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ABSTRACT 

Proteomics has been revolutionized in the last couple of years through integration of new mass 
spectrometry technologies such as -Enhanced Laser Desorption/Ionization (SELDI) mass 
spectrometry. As data is generated in an increasingly rapid and automated manner, novel and 
application-specific computational methods will be needed to deal with all of this information. 
This work seeks to develop a Bayesian framework in mass-based proteomics for protein 
identification. 

Using the Bayesian framework in a statistical signal processing manner, mass spectrometry data 
is filtered and analyzed in order to estimate protein identity. This is done by a multi-stage 
process which compares probi3bilistic networks generated from mass spectrometry-based data 
with a mass-based network of protein interactions. 

In addition, such models can provide insight on features of existing models by identifying 
relevant proteins. This work finds that the search space of potential proteins can be reduced such 
that simple antibody-based tests can be used to validate protein identity. This is done with real 
proteins as a proof of concept. Regarding protein interaction networks, the largest human protein 
interaction meta-database was created as part of this project, containing over 162,000 
interactions. A further contribution is the implementation of the massome network database of 
mass-based interactions- which is used in the protein identification process. This network is 
explored in terms potential usefulness for protein identification. 

The framework provides an approach to a number of core issues in proteomics. Besides 
providing these tools, it yields a novel way to approach statistical signal processing problems in 
this domain in a way that can be adapted as proteomics-based technologies mature. 
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CHAPTER I: OVERVIEW 

/.A. Introduction 

With the completion of the human genome project, the genetic sequence of humans has been 

effectively determined. Yet, the source of the complexity of humans relative to other organisms 

has not been fully elucidated: consider that the number of genes in C. elegans (worm) is on the 

same order of magnitude as that of humans: 2x1 o4 [I]. It has been conjectured that this situation 

can be explained by a layer of protein-protein interactions, responsible for the expected 

difference in functional richness between worms and humans- since as the number of proteins n 

increases, the potential interactions increases as @(n2) (proportional to n2). 

Through improved technologies such as automated sequencing, microarrays, and mass 

spectrometry, all three levels of the central dogma of molecular biology [2] (i.e. DNA, RNA, 

protein) are being explored on an organism-level scale. Genomics looks at gene-based 

information by mapping DNA of organisms. The genome refers to the complete sequence map 

of an organism. The transcriptome represents mRNA/expression-based information. 

Completing the triad is the proteome, the set of all proteins in an organism (or subcomponent). 

Proteomics studies these prote:ins and the links between them on a large scale. 

Proteomics has been revolutionized in the last couple of years through integration of new mass 

spectrometry technologies such as SELDI mass spectrometry [3, 41. SELDI can be used to 

measure proteins in biological samples. One difference from current gene expression microarray 

studies, where the genes are known, is that the identity of the proteins is usually unknown in 

SELDI-based experiments. Thus, SELDI studies are struggling with actual protein 

identification, often providing no more than a pattern-based predictor model. 

A number of recent studies have looked at differential profiles as a way of classifying binary or 

m-ary pathological states. Machine learning techniques have been employed for proteomic 

profiling with clinically promising results [5-71. Though these profiles are exciting in terms of 

promising predictors, many of the current profiles are not practical and scientifically rewarding 



since they rely on hundreds or thousands of protein peaks (most of which are unidentified). 

Rather than identifying specific proteins, such studies have provided diagnostic information 

solely based on "black box" predictors that look at differential patterns of mass spectrometry 

peaks. Purification, isolation, and manual identification of just one peak-based protein can take 

months. 

As data are generated in an increasingly rapid and automated manner, novel and application- 

specific computational methods will be needed to deal with all this information. Through use of 

computational machine learning techniques described in this thesis (as well as the author's work 

described previously [8]), it is hoped that new protein predictors can be found that are clinically 

practical and biologically plausible. 

I.B. Outline 

This work explores computational approaches by establishing a Bayesian framework. Various 

incarnations of Bayesian approaches and related networks have been used recently in 

bioinformatics from single nucleotide polyrnorphisms (SNPs) [9] (to learn about subtle 

sequence-based relationships) to microarray data analysis (to learn transcription factors, 

expression, and regulation pathways) [I 0, 1 11. Here, a novel application and corresponding 

methodology is explored. 

Hypothesis: Protein network perturbations are relayed throughout constituent links in a 

manner that identifies the underlying nodes and their relationships. 

Traditionally, it has been believed that the protein masses in SELDI-type experiments cannot be 

deconvolved/reconstructed and that proteins cannot be identified based on SELDI mass 

spectrometry data [12]. The hypothesis in this thesis is that probabilistic relationships derived 

from such mass spectrometry experiments can be used to estimate masses (fiom mass-to-charge 

ratios), protein identities, and other information about pathology. This approach is based on the 

idea that perturbations to the network/system are relayed throughout the links in a manner 



consistent with the topo1ogj.c properties of the network. This notion of network-based 

identification (applied to proteins) is delineated in section 1V.C. 

Objective: Use probabilistic relationships and topologic properties derived from mass 

spectra biomarkers to create a unified Bayesian framework for predicting pathological 

states and identifying relevant protein identities. 

This research examines the use of Bayesian network structural learning to yield conditional 

dependencies which imp1icitl:y encode important protein relationships. These networks can be 

used to learn the relationships and interactions of these proteins by comparing the probabilistic 

dependencies with a specialized database of protein interactions. This research examines issues 

ranging from the meaning of :probabilistic links between proteins in mass spectrometry to actual 

protein identification from this information. 

This objective is approached with three goals in mind: 

Aim #1: Use probabilistic relationships encoded in mass spectra to predict pathology using 

biomarker information. 

In this work, we use this approach on two clinical diseases: preleukemia and ovarian cancer. 

Insights are gained from the Bayesian analysis of mass spectra. Also, peaks beyond the 

precision of the actual SELDI instrumentation can be discovered with this method. This 

Bayesian network methodology, combined with the class/functional information that it suggests, 

can help to predict the protein. peaks with a one-to-many peak-to-protein mappings as well as the 

many-to-one peak-to-protein correspondences. In doing so, better models for predicting disease 

states can be created. 

Aim #2: Develop and implement the concept of a 'massome' for facilitating mass 

spectrometry-based protein identification. 



A massome can be conceptualized as all of the masses present in an organism or subcomponent 

(such as a tissue or organelle). Such masses can include a variety of biological molecules- from 

proteins to metabolic pathway constituents. Each mass can be linked to its innate properties and 

relationships- such as interactions encoded in a network. In this work, an instantiation of a 

subset of this concept, namely the human massome of protein interactions, is used for protein 

identification. 

Aim #3: Predict protein identity by mapping probabilistic relationships encoded in mass 

spectra to the human massome of protein interactions. Confirm model validity with real 

pathology/biological findings. 

The goal here is to show that by isolating probabilistically linked nodes and using additional 

mass information (via massome database of protein interactions), the search space for protein 

identification can be reduced and validation can be simplified in terms of both time and cost (e.g. 

via simple antibody method). This work goes beyond delineating methods for disease analysis 

and protein identification. It tests them via biological validation. In doing so, the results of the 

methodology can be seen within the context of real world issues such as noise within 

experimental mass spectrometry results. 

CHAPTER II: BACKGROUND 

//.A. Proteomics Overview 

According to the central dogma of molecular biology [2], the blueprint for life is contained in a 

string of nucleotides (chosen from an code set of four bases: adenosine, guanosine, thymidine 

and cytidine) that form Deoxyribonucleic Acid (DNA). Through transcription, messenger 

ribonucleic acid (RNA) is formed as an intermediary before translation creates the proteins that 

are responsible for most subsequent biological activities. Additional posttranslational 

modification of proteins is common. This process adds new information to the proteome not 

present in the genome. Since it is the final product in the generation of proteins, the proteome 



itself is likely to be as valuable as or more important than the genome in understanding core 

biological processes [13]. 

In early 1990's, the human genome project [14, 151 began with the goal of sequencing the 

approximately 4 billion nucleotide bases that comprise human DNA. At first, the task of 

sequencing was laborious and time consuming. However, as automated technologies started to 

produce data at an ever increasing pace in the early 19901s, scientists had to turn to computers to 

prevent being overwhelmed by the amount of data that needed to be analyzed. The new field of 

bioinforrnati.~~ was born. 

In the late 19901s, a similar phenomenon occurred at the transcriptome level. This time, 

DNAImRNA expression data started to be automated via microarrays [16- 1 81. ('Expression' can 

be thought of as the manager of a construction project generating a parts list based on the DNA 

blueprint). This time, more elaborate computational and machine learning methods had to be 

employed to analyze the data. For example, one method developed at the by the lab, Cluster 

analysis of gene expression dynamics [ l l ]  (CAGED), entails Bayesian methods for clustering 

based on temporal expression data. In addition, work by Friedman [19], Koller [20], and others 

has led to a new wave of Bayesian analysis findings in genetics. 

In the late 1990's, the term 'proteomics' generally referred to running proteins or peptides on 2- 

dimensional gels such as polyacrylamide gel electrophoresis (2D-PAGE). This process was 

rather laborious and time consuming. It was also hard to automate due to the fuzziness of the 

bands produced and reproducibility issues [ 131. Mass spectrometry techniques, originally 

employed by physicist and chemists to look at molecular structure, have recently offered an 

opportunity for better quantification as well as automation in biology. Two such methods are 

MADLI ancl SELDI [21]. Just as with expression data, microarray technology was developed to 

increase throughput. Pioneering work by the Liotta and colleagues [22,23] applied protein chips 

to proteomic profiling. Again, new computational techniques needed to be employed to fully 

analyze suc:h dataset [24]. While still in its infancy, the growth in this new field suggests that 

more advanced techniques will be needed to deal with larger proteomic sets. In fact, by the mid- 

2000's, the number of genetic sequences in Entrez (a database of molecular biology related 



information [25])  is starting to saturate, while the proteins being cataloged in Entrez is still 

growing exponentially each year (see Figure 1). 

Entrez Human Nucleotide Sequences Entrez Human Protein Sequences 

1000000 

1993 1995 1997 1999 2001 2003 

0 
I993 1995 1997 1999 2001 2003 

Year 
Year 

Figure 1: Number of entries in Entrez Nucleotide and Protein databases 

II.A.l. PROTEOMICS AND ITS APPLICATIONS 

In this section, the topic of proteomics is introduced from the biological/medical perspective. 

Lastly, the future direction of the field and its challenges are delineated. Clinical applications of 

proteomics such as cancer diagnosis and drug discovery are expounded upon as relevant. 

Proteins are essentially the small machines that allow an organism to function. "Proteomics," a 

term introduced in the early 1990s [26], is a field concerned with determining the structure, 

expression, localization, interactions and cellular roles of all proteins within a particular 

organism or subcomponent (e.g. mitochondria1 proteome [27]). Proteomics is set to have a 

profound im.pact on clinical diagnosis and drug discovery. In fact, most drugs target and inhibit 

the functions of specific proteins. Yet, until recently, it was only possible to explore proteins and 

their function one at a time. Indeed, the key to proteomics is its intrinsic focus on parallelization 

and computational techniques to study myriad proteins at the same time. 

The field of proteomics has come a long way since the mid-1990s when protein networks were 

largely stud.ied using 2-D gel electrophoresis [26]. Clinical proteomics is concerned with 



identifying protein networks and the intracellular interactions between proteins as applied to 

clinical aims [3]. The functioning of the human cell can be likened to the operation of a factory, 

as proteins are machines that process/deliver products and messages to other proteins via 

biochemical interactions. These messaging pathways or routes are essential for cellular function. 

As such, their malfunction can also be the cause or consequence of a disease process [3]. It is this 

notion that stimulated the application of proteomic technologies to oncology [28], neurology 

[29], toxicology [30], immunology [31], and many other areas [32-341. Later in the chapter, 

mass spectrometry methods and their proteomics applications will be outlined. With robust and 

high throughput features, these tools have enabled the resolution of thousands of proteins and 

peptide species in bodily fluids ranging from blood [35] to urine [36, 371. Such technologies 

have advanced research in early cancer diagnosis as well as in Human Immunodeficiency Virus 

(HIV) inhibiting drugs [3,3 81. 

Proteomics can and does leverage some of the engineering and statistical methodology 

developed for functional genomics approaches [39]. However, challenges have arisen in this new 

field and customized solutions such as fabrication of chips for parallelization of experiments [40- 

471, robotics [48-541, and novel machine learning techniques for intelligent decision analysis 

[55-571 need to be engineered. Other challenges are completely new and proteome specific. For 

example, posttranslational modifications of proteins can be vital to understand the role of 

proteins in cell function. In such cases, one to one correspondence does not exist between each 

protein and its encoding gene. This is significantly different fiom the relatively static nature of 

DNA. Since posttranslational modifications occur after the protein is created (based on the 

genetic blueprint), such modifications cannot be seen via traditional genomics approaches. 

The development of new engineering approaches made the Human Genome Project feasible by 

providing ways to overcome technological hurdles in terms of speed, cost, and precision. Such 

factors are at the foundation of any large scale biological endeavor. Higher throughput and 

sensitivity are requirements of technologies aiming to capture quality snapshots of cellular 

activity. It is with this aim that academia and industry are pushing ahead in the automating 

processes such as robotic sample preparation [58], alternative readouts for protein interactions 

[5 9-6 1 1, and micro fluidics [62]. Current instrumentation is far fiom optimal, however, partly 



because manufacturers have not yet had the necessary lead time to build systems perfectly 

tailored to protein analysis [63]. 

In addition to sensitivity and throughput considerations, there are many data analysis challenges 

inherent in representation and interpretation of experimental results. Methods aimed at meeting 

these problems are largely grouped under bioinformatics, a multidisciplinary field, absorbing 

methods in computer science, signal processing, statistical inference, and other engineering- 

related fields. Algorithms such as the Basic Local Alignment Search Tool (BLAST) [64] have 

been developed for automated protein identification. Yet, more intelligent decision making 

algorithms are needed to improve detection of posttranslational modifications in mass 

spectrometry-based spectra, Peptide Mass Fingerprinting (PMF), and electrophoresis image 

analysis. 

ll.A.2. FROM GENOME TO PROTEOME 

At the DNA level, each cell contains all the information necessary to make a complete human 

being. However not all genes are expressed in each cell. Genes that encode for proteins essential 

to basic cellular functions are expressed in virtually all cells, whereas those with highly 

specialized functions are expressed only in specific cell types. Every organism has one genome 

but many proteomes, thus the proteome in any cell represents some subset of all possible gene 

products. In other words, the genome is analogous to a single blueprint, while tissue and cell- 

specific proteomes represent instantiations of that blueprint. Together, all of these instantiations 

form the entire proteome of th.e organism. 

The recent completion of the human genome sequence has provided evidence that the human 

genome encodes between 20,000 and 25,000 genes as noted earlier. Interestingly, this is only 

about slightly larger than the approximately 19,000 genes contained in the worm 

(Caenorhabditis elegans) genome [65]. In view of the significant differences in the complexity 

of the human organism compared to the worm, the value of proteomic over genomic approaches 

becomes evident. That is, the complexity of the human organism must lie in the diversity of 

human proteins and their interactions rather than in the static human genome. 



Genomics focuses on the statistic structure of the DNA and aims to determine the DNA sequence 

of various organisms and differentiating between individual's sequences. The next level of 

complexity is the area of functional genomics which deals with the amount of mRNA 

transcription in cells. Cells use alternative splicing to produce different transcripts from the 

same gene; this means that there isn't a one to one relationship between the genome and the 

transcript. Although mRNA profiling through microarrays offers immense potential for the 

understanding of molecular changes that occur during biological processes including disease 

progression, it does not capture mechanisms of regulation involving changes in cellular 

localization, sequestration by interaction partners, proteolysis and recycling. Studies in yeast 

have shown that there is a weak correlation between mRNA levels and protein expression. In 

fact, mRNA levels in some genes were the same value as others while the protein levels varied 

by more than 20-fold [66]. The level of any protein in a cell at any given time is controlled by a 

number of variables: 

The rate of transcription of the gene 

The efficiency of translation of mRNA into protein 

The rate of degradation of the protein in the cell 

Proteomics is the next layer of analysis. Any protein, though a product of a single gene, may 

exist in multiple forms at any given time. Most proteins exist in several modified forms which 

affect protein structure and function. The status of the proteome within a cell reflects all the 

cell's functions. The challenge of proteomics is detecting many relatively low abundant proteins 

that play a role beyond general cell upkeep and which may exist in multiple modified forms. In 

recent years, proteins with specific amino acid sequences, structures, functions, concentrations, 

and posttranslational modifications have been explored [67]. 

Proteomics encompasses four major applications. Mining is the process of identifying and 

cataloging as many proteins as possible directly rather than inferring them from gene expression. 

Protein expression profiling is the identification of protein abundance while the organism is in a 



specific state. This could be exposure to drug or a disease state. Protein-protein network 

mapping is concerned with how proteins interact with each other within a cell. These 

interactions can be permanent or transient. Lastly protein modification studies strive to identify 

how and where proteins are modified. 

Even minute changes to proteins can cause major changes in function with pathological 

consequences. For example, a change in just one amino acid in one type of polypeptide chain can 

result in sickle cell anemia, a devastating hemolytic disease that often results in death as a result 

of abnormal red blood cell function and recurrent clotting episodes [68]. 

11. B. Technologies & Automation in Proteomics 

The move towards robotics and automation in the life sciences has been underway for nearly 20 

years [69]. The growth of this research area is illustrated in Figure 2 below. Using the Medical 

Subject Hea.ding (MeSH) database and the PubMed citation database [70-721, the number of 

annual research articles were calculated within several topics as a proxy for research activity. 

These included: automation, robotics, and biomedical engineering-related fields. These were 

compared to all research articles that appeared in the index annually. For each subcategory, the 

y-axis is normalized to the number of articles published in 2003 within that subcategory (100%). 

Thus, the growth of the various fields can be compared to the overall growth of research papers 

during the decade 1993-2003. In particular, all of the technologies related to automation, 

robotics, and biomedical engineering-related fields grew at a similarly spectacular rate of 

approximately 3-5 fold, while the overall citation index only grew by around 113. The graph 

shows that this growth gives no sign of saturation. 



Figure 2: Automation, robotics, and biomedical engineering-related papers are 
growing at a much faster rate than the papers in all fields in the PubMed database. 
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Researchers are looking to robotics to search entire proteomes for potential targets for treatment. 

Robotics can increase throughput, eliminate sample contamination, reduce human error, and 

perform repetitive processing. In particular, the high-throughput demands of the pharmaceutical 

industry for drug screening have resulted in an increased need for automated approaches to 

supplant historically manual techniques. 

'- - - A x  

Automation has become common place in all stages- from sample preparation to processing, 

analysis, and information management (see Figure 6). Bench-top automated liquid handling and 

sample dispensing systems are becoming widely available. Miniaturized pipetting robots, 

though expensive, save researchers money simply by using less (20 nanoliters) of the costly 

reagents used in biomedical research. Automated protein purification is now possible with 

microfabrication technology developed for semiconductor research in the form of "chips" with 

microscopic channels [69]. Small electric currents or vacuum-based pressure techniques can 

used to conduct the flow of fluids. Electrophoresis gel imaging, robotic gel cutting, and mass 

spectrometry sample plate loading are other examples of automation [73-751. 

- + - All MeSH-Based Fields 

1994 Id95 1i96 1i97 18$8 1999 20bO 2001 2002 2003 
Year 



To extract useful information from terabytes of data gained during the automated process, 

information management systems specific to the life sciences have been created. Laboratory 

Information Management Systems (LIMS), as they are typically called, are designed to mirror 

the natural work flow of the laboratory, integrating manual and automated processes. For 

example, robotic platforms can track a sample and its accompanying data through various 

processes [69]. An example of LIMS is Nautilus, a proprietary sofware suite where data is put 

into extensible markup language (XML) format, a standard in many industries for storing data 

structures [76]. 

Automation and robotics also have introduced some novel problems which have opened up new 

avenues for research [69]. Downtime for reconfiguration or replacements can significantly 

hinder throughput. Research from fault tolerant networks, redundant machinery, and/or 

parallelization can prove useful here [77-831. Integration between machinery from various 

vendors is another issue in lab automation. A trade off exists between buying whole systems 

from one vendor (where individual components may not meet all specifications) versus for 

separate vendors (where intercomponent integration may be more difficult). 

II.B.l. FUNDAMENTALS OF ANALYTICAL POLYPEPTIDE SEPARATION 

Mass spectrometry has not been able to identify whole proteins solely based on their molecular 

masses. This is due to the fact that mass spectrometry measurement accuracy decreases as the 

protein mass increases, multiple proteins have similar masses, posttranslational modifications 

complicate the assignment based on protein mass, and lastly, not all proteins are amenable to 

intact mass measurements [84]. More discussion of some of the statistical issues involved is 

presented in the next section. 

The essence of analytical protein identification centers around the following: most peptide 

sequences of approximately six or more amino acids are largely unique within the proteome of 

an organism [85]. This will result in identifying a protein based on the identification of a 

hexapeptide (i.e. a peptide consisting of six amino acids). The confidence in this match is 

increased if multiple partial pieces of the entire protein can be matched. 



In PMF, a protein can be identified via a multi-step process (which requires prior isolation of 

proteins from mixtures). First, it is cut into small pieces (i.e. small peptides) though a digestion 

process. These small pieces can then be identified via mass spectrometry to a high degree of 

accuracy (unlike the entire protein). A database can then be used to lookup and identify which 

protein these small peptides originated from. 

Yet, even before the digestion process and mass spectrometry analysis, a number of steps are 

needed to facilitate analysis. Proteins must be extracted fiom biological samples such as a piece 

of tissue or cultured cells. The next step is to separate the proteins contained within the tissue. 

The most popular protein separation methods are 2-D gel electrophoresis (e.g. sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis, or SDS-PAGE for short), preparative isoelectric 

focusing (IEF), and high performance liquid chromatography (HPLC). HPLC and mass 

spectrometry (HPLC-MS) is a combination that has lent itself well to automation and it is thus 

expected that HPLC will likely dominate polypeptide separation in the long run (though 2-D 

SDS-PAGE is still prominent today [67] ). 

In 2-D SDS-PAGE, proteins are separated first by their isoelectric point (i.e. the pH where 

protein has zero net charge) followed by separation according to molecular weight. The result is 

the separation of proteins into spots on a gel containing sample proteins. The intensity of each 

spot is proportional to the protein abundance. The stained gel image can be analyzed using 

imaging analysis techniques and a section of the gel containing an isolated protein can be cut out 

for further analysis by other methods such as mass spectrometry. Two or more samples from 

differing cellular states (diseased and normal) can be compared to identify relevant proteins. 

Integrated systems for performing the above tasks are currently being made available. These 

systems include: robotic sample preparation, 2-D gel electrophoresis, gel extraction via precision 

robots, ionization labeling, and mass spectrometry peptide fragments analysis. In these systems, 

data generated from all the instruments are represented in a user friendly graphical user interface 

(GUI) [86] for easy analysis. These systems are crucial to high throughput, in some instances 

increasing processing power by 5 fold [21]. A shortcoming in these systems stems fiom the fact 

that samples are typically treated in a homogenous fashion with no feedback control mechanism. 



For example, a lab technician doing a gel protein digestion can account for the spot intensity by 

adjusting the amount of protease (an enzyme used to cleave the protein into peptides) and re- 

suspension volume based on the sample. However, intelligent systems are not yet available to 

make such decisions [2 11. 

Electrophoresis's application is limited due to its small dynamic range and use of separated 

protein spots in the detection technique. It also leads to a lack of sensitivity for less abundant 

proteins. Using current 2-D methods it is only possible to detect about 3,000 protein spots on an 

18 x 20 cm2 gel [21]. Yet, approximately 5,000-10,000 genes are expressed in a cell at any given 

time, resulting in the creation of at least 20,000-30,000 distinct proteins (due to alternative 

splicing and posttranslational modifications). 

Another drawback of the gel approach is limitations of imaging and quantification systems 

which have led many to use manual examination to verify the accuracy of detected spots. This 

necessary verification process is a major bottleneck in efforts to automate such proteomic 

methods. 

HPLC is a protein separation method most commonly used after protein digestion. In this 

approach, th~e proteins in a sample are primarily digested (cleaved into smaller peptides) using a 

protease such as trypsin. The chromatography portion of this method involves a separation 

method typically based on one of the following attributes [85]: 

Hydl-ophobicity: lacking attraction to water 

Strong cation exchange: net positive charge 

Strong anion exchange: net negative charge 

Size separation: size/molecular weight 

Spec,ial affinity: interaction with particular functional groups 



Multidimensional liquid chromatography, or tandem liquid chromatography (LC), is the process 

of running a sample through two or more steps of LC and then separating the peptides based on 

multiple attributes. This creates a more refined subset of the original mixture of peptides. 

Multidimensional LC coupled with tandem mass spectrometry (LC-LC-MSIMS) is a method 

used in the analysis of complex mixtures of peptides. This method is commonly known by the 

acronym Multi-Dimensional Protein Identification Technique, or MudPIT for short [87]. 

ll.B.2. PRCITEIN MASS SPECTROMETRY 

Mass spectrometry is turning out to be one of the high growth areas in proteomics research in 

recent years. As shown in Figure 7, the field of mass spectrometry in general has grown over 2 

'/z times over the past decade in terms of PubMed related publications measured as discussed in 

"Technologies & Automation in Proteomics" section. This compares to a 113 increase in overall 

PubMed reslearch article publications. Part of this growth is due to mass spectrometry's new 

applications in proteomic domains (as opposed to classical analytical chemistry-affiliated 

molecular studies) such as proteome mining, posttranslational modifications, and protein-protein 

interactions. The immense amounts of data generated by mass spectrometry based proteomics 

have paved the way for systematic identification of proteomes and intra-cellular dynamics. Mass 

spectrometry is also easily adaptable to high-throughput formats, a fact which has made it the 

method of choice for protein identification and characterization [88, 891. While an exhaustive 

review is not within the scope of this chapter, an effort has been made here to give an overview 

of the relevant technology and biomedical applications within the context of this thesis. 
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Figure 3: Mass spectrometry is growing at a much faster rate in terms of papers 
compared to the general PubMed database. 

There are three main components in any mass spectrometry machine: the source, mass analyzer, 

and detector. The source produces ions from the biological sample, the mass analyzer resolves 

the ions (in mass-to-charge ( d z )  ratio-dependent manner), and finally the detector detects the 

ions resolved by the mass analyzer. Fundamentally, mass spectrometry converts the sample 

mixture into ions, analyzes them, and estimates their corresponding mass-to-charge ratios. In 

tandem mass spectrometry technologies, the digestion of protein samples into small peptides 

(described in the previous section) results in proteins being cleaved or cut between predictable 

amino acid locations. In that case, a database search is then carried out to decide which protein 

the sample peptides originated fiom. The process demands high sensitivity, resolution and 

accuracy [90]. Sensitivity is required to measure masses on the order of femtomole (10-15) 

quantities with high resolution to distinguish between ions of similar d z  values. 

Three prominent mass spectrometry ionization methods used in proteomics are Electrospray 

Ionization (ESI), Matrix Assisted Laser Desorption/Ionization (MALDI) and SELDI. In ESI 

mass spectrometry, a potential is applied to create a fine mist of charged droplets (including the 



dissolved peptide sample) that are subsequently dried and introduced into the mass analyzer. 

The solution used as input to the mass spectrometry is often the output of HPLC (and includes 

digested proteins as well as the protease used to cleave them). In contrast to MALDI, ESI 

produces highly charged ions without fragmentation of the ions into the gas phase [89]. MALDI 

mass spectrometry is normally used to analyze relatively simple peptide mixtures, whereas 

integrated high performance liquid chromatography ESI systems (HPLC-ESI) are preferred for 

the analysis of complex sampl-es. 

The first step in the MALDI ionization source is the addition of the sample to a chemical matrix. 

The matrix includes photon absorbing molecules with a specific amount of chromophore, 

sensitive to light at a specific wavelength. The mixture is then placed on a small slide and 

allowed to dry. The dried mixture is a crystal lattice containing the desired sample to be 

analyzed. The crystal is then struck with a laser beam. The matrix molecules absorb the energy 

emitted by the laser, causing their temperature to increase. This excess heat causes the sample 

peptide to transform into gas phase [91]. Each peptide tends to (generally) pick up a single 

proton, creating a positive ion. This is significant since the m/z ratio is thus precisely the mass 

(Z=l). This is in contrast to ESI where a peptide sample can pick up tens of protons, causing 

various peptides with the same mass to have differing m/z ratios. In any case, the ion then enters 

the mass analyzer where their m/z ratio-dependent behavior possible to differentiate between 

peptides present in the sample (e.g. see Equation 1). SELDI is similar to MALDI; the ionization 

into the gas phase via photon absorption from a laser source remains the same. They differ in 

that SELDI sample plate surfaces are designed to react with proteins with specific properties. 

Consequently proteins with similar physical and chemical attributes are retained, increasing their 

chance of becoming ionized and providing another layer of filtering (and decreasing required 

spectrum bandwidth) which helps in creating diagnostically useful proteomics profiles. 

SELDI has become increasingly popular since a study from Liotta and colleagues was first 

published in Lancet [3, 231 involving diagnosis of ovarian cancer without actually identifying 

any proteins. As shown in Figure 7, the field of SELDI (indexed under MALDI in MeSH), 

measured in terms of papers, has grown very rapidly since being "introduced" as a category 



within MeSH in the 1990's. The subset of MALDIISELDI papers affiliated with proteomics has 

exhibited even faster growth. 

As alluded to earlier, mass spectrometry is also a clinical tool and has been used in numerous 

disease studies [3, 38, 921. SELDI technology has been applied to cancer detection via serum 

samples. Using machine learning techniques, recent studies [93] were able to predict 

pathological states in their respective domains solely using serum proteins. Rather than 

identifying proteins, such early studies yielded accurate diagnostic information based on the 

overall pattern of protein expression. In the case of ovarian cancer, the importance of early 

diagnosis is apparent in the high five year survival rate (95%) of patients with cancer limited to 

the ovary compared to the low 35-40% five year survival rate for late stage patients [3]. SELDI 

has also been used in diagnosis of neurological diseases such as Alzheimer's disease, 

Parkinson's disease, multiple sclerosis, schizophrenia, and many others [92]. 

There are four basic types of mass analyzers currently used in proteomics research. These are the 

ion trap, time-of-flight (TOF), quadrupole time-of-flight (Q-TOF), and Fourier transform (FT- 

MS) ion analyzers. They are very different in design and performance and each with its own 

advantages. They can be used alone or put together in tandem to take advantage of the unique 

strengths of each [88]. 

In the ion-trap analyzers, ions are first confined within a trap via electrically active electrodes on 

the top, bottom, and middle (via a ring electrode). The ion trap collects the ions for a certain 

time intervi~l and then subjects them to mass spectrometry or tandem mass spectrometry 

(MSIMS) analysis. Ion traps are robust, sensitive, and relatively inexpensive. FT-MS is similar 

to an ion trap. This method however employs a magnetic field for detecting ions in the trap [94]. 

But in spite of the enorrnous potential of measuring low abundance proteins, cost as well as 

operational complexity and low peptide-fragmentation efficiency have limited use of FT-MS 

instruments in proteomics research [9 11. 



In TOF anal-yzers, time is measured for the gas-phase ions to travel from the ionization source to 

the detector, which is then related to the m/z ratio [95] (see Figure 4). This analyzer is generally 

not as well suited for MSIMS. 

SELDI-TOF has a number of advantages. These include lower cost, few preparation steps for 

biological samples, and faster analysis. This makes the technology suitable for clinical studies- 

that require many biological replicates. The disadvantage is the lack of the type of protein 

identifications available with MSIMS-type instruments. 

A quadrupole mass analyzer is a variant of TOF that consists of four parallel metal rods that are 

arranged lengthwise. These can be manipulated to allow ions of a specific m/z ratio to pass 

between them for detection. The TOF analyzer is typically paired with MALDI (MALDI-TOF) 

or SELDI (SELDI-TOF) where as the quadrupole and Fourier transform methods use ESI 

sources. The equation governing TOF analyzers with some common values (e.g. for PBS I1 

SELDI-TOF, Ciphergen, Fremont, CA) is shown below. 

mlz  
-- - a(t - to)' + b 

U 

Where: 

t = time of flight (ps) 
m = mass (Da) 
z = charge (C) 
U = voltage (e.g. 20,000 V) 
a, b, c = model constants (e.g. a=0.272, b = 0, to = 0.0038) 
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Figure 4: SELDI-TOF mass spectrometry schematic 

An overview of MSMS is shown in Figure 9. First, peptide ions generated from an ESI source 

are separated based on the m/z ratio. In the second round, a single m/z is chosen and is subject to 

Collision Induced Dissociation (CID) [96]. This process induces fragmentation of the peptide 

into fragment ions, which are then analyzed on the basis of their m/z. The resultant tandem 

spectra of amino acid composition can be searched against protein databases to identify the 

protein [97]. Matches from at least three to six peptides derived from the same protein are 

typically required to positively identify a protein [98]. MSMS also provides information about 

the nature and location of peptide modifications. The extent and comprehensiveness of the 

available databases are extremely crucial as database-searching strategies can be applied only if 

the protein sequence exists in the database. Sequest, developed at the University of Washington 

[99], is the most widely used tool for searching protein databases [100]. Sequest, discussed 

fbrther in the next section, is ideal for high-throughput proteomics as it automatically extracts 

and searches the MSMS data against a protein database [loll. 
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Figure 5. Steps involved in pre-filtering and tandem mass spectrometry 

Although mass spectrometry is a sensitive method for identifying proteins, there are quantitative 

shortcomings [102]. The intensity of a peptide peak depends linearly on the concentration of the 

peptide. However, different peptides have different propensities for ionization. Thus, two 

peptides present in equal amounts may show substantially different intensities in the mass 

spectra. This problem has been addressed by modifying one of the sample types with a stable 

isotope (e.g. the disease samples) while leaving the other unchanged (e.g. the control samples). 

This modification changes the molecular weight of the isotope-based samples relative to 

controls, but not the mass spectrometer's behavior in terms of the peak intensities. Quantitative 

differences in proteins are then determined directly as the difference in peak area between the 

two peptides in the mixed samples (i.e. control and disease) [67]. 



ll.B.3. PROTEOMIC DATABASES 

The vast amounts of proteomic data generated by previously mentioned techniques (mass 

spectrometry, MSIMS, protein arrays, etc.) is typically stored in computer-based databases. 

Broadly speaking, one can categorize proteomic databases as Protein Sequence, Protein 

Structure, Protein Interaction, Mass Spectrometry, and Integration. 

This section introduces the general content of each database type and refers to the most popular 

databases of each category. It should be noted that there aren't any globally accepted standards 

for database structure and implementation. Also, intra- and inter- database redundancy of a data 

with (differing identification tags) is a common problem. 

Protein Sequence Databases 
At their core, most protein sequence databases contain the amino acid sequence of identified 

proteins. Additional information such as identification tags and references to related journal 

articles may also exist. Entrez and Swiss-Prot are among the most popular of these systems. 

Entrez [25] is a molecular sequence retrieval system developed at the National Center for 

Biotechnology Information (NCBI). Entrez Protein, a protein sequence database, is actually just 

only a small subunit of the Entrez system. Entrez also provides access to biomedical literature, 

nucleotide sequence databases, 3D molecular structures, complete genome assemblies, OMIM 

(Online Mendelian Inheritance in Man), and many other resources. 

Swiss-Prot [103], another popular protein sequence database, was established in 1986 through 

collaborative efforts of the Swiss Institute for Bioinformatics (SIB) and the European 

Bioinformatics Institute (EBI). The Swiss-Prot system relies on the translations of DNA 

sequences from the EMBL N-ucleotide Sequence Database. EMBL is a comprehensive database 

of DNA and RNA sequences collected from the scientific literature, patent applications, and 

submissions directly from researchers/sequencing groups. TrEMBL is a computer-annotated 

supplement of Swiss-Prot that contains translations of EMBL nucleotide sequence entries (before 



being integration into Swiss-Prot). Swiss-Prot is known for a minimal level of redundancy and 

high level of integration with other databases. 

Protein Structure Databases 
Protein structure databases contain 3-D structural (e.g. secondary andlor tertiary) information. 

One such database is the Protein Data Bank (PDB) [104]. It is an international repository of 

experimentally determined three-dimensional structures of biological macromolecules. The 

repository includes atomic coordinates, bibliographic citations, secondary structure information, 

crystallographic structure, and NMR experimental data. 

Protein Interaction 
Another category of information collected in proteomics databases is protein interactions. The 

Database of Interacting Proteins (DIP) [lo51 is a database of protein pairs that are known to 

interact (e.g. two amino acid chains that bind to each other). DIP contains the name and the 

PIR/SWISSPROT/NCBI/EMBL unique identifier for each protein, and any available information 

about the interaction. This may include the region involved in the interaction, the dissociation 

constant, and the experimental methods used to study the interaction. DIP is intended to aid 

researchers studying protein-protein interactions, signaling pathways, multiple interactions and 

complex systems. 

BIND [106] is an another major interaction database. It has three classifications for molecular 

associations: molecules that associate with each other to form interactions, molecular complexes, 

and pathways. Complexes are functional combinations of two or more molecules, capable of 

performing a specific function. Pathways are a sequence of temporal events (interactions) that 

occur within cells. In BIND, complexes and pathways are represented by molecular complex 

objects and pathway records respectively- both of which are formed by linkage of two or more 

interaction records. 

A recent ne:w development in proteomics databases is the Proteomics Standards Initiative (PSI) 

standard [107]. This is initiative aims to define community standards for data representation in 



proteomics. PSI is taking steps to standardize Mass Spectrometry and protein-protein interaction 

data. The PSI-MI (molecular interactions) format is a data exchange format for protein-protein 

interactions. While that initiative seeks to standardize the structure of databases, the actual 

content is left rather ambiguous. Also, data in these fields can vary somewhat across databases. 

So, for those databases that actually support PSI-MI format, even the actual proteins themselves 

may be referenced by different identifiers ranging from Uniprot [log], NCBI GI numbers, 

Ensembl [I 091, and the International Protein Index (IPI) [I 101. In addition, virtually no database 

actually contains all of the PSI-MI format fields. 

Mass Spectrometry Databases 
There are a few nascent public Mass Spectrometry databases at this time. The Open Proteomic 

Database (OPD) [I 111 and Peptide Atlas Repository are two such examples. The OPD, at the 

University of Texas-Austin is roughly a collection of roughly 1,200,000 spectra representing 

experiments from 4 different organisms. The Peptide Atlas Repository (Institute for System 

Biology) contains the same type of data, with additional quantitative filtering methods applied to 

the receivedl data. 

Integration Databases 
Databases such as SeqHound [I 121 and AliasServer [ 1 131 are integration databases, integrating 

sequence and structural information as well as accession number data on biological molecules. 

One interesting aspect of SeqHound and AliasServer are the remote API (Application 

Programmer Interface) that can be used in creating software packages that access the servers' 

large databases via web. 

11.6.4. DATABASE SEARCH ALGORITHMS FOR MASS SPECTROMETRY AND 
MSlMS SPECTRA 

Following tandem mass spectrometry or mass spectrometry experiments with isolated proteins 

digested into peptides, a database search can be carried out to try to identify proteins. The 



Sequest algorithm provides one approach for MSIMS data. When proteins are digested into 

peptides, PMF can be used with mass spectrometry information for identifications. 

Following application of analytical protein separation methods such as 2-D electrophoresis, 

digestion of the excised proteins, and mass spectrometry on the resulting peptides, one obtains a 

set of d z  ratios of the peptides present in the sample. The success of the identification process 

is dependent on the quality of mass spectrometry data, the accuracy of the database, and the 

power of the search algorithm. used [ 1 141. 

In a typical identification algorithm, a database of known proteins is set up (e.g. using SWIS- 

Prot, OWL, andlor NCBInr). A protease is specified and used for virtual (i.e. in silico) protein 

digestion to yield a master peptide list. Matches are made between peptide obtained from mass 

spectrometry and the peptide master list. If several of these peptides uniquely match the same 

protein, then the unknown sample protein can be identified. The process is also applicable if 

there are multiple proteins, though there are limitations. In this case, there is more room allowed 

for error and a scoring system is typically used to rank the fidelity of each match. Most scoring 

systems assign higher scores to those proteins with the greatest number of peptide matches. This 

tends to give bigger proteins a higher score, simply because they yield more peptides upon 

digestion [85]. Some probability based scoring algorithms have emerged [ 1 1 51. One such 

algorithm is ProFound [116]. 

ProFound ranks protein candidates using a Bayesian algorithm, taking into account individual 

properties of proteins in the database as well as other information relevant to the experiment. 

The algorithm assumes that the candidate protein is contained in the database and that all the 

detected peptide ions come from the protein under consideration. A hit is a match between a 

measured peptide and a calculated theoretical peptide. The ranking is directly proportional to 

P(k I D,I), namely the probability for each hypothesis k given data D and background 

information I. This score is calculated as shown in Equations 2-3 below. 
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In the above equations, k refers to the hypothesis that protein k is the protein being analyzed. 

The variable D represented the experimental data. All the available background information 

about the protein (species of origin, enzyme cleavage chemistry, approximate molecular mass, 

previous experiments, etc.) is encoded in I. The theoretical number of peptides generated by 

fragmentation of protein k, given a protease, is referred to as N. The difference m,, - mmin is 

the range of' measured peptides. The measured peptide of the ith hit is mi. By contrast, mu is the 

calculated peptide of the jth peptide in the ith hit. The normalization constant, m, is the standard 

deviation of the mass measurement at mi. The variable r represents the number of hits. FPattem is 

an empirical coefficient. The number of theoretical peptides that match mi is saved in gi. More 

details can be found in the original ProFound publication [116]. It has been shown that the 

above algorithm is superior in performance to its predecessors (which not employ such 

probabilistic reasoning) [116]. 

Protein identification using MSIMS experiments employs different algorithms, taking advantage 

of the second mass spectrometry-based spectrum. A peptide is a sequence of amino acids and 

hence its mass is the equal to the sum of the masses of the amino acids that compose it. 

However, since the order of the amino acids is important in determining a peptide's 

structurelfu~wtion, permutations of a sequence of amino acids may yield different peptides with 

the same masses. In addition, some amino acids (e.g. isoleucine and leucine) or modified amino 

acids may have the equivalent masses (either due to identical masses or limits in a measuring 

instrument's precision). In MSIMS, data peptides of a specific mass are selected and subject to 

collision induced dissociation, resulting in two sequences of amino acids referred to as 

fragments. As an example, GVAGNEGAL is a peptide which can be fragmented into GVAG 

and NEGAIL ions. If all GVAGNEGAL peptides were fragmented into GVAG and NEGAL 

ions, it would not be possible to recover the peptide's sequence. However various 



GVAGNEGAL peptides will break at different points along the sequence. This is crucial to 

MSIMS since then the fragments can be pieced together in the correct order. The resulting 

spectra can then be analyzed to obtain the sequence. 

There are two approaches to resolving MSIMS spectra into a peptide sequence. The de novo 

method involves manual analysis by an experienced scientist using the above table to generate a 

predicted peptide sequence. This manual approach has not proven to be the best method for high 

throughput applications. The de novo method is usually followed by a search of an in silico 

digested protein database, similar to PMF, to identify the protein the peptide originated from. 

Algorithms have been developed to resolve MSIMS spectra into peptide sequences. The Sequest 

algorithm is the most commonly used for such analysis [117, 1181. Sequest generates 

identifications using two pieces of information: the m/z ratio of the peptide before fragmentation 

(obtained from the first mass spectrometry step) and the MSIMS spectrum. The d z  value of a 

peptide being analyzed with the peptide master list generated from a virtually digested protein 

database (as in peptide mass fingerprinting). A set of peptides within a specified mass range 

similar to the peptide d z  are chosen. These virtual peptides are processed to produce theoretical 

or model MSIMS spectra. The actual MSIMS spectrum is compared to the every model spectrum 

and a cross correlation score (XCorr) is given to each comparison. The XCorr value is dependent 

on the quality of the tandem mass spectrum and the quality of its fit to the model spectrum. 

Sequest creates a model MSIMS spectrum based on elementary knowledge of how peptides 

fragment in the collision induced dissociation process. The XCorr value generated during the 

analysis is not an absolute measure of spectral quality and closeness of fit to the model spectrum. 

That is, the algorithm will identify the best matches between the model and actual spectra 

regardless of the quality of the fit. Thus, the same XCorr value for one peptide may not mirror a 

similar closeness of fit for another peptide with the same score. 

Scoring Algorithm for spectral analysis (SALSA) is a feature extraction algorithm designed to 

identify and score particular features in MSIMS spectra. SALSA aims at solving problems in 

identifying a subset of the sample proteins with specific characteristics. Examples of such 

scenarios are: the detection of peptides with a particular amino acid sequence (motifs) and the 



identification of protein modifications such as phosphorylation. More specifics regarding 

SALSA can be found in several published sources [119- 12 11. 

ProFound, Sequest and SALSA present the capability to rapidly render data into useful tangible 

information. These algorithms, when coupled with automated sample preparation and mass 

spectrometry techniques such as HPLC-MSIMS, enable identification of proteins with certain 

mass spectrometry-based technologies outside the scope of this work. 

11. C. Statistical and Machine Learning Methods 

Statistical learning and data mining techniques make it possible to do automated data mining 

even as biological databases grow exponentially. Techniques such as artificial neural networks 

(ANN) [126], support vector machines (SVM) [127], genetic algorithms (GA) [128], and 

statistical regression techniques provide tools for supervised learning when training data is 

available (with appropriate class labels that help to 'supervise' the algorithm and guide its 

leaming). When the class labels are not available (i.e. unsupervised learning), various clustering 

techniques can be used to find structure in the data. Numerous nonapplication-specific 

algorithms exist such as K-means clustering [129], principal component analysis (PCA) [ 1301, 

painvise hierarchical clustering [ 1 3 1 1, and Bayesian techniques [ 1 321. 



CHAPTER Ill: BAYESIAN APPROACH 

1II.A. Graphical Models 

Advances in high throughput data collection techniques such as mass spectrometry, protein 

arrays [122], and yeast two-hybrid techniques [123], as well as genomic information, have paved 

the way for cell-wide observation of activity, especially in the realm of protein-protein 

interaction identification. Links between pieces of information, such as protein interactions, can 

be encoded in networks. Protein-protein interaction networks, transcription regulatory networks, 

and metabolic networks are sub-networks of larger intercellular web of interactions. The 

organization and integrated dynamics of these networks should help provide a window on 

cellular sub-processes. 

Protein networks have been used to represent many of the architectural features of other complex 

systems, such as the Internet, silicon chips, and social groups [124]. The theory of complex 

networks [125], originating in the mathematics and physics community, has recently been 

applied to the analysis of cellular networks. At a high level of abstraction, proteins can be 

regarded as nodes or vertices, with edges representing the connections between proteins. In the 

following paragraphs, the basics of graph theory are discussed. This terminology will later be 

used to describe some of the features of protein networks and their implications. 

Networks can be represented by graphs. A graph G consists of a nonempty set of vertices V, and 

a set of edges E that potentially link vertices together. G = (V, E) where E = {(u, v) I u, v E V )  . A 

graph can take on many forms: directed or undirected. A directed graph is one in which the 

direction of any given edge is defined. Conversely, in an undirected graph one can move in both 

directions between vertices. The edges may also be weighted or unweighted. Protein networks 

are usually represented as undirected graphs where a connecting edge signifies a binding 

between two proteins. A cyclic directed graph contains at least one path in which the initial 



vertex of the path is also the terminal vertex of the path. When a directed graph does not contain 

any cycles it's termed acyclic. A directed acyclic network is the foundation of Bayesian 

networks (discussed in the next section). A path through a graph is a traversal of consecutive 

vertices along a sequence of edges; the length of the path is the number of edges that are 

traversed along the path. 

Ill. B. Building a Bayesian Foundation 

Bayesian algorithms have been used with success in both supervised and unsupervised learning. 

From classifying electron micrographs [I331 to text classification and clustering [134], Bayesian 

methods have been successfully employed in situations that incorporated many variables as well 

as some expert knowledge. Examples of Bayesian strategies in bioinformatics include 

microarrays (via CAGED) [ l l ] ,  SNPs [9], and Botstein's approach for genomic analysis [lo]. 

Bayesian methodology allows for inclusion of a priori information (e.g. fiom an expert) in order 

to facilitate inference on a dataset. It helps characterize the parameters' conditional probability 

given a priori information by looking at the parameter vector as a probability distribution that 

can be conditioned upon. The classical example is the flipping of a coin. Whether an object 

landing on the ground is a fair coin or a magician's biased coin can influence the probability that 

one expects heads to come up- before the coin is even tossed. While classical statistics would 

glean this information from multiple tosses, a Bayesian approach would incorporate this 

information by calculating the prior density P(parameter vector 1 a priori information) . 

With limited examples, this approach would likely perform better than the classical statistical 

approach. As the number of examples increase, the Bayesian results often approach those of 

classical methods. In proteomics, the data is limited due to cost considerations and the novelty 

of the field. Thus, the Bayesian approach will be suitable to help capture the structure of the data 

with the limited number of available cases. 

Bayesian probabilistic assumptions and relationships can be visualized through graphical models 

(e.g. Bayesian networks). A Bayesian network's qualitative information is essentially captured 



by a graphical representation of probabilistic dependencies. Let G=(V, E) be a directed acyclic 

graph (DAG) with V representing vertices and E being a vector of edges. In such a graph, the 

vertices typically encode stochastic variables and directed edges imply probabilistic dependence. 

These dependencies help reduce the number of terms in the joint probability and hence reduce 

the amount of computation needed for inference. An example is shown in Figure 6. In this 

scenario, cancer is more likely given an older patient. In addition, skin collagen (protein) is 

likely to be reduced given older patient (leading to wrinkles). One sees that low collagen levels 

do not necessarily lead to cancer- but rather the two are conditionally independent of each other 

given age. 

In addition, a Bayesian network can encode quantitative information about the probabilistic 

dependencies as well. This is done via a conditional probability table (CPT). Each node 

(representing a variable) has discrete states conditioned on the state of its parents. The 

probability of being in one of these discrete states, conditioned on its parents, is encoded as an 

entry in the CPT. In Figure 6, the "cancer" node has one parent (with two discrete states: 

Age>65 and Age<65). In addition, the "cancer" node itself has two discrete states: true and 

false. Thus, in order to encode the CPT, four table entries are needed. These entries capture the 

P(Cancer I Age) and represent the probabilities associated with the arrow between the "age" and 

"cancer" nodes. 



ancer= P(Cancer= 
? I Age) False I Age) 

- 
Figure 6: Conditional Probability Tables (CPT) 

This network is a simplified version of a canonical Bayesian network, namely a NaYve Bayesian 

Classifier (NBC) as shown in Figure 7. Here, the information encoded is that the attributes XI to 

XN are conditionally independent given their mutually exclusive classes Y (e.g. cancer or 

control). In other words, (XI.. .XN) are I I Y. In this case, there are N attributes- where N is the 

number of biomarker (or protein) peaks. 



Figure 7: Naive Bayesian Classifier: directed graph with conditional independence assumption 

Figure 8, on the other hand, demonstrates a second canonical type of probabilistic dependence. 

This Bayesian network encodes marginal independence such that XI I X2 and that XI and Xz 

given Y are conditional dependent here. 

Figure 8: Canonical Bayesian network 2: directed graph with marginal independence assumption 

Through application of B ayes ' Rule, marginalization, and conditional independence 

assumptions, Bayesian inference can be used to solve for the various posterior probability 

distributions of each of the vertices given n priori distributions [135]. These methods will be 

used within the context of this thesis for a Bayesian scaffolding designed for the proteomics 

applications (as described in the upcoming sections). In this work, the links are unknown. Here, 



the goal is to develop stochas.tic and graphical model methodology to identify the relationships. 

By basing the framework on Bayesian network techniques, this work will be well grounded in 

graph and probability theory. Doing so yields several useful properties such as intuitive 

representation and visually observable probabilistic relationships. 

1II.C. Framework 

The data analysis involved several steps. One way to think about the overall framework is as a 

hierarchical model with diffxent levels of abstraction as shown in Figure 9. The top level, 

disease profile analysis, represents the highest level of abstraction. This level can be used to 

look for potential peaks for identification. 

A pathological / disease state can be thought of as the result of one or more perturbed pathways 

which, in-turn, affect the protein levels. The next level looks at possible physical manifestations 

of this via a massome database of protein interactions. Why use a mass-centric network rather 

than protein-protein interactions? First, this allows us to see the world the way that a mass 

spectrometer sees it. It also allows the methods developed for protein identification to be 

implemented more efficiently (e.g. mass-based hash functions/look-up tables). Another benefit 

is that mass is one of the few properties that all biologically relevant entities share. For instance, 

even though carbon is often thought of as being central in biology, not all biologically molecules 

involve carbon. Non-carbon ions (e.g. ~ e ~ + ,  ca2+) can also be crucial players. With mass, we 

have a relevant identifier that can be used across the biological domain. 

The Bayesian framework seeks to predict proteins based on protein peak features within the mass 

spectrometry-based spectra. Proteins are the elements of protein interaction networks and the 

building blocks of the corresponding interactions. Thus, the lowest level of abstraction (in the 

final portion of section 1V.C) involves using the above levels to map the mass spectrometry- 

based peaks to proteins. 



Figure 9: Hierarchical levels of analysis for the Bayesian framework 

This thesis involved both a biological component as well as an engineering/computational one. 

The biological component was done in collaboration with groups having access and expertise in 

mass spectrometry, antibodies, and clinical samples (hematology and gynecology). 

Most of engineering/computational aspects of the project were done on a reasonably powerhl 

computer workstation (1.2 GHz Centrino-based Pentium M processor) with slightly over 1 



Gigabyte of RAM. In addition, where computational intensive calculations had to be performed 

(e.g. signal processing and filtering of the high resolution ovarian cancer dataset and massome 

database node distance tables), a Sun Grid-based cluster was used with 21 computer nodes, each 

with 2 Gigabytes of main memory. Bayesware Discoverer was used as well. Code was written 

in single-user Matlab, distributed Matlab (in the case of the Sun Grid-based cluster), and Java. 

CHAPTER IV: BAYESIAN PROTEIN IDENTIFICATION 

This section discusses the Bayesian analysis approach and its application mass spectrometry 

peak and disease analysis for protein identification. First, the methods are presented. Disease 

profile analysis can be used to find relevant proteins for identification. Statistical signal 

processing, via a Bayesian network, Markov blanket, and peak estimation model, is used to 

disambiguate between peaks. Finally, a massome of protein interaction is used for proposing 

identification candidates. 

1V.A. Disease Profile Analysis 

In this section, two differlent Bayesian approaches are used in analyzing SELDI mass 

spectrometry data at the diseaselpathology level. At this level of analysis, the mass 

spectrometry-derived peaks are regarded as biomarkers that can potentially be used as 

diagnostic/prognostic information. Such biomarkers may, in fact, represent different proteins, 

modified versions of the same protein, or even the same protein that appears as two different 

peaks. Bayesian classifiers are used to predict preleukemia relative to controls based on 

biomarkers. Next, previous:ly published ovarian cancer data is examined to see if additional 

information can be gained via a Bayesian perspective. Through structural Bayesian network 

learning, novel relationships between different predictive biomarkers emerge that help explain 

some of the earlier ovarian cancer work's findings [93] while suggesting new avenues for 

research. 



Preleukemia Analysis 

The first part of this section explores methods that can be used to glean informative marker and 

classification profiles fiom proteomic data. These methods are applied to clonal hematological 

disorders in order to arrive at a diagnostic profile. In doing so, novel proteomic markers and 

classification profiles for these malignancies will be presented within the context of SELDI. 

The mass spectrometry data obtained fiom typical SELDI-type experiments includes intensity 

values for discretized m/z values sampled in a specified measurement range (e.g. 700-12000 Da 

at Z=l). These measurements are taken for a number of biological replicates (i.e. different 

patients, but same underlying condition such as cancer or control). An overview of this is shown 

in Figure 1 0. 
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Figure 10: SELDI mass spectrometry data axes 

A SELDI-based procedure was used to examine serum fiom 74 patients with preleukemia and 39 

control patients from Harvard Medical School (USA) and University of Dusseldorf (Germany). 

The serum was separated into pH 5, pH 9, organic, and whole serum fractions. The serum was 

processed with anion exchange chromatography and fractions of pH 5 and pH 9 were run on 

CMlO SELDI arrays. Both an organic fraction and unfractionated serum were run on H50 



arrays. As part of this overall effort, novel methodologies were developed to facilitate the 

automation of the process in computational analysis (and sample preparation) [58, 1361. 

Comparison between predictors that distinguish malignant samples from control is explored with 

regard to the orthogonal data they provide over current pre-bone biopsy information. A high 

specificity may reduce the frequencies of biopsies needed to diagnose preleukemia. 

Machine learning methods, including a Bayesian classifier, support vector machines, logistic 

regression, decision trees, and others were used to find profiles for prediction of these disorders. 

For the Bayesian classifier (Figure 1 I), the root node represented the disease state (preleukemia 

versus control) while the leaf nodes represented 724 biomarker peaks (which may or may not 

correspond to unique proteins). This network structure assumes that all features are independent 

given the disease state. 

Disease State 

Protein 
Biomarkers \ 

Figure 11 : A simple Bayesian classifier 



The machine learning method results for the preleukemia cancer dataset are shown in Figure 12. 

Except for the decision tree predictor (which will be discussed shortly), the Bayesian classifier 

was the most accurate (and the most specific) among all methods. This is slightly better than a 

widely employed protein metric used as a proxy for prostate cancer. In prostate cancer, prostate 

specific antigen (PSA) has the following characteristics (for PSA > 10.0 ngiml [150]) in its 

initial studies: 65.4% accuracy, 82.0% specificity, 41.6% sensitivity. 

Next, a decision tree approach (with pruning) was employed to select and use a subset of the 724 

biomarkers. Performance accuracy, sensitivity, and specificity were found to be higher than the 

simple Bayesian classifier (except in sensitivity). This was accomplished by using only three 

simple decision rules with only five protein markers (rather than all 724 biomarkers). This 

makes it much more feasible to identify the relevant proteins. Also, it is more practical to test for 

proteins from a blood draw than to do a large genetic profile (had the corresponding genes been 

identified). 
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Figure 12: Performance on different metrics 

Ovarian Cancer Analysis 
This section explores an ovarian cancer SELDI dataset to explore the meaning of probabilistic 

dependencies between biomarkers via a Bayesian network. With an understanding of the 

meaning of biomarkers, better disease predictors are possible. For example, if two biomarkers 

represent an identical protein, then the 'cost' in terms of model complexity of using an additional 

biomarker in the predictor is reduced. This section also provides a preliminary look at how the 

charge information can be ascertained from these probabilistic links (examined in W h e r  detail 

via the bivariate mass and charge parameter estimation model in the second section of this 

chapter). 

Here, the high resolution ovarian cancer dataset from Conrads and colleagues [93] is used. The 

rationale for a peripheral blood test is that ovarian cancer is often deadly because it is found too 

late- after metastases have already occurred. If a cheap, noninvasive peripheral blood screening 

procedure were developed, this could have a dramatic effect on five year survival rates [23]. 



The mass spectra from the ovarian cancer dataset are normalized, aligned (based on known peak 

locations), and filtered to identify the top 10% of peaks. Then, a Bayesian network is 

constructed based on the mass spectra data. 

The Bayesian network created in this section from the ovarian cancer dataset had over 1000 

nodes (1 130) representing the different biomarker peaks. Here, the results are discussed within 

the context of the ovarian cancer disease prediction and the Conrads, et al. findings [93]. The 

Conrads paper reported four prediction models using 7-9 biomarkers. One of these biomarkers 

was recorded at an rnlz of 8709.5. That biomarker appeared in all of the predictor models except 

in one. That model had a biomarker at 8523.5 not present in the other models. Through the 

Bayesian network, it was apparent that 8520.8 (within the machine error range of biomarker 

8523.5) is associated with the behavior of 8709.5. In fact, out of all 1130 nodes, it turns out that 

biomarker 8520.8 is the direct parent of node 8709.5 with a Bayes factor of 4.4~10' 

(p < 10-9, [151, 1521). 

One can also use the Bayesian network to deconvolve mass-to-charge ratios. As shown in Figure 

13, while the 8602 node is useful in predicting pathologic state, as encoded in the "result" node, 

several nearby nodes may be closely related including two nodes (4302.3 and 4309.9) with one 

half the mass-to-charge ratio. This would mean the peaks in the 8600 and 4300 vicinities could 

count as just one protein when developing a predictive model. This allows for accounting of all 

of the peaks associated with the protein and increases a model's predictive power (e.g. several 

Conrads' models [93] depend on both nodes) without a practical increase in complexity costs. In 

the protein identification section, we seek to identify two of the disease predictive peaks using 

the method outlined in this thesis. 



Figure 13: 8602384 node neighborhood dependencies 

Structural Learning to Create a Bayesian Network 
A Bayesian network of the dependencies of the peaks is constructed via a modified greedy 

selection-based network structural learning approach [137]. Using a greedy-based approach 

permits what would otherwise be an NP-hard problem [I381 to become feasible with worst-case 

running time that is polynomial: O(m n4 r) [ 13 71. 

Initially, it is assumed that all models are equally likely. By Bayes' Theorem, the probability of 

a Bayesian network structure model M, given data D (n variables x m cases), referred to as the 

posterior probability, is proportional to probability of data given model (i.e. marginal likelihood). 

Each model M, can be parameterized via a vector 0, that captures the conditional dependencies 

encoded in the model. In order to determine the marginal likelihood, the parameter vector 0, is 

marginalized out through integration. This averages over all possible parameters for the given 

model M, (see Equation 4). 



Now, doing this integration numerically would be difficult. For distributions from the 

exponential family (e.g. multiinomial), a closed form solution can be obtained [139]. To simplify 

calculations, we can make several assumptions [137]. First, the database variables are assumed 

to be discrete. If the recorded variables are inherently continuous, then they can be discretized 

into bins. Second, given a network model M, , the cases in data D are independent. Third, 

there are no cases in the database that have any missing values. While there was no missing data 

in this work, Bayesian approaches can deal with instances in the dataset where values are 

missing [140]. Fourth, we assume that the parameter vectors are mutually independent. If we 

use the Dirichlet distribution for the posterior distribution, we can take advantage of the fact that 

the Dirichlet distribution is also its own conjugate prior to simplify the equation. After some 

simplification, the marginal likelihood can be reduced to the expression shown in Equation 5 

[141]. In the product terms, qi represents the number of unique parent states for each node i and 

ri represents the number of discrete bins that are allowed for a given node i. The n(xiklxij) term 

refers to the count of the number of times node i had value yik and its parent vector IIi had a 

value of xij . The hyper-parameter aij, is used to quantify our prior precision by dividing the 

global precision constant a by the total number of possibilities in node i and its parent vector II, 

combined. It reflects the weight that our prior knowledge is given relative to information learned 

from the database. Summing over all possible discrete bins k, one can obtain the marginal nij 

and a, . 

Here, the gamma function I?() is defined as shown in Equation 6: 



With the fundamental quantity to calculate scores for comparing models ready, the next step was 

to find a way to effectively search the network for potential models to compare using ratios of 

the above score as the metric. In this approach, the first step in structural model learning is to 

select a node (based on prese:t or random order). Here, each node represents a biomarker peak 

(mass-to-charge ratio). Then, one of the other nodes is considered as a potential parent of the 

selected node. This model is compared with other nodes as parents using marginal likelihood 

ratios to quantify the link strength (see Bayes Factor in Equation 7). The Bayes Factor (BF) is 

the probability of the data given model 1 to the probability of the data given model 2. If the 

models are equal, then the Ba~yes Factor is simply the posterior odds in favor of the model being 

evaluated. The cycle is then repeated until all nodes have been evaluated as potential parents of 

the selected node (or if the arbitrary maximum number of parents has been exceeded). Once all 

potential parent nodes are examined for the selected node, another node (which has not been 

selected previously) is picked. Then, all potential parents are examined for this newly selected 

node (using the above algoriithrn). The procedure terminates when all nodes have been picked 

for the above analysis. 

The results of the Bayesian networks structural learning are shown in Figure 14 for the 

preleukemia and in Figure 15 for ovarian cancer. 





Figure 15: Constructing a Bayesian network from ovarian cancer proteornic data 

In this 'Disease Profile Analysis' section, we saw how mass spectrometry-derived biomarkers 

can differentiate between the disease states. In addition, we saw that many of the potential 

biomarkers may not be needed for accurate prediction. We can look at local and specific 

subnetworks to find dependencies between specific biomarkers and disease. It is with this 

context that the next section is fiamed. Namely, what is the relationship between various 

biomarker peaks and what do they mean? 

lK 6. Statistical Signal Processing 

In this section, a method is described for identifying proteins fiom SELDI-based mass 

spectrometry data. The overview of this process is shown in Figure 16. This process involves 

filtering mass spectrometry data for potential biomarker protein peaks. Then, a Bayesian 



network is created to determine the probabilistic dependencies between the potential biomarker 

peaks. Once this is complete, a parameter estimation method can be used to determine which of 

the peaks are unique proteins (as opposed to aliased ones). Just as in signal processing (where 

aliasing can occur when sampling below the Nyquist rate [142]), aliasing in the Bayesian 

network can occur if two nodes behave exactly the same (i.e. they are the same protein with 

different charge states). The estimation model takes this and overall variability of peaks (based 

on a Gaussian model) in order to 'detect' a protein and deconvolve its corresponding mass and 

charge. Once potential protein masses are obtained, the next key step is to compare the pairwise 

interactions (given the Bayes Network) with a specialized database of protein interactions. As 

will be delineated below, this network (the human massome database of protein interactions) is a 

mass-indexed collection of interactions derived fiom a variety of literature and database sources. 

Through comparison of potential masses that can influence one another through a direct 

interaction or through a path of other protein interactors, one can reduce the number of proteins 

that a given node could be. After the computational part, the final step is where antibodies are 

selected for candidates and directed against the proteins in a wet lab experiment to validate the 

identification process. 
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Figure 16: Overview of protein identification analysis methodology 



MasslCharge Estimation and Bayesian Network Mapping 
This section builds on the Bayesian networks methodologies and filtering methods discussed in 

section A of this chapter. As a starting point here, Bayesian networks are built from the datasets 

in a similar manner for both the low resolution preleukemia and the high resolution ovarian 

cancer datasets (the first three boxes in Figure 16). 

The next step involves sorting out the meaning of the various dependencies found encoded 

within the Bayesian network. For example, if the same protein exists with different charge states 

(resulting in different mass spectrometry peaks), then 'aliasing' can occur. This is because the 

peaks really represent the same protein, and therefore will be have essentially the same 

probabilistic distribution acro'ss the samples. 

One also needs to determine which nodes are independentldependent on each other based on the 

network. A node in a Bayesian network is independent of its children given its parents [143]. 

This can be extended to the notion of a Markov blanket [I431 where a node is independent of all 

other nodes in the network given its Markov blanket (i.e. its parents, its children, and its 

children's parents) (see Figure 17). Ultimately, these dependencies are matched against a 

massome database of protein interaction paths for identification purposes. Thus, by using the 

Markov blanket, we only need to look at local graph structure for dependencies rather than over 

the entire network. 
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Figure 17: Markov blanket of selected node (circled) 

To account for aliasing, one needs to first conceptually merge peaks nodes that represent the 

same protein before doing the Markov blanket-based analysis. Otherwise, certain nodes may 

physically be the same protein and not be examined in future steps of the protein identification 

method since they are not part of the Markov blanket. For example, this might occur if the 

grandparent of the selected node represents the same protein as the parent of the selected node. 

In order to determine aliasing, and to decipher the mass fkom the mass-to-charge ratio, estimation 

methods fkom statistical signal processing are used. The mass spectrometry experiment peaks 

are an imperfect representation of proteins. 

There are two unambiguous cases. If one looks at the same mass spectrometry peaks that have 

the same m/z and refer to the same protein, then there is no ambiguity since both are refemng to 

the same protein. The other easy case is when the mlz's are different. Peaks with very different 

rnlz's represent different proteins. 

There are two ambiguous cases. In the first ambiguous (Case 1)' there is ambiguity when the 

masses are very close (so that the peaks are virtually indistinguishable), but they actual represent 



two completely different proteins (referred to as the homonym case). In second ambiguous case 

(Case 2), the peaks are different d z  values, but they actually represent the same protein due to 

different Z charge state. 

The creation of the Bayesian network helps to distinguish the proteins in the first ambiguous 

case. Since different proteins will have different probabilistic distributions across the samples, 

they will be linked to different nodes in the network. Thus, as long as the instrument can 

actually detect the mass difference, they are distinguishable even if there is noise or their intra- 

sample variance overlaps. By use multiple spectra (with biological replicates) and generating a 

dependency network, better protein detection can be done. 

To deal with the second aimbiguous case, an estimation model was used. Specifically, a 

probabilistic model is developed for the peak intensities as shown in Equation 8. Inter-sample 

peak variation was negligible:. So, what really mattered here was the intra-sample variance of a 

peak (i.e. the blumng of a peak from a single point intensity in a normal-like Point Spread 

Function (PSF)). In this model, R is the spectrum-derived mass-to-charge ratio, while M is the 

mass to be estimated (by bringing Z to the other side of Equation 8). By rearranging the 

equation, the protein mass is estimated from the other variables. The ionic charge, Z, is typically 

1, 2, or 3 in SELDI. Here;, all such models are considered. A function (dependent on mlz) for 

the intra-peak standard deviation of mass-to-charge ratio, adz, was estimated and used for this 

model. 

The Normal distribution in this model (Equation 9) represents the fact that the d z  peak seen is a 

smeared version of the original peak centered around the original mass with peak variance of 

f ( R )  = Ae - R ~  1 2 0 ~ ~ ~ ~  



This leaves a need for estimating the variance of a peak. This was done through using 11 

previously labeled peak maximums [93] (across the mass-to-charge range). The full width at 

half maximum (FWHM), the distance between points on a curve where the b c t i o n  reaches half 

its maximum value (M), was measured for each of these peaks. This FWHM distance is 

equivalent to approximately 2.3550 (see Figure 18). Thus, this distance can be used to estimate 

Figure 18: Estimation of standard deviation parameter via full width 
at half maximum (FWHM) 

o by diving FWHM by 2 4 G .  

The last component of the protein identification process involves mapping the masses derived 

from the above analysis and their dependencies (within the Bayesian network) to protein 

interactions (see Figure 19). In order to do this, a mass-indexed database of protein interactions 

had to be developed. The next section expands on this topic. 
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Figure 19: Mapping mass spectrometry peaks to protein identifieations via network mapping 

A visual plot of one of the 11 peaks used for estimating the odZ for the Gaussian modeled peaks 

in ovarian cancer dataset is shown in Figure 20 (note Gaussian shape). The standard deviation 

for the 11 peaks in a total of 85 patients were calculated and are shown in Figure 21. It is 

noteworthy that odZ increases roughly proportionally with mlz. 



Figure 20: (A) Peak from high-resolution dataset in local peak environment, (B) Isolated peak 

Figure 21: Estimation for adz (plus error bars) 



The parameter odZ was estimated with a linear model. With Equation 8, the masslcharge could 

be estimated for a given peak. For the 3883.7 peak shown in Figure 20, the possible masslcharge 

combinations are calculated at each d z  point. The estimated charges are plotted in Figure 22. 

The mass can then be calculated via M=R/Z. For instance, if the 3883.7 peak was compared 

Figure 22: All potential estimated biomarker peaks 

with another peak at an rnlz of 1294.6 (which was found to be probabilistically related in the 

Bayes Network), then the estimated 2 for the 1294.6 peak would be 3. At the other extreme, if 

the peak being compared to has an d z  of 11651, then it is likely that the 3883.7 peak is itself a 

multi-charged (Z=3) peak. The corresponding expected intensity (normalized to peak) can be 

estimated using the adz. An example is shown for 7767.4 in Figure 23. This provides a 

tolerance window for which a peak can be expected to exist for a given masslcharge pair. This 

was, if an intensity is seen outside this tolerance, it can be presumed to be unassociated with the 

specified protein. Since charge must be an integer (typically between 1 and 3), the search space 

is manageable. 



Figure 23: One estimated biomarker peak 

Once this method for modeling masseslcharges and peak tolerance windows was used, one can 

interpret the Bayesian network links. Two novel diagnostic peaks for preleukemia were found 

(and confirmed biologically [153])- which were linked through a 32 node subgraph of the 

preleukemia Bayesian network (circled in Figure 14) [8]. The two diagnostic peaks (A and B) 

were not in the Markov blanket (as discussed earlier in this section) of each other within the 

unprocessed Bayesian network. However, this might have been due to aliasing or masslcharge 

ambiguity. In order to examine this, the rest of the masslcharge estimation process previously 

described was done and a Markov blanket calculated for all nodes. This made it possible to see 

which peaks within the preleukemia subgraph (and larger network) were probabilistically related. 

As shown in Figure 24, the 7754.37 node was estimated to be the same protein as likely d z  

node 7755.61. 



Figure 24: Markov blanket for 7755.61 m/z node 

After this processing, it is clear that Chemokines A and B are, in fact, probabilistically related (in 

the same Markov blankets for the respective nodes). Note that this cannot be seen without the 

estimation model peak processing step- due to aliasing on the part of Chemokine A (see Figure 

25). However, with this processing, two Markov blanket dependencies clearly emerge with 

Chemokine A being the parent of Chemokine B in both cases (see Figure 25). 

We looked at the surrounding nodes (Proteins C and D) in network as well. Protein C was 

noteworthy. The Bayes Factor for model where Protein C was a controlling parent node of 

Chemokine A was a highly significant 6.14 x lo7. This translates to a p-value of less than 

[151, 1521. 
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Figure 25: Subnetwork from proteomic test dataset 

IV. C. Protein Identification via Massome of Protein Interactions 

This section gives a new mass spectrometry-based perspective on use of protein interactions data 

vis-a-vis a human massome database of protein interactions. While protein-protein interactions 

are useful for pathway discovery and network analysis [144, 1451, mass spectrometry technology 



is better suited in certain ways for protein quantification and biomarker discovery. On the other 

hand, there are several issues with mass spectrometry-based analysis including protein 

identification, especially for SELDI and MALDI mass spectrometry. By integrating multiple 

existing sources in a non-redundant manner, a network of over 162,000 interactions was created 

(double the number previously published [146]) for mass-based protein identification. One of 

the benefits of the massonle approach is that the interactions are accessible and searchable by 

masses of interaction participants. 

An overview of the methods used to create a pipeline for generating massome databases of 

protein interactions is shown in Figure 26. An automated program was implemented in Matlab 

to integrate data from a variety of databaseslliterature sources [147]. First, the XMLlflat files of 

databases were parsed. Then, the different protein identification numbers were converted to 

NCBI Entrez Protein GI numbers. This was done by sequentially querying SeqHound [12] via 

remote Java Application Proi,ocol Interface and Aliasserver [13] through Simple Object Access 

Protocol (SOAP). Also, the IPI cross-reference indexes, Ensembl cross-reference indexes, and 

Entrez Protein database were: queried to match the disparate identifiers with appropriate NCBI 

GI numbers. Next, SeqHound was used to find redundant GI numbers. The best annotated 

version of the protein (from a group of database entries refemng to the same protein sequence) 

was then used. With a cornnlon identifier, the databases could then be merged- with duplicates 

with removed from the new collection. 

The best annotated non-redundant version of each protein was then selected for inclusion in the 

database. Over 20,000 proteins were analyzed. Protein cleavage sites where extracted from 

Entrez protein feature information and the different corresponding masses were calculated (with 

consequent amino acid regions marked in the database). This was done using methods similar to 

the ones proposed in for Ehtrez mass spectrometry-based analysis [148]. Protein annotation is 

examined for cleavage products. If they exist, the mass is calculated for each one. Any signal 

peptides are not included. Ambiguous amino acids are analyzed using all potential masses. For 

example, the symbol 'B' refers to aspartic acid or asparagine. Thus, in order to preserve 

sensitivity in this rare event, both masses are included in two separate entities. 



The database was stored in a MySQL relational database. A web interface was developed and is 

searchable by mass ranges for potential interactors. It was also saved into several formats for 

graph analysis and visualization including Pajek, dot, and GraphML. 
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Figure 26: Schematic of automated massome database creation 



Once the massome database is complete, the final step is comparing pairwise interactions with 

the Bayesian network for potential identifications. A mass range is selected based on potential 

variations in mass peaks (see masslcharge estimation section) and these masses are compared to 

potential candidates in the massome database. Then, the distance (i.e. of number of interactions 

in the path that separates them) between potential candidates is calculated via Dijkstra's 

algorithm [149]. This method was validated for the preleukemia data for two proteins found to 

be predictive of preleukemia. This approach was then used for ovarian cancer data as well. A 

schematic of the overall approach is shown in Figure 27. This is equivalent to a BLAST-type 

approach- whereby one submits a string (mass spectra in this case) and maps this to a database 

for hits [25]. 

Figure 27: Schematic of massome database usage for protein identification 



After creating a Bayesian network as described in section N.B, the next step was to try to 

predict the chemokines (e.g. for preleukemia) using the aforementioned Bayesian network links 

and mapping them to the massome. To do this, the massome database was developed as just 

described above. For visualization purposes, a 3-D version Fruchterman-Reingold force-directed 

placement algorithm [I541 was used to plot a human massome subset within the Pajek 

environment [I551 (see Figure 28). The outer 'cortex' potion of the cube contains the proteins 

vertices, while the inner 'medulla' contains interaction edges. 

Figure 28: 3-D visualization of a portion of the human massome of protein interactions 

A public, searchable version of the humans massome database has been made available at 

Using the human massome database, candidates for the identity of Chemokines A and B where 

proposed as shown in Figure 29. Under the 'other' category, there were seven results that 

included unconnected proteins in the graph. In Figure 29, Proteins A and B can be seen in the 

list and the identity of both together (second to last row in the figure) was also one of the 

predictions. In fact, more than half of the possibilities shown in the figure would have yielded 



at least one novel, identified, and differentially expressed protein via a simple antibody test. 

The Chemokine A and B identities were found to be correctly predicted. 

hemokine A 
hemokine A Chemokine B I 

Figure 29: Validation of interaction predictive ability in preleukemia dataset 

Based on the Bayesian network for the ovarian cancer dataset (see Figure 15)' several peaks of 

interest were selected based on disease prediction. The resulting identification is shown in 

Figure 30 for the 6899.54 and 8602.384 m/z peak nodes. The 'other' category includes 20 

other results of proteins not connected in the graph. 

mylola Dera ~4 protein p r m y r  
Amyloid beta A4 protein prcfcutpnv 
10 KDa Heat Shock Protein 
Amyloid beta A4 protein precu(sor 
10 KDa Heat Shock Protein 
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Iiterferon gamma-induced precursor 
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6 
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Figure 30: Prediction example for ovarian cancer dataset 



CHAPTER V: CONCLUSION AND DISCUSSION 

KA. Summary and Contributions 

This section summarizes the issues explored in this work. It then outlines the contributions 

contained within this thesis an.d its results. 

V.A.1. SUMMARY 

The contribution of genomics in understanding the human proteome has been invaluable. 

However, perhaps greatest potential lies in the diversity of the full set of protein products and 

their interactions. As the number of proteins being cataloged in databases continues to grows 

exponentially while the estimates of the number of genes in humans and other organisms actually 

declines, there is a burgeoning need for proteomics and methods to make use of this information. 

As such, new statistical and engineering-based methods were proposed here to deal with this new 

information. 

Proteins' abundance, miniature size, and dynamic nature have made them difficult to analyze. 

On the other hand, these features also make proteins the perfect complex system for engineering- 

based analysis. While some of the fundamental physics of mass spectrometry technologies used 

to investigate proteins have been worked out, not all of details are known. For example, the 

models for the mechanism of ionization have not proved sufficient in predicting spectra 

accurately (which influences !:he rnlz ratio). Also, concentration cannot be used solely to predict 

the intensity of the associai:edl peaks- as numerous other variables are involved such as solution 

composition and mass spectrometry behavior [156]. Yet, even if the intensity can be associated 

with one protein mass, there are still challenges in associating this with a unique protein. While 

MSIMS techniques typically use Sequest-like methods for peptides, SELDI-TOF techniques 



typically cannot (due to the lack of the second mass spectrometry signal information). As a 

result, mostly proteomic profiles have been reported rather than in-depth analysis of the proteins. 

Here, Bayesian-based analysis was used to look at protein identification. By combining 

networks derived from SELDI mass spectra data with ones extracted from protein interactions, a 

method for protein identification was proposed and confirmed via real clinical and mass 

spectrometry-based data. In the process, a number of other related findings were delineated. 

Beyond the overall unifie:d Bayesian framework, a supporting statistical signal processing 

methodology was developed to isolate potential proteins from the actual mass spectrometry data. 

This was used to separate mass from charge by resolving both cases of peak-protein ambiguities 

(via an estimation model and Bayesian network1Markov blanket respectively). 

Validation was done with real preleukemia samples; novel predictions and explanations of 

biomarker peaks were proposed for a previously published ovarian cancer dataset. 

V.A.2. CONTRIBUTIONS 

This work introduces a new way of deconvolving mass from charge and computationally 

identifying proteins from theiir network-associated topology. This work establishes a Bayesian 

framework that allows one to translate a disease-based mass spectrometry peak profile to useful 

protein identifications. It is based on the novel idea that proteins can be identified by the 

perturbations that they create in the network of proteins that they are associated with. Using this 

notion, one can compare networks in different states (e.g. disease/control) and determine the 

relationships in the network- thus isolating and identifying relevant proteins. On a higher level 

of abstraction, this introduc~es a new way of using Bayesian-based analysis to learn node 

identities by comparing i11te:r-network links. Normally, intra-network links are learned by 

comparing node-based information in Bayesian analysis. 



V. 6. implications and Limitations 

This work has a number of implications for mass-based proteomics. These are explored below. 

Also, as with any method, there are certain assumptions and limitations. Some of these can be 

dealt with in future work- a:; outlined in the next section. 

V.B.1. IMPLICATIONS 

This research shows how new computational methods can change the way proteomics is done by 

validating and generating near hypotheses. Using the protein identification method discussed in 

this thesis can reduce tim.e and costs. It took half a year to determine the two proteins 

biologically, yet the compu~tational time to propose candidates was on the order of hours to days. 

Antibodies experiments, which can be done in time on the order of hours for a few hundred 

dollars each, can be used to l~iologically confirm any predictions made by the method. While 

this thesis focused on SELIDI technology, several aspects of the framework can be extended to 

tandem MS technologies. 

As seen in this thesis, the implications of this work are that future research in proteomics needs 

to build and leverage on a given technology's strengths while at the same time integrating other 

data sources- to make the best possible use of available information. Both engineering and 

scientific expertise are needed in evaluating the conclusions. For example, determining the 

validity and relevance of proteins requires biological expertise while the design of a protein array 

or statistical algorithm requires a different technical background. Thus, making good use of 

information gleaned during such experiments requires innovative approaches ranging from 

constructing accurate models .to better experimental hypotheses. 

V.B.2. LIMITATIONS 

As with any method, the ones proposed in this thesis have their limitations. Some of these are 

due to the nature of the data available, while others are related to simplifying assumptions. The 



mass spectrometry data is inherently noisy. While papers claim 100-400 ppm mass variability 

for mass drift of high resol.ution instruments, the actual peak variability turned out to be much 

greater with posttranslational modifications and blumng of peaks. Thus, even if more values are 

recorded at high resolution, there is still interference between peaks due to Gaussian peak 

spreading. We also do not explicitly look for posttranslational modifications. However, this 

constraint can be relaxed via manual searching for modifications with databases such as RESID 

[157]. 

In terms of assumptions, the thesis looked at painvise protein interactions. In reality, proteins 

can work together in large complexes and this can be used to aid in protein identification (see 

future work section). If needed, the proteins can be constrained via different SELDI surfaces 

(e.g. using antibody-laden surface, etc.). 

V.C. Future Work and Conclusion 

This section discusses the possibilities for future work in this area. It then concludes with some 

closing remarks on the topic of using protein identification in proteomics with clinical 

applications. 

V.C.1. FUTURE WORK 

Much of the future work is related to minimizing assumptions and constraints. For example, to 

mitigate peak spreading issues due to posttranslational modifications, pre-filtering of the 

biological sample (e.g. to binti phosphorylated proteins, etc.) can be done. Also, development of 

more accurate filtering withiin the mass spectrometry instrument can help to separate between 

ionized clouds of proteins with similar mass (e.g. by isotope-based labeling or using other 

protein properties than masslc harge). 

By considering multiple (rather than painvise) protein interactions, more constraints on protein 

identity can be imposed- thus further reducing the number of proposed candidates for each 



protein. For example, if a path involving two complexes of proteins is found to be activated in 

common with several proteins in the network, then proteins within this complex may be more 

likely involved (as opposed to uncomplexed proteins). 

Integration of microarray and/or tissue-specific interaction data can provide more information on 

about protein relationships under specific constraints. For this work, only protein-protein 

interactions were examined. In the future, it would be useful to include other molecular 

interactions such as DNA-pro tein binding. 

V.C.2. CONCLUSION 

This work presents methods that allow for novel ways to analyze SELDI mass spectrometry data. 

It establishes a unified framework that permits analysis at several levels- from pathology-based 

Bayesian networks to individual proteins. It provides a computational framework for protein 

identification based on network analysis. The method is tested using real, clinically-based 

samples. Identifications are confirmed- and new disease markers are proposed. This work has 

the potential of changing the field by transforming black box models into meaningful protein- 

based models. SELDI proteoimics will thus not just validate hypotheses, but also generating new 

ones. Applications include all areas where mass-based proteomics has been applied, including 

disease diagnosis, prognosis, and treatment. HIV, neoplastic entities (i.e. cancer), and 

immunological disorders are some examples of targets for clinical proteomics. Through these 

medical applications, proteomics can be used to change the way scientists and clinicians view 

cellular function and diseasle. 
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CHAPTER VIII: APPENDIX 

VIII. A. Mathematical Notation 

Term 

X - 

X L Y  

( X I  y )  I z 

10 

11 

Explanation 

X is a vector with elements {XI, X2, . . .Xn} 

X and Y are independent 

X and Y are conditionally independent 

given Z 

Prior information 

Posterior information 



Glossary 

Term Explanation 

ESI 

- -  

FT-MS 

MALDI 

PMF 

- 

Q-TOF 

SELDI 

TOF 

Electrospray ionization 

Fourier transform mass spectrometry 

Matrix assisted laser desorptiodionization 

Tandem mass spectrometry (mass 

spectrometry/ mass spectrometry) 

Peptide mass fingerprinting 

Quadrupole time-of-flight 

Surface-enhanced laser 

desorptiodionization 

Time-o f- flight 
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