogen target event gener-
ation as well as more exotic deuteron reaction channels (e.g., A resonances and pion
creation). Given a reaction type and target, DGen generates initial event kinematics
for all particles in the reaction consistent with current theory (see below). Events can

be distributed according to cross section or else in a flat “white” distribution.

Particle propagation is handled by a GEANT [16] Monte Carlo code simulating
the beam, target, and detector hardware as well as physics processes occuring during
propagation (e.g., energy loss, multiple scattering, hadronic interactions, etc.). De-

tectors are positioned within a master coordinate system referred to as the BLAST
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coordinate system with Cartesian axes defined as follows:

Zp : points in the direction of electron beam flow (i.e., downstream)
Uy : points towards the ceiling of the South Hall Ring
Zp : points in the remaining direction so as to form a right-handed coordinate

system with the §p and Zg vectors (i.e., 90° left of the beam direction)

The center of the BLAST system is defined to coincide with the center of the target
cell. Each detector also has its own detector-specific coordinate system and origin.
The detector’s origin is positioned within the BLAST coordinate system, and the
detector’s coordinate system is then oriented about that point. The detectors were
surveyed to provide realistic position and orientation information.

Event generation for deuteron electrodisintegration is based on the formalism of

Arenhovel et al. [6, 7]. Events are generated in a six-dimensional phase space?:

¢. : azimuthal angle of the scattered electron

gnM : azimuthal angle of the proton in the p — n center-of-mass frame
GS,M :  polar angle of the proton in the p — n center-of-mass frame

w  : energy transfer

f. : polar angle of the scattered electron

z : event vertex position along the Zp axis

When using the “white” generator, for each event, a spin-dependent cross section is
assigned as a weight (see (1.37)). The various deuteron electrodisintegration struc-
ture functions have dependence on 6., 5", and w; the asymmetries, composed of
kinematically-weighted linear combinations of the structure functions, have additional
dependence on ¢$M and, indirectly®, on ¢,. The structure functions are calculated
by Arenho6vel and collaborators on a grid of 6., OglM , and w relevant to the BLAST

acceptance. The sixth variable, z, is generated using a triangular distribution func-

4 Additionally, the beam energy is taken to be a known constant of 0.850 GeV

5The asymmetries have direct dependence on 6,4, the polar angle of the deuteron’s polarization
vector with respect to the three-momentum transfer vector, §. However, in order to specify ¢
completely, the polar angle of the scattered electron, ¢., must be known.
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tion in accordance with the target density distribution. A map of the target holding
field is used to calculate the target polarization angle along the Zp axis.

The particles in the events are then propagated outward through the BLAST de-
tector. All physics interactions are allowed® including secondary particle generation.
Hits in the detectors are tracked and recorded at the end of each event. Depending
on the desired reaction (2H (€, ¢'p)n or 2H (€, e'n)p), various detector hit combinations
are demanded; events passing those cuts are deemed “good” events. Detector kine-
matic resolutions are determined from real data and then convoluted into the Monte

Carlo event list.

60ne exception to this is radiative effects which are absent in GEANT.
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Chapter 3

The BLAST Drift Chambers

3.1 Introduction

Drift chambers are designed to return position information on the trajectory of
charged particles. Such position information can be used to extract information
regarding the particle’s momentum and charge and as well as information regarding
the corresponding track’s vertex position. When used in tandem with other detectors
(e.g., time-of-flight detectors), drift chambers can be an effective particle identification
mechanism.

In this chapter, the BLAST drift chambers are discussed in detail. A short sum-
mary of the physics behind drift chambers is first presented. Afterwards, an individual
BLAST drift cell is described, followed by a general layout of the drift chambers and
details of their construction. Finally, calibration, operation, and performance of the

drift chambers are discussed.

3.2 Overview of Drift Chamber Theory

This section gives a short summary of the essential ideas and physics behind the
principles of a drift chamber. Refs. [15] and [51] provide a more comprehensive
description of their properties.

Charged particles traversing a gas leave a trail of stochastically-distributed free
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electrons. By applying an electric field, the electrons “drift” from their origination
sites to designated readout wires in a series of repeated accelerations and decelera-
tions. The electrons accelerate for an average distance given by the gas’s mean free
path (~ 1um) and decelerate by colliding with gas molecules. The net effect is a
fairly constant, calculable drift velocity as a function of the applied field. Gas mix-
tures used in drift chambers have drift velocities on the order of ~ 1 -2 cm/us. With
drift distances of ~ 3 - 4 cm, drift times around ~ 2 - 4 us are typical. By measuring
the drift time, the position of the ionization can be determined. The limitation on
drift distance is the diffusion of ionized electrons in the gas: longer drift distances
have larger diffusion which worsens the resolution.

At low gas densities, the energy lost by the traversing particle is relatively very
small (~ 1 keV/cm of gas), and the particle’s momentum is not significantly per-
turbed. Such a quality is essential in a momentum-determining detector since any
momentum change is inherently convoluted into the measurement.

To detect the electrons reaching the readout wires, a mechanism must exist for
their amplification. Gain factors of ~ 10° are desirable. The electric field near the
readout wires goes as ~ 1/r. Very close to the wires, the electric field is strong
enough to accelerate the electrons enough to ionize the gas. This ionization produces
another free electron, and the pattern repeats, evolving into an electron “avalanche”.
For typical drift chamber gas densities and corresponding mean free paths, the field
starting the avalanche is of the order of ~ 10 kV/cm. To achieve such high fields and
allow for sufficient ionizations, the readout wires must be very thin (~ 10 - 30 ym).
The region in which the avalanche occurs is small (within ~ 75 um of the readout
wires), and it takes ~ 1 ns to occur. Thus, the total time between ionization and

charge collection on the wire is dominated by the drift time.

3.3 Drift Chamber Gas

The gas mixtures used in drift chambers typically consist of two gases: an ionization

gas and a quenching gas. The ionization gas produces most of the ionization caused

74



plateau

—

Efficiency

Figure 3-1: Plot of efficiency as a function of the electric field, E, at the surface of a
readout wire.

by traversing charged particles. Typically, the ionization gas is a noble gas; helium,
argon, and krypton are common. Because of their high excitation energies, noble gas
molecules excited by a traversing charged particle can ionize quenching gas molecules,
thus leading to further ionized electron production via secondary reactions.

Recombination effects in the avalanche region produce a large number of energetic
photons. These photons, left unchecked, would cause more ionization, resulting in
constant electric discharge and breakdown. To avoid this problem, a quenching gas is
used to absorb the resulting photons. Quenching gases are typically large hydrocarbon
molecules, such as methane, ethane, propane, and isobutane. Such large molecules
have numerous rotational and vibrational excitation states which allow them to absorb
many of the unwanted photons. However, the quenching gas also tends to absorb the
(wanted) ionized electrons, becoming worse for longer drift distances. For this reason,
a balance must be achieved to provide sufficient quenching but retention of efficiency
throughout the drift region.

Due to small differences in the wires and their geometry, it is not possible to have
all wires with exactly the same gain. It is therefore important to use a gas mixture
with a plateau of voltages over which detection is efficient. A typical efficiency curve

is shown in Fig. 3-1. At low electric fields, the gas gain is not large enough to
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Figure 3-2: Overhead view of a drift cell in BLAST.

be detected, and the efficiency is thus low. At too high an electric field, the gas
becomes ionized near the readout wires without an initial ionization electron, and
the detector is “noisy”. Between the limits, a plateau region exists along which the
gains are sufficient for efficient detection. The wires’ voltages are adjusted to lie on
this plateau. For argon the plateau region is large (~ 500 V) while for helium it is
only ~ 100 - 200 V in width. Lighter gases, however, cause less multiple scattering
of the traversing particles which improves the position resolution. There thus exists

a tradeoff in plateau voltage range and position resolution.

3.4 Drift Cell Design

The drift chambers used in BLAST are made up of “drift cells.” The drift chambers
can be understood by studying an individual drift cell. In BLAST, a drift cell is a
rectangular array of thirty-nine wires (see Fig. 3-2). A cell has transverse dimensions
of 4.0 cm x 7.8 cm.

The wires in a cell fall into one of three functional categories: sense, field, and
guard. Sense wires are the readout wires. The charge from ionization amplified

by the gas gains acculumates on them and is read out via amplifier-discriminator
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Figure 3-3: Drift lines in a drift cell in the absence of an external magnetic field.

cards. There are three sense wires in each cell. The sense wires consist of 25 pm-thick
tungsten wire with 3% rhenium alloy; the wire was electrolytically cleaned to remove
oils used in its manufacture. Neighboring the sense wires are guard wires. Adjusting
the guard wire voltages allows the gains to be matched on all three sense wires and
helps to contain the electric field. The guard wires consist of 100 gm-thick berilium
copper alloy. The remaining wires are collectively referred to as field wires and are

used to shape the electric field. The field wires are also 100 pm-thick berillium-copper.

The drift cell geometry and wire voltages must be optimized to achieve sufficient
gas gain on the sense wires and to transport ionization electrons from all parts of the
drift cell to the sense wires. In the absence of a magnetic field, the electric field for
a drift cell is shown in Fig. 3-3. The electric field resembles two oppositely-directed
“jets” for each sense wire. lonized electrons produced within the cell drift along the
electric field lines to one of the sense wires. Increasing guard wire voltages would
make the jets narrower and simplify reconstruction but reduce the efficiency of the

electron collection. In practice, a tradeoff must be reached.

In BLAST, the voltages on various cell wires are as indicated in Fig. 3-5. The
voltage on the middle guard wires was chosen to make the gain on the central sense

wire the same as the other two. The voltage drop between field wires was chosen to
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Figure 3-4: Drift lines in the presence of a 3800 G magnetic field.

make the drift region uniform.

In BLAST there is an external magnetic field. In general, in the presence of
arbitrary electric and magnetic fields, E and B, the resulting velocity, ¢, that a

particle of mass m and charge ¢ achieves satisfies:

I,

m® =g

+7x B) - Kif (3.1)
Here, a frictional force proportional to ¢ has been assumed. In the steady state, the
general solution to this equation is given by:

ar |E|

6:m[ﬁ]+wr(£}'xl§)+w2r2 (EB) B] (3.2)

where w = |g||B|/m is the electron’s cyclotron frequency and 7 = m/K is the char-
acteristic time of the system. In BLAST, the magnetic field is approximately perpen-
dicular to the electric field (i.e., £ - B = 0). Taking this into account reduces (3.2)

to:
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(3.3)

The presence of a nonzero magnetic field causes the ionized electrons to travel at an

angle, 11, with respect to the electric field. This angle is commonly referred to as

the Lorentz angle:
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Figure 3-5: Wire voltage distribution within a cell.

In BLAST, the magnetic field varies over a range between ~ 700 — 3800 G. Thus, the

Lorentz angles vary from cell to cell. Typical Lorentz angles in BLAST are ~ 2 — 8°.

A plot of the drift lines with a 3800 G magnetic field (i.e., the maximum magnetic
field in BLAST) is shown in Fig. 3-4.

Due to various reaction processes that occur during photon recombination, positively-

ionized quenching gas molecules are produced after an ionization avalanche occurs.

These ions drift to wires containing a net negative charge. If the electric field on the

surface of these negatively-charged wires is too high, quenching gas ions can attach

and develop “whiskers”, i.e., chains of ionized quenching gas molecules. Over time,

whiskers can grow long enough to cause breakdown with the sense wires and make
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a drift chamber inoperable. To prevent the growth of whiskers, the electric field on
the surface of these wires should be as low as possible. This is accomplished by using
large diameter wire to ensure that the surface field is small (< 30 kV/cm). Such low

fields are sufficient to inhibit whisker growth.
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Figure 3-6: Different views of a drift chamber sector in BLAST. Starting from the
top picture and going clockwise: 1) an overhead view, 2) a sideways view, and 3) a
front view.

3.5 Drift Chamber Design

The six drift chambers in BLAST are arranged into two assemblies of three-chamber

“sectors”. The basic schematics of a sector are shown in Fig. 3-6.
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Figure 3-7: View of the two drift chamber sectors as positioned in BLAST between
the magnetic coils.
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Figure 3-8: Overhead view of the drift chambers in BLAST. The left picture shows
the chambers with hidden lines visible. The right picture shows the same setup as it
actually is seen.
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Figure 3-9: View of the coils’ shadow regions inside which the drift chambers lie.

The three drift chambers in a sector form a common gas volume. The volume
is made gas-tight by placing double layers of 25 pm-thick mylar over the sector’s
entrance and exit planes. Between the two mylar sheets nitogren gas is flowed to
flush away drift chamber gas that escapes. By making a common gas volume out
of three drift chambers, energy loss due to the addition of entrance/exit windows is
minimized.

The physical design of the drift chambers is largely determined by the geometric
restrictions imposed by the magnetic coils. Two opposing sectors are each instru-
mented with a three-chamber sector as shown in Figs. 3-7 and 3-8. The drift cham-
bers are positioned downstream of the target center and inclined towards the beam
line at their downstream side. This is done so that particles coming from the target
traverse the chambers at angles of ~ 90°. Such positioning requires the chambers to
be trapezoidal in all three perpendicular directions.

Due to the 3.5” thickness of the magnetic coils, there exists a “shadow” region
behind each coil (Fig. 3-9) into which particles originating from the target cell do
not propagate. To achieve the maximum acceptance between the coils, the drift
chambers’ frames are designed to lie within these shadow regions. The limited size of
the shadow region forces the chambers to have relatively thin cross sections as shown
in Fig. 3-10.

Each drift chamber sector subtends a polar angular range of 8 ~ 20° - 80°. At the
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Figure 3-10: Cross section of the drift chambers. Compare with the shadow regions
in Fig. 3-9.

downstream side (the # ~ 20° side), the sector subtends an azimuthal angular range
of ¢ ~ —15° - 15° at the upstream side (the 6 ~ 80° side), this range increases to
¢ ~ —22° - 22°. The total solid angle subtended by each chamber sector is ~ 0.50 sr.

Each of the three drift chambers in a sector contains multiple drift cells arranged
into two parallel rows of “superlayers”. In each of the two sectors, there is a total of
159 drift cells distributed as in Tab. 3.1. Each cell consists of 39 wires, three of which

are sense wires. In total, there are 9,648 wires in the six BLAST drift chambers; 954

Superlayer
Inner | Outer | Total
Inner Chamber 18 19 37
Middle Chamber | 26 27 53
Outer Chamber 34 35 69

| Total | 78 | 81 [ 159 |

Table 3.1: Number of drift cells per superlayer.
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of these are sense wires.

The drift chamber gas is Helium:Isobutane(82.3%:17.7%). Within a sector, the
drift chamber gas flows into the gas-tight region through multiple holes located on
the upstream side of the chambers. Exit holes are located only on the downstream
side. The gas entrance and exit holes are arranged to minimize pockets of unrecycled

gas. A flow rate of 3 1/min is typical.

3.6 Drift Chamber Construction

The aluminum frames for the drift chambers were built by Allied Mechanical in
Ontario, CA, and the disassembled pieces were shipped to the MIT campus where
they were later assembled. Dowel pins ensured the alignment of the pieces.

The drift chambers were strung on the MIT campus. Each wire was strung under
tension primarily to resist movement in the chambers’ electromagnetic field and sec-
ondarily to resist gravitational effects. Sense wires were strung at a tension of 50 g
while the remaining wires were strung between 50 — 800 g, depending on the length
of the wire.

Because of the large number of wires in the chambers, a fully strung chamber is
under significant tension (~ 1 ton). Such large tensions cause deflections of up to a
few millimeters in the frame. The chambers were thus pre-stressed by piano wire at
tensions simulating the fully-strung chamber. As stringing progressed from one end
of the chamber to the other, the piano wires were gradually removed.

The actual stringing of the chambers followed a detailed, systematic method to
guarantee uniformity and cleanliness of the chambers. The chambers’ frames were
cleaned with acetone to remove grease and then with isopropanol to remove any
residue. Each hole was also cleaned using clean-room swabs. Temporary 0.25” thick
plastic windows were then attached to enclose the chamber. These windows helped
keep the chamber interior clean during wiring and protected the wires from accidents.

The wiring took place inside a clean-room (class ~ 1000) at MIT. First, a long,

thin needle (up to 1.4 m) was inserted through the proper holes on each side of
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Figure 3-11: A feedthrough used to hold a drift wire. (a) View of the feedthrough
(b) A crimped feedthrough holding a wire (c¢) Dimensions of a feedthrough

the chamber. A feedthrough was then threaded onto the proper wire (tungsten or
copper), and the wire was attached to one end of the needle. The needle and wire
were then pulled through to the other side of the chamber. The wire was cut from
the needle, and a feedthrough was threaded onto it. The feedthrough on the first side
was then installed into the hole and crimped. A weight hung over a pulley was then
attached to the free end of the wire to tension the wire. The second feedthrough was
then installed into the remaining hole and crimped. This process was repeated for all
of the wires; the pre-stressing piano wires were gradually removed as the permanent

wires were installed.

The schematics of a feedthrough are shown in Fig. 3-11. Each feedthrough consists
of a gold-plated copper tube inserted into Delrin [22] insulator. They are designed to
stand 1 cm from the chamber frame to avoid sparking between the (grounded) frame
and the wires. The feedthroughs are a press-fit in the holes in the chamber. An RTV
epoxy resin, Sylgard [21], was applied to the external feedthrough area to make them
gas-tight.

To check that the wires were at the desired tensions, the following method was
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Figure 3-12: Vibration and frequency information for a wire.

cmploved 391 One wire was excited by an AC signal superimposed on ahigh voltage
(HV) DC level. The HV induced a charge on neighboring wires which then vibrated
i the alterunating field. The AC signal was stopped. and the wires quickly {on the
order of ~ 100 ms) went to their natural frequency. This frequency was detected as

an induced current in the wives. The tension. T, was determined from the natural

frequency, fooaccording to [52):

i

Heve, [ds the Jength of the wire and 18 its Tinear densicy. A plot of the vibration

and frequency owtprit for a typieal wire is shown i Figo 3-12.

£

3.7 Drift Chamber Electronics

High voltage (HV) must be supplied to the sense. gunard. and field wires in cach cell
in order to produce the desived operating electrie feld. Additionally. clectronies must
exist to collect, discriminate, and amplify sense wire signals.
Three posivive HV supplies are used to energize the drift cells. One HV supply is
L’l} for the songe wirpe: ¢ -Dor 1o ‘1{_\‘ i by o1 i 1y e fuﬂw",\izx ST t} 3
1 for the sense wires: another 1@ used for the two guard wires located belween the

sense wires. The third HV supply is used for the remaining field wives; recquired field
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wire voltage drops are handled by a chain of resistors connected to ground.

H —AW— —AM— Hv

SENSE GUARD
WIRE WIRE

FASTBUS
T™C

v

Figure 3-13: Circuit diagram showing drift cell signal readout. A differential amplifier
is used to reduce noise.

To reduce noise, the signal readout from each sense wire is connected via a dif-
ferential amplifier to a neighboring guard wire (see Fig. 3-13). A 3V threshold is
supplied to the amplifier for further signal discrimination. The resulting ECL signals
are then passed to FASTBUS TDC modules [34].

All electronics for the drift cells lie in copper boxes in the recesses between the
chambers (see Fig. 3-10). Each box distributes HV and supplies readout electronics

for up to five adjacent drift cells in a particular superlayer.

3.8 Drift Chamber Calibration

To reconstruct tracks accurately, the sense wire positions must be known very pre-
cisely. Additionally, since the drift chambers are designed to have a resolution of
~ 120pm, knowledge of the sense wire positions to an accuracy much smaller than
this is required. To satisfy these constraints, the drift chambers need to be accurately
calibrated.

The time, ¢;, at which ionization for a hit on sense wire 7 in a drift cell reaches
the sense wire is related to the in-plane position, x;, of particle traversal according to
the relation:

Ty = Xz i‘i d(Tl - ti) s 1= O, 1, 2 (36)
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Figure 3-14: Drift chamber TDC spectrum.

Here, X; and T; are calibration constants specific to the sense wire, and d(7; — t;)
is the functional form for the time-to-distance relation for the drift chamber gas in
terms of the drift time, 7; — ¢;. The value of the sign in front of d(T; — t;) depends on
which side of the sense wire plane the particle traversed; the i subscript is necessary
since, in general, the side can change for each wire within a drift cell depending on
the particle’s trajectory. All of these aspects are described in more detail below.

The calibration constant 7; can be interpreted as the time at which the ionizing
charged particle crossed the plane of sense wire i. Drift chamber TDC data in BLAST
were taken in common stop mode, the stop being provided by the earliest event
in the top/bottom mean-timed photomultiplier signal of the time-of-flight (TOF)
scintillators (see Sect. 2.5.2). As a result, ¢; < T; for all #; and the appropriate form
of the drift time is 7T; — ;.

A typical TDC spectrum for a sense wire is shown in Fig. 3-14. Since data
were taken in common stop mode, hits closest to (farthest from) the wire appear
at high (low) TDC values. The peak at high TDC values arises from the large
variation in isochrones (i.e., lines of constant drift time) in the immediate vicinity of
the sense wire which, when coupled with the stochastic nature of ionization, results

in an enhancement of drift times slightly away from the wire. Moving away from the
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Figure 3-15: Track reconstruction without any sense wire stagger (top) and with 0.5
mm sense wire stagger (bottom). Without stagger, the side of the traversing particle

cannot be determined. With stagger, the three hit distances form a straight line only
if the correct side is chosen.

sense wires, the TDC values plateau until the edge of the drift cell is reached; the
signals then drop back into the noise. The flatness of this plateau is a measure of the
efficiency of the gas mixture to allow for ionization propagation all throughout the
cell. The entire TDC distribution has a width of ~ 4000 channels. Since one side of
a drift cell is 39 mm long and since 1 ns = 2 TDC channels, the average velocity of

drifting electrons in the gas is ~ 20pum/ns.

To first order, T; can be considered constant for all sense wires and equal to the
(undelayed) time of the common stop. The relative timing of all of the TOFs has

been set up to be the same (within ~ 1 ns) for any relativistic particle coming from
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the target. However, since a relativistic particle crosses different planes of sense wires

at different times, T; is, in practice, different for each sense wire.

The calibration constant X; represents the in-plane position of the center of sense
wire ¢. It is made up of two components: a 0.5 mm stagger and deviation about that
stagger. The first (i = 0) and third (¢ = 2) sense wires in a cell are each staggered
0.5 mm in the —& direction while the middle sense wire (: = 1) is staggered 0.5 mm
in the +z direction. In the absence of such a stagger, TDC information would not
be sufficient to determine which side of the sense wire plane the particle traversed.
However, when a stagger is introduced, the three z; distances form a straight line only
if the correct +; signs have been chosen for all three sense wires. This phenomenon is

shown in Fig. 3-15. There are 23 — 1 = 7 sign combinations! that need to be tested.

The second contribution to X; comes from deviations of the wire from its ideal
position. Due to machining tolerances during construction, feedthrough holes can lie
up to ~ 20pum away from their ideal positions. Additional deviations can arise from
manufacturing errors causing the copper tube in a feedthrough to lie preferentially
away from the center of the Delrin insulator as well as from biases due to the actual
crimp of the tube. Collectively, these deviations can add up to a total deviation of
~ 100pm. In order for the drift chambers to have a resolution of ~ 120um, these
deviations must be accounted for.

The time-to-distance relation, d(7; — ¢;), listed in (3.6) is a very complicated
function in principle. In general, it depends on multiple parameters: the sense wire
within the cell, the angle that the ionizing particle makes with the & axis, the magnetic
field along the sense wire, the side from which the ionization came, and the drift
time, T; — t;. For realistic time-to-distance relations, the magnetic field program
MAGBOLTZ [8, 13] is used, explicitly taking into account all of these variables.
A typical time-to-distance distribution is shown in Fig. 3-16. At small times, the
distance is approximated by a cubic polynomial in 7; — ¢;; at large times, a linear

relation is sufficient. Where the two regions meet, continuity is demanded in both

1Due to the orientation of the staggers, one of the combinations (+9 = +, +; = —, and £ = +)
is unphysical and thus is not checked.
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Figure 3-16: Typical plot of drift distance versus drift time. The relation, in general,
depends on the sense wire within the cell, the angle that the ionizing particle makes
with the Z axis, the magnetic field along the sense wire, the side from which the
ionization came, and the drift time, T; — t;. A cubic polynomial is fitted to each
relation at low drift times; a linear relation is fitted at high drift times.

the approximations as well as in their first derivatives. A higher-order polynomial is
needed close to the wire due to the nonlinearities in the magnetic field that appear
there.

Approximate values for the X; and 7; calibration constants are found by using

the lowest order approximation for the time-to-distance relation:
IL‘i%Xi :hz' U'(T‘i—ti) y 220,1,2 (37)

In this approximation, the velocity, v, of ionized electrons in a cell is assumed to
be everywhere constant. More accurate determinations of X; and T; utilize iterative
techniques involving higher-order polynomial fits.

With appropriately calibrated drift chambers, the intrinsic resolution can be mea-
sured. A straight line is fitted to the three sense wire hits within a cell, and the
variation in hit position from that line is determined. The process is repeated for nu-

merous events, resulting in a variation distribution. With correctly chosen calibration
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constants and time-to-distance relations, the distribution is Gaussian and centered at
zero. In BLAST, such analysis returns an intrinsic resolution of ~ 130um, which is

very close to the ideal resolution of 120um.

3.9 Drift Chamber Reconstruction

Ideally, a charged particle passing through a BLAST drift chamber sector causes hits
on eighteen wires?: 3 chambers x 2 superlayers per chamber x 3 sense wire hits per
superlayer = 18 hits. The information from these hits is collectively used to return
an overall momentum and vertex position for the particle causing the hits. The

procedure for the drift chamber reconstruction is outlined below:

1. Cell proximity checks are made on hits within a particular superlayer. Groups
of hits lying in sufficiently close cells are identified and collectively referred to

as a “cluster”. Hits not satisfying the proximity checks are discarded.

2. For each of the hits in a cluster, the corresponding distance, (3.6), is determined.
Good-fit planes are found; such planes are referred to as “stubs”. Within a

superlayer, stubs all run parallel to the sense wire planes.

3. Stubs in the two superlayers within each cell are collectively used to determine
overall good-fit lines for the chamber referred to as a “segment”. In order to
extract vertical position information for the particle trajectory, adjacent super-

layers lie at a £5° stereo angle with respect to the vertical.

4. A circle is fitted to the three segments in a sector (one for each chamber) to
extract an initial approximation to the track of the particle. To the extent
that the magnetic field is constant within the particle’s trajectory, a circular
fit is a reasonable first-order assumption. From this fit, approximate values are

determined for the momentum and vertex position of the particle trajectory.

2Inefficiency of the wires as well as noise hits can change this number.
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p| ¢ ¢ z
[%] | [deg] | [deg] | [cm]
electron | 3.2 | 0.5 06 | 09
proton | 2.9 | 0.5 06 | 1.0
design | 2.0| 0.5 | 0.5 | 1.0

Table 3.2: Electron and proton resolutions in BLAST along with design resolutions.

5. Once initial kinematics have been found, an iterative process begins wherein
the particle is swum out from the target in small steps to the drift chamber
region using the measured magnetic field. The corresponding hit distances are
determined and compared with the actual ones. Kinematics are corrected using
the Newton-Rhapson method [46], a multi-dimensional version of the more-
commonly known one-dimensional Newton’s method. The swimming process
then starts over again; iteration continues until a sufficiently low x? value is

achieved.

High wire efficiency is necessary for reliable, quick reconstruction. While eighteen
hits per track is optimal, track reconstruction is possible, with some restrictions, for
tracks down to twelve hits. The combinatorics associated with such tracks, though,
are large, and these tracks thus have worse resolutions. Each sense wire in BLAST
is ~ 98% efficient. Of the eighteen hits possible in an ideal track, this value implies
that ~ 70% of all tracks have eighteen hits and that > 99% of all tracks have at least
sixteen hits.

Kinematic resolutions in BLAST are determined from elastic electron scattering
from the proton. Non-azimuthal momentum kinematics in this reaction (i.e., 6, 6,,
Pe, and p,) are all determined from one variable. As a result, reconstructed values of
these variables can be plotted against calculated ones. The widths of the resulting
histograms return information directly related to the resolutions of these kinematics.
Additionally, resolution information for azimuthal angles (i.e., ¢, and ¢,) is returned
from coplanarity histograms of their sum; vertex resolutions (i.e., z, and z,) come
from the single vertex position requirement. The resulting kinematic resolutions for

the electron and proton are shown in Tab. 3.2 along with design values.
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Chapter 4

Data Analysis

4.1 Overview of the Experiment

This work is based on ~ 1100 hours of data taken from the scattering of polarized
electron beam off the polarized internal deuterium target in the South Hall Ring.
The time-averaged stored current in the ring for the entire experiment was 95 mA.
As improvements in the beam and tune were made, the maximum injected beam
current per fill increased over the lifetime of the experiment from 100 mA to 140 mA.

Beam fills had an average lifetime of ~ 20 min.

The total accumulated charge using the polarized beam and deuterium target was
~ 400 kC. In order to reduce systematics resulting from extended running in the same
polarization state, the beam’s helicity was flipped with every fill (~ 20 min), and the
target polarization state was switched every 5 min between the vector plus, vector
minus, and tensor minus states. At the beginning of a target polarization sequence,
the initial target polarization state was randomly chosen, and the remaining two
states sequentially followed. Switching the beam and target polarization states in
this manner resulted in data being taken in all six beam-target polarization states

during every hour of run-time.
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4.2 Identification of 2H(€,e'p)n Events

Data returned from reconstruction were incomplete in discriminating 2H (€, ¢'p)n
events from all of the reaction channels open to the BLAST detector acceptance.
Instead, kinematics cuts had to be imposed on the data to separate the desired
events. Since the electron and proton are both charged particles, only events with
coincident drift chamber tracks in each sector were considered for possible 2H (¢, ¢'p)n
events. For these events, the information returned from reconstruction consisted of

the following:

e The spherical coordinates for the reconstructed momentum vectors, 5 = (p, 8, ¢),
for both of the left/right sector coincident tracks as well as vertex z positions

for each track along the target.

e Drift chamber TDC information as well as the charge of the particle in each of

the two coincident tracks in the event.

e TDC and ADC information in each sector for the event for the time-of-flight
(TOF) scintillators and Cerenkov counter (CC) detectors.

Due to detector acceptance constraints, the scattered neutron from the reaction was
not detected in general when the electron and proton both are. Instead, neutron
information was deduced from an event’s electron and proton information (see Sec.

4.2.3).

4.2.1 Particle Identification Cuts

The most basic cuts applied to the data were electron-proton (e — p) particle iden-
tification cuts. Reconstructed e — p events have coincident tracks with respective
charges of —1 and +1. Additionally, hits were demanded in the time-of-flight (TOF)
scintillators in both sectors. To help eliminate unwanted 7~ — p coincident events,
a Cerenkov Counter (CC) detector hit was demanded (refused) in the sectors with

negative (positive) charge.
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Figure 4-1: TOF scintillator distribution for each of the three downstream Cerenkov
counter detectors for electrons originating from the target region. The total distribu-
tion for all Cerenkov counter detectors is the sum of the three separate distributions
and is shown as the black outline.

4.2.2 Vertex Cuts

Vertex cuts were imposed to ensure that the event originated within the target region
as well as to assure that coincident tracks corresponded to the same physical event.
Due to the presence of the tungsten collimator upstream of the target region, electron-
positron showers originating in the collimator can scatter off hardware surrounding the
target region, producing e — p events which scatter into the detector. Such unwanted
events were minimized by imposing cuts on the vertex position of each track. The
target is 60 cm in length. However, holding field magnets cover only the inner 40 cm.
Thus, to ensure reliably polarized deuterons, data were restricted to that 40 cm of
target. Additionally, a cut on the relative distance between the vertices in the two
coincident tracks was imposed.

To further constrain the region of e — p vertex origination, pairwise cuts were
placed on the hit TOF scintillator and CC detector in the electron sector. The
CC detectors lie directly in front of and nearly adjacent to the TOF scintillators.

Physical restrictions thus exist between which CC-TOF combinations can be hit by a
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passing electron originating in the target. CC-TOF combinations through which an
electron coming from the target region can pass are shown in Fig. 4-1. In general,

the acceptance of each CC detector covers that of four consecutive TOF detectors.

4.2.3 Missing Mass Cut

Application of e — p particle identification and vertex origination cuts only ensure
that 2H (¢, e'p)X events remain in the data. Although dominated by X = n, the
2Hq (€, €'p) X reaction can also have undetected multiple-particle states (e.g., X = nn®

and pr~). Additional cuts thus had to be imposed to ensure that X = n.

The missing energy, F)s, and missing momentum, g/, are defined as the respective

total energy and total momentum not accounted for by the detected proton!:

Evy = w+my—E, (4.1)

— —

Pv = Pp—q (4.2)
In terms of these variables, the missing mass, myy, is defined as:
myy = Exy — piy (4.3)

By demanding that the missing mass be equal to that of the neutron (my = m, =~

0.940 GeV/c?), an undetected single neutron final state can be enforced.

Plots of the missing mass are shown in Fig. 4-2 for perpendicular (left-sector
electron) and parallel (right-sector electron) kinematics®. In both sectors, the peak at

mys = m, is visible followed by the undetected multiple-particle continuum. Gaussian

!The missing momentum vector is sometimes seen in the literature defined to equal the negative
of the missing momentum vector as it is defined in (4.2), that is, p, = ¢ — Pp. However, in the QE
limit, §}; — Pn whereas far — —pPn. From the results in Section 1.4, the internucleon momentum
vector equals the negative of the neutron momentum. Thus, the definition in (4.2) is the consistent
one to use. For results expressed with regards to only the magnitude of the missing momentum,
both definitions are equivalent: p3; = par.

2See Section 1.5.2 for an explanation of the “perpendicular” and “parallel” terminology.
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Figure 4-2: Missing mass spectra for perpendicular and parallel kinematics. The peak
at my = m, ~ 0.940 GeV/c? along with the multiple-particle continuum at higher
mys are both visible.

fits to the my; = m,, peaks in each sector give:
(mar) ppag = (0.942 £ 0.025) GeV /c? (4.4)

The uncertainty quoted here (0.025 GeV/c?) is the o value resulting from fitting a
Gaussian to the peak distribution, not the uncertainty in the determination of the

peak.

After the single neutron undetected state, the next lowest-lying undetected missing

mass state for 2H(€,e'p)X is X = nn°.

It is a multiple-particle state and thus
corresponds to a continuum of missing mass values. The lowest missing mass value
this state can have is my; = my, +myo =~ 1.075 GeV/c?. Since an undetected neutron
corresponds to ma; = m, ~ 0.940 GeV/c?, pion contamination is minimized by
ensuring that the cuts around the m,, = m, peak are sufficiently below the pion
threshold. Since the o from the Gaussian fit is 0.025 GeV/c? ~ ém,,, a full 3-sigma

cut was placed around the missing mass peak in the data. For this analysis, the

contamination from pion events is thus believed to be small.
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4.3 Momentum Corrections

To compensate for reconstruction errors as well as to account for energy loss (which is
currently not included in the reconstruction), corrections to the electron and proton
momenta were imposed. For a series of bins exhausting the desired Q? range, the
reconstructed electron and proton momenta were each compared with their respective
Monte Carlo momentum plots. In each Q? bin, the quasi-elastic electron (proton)
momentum peak in the data was multiplied by a correction factor, f.(Q?) (f,(Q?)),

causing it to coincide with the Monte Carlo electron (proton) momentum peak:

pe(Q2)|MC QE peak — fe(Q2) X pe(Q2)|Data QE peak (45)
(@) rc QE peak = fo(Q%) X Pp(Q%)|Data QF peak (4.6)

For each of the sets of electron and proton momentum correction factors, a polynomial
of best-fit was then calculated in terms of the discretized correction factors.

For electrons and protons passing through the left drift chamber sector, the cor-
rections are on the order of 5% and 3%, respectively; electrons and protons passing
through the right drift chamber sector have corrections on the order of 2% and 8%,
respectively. Since the BLAST detector is a left/right symmetric detector, energy
loss in both sectors is expected to be approximately the same for similar particles.
The disagreement between the correction factors in either sector for the same particle
is thus mostly attributed to left/right disparities in the reconstruction. Plots of the

corrected momenta are included in Sec. 4.4.

4.4 Reconstructed Kinematics

Data were analyzed in a momentum transfer range of 0.1 (GeV/c)? < @Q? < 0.5
(GeV/c)?. Although the BLAST detector is capable of returning information up
to Q% ~ 0.8 (GeV/c)?, the Cerenkov counter detector cut as well as cross section
considerations imposed lower bounds on this upper limit.

A plot comparing the reconstructed Q? range versus Monte Carlo calculations is
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Figure 4-3: Comparison of the reconstructed square of the momentum transfer, Q2,
versus Monte Carlo calculations for perpendicular and parallel kinematics in BLAST.
The normalization in the plots is to the maximum peak.

shown in Fig. 4-3. Since detector efficiencies are not measured in BLAST, the nor-
malization of the Monte Carlo to the data is arbitrary; normalization to the maximum
peak in each distribution is used for the plots shown here. Overall, good agreement
is achieved in both perpendicular and parallel kinematics. The disagreement at in-
termediate Q? values is due to reconstruction inefficiencies in the regions between

adjacent CC boxes; attempts to compensate for it are currently being looked into.

Physics results in this analysis are divided into four Q? regions:

0.1 (GeV/c)? < Q% < 0.2 (GeV/c)?
0.2 (GeV/c)® < Q% < 0.3 (GeV/c)?
0.3 (GeV/c)® < Q* < 0.4 (

0.4 (GeV/c)? < Q% < 0.5 (GeV/c)?

GeV/c)®

For each of these Q? regions, plots comparing electron and proton kinematics as com-
pared with Monte Carlo calculations are shown in Figs. 4-4 to 4-7. Good agreement

between the (corrected) electron and proton momenta is seen for all Q? regions. The
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disagreement in the electron and proton extreme azimuthal angles is attributed to
inefficiencies in the reconstruction.

As discussed in Chap. 1, asymmetry results in this work are expressed in terms
of pps, the missing momentum magnitude and in terms of 8, the angle between the
deuteron polarization vector and the missing momentum vector. Plots of the missing
momentum along with its component projections along the “g” coordinate system

(see Sec. 1.5.2) are shown in Figs. 4-8 to 4-11. Plots of 6, are shown in Fig. 4-12.
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Figure 4-4: Comparison of electron and proton kinematics with Monte Carlo cal-
culations for 0.100 (GeV/c)? < @2 < 0.200 (GeV/c)?. From top to bottom, plots
are shown of the electron momentum (p.), the proton momentum (p,), the electron
azimuthal angle (¢.), and the proton azimuthal angle (¢,). The normalization in the
plots is to the maximum peak.
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Figure 4-5: Comparison of electron and proton kinematics with Monte Carlo cal-
culations for 0.200 (GeV/c)* < Q* < 0.300 (GeV/c)®. From top to bottom, plots
are shown of the electron momentum (p.), the proton momentum (p,), the electron
azimuthal angle (¢), and the proton azimuthal angle (¢,). The normalization in the
plots is to the maximum peak.
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Figure 4-6: Comparison of electron and proton kinematics with Monte Carlo cal-
culations for 0.300 (GeV/c)?* < @ < 0.400 (GeV/c)?. From top to bottom, plots
are shown of the electron momentum (p,), the proton momentum (p,), the electron
azimuthal angle (¢.), and the proton azimuthal angle (¢,). The normalization in the
plots is to the maximum peak.
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Figure 4-7: Comparison of electron and proton kinematics with Monte Carlo cal-
culations for 0.400 (GeV/c)* < @* < 0.500 (GeV/c)?. From top to bottom, plots

are shown of the electron momentum (pe), the proton momentum (p,), the electron

azimuthal angle (¢.), and the proton azimuthal angle (¢,). The normalization in the
plots is to the maximum peak.
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Figure 4-8: Comparison of missing momentum with Monte Carlo calculations for
0.100 (GeV/c)? < @Q* < 0.200 (GeV/c)®. The top plot is the missing momentum
magnitude. The other three, from top to bottom, are plots of the components of
the missing momentum vector along the respective §,, ¢,, and gy directions. The

normalization in the plots is to the maximum peak.
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Figure 4-9: Comparison of missing momentum with Monte Carlo calculations for
0.200 (GeV/c)* < @* < 0.300 (GeV/c)®. The top plot is the missing momentum
magnitude. The other three, from top to bottom, are plots of the components of
the missing momentum vector along the respective §,, ¢,, and gy directions. The
normalization in the plots is to the maximum peak.
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Figure 4-10: Comparison of missing momentum with Monte Carlo calculations for
0.300 (GeV/c)® < @* < 0.400 (GeV/c)?. The top plot is the missing momentum
magnitude. The other three, from top to bottom, are plots of the components of
the missing momentum vector along the respective §,, §,, and gy directions. The
normalization in the plots is to the maximum peak.
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Figure 4-11: Comparison of missing momentum with Monte Carlo calculations for
0.400 (GeV/c)? < @Q* < 0.500 (GeV/c)?. The top plot is the missing momentum
magnitude. The other three, from top to bottom, are plots of the components of
the missing momentum vector along the respective ¢,, ¢,, and gy directions. The
normalization in the plots is to the maximum peak.
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Figure 4-12: Comparison of the angle, 657, between the deuteron polarization vector
and the missing momentum vector for all four considered @? ranges, in increasing
order from top to bottom. The normalization in the plots is to the maximum peak.
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4.5 Determination of Asymmetries

Data were recorded in one of six beam-target polarization states. For each of these
states, the total accumulated events were divided by the accumulated charge in that

state to get a rate (events per unit charge):

r(+1,+1,+1)
r(—1,+1,+1)
r(h PPy = T TEHD (4.7)
r(—1,-1,+1)
r(+1, 0,-2)
| (-1, 0,-2)

where h, P,, and P,, are the respective beam helicity and target vector and tensor
polarization. The five deuteron electrodisintegration asymmetries, A}, AY, A., AV

and AL, can all be expressed as independent linear combinations of these six rates:

r(+1,+1,+1) )
[ 6hiA, ) (+1 141 -1 +1 -1 ( )
s r(—1,4+1,+1)
VEP.TA} +1 +1 -1 -1 0 ©
: , r(+1,-1,+1)
VERPFAL [ =] 41 -1 -1 41 0 0 . | (4.8)
r(—1,—1,+1
V2P,,7AT +1 41 +1 +1 -2 -2 ( )
r(+1, 0,-2
\ V2hP,TAL |\ +1 -1 +1 -1 -2 +2 . )

\ 7

1, 0,—2

where 7 is the average of the rates in the six polarization states. By expressing results

in terms of asymmetries, the luminosity explicitly cancels and is thus not needed.

4.6 Background Asymmetry Corrections

Asymmetries computed from (4.8) are subject to corrections due to background
rates. The dominant source of background was quasi-elastic e — p scattering from

the aluminum target walls. Since such events originate along the target chamber, the
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previously-mentioned vertex cuts were not sufficient to exclude them. Instead, these
background rates were accounted for by measuring the quasi-elastic e — p rate with

an empty target.

Each of the (real) asymmetries in (4.8) can be written in the following form:

_ Tigirk

Al =
2 TiR

(4.9)

R

where the various r;* correspond to the six real polarization-state rates listed in (4.7)

and where the g; are scalar constants specific to a particular asymmetry. What is
measured, however, is not the real rate but the total rate, r!, equal to the sum of the

real rate and the background rate, 2. Since the background rate is the same in each

polarization state, the substitution rf = rJ — r? = r7 — B can be made in (4.9) to

get the following equation:

29 (TzT - TB)
i (rf —15)
EigiriT — TBZiQi ) ZiTz‘T
i 7"? — 6r8 i TzT

AR

i girt i
Tirf Tirl —6rB
= AT.f! (4.10)

where A7 is the total (measured) asymmetry and f is the ratio of the real rate to the

total rate:
iT;-T - 67'3

T
2T

By design, 3°; g; = 0 for each asymmetry; this fact has been used to reach the above

il

f (4.11)

result. Since f has no dependence on the various g; terms, it follows that this equation
is valid for all five of the deuteron electrodisintegration asymmetries.

Plots of f versus pp; and cos @y, are shown in Fig. 4-13. At low pys, the back-
ground rate is very small (< 1%); however, as pys increases, the background becomes
larger until it plateaus around a 5% contribution. The onset of increased back-

ground at higher p,s is consistent with the large Fermi momentum in aluminum. The
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background rate versus cos s is roughly constant at ~ 1%. The constancy of this
background is due to the fact that all py, values are averaged over for each cosfjs
bin. The low background rate seen in the plots is attributed to good beam tune as

well as to good beam halo cleanup from the collimator.
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Figure 4-13: Plots of the ratio of the real event rate to the total event rate as a
function of pys, the missing momentum (top plot), and cosf),, the cosine of the
angle between the deuteron’s polarization vector and the missing momentum vector
(bottom plot).

The data in Fig. 4-13 are for ~ 40 kC of empty target data taken at periodic points
throughout the run period. In each case, a polynomial of best-fit was computed, and

the reconstructed asymmetries were scaled by its inverse, as shown in Fig. 4.10.
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4.7 Target Polarization

As seen in (4.8), knowledge of the beam helicity and target vector and tensor polar-
izations is required in order to extract measurements of the various asymmetries. As
discussed in Chap. 2, the beam helicity was determined via a Compton polarimeter.
The target vector and tensor polarizations, however, were determined through data

analysis.

4.7.1 The Beam-Vector Polarization

The product of the beam helicity and the target vector polarization, hP,, was ex-
tracted from the beam-vector asymmetry, AV, for 37 (€, €'p)n in the quasi-elastic
(QE) limit by calculating the ratio of the calculated beam-vector asymmetry, AY; c47c

to that of the Monte Carlo one, A}, /¢

_ A:;i,CALC
hP, = —— (4.12)
Acamc

In this limit, the reaction reduces to elastic e — p scattering with a spectator neutron.
Since elastic e — p scattering at low momentum transfers is well understood [10],
the theoretical uncertainties due to the choice of internucleon potential and various
reaction mechanism contributions are minimized in this limit. Additionally, due to
the relatively large cross section of the QE 2H (&, e'p)n reaction as well as the high
detector efficiency for electrons and protons, the statistical uncertainties of such events
are small. With small theoretical and statistical errors, the value of hP, can be
accurately extracted.

To ensure QE scattering, fits of the data to the Monte Carlo asymmetries were
confined to missing momentum values such that pys < 0.100 GeV/c. For each of the
four consecutive Q? intervals between 0.100 (GeV/c)? and 0.500 (GeV/c)?, a value
for hP, was extracted in both sectors. Missing mass cut dependence was checked
by varying the allowed missing mass peak width from 0.50,,,, to 3.00,,,,, where

Omy, = 0.025 GeV/c? as discussed in Sec. 4.2.3. A listing of the extracted hP, values
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hP, for Perpendicular Kinematics

Q° Range
(GeV/c)?

|mpy — my| < F % 0y,

F=05

F=10

F=20

F=30

0.100 < Q? < 0.200

0.573 + 0.008

0.575 £ 0.006

0.573 £ 0.005

0.572 £ 0.005

0.200 < Q?* < 0.300

0.531 £ 0.009

0.535 £ 0.006

0.527 £ 0.005

0.522 £ 0.005

0.300 < Q7 < 0.400

0.546 £ 0.014

0.533 &+ 0.009

0.527 £ 0.007

0.515 £+ 0.006

0.400 < Q% < 0.500

0.535 £ 0.024

0.537 £ 0.014

0.508 +0.010

0.500 £ 0.009

hP, for Parallel Kinematics

Q? Range
(GeV /c)?

[map — mp| < F 0oy,

F=05

F=1.0

F=20

F=3.0

0.100 < Q% < 0.200

0.569 + 0.007

0.566 £ 0.005

0.564 £+ 0.004

0.564 & 0.004

0.200 < Q? < 0.300

0.553 £ 0.007

0.552 £ 0.005

0.548 £ 0.004

0.540 £ 0.004

0.300 < Q? < 0.400

0.564 + 0.013

0.566 + 0.009

0.545 £ 0.006

0.530 & 0.006

0.400 < @? < 0.500

0.516 +£ 0.033

0.551 £ 0.020

0.538 £0.013

0.526 + 0.011

Table 4.1: Extracted hP, values and statistical errors for perpendicular (top table)
and parallel (bottom table) kinematics as a function of Q2 bin and multiples of the
missing mass peak width. As discussed in Sec. 4.2.3, g,,,, = 0.025 GeV/c?.

is shown in Tab. 4.1, and a plot of them is shown in Fig. 4-14. For the lowest ?
region (0.100 (GeV/c)? < @Q* < 0.200 (GeV/c)?), the dependence on the missing
mass peak width cut is minimal. Additionally, the extracted AP, values for both
perpendicular and parallel kinematics are in statistical agreement. Furthermore, due
to the large amount of data at low Q?, high confidence can be placed in the extraction
of the applied kinematic corrections (see Fig. 4.3). For these reasons, the extracted
hP, values for 0.100 (GeV/c)? < @?* < 0.200 (GeV/c)? are believed to be the most

reliable. Quoted values for hP, are thus taken from this Q2 range alone.

Correcting for the Dipole Approximation

As previously discussed in Chap. 1, the Monte Carlo asymmetries are computed

using the formalism of Arenhével et al. [6, 7]. In this formalism, the proton’s electric

and magnetic form factors, Gg(Q?) and G (Q?), are assumed to have a dipole form

[5, 31]:
1

0~ L 2y _ N
GE(Q?) NPGM(Q) GD(Q)—(1+Q2/A2)2

(4.13)
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Figure 4-14: Extracted beam-vector polarizations, hP,, for each of the four consec-
utive 0.100 (GeV/c)? Q? regions between 0.100 (GeV/c)? and 0.500 (GeV/c)2. The
different colored plots correspond to cuts with increasing multiples of the missing
mass width. As discussed in Sec. 4.2.3, 0,,,, = 0.025 GeV/c?.

where p, = 2.79 is the magnetic moment of the proton and A? = 0.71 (GeV/c)?. More
recent analysis [17], however, indicates that deviations from the dipole form exist in
the Q? range of interest here. Empirical fits to all of the available proton form factor
data were recently performed by Friedrich and Walcher [27]. Their resulting fits were
modeled as a sum of dipoles and exponentials, necessarily deviating from the (single)

dipole form approximation.

In order to account for the observed deviation from the dipole form, the AP, values
extracted from the Monte Carlo must be corrected accordingly. In the QE limit, the
2f (€, €'p)n beam-vector asymmetry reduces to that of the elastic e — p one, which

has the following empirical form:

cos 6* + a(Q?) sin 0* cos ¢* R(Q?)
B(Q?) +v(Q?*)R(Q?)?

|4
Aed

(4.14)

Vo
QE—>ACP_

Here, a(Q?), B(Q?), and (Q?) are kinematic functions, and 6* and ¢* are the re-
spective polar and azimuthal angles that the proton polarization vector makes with

respect to the three-momentum transfer vector, §. The remaining term, R(Q?), in

117



0.996
0.994
0.992

0.99
0.988
0.986
0.984
0.982

0.98

IT1IIIllIIIIIIlIlIIrrIl]llllllr]ll1lll1

0.978 N RPN BT S E ST SIS ST S TS ST ST R
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Q? [(GeV/c)?]

Figure 4-15: Plot of the ratio, R, of the proton’s electric and magnetic form factors
versus Q? using the fit from Friedrich and Walcher [27].

(4.14) is the ratio of the proton’s electric and magnetic form factors, scaled by p,:

_ mGE(Q)

Q) =" (4.15)

In the dipole approximation, R(Q?) = 1. However, as shown in Fig. 4-15, the fit by
Friedrich and Walcher (FW) shows deviations of R(Q?) from 1 of around 1% in the
0.1 (GeV/c)? < @% < 0.2 (GeV/c)? range.

Defining A}, y1¢.pipote 304 Al prc pw to be the beam-vector asymmetries deter-
mined using the dipole form factors and those from the FW fit, respectively, the
extracted hP, value from the FW fit can be expressed in terms of the dipole hP,

value:

AV
hP __ ed,CALC
2|FW 4V
Aed MC,FW
1% \4
Aed,MC,Dipole_ Aed,CALC

7

\%
Aed,MC,FW Aed,]\lC,Dipole

v

1 Adgcarc
v

r Aed,MC,Dipole
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Figure 4-16: Plot of the ratio, r, of the QE beam-vector p(€, e'p) asymmetry using
the FW nucleon form factor fits [27] to that of using the dipole nucleon form factors.
The left plot is for perpendicular kinematics while the right is for parallel.

1
= - thIDipole (4'16)

where 7 = AY; vre.pw/Avdmc,Dipote 18 the ratio of the FW beam-vector Monte Carlo
asymmetry to that of the dipole one. Plots of r versus Q? for perpendicular and
parallel kinematics (6* = 5 and * = 0, respectively) are shown in Fig. 4-16. In the
0.1 (GeV/c)? < @* < 0.2 (GeV/c)? region, r ~ 1.01 for perpendicular kinematics
while r & 1.02 for parallel. Adjusting the AP, values in Tab. 4.1 for 0.1 (GeV/c)? <
Q? < 0.2 (GeV/c)? gives:

A statistically weighted average of these two values gives hP, = 0.558 £ 0.009,;;.
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Source Contribution
Target Polarization Angle 0.004

Dipole Approximation 0.003
NN Potential 0.003
Missing Mass Cut 0.002
TOTAL 0.006

Table 4.2: Systematic error contributions to hP,. The total systematic error is cal-
culated by adding the separate errors in quadrature.

Systematic Errors of hP,

A summary of the various sources of systematic error in the determination of hP, is
shown in Tab. 4.2; the separate systematic errors have been added in quadrature to
determine the total systematic error.

The largest source of systematic error in AP, came from the uncertainty in the
determination of the target polarization angle, ;. As will be discussed in detail in
Sec. 4.8.1, the spin angle of the target is known to ~ 1°. A measure of the resulting
systematic error in hP, is found by studying how the extracted hP, value changes with
different assumed spin angle values. Fig. 4-17 shows a comparison of the extracted
hP, values for deviations of 8; of 1° from the nominal value of 32°.

An additional contribution to the systematic error of AP, came from assuming a
single value for the ratio of the FW form factor parameterization to the dipole one
over the entire 0.1 (GeV/c)? < @Q? < 0.2 (GeV/c)? range where the hP, extraction
is made (see Fig. 4-16). Variations in the NN potential were also considered; a
comparison of the beam-vector asymmetries using the Bonn [40, 41], V18 [56], and
Paris [32] potentials is shown in Fig. 4-18. The actual extraction of hP, was done
with respect to the Bonn potential. Finally, error due to the missing mass width
cut was estimated by examining how the extracted hP, value changed with differing
missing mass width cuts, as shown in Tab. 4.1. Due to the small variation in the 0.1
(GeV/c)? < Q? < 0.2 (GeV/c)? range, a full 30,,,, cut was used in the extraction of

hP,. The final extracted value for AP, with full statistical and systematic errors is:

hP, = 0.558 =+ 0.009,¢q¢ = 0.006,s; (4.17)
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Figure 4-17: Plots of the beam-vector asymmetry, AY, as a function of the square of
the four-momentum transfer, Q?, for various deuteron spin angles: 6; = 31°, 32°, and

%
where the total systematic error is given by the quadratic sum of the individual

systematic errors.

4.7.2 The Tensor Polarization

The tensor polarization, P,,, was extracted from fits of the elastic electron-deuteron
Ty observable (see Sec. 1.5.1) at low @Q? [58]. A parameterization of the three
deuteron form factors, G¢, Gg, and Gy, was recently performed [1], using both un-
polarized and polarized deuteron cross section data, which modeled the form factors
as Fourier transforms of sums of Gaussian charge distributions. The tensor polariza-
tion was extracted from normalizing to Ty constructed from this parameterization
(see (1.31)). Fig. 4-19 shows a plot of the resulting fitted T3 observable from elastic
e — d data taken simultaneously with the 2H (€, ¢'p)n data [68]. The resulting tensor

polarization value is:

P, = 0.680 = 0.016,4; % 0.060,,,4¢ (4.18)

The dominant source of systematic error in the determination of P,, is due to
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Figure 4-18: Plots of the beam-vector asymmetry, AY,, as a function of the miss-
ing momentum, py, for different internucleon potentials: Bonn [40, 41], V18 [56],
and Paris [32]. Each potential includes all reaction mechanism effects (i.e., meson-
exchange currents, isobar configurations, final-state interactions, and relativistic cor-
rections).

model uncertainty in the determination of T5. As seen in Fig. 4-19, the spread of
the large number of models for T3 leads to a large systematic model uncertainty in

Pas:

4.8 Asymmetry Systematic Uncertainty

The various asymmetry systematic error contributions are listed in this section. Ac-
tual asymmetry results are shown in Chap. 5. There, deuteron electrodisintegration
tensor asymmetry data are plotted versus the missing momentum magnitude, pys,
and the cosine of the angle, cosf;, between the missing momentum vector and the
deuteron polarization axis. Additionally, deuteron electrodisintegration beam-vector
asymmetry data are also plotted versus the missing momentum magnitude.

The dominant sources of systematic error for the tensor asymmetry results plotted
versus py are the uncertainty due to target spin angle determination (see Sec. 4.8.1)

and the uncertainty due to determination of P,, (see Sec. 4.8.2); both contributions
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Figure 4-19: Plots of the elastic electron-deuteron T3y observable (bottom set of
curves) and the T3, observable (top set of curves). The BLAST fitted data are in red;
the @ bins used to extract the tensor polarization are in red stars. See [58] for a list
of references for the various plotted models.

are of comparable magnitude®. The dominant source of systematic error for the tensor
asymmetry results plotted versus cos #, is the uncertainty due to the tensor polariza-
tion determination (see Sec. 4.8.2). Finally, the dominant source of systematic error
for the beam-vector asymmetry results is the uncertainty due to reconstruction (see

Sec. 4.8.3).

4.8.1 Spin Angle Uncertainty

Asymmetry results in general depend on the angle, 8,4, of target polarization. Any
systematic shift or deviation between the actual target polarization angle and the

value used in analysis thus leads to errors.

3In general, the amount of systematic error due to various contributions varies on a bin-by-bin
basis. For this reason, it is difficult to quote one particular value or percentage effect for a systematic
error for all bins. Instead, a complete listing of the numerical values for all of the asymmetries and
their respective statistical and systematic error contributions for each plotted bin is shown in the
Appendix.
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Figure 4-20: Target spin angle distribution versus the vertex position, z. The results
of the survey of the holding field are shown in black; the corresponding results from
the tensor asymmetry analysis are shown in magenta.

The target polarization angle is fixed by the holding field magnet along the target.
Although the polarization angle was nominally set at 32° (relative to the direction of
beam flow), variation with vertex position, z, exists on the order of a few degrees. For
a more realistic polarization angle distribution, the target holding field was mapped
with the BLAST toroid field on. A plot of the resulting polarization angle distribution
is shown in Fig. 4-20.

The best analytical measurement of the target polarization angle comes from ten-
sor polarization observables from concurrent elastic electron-deuteron scattering. The
corresponding tensor asymmetry has opposite sign for events with electrons scatter-
ing into the left and right sectors. In this analysis, the target polarization angle
was varied until the extracted tensor polarization, P,,, was equal in both sectors.
Using this method, the average deuteron polarization angle was found to be [58]
fs = 31.4° £ 1.0°. This value is in good agreement with the average polarization
angle value of ; = 31.32° + 0.51° extracted from the holding field measurements.

The estimated uncertainty in the target polarization angle is* ~ 1°. To quantify

“To be conservative, the uncertainty of 1° from the T analysis is assumed here as opposed to
the 0.5° from the holding field map.
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the systematic error in the various asymmetries as a result of this uncertainty, de-
viations in the asymmetries were studied by varying the average target polarization
angle, as shown in Fig. 4-21. From the plots, the tensor asymmetry versus p,s is the

most susceptible to spin angle errors.
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Figure 4-21: Target spin angle variation of the beam-vector asymmetry versus pj,
(top), the tensor asymmetry versus pys (middle), and the tensor asymmetry versus
cos By (bottom). Average target spin angles of 6p = 31°, 32°, and 33° are shown.
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4.8.2 Target Polarization Uncertainty

Since all of the asymmetries of interest are normalized by either the beam-vector
polarization, hP,, or the tensor polarization, P,,, it follows that any errors in these
calculated values lead directly to errors in the calculated asymmetries. In particular,
if the actual polarization value, P,, is different from the calculated one, Pc, then the

actual asymmetry, A4, will differ from the calculated one, A¢, according to:
Ap= =—Ac (4.19)

The corresponding systematic error in the determination of the asymmetry due to
the uncertainty in the polarization determination is thus:

c—Aa

Ac—EcA - P
(%Err) = 100% - = 100%- 2" B0 _ gy PA= T

e A, P (4.20)

From Sec. 4.7, the beam-vector polarization is found to be® hP, = 0.558 & 0.009.
Using Pc = 0.558 and P4 = 0.558 + 0.009 = 0.567, one finds that the systematic
error due to uncertainty in AP, is 1.6%. Similarly, since P,, = 0.680 & 0.062, the

systematic error due to the uncertainty in P,, is 8.4%.

4.8.3 Reconstruction Uncertainty

Kinematic bin drift of data due to misreconstruction errors is a source of systematic
error. In particular, kinematic drift in regions where the asymmetry either changes
value rapidly or else has a change of sign is notably susceptible to kinematic misre-
construction.

To account for this drift, kinematic correction factors (see Sec. 4.3) were incorpo-
rated into the analysis. One noted deficiency, however, of these corrections is that they
are derived in the quasi-elastic (QE) kinematic regime. At present, comprehensive

kinematic corrections (i.e., QE and non-QE corrections) are not fully implemented

5The hP, statistical and systematic error results from Sec. 4.7 were added in quadrature to
obtain this total error.
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into analyses. However, to the extent that the data are dominated by QE events,
the currently-applied corrections can be expected to be adequate. An estimate of
the effect of kinematic drift on the asymmetries is found from considering the change
of the asymmetries with different kinematic correction factors in regimes with large
asymmetry change and/or zero crossings. A conservative 3% contribution is placed
on the systematic error contribution until a more comprehensive set of kinematic

corrections can be implemented.

4.8.4 Radiative Correction Uncertainty

Radiative corrections account for corrections to the tree-level deuteron electrodis-
integration Feynman diagram assumed in Chap. 1 where the incident or scattered
electron radiates a real or virtual photon, thus changing the kinematics of the scat-
tering. The radiated cross section, og, can be expressed in terms of the unradiated
one, ay, as follows [4]:

O’R=(1+(5)OQ+O'1 (421)

Here, ¢ is the factorized correction and o, is the unfactorized bremsstrahlung contri-

bution to the total cross section.

The factorized component, ¢, has minimal influence on asymmetries. This can be
seen by calculating the explicit form for the difference between radiated and unradi-

ated asymmetries:

AAR = AR — AQ
(1+8)ob+07 b
(14+0)og+0t of

ofay — ogot

- ¥ (1 +96) oy + a¥) (4.22)

[199%2]

where the “u” and “p” superscripts on the cross sections stand for “unpolarized”
and “polarized”, respectively. If one defines 6®/?) = o{*/?) /5{*/P) then the relative

difference between the radiated and unradiated asymmetries takes on the following
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Figure 4-22: Plot of the relative difference between the radiated and unradiated elastic
electron-proton asymmetries as a function of Q? [42]

simplified form:
AAgr 0P — o

Ar = Ay 1+0+0"

(4.23)

A plot of Ag versus @? is shown in Fig. 4-22. The plot was generated using
electron-proton elastic scattering with the MASCARAD code developed by Afanasev
et al [3]. The results, however, are still applicable to QE scattering using deuterium.
The difference between the radiated and unradiated asymmetries is < 1% over the
entire Q? range. Thus, to the extent that QE events dominate the asymmetries, the
radiative effects are expected to be negligible. However, until the effects of radiative
corrections for both QE and non-QE reactions can be incorporated into the analysis,

a conservative 1% contribution is placed on the radiative systematic uncertainty.

4.8.5 Cut Dependence Uncertainty

Cut dependence arises from possible enhancements of certain kinematic regions in
which the desired asymmetries differ from the calculated ones. To study such de-
pendence, asymmetries were extracted by imposing various missing mass cuts on the

data. As discussed in Sec. 4.2.3, a resolution of o,,,, = 0.025 GeV/c was found in
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plots of the missing mass. Comparisons of the various asymmetries of interest with
respective cuts of 20,,,, and 30,,,, are shown in Fig. 4-23. One observes negligible
dependence in the beam-vector asymmetry plots and in the tensor plots with respect
to cosfys. In the tensor plots with respect to pjs, some variation is seen at high
par- The variation, though, is smaller than the corresponding decrease in statistical

uncertainty achieved in going from a 20,,,, to a 30,,,, cut.

4.8.6 False Asymmetry Uncertainty

As previously discussed in Chap. 1, the vector, beam, and beam-tensor deuteron
electrodisintegration asymmetries (A}, A., and AL, respectively) are all expected
to be small. One possible reason why these asymmetries would not reconstruct to
small values is incorrect assessment of the amount of collected charge in the various
polarization states. Another reason is failure of the target deuterons to lie in states
with equal vector or tensor polarization magnitudes®, which is assumed when the
target polarization states are rotated during data taking.

Plots of these three asymmetries are shown in Fig. 4-24 for 0.1 (GeV/c)?2 < @Q? <
0.2 (GeV/c)?. All false asymmetries are observed to be small and consistent with
zero. Similar trends are found in the higher Q? range data. The contribution to the
uncertainty in the asymmetry determinations due to false asymmetries is thus small

and estimated to be less than ~ 1%.

6The target produces deuterons polarized in three (vector, tensor) states: (—P,+P,.),
(+P,,+P,,), and (0,—2P,,). The magnitude of the vector polarization in the first two states is
designed to be the same while the magnitude of the tensor polarzation in the third state is designed
to be twice that of the first two.

129



ALV pu PorpKine

DS, ,Al
<
[ MM 20
MM 30
0.
0.
0.
0.1
02
0.3 03
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 0.5
Py (GeV/c) P (GeVic)
Ag Vs. py (Perp Kine) Aq Vs. py, (Par Kine)
(ﬂ‘ (AI
0. MM 20
MM 30
[}
[}
0.
). 0.1
02
03 03
0 0.06 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 045 05
Pu (GeVic) Pu(GeVEc)
A, Vs. cos 6,
o 0.1
T MM 20
- MM 3o
0.05—
o—
-0.05 t
0.1
[Nl el Crarar el e Ler i WAl LT T e T
-1 08 -06 -04 -02 0 02 04 06 08 1

Figure 4-23: Missing mass cut variation of the beam-vector asymmetry versus ppy
(top), the tensor asymmetry versus py (middle), and the tensor asymmetry versus
cos By (bottom). As discussed in Sec. 4.2.3, 0 = 0.025 GeV /c2.
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Figure 4-24: Plots of the calculated vector (top), beam (middle), and beam-tensor
(bottom) asymmetries versus the missing momentum, py, for 0.1 (GeV/c)? < Q? <
0.2 (GeV/c)?. The solid lines are the corresponding Monte Carlo results.
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Chapter 5

Results and Conclusions

5.1 Introduction

Results of measurements of the deuteron electrodisintegration tensor (A}) and beam-
vector (AY,) asymmetries for a momentum transfer range of 0.1 (GeV/c)? < Q* < 0.5
(GeV/c)? are presented here. Tensor asymmetry results are plotted versus the missing
momentum magnitude, pys, and the cosine of the angle, cos 8y, between the missing
momentum vector and the deuteron polarization axis'. The beam-vector asymmetry
is plotted versus the missing momentum magnitude, py,. Numerical values for all of

the data shown in this chapter can be found in the Appendix.

5.2 The Tensor Asymmetry, Al, Versus pum

Figs. 5-1 and 5-2 show tensor asymmetry results for the BLAST data plotted versus
pa for Q? ranges between 0.1 (GeV/c)? and 0.5 (GeV/c)?. As discussed in Chap. 1,
the perpendicular (parallel) heading in these plots refers to 2H (€, e'p)n events where
the detected electron is in the left (right) sector. Each graph also includes plots of
the corresponding theoretical Monte Carlo predictions based on the Bonn potential

[40, 41] in the formalism of Arenhovel et al. [6, 7]. The colored curves in these plots

1As shown in Chap. 1, it is possible in the PWIA to express the deuteron electrodisintegration
tensor asymmetry completely in terms of these two variables.
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correspond to successive contributions from various reaction mechanisms to the basic

Bonn potential Plane Wave Born Approximation (BONN PWBA) model:

FSI  : Final State Interactions
MEC : Meson Exchange Currents
IC :  losbar Configurations

RC . Relativistic Contributions

The total Bonn potential model in these graphs corresponds to the “BONN PWBA
+ FSI + MEC + IC + RC” plot.

Figs. 5-3 and 5-4 show the tensor asymmetries versus pjs plotted along with
various total potential models (i.e., potentials with all reaction mechanisms included).
Three total potential models are plotted in these graphs: Bonn [40, 41], V18 [56], and
Paris [32].

Finally, Figs. 5-5 and 5-6 show the residuals for each py; bin of the reconstructed
tensor asymmetry as compared with the total Bonn potential model. The residuals
in these graphs are defined as the reconstructed asymmetry value minus that of the

total Bonn potential model:

AAZ:BONN = Aj para — AZ,BONN (5.1)

Values of the corresponding residuals resulting from comparison with the total V18

and total Paris models, defined analogously, are listed in the Appendix?

2The variation between total potential models is not large in general; for conciseness and clarity,
only the Bonn residual is shown here. However, numerical values for the residuals from all three
models are listed in the Appendix.
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Figure 5-1: Plots of the reconstructed tensor asymmetry, AX, versus the missing
momentum, pys, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.1 (GeV/c)? < Q* < 0.2 (GeV/c)?;
the bottom set is for 0.2 (GeV/c)? < Q? < 0.3 (GeV/c)?. data are shown in black;
the inner (outer) error bars on each data point correspond to the statistical (total)
error for that point. Numerical values for all of the data shown are listed in the
Appendix. The colored lines correspond to Monte Carlo plots of the tensor asymmetry
using the Bonn potential with successively added-in contributions from the various
reaction mechanisms. BONN PWBA = Bonn potential in the Plane Wave Born
Approximation, FSI = Final State Interactions, MEC = Meson Exchange Currents,
IC = Isobar Configurations, and RC = Relativistic Contributions. The total Bonn
potential model (i.e., BONN PWBA + FSI + MEC + IC + RC) is shown in purple.
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Figure 5-2: Plots of the reconstructed tensor asymmetry, AT, versus the missing
momentum, pys, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.3 (GeV/c)? < Q? < 0.4 (GeV /c)?;
the bottom set is for 0.4 (GeV/c)?* < Q? < 0.5 (GeV/c)?. The setup of these plots is

the same as that of Fig. 5-1.
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Figure 5-3: Plots of the reconstructed tensor asymmetry, AZ, versus the missing
momentum, py, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.1 (GeV/c)? < Q? < 0.2 (GeV/c)?;
the bottom set is for 0.2 (GeV/c)? < Q* < 0.3 (GeV/c)?. data are shown in black; the
inner (outer) error bars on each data point correspond to the statistical (total) error
for that point. Numerical values for all of the data shown are listed in the Appendix.
The colored lines correspond to Monte Carlo plots of the tensor asymmetry from
different potentials. BONN = Total Bonn potential, V18 = Total V18 potential, and
PARIS = Total Paris potential, all including FSI, MEC, IC, and RC effects.

137



Perp Kine
~9.6 9.6
0.3 <Q ?AGeV/c) 2 <0.4 0.3<Q2/GeV/c) *<0.4
BONN BONN
0.4 PARIS 0.4 PARIS L
vis vis
BLAST | BLAST
4
0. 0.
o O
L - f
oaf L
04| 0.4
2018 ool St bt ], L5 06 ] | s
o 0.1 0.2 0.3 0.4 0.5 o 0.1 0.2 0.3 0.4 0.5
P [GeVrc) Pu [Gevrc]
- e
0.4 <Q ?AGeV/c) > 0.5 04<Q ’/(CLVIC) *<0 L
BONN | BONN
0.4 PARIS ) 0.4l- PARIS
vis | vis
BLAST . BLAST
p L
0. 0.2
— L
\ [
0 1 o T‘i/f/ /
L \.,__/
P \%
-0.2 -0.2L
L
-0.4 0.4
oel— 1+ 1 Ll oel— 1 -1, | [
0 0.1 0.2 0.3 .4 0.5 0 0.1 0.2 0.3 0.4 0.5
Pu [GeV/c) P [Gev/c]

Figure 5-4: Plots of the reconstructed tensor asymmetry, AT versus the missing
momentum, pys, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.3 (GeV/c)? < Q? < 0.4 (GeV /c)?;
the bottom set is for 0.4 (GeV/c)? < Q* < 0.5 (GeV/c)?. The setup of these plots is

the same as that of Fig. 5-3.
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5.2.1 Discussion of the Tensor Results Versus pym

The overall structure predicted by the (total) theoretical models is observed in the
reconstructed asymmetries over nearly the entire py; and Q? ranges analyzed. For
each (Q? range, the reconstructed asymmetries have small values at low pys (par < 0.2

P13

GeV/c); at larger pys, the asymmetries’ “peaks” and “troughs” (corresponding to per-
pendicular and parallel kinematics, respectively) are in overall consistent agreement

with the theoretical predictions.

Figs. 5-1 and 5-2 support the necessity of including reaction mechanisms in theo-
retical analyses. The data are overall consistent with the total Bonn potential model
results and inconsistent with the Bonn PWBA approximation ones. As seen most
noticably in both of the perpendicular kinematics plots in Fig. 5-1, contributions due
to FSI, MEC, and IC are significant at low Q2. For this reason, realistic models of

the various reaction mechanisms must be taken into account.

Figs. 5-3 and 5-4, which compare the data results to the three total potential
models considered, indicate the onset of D-state structure at lower missing momenta
(Apar ~ 0.020 GeV/c) than that predicted by the theories, particularly at low Q2.
All four of the plots in Fig. 5-3 show deviations between the data and theories in the
0.150 GeV/c < pasr < 0.300 GeV/c range. The shift in the onset of D-state structure
is supported most strongly by the pys = 0.170 GeV /c reconstructed asymmetry point
in the 0.1 (GeV/c)? < Q* < 0.2 (GeV/c)? parallel kinematics plot (i.e., the top right
plot in Fig. 5-3). This point lies ~ 50 below the theoretical prediction. As can be
inferred from the plot, such a disagreement would be greatly diminished by a theory
with D-state effects manifesting themselves at lower pj,. This statement is further
supported by the remaining higher py, data points in this plot which collectively show

an overall shift of D-state effects as compared to theory.

x? tests to the three total potential models considered in Figs. 5-3 and 5-4 are

shown in Tab. 5.1. The (reduced) x? values are determined according to [12]:

2
Z . (AZN,DATAJ_A,@I;,TH E‘OHY,i)

1

(72 -
x?/d.of. = ’T’L"“-‘ (5.2)
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Q? Range (GeV/c)? Perp Kine Par Kine

X%ONN X%qs X;{ARIS XbonN Xv1s X%Ams
01< Q2 < 0.2 0.981 |1.651 | 1.490 4565 | 3.714 | 3.794
02<Q@?<0.3 0.981 | 1.477 | 1.547 1.465 |1.169 | 1.165
03 < Q2 <04 0.394 | 0.516 | 0.573 1.869 | 1.601 | 1.615
04 < Q2 < 0.5 0.404 | 0.427 | 0.430 0.512 | 0.433 | 0.454

Table 5.1: x? fit values of the reconstructed tensor asymmetries versus py;. Each
x? value was determined by comparing to one of the three total potential models
considered: Bonn, V18, and Paris.

where AJ para,; and Al rupory; are the respective reconstructed and theoretical
asymmetry values for the ith bin, opara, is the uncertainty in the reconstructed

asymmetry value for that bin, and n is the number of bins.

In perpendicular kinematics, reasonable x? values near 1.0 are observed for low
Q?. The difference in x? for the Bonn potential model and the other two models for
this @Q? range is primarily due to the asymmetry points at intermediate pys (0.200
GeV/c < pur < 0.350 GeV/c) where the Bonn curve rises higher than the other two
and thus produces a better agreement. At higher % in perpendicular kinematics,
the excessively good x? values (x? < 1.0) are associated with the large error bars in
the data. More data as well as better systematics will help lower the errors and thus

increase the predictive power here.

In parallel kinematics, relatively high x? values are seen for the lowest Q? range;
the other Q? ranges, however, produce reasonable x? values overall. For parallel
kinematics at the lowest Q? range (0.1 (GeV/c)? < @Q? < 0.2 (GeV/c)?), a more
thorough analysis shows that the resulting high x? value is largely attributable to the
previously-discussed measured asymmetry value at py; = 0.170 GeV/c. The ~ 50
deviation of the theory from this point biases the x*-test for the entire asymmetry.

The residuals plots (Figs. 5-5 and 5-6) show basic agreement with theory at low
pa (pmr < 0.150 GeV/c). At intermediate pys (0.150 GeV/c< pyr < 0.300 GeV/c),
the data show an increase (decrease) in the theoretical predictions for perpendicular
(parallel) kinematics, particularly at lower Q? (Fig. 5-5). At even higher pys (par >

0.3 GeV/c), this pattern reverses, and the data come into agreement with the theory
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again at the highest pys values.

The proposed shift of D-state structure to lower pjs values is most noticeable in
the lowest (Q? parallel and perpendicular plots of the residuals (i.e., the left and right
top plots in Fig. 5-5). Here, a clear oscillatory pattern exists in the residuals for
pa > 0.150 GeV/c. This oscillatory nature would be greatly diminished by such a

shift of structure.

5.3 The Tensor Asymmetry, AL, Versus cosfy

Figs. 5-7 and 5-8 show tensor asymmetry results for the BLAST data plotted versus
cos By for Q? ranges between 0.1 (GeV/c)? and 0.5 (GeV/c)?. Figs. 5-9 and 5-10
show the tensor asymmetry results along with only the total Bonn potential model3.
Finally, Figs. 5-11 and 5-12 show the residuals between the reconstructed asymmetries

and those predicted by the total Bonn potential model, as defined in (5.2).

3There is very little deviation between the three total potential models considered (i.e., Bonn,
V18, and Paris) when plotted versus cosfas. For clarity, only the total Bonn potential model
asymmetries are shown in these plots.
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Figure 5-7: Plots of the reconstructed tensor asymmetry, A% versus cos f; in BLAST.
The top plot is for momentum transfers of 0.1 (GeV/c)? < Q% < 0.2 (GeV/c)?; the

bottom one is for 0.2 (GeV/c)? < Q2 < 0.3 (GeV/c)?

same as that of Fig. 5-1.
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Figure 5-8: Plots of the reconstructed tensor asymmetry, AY, versus cos @, in BLAST.
The top plot is for momentum transfers of 0.3 (GeV/c)? < Q? < 0.4 (GeV/c)?; the
bottom one is for 0.4 (GeV/c)? < Q* < 0.5 (GeV/c)?. The setup of these plots is the
same as that of Fig. 5-1.
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Figure 5-9: Plots of the reconstructed tensor asymmetry, A7, versus cos 6, in BLAST.
The top plot is for momentum transfers of 0.1 (GeV/c)? < Q* < 0.2 (GeV/c)?; the
bottom one is for 0.2 (GeV/c)? < Q* < 0.3 (GeV/c)?. The setup of these plots is the
same as that of Fig. 5-3.

146



0.05[—
0l
-0.05 [
0.1 2 2
1 0.3<Q°/(GeV/c)" <0.4
— BONN
L BLAST
-0.15(—
P2 le—ne g e ff e W g o W g G 5 g
-1 08 -06 -04 -0.2 0 0.2 0.4 06 038 1

cose,,

IIII|IIII llllllllllllTllllll

-0.1 . 5
0.4 <Q°/(GeV/c) " < 0.5
BONN
BLAST
-0.15
-0.2 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 .8 1
cosé,,

Figure 5-10: Plots of the reconstructed tensor asymmetry, A, versus cosfy,; in
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(GeV/c)?; the bottom one is for 0.4 (GeV/c)? < @? < 0.5 (GeV/c)?. The setup
of these plots is the same as that of Fig. 5-3.
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Figure 5-11: Plots of the residuals, AA], of the reconstructed tensor asymmetry, AT,
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Figure 5-12: Plots of the residuals, AA}, of the reconstructed tensor asymmetry, A
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Q2 Range (GeV/ C)2 XQBONN
0.1 <Q?<0.2 1.652
0.2<Q*<0.3 0.853
0.3<Q@*<04 1.100
04<Q@*<05 0.476

Table 5.2: x? fit values of the reconstructed tensor asymmetries versus cos ;. Each
x? value was determined by comparing to the total Bonn potential model.

5.3.1 Discussion of the Tensor Results Versus cos 0y

The reconstructed tensor asymmetries versus cosf)y; are consistent with the total
Bonn potential model over nearly all of the cos 8, and Q2 ranges analyzed. The only
significant disagreement between the data and theory is at 0.0 < cosf#y; < 0.6 for
0.1 (GeV/c)? < @? < 0.2 (GeV/c)?, where the data show slightly smaller asymmetry
values in general than what the theory predicts.

These plots once again support the necessity of including reaction mechanism
contributions in theoretical analyses. In particular, for the lowest two Q? ranges (i.e.,
the top and bottom plots in Fig. 5-7), the data are seen to be consistent with the
total Bonn potential model at cos@y < —0.4. The meson exchange current (MEC)
contribution in this region is significant; without including the contribution from
this reaction mechanism, the data would be significantly larger than the theoretical
prediction.

Reduced x? test values are shown in Tab. 5.2. Reasonable x? values are achieved
overall; the relatively large x? value for 0.1 (GeV/c)? < @Q* < 0.2 (GeV/c)? is due
to the previously-mentioned disagreement between the data and theory for 0.0 <
cosfy; < 0.6. However, in general, the total Bonn potential model appears to be
a consistent predictor of the deuteron electrodisintegration tensor asymmetry with

respect to cos @y, over the Q? ranges considered here.

5.4 The Beam-Vector Asymmetry, AY;, Versus pym

Figs. 5-13 and 5-14 show beam-vector asymmetry results for the BLAST data plotted
versus pys for Q? ranges between 0.1 and 0.5 (GeV/c)?. Figs. 5-15 and 5-16 show the
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beam-vector asymmetry results along with the total Bonn, V18, and Paris models.
Finally, Figs. 5-17 and 5-18 show the residuals between the reconstructed asymmetries

and those predicted by the total Bonn potential model, as defined in (5.2).
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Figure 5-13: Plots of the reconstructed beam-vector asymmetry, A7, versus the miss-
ing momentum, pys, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.1 (GeV/c)? < @? < 0.2 (GeV/c)?;
the bottom set is for 0.2 (GeV/c)? < Q* < 0.3 (GeV/c)?2. The setup of these plots is

the same as that of Fig. 5-1

152



Forp Fine
D.6 D.6
o <
0.3<Q */(GeV/c) 2 <0.4 0.3 <Q ?AGeV/c) *<0.4 {
BONN PWBA BONN PWBA
0.4~ BONN PWBA+FSI 0.4 BONN PWBA+FSI
BONN PWBA+FSI+-MEC BONN PWBA+FSI+MEC
BONN PWBA+FSI+MEC+IC BONN PWBA+FSI+MEC+IC
BONN PWBA+FSI+MEC+IC+RC BONN PWBA+FSI+MEC+IC+RC
0.2}~ BLAST 0.2 BLAST
o o /
i a5 i :
-0.2- * { -0.2—
B 3 [ {
[ ot [ g 1
-0.4}- -0.4-
- -
oet—e T 5 B T JE_g el M el e Gy g
o 0.1 0.2 0.3 0.4 0.5 () 0.1 0.2 0.3 0.4 0.5
Py [GeV/c] Pu [GeV/c)
Perp e
S >
> >
0.4 <Q ?/(GeV/c) k0.5 04<Q ’/(GLV/c) < o.L
BONN PWBA BONN PWBA
0.4]- BONN PWBA+FSI 0.4~ BONN PWBA}FSI s
BONN PWBA+FSI+MEQC BONN PWBARFSI+MEC
BONN PWBA+FSI}MEC+IC BONN PWBA}FSI+MEC+IC
BONN PWBA+FSIH+MEC+IC+RC BONN PWBA}FSI+MEC+IC}+RC
0.2}~ BLAST * 0.2} BLAST
r b
o == T\
: 1 : k!
[ I —
0.2 0.2 :$§
: : 3 \
-0.4- 0.4 * i i /
ool 0 & qlaig 4 gl g gl Ll ol s il gl g
0 0.1 0.2 0.3 0.4 0.5 o 0.1 0.2 0.3 0.4 0.5
P [GeVrc) Pu [GeVrc)

Figure 5-14: Plots of the reconstructed beam-vector asymmetry, A7, versus the miss-
ing momentum, pyy, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.3 (GeV/c)? < Q? < 0.4 (GeV/c)%;
the bottom set is for 0.4 (GeV/c)? < Q? < 0.5 (GeV/c)?. The setup of these plots is
the same as that of Fig. 5-1.
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Figure 5-15: Plots of the reconstructed beam-vector asymmetry, A7, versus the miss-
ing momentum, p,y, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.1 (GeV/c)? < Q* < 0.2 (GeV/c)?;
the bottom set is for 0.2 (GeV/c)? < Q* < 0.3 (GeV/c)?. The setup of these plots is

the same as that of Fig. 5-1.
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Figure 5-16: Plots of the reconstructed beam-vector asymmetry, A7, versus the miss-
ing momentum, py, for perpendicular (left) and parallel (right) kinematics in BLAST.
The top set of plots is for momentum transfers of 0.3 (GeV/c)? < @Q?* < 0.4 (GeV/c)?;
the bottom set is for 0.4 (GeV/c)? < Q* < 0.5 (GeV/c)?. The setup of these plots is
the same as that of Fig. 5-3.
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Figure 5-17: Plots of the residuals, AA};, of the reconstructed beam-vector asym-
metry, A!,, versus the missing momentum, p,,, for perpendicular (left) and parallel
(right) kinematics in BLAST as compared with the total Bonn potential model. The
top set of plots is for momentum transfers of 0.1 (GeV/c)? < Q* < 0.2 (GeV/c)?; the
bottom set is for 0.2 (GeV/c)? < Q? < 0.3 (GeV/c)2.
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Figure 5-18: Plots of the residuals, AAY, of the reconstructed beam-vector asym-
metry, AT, versus the missing momentum, py, for perpendicular (left) and parallel
(right) kinematics in BLAST as compared with the total Bonn potential model. The
top set of plots is for momentum transfers of 0.3 (GeV/c)? < Q? < 0.4 (GeV/c)?; the
bottom set is for 0.4 (GeV/c)? < Q% < 0.5 (GeV/c).
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5.4.1 Discussion of the Beam-Vector Results Versus pm

The reconstructed beam-vector asymmetries have the general form predicted from
theory: a relatively flat plateau at low py (ppr < 0.150 GeV/c) followed by an
upward rise in all kinematics at higher p;,.

Similar to the tensor asymmetry plots, evidence is once again seen in the beam-
vector results supporting the necessity of including reaction mechanism effects into
theoretical analyses. At high p,, in particular, the low Q? plots in perpendicular
and parallel kinematics (Fig. 5-13) show consistency with the total Bonn potential
model. In the absence of such reaction mechanism contributions, the data would be
inconsistent with the theory.

The data at low @? (0.1 (GeV/c)? < Q? < 0.2 (GeV/c)?) agree very well in both
perpendicular and parallel kinematics with the theoretical predictions over the entire
pu range analyzed!. However, a rise is seen (Figs. 5-15 and 5-16) in the data as
compared to the total potential models as Q% increases. This rise is most noticeable
in perpendicular kinematics and is visible already by the 0.2 (GeV/c)? < @? < 0.3
(GeV/c)? range. This rise is also clearly seen in the plots of the residuals (Figs. 5-17
and 5-18 ) which show significant deviations in perpendicular kinematics for the 0.2
(GeV/c)? < @2 < 0.3 (GeV/c)? and 0.3 (GeV/c)? < @Q* < 0.4 (GeV/c)? ranges.

One obvious cause for such a rise in the reconstructed asymmetries as compared
to the theoretical ones is a Q%-dependent background incorrectly taken into account.
Since the reconstructed asymmetries are modified according to (4.10) in the presence
of background rates, it thus follows that background rates depending on Q? would
modify asymmetries differently; such modifications could then help decrease the ob-
served rise in the reconstructed data. However, Q%-dependence in the background
has been analyzed. In general, the variation in background rates with Q? is small
(~ 1%). In order to remove the observed discrepancies between the data and the
theory, variations of the order of ~ 10% are needed. Background variation is thus

not believed to be responsible for the observed rise.

“Note that the data has been fit to the total model in this Q2 bin for pp < 0.15 GeV/c in order
to determine hP, for all beam-vector asymmetries.
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Another possible reason for such a rise in reconstructed data as compared to theory
could be modification of the bound nucleon form factors inside the deuteron from what
is assumed in the theory. As previously discussed in Sec. 4.7, the form factors used in
the theory for the bound nucleons in the deuteron are the (free) nucleon dipole form
factors. The bound nucleon form factors could, in principle, differ from the free dipole
ones in two ways: modification due to differences from the dipole approximation and
modification due to being bound within the deuteron. Due to complications in the
theory, it is not in general straightforward to determine the amount of form factor
modification by determining ratios of the reconstructed and theoretical asymmetries.
For a more accurate analysis, more realistic nucleon form factor models need to be

used in producing theoretical results.

5.5 Conclusion

In this work analysis has been presented on the deuteron electrodisintegration ten-
sor (AT) and beam-vector (AY,) asymmetries for @* between 0.1 and 0.5 (GeV/c)?.
Overall, the general form of these asymmetries predicted by theory is consistent with
the reconstructed ones. The high-p,; D-state structure predicted by theory is also
seen in the data. However, both the reconstructed tensor and beam-vector asymme-
try results presented here show evidence of an overall shift of high-py, structure to
slightly lower p,; than that predicted by theory. One possible reason for such a shift
could be a modification of the nucleon form factors in the deuteron from the dipole
ones assumed in the theory. However, before bound-state nucleon form factor mod-
ifications can be discerned, more realistic (free) form factors need to be introduced

into the theory.

159



160



Chapter 6
Appendix

Numerical values for all of the results shown in Chap. 5 are listed in this appendix.

6.1 Systematic Error Values

The following set of tables gives bin-by-bin numerical values for all of the systematic

errors discussed in Sec. 4.8. The headings in each table refer to the following:

Bin . bin number

Pum : average py value for the bin

cosfy, :  average cos @y, value for the bin

0Oy, : error due to determination of the spin angle (see Sec. 4.8.1)
O : error due to missing mass cut (see Sec. 4.8.5)

Ohp, . error due to target polarization (see Sec. 4.8.2)

O Rec : error due to reconstruction (see Sec. 4.8.3)

O Rad :error due to radiative corrections (see Sec. 4.8.4)

Orase : error due to false asymmetries (see Sec. 4.8.6)

oV, . total systematic error
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Systematic Errors in AZ Vs. py for Perp Kine, 0.1 < @*/(GeV/c)® < 0.2

Bin Pm (GGV/ C) 0¢y Omy Ohp, O Rec ORad | OFalse o";g:j[
1 0.035 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 || 0.002
2 0.072 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 || 0.003
3 0.120 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 || 0.003
4 0.170 0.000 | 0.003 | 0.001 | 0.000 | 0.000 | 0.000 || 0.003
) 0.221 0.025 | 0.028 | 0.008 | 0.003 | 0.001 | 0.001 || 0.039
6 0.270 0.005 | 0.021 | 0.009 | 0.003 | 0.001 | 0.001 || 0.023
7 0.323 0.006 | 0.048 | 0.014 | 0.005 | 0.002 | 0.002 | 0.051
8 0.371 0.012 | 0.006 | 0.015 | 0.005 | 0.002 | 0.002 | 0.021
9 0.418 0.019 | 0.006 | 0.012 | 0.004 | 0.001 | 0.001 || 0.023
10 0.471 0.054 | 0.052 | 0.015 | 0.005 | 0.002 | 0.002 || 0.077

Systematic Errors in A7 Vs. py for Para Kine, 0.1 < Q?/(GeV/c)? < 0.2

Bin | pa (GeV/c) 0¢, Omy | OnP, | ORec | ORad | TFalse 0%:5
1 0.035 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001
2 0.072 0.001 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 || 0.002
3 0.120 0.001 | 0.002 | 0.003 | 0.001 | 0.000 | 0.000 | 0.004
4 0.170 0.000 | 0.004 | 0.001 | 0.000 | 0.000 | 0.000 | 0.004
5 0.221 0.062 | 0.015 | 0.010 | 0.003 | 0.001 | 0.001 | 0.064
6 0.271 0.013 { 0.003 | 0.025 | 0.009 | 0.003 | 0.003 || 0.030
7 0.320 0.015 | 0.034 | 0.023 | 0.008 | 0.003 | 0.003 || 0.045
8 0.371 0.020 | 0.030 | 0.009 | 0.003 | 0.001 | 0.001 || 0.037
9 0.424 0.021 | 0.012 | 0.008 | 0.003 | 0.001 | 0.001 || 0.026
10 0471 0.011 { 0.000 | 0.011 | 0.004 | 0.001 | 0.001 || 0.016
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Systematic Errors in A] Vs. py for Perp Kine, 0.2 < @%/(GeV/c)? < 0.3

Bin | par (GeV/c) 09, Ompy | OhP, | ORec | ORad | OFalse U;Zfil
1 0.035 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 || 0.002
2 0.073 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 || 0.002
3 0.121 0.000 | 0.002 | 0.003 | 0.001 | 0.000 | 0.000 || 0.004
4 0.170 0.002 | 0.009 | 0.002 | 0.001 | 0.000 | 0.000 || 0.009
) 0.221 0.016 | 0.018 | 0.005 | 0.002 | 0.001 | 0.001 || 0.025
6 0.272 0.007 | 0.029 | 0.012 | 0.004 | 0.001 | 0.001 || 0.033
7 0.319 0.007 | 0.050 | 0.015 | 0.005 | 0.002 | 0.002 || 0.053
8 0.371 0.007 | 0.003 | 0.009 | 0.003 | 0.001 | 0.001 || 0.012
9 0.416 0.026 | 0.008 | 0.016 | 0.006 | 0.002 | 0.002 || 0.033
10 0.471 0.096 | 0.092 | 0.026 | 0.009 | 0.003 | 0.003 || 0.136

Systematic Errors in A} Vs. py for Para Kine, 0.2 < @?/(GeV/c)? < 0.3

Bin | par (GeV/c) | 04, | Omy | Onp. | Orec | Orad | OFaise | 075y
1 0.035 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.001
2 0.073 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 || 0.002
3 0.121 0.001 | 0.002 | 0.002 | 0.001 | 0.000 | 0.000 || 0.003
4 0.171 0.000 | 0.011 | 0.003 | 0.001 | 0.000 | 0.000 || 0.012
5 0.221 0.010 | 0.003 | 0.002 | 0.001 | 0.000 | 0.000 || 0.011
6 0.271 0.002 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
7 0.320 0.005 | 0.012 | 0.008 | 0.003 | 0.001 | 0.001 || 0.016
8 0.369 0.007 | 0.011 | 0.003 | 0.001 | 0.000 | 0.000 || 0.014
9 0.426 0.058 | 0.033 | 0.023 | 0.008 | 0.003 | 0.003 | 0.072
10 0.469 0.030 | 0.000 { 0.028 | 0.010 | 0.003 | 0.003 | 0.042
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Systematic Errors in AT Vs. pys for Perp Kine, 0.3 < Q*/(GeV/c)? < 0.4

Bin | par (GeV/c) || 04, | Omu | Onp. | Orec | Orad | OFaise | 07t
1 0.036 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000
2 0.074 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 0.001
3 0.121 0.000 | 0.002 | 0.003 | 0.001 | 0.000 | 0.000 0.004
4 0.171 0.002 | 0.014 | 0.003 | 0.001 | 0.000 | 0.000 || 0.014
51 0.221 0.009 | 0.010 | 0.003 | 0.001 | 0.000 | 0.000 || 0.013
6 0.271 0.002 | 0.010 | 0.004 | 0.002 | 0.001 | 0.001 0.011
7 0.322 0.009 { 0.063 | 0.019 | 0.007 | 0.002 | 0.002 || 0.067
8 0.374 0.009 | 0.004 | 0.011 | 0.004 | 0.001 | 0.001 0.016
9 0.416 0.016 | 0.005 | 0.010 | 0.004 | 0.001 | 0.001 0.020
10 0.480 0.087 | 0.083 | 0.023 | 0.008 | 0.003 | 0.003 0.123

Systematic Errors in AL Vs. pys for Para Kine, 0.3 < Q*/(GeV/c)? < 0.4

Bin | py (GeV/e) || o 04 Omy | OnP, | ORec | ORad | OFaise | O ;"%;f,
1 0.035 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 || 0.001
2 0.074 0.001 | 0.000 | 0.002 | 0.001 | 0.000 | 0.000 || 0.002
3 0.121 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 || 0.001
4 0.171 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
5 0.221 0.027 | 0.007 | 0.004 | 0.001 | 0.000 | 0.000 | 0.028
6 0.273 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
7 0.323 0.002 | 0.004 | 0.003 | 0.001 | 0.000 | 0.000 || 0.005
8 0.368 0.017 | 0.025 | 0.008 | 0.003 | 0.001 | 0.001 || 0.031
9 0.422 0.054 | 0.031 | 0.022 | 0.008 | 0.003 | 0.003 || 0.066

10 0.469 0.007 | 0.000 | 0.006 | 0.002 | 0.001 | 0.001 {| 0.010
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Systematic Errors in AT Vs. py for Perp Kine, 0.4 < Q?/(GeV/c)? < 0.5

Bin | py (GeV/e) | 0o, | Omy | onp. | Orec | ORad | Orase | 0%y
1 0.035 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
2 0.074 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.001
3 0.122 0.000 | 0.002 | 0.003 | 0.001 | 0.000 | 0.000 | 0.004
4 0.171 0.004 | 0.021 | 0.005 | 0.002 | 0.001 | 0.001 | 0.022
5 0.222 0.023 | 0.026 | 0.007 | 0.003 | 0.001 | 0.001 || 0.035
6 0.271 0.001 | 0.005 | 0.002 | 0.001 | 0.000 | 0.000 | 0.006
7 0.323 0.003 | 0.022 | 0.007 | 0.002 | 0.001 | 0.001 | 0.024
8 0.370 0.018 | 0.009 | 0.022 | 0.008 | 0.003 | 0.003 || 0.032
9 0.418 0.034 | 0.011 | 0.021 | 0.008 | 0.003 | 0.003 || 0.043
10 0.473 0.124 | 0.119 | 0.033 | 0.012 | 0.004 | 0.004 || 0.176

Systematic Errors in A} Vs. pys for Para Kine, 0.4 < Q*/(GeV/c)? < 0.5

Bin | pa (GeV/c) Tg, Omy | OnP, | ORec | ORad | OFalse a?ﬂfjl
1 0.035 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 { 0.000
2 0.074 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
3 0.121 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 || 0.002
4 0.171 0.000 | 0.014 | 0.003 | 0.001 | 0.000 | 0.000 || 0.014
) 0.219 0.014 | 0.003 | 0.002 | 0.001 | 0.000 | 0.000 || 0.015
6 0.273 0.002 { 0.001 | 0.005 | 0.002 | 0.001 | 0.001 || 0.006
7 0.323 0.004 | 0.008 | 0.005 | 0.002 | 0.001 | 0.001 || 0.010
8 0.369 0.025 | 0.037 | 0.012 | 0.004 | 0.001 | 0.001 || 0.046
9 0.419 0.003 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 { 0.004
10 0.475 0.063 | 0.000 | 0.060 | 0.021 | 0.007 | 0.007 || 0.090
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Systematic Errors in AY, Vs. py for Perp Kine, 0.1 < @Q?/(GeV/c)? < 0.2

Bin | pp (GeV/c) 9, Omy | OnP, | ORec | ORad | OFalse | O %ﬁfi,
1 0.035 0.002 | 0.001 | 0.002 | 0.005 | 0.002 | 0.002 0.006
2 0.072 0.002 | 0.001 | 0.002 | 0.005 | 0.002 | 0.002 0.006
3 0.120 0.002 | 0.001 | 0.002 | 0.005 | 0.002 | 0.002 0.006
4 0.170 0.002 | 0.001 | 0.002 | 0.004 | 0.001 | 0.001 0.006
5 0.221 0.002 | 0.003 | 0.001 | 0.003 | 0.001 | 0.001 0.005
6 0.270 0.001 | 0.004 | 0.001 | 0.002 | 0.001 | 0.001 0.005
7 0.323 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 0.002
8 0.371 0.001 | 0.002 ! 0.002 | 0.005 | 0.002 | 0.002 0.006
9 0.418 0.001 | 0.010 | 0.004 | 0.011 | 0.004 | 0.004 0.016
10 0.471 0.001 | 0.047 | 0.002 | 0.006 | 0.002 | 0.002 0.047

Systematic Errors in AY, Vs. py for Para Kine, 0.1 < @Q*/(GeV/c)? < 0.2

Bin | py (GeV/c) Jg, Omy | OhP, | ORec | ORad | OFalse G;gf,il
1 0.035 0.002 | 0.000 | 0.002 | 0.005 | 0.002 | 0.002 || 0.007
2 0.072 0.002 | 0.002 | 0.002 | 0.006 | 0.002 | 0.002 || 0.007
3 0.120 0.002 | 0.001 | 0.002 | 0.006 | 0.002 | 0.002 || 0.007
4 0.170 0.001 | 0.005 | 0.002 | 0.005 | 0.002 | 0.002 || 0.008
5 0.221 0.001 | 0.001 | 0.002 | 0.005 | 0.002 | 0.002 || 0.006
6 0.271 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.001 0.003
7 0.320 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
8 0.371 0.014 | 0.020 | 0.001 | 0.002 | 0.001 | 0.001 0.025
9 0.424 0.005 | 0.022 | 0.002 | 0.006 | 0.002 | 0.002 0.024

10 0.471 0.006 | 0.003 | 0.004 | 0.010 | 0.003 | 0.003 || 0.014
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Systematic Errors in AY, Vs. py for Perp Kine, 0.2 < Q%/(GeV/c)? < 0.3

Bin | py (GeV/e) | 06, | Omy | Onp, | ORrec | ORad | OFaise | Ortsy
1 0.035 0.003 | 0.001 | 0.003 | 0.007 | 0.002 | 0.002 0.009
2 0.073 0.003 | 0.001 | 0.003 | 0.007 | 0.002 | 0.002 0.009
3 0.121 0.003 | 0.002 | 0.003 | 0.007 | 0.002 | 0.002 0.009
4 0.170 0.003 | 0.002 | 0.002 | 0.006 | 0.002 | 0.002 0.007
5 0.221 0.002 | 0.003 | 0.002 | 0.004 | 0.001 | 0.001 0.006
6 0.272 0.001 | 0.003 | 0.001 | 0.002 | 0.001 | 0.001 0.004
7 0.319 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 0.002
8 0.371 0.002 | 0.005 | 0.004 | 0.010 | 0.003 | 0.003 0.013
9 0.416 0.001 | 0.012 | 0.005 { 0.013 | 0.004 | 0.004 0.020
10 0.471 0.003 | 0.099 | 0.005 | 0.013 | 0.004 | 0.004 0.100

Systematic Errors in AY, Vs. pys for Para Kine, 0.2 < Q?/(GeV/c)? < 0.3

Bin | par (GeV/c) | 06, | Omy | Onp, | Orec | ORad | OFaise | 075
1 0.035 0.002 | 0.000 | 0.003 | 0.008 | 0.003 | 0.003 0.010
2 0.073 0.002 | 0.002 | 0.003 | 0.008 | 0.003 | 0.003 0.010
3 0.121 0.002 | 0.001 | 0.003 | 0.008 | 0.003 | 0.003 0.010
4 0.171 0.002 | 0.007 | 0.003 | 0.008 | 0.003 | 0.003 0.012
5 0.221 0.002 | 0.002 | 0.002 | 0.006 | 0.002 | 0.002 0.007
6 0.271 0.001 | 0.002 | 0.002 | 0.005 | 0.002 | 0.002 0.006
7 0.320 0.000 | 0.001 | 0.001 | 0.004 | 0.001 | 0.001 0.004
8 0.369 0.009 | 0.013 | 0.001 | 0.001 | 0.000 | 0.000 0.016
9 0.426 0.006 | 0.028 | 0.003 | 0.008 | 0.003 | 0.003 0.030
10 0.469 0.007 | 0.004 | 0.005 | 0.013 | 0.004 | 0.004 0.017
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/(GeV/c)? < 0.4

Systematic Errors in AY, Vs. pys for Perp Kine, 0.3 < Q?

Bin | py (GeV/c) [| 06, | omy | onr, | Okec | Orad | OFatse | o7Tutas
1 0.036 0.004 | 0.001 | 0.004 | 0.009 | 0.003 | 0.003 0.012
2 0.074 0.004 | 0.001 | 0.004 | 0.009 | 0.003 | 0.003 0.012
3 0.121 0.004 | 0.002 | 0.003 | 0.009 | 0.003 | 0.003 0.011
4 0.171 0.004 | 0.003 | 0.003 | 0.007 | 0.002 | 0.002 0.010
5 0.221 0.003 | 0.005 | 0.002 | 0.006 | 0.002 | 0.002 0.009
6 0.271 0.001 | 0.004 | 0.001 | 0.002 | 0.001 | 0.001 0.004
7 0.322 0.000 | 0.001 | 0.000 | 0.000 { 0.000 | 0.000 0.001
8 0.374 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 0.000
9 0.416 0.001 | 0.009 | 0.004 | 0.009 | 0.003 | 0.003 0.014
10 0.480 0.005 | 0.188 | 0.010 | 0.024 | 0.008 | 0.008 0.190

/(GeV/c)? < 0.4

Systematic Errors in AY, Vs. pys for Para Kine, 0.3 < Q?

Bin | par (GeV/c) | 0o, | Omy | 0np. | Orec | ORad | OFaise | Oiem
1 0.035 0.003 | 0.000 | 0.004 | 0.011 | 0.004 | 0.004 0.013
2 0.074 0.003 | 0.003 | 0.004 [ 0.011 | 0.004 | 0.004 0.013
3 0.121 0.003 [ 0.002 | 0.004 { 0.010 | 0.003 | 0.003 0.012
4 0.171 0.002 | 0.009 | 0.004 | 0.009 | 0.003 | 0.003 0.014
5 0.221 0.002 | 0.002 | 0.003 | 0.007 | 0.002 | 0.002 0.009
6 0.273 0.002 | 0.003 | 0.003 | 0.007 | 0.002 | 0.002 0.009
7 0.323 0.000 | 0.001 | 0.001 | 0.003 | 0.001 | 0.001 0.004
8 0.368 0.026 | 0.038 | 0.002 | 0.004 | 0.001 | 0.001 0.046
9 0.422 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 0.001
10 0.469 0.008 | 0.005 | 0.006 | 0.015 | 0.005 | 0.005 0.020
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Systematic Errors in AY; Vs. py for Perp Kine, 0.4 < Q%/(GeV/c)? < 0.5

Bin | py (GeV/ c) T, Omp | OhP, | ORec | ORad | OFalse || O %ﬁfﬁl
1 0.035 0.005 | 0.001 | 0.005 | 0.011 | 0.004 | 0.004 0.014
2 0.074 0.005 | 0.002 | 0.004 | 0.011 | 0.004 | 0.004 0.014
3 0.122 0.005 | 0.002 | 0.004 | 0.010 | 0.003 | 0.003 0.013
4 0.171 0.004 | 0.003 | 0.004 | 0.009 | 0.003 | 0.003 0.012
) 0.222 0.003 | 0.005 | 0.003 | 0.007 | 0.002 | 0.002 0.011
6 0.271 0.002 | 0.009 | 0.002 | 0.005 | 0.002 | 0.002 0.010
7 0.323 0.001 | 0.010 | 0.001 | 0.002 | 0.001 | 0.001 0.010
8 0.370 0.001 | 0.002 | 0.002 | 0.004 | 0.001 | 0.001 0.005
9 0.418 0.001 | 0.005 | 0.002 | 0.005 | 0.002 | 0.002 0.008
10 0.473 0.001 | 0.051 | 0.003 | 0.007 | 0.002 | 0.002 0.052

Systematic Errors in AY, Vs. pys for Para Kine, 0.4 < Q%/(GeV/c)? < 0.5

Bin | pa (GeV/c) | 05, | omy | Onp, | ORrec | Orad | OFaise | 078
1 0.035 0.004 { 0.000 | 0.005 | 0.013 | 0.004 | 0.004 0.015
2 0.074 0.004 | 0.003 | 0.005 { 0.013 | 0.004 | 0.004 0.016
3 0.121 0.003 | 0.002 | 0.005 | 0.012 | 0.004 | 0.004 0.014
4 0.171 0.003 | 0.010 | 0.004 | 0.010 | 0.003 | 0.003 0.015
5 0.219 0.002 | 0.002 | 0.003 | 0.007 | 0.002 | 0.002 0.008
6 0.273 0.001 | 0.002 | 0.001 | 0.004 | 0.001 | 0.001 0.005
7 0.323 0.001 | 0.001 | 0.002 | 0.005 | 0.002 | 0.002 0.006
8 0.369 0.018 | 0.026 | 0.001 | 0.003 | 0.001 | 0.001 0.032
9 0.419 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 0.001
10 0.475 0.007 | 0.004 | 0.005 | 0.012 | 0.004 | 0.004 0.016
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(GeV/e)? < 0.2

Systematic Errors in AT Vs. cosfyy, 0.1 < Q?/

Syst

Bin | cosOu | 06, | Omy | OnP, | ORec | ORad | OFalse || OTotal
1 1 -0.900 || 0.000 | 0.003 | 0.002 | 0.001 | 0.000 | 0.000 || 0.004
2 | -0.850 || 0.000 | 0.002 | 0.001 | 0.001 | 0.000 | 0.000 || 0.003
3 | -0.750 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
4 | -0.650 || 0.001 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 || 0.004
5 | -0.550 || 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.000 || 0.003
6 | -0.450 || 0.000 | 0.002 | 0.003 | 0.001 | 0.000 | 0.000 | 0.003
7 | -0.350 || 0.000 | 0.001 | 0.003 | 0.001 | 0.000 | 0.000 || 0.004
8 | -0.250 |} 0.000 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 | 0.004
9 |-0.150 || 0.001 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
10 | -0.050 || 0.001 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 | 0.004
11 | 0.050 | 0.000 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 | 0.004
12 | 0.150 | 0.000 | 0.000 | 0.003 | 0.001 | 0.000 | 0.000 | 0.004
13 | 0.250 || 0.000 | 0.001 | 0.003 | 0.001 | 0.000 | 0.000 | 0.004
14 | 0.351 | 0.000 | 0.000 | 0.003 | 0.001 | 0.000 | 0.000 || 0.003

15 | 0.450 | 0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 || 0.001
16 | 0.550 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 || 0.001
17 | 0.651 | 0.000 | 0.001 | 0.003 | 0.001 | 6.000 | 0.000 || 0.003
18 | 0.750 | 0.000 | 0.000 | 0.005 | 0.002 | 0.001 | 0.001 || 0.005
19 | 0.851 | 0.000 | 0.000 | 0.007 | 0.003 | 0.001 | 0.001 || 0.008
20 | 0.950 | 0.000 | 0.000 | 0.011 | 0.004 | 0.001 | 0.001 | O.011
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Systematic Errors in A7 Vs. cosfy, 0.2 < @

/(GeV/c)? < 0.3

Bin | cosfur || 0o, | omy | 9hp, | Orec | ORad | OFaise || OThen
1 | -0.951 || 0.001 | 0.007 | 0.005 | 0.002 | 0.001 | 0.001 || 0.009
2 | -0.851 | 0.001 | 0.005 | 0.003 | 0.001 | 0.000 | 0.000 || 0.006
3 | -0.751 || 0.001 | 0.002 | 0.002 | 0.001 | 0.000 | 0.000 || 0.003
4 | -0.651 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
5 | -0.550 || 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 {| 0.001
6 | -0.449 | 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 || 0.002
7 | -0.350 || 0.000 | 0.002 | 0.004 | 0.001 | 0.000 | 0.000 || 0.005
8 | -0.250 || 6.000 | 0.000 | 0.004 | 0.002 | 0.001 | 0.001 || 0.005
9 | -0.150 || 0.001 | 0.001 | 0.004 | 0.002 | 0.001 | 0.001 || 0.005
10 | -0.050 || 0.001 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
11 | 0.050 | 0.000 | 0.001 | 0.005 | 0.002 | 0.001 | 0.001 | 0.005
12 | 0.150 | 0.000 | 0.000 | 0.005 | 0.002 | 0.001 | 0.001 | 0.005
13 | 0.250 |} 0.001 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 || 0.005
14 | 0.350 {| 0.000 | 0.000 | 0.003 | 0.001 | 0.000 | 0.000 || 0.003
15 | 0.450 || 0.000 | 0.002 | 0.002 | 0.001 | 0.000 | 0.000 || 0.003
16 | 0.550 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
17 | 0.650 || 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.000 || 0.002
18 | 0.751 || 0.000 | 0.000 | 0.003 | 0.001 | 0.000 | 0.000 || 0.003
19 | 0.851 || 0.000 | 0.000 | 0.006 | 0.002 | 0.001 | 0.001 || 0.006
20 | 0.951 | 0.000 { 0.000 | 0.010 | 0.004 | 0.001 | 0.001 || 0.011
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/(GeV/c)? < 04

Systematic Errors in A7 Vs. cosfyy, 0.3 < Q?

Bin | cosOu | 06, | Omy | Ohp. | Orec | ORad | OFaise || 070
1 | -0.951 || 0.001 | 0.010 | 0.008 | 0.003 | 0.001 | 0.001 | 0.013
2 -0.851 || 0.001 | 0.006 | 0.004 | 0.001 | 0.000 { 0.000 || 0.007
3 | -0.750 | 0.002 | 0.004 | 0.004 | 0.001 | 0.000 | 0.000 | 0.006
4 | -0.651 || 0.002 | 0.008 | 0.001 { 0.000 | 0.000 | 0.000 || 0.008
5 | -0.550 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 || 0.001
6 | -0.450 || 0.000 | 0.001 | 0.002 | 0.001 | 0.000 | 0.000 | 0.003
7 | -0.350 | 0.000 | 0.002 | 0.004 | 0.001 | 0.000 | 0.000 | 0.004
8 | -0.250 || 0.000 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
9 | -0.150 || 0.001 | 0.001 | 0.005 | 0.002 | 0.001 | 0.001 || 0.006
10 | -0.050 || 0.001 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
11 | 0.050 || 0.000 | 0.001 | 0.005 | 0.002 | 0.001 | 0.001 || 0.005
12 | 0.151 || 0.000 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
13 | 0.250 | 0.001 | 0.001 | 0.004 | 0.002 | 0.001 | 0.001 || 0.005
14 | 0.349 || 0.000 | 0.000 | 0.003 | 0.001 | 0.000 | 0.000 || 0.003
15 | 0.450 || 0.000 | 0.002 | 0.001 | 0.001 | 0.000 | 0.000 || 0.002
16 | 0.551 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
17 | 0.650 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
18 | 0.750 | 0.000 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
19 | 0.851 |/ 0.000 | 0.000 | 0.004 | 0.002 | 0.001 | 0.001 || 0.005
20 | 0.950 | 0.000 | 0.000 | 0.008 | 0.003 | 0.001 | 0.001 || 0.008
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Systematic Errors in AJ Vs. cosfy, 0.4 < Q?/(GeV/c)? < 0.5

Bin

Syst

COS 0M 09, Ompy Onp, O Rec ORad | OFalse || OTotal
1 |-0.951 | 0.001 | 0.010 | 0.008 | 0.003 | 0.001 | 0.001 (| 0.013
2 | -0.851 || 0.001 | 0.008 | 0.006 | 0.002 | 0.001 | 0.001 || 0.010
3 | -0.751 || 0.002 | 0.004 | 0.004 | 0.001 | 0.000 | 0.000 || 0.006
4 | -0.651 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
5 | -0.551 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
6 | -0.449 || 0.000 | 0.002 | 0.003 | 0.001 | 0.000 | 0.000 || 0.004
7 | -0.350 |[ 0.000 | 0.001 | 0.003 | 0.001 | 0.000 | 0.000 || 0.003
8 | -0.250 |[ 0.000 | 0.000 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
9 | -0.150 || 0.001 | 0.001 | 0.005 | 0.002 | 0.001 | 0.001 || 0.006
10 | -0.051 |{ 0.001 | 0.000 | 0.003 | 0.001 | 0.000 | 0.000 || 0.003
11 | 0.052 |l 0.000 | 0.001 | 0.004 | 0.001 | 0.000 | 0.000 || 0.004
12 | 0.149 || 0.000 | 0.000 | 0.005 | 0.002 | 0.001 | 0.001 || 0.005
13 | 0.250 || 0.000 | 0.001 | 0.003 | 0.001 | 0.000 | 0.000 || 0.003
14 | 0.349 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 || 0.000
15 | 0.450 || 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
16 | 0.551 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 || 0.001
17 | 0.652 || 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 || 0.001
18 | 0.749 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 || 0.001
19 | 0.852 || 0.000 | 0.000 | 0.007 | 0.002 | 0.001 | 0.001 || 0.007
20 | 0.950 | 0.000 | 0.000 | 0.006 | 0.002 | 0.001 | 0.001 || 0.006
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6.2 Asymmetry Values and Total Errors

The following set of tables gives bin-by-bin numerical values for all of the asymmetry
values as well as their corresponding statistical, total systematic, and total overall

errors. The headings in each table refer to the following:

Bin :  bin number

M : average py value for the bin
cosfy : average cosfly, value for the bin
AT : tensor asymmetry value

AY, :  beam-vector asymmetry value
OStat : total statistical error

OSyst . total systematic error

OTot . overall total error
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AT Values Vs. py for Perp Kine, 0.1 < Q?

(GeV/c)? < 0.2

Bin | pp (GeV/c) A5 O5Stat | OSyst OTot
1 0.035 -0.016 | 0.003 | 0.002 0.004
2 0.072 -0.024 | 0.003 | 0.003 0.004
3 0.120 -0.024 | 0.005 | 0.003 0.005
4 0.170 0.008 | 0.009 | 0.003 0.010
) 0.221 0.097 | 0.017 | 0.039 0.043
6 0.270 0.104 | 0.028 | 0.023 0.036
7 0.323 0.167 | 0.039 | 0.051 0.064
8 0.371 0.175 | 0.054 | 0.021 0.058
9 0.418 0.137 | 0.084 | 0.023 0.087
10 0.471 0.173 | 0.129 | 0.077 0.150

AT Values Vs. py for Para Kine, 0.1 < Q?/(GeV/c)? < 0.2

Bin | py (GeV/e) || AT | ostat | Osyst OTot
1 0.035 0.006 | 0.003 | 0.001 0.003
2 0.072 0.021 | 0.003 | 0.002 0.003
3 0.120 0.031 | 0.005 | 0.004 0.006
4 0.170 -0.011 | 0.009 | 0.004 0.010
5 0.221 -0.114 | 0.016 | 0.064 0.066
6 0.271 -0.302 | 0.030 | 0.030 0.043
7 0.320 -0.271 | 0.043 | 0.045 0.062
8 0.371 -0.110 | 0.054 | 0.037 0.065
9 0.424 0.101 | 0.071 | 0.026 0.075
10 0.471 0.127 | 0.101 | 0.016 0.102

175




AT Values Vs. py; for Perp Kine, 0.2 < Q?/(GeV/c)? < 0.3

Bin PMm (GCV/C) A?; OStat | OSyst OTot
1 0.035 -0.015 | 0.005 | 0.002 0.005
2 0.073 -0.020 | 0.004 | 0.002 0.004
3 0.121 -0.036 | 0.007 | 0.004 0.008
4 0.170 -0.025 | 0.013 | 0.009 0.016
) 0.221 0.063 | 0.022 | 0.025 0.034
6 0.272 0.149 | 0.034 | 0.033 0.047
7 0.319 0.176 | 0.057 | 0.053 0.078
8 0.371 0.102 | 0.135 | 0.012 0.135
9 0.416 0.194 | 0.243 | 0.033 0.245
10 0.471 -0.307 | 0.417 | 0.136 0.438

AT Values Vs. py for Para Kine, 0.2 < Q?/(GeV/c)? < 0.3

Bin | pm (GeV/c) Ag’ OStat | OSyst OTot
1 0.035 0.014 | 0.005 | 0.001 0.005
2 0.073 0.015 | 0.004 | 0.002 0.004
3 0.121 0.029 | 0.006 | 0.003 0.007
4 0.171 0.032 | 0.011 | 0.012 0.016
) 0.221 -0.019 | 0.019 | 0.011 0.022
6 0.271 -0.044 | 0.030 | 0.004 0.030
7 0.320 -0.097 | 0.048 | 0.016 0.051
8 0.369 0.041 | 0.086 | 0.014 0.087
9 0.426 0.278 | 0.127 | 0.072 0.146
10 0.469 0.334 | 0.178 | 0.042 0.183
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Aj Values Vs. py for Perp Kine, 0.3 < Q?/(GeV/c)? < 0.4

Bin | pup (GeV/ C) A,T; OStat | OSyst OTot
1 0.036 0.002 | 0.009 | 0.000 0.009
2 0.074 -0.011 | 0.006 | 0.001 0.006
3 0.121 -0.033 | 0.010 | 0.004 0.011
4 0.171 -0.039 | 0.020 | 0.014 0.024
5) 0.221 -0.033 | 0.037 | 0.013 0.039
6 0.271 0.052 | 0.065 | 0.011 0.066
7 0.322 0.221 | 0.085 | 0.067 0.109
8 0.374 0.134 | 0.157 | 0.016 0.157
9 0.416 0.119 | 0.250 | 0.020 0.250
10 0.480 0.276 | 95.819 | 0.123 95.819

AT Values Vs. py for Para Kine, 0.3 < Q?/(GeV/c)? < 0.4

Bin Dy (GGV/C) A;Ii O Stat O Syst OTot
1 0.035 0.012 | 0.009 | 0.001 0.009
2 0.074 0.018 | 0.007 | 0.002 0.007
3 0.121 0.008 | 0.011 | 0.001 0.011
4 0.171 -0.001 | 0.022 | 0.000 0.022
5 0.221 -0.050 | 0.040 | 0.028 0.049
6 0.273 0.003 | 0.069 | 0.000 0.069
7 0.323 0.030 | 0.076 | 0.005 0.076
8 0.368 0.093 | 0.132 | 0.031 0.136
9 0.422 0.257 | 0.256 | 0.066 0.264
10 0.469 0.077 | 0.389 | 0.010 0.389
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AT Values Vs. py for Perp Kine, 0.4 < Q?

(GeV/c)* < 0.5

Bin Pm (GGV/C) Ag OStat | OSyst OTot
1 0.035 -0.002 | 0.014 | 0.000 0.014
2 0.074 0.005 | 0.010 | 0.001 0.010
3 0.122 -0.040 | 0.019 | 0.004 0.020
4 0.171 -0.060 | 0.057 | 0.022 0.061
) 0.222 -0.088 | 0.244 | 0.035 0.247
6 0.271 0.026 | 2.091 | 0.006 2.091
7 0.323 0.078 | 0.181 | 0.024 0.183
8 0.370 0.268 | 0.266 | 0.032 0.268
9 0.418 0.253 | 0.311 | 0.043 0.314
10 0.473 0.397 | 2.380 | 0.176 2.387

AT Values Vs. py for Para Kine, 0.4 < Q%?/(GeV/c)? < 0.5

Bin PMm (GGV/C) Aé OStat OSyst OTot
1 0.035 0.001 | 0.019 | 0.000 0.019
2 0.074 0.004 | 0.013 | 0.000 0.013
3 0.121 0.020 | 0.030 | 0.002 0.030
4 0.171 0.039 | 0.608 | 0.014 0.608
3 0.219 0.027 | 0.145 | 0.015 0.146
6 0.273 0.057 | 0.135 | 0.006 0.135
7 0.323 -0.063 | 11.938 | 0.010 11.938
8 0.369 -0.138 | 2.904 | 0.046 2.904
9 0.419 0.016 | 1.063 | 0.004 1.063
10 0.475 0.712 | 178.654 | 0.090 178.654
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AY, Values Vs. py for Perp Kine, 0.1 < Q?/(GeV/c)? < 0.2 ]

Bin | py (GeV/c) AX; OStat | OSyst OTot
1 0.035 -0.162 | 0.004 | 0.006 0.008
2 0.072 -0.164 | 0.004 | 0.006 0.007
3 0.120 -0.165 | 0.006 | 0.006 0.009
4 0.170 -0.142 | 0.013 | 0.006 0.014
) 0.221 -0.115 | 0.024 | 0.005 0.025
6 0.270 -0.071 | 0.041 | 0.005 0.041
7 0.323 -0.011 | 0.058 | 0.002 0.058
8 0.371 0.164 | 0.081 | 0.006 0.081
9 0.418 0.355 | 0.126 | 0.016 0.127
10 0.471 0.203 | 0.195 | 0.047 0.200

AY, Values Vs. py for Para Kine, 0.1 < @?/(GeV/c)? < 0.2

Bin DM (GGV/C) Az‘afd OStat | OSyst OTot
1 0.035 -0.180 | 0.004 | 0.007 0.008
2 0.072 -0.185 | 0.004 | 0.007 0.008
3 0.120 -0.194 | 0.006 | 0.007 0.010
4 0.170 -0.169 | 0.012 | 0.008 0.015
3 0.221 -0.155 | 0.021 | 0.006 0.022
6 0.271 -0.076 | 0.034 | 0.003 0.034
7 0.320 0.011 | 0.051 | 0.000 0.051
8 0.371 0.076 | 0.071 | 0.025 0.076
9 0.424 0.208 | 0.104 | 0.024 0.106
10 0.471 0.336 | 0.149 | 0.014 0.150
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AV, Values Vs. pys for Perp Kine, 0.2 < Q%/(GeV/c)? < 0.3

Bin | py (GeV/ C) Zd OStat | OSyst OTot
1 0.035 -0.240 | 0.007 | 0.009 0.012
2 0.073 -0.225 | 0.006 | 0.009 0.010
3 0.121 -0.223 | 0.009 | 0.009 0.013
4 0.170 -0.184 | 0.017 | 0.007 0.019
) 0.221 -0.145 | 0.032 | 0.006 0.033
6 0.272 -0.055 | 0.049 | 0.004 0.049
7 0.319 0.014 | 0.084 | 0.002 0.084
8 0.371 0.336 | 0.221 | 0.013 0.221
9 0.416 0.441 | 0.433 | 0.020 0.434
10 0.471 0.427 | 0.565 | 0.100 0.574

AY, Values Vs. pys for Para Kine, 0.2 < Q*/(GeV/c)? < 0.3

Bin PMm (GQV/C) A}; OStat | OSyst OTot
1 0.035 -0.270 | 0.007 | 0.010 0.012
2 0.073 -0.271 | 0.006 | 0.010 0.012
3 0.121 -0.270 | 0.009 | 0.010 0.013
4 0.171 -0.254 | 0.016 | 0.012 0.020
) 0.221 -0.195 | 0.027 | 0.007 0.028
6 0.271 -0.168 | 0.041 | 0.006 0.041
7 0.320 -0.119 | 0.065 | 0.004 0.065
8 0.369 0.048 | 0.122 | 0.016 0.123
9 0.426 0.263 | 0.196 | 0.030 0.198
10 0.469 0.431 | 0.288 | 0.017 0.288
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AY, Values Vs. py for Pferp Kine, 0.3 < @?/(GeV/c)? < 0.4

Bin | pas (GeV/c) AZd OStat OSyst OTot
1 0.036 -0.312 | 0.013 | 0.012 0.018
2 0.074 -0.304 | 0.009 | 0.012 0.015
3 0.121 -0.287 | 0.014 | 0.011 0.018
4 0.171 -0.249 | 0.028 | 0.010 0.030
5 0.221 -0.201 | 0.053 | 0.009 0.054
6 0.271 -0.062 | 0.092 | 0.004 0.092
7 0.322 0.008 | 0.122 | 0.001 0.122
8 0.374 0.010 | 0.222 | 0.000 0.222
9 0.416 0.306 | 0.415 | 0.014 0.415
10 0.480 0.814 | 333.056 | 0.190 333.056

AY, Values Vs. py for Para Kine, 0.3 < Q%/(GeV/c)? < 0.4

Bin Pm (GeV/ C) Al:i OStat | OSyst OTot
1 0.035 -0.353 | 0.013 | 0.013 0.018
2 0.074 -0.352 | 0.010 | 0.013 0.016
3 0.121 -0.332 | 0.016 | 0.012 0.020
4 0.171 -0.305 | 0.033 | 0.014 0.036
) 0.221 -0.247 | 0.060 | 0.009 0.061
6 0.273 -0.228 | 0.106 | 0.009 0.106
7 0.323 -0.102 | 0.109 | 0.004 0.109
8 0.368 -0.142 | 0.195 | 0.046 0.200
9 0.422 0.010 | 0.341 | 0.001 0.341
10 0.469 0.487 | 0.822 | 0.020 0.822
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AY, Values Vs. py for Perp Kine, 0.4 < Q*/(GeV/c)? < 0.5

Bin | pi (GeV/c) | AZ | Ostar | Osyst OTot
1 0.035 -0.378 | 0.020 | 0.014 0.025
2 0.074 -0.357 | 0.015 | 0.014 0.020
3 0.122 -0.333 | 0.030 | 0.013 0.032
4 0.171 -0.295 | 0.110 | 0.012 0.111
5 0.222 -0.239 | 0.574 | 0.011 0.574
6 0.271 -0.152 | 11.362 | 0.010 11.362
7 0.323 -0.061 | 0.255 | 0.010 0.255
8 0.370 -0.136 | 0.328 | 0.005 0.328
9 0.418 -0.176 | 0.423 | 0.008 0.423
10 0.473 0.222 | 1.997 | 0.052 1.998

AY, Values Vs. py for Para Kine, 0.4 < Q*/(GeV/c)? < 0.5

Bin | py (GeV/c) A(‘z/d OStat OSyst OTot
1 0.035 -0.420 | 0.027 | 0.015 0.031
2 0.074 -0.425 | 0.020 | 0.016 0.025
3 0.121 -0.388 | 0.056 | 0.014 0.058
4 0.171 -0.330 | 4.774 | 0.015 4.774
) 0.219 -0.220 | 0.363 | 0.008 0.363
6 0.273 -0.119 | 0.207 | 0.005 0.207
7 0.323 -0.169 | 37.199 | 0.006 37.199
8 0.369 0.099 | 2.706 | 0.032 2.706
9 0.419 0.011 | 1.481 | 0.001 1.481
10 0.475 0.408 | 121.324 | 0.016 121.324
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AT Values Vs. cosfy, 0.1 < Q?/(GeV/c)? < 0.2

Bin | cosfy AZZ OStat | OSyst OTot
1 -0.900 | -0.028 | 0.005 | 0.004 0.006
2 | -0.850 {[ -0.017 | 0.005 | 0.003 0.005
3 | -0.750 || -0.002 | 0.005 | 0.000 0.005
4 | -0.650 || 0.006 | 0.005 | 0.004 0.006
5 | -0.550 || 0.027 | 0.005 | 0.003 0.005
6 | -0.450 || 0.032 | 0.005 | 0.003 0.006
7 | -0.350 || 0.036 | 0.005 | 0.004 0.006
8 | -0.250 || 0.044 | 0.005 | 0.004 0.006
9 |-0.150 || 0.043 | 0.005 | 0.004 0.006
10 | -0.050 || 0.048 | 0.005 | 0.004 0.007
11 | 0.050 || 0.043 | 0.005 | 0.004 0.006
12 | 0.150 | 0.041 | 0.005 | 0.004 0.006
13 | 0.250 || 0.041 | 0.005 { 0.004 0.006
14 | 0.351 0.030 | 0.004 | 0.003 0.005
15 | 0.450 | 0.010 | 0.004 | 0.001 0.005
16 | 0.550 | -0.010 | 0.004 | 0.001 0.005
17 | 0.651 || -0.034 | 0.004 | 0.003 0.005
18 | 0.750 || -0.056 | 0.004 | 0.005 0.007
19 | 0.851 || -0.089 | 0.005 | 0.008 0.009
20 | 0.950 ([ -0.125 | 0.005 | 0.011 0.012
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AT Values Vs. cosfyy, 0.2 < @?/(GeV/c)? < 0.3

. T
Bin | cosOy | Ay | Ostat | Osyst OTot

1 |-0.951 || -0.065 | 0.007 | 0.009 0.011

-0.851 | -0.038 | 0.007 | 0.006 0.009

-0.751 | -0.025 | 0.007 | 0.003 0.007

-0.651 | -0.000 | 0.007 | 0.000 0.007

-0.550 (| 0.013 | 0.007 | 0.001 0.007

-0.449 || 0.022 | 0.007 | 0.002 0.007

-0.350 || 0.049 | 0.007 | 0.005 0.009

QO | O Ot | 2| DN

-0.250 || 0.052 | 0.007 | 0.005 0.009

9 | -0.150 || 0.050 | 0.007 | 0.005 0.009

10 | -0.050 || 0.048 | 0.007 | 0.004 0.008

11 | 0.050 || 0.059 | 0.007 | 0.005 0.009

12 | 0.150 | 0.057 | 0.007 | 0.005 0.009

13 | 0.250 || 0.049 | 0.007 | 0.005 0.008

14 | 0.350 || 0.037 | 0.007 | 0.003 0.008

15 | 0.450 | 0.020 | 0.007 | 0.003 0.007

16 | 0.550 | -0.000 | 0.007 | 0.000 0.007

17 | 0.650 | -0.019 | 0.007 | 0.002 0.007

18 | 0.751 | -0.038 | 0.007 | 0.003 0.008

19 | 0.851 | -0.068 | 0.007 | 0.006 0.009

20 | 0.951 | -0.117 | 0.007 | 0.011 0.013
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Al Values Vs. cosfy, 0.3 < Q?/(GeV/c)? < 0.4

: T
Bin | cos 8y, A OStat | OSyst OTot

-0.951 | -0.095 | 0.010 | 0.013 0.016

-0.851 || -0.047 | 0.010 | 0.007 0.012

-0.750 |[ -0.043 | 0.010 | 0.006 0.012

-0.651 || -0.013 | 0.010 | 0.008 0.013

-0.550 || 0.009 | 0.010 | 0.001 0.010

-0.450 || 0.026 | 0.010 | 0.003 0.011

-0.350 || 0.042 | 0.010 | 0.004 0.011

-0.250 (| 0.046 | 0.010 | 0.004 0.011

-0.150 || 0.060 | 0.010 | 0.006 0.012

-0.050 || 0.045 | 0.010 | 0.004 0.011

0.050 | 0.057 | 0.010 | 0.005 0.011

0.151 || 0.048 | 0.010 | 0.004 0.011

0.250 | 0.050 | 0.010 | 0.005 0.011

0.349 || 0.030 | 0.010 | 0.003 0.010

0.450 | 0.017 | 0.010 | 0.002 0.010

0.551 || 0.004 | 0.010 | 0.000 0.010

0.650 | -0.004 | 0.009 | 0.000 0.009

0.750 | -0.046 | 0.010 | 0.004 0.011

=== 2| = =] =] = =
©| 00| | o o1 | | o | O] L R N T O | LoD

0.851 |l -0.051 | 0.009 | 0.005 0.010

[\l
o

0.950 | -0.092 | 0.010 | 0.008 0.013
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AT Values Vs. cosfy, 0.4 < @?/(GeV/c)2 < 0.5

r N T
Bin | cos 8, Ay OStat | TSyst OTot

1 | -0.951 || -0.099 | 0.025 | 0.013 0.028

-0.851 | -0.066 | 0.026 | 0.010 0.028

-0.751 || -0.048 | 0.025 | 0.006 0.026

-0.651 | -0.000 | 0.025 | 0.000 0.025

-0.551 || 0.004 | 0.024 | 0.000 0.024

-0.350 || 0.031 | 0.023 | 0.003 0.024

-0.250 || 0.048 | 0.024 | 0.004 0.025

3
4
5
6 | -0.449 || 0.040 | 0.024 | 0.004 0.024
7
8
9

-0.150 || 0.062 | 0.025 | 0.006 0.025

10 | -0.051 || 0.036 | 0.025 | 0.003 0.025

11 | 0.052 || 0.044 | 0.026 | 0.004 0.026

12 | 0.149 || 0.055 | 0.027 | 0.005 0.028

13 | 0.250 || 0.037 | 0.027 | 0.003 0.027

14 | 0.349 | 0.000 | 0.027 | 0.000 0.027

15 | 0.450 | 0.003 | 0.027 | 0.000 0.027

16 | 0.5951 || 0.009 | 0.028 | 0.001 0.028

17 | 0.652 | -0.011 | 0.026 | 0.001 0.026

18 | 0.749 | -0.008 | 0.029 | 0.001 0.029

19 | 0.852 | -0.082 | 0.033 | 0.007 0.034

20 | 0.950 || -0.067 | 0.030 | 0.006 0.031
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6.3 Residual Values

The following set of tables gives bin-by-bin residual values for all of the asymmetry
values as well as their corresponding total overall errors. The headings in each table

refer to the following:

Bin :  bin number

DM . average pys value for the bin

cos Opr : average cos @, value for the bin

AAgonn : residual as compared to the total Bonn model
Oaagony - total error for the Bonn model residual
AAyis . residual as compared to the total V18 model
OAAy1s . total error for the V18 model residual
AAparis : residual as compared to the total Paris model
OaApaps - total error for the Paris model residual
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AT Residuals Vs. py for Perp Kine, 0.1 < Q%?/(GeV/c)® < 0.2

Bin | pp (GeV/c) || AAponN | 0aagonn | AAvis | 0adv, | DAPARIS | Oadpagis
1 0.035 -0.000 0.004 -0.000 | 0.004 -0.000 0.004
2 0.072 -0.002 0.004 -0.001 | 0.004 -0.001 0.004
3 0.120 0.002 0.005 0.005 0.005 0.005 0.005
4 0.170 0.005 0.010 0.013 0.010 0.013 0.010
5 0.221 0.060 0.043 0.079 0.043 0.076 0.043
6 0.270 0.076 0.036 0.102 0.036 0.096 0.036
7 0.323 0.059 0.064 0.081 0.064 0.077 0.064
8 0.371 -0.043 0.058 -0.020 | 0.058 -0.016 0.058
9 0.418 -0.101 0.087 -0.068 | 0.087 -0.055 0.087
10 0.471 0.002 0.150 0.041 0.150 0.063 0.150

AT Residuals Vs. py for Para Kine, 0.1 < Q?/(GeV/c)? < 0.2

Bin | pm (GeV/c) | AAponn | Oassonn | AAVis | Oaavis | AAPARIS | Oadparss
1 0.035 -0.005 0.003 -0.005 | 0.003 -0.005 0.003
2 0.072 0.000 0.003 0.000 0.003 -0.000 0.003
3 0.120 -0.014 0.006 -0.012 | 0.006 -0.014 0.006
4 0.170 -0.052 0.010 -0.048 | 0.010 -0.047 0.010
5 0.221 -0.051 0.066 -0.046 | 0.066 -0.040 0.066
6 0.271 -0.070 0.043 -0.073 | 0.043 -0.065 0.043
7 0.320 0.026 0.062 0.010 0.062 0.019 0.062
8 0.371 0.091 0.065 0.057 0.065 0.062 0.065
9 0.424 0.097 0.075 0.048 0.075 0.047 0.075
10 0.471 -0.032 0.102 -0.083 | 0.102 -0.084 0.102
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A7 Residuals Vs. py for Perp Kine, 0.2 < Q%/(GeV/c)? < 0.3

Bin | pp (GeV/c) | AAponn | 0asgonn || DAvis | 0aay,s | AArarIS | 0aapanis
1 0.035 -0.002 0.005 -0.002 | 0.005 -0.002 0.005
2 0.073 -0.001 0.004 -0.001 | 0.004 -0.000 0.004
3 0.121 -0.004 0.008 -0.002 | 0.008 -0.002 0.008
4 0.170 0.009 0.016 0.014 | 0.016 0.015 0.016
) 0.221 0.056 0.034 0.068 | 0.034 0.070 0.034
6 0.272 0.073 0.047 0.094 | 0.047 0.096 0.047
7 0.319 0.102 0.078 0.130 | 0.078 0.131 0.078
8 0.371 0.111 0.135 0.151 | 0.135 0.155 0.135
9 0.416 0.257 0.245 0.306 | 0.245 0.317 0.245
10 0.471 -0.223 0.438 -0.173 | 0.438 -0.156 0.438

AT Residuals Vs. py for Para Kine, 0.2 < Q*/(GeV/c)? < 0.3

Bin | py (GeV/c) | AAponn | 0aagonn || DAvis | Onayis | AAPARIS | Oadpagss
1 0.035 0.002 0.005 0.002 | 0.005 0.001 0.005
2 0.073 -0.006 0.004 -0.006 | 0.004 -0.006 0.004
3 0.121 -0.006 0.007 -0.005 | 0.007 -0.006 0.007
4 0.171 -0.021 0.016 -0.018 | 0.016 -0.017 0.016
) 0.221 -0.062 0.022 -0.052 | 0.022 -0.048 0.022
6 0.271 -0.010 0.030 0.002 | 0.030 0.011 0.030
7 0.320 -0.049 0.051 -0.047 | 0.051 -0.042 0.051
8 0.369 -0.077 0.087 -0.102 | 0.087 -0.106 0.087
9 0.426 -0.017 0.146 -0.051 | 0.146 -0.059 0.146
10 0.469 -0.022 0.183 -0.056 | 0.183 -0.061 0.183
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AT Residuals Vs. py, for Perp Kine, 0.3 < Q*/(GeV/c)® < 0.4

Bin | pp (GeV/c) | AAponn | Fasponn | AAvis | Oaayis | AAPARIS | OAApanis
1 0.036 0.011 0.009 0.012 | 0.009 0.012 0.009
2 0.074 0.004 0.006 0.005 | 0.006 0.005 0.006
3 0.121 -0.002 0.011 -0.001 | 0.011 -0.000 0.011
4 0.171 0.013 0.024 0.016 | 0.024 0.017 0.024
) 0.221 0.008 0.039 0.014 | 0.039 0.018 0.039
6 0.271 0.024 0.066 0.035 | 0.066 0.043 0.066
7 0.322 0.110 0.109 0.123 | 0.109 0.132 0.109
8 0.374 0.051 0.157 0.069 | 0.157 0.077 0.157
9 0.416 0.172 0.250 0.205 | 0.250 0.210 0.250
10 0.480 0.494 95.819 0.539 | 95.819 0.544 95.819

| AT Residuals Vs. py for Para Kine, 0.3 < @Q*/(GeV/c)? < 0.4

Bin | py (GeV/c) | AAponn | Oasgonw || DAvis | Oaavs | AAPARIS | Ondpanis
1 0.035 -0.002 0.009 -0.001 | 0.009 -0.001 0.009
2 0.074 -0.008 0.007 -0.006 | 0.007 -0.007 0.007
3 0.121 -0.034 0.011 -0.032 | 0.011 -0.033 0.011
4 0.171 -0.041 0.022 -0.038 | 0.022 -0.037 0.022
) 0.221 -0.080 0.049 -0.072 | 0.049 -0.068 0.049
6 0.273 -0.048 0.069 -0.029 | 0.069 -0.023 0.069
7 0.323 -0.011 0.076 0.015 | 0.076 0.024 0.076
8 0.368 0.053 0.136 0.071 | 0.136 0.079 0.136
9 0.422 0.067 0.264 0.065 | 0.264 0.066 0.264
10 0.469 -0.313 0.389 -0.325 | 0.389 -0.330 0.389
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AT’ Residuals Vs. py for Perp Kine, 0.4 < Q?/(GeV/c)? < 0.5

Bin | py (GeV/c) | AAponn | 0assonn | AAvis | 0aayys | AAparis | Onspanss
1 0.035 0.007 0.014 0.007 | 0.014 0.007 0.014
2 0.074 0.017 0.010 0.018 | 0.010 0.018 0.010
3 0.122 -0.014 0.020 -0.013 | 0.020 -0.012 0.020
4 0.171 -0.004 0.061 -0.003 | 0.061 -0.001 0.061
) 0.222 0.010 0.247 0.013 | 0.247 0.019 0.247
6 0.271 0.104 2.091 0.109 | 2.091 0.121 2.091
7 0.323 0.043 0.183 0.048 | 0.183 0.062 0.183
8 0.370 0.157 0.268 0.161 | 0.268 0.169 0.268
9 0.418 0.156 0.314 0.161 | 0.314 0.164 0.314
10 0.473 0.334 2.387 0.342 | 2.387 0.340 2.387

AT Residuals Vs. py, for Para Kine, 0.4 < Q%/(GeV/c)? < 0.5

Bin | pp (GeV/e) | AAponN | Oaagonn || DAVis | 0aay.s | DAPaRIS | Oadparis
1 0.035 -0.015 0.019 -0.013 0.019 -0.014 0.019
2 0.074 -0.024 0.013 -0.023 0.013 -0.023 0.013
3 0.121 -0.028 0.030 -0.025 0.030 -0.026 0.030
4 0.171 -0.036 0.608 -0.031 0.608 -0.031 0.608
5 0.219 -0.062 0.146 -0.054 0.146 -0.052 0.146
6 0.273 0.015 0.135 0.035 0.135 0.041 0.135
7 0.323 -0.032 11.938 0.008 11.938 0.019 11.938
8 0.369 -0.081 2.904 -0.036 2.904 -0.021 2.904
9 0.419 0.048 1.063 0.089 1.063 0.102 1.063
10 0.475 0.651 178.654 0.680 | 178.654 0.688 178.654
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A7 Residuals Vs. py for Perp Kine, 0.1 < Q?/(GeV/c)? < 0.2

Bin | pp (GeV/c) || AAponn | Oasgony || DAvis | Oasvis | AAPARIS | Oadpanis
1 0.035 0.000 0.008 0.000 | 0.008 0.000 0.008
2 0.072 0.001 0.007 0.001 | 0.007 0.001 0.007
3 0.120 0.002 0.009 0.002 | 0.009 0.002 0.009
4 0.170 0.008 0.014 0.010 | 0.014 0.009 0.014
b) 0.221 0.019 0.025 0.020 | 0.025 0.019 0.025
6 0.270 0.040 0.041 0.040 | 0.041 0.037 0.041
7 0.323 0.009 0.058 0.004 | 0.058 0.004 0.058
8 0.371 0.046 0.081 0.029 | 0.081 0.039 0.081
9 0.418 0.108 0.127 0.078 | 0.127 0.104 0.127
10 0.471 -0.100 0.200 -0.134 | 0.200 -0.096 0.200

AY, Residuals Vs. py for Para Kine, 0.1 < Q*/(GeV/c)? < 0.2

Bin | py (GeV/c) | AAponn | Oasgony || DAvVis | Oaayis | AAPARIS | OaAparis
1 0.035 0.005 0.008 0.005 0.008 0.005 0.008
2 0.072 0.004 0.008 0.004 0.008 0.004 0.008
3 0.120 0.001 0.010 0.001 0.010 0.001 0.010
4 0.170 0.015 0.015 0.014 | 0.015 | 0.013 0.015
5 0.221 -0.010 0.022 -0.012 | 0.022 -0.014 0.022
6 0.271 -0.004 0.034 -0.003 | 0.034 -0.006 0.034
7 0.320 0.011 0.051 0.013 0.051 0.011 0.051
8 0.371 -0.003 0.076 -0.007 | 0.076 -0.006 0.076
9 0.424 0.026 0.106 0.009 0.106 0.019 0.106
10 0.471 0.083 0.150 0.057 | 0.150 0.077 0.150
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AY, Residuals Vs. py for Perp Kine, 0.2 < Q?/(GeV/c)? < 0.3

Bin | py (GeV/c) | AAponn | Oasponn | AAvis | 0aayis | DAPARIS | Ondpanss
1 0.035 0.012 0.012 0.012 | 0.012 0.012 0.012
2 0.073 0.028 0.010 0.028 | 0.010 0.028 0.010
3 0.121 0.031 0.013 0.032 | 0.013 0.031 0.013
4 0.170 0.060 0.019 0.061 | 0.019 0.061 0.019
) 0.221 0.044 0.033 0.047 | 0.033 0.046 0.033
6 0.272 0.075 0.049 0.077 | 0.049 0.076 0.049
7 0.319 0.077 0.084 0.072 | 0.084 0.073 0.084
8 0.371 0.243 0.221 0.224 | 0.221 0.237 0.221
9 0.416 0.222 0.434 0.196 | 0.434 0.226 0.434
10 0.471 0.171 0.574 0.145 | 0.574 0.185 0.574

AV, Residuals Vs. py for Para Kine, 0.2 < Q%/(GeV/c)? < 0.3

Bin | par (GeV/c) | AAgonn | Oasgony | DAV | Oaav.s | DAParis | Oadpanis
1 0.035 0.016 0.012 0.015 | 0.012 0.015 0.012
2 0.073 0.018 0.012 0.017 | 0.012 0.017 0.012
3 0.121 0.021 0.013 0.020 | 0.013 0.020 0.013
4 0.171 0.029 0.020 0.028 | 0.020 0.027 0.020
5) 0.221 0.040 0.028 0.035 | 0.028 0.032 0.028
6 0.271 0.009 0.041 -0.001 | 0.041 -0.006 0.041
7 0.320 -0.025 0.065 -0.035 | 0.065 -0.038 0.065
8 0.369 -0.035 0.123 -0.047 | 0.123 -0.040 0.123
9 0.426 0.049 0.198 0.032 | 0.198 0.052 0.198
10 0.469 0.163 0.288 0.144 | 0.288 0.172 0.288
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AY, Residuals Vs. py for Perp Kine, 0.3 < Q*/(GeV/c)? < 0.4

pu (GeV/e) | AAponn | 0aagonn || DAvis | Taay, | AAPARIS | Oadpamis
1 0.036 0.025 0.018 0.025 0.018 0.025 0.018
2 0.074 0.035 0.015 0.035 | 0.015 0.035 0.015
3 0.121 0.050 0.018 0.051 0.018 0.051 0.018
4 0.171 0.074 0.030 0.076 0.030 0.075 0.030
5 0.221 0.091 0.054 0.094 0.054 0.092 0.054
6 0.271 0.112 0.092 0.115 0.092 0.113 0.092
7 0.322 0.085 0.122 0.085 0.122 0.084 0.122
8 0.374 0.034 0.222 0.028 0.222 0.032 0.222
9 0.416 0.244 0.415 0.230 0.415 0.246 0.415
10 0.480 0.638 333.056 || 0.629 | 333.056 0.661 333.056

AY, Residuals Vs. py for Para Kine, 0.3 < Q%/(GeV/c)? < 0.4

Pum (GeV/c) AAponn OAABONN AAyig OAAy1s AAparis OAApArrs
1 0.035 0.022 0.018 0.021 0.018 0.021 0.018
2 0.074 0.028 0.016 0.028 0.016 0.028 0.016
3 0.121 0.047 0.020 0.047 | 0.020 0.047 0.020
4 0.171 0.055 0.036 0.054 0.036 0.053 0.036
5 0.221 0.075 0.061 0.071 0.061 0.067 0.061
6 0.273 0.008 0.106 -0.007 | 0.106 -0.015 0.106
7 0.323 0.084 0.109 0.059 | 0.109 0.048 0.109
8 0.368 0.004 0.200 -0.021 | 0.200 -0.026 0.200
9 0.422 0.018 0.341 -0.001 | 0.341 0.011 0.341
10 0.469 0.262 0.822 0.266 0.822 0.298 0.822
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AY, Residuals Vs. pys for Perp Kine, 0.4 < Q?/(GeV/c)? < 0.5

Bin | py (GeV/c) | AAponn | 0angony || AAvis | 0aayis || AAparis | 0aapanss
1 0.035 0.042 0.025 0.042 | 0.025 0.042 0.025
2 0.074 0.057 0.020 0.057 | 0.020 0.058 0.020
3 0.122 0.070 0.032 0.071 | 0.032 0.070 0.032
4 0.171 0.081 0.111 0.083 | 0.111 0.082 0.111
) 0.222 0.056 0.574 0.059 | 0.574 0.056 0.574
6 0.271 0.016 11.362 0.020 | 11.362 0.014 11.362
7 0.323 0.036 0.255 0.043 | 0.255 0.036 0.255
8 0.370 -0.059 0.328 -0.055 | 0.328 -0.058 0.328
9 0.418 -0.112 0.423 -0.113 | 0.423 -0.112 0.423
10 0.473 0.273 1.998 0.265 | 1.998 0.272 1.998

AY, Residuals Vs. py for Para Kine, 0.4 < Q%/(GeV/c)? < 0.5

Bin | pu (GeV/c) | AAponn | Oangony || DAVis | 0asyis | AAPARIS | OaApanss
1 0.035 0.043 0.031 0.043 0.031 0.043 0.031
2 0.074 0.034 0.025 0.034 0.025 0.035 0.025
3 0.121 0.067 0.058 0.067 0.058 0.067 0.058
4 0.171 0.107 4.774 0.107 4.774 0.105 4.774
) 0.219 0.137 0.363 0.134 0.363 0.128 0.363
6 0.273 0.107 0.207 0.089 0.207 0.079 0.207
7 0.323 -0.005 37.199 -0.042 | 37.199 -0.058 37.199
8 0.369 0.259 2.706 0.215 2.706 0.200 2.706
9 0.419 0.219 1.481 0.185 1.481 0.178 1.481
10 0.475 0.677 121.324 0.660 | 121.324 0.662 121.324
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AT Residuals Vs. cosfy, 0.1 < Q%/(GeV/c)* < 0.2

Bin COSBM AABONN OAAgoNN
1 | -0.900 0.013 0.006
2 | -0.850 0.010 0.005
3 |-0.750 0.004 0.005
4 | -0.650 -0.001 0.006
5 | -0.550 0.005 0.005
6 | -0.450 -0.000 0.006
7 | -0.350 -0.003 0.006
8 |-0.250 -0.002 0.006
9 |-0.150 -0.004 0.006
10 | -0.050 -0.005 0.007
11 | 0.050 -0.010 0.006
12 | 0.150 -0.009 0.006
13 | 0.250 -0.001 0.006
14 | 0.351 -0.003 0.005
15 | 0.430 -0.008 0.005
16 | 0.550 -0.011 0.005
17 | 0.651 -0.012 0.005
18 | 0.750 -0.010 0.007
19 | 0.851 -0.007 0.009
20 | 0.950 -0.008 0.012
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A] Residuals Vs. cosfyy, 0.2 < Q?/(GeV/c)? < 0.3

Bin COSHM AABONN OAABONN
1 | -0.951 0.014 0.011
2 | -0.851 0.005 0.009
3 |-0.751 -0.009 0.007
4 | -0.651 -0.003 0.007
5 | -0.550 -0.007 0.007
6 | -0.449 -0.012 0.007
7 | -0.350 0.006 0.009
8 |-0.250 -0.000 0.009
9 |-0.150 -0.010 0.009
10 | -0.050 -0.014 0.008
11 | 0.050 -0.001 0.009
12 | 0.150 -0.001 0.009
13 | 0.250 0.002 0.008
14 | 0.350 0.001 0.008
15 | 0.450 -0.002 0.007
16 | 0.550 -0.005 0.007
17 | 0.650 -0.005 0.007
18 | 0.751 -0.002 0.008
19 | 0.851 -0.005 0.009
20 | 0.951 -0.024 0.013
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AT Residuals Vs. cosfyy, 0.3 < Q*/(GeV/c)? < 0.4

Bin COSOM AABONN OAABONN
1 | -0.951 -0.000 0.016
2 | -0.851 0.006 0.012
3 | -0.750 -0.021 0.012
4 | -0.651 -0.011 0.013
5 | -0.550 -0.008 0.010
6 | -0.450 -0.008 0.011
7 | -0.350 -0.004 0.011
8 | -0.250 -0.008 0.011
9 |-0.150 -0.001 0.012
10 | -0.050 -0.018 0.011
11 | 0.050 -0.005 0.011
12 | 0.151 -0.008 0.011
13 | 0.250 0.004 0.011
14 | 0.349 -0.005 0.010
15 | 0.450 -0.008 0.010
16 | 0.551 -0.008 0.010
17 | 0.650 -0.000 0.009
18 | 0.750 -0.024 0.011
19 | 0.851 -0.008 0.010
20 | 0.950 -0.028 0.013
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Al Residuals Vs. cosfy, 0.4 < Q%/(GeV/c)? < 0.5

Bin COSGM AABONN OAABONN
1 |-0.951 -0.021 0.028
2 | -0.851 -0.022 0.028
3 | -0.751 -0.029 0.026
4 | -0.651 -0.004 0.025
5 | -0.551 -0.017 0.024
6 | -0.449 0.004 0.024
7 | -0.350 -0.016 0.024
8 |-0.250 -0.006 0.025
9 |-0.150 0.001 0.025
10 | -0.051 -0.026 0.025
11 | 0.052 -0.015 0.026
12 | 0.149 0.005 0.028
13 | 0.250 -0.006 0.027
14 | 0.349 -0.034 0.027
15 | 0.450 -0.021 0.027
16 | 0.551 -0.004 0.028
17 | 0.652 -0.009 0.026
18 | 0.749 0.010 0.029
19 | 0.852 -0.047 0.034
20 | 0.950 -0.016 0.031
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