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Abstract
We define a new family of open Gromov-Witten type invariants based on intersection
theory on the moduli space of pseudoholomorphic curves of arbitrary genus with
boundary in a Lagrangian submanifold. We assume the Lagrangian submanifold
arises as the fixed points of an anti-symplectic involution and has dimension 2 or 3. In
the strongly semi-positive genus 0 case, the new invariants coincide with Welschinger's
invariant counts of real pseudoholomorphic curves.

Furthermore, we calculate the new invariant for the real quintic threefold in genus
0 and degree 1 to be 30. The techniques we introduce lay the groundwork for verifying
predictions of mirror symmetry for the real quintic.
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Chapter 1

Introduction

1.1 The main idea

In 1985, Gromov initiated the study of pseudoholomorphic curves in symplectic ge-

ometry with his seminal paper [6]. Motivated by applications of Gromov's techniques

in string theory, Witten developed a systematic way of organizing pseudoholomor-

phic curve information, later known as Gromov-Witten invariants [23, 24]. Over the

following decade, mathematicians including Ruan-Tian [19], McDuff-Salamon [16],

Li-Tian [14] and Fukaya-Ono [4], successfully established a rigorous foundation for

Gromov-Witten invariants. Concurrently, Kontsevich [12, 11] initiated reseach that

eventually succeeded in calculating the Gromov-Witten invariants in many situations.

We briefly recall the definition of these invariants. Let (X, w) be a symplectic man-

ifold and denote by J,, the set of w-tame almost complex structures on X. Fix a

generic J E 5J. For d E H2(X), let Mg,,(X, d) denote the Gromov-compactification

of the moduli space of J-holomorphic maps from a surface of genus g to X represent-

ing d together with a choice of n marked points on the domain. There exist canonical

evaluation maps

evi: Mg,,(X, d) X.

Furthermore, denoting by Mg,n = M,,,(pt, 0) the Deligne-Mumford compactification

of the moduli space of genus g curves with n marked points, there exists a canonical
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projection

r : Mg,n(X, d) -- Mg,n.

Let Ai E H*(X) and B E H*(M,,,n). Choose differential forms ai E 2*(X) and

3 E *(Mn ) such that [ai] = Ai. The genus g Gromov-Witten invariant of X for

cohomology classes Ai, B, takes the form of the integral

|., ev(al) A ... e(a, A *().
,,n(X,d)

It follows from Stokes's Theorem and the fact that M,n(X, d) is a closed orbifold

that this integral does not depend on the choice of the forms ai, , or the choice

of J E J,,. Hence, it is an invariant of the deformation class of w parametrized by

the cohomology classes Ai, B. Roughly speaking, the Gromov-Witten invariants of

X count the number of J-holomorphic maps from a Riemann surface of fixed genus

g to X representing d and intersecting fixed generic representatives of PD(Ai). The

class B can be used to fix the conformal structure on the domain Riemann surface or

the relative position of the marked points.

Now, let L c X be a Lagrangian submanifold, and let (, 0E) be a Riemann

surface with boundary. For some time, physicists [1, 13, 18, 25] have predicted the

existence of "open" Gromov-Witten invariants counting pseudoholomorphic maps

(E, 0E) -- (X, L) satisfying certain incidence conditions. These invariants would nat-

urally generalize classical Gromov-Witten invariants to include maps from Riemann

surfaces with boundary. Note, however, that according to [1] it may be necessary to

specify some additional structure on L in order to uniquely determine the invariants.

Katz and Liu took a first step toward the mathematical definition of open invariants

given the additional structure of an S1 action on the pair (X, L) [9, 15]. However,

the existence of such an SI action is a rather restrictive condition.

Before entering a more detailed discussion, let us briefly establish some necessary

notation. In the following, we denote by E a Riemann surface with boundary with

fixed conformal structure. This avoids the issue of degenerations of A, which the

author plans to treat in another paper in the near future. For d E H2(X, L), let
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Mk,l(L, E, d) be the moduli space of configurations of k distinct marked points in 0E,

I distinct marked points in E and J-holomorphic maps u: (, 0E) -- (X, L) such that

u,([E, 0C]) = d. In this moduli space, points which are equivalent by automorphisms

of Z are identified. We denote by Mk,l(L, , d) the Gromov compactification of

Mk,l(L, E, d). Finally, we denote by

evbi : Mk,l(L, , d) - L, i = 1 .. k,

evij: Mk,l(L, E, d) X, j = 1...1,

the canonical evaluation maps at the marked points.

From a mathematical perspective, two main difficulties have obstructed progress

on open invariants: orientation and bubbling in codimension one. Indeed, Fukaya

et al. [5] showed that Mk,l(L, E, d) need not be orientable. In the same paper,

they proved orientability if L is orientable and "relatively spin." However, in many

interesting examples, i.e. (X,L) = (CP2 , Rp2 ), L is not orientable and neither

is Mk,I(L, E,d). In Theorem 1.1 we show that even if L is not orientable, under

reasonable assumptions, the orientation bundle of Lk pulls-back to the orientation

bundle of Mk,l(L, a, d) under the map Hi evi. This allows us to pull-back differential

forms with values in the orientation bundle of L, wedge and integrate.

Considerably more troublesome is the problem of bubbling in codimension one.

Put differently, Mk,(L, E, d) is an orbifold with corners. Intuitively, one should

think of a manifold with many boundary components. The boundary consists of

codimension one strata of the Gromov-compactification. This stands in contrast to

the moduli space associated to a closed surface Mg,,n(X, d), which has no boundary

since all strata of the Gromov compactification have codimension two or more. By

analogy to the classical Gromov Witten invariants, we would like to define invariants

parametrized by cohomology classes Ai E H*(L) and Ci E H*(X). Choose ai E * (L)

with [ai] = Ai and yj E *(X) with [yj] = Ci. The desired invariant should take the

form J|b A *evb4(al) A ... A evb*((ak) A evi*(y) A ... A evi(yl). (1.1)
Mk l (L,,d)
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However, trouble arises in trying to prove independence of the choices of ai, -yj. For

example, suppose a' also satisfies [as] = Al. Then al - a' = d6 for some 5 and hence

evb(al) A . . . A evi () - evb*(a') A ... A evi* (ly) =

- d (evb () A evb*(a2) A ... A evil(7j)).

We would like to integrate the right-hand side of the above equation over Mk,l(L, E, d)

to obtain zero by Stokes's theorem. However, contributions from the integral of

ev () A ev2(a 2) A ... A ev(?y) over the boundary of Mk,l(L, A, d) may spoil this

vanishing. So, the integral (1.1) may depend on the choice of ai, -yj.

Now, let us assume there exists an anti-symplectic involution

':X X, O* =-w,

such that L = Fix(0). We limit our discussion to the special case that Ai E HcimL(L),

Cj E HmX(X) and dimX < 6. If L is not orientable, we assume dimL < 4.

Consequently, we can actually prove independence of (1.1) from the choice of ai, j.

We proceed to explain the idea of the proof. The extra structure enters the

definition of the invariants through the almost complex structure. Indeed, we define

1j, := {J E Jwl *J = -J}.

In the following we fix a generic J E J7,,. Let Mk,l(L, E, d)(l) denote the union of the

codimension one strata of Mk,l(L, E, d), that is, strata consisting of two-component

stable-maps. Think of Mk,l(L, E, d)(l) as the boundary of Mk,l(L, E, d). Recall that

it may have many connected components. We identify a subset of these components,

the union of which we refer to as Mk,(L, , d)(1 a), satisfying the following properties:

There exists an orientation reversing involution b2 of Mkl(L, E, d)(la) that does

not preserve any single connected component. Hence the quotient

Mk,I(L, , d) := Mk,l(L, A, d)/2(x) , x
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carries a natural orientation. Here, we use the 0 invariance of J.

* The forms evb (ai), evi (yj) and evb* (J) descend naturally to

Mk,I(L, E, d)

under the assumption that the yj are X invariant.

· The differential form evb (J) A evb*(o 2) A ... A evil(yi) has support away from

the boundary of M k,l(L, E, d).

The independence of the integral (1.1) of the choices of /i and yj follows immediately

from Stokes's theorem: Indeed, we may replace the domain of integration in (1.1)

with Mk,l(L, 2, d). Since evb(6) A evb (a 2) A ... A evil (yl) vanishes on the boundary

of Mk,(L, A, d),

/| ]~ z d (evb(6) A evbg(a2) A . .. A evil(Y)) = 0
,k (L, ,d)

as desired. Independence of the choice of J E J,, follows by a similar argument.

Note however, that a priori the invariant so obtained should depend on the choice of

q. We may interpret the choice of X as the extra parameter involved in defining open

invariants predicted by [1].

1.2 The definition

In the following, we denote by (X, w) a symplectic manifold of dimension 2n and by

L c X a Lagrangian submanifold. Let J, denote the set of w-tame almost complex

structures on X, and let J E J,,. Let P denote the set of J-anti-linear inhomogeneous

perturbation terms generalizing those introduced by Ruan and Tian in [19], and let

v E P. See Section 4 for more details. Fix a Riemann surface with boundary (, c0),

let ME denote the moduli space of conformal structures on (, aE), and fix j E Ms.

13



Suppose &E = I'm=l(aE)a, where (E)a , S 1. Let

d = (d, di, . . , dm) H2(X, L) H(

let k = (kl,..., kin) E Nm and let E N. By Mk,(L, E, d), we denote the moduli

space of (j, J, v)-holomorphic maps u: (E, 0E) - (X, L) with ka marked points on

(aE)a and I marked points on E such that u.([E, Es]) = d and ul(ar).*([(aE)]) = da.

Let Mk,l(L, E, d) denote its Gromov compactification. There exist natural evaluation

maps

evbai: Mk,L, , d)- L, i = 1... k a, a= 1... m,

evij: Mk,l(L, , d) - X, j = 1...l.

We now digress for a moment to discuss the notion of a relatively Pin± Lagrangian

submanifold. Let V - B be a vector bundle. Define the characteristic classes

p'(V) E H2 (B, Z/2Z) by

p+(V) = w2(V), p-(V) = W2(V) + WI(V)2.

According to [10], p+(V) is the obstruction to the existence of a Pin' structure on V.

See [10] for a detailed discussion of the definition of the groups Pin' and the notion

of Pin' structures. Since it is not crucial for stating our result, we avoid discussing

this at greater length here.

Now, suppose (X, w) is a symplectic manifold and L C X is a Lagrangian sub-

manifold. Note that we do not assume L is the fixed points of an anti-symplectic

involution yet. We say that L is relatively Pin' if

p'(TL) E Im (i*: H2(X) - H2(L)) .

and Pin' if p'(TL) = 0. If L is Pin', we define a Pin' structure for L to be a Pin'

structure for T.L. If L is relatively Pin, a relative Pin ± structure for L consists
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of the choice of a triangulation for the pair (X, L), an orientable vector bundle V

over the three skeleton of X such that w2(V) = pi(T.L) and a Pin± structure on

TLIL(3) VIL Note that by the Wu relations [17], if n < 3 then p-(TL) = 0, so

that L is always Pin-. It follows that for the applications considered in this paper,

we need only consider honest Pin± structures. However, we state Theorem 1.1 in full

generality, since that requires little extra effort.

Theorem 1.1. Assume L is relatively Pin' and fix a relative Pin' structure on

(X, L). Assume ka - Wl(da) + 1 mod 2. Fix an orientation on L if it is orientable.

Then, the choice of a relative Pin + structure for L canonically determines an iso-

morphism

det(T,*Mkl(L, A, d)) (8 evbi det(TL).
a,i

Remark 1.2. This theorem was proved in [5] in the special case that L is orientable.

Under the assumptions of Theorem 1.1, we define an invariant as follows. Let

H*(L, det(T*L)) denote the cohomology of L with coefficients in the flat line bundle

det(T*L). Poincare duality will hold whether or not L is orientable. Denote by

f*(L, det(T*L)) the differential forms on L with values in det(TL), and denote by

Q*(X) the ordinary differential forms on X. For a = 1,... m, and i = 1, ... , ka, let

aai E fn(L, det(T*L)) represent the Poincare dual of a point in Hn(L, det(T*L)).

Furthermore, for j = 1, ... , , let yj E 22n(X) represent the Poincare dual of twice

the point-class. We define

NS,d,kl= /k evblall A . . . A evbm kam A evi 1 A ... A evi A . . .A eim.

This integral makes sense because by Theorem 1.1, the integrand is a differential

form taking values in the orientation line bundle of the moduli space over which it is

to be integrated. Let : H2(X, L) Z denote the Maslov index as defined in [3].

Denote by g the genus of the closed Riemann surface E Uao E obtained by doubling

E. Furthermore, we employ the shorthand Ikl = kl + ... + km. We note that by
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calculating the expected dimension of Mk,l(L, E, d), it follows that unless

(n - 1)(lkl + 21) = n(l - g) + lu(d) - dim Aut(E) (1.2)

the above integral must vanish.

Now, suppose there exists an anti-symplectic involution q: X -+ X, such that

L = Fix(X). We define J,,, to be the set of J E J, such that b0*J = -J. Define

Q(X) := y E Q*(X)0* = .

Furthermore, define h = h o r where h: 7r2(X) --, H2(X) is the Hurewicz homomor-

phism and r : H2(X) -- H2 (X, L) is the natural homomorphism.

Assume that dim X < 6, and if L is not orientable assume dim X < 4 and ka 

wl(da) + 1 mod 2. Note that these assumptions imply the hypothesis of Theorem

1.1. If E = D2 and k = 0 assume that

d ¢ Im (h: r2 (X) -- H2(X, L)). (1.3)

This is necessary to avoid a certain type of bubbling that requires taking into consid-

eration real curves with empty real part.

Theorem 1.3. The integers N,d,k,l do not depend on the choice of J E J7w,,

v E P, j E M, the choice of ai E fn(L,det(T.L)) or the choice of yj E Qn,(X).

That is, the numbers N,d,k,t are invariants of the triple (X, w, 0).

Remark 1.4. The condition that ka - wl(da) + 1 mod 2 when L is not orientable is

essentially redundant if g = 0, as it can easily be derived from the dimension condition

(1.2).

Remark 1.5. The definition of the integers N,d,k,l does not use X or the condition

that dim X < 6 in an essential way. The author believes that there exist far more

general conditions under which similarly defined integers are invariant.

We now present an example of a non-trivial calculation of these invariants. See
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also Section 1.3 where we develop the relationship with Welschinger invariants, for

which many interesting calculations have already been carried out [8].

Example 1.6. Let (X, L) be the pair consisting of the quintic threefold and its real

part. That is, X := { jE4=0 z = O} C CP4 equipped with the symplectic form coming

from the restriction of the Fubini-Study metric, and L := X n RP 4 . Let £ E H2(X, L)

denote the generator with positive symplectic area. It is not hard to see that E satisfies

condition (1.3). We calculate ND2,,o,o = 30. This may be interpreted as the number

of oriented lines in the real quintic. It is interesting to compare this with the classical

computation of 2875 lines in the complex quintic.

1.3 The relationship with real algebraic geometry

Real algebraic geometry provides a rich source of examples of symplectic manifolds

admitting anti-symplectic involutions. Indeed, given any smooth real projective al-

gebraic variety, we can take X to be its complexification, w to be the pull-back of

the Fubini-Study metric and to be complex conjugation. For this reason, it makes

sense to call triples (X, w, q) real symplectic manifolds. Fix an w-compatible almost

complex structure J such that *J = -J. Let E be a Riemann surface with an anti-

holomorphic involution c: -A , and let v be a c - equivariant inhomogeneous

perturbation. We can define real (J, v)-holomorphic curves to be (J, v)-holomorphic

maps u : E - X such that o u o c = u o a for some a E Aut(E, v). Note that a given

Riemann surface may have several different anti-holomorphic involutions. So, when

we need to specify that a curve is real with respect to a particular anti-holomorphic

involution, we use the terminology c-real.

Now, suppose (E',0 ') is a Riemann surface with boundary such that 

E' UE, E and c acts by exchanging E' and A'. Any c-real (J, v)-holomorphic curve

u: - X, must satisfy

u-'(Fix(6)) = Fix(c) _ 0E'.

17



Since Fix(c) divides E into ' and E', restricting u to either ' or ' gives a (J, v)-

holomorphic curve with boundary in the Lagrangian submanifold L = Fix(0). Con-

versely, given a (J, v)-holomorphic map u': (E', OE') - (X, L), we can construct a

c-real (J, v)-holomorphic map E - X by gluing u' and o u' : (, 2E') -' (X, L)

along their common boundary OE' by the Schwarz reflection principle.

Let us denote by Mn(X, E, d) the Gromov-compactification of the space of (J, v)-

holomorphic maps E -E X with n marked points and let RcMn(X, d) denote its c-real

locus. Let r: H2 (X) -, H2(X, L). We have just shown there exists a canonical map

JJ Mk,o(L, E', d') -+ RM,(X, E, d).
k,lkl=n

d', 2d'=r(d),
A2a d' =ad'

If (', vI,) is not biholomorphic to (', vE,), this map is 1: 1 on the open stratum.

If (', vlr, ) is biholomorphic to (', v~,), then restricted to the open stratum, this

map is a 2 : 1 covering map. As an immediate consequence, we have the following

proposition:

Proposition 1.7. If (E', vlr, ) is not biholomorphic to (', vl,), the number of c-real

(J, v)-holomorphic maps -E X intersecting n generic real points of X is bounded

below by

E Ng,,d,k,l- (1.4)
k,lkl=n

d', 2d'=j.d,
da. d =ad'

If (E', vlr,) is biholomorphic to (, v[,), then we should take one half of (1.4) as a

lower bound instead.

In [20, 21, 22], for strongly semi-positive real symplectic manifolds, Welschinger

defined invariants counting real rational J-holomorphic curves intersecting a generic

0-invariant collection of marked points. Unlike in the usual definition of Gromov-

Witten invariants, which depends on intersection theory on the moduli space of J-

holomorphic curves, Welschinger defined his curve count by assigning signs to individ-

ual curves based on certain geometric-topological criteria. However, it turns out that
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Welschinger's invariants admit the following intersection theoretic interpretation:

Theorem 1.8. Let X be a strongly semi-positive real symplectic manifold satisfying

the assumptions of Theorem 1.3. Then the numbers ND2,d,k,l are twice the correspond-

ing Welschinger invariant.
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Chapter 2

Orienting Cauchy-Riemann

operators

In this section we analyze the choices necessary to orient the determinant of a real-

linear Cauchy-Riemann operator. In the following, we use the symbol F to denote

an appropriate Banach space completion of the smooth sections of a vector bundle.

The exact choice of completion will not be important. If V - B is a vector bundle,

we denote by 5(V) the principal O(n) bundle with fiber at x E B given by the set of

orthonormal frames in V. We call j(V) the frame-bundle of V.

Definition 2.1. A Pin ± structure p = (P, p) on a vector bundle V - B consists of

principal Pin' bundle P - B and a Pin+(n)-O(n) equivariant bundle map

p: P -- (V).

A morphism of vector bundles with Pin structure q5: V - V' is said to preserve Pin

structure if there exists a lifting ¢,

p- , p

(V) - (v').

21



Definition 2.2. A Cauchy-Riemann Pin boundary value problem

D= (, E,F,p,D)

consists of

* A Riemann surface E with boundary 0E = Hm, (a)a, ()a, S'.

* A complex vector bundle E - E.

* A totally real sub-bundle over the boundary

F E

* A Pin± structure p on F.

* An orientation of FI(aE), for each a such that FI(a)Q is orientable.

* A differential operator

D r ((X, 0), (E, F)) r (E, n°, (E))

satisfying, for C E r ((E, ), (E, F)) and f E Cm(E, ),

D(f ) = fOD + (f)C.

Such a D is known as a real-linear Cauchy-Riemann operator.

When it does not cause confusion, we will refer to such a collection by the operator

alone, i.e. D, leaving the domain and range implicit.

Definition 2.3. A morphism of Cauchy-Riemann Pin boundary value problems :

D - D' consists of

* A biholomorphism f: E - >'.

22



* A morphism of bundles 0: E -. E' covering f such that qljaE takes F to F'

and 0 o D = D' o 0.

Such a morphism is called an isomorphism if 0 is an isomorphism of vector bundles

preserving Pin structure and preserving orientation if F, F', are orientable. When

it causes no confusion, we may refer to such a morphism by the bundle-morphism

component alone, i.e. b.

Definition 2.4. We define the determinant line of a Fredholm operator D by

det(D) := Am-(ker D) ® Am&(coker D)*.

If D is a family of Fredholm operators, then we denote by det(D) the corresponding

line bundle with the natural topology, as explained in, for example, [16, appendix

A.2].

We now briefly recall the definition of the Maslov index /p(E, F) of the vector

bundle pair (E, F) appearing in the definition of a Cauchy-Riemann boundary value

problem in the case that 0E - 0. Indeed, if 0E =, 0, we may trivialize E over S.

Writing
m

= ll(,s)a7 (s)a - SX
a=1

the restriction of F to each boundary component (EC)a defines a loop of totally real

subspaces of Cn. The Maslov index (a of such a loop was defined in [2]. We define

m

p(E, F) = E la
a=l

It is not hard to see that although aa may depend on the choice of trivialization of

E, the sum ts(E, F) does not. On the other hand, taz is well defined (mod 2), and

coincides with the first Steifel-Whitney class wl (Fl(,)a) . We will use the following

topological classification of vector-bundle pairs (E, F).

Lemma 2.5. Two vector bundle pairs (E, F) and (E', F') of the same dimension

23



admit an isomorphism

E -- E'

t 1
F F'

if an only if

iu(E, F) = 1 (E', F'), wl (F) = w (F').

Now, we describe a canonical orientation for the determinant line of a number of

special examples of Cauchy-Riemann operators. Let r --, CPI denote the tautological

bundle. Let c': CP 1 - CP1 and Z' : r -- r denote the automorphisms induced by

complex conjugation. The fixed points of c' are simply RP', and they divide CP 1

into two copies of D2. We define R to be the fixed points of 17 on rIRPl. We define

basic Cauchy-Riemann Pin boundary value problems

D(-1, n) := (D2, T[D2 ( n-I,TR ( Rn-l, Dl,n, P-l),

D(0, n) = (D 2, Cn, IRn, Do,n, Po).

Here, the Pin + structure Po is canonically induced by the splitting into line bundles.

On the other hand, P-1 is not canonical, but we fix once possible choice and remain

with it for the rest of the paper. Dl,n and Do,n are taken to be the standard Cauchy-

Riemann operators on these bundles. Since D_,n and Do,n are surjective we have

det(D-,n) = Am-(ker(D_l,)) = Am(Rn-),

det(Do,n) = AmX(ker(Do,n)) = A=(IRn).

So, det(D_l,n) and det(Do,n) admit canonical orientations. Finally, in the case n =

2, we will need certain special automorphisms Q(i) of the bundle pair (C2, IR2) --

(D2, 0D2). We define the restriction of Q(i) to R 2 -- OaD2 to be given by a loop in

SO(2) with homotopy class n E 7r1(0(2)) ~ Z. Then, we extend this automorphism

arbitrarily over the inside of D2 using the fact that the inclusion SO(2) -+ U(2)

induces the trivial map on the fundamental group.
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Lemma 2.6. If n > 3, automorphisms of the bundle pair

(C:, R- ) (D2, a0D2)

preserving Pin structure and orientation are all homotopic to the identity. If n = 2,

automorphisms preserving Pin structure and orientation are homotopic to Q(2i), i E

Z. For all n, there are two homotopy classes of automorphisms of

(7 ED Cn - 1, T in-) (D2, D2)

preserving Pin structure. One is homotopic to the identity and the other is homotopic

to - Id, Idcn .

Remark 2.7. The assertions of Lemma 2.6 are clearly true when n = 1 without any

reference to Pin structure. This is not surprising because all automorphisms of a real

line bundle preserve Pin structure.

Proof of Lemma 2.6. For the trivial bundle pair (Cn, Rn), homotopy classes of auto-

morphisms preserving orientation are classified by r2(U(n), SO(n)), which is easily

calculated from the homotopy long exact sequence of the pair. In the case n > 3, we

have

na2(U(n)) --- , Ir2(U(n), SO(n)) ~ 7rl(SO(n)) o 7 (U(n)).

II II

0 Z/2Z

The automorphisms preserving Pin structure map to 0 E rl(SO(n)) so they are all

homotopic to the identity. In the case n = 2, we have the same exact sequence, but

7rl(SO(2)) - Z and hence r2(U(2), SO(2)) -- Z. The automorphisms preserving Pin

structure map to the subgroup 2Z C Z - ir (SO(2)). On the other hand, by definition,

exactly one of the automorphisms Q(2i) maps to each element of the subgroup 2Z,

implying the claim.

In the case of a non-trivial boundary condition, we will have to make a more
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explicit argument. Most of the work will be devoted to showing that the claim of

the lemma is true for homotopy classes of automorphisms of the boundary condition

alone. To verify this, we construct a convenient model for the boundary condition

TR · Rn-' . Indeed, let rl E O(n) be the reflection that acts on Rn by

r(x, X2, . . , n)-= (-X1, X2, * n)

We identify

IrR @ Rn-, IRn x [0, 1]/(x, 0) (r (), 1)

aD2 > [0, 1]/0 1.

Let r : Pin(n) --, O(n) denote the covering map. Letting ei denote the standard basis

vectors in Rn, and thinking of Pin(n) as the group generated by the unit vectors in

the Clifford algebra, we have r(el) = rl. So, we may define a Pin structure on

rR R"n - l by Diagram 2-1. Here, · denotes Clifford multiplication. It follows that an

P ~ Pin(n) x [0, 1]/(p, 0) (el p, 1)

( Rn- D) ~ ar O(n) x [0, 11/(o, ) (ro, 1).

Diagram 2-1

automorphism of P is given by a map

a: [0, 1] -+ Pin(n)

such that

el a(O) = a(l) el. (2.1)

In particular, we see that Id,, IdpRn-l lifts to the identity automorphism of P, and

- Id,, IdRn-1 lifts to the automorphism of P given by a(t) = el.

We claim that up to homotopy, these are the only two possibilities. First we

consider the case n > 3. Indeed, noting that Pin(n) has two components, one con-
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taining Idpin(n) and the other containing el, it suffices to show that if automorphisms

a and a' map to the same component of Pin(n) then they are homotopic through

automorphisms. Indeed, connect a(O) to a'(O) by an arbitrary path b. Connect a(l)

to a'(1) by -e l b el, where the sign depends on whether we work in Pin+ or Pin-.

The resulting loop is null homotopic by the simply-connectedness of each component

of Pin(n). Reparameterizing a null-homotopy, we obtain a family of automorphisms

connecting a and a' as desired.

We turn to the case n = 2. Since Pin(2) is not simply-connected, we must be more

carefully. Indeed, topologically, Pin(2) _ S1 I S'. One component consists of spinors

of the form cos(9)+sin(O)el e2 and the other consist of spinors of the form cos(9)el +

sin(0)e2. So, if we think of S' as the complex numbers of unit length, conjugation by

el acts by complex conjugation on each component of Pin(2). So, an automorphism of

P is given by a path in one of the two copies of S1 with complex conjugate endpoints.

It suffices to show that any such path is homotopic through similar paths to the

constant path at +l or +el. Indeed, ir(±l) = IdR and r(±el) = -Id,, IdR.

So, consider the covering map R --, S 1 given by x - e2 i . Given a path in S1 with

conjugate endpoints, we may lift it to path

x: [0, 1] R

such that x(0) ~ -x(1) (mod 1). Since either

x(0) + x(1) , 0 (mod 1 ),
()+ 0(l), (mod 1) or ()+(l) (mod),

2 2 2

linear interpolation between x and x()+x() yields a homotopy xt such that

1
xt(O) ~ -xt(1) (mod 1), xo(S) = x(s), x1(s) 0 or - (mod 1).

2

Then 7r(xt) yields the desired homotopy of a.

Now we extend our conclusion to automorphisms of the pair. Trivializing r D Cn -'
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over D2, we may identify an automorphism of r Cn-1 with a map

A: D2 U(n).

We are interested in A that preserve r R Rn-l over D2, such that the induced

automorphism of 7R f R n - l preserves Pin structure. By the preceding calculation,

two examples are given by Id, ® Idcn-i and -IdT Idcn-i. We claim that up to

homotopy these are the only two examples. Indeed, given A, choose a lift of the

induced automorphism on rR ( Rn -1 to P and denote it by a. As just proved, a is

homotopic to either Idpin(n) or el. Denote the homotopy by

B : [0, 1] -+ Aut(P), B(O) = a, B(1) = Idpin(n) or el.

We will construct a homotopy from A to A': D2 -- U(n), where A' correspond to

the automorphism

Id ff IdCn-1 or -Id, ¢ Idn-l

as B(1) = Idpin(n) or B(1) = el respectively. Indeed, B defines a path

B: [0, 1] -, Aut(rR f ]Rn-l).

Denote by

i: Aut(rR Rn-1) Aut(r Cn - l lop)

the inclusion given by complexification. Restricting the previously mentioned trivial-

ization of 7r Cn- l to OD2 , we may identify the path i o B with a map

B: [0, 1] x oD2 U(n).

Capping off this cylinder with the disk A at one end and the disk A' at the other

end, we obtain a map S2 -- U(n), which is well known to be null-homotopic. Repa-

rameterizing a null-homotopy gives the required homotopy through automorphisms
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from A to A'. All these automorphisms preserve the boundary condition and its Pin

structure by the construction of B. 0

Proposition 2.8. The determinant line of a real-linear Cauchy-Riemann Pin bound-

ary value problem D admits a canonical orientation. If q : D - D' is an isomor-

phism, then the induced morphism

0: det(D) -, det(D')

preserves the canonical orientation. Furthermore, the canonical orientation varies

continuously in a family of Cauchy-Riemann operators. That is, it defines a single

component of the determinant line bundle over that family.

Proof. Near each boundary component (Z)a choose a closed curve 'Ya homotopic to

(a)a. Degenerate Y by contracting the curves ya to points to obtain a nodal surface

. consists of one closed component E, a disk Aa corresponding to each boundary

component ()a and a nodal point a corresponding to each curve %. There exists

a continuous map ir : - which is a smooth diffeomorphism away from the nodal

points a. So, we may define

P= (rl=(o~))-I*F.

At the same time, degenerate E to a vector bundle E - E such that

(EIRaFI8A) (Cn-1, R ® in-l) if w1(F(a).) = 1 (2.2)
(E[A., iV'OAa) '"'1 (2.2)

(C , R n ) if wl(F(aF)a) = 1

We choose the isomorphism (2.2) to preserve Pin structure and to preserve orientation

in the orientable case.

Equip EIla with the Cauchy-Riemann operator Da induced by the isomorphism

(2.2) from D_l,n (resp. Do,n). The isomorphism induces an orientation on det(Da)

from the canonical orientation of det(D_ 1,n) (resp. det(Do,n)). Choose a Cauchy-

Riemann operator D on Elk. Equip det(D) with the canonical complex orientation.

29



Define an operator

d% L(EIAa, liAa) E F(lPj) - E%

by

dj(~, 7) = (%a)- (%a), E c(EIAa, FPIjla), E r(El).

Gluing the Da with D at a we obtain a Cauchy-Riemann operator #,aDa# on E

along with an isomorphism of virtual vector spaces

index (#aDa#D)index ( Da D a),

or equivalently, an isomorphism

det(#aDa#b) _ ()det(Da) ® det(D) ® ) det(Ea)*. (2.3)
a a

Since the space of Cauchy-Riemann operators on E is contractible, choosing a one-

parameter family Dt with D = D and D1 = #,Da#D and trivializing the line

bundle det(Dt) over the family induces a canonical orientation on det(D).

We claim that the orientation is independent of the choice of isomorphism (2.2),

the choice of D, and the choice of Dt. First we prove the independence of the choice of

Dt. Indeed, since the space of Cauchy-Riemann operators on E is contractible, given

any two families Dt and Dt, we can construct a homotopy between them Dt, such

that

DO,t , Dl,t = Dt-

Trivializing det(D, s) over the homotopy proves that Dt and Dt give the same answer.

Now we turn to proving independence of the choice of isomorphism (2.2) and the

choice of D. Another choice of isomorphism (2.2) would induce a different operator

D' in place of Da. Also, let D' be another Cauchy-Riemann operator on ElI. We

prove that these new choices induce the same orientation on D. Choose homotopies
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Da,t and Dt such that

D.,l = Da, D D'= D'.

We choose the family Dt so that, as before, Do = D and D1 = #aDa#D, but we

require also that

D_ = #aa,#t, t E [ ]

Since this choice of Dit is as good as any other, it remains only to show that the

orientation on det(D') induced by the isomorphism det(D') det(Di,,), i = -1 or

0, agrees with the orientation induced from det(Da) by trivializing det(D,t) over the

interval [l, 1]. Similarly, we must show that the complex orientation on det(D') agrees

with orientation induced from det(D) by trivializing det(/t) over the interval [, 1].

The latter agreement follows from the compatibility of the topology of the determinant

bundle over a family with the canonical complex orientation. To see the former

agreement, note that the isomorphism (2.2) is determined up to an automorphism

preserving Pin structure of the right hand bundle pair. In the orientable case where

n > 3, by Lemma 2.6, all such automorphisms are homotopic to the identity. So, we

may assume that Da,t is induced by a family of automorphisms. Then, it suffices to

note the that the determinant bundle is tautologically trivial over a family of gauge-

equivalent operators. The case n = 2 may be reduced to the higher dimensional case

by stabilizing by a copy of the trivial bundle pair. Indeed, Q(2i) (D IdR is homotopic

to IdR3. In the non-orientable case, we need to consider the additional possibility

that the automorphism is homotopic to - Id, ( Idcn-1. But - Id, Idcn- clearly

preserves the orientation of det(D_ 1), so this possibility does not effect the argument.

The remaining claims of the lemma follow immediately from the construction. 0

Lemma 2.9. If Fl(Oa). is orientable, then changing the orientation on FI(aE). will

change the canonical orientation on det(D) given in Proposition 2.8.

Proof. This is an immediate consequence of the proof of Proposition 2.8. 0

In the following lemmas, we use the fact that HI (B, Z/2Z) acts naturally transi-
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tively on the set of Pin structures on a vector bundle V - B. See [10].

Lemma 2.10. Changing the Pin structure p of a real-linear Cauchy-Riemann Pin

boundary value problem by the action of the generator of

Hl((OE)a, /2Z) H(0, /22)

reverses the canonical orientation of Proposition 2.8.

Proof. By the proof of Proposition 2.8 it suffices to consider the special cases D(-1, n)

and D(O, n). For the case D(O,n), see [5, Remark 21.6]. For the case D(-1, n), it

suffices to show that

A := Id, G - IdC E Idcn-2,

which clearly reverses the orientation of det(D_ 1), does not preserve Pin structure.

We use the identification of Diagram 2-1 to show that that A)l78Rn-1 does not lift to

an automorphism of P. Indeed, let r2 E O(n) be the reflection that acts on Rn by the

formula

r2 (xl, X2, X3, .. , n)= ( 1,-X 2, X3 ,..., Xn).

and, as before, let r : Pin(n) -, O(n) denote the canonical covering map. The

automorphism AI1,,Rn-1 acts on 3(,rR(DRn- 1 ) by the explicit formula (o, t) -+ (r2o, t).

If this automorphism were to lift to P, it would be given left-multiplication by a where

a E Pin(n) satisfied r(a) = r 2. So, thinking of Pin(n) as the group generated by the

unit vectors in the Clifford algebra, we would have a = e 2. But this contradicts

condition (2.1), since

el e2 = -e 2 el.

We now introduce a lemma concerning a particular class of Cauchy-Riemann Pin

boundary value problem which will play an important role in understanding the sig-

nificance of relative Pin structures.
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Lemma 2.11. Let V --+ E be a real vector bundle over a Riemann surface with

boundary. Consider D = (, V 0 C, Vial, p, D). The canonical orientation of det(D)

is the same for any p that arises by restricting a Pin structure for V over to 0F.

Proof. Let i 0: - denote the canonical inclusion. By Lemma 2.10, it suffices to

show that any change of Pin structure over E would change the Pin structure over

0E by the action of the sum of the generators of Hl((,O9)a) for an even number of

components ()a of 0>. Now, any two Pin structures of V over may be related

by the action of H1'(, Z/2Z). So we may equivalently show that for all a E H1'(E)

we have i*a(a) = 0 (mod 2). But this follows immediately because with Z/2Z

coefficients i* is the dual of i, and tautologically i([0a]) = 0. 0[

Now, we will calculate the sign of conjugation on the canonical orientation of the

determinant line of a Cauchy-Riemann Pin boundary value problem. More precisely,

given a Riemann surface , let Y denote the same topological surface with conjugate

complex structure, and let

t: F-

denote the tautological anti-holomorphic map. Similarly, let (E, F) denote the same

real bundle pair with the opposite complex structure on E, and let

T: E-E

denote the tautological anti-complex-linear bundle map. Furthermore, a Cauchy-

Riemann operator D on the bundle E - F is the same as a Cauchy-Riemann operator

D on the bundle E --S . So, given any Cauchy-Riemann Pin boundary problem D,

we may construct its conjugate D. Clearly, we have a tautological map of Cauchy-

Riemann Pin boundary value problems,

r(0,l (E)) t- Tr(0,1 (E))

r(E,F) T r
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which we denote by

T:D-D.

In the following proposition, we denote by go the genus of E/OE and we write n =

dimc(E) = dimR(F).

Proposition 2.12. The sign of the induced isomorphism

T: det(D) det(D)

relative to the canonical orientation is given by

sA(D) := (E,F)(li(E,F) + 1) + (1 - go)n + mn
-- 2

+ E wl(F)((a9)a)wl(F)((1OE)b)
a<b

mod 2,

for Pin+ structure and

-(D) u(E, F)(p(E, F) + 1) + (1 - go)n + mn
2

+ Ewl(F) (())wj (F)(()b) + wwl(F)(a2)
a<b

mod 2,

for a Pin- structure.

Remark 2.13. When E = D2, since p(E,F) r wl(F)(9E) (mod 2), we have the

relatively simple formula

S(D) 1 (E, F)(Ip(E, F) ± 1)
-- 2 (mod 2). (2.4)

Before proving the Proposition, we will need the following lemma.

Lemma 2.14. The map T : D(-1, n) --, D(-1, n) preserves orientation if P-1 is

Pin +, but not if P-1 is Pin-.

Proof. In this proof, and later in this paper as well, we will need to make use of the
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anti-holomorphic involution,

c: CP 1 CP, [Zo: zl] + [20:-21]

and the natural involution of the tautological bundle r covering c. We note that

c preserves the two hemispheres of CP1 which lie on either side of RP 1 c CP1. So

we may restrict c, , to either of the hemispheres D2 c CP1 , and we denote the

restriction as well by c, . Furthermore, let C denote the bundle morphism of the

trivial bundle C - CPl covering c that acts on the fiber by complex conjugation.

The lemma will follow immediately from Proposition 2.8 if we show that

Cn-I : D(-1, n) D(-1, n)

is an isomorphism of Cauchy-Riemann boundary value problems in the Pin+ case

whereas

e -C Cn-2: D(- 1, n) - D(-1, n)

is an isomorphism in the Pin- case. We treat only the Pin- case since the Pin+ case

is very similar and not as interesting. The only property of being an isomorphism of

Cauchy-Riemann boundary value problems which is not immediately evident is the

preservation of Pin- structure. To verify this, we again work with the explicit model

of Diagram 2-1 for 5(rR f( Rn - l ) and P. In this model, it is not hard to see that at

the level of the frame bundle,

(c (D -C ®( Ce n-2) (o, t) = (rlr2o, 1 - t).

So, a lifting of this map to P must act by

(p, t) , (a p, 1 - t)

where a E Pin-(n) such that ir(a) = rlr2. It remains to check that this lifting respects

the equivalence relation defining P. Indeed, (p, 0) and (el p, 1) represent the same
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point in P, so we must have

But that is the same as

a = el a · el.

Choosing, for example,

verify

a = el · e2, and using the Clifford multiplication of Pin-, we

el el e2-el =-e2-el = el e2.

Proof of Proposition 2.12. Trivialize E and let be the number of boundary compo-

nents (Fa) for which wl(F)((O)a) -~ 1 (mod 2). Then the first Chern class of the

bundle ElI from the proof of Proposition 2.8 is given by

cl (ilt) = F,(E, F) + 7w

Abbreviating = (E, F), we calculate

p(pu + 1) ,ll + 7p , g2 q
2 2 2 2

2

2

r Ewl(F)((a9)b)wlF) (P)b)
a<b

Here, the second congruence uses the fact that l 2 - 72 (mod 4). So, with D as in
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the proof of Proposition 2.8, the Riemann-Roch theorem gives

indexc(D) = cl (Elk) + n(1 - go)

_.p(t+ 1)
2 + n(1- go)

+ ZWl(F)((O))Wl(F)((E)b) (mod 2). (2.5)
a<b

We now combine the orientation changes under conjugation of the tensor factors

on the right-hand side of equation (2.3). Note that conjugation on a complex virtual

vector space leads to a sign change which is exactly its dimension (mod 2). So, det(D)

changes orientation in accordance with the formula (2.5). Similarly, () det(Ea)

changes orientation by hn. The orientation change for det(Da) was calculated in

Lemma 2.14. This last factor accounts for the difference between s and sT. 0

Definition 2.15. A short exact sequence of families of Fredholm operators

O D' -- D -- D - O

consists of a parameter space B, short exact sequences of Banach space bundles over

B,

O -- X' - -X -, 0,

o -, Y' - Y" 0,

and Fredholm Banach space bundle morphisms

D: X - Y, D': X' - Y', D": X" Y",

such that the diagram

O , Y' ~ Y --- Y" O

Dt Dt D"

O -- X' -- X --- X" 0 O
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commutes.

Lemma 2.16. A short exact sequence of families of Fredholm operators

0 - D' D D" -* 0

induces an isomorphism

det(D') 0 det(D") A det(D).
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Chapter 3

Orienting moduli spaces of open

stable maps

First, we set the basic assumptions which will hold throughout this section. Let

(X, w) be a symplectic manifold with dim X = 2n and let L c X be a Lagrangian

submanifold. In the following, we assume L is relatively Pin' and fix a relative

Pin± structure p on L. Furthermore, if L is orientable, fix an orientation on L. Let

(E,OE) denote a Riemann surface with boundary and assume 0E = I[l(OE)

where ()a _ S1. Now, for

d = (d, d,., dm) E H2(X, L)ED H(L) *rm,

define BIp(L, E, d) to be the Banach manifold of W1,p maps u: (, 0E) - (X, L)

such that u.([E, Os]) = d and u[(a).([(OaP)a]) = da. Furthermore, define

B l,p, A, d):= BP(L, E, d) x l(A0)ka x E \ A.
a

Here A denotes the subset of the product in which two marked points coincide. We

will use z = (ai) and w = (wj) to denote marked points in Y9E and E respectively,

and we use u = (u,z ,w') to denote elements of Bk'P(L, , d). Note that we may

occasionally omit the L, E, d, from the preceding notation when it is clear from the
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context. There exist canonical evaluation maps

evbai : Mk,l(L, E, d) L, i = 1.. ka, a = 1...m,

evij : Mk,l(L, , d) -X, j = 1... I,

given by evbai(u) = u(zai) and evij(u) = u(wj). We note that the above notation

is also used for the evaluation maps from the moduli spaces of holomorphic curves,

which are just restrictions of the maps above.

Define the Banach space bundle E Bk (L, , d) fiberwise by

eu Lp(E, Q20, (u*TX))

for u E Bk(L, E, d). Now, fix J E Jw, and v E P. Let

(J,V) Bk',l(L, E, d) -+ E

denote the section of £ given by the v-perturbed Cauchy Riemann operator. Using

the canonical identification between the vertical tangent spaces of £ and £ itself we

define

D := D(j,,,) TBk:(L, E, d) -

to be the vertical component of the linearization of O(J,v). We will denote linearization

at any given u E Bk1 by D. Finally, define £ B (L, E, d) to be the determinant

line bundle of the family of Fredholm operators D,

£ := det(D).

The following proposition is a basic ingredient in the proof of Theorem 1.1. Sup-

pose either L is orientable and provided with an orientation or ka - Wl(da) + 1

mod 2.

Proposition 3.1. The combination of an orientation of L if L is orientable and the
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choice of relative Pin± structure p on L canonically determine an isomorphism of

line bundles

£ -A evb det(TL).
a,i

Proof. Clearly, the proposition will follow immediately if we succeed in providing

L' := (® evb* det(TL)*
a,i

with a canonical orientation depending only on the orientation of L and p. We observe

that it suffices to canonically orient the fiber L: over each u E l individually in a

way that varies continuously with u.

Recall that the relative Pin structure of L specifies a triangulation of the pair

(X, L). Using simplicial approximation, we homotope the map u: (, (0) - (X, L)

to a map 12: (, 0) - (X(2), L(2)). Denote the homotopy by

(: [0, 11 x (, 0) -- (X, L).

We claim that the choice of a( is unique up to homotopy. Indeed, suppose ' is

another such homotopy. Concatenating and ', we obtain a map

(F#': [-1, 1] x (, ) -, (X, L).

By simplicial approximation we may homotope F#<(' to map into (X(3 ), L(3)). Repa-

rameterizing this homotopy, we obtain a homotopy from 4F to V'. We denote the

homotopy from (F to ' by

i : [0, 1]2 (E, t0) -- (X, L),

such that,

(O, t) = (t), (1, t) =D', (s, ) = u.
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Now, define

B' :={(, ZW) E Bk'PIU (, E) (X(3), L(3) 

We now prove that the homotopy uniqueness of implies that it suffices to orient

£L'IB' Indeed, think of 1 (resp. A) as a map from [0, 1] (resp. [0, 1]2) to Bkl. Given an

orientation on L£IB', trivializing P*L' induces an orientation of £'u- This orientation

agrees with the orientation induced by any other homotopy ', because we may

trivialize 1A*L'. We note that the orientation on Lu thus induced varies continuously

with u. Indeed, given a one parameter family ut E Bkl we may choose a homotopy

of the one-parameter family t and trivialize dIL'.

We turn to orienting LIB'- The relative Pin structure of (X, L) provides a vec-

tor bundle V --, X(3 ) and a Pin' structure on VIL(3) ED TLIL(3). We introduce the

shorthand notation

VR := VIL(3) TLIL(3), Vc := V C. (3.1)

Again it suffices to canonically orient each individual line £' for u E B' in a way

that varies continuously in families. Let Do be an arbitrary real Cauchy-Riemann

operator on u*V ® C. We consider the operator Du Do,

TB1P E Wl'P(u*Vc, u*VR) Du@DO > E LP(92Ol(u*Vc))
II II

W' (u*(TX ( f Vc), ul;(TL G V)) R lkl e CI LP(Q2Ol'(u*(TX Vc))).

Clearly, there exists a short exact sequence of Fredholm operators

0 - Du - Du¢ Do - Do - 0.

So, by Lemma 2.16 there exists a natural isomorphism

det(Du) det(Du e Do) ® det(Do)*,
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and, after tensoring on both sides by at,i (evbi det(TL)*)u,

L = det(D,) 0 A (evb*, det(TL)*)u
a,i

- det(Du e Do) 0 det(Do)* ® ®) (evb* det(TL)*)u.
a,i

By Lemma 2.11, the Cauchy-Riemann Pin boundary value problem

Do = (, u*V ® C, u*Vla, o, Do)

induces a canonical orientation on det(Do) if we choose Po to be the restriction to OE

of a Pin structure on u*V over E. So, it suffices to orient

£c 0 det(Do) ~ det(Du Do) () (evbi det(TL)*) u . (3.2)
a,i

Note that by pull back, the relative Pin structure on L gives a Pin structure on

uaI,(TL f( VR), the boundary condition for Du ( Do. If L is orientable and given an

orientation, since by definition V has an orientation, we have an induced orientation

on u[I(TL® VR). So, by Proposition 2.8, we have a canonical orientation on det(DuE,

Do). Since the orientation of L is equivalent to an orientation of det(TL), we have

given everything on the right-hand side of equation (3.2) a canonical orientation.

If L is not orientable, choose an arbitrary orientation on (evb*lTL) , for each a

such that k # 0. The complex structure on E induces a natural orientation on E and

hence on (E)a for each a. For each a and each i E [2, ka], trivializing ulTL along the

oriented line segment in (E)a from Zal to Zai induces an orientation on (evb*iTL) ,u.

In the case that ul())TL is orientable, the choice of orientation on (evb*lTL)u

induces an orientation on ull(,) TL. By Proposition 2.8, an orientation on ulI()TL

if orientable together with the chosen orientation on VR and the previously mentioned

Pin structure induces a canonical orientation on det(Du e Do) and hence the whole

right-hand side of (3.2) is oriented after these choices.

Note that changing the orientation on (evb*lTL) , will change all the orientations
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it induces. By Lemma 2.9, the condition ka - wl(da) + 1 mod 2 now implies that

changing the orientation on any given (evb*lTL)u would make no difference because

the total number of ensuing orientation changes would be even. Finally, the choice

of Do is irrelevant because the space of real-linear Cauchy-Riemann operators on

u*V is contractible. Since the argument for orienting ' applies word for word for a

one-parameter family, we have indeed canonically oriented £C'IB'. 

At this point, we note that there is some freedom as to which isomorphism

£ ~ 0 evb* det(TL)
a,i

we choose. Indeed, B,(L, E, d) consists of many connected components, at least one

for each ordering of the marked points on their respective boundary components. It

will turn out to be useful to define the canonical isomorphism to differ slightly from

the one constructed in the proof of Proposition 3.1. Let

where wa is a permutation of the integers 1,..., ka. Define

sign(w) := HI sign(wa).
a

Let

B ,(L, E, d)

denote the component of B"(L, E, d) where the boundary marked points (zai) are

ordered within 9d by the permutations w.

Definition 3.2. When dim L O 0 (mod 2) we define the canonical isomorphism

£ ~, evb* det(TL)
a,i

to be the isomorphism constructed in the proof of Proposition 3.1 twisted by (-1)sign(w)
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over the component of the moduli space Bk,l,(L, ,d). If dimL 1 (mod 2), then

we define the canonical isomorphism to be simply the isomorphism constructed in the

proof of Proposition 3.1.

Now, we move on to orienting moduli spaces of stable maps. We will restrict

attention to stable maps of two components, one of which is the original Riemann

surface A, and the other of which is a disk bubble. This will suffice for the purposes

of this paper. However, it is not hard to extend the results below to stable maps of

arbitrarily many components of arbitrary topological type.

We consider the case that a disk bubbles off the boundary component (E)b along

with k" of the marked points on (E)b and 1" of the interior marked points. Let

k' := kb- k", k' := (k, .. ,k',.. .km)

Let ' + 1" = 1. It will turn out to be convenient to keep track of exactly which marked

points bubble off. So, let af C [1, kb] denote the subset of boundary marked points

that bubble off and let a c denote its complement. Furthermore, let c [1, 1] denote

the set of interior marked points that bubble off and let gc denote its complement.

Let

d' = (d', di,..., ,d, ... ,dm) e H2(X, L) Hi(L)em, d" E H2(X, L),

satisfy

d' + d" = d, d + Ad" = db.

We will need to add an extra marked point to each of the two irreducible components

of the stable map in order to impose the condition that the two components intersect.

We denote by zo the extra marked point on E and by z$g the extra marked point on

D2. We will use the notation
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We define the space of W1I' stable-maps with this combinatorial data to be the fiber

product

,p m(L t d', d " ) k+ebl (L, , d') evb X evb' Bk,,+lI, D2, d").

Elements u E BP 1 ,(L, 2, d', d") take the formElements u E ~k.~.l0 '"

U = (u', U), e B+eb,l'(L, e, d'),
evb'(u') = evbg(u").

Associated to each such u there is a nodal Riemann surface with boundary

u := U D2 /z4 ZO.

and a continuous map

u: (u, OE,) (X L)

given by u' on E and u" on D2. We denote the node of tu by zo. Let

p': B',,,(L, E, d', d") - B;P+ebi,,(L, E, d'),

P : Bk,,(L,, d', d'") BP+ ,, (L, D2, d"),

denote the natural projections. Note that when various indices are clear from the

context, we may abbreviate

B' = B'e1b,1(L,X , d'), B" = BkP+ 11,,(L, D2, d"),

B# := BkP ,,,(L, , d', d").

Define the Banach space bundle £# -, B# by

£# := p' PE -".
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Fiberwise, we have

£# := LP(E, QO,1(u'*TX) D QO,'(u"*TX))

for E BkP(L, , d', d"). If J E Jl, and v E P, we let

(# .: B # E#(J,v)

denote the section of E given by the v-perturbed Cauchy Riemann operator. Here, the

natural v-perturbed Cauchy-Riemann operator has a vanishing inhomogeneous term

on the disk bubble. Using the canonical identification between the vertical tangent

spaces of E# and E# itself we define

=Da(Jv) Tk,a' I(L, A, d', d) S E#

to be the vertical component of the linearization of a(#,). Finally, define # -

Bk'l(L, 2, d) to be the determinant line bundle of the family of Fredholm operators

D#,

C# := det(D#).

Again, suppose either L is orientable and provided with an orientation or ka 

wl(da) +1 mod 2.

Proposition 3.3. The combination of an orientation of L if L is orientable and the

choice of relative Pin± structure p on L canonically determine an isomorphism of

line bundles

L # ~,) evb* det(TL ).
a,i

Proof. The proof is the same as the proof of Proposition 3.1 except for one extra sub-

tlety, which is particularly important in the case that L is not orientable. That is, the

Riemann surface underlying the Cauchy-Riemann Pin boundary problem associated

to D# is singular. As in equation (3.2) of the proof of Proposition 3.1, it suffices to
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orient

LCu ® det(D#) - det(D# D Do) 0 0 (evbai det(TL)*)u
a,i

(3.3)

for u such that

u: (u, ate) - (X(3, L(3) ).

To this end, we need to describe D# and D# in greater detail. Using the notation

(3.1), define

doo: W1 P(u*Vc, u*VR) (W1 w'(u"*Vc,u"*VR) -- (evoVRV)u

by

doo((', i") = ('(z) - ' (o = - 0 t~)

Denote,

WIP (U*VC, uVuR) :=ker(do).

At this point, we introduce abbreviated notation

WV := Wl'P(u'*Vc, u'*VR),

WV:= W1 P (U*

Yv := LP(u'*Vc),

W := Wl'P(uI*Vc,u*VWR),

VC, ulau VR),

Yv = LP(u"*Vc),

YV := LP(u*Vc) = L(u'*Vc) + LP(u'*Vc).

Then choose arbitrary Cauchy-Riemann operators

D : Wv Y, D : Wv , Yv

and define

Do := (D Do)Iwv' Wv - Yv.

48



Now, turning to D#, define

d0oo: p'*TBl, , p / *TBQ,p - evboTL

by

(c', ") devbO(') -dev(0").
Note that

TBkP, ,,(L, E, d', d") = ker(doo).

So, we have a short exact sequence of families of Fredholm operators

£E Yv P 0 Y Y > O

D#,3D# t DI Do'(DD' t

TB uWv --- p'*TBu 6 Wv E p/*TB Wv doo > evb* (TL VR)u,

and, hence, an isomorphism

det(D# ® D#) det(D' E Do) 0 det(Du 1 DJo) ® evb* det(TL E Va)u. (3.4)

Noting isomorphism (3.4), if L is oriented, the whole right-hand side of equation (3.3)

is canonically oriented by arguing as in the proof of Proposition 3.1.

If L is not orientable, choose an arbitrary orientation on (evb*lTL)u for each a

such that ka # 0. The complex structure on E induces a natural orientation on E and

hence on (E)a for each a. Similarly, the complex structure on D2 induces a natural

orientation on 9D2. This said, any ordered pair of points (z, z'), z 4 zo, in the same

connected component of 0E can be connected by a unique oriented line segment from

the first to the second. For the non-singular boundary components of 0, this is

evident. For the singular boundary component,

(O)b := (E)b U 0D 2 /Zo , ZO,

we define the unique oriented line segment from z to z' as follows: For concreteness,
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assume that z E (aE)b. The same exact definition applies if z E OD2 . Start from z and

proceed in the direction of the orientation of (E)b until reaching either z' or z). If z'

is reached first or if z' = z), the path ends there. If z is reached first, then continue

the path starting from z E D2 and proceeding along OD2 in the direction of the

orientation. If z' belongs to OD2 then the path ends when it reaches z'. Otherwise it

continues around OD2 back to z0[ and then proceeds in the direction of the orientation

from z0 along ()b until it reaches z'.

For each a and each i E [2, ka], trivializing u;TL along the oriented line segment

in (,)a from Zal to Zai induces an orientation on (evbaiTL)u as before. To orient the

factor of evb* det(TL G VR)* appearing on the right-hand side of isomorphism (3.4),

since VR is equipped with a chosen orientation by the definition of a relative Pin

structure, it suffices to orient (evb*TL)u. For this purpose, we proceed as follows:

If kb # 0 then trivializing uI;tTL along the oriented line segment from zbl to z0

induces an orientation on evboTLu. If kb = 0 then choose an arbitrary orientation

on (evb*TL)u. For all a b if ula)aTL is orientable, since in this case ka # 0 by

the assumption Wl(da) rv ka + 1 (mod 2), the choice of orientation on (evb*lTL)u

induces an orientation on ua)TL. Furthermore, we may induce an orientation

on either or both of ul( a)bTL and ulD 2TL if orientable, from the orientation on

(evboTL)u. By Proposition 2.8, the orientation on u.).)TL if orientable together

with the chosen orientation on VR and the previously mentioned Pin structure induce

a canonical orientation on det(D[ f Do). Similarly, the orientation on ul 2TL if

orientable together with the chosen orientation on VR and the previously mentioned

Pin structure induce a canonical orientation on det(D' ( Dc). Hence the whole

right-hand side of (3.4) is oriented after these choices. Since we have also chosen

an orientation on (evb*iTL)u, it follows that the entire right-hand side of (3.3) is

oriented.

Note that changing the orientation on (evb*lTL)u will change all the orienta-

tions it induces. Similarly, in the case kb = 0, changing the chosen orientation

on (evb*TL)u changes any orientation it induces. By Lemma 2.9, the condition

ka wl(da) + 1 mod 2 now implies that changing the orientation on any given
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(evblTL)u or (evb*TL)u would make no difference because the total number of en-

suing orientation changes would be even. O

Just as was the case with maps from curves with irreducible domain, so too with

non-trivial stable-maps, there is some freedom in the choice of an isomorphism

# -~ 0 evb*i det(TL).
a,i

For this purpose, we note that there is a canonical ordering on the marked points

in the boundary of the nodal curve Yu. Indeed, recall from the proof of Proposition

3.3 that given any pair of points (z, z') c a2 such that z zo, there exists a unique

oriented line segment from z to z'. We define zai to be ordered before zait if and only

if the segment from Zal to zai lies within the segment from Za, to zai,. Again, we can

divide the moduli space B# into components Bi. By analogy with the irreducible

case, we make the following definition.

Definition 3.4. If dim L = 0 (mod 2), we define the canonical isomorphism

# 2, 0 evb* det(TL)
a,i

to be the isomorphism constructed in the proof of Proposition 3.3 twisted by (- 1)ign(u)

over the component B. If dim L = 1 (mod 2), we define the canonical isomorphism

to be the isomorphism constructed in the proof of Proposition 3.3.
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Chapter 4

The definition of the invariants

revisited

At this point, we will rigorously define the integration carried out in defining the

invariants in Section 1.2 by generalizing the techniques of Ruan and Tian [19].

First, we will carefully define the inhomogeneous perturbation to the Cauchy-

Riemann equation relevant in the current situation. Let C be a parameter space to

be specified later. Let ri, i = 1, 2, denote the projection from E x X x C to the ith

factor and let r~ denote the restriction of ri to 0E x L x C. We define the set of

inhomogeneous terms P to be the set of sections

v E r (E x X x c, Horm (7r;TT, 7rTE))

such that

(i) v is (jr, J)-anti-linear, i.e. v o j = -J o v;

(ii) vIaxLxC carries the sub-bundle ir'*TaE c r '*TE to the sub-bundle

'7r*(JTL) C r*TX.
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For the time being, take C = B '(L, E, d) and define the section aJ,V of by

aJ, u := du o jE + J o du - v(., u(.), u) E LP (Q°l(u*TX)) .

Lemma 4.1. The operator aj,, gives rise to a well-posed boundary value problem.

Proof. Define E := E Ua E. Clearly, we may extend any v E P over E so that it

continues to satisfy condition (i). Let J, be the automorphism of T(E x X) given in

matrix form by

O

J

It is not hard to check that condition (i) implies that J, is an almost complex structure

on E x X. Condition (ii) implies that 0E x L c E x X is a totally real submanifold.

A map

u : (,, ) --- (X, L)

satisfying a,,u = 0 is equivalent to a standard J-holomorphic map

u: (f, y0E)g (E x X, E x L)

satisfying r, o ii = Ids. We conclude that a,, does indeed give rise to a well-posed

boundary value problem.

In light of Lemma 4.1, we define

Mk,l(L, E, d) := 1'() C Bkl (L, E, d).

We call a map

u: (, ) - (X, L)

-multiply covered if there does not exist z E E such that

0

du(z) z 0, u(z) ¢ u(E \ {z}), u(z) ~ Im 5 o u.
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Such maps are also commonly termed not X-somewhere injective. A standard ar-

gument shows that the moduli space of -somewhere injective maps has expected

dimension for generic J E Jw,, even when v = 0. See [5, Chapter 11]. However, if

we take v = 0, then the moduli space M4k,(L, Z, d) may be singular at -multiply

covered maps even for a generic choice of J. Assume for a moment that E = D2 and

/p(d) > 2. Then by the following Lemma, the image of 0-multiply covered maps under

the evaluation map has codimension greater than or equal to 2.

Lemma 4.2. Suppose u : (D2, aD2) -- (X, L) is 0-multiply covered. Then, we may

factor u as a composition u = u' o X, where u' is a real J-holomorphic map

U': CP 1l X, o u' o c'u', j' = 0,

such that u'lD2 is 0-somewhere injective, and

X: (D 2, a2)-- (CP', Rp)

is a holomorphic map of degree greater than or equal to 2.

Remark 4.3. Since we may extend X to a holomorphic map from CP1 to CP by the

Schwarz reflection principle, X is actually given by polynomial. Thinking of D2 as

H U {oo} and thinking of CP1 as CU {oo}, the boundary condition on X implies that

X is given by a real polynomial.

Proof of Lemma 4.2. Gluing together u and k o u o c' we obtain a real J-holomorphic

map

: CP --* X, Xo o c' = .

By a standard theorem [16, Chapter 2], we can factor ui = ouii' where ii is somewhere

injective. Another standard result [16, Theorem E. 1.2] says that ii' is injective except

at a finite number of points. Since the image of u' is clearly invariant under X, 

induces an anti-holomorphic involution of CP 1 away from a finite number of points.

So, removing singularities, there exists an anti-holomorphic involution c" on CP1 such
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that b o ' o c" = i'. Moreover, cd' fixes the image of RP under X. It follows that c"

is conjugate to c' by some biholomorphism a E PSL 2(C). So, we may define

U =U oa - , X =aoID2.

Consequently, under the previously mentioned conditions, -multiply covered

maps are not important in the definition of intersection theory on the moduli space.

So, even in the case v = 0, we may obtain a smooth moduli space by defining

Mik,(L, E, d) := Mk,l(L, E, d) \ {-multiply covered maps}.

Then, to obtain an interesting intersection theory, we define

Mk,l(L, , d) := Mk,l(L, , d)/PSL2(R), (4.1)

where PSL 2(R) acts by

(u, Z W)- (U o , (O-l)k( (-O 1)'()), W E PSL 2(R).

This choice of action ensures that the evaluation maps descend to the quotient. Note

that the action would not preserve the moduli space if we were to allow a general

inhomogeneous term v.

Equivalently, instead of quotienting by PSL 2(R), we could consider an appropriate

section of the group action. Fortunately, this approach, as observed in [19], generalizes

to the situation where we allow a generic v and so provides a definition of the moduli

space that works even when (X, L) may admit holomorphic disks of Maslov index 0

or when E =, D2. For a detailed proof of the equivalence of the two approaches, see

[16, Chapter 6].

So, we construct a section of the reparameterization group action in the following
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manner. Let

-rj : Mk,l(L, E, d) -- E

be the projection sending (u, Z -') - wj. First, suppose that E - D2. Choose an

interior point so E E and a line C D2 connecting so to 0E such that for any pair of

points (w, w') E E there exists a unique c0 E Aut(E) _ PSL 2(R) that satisfies

W(w) = so, Wo(w') E .

For the time being, assume 1 > 2. We require that the dependence of v on u E Bkl

factors through r x r2. Moreover, letting d(., ) denote the distance function on D2 ,

we impose on v the condition

(,d(wl, W2) ( , ( W)). (4.2)=(w', w'

In particular, v vanishes uniformly in the limit w2 -- w. We define

Mk,I(L, , d) := (irl x wT2)-l(so x ) C Mk,l(L, E, d). (4.3)

Standard arguments show that for a generic choice of v satisfying (4.2), Mk,(L, I, d)

will be a smooth manifold of expected dimension. We digress briefly to explain the

significance of condition (4.2). To prove the invariance of N.,d,k,l, we need to argue

that stable maps in the Gromov compactification of Mk,l(L, I, d) involving sphere

bubbles occur only in codimension two. A sequence ui E Mk,l(L, , d) such that

w -- w will Gromov converge to a stable map consisting of one disk component and

one sphere component with both wl and w2 on the sphere component. The nodal

point where the sphere and disk are attached is fixed at so. However, there are no

other fixed marked points on the disk component to compensate for the remaining

T1 symmetry. Condition (4.2) implies that the limit inhomogeneous term on the disk

component is zero. So, we can simply quotient by the residual T1 action. Although

0-multiply covered maps can arise, we may disregard them because by a standard
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argument, their image under the evaluation map has high codimension.

If, - S1 x I, we choose a line C E connecting the two boundary components

of E such that for any w E there exists a unique cp E Aut(E) - T1 such that

c(w) E . We choose v to be entirely independent of u. Assuming for the time being

that > 1, define

Mk(L, A, d) := l c )Mk,l(L, (, d).

Again, for a generic choice of v, standard arguments show that Mk,(L, A, d) will be

a smooth manifold of expected dimension.

Now we turn to the case when ] - D2 and I = 0. This case is of particular interest

because it arises when X is a Calabi-Yau manifold and L is a special Lagrangian

submanifold. The cases E _ D2, 1 - 1, and E - S1 x I, I = 0, use a very similar

argument.

We start with the moduli space Mk, 2 (L, A, d) constructed above and proceed as

follows. Choose smooth manifolds A, B, and maps

f: A - X, g: B -- X

such that (A, f) and (B, g) define pseudo-cycles representing the Poincare-dual of any

non-trivial 0-anti-invariant 2nd cohomology class. The symplectic form w provides at

least one example, and for simplicity, we will continue with this example.

Lemma 4.4. We can choose (A, f) and (B, f) that are 0-anti-invariant and do not

intersect L.

Proof. A straightforward transversality argument shows that we may assume (A, f)

is transversal to L. If necessary, replacing A by A I_ -A and f by f LI q o f, we

may assume that the pseudo-cycle (A, f) is 0-anti-invariant just like w. Now, we

consider a local model for (A, f) near L and show how to modify (A, f) near L to

avoid intersecting L. Choose 0-invariant local symplectic coordinates (9: X -, C"

near L such that (L) = Rn. We may assume that the image of f is given by the
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union of the vanishing sets of conjugate real-linear maps

t,: eCn - R 2.

More precisely, choose complex coordinates z = (Zl,... , ,) on Cn. Taking x =

(xl, ... , n) and y = (Y1, .. , Yn), we write z = x + iy. So, we can decompose

(z) = tX(x) + e(y),

Letting £i, i = 1, 2,

may be written as

(z) = t (x) -(y)

denote the it h component of , the equations for the image of f

o=e-.i=e£2-et i= 1,2.

So, choosing small

image of f satisfies

constants ei > 0, i = 1, 2, we modify (A, f) so that locally the

equations

2 - = -ei i=1,2.

Clearly, these equations have no real solutions. The same applies for B. 0

Furthermore, we may assume that (A x B, f x g) is transversal to evil x evi2 so

that we may define

1
Mk,o(L, E, d) Mk,2(L, , d) xxxx (A x B).

The factor . in front of the fiber-product means that each point in the moduli

space should be counted with weight . This correction is designed to cancel the

contribution of the divisors (A, f) and (B, g) as predicted by the divisor axiom of

formal Gromov-Witten theory. Indeed a map u: (, OE) --- (X, L) representing the

class d E H2(X, L) should intersect a pseudo-cycle Poincare dual to w exactly w(d)

times.

Remark 4.5. Note that even when 1 > 0, we are free to fix the group action by adding
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divisor constraints just as in the case when = 0.

Proof of Theorem 1.1. Given this definition of Mk,l(L, E, d), Proposition 3.1 imme-

diately implies Theorem 1.1. We choose the isomorphism according to Definition

3.2. 0

Now, for a sufficiently generic choice of points x = (xai), xai E L, and pairs of

points y = (yj),

yj: 0,1 -1 X, yj(l) = o yj(O),

the total evaluation map

ev := II evbai x H evi: Mk,1(L, 2, d) Lk X 
a,i j

will be transverse to

I Xai x IJyj E Llkl x XI.
a,i j

So, assuming the dimension condition (1.2) is satisfied, we may define

Ne,d,k,l := #ev- 1 (, y.

Here, # denotes the signed count with the sign of a given point v E ev-l(, y-

depending on whether or not the isomorphism

dev,: det(TMk,l(L, E, d)) - ev* det (T (Likl x Xl))v

agrees with the isomorphism of Theorem 1.1 up to the action of the multiplicative

group of positive real numbers. If the dimension condition (1.2) is not satisfied, we

define N.,d,k,l := 0.
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Chapter 5

The sign of the conjugation on the

moduli space

Now, suppose E is biholomorphic to S. It follows that there exists a complex conju-

gation c: - . Let be an anti-symplectic involution of X such that Fix(q) = L.

Fix J E J7,,, define Po,C to be the set of v E P such that d o v o c = v and let

v E P,,c. We define an involution

B : Bk' (L, -, d) -- B (L, E, d)

by

(u, Z. W) ( o U o C, (c1aD2)lkl(, C(W)).

Furthermore, define an involution e : · -+ £ covering B by sending ? E to

d o o dc E B(u). It is easy to see that aj, is OB - qE equivariant, and hence ob

induces an involution qc : - £C covering OB. Now, the trivial bundle morphism of

a( evbi det(TL)
a,i
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covers OB. So, the involution Xbc induces an involution q5L of the bundle

L' := Hom ( evb* det(TL),) - L 0 evb* det(TL)
a,i a,i

covering OqB. Now, the bundle L' has a canonical orientation as defined in Definition

3.2. So, the involution L: may either preserve the corresponding component of the

complement of the zero section of L', exchange it with the opposite component or

some combination of the two over different connected components of the base. We

say that q,: has sign 0 in the case it preserves this component, and sign 1 otherwise.

We would like to calculate the sign of OL. To properly formulate the result, we

define a degree 0 homomorphism : H,(X, L; Z/2Z) - H,(X; Z/2Z) on the level of

singular chains as follows: We implicitly use Z/2Z coefficients everywhere. Suppose

o E C,(X, L) := C,(X)/C,(L) is a relative singular chain. Let a E C,(X) represent

a. Define

+p(a) := (Id +~,)Y.

I is well defined because if o = 0 then 3 E C,(L) and hence

(Id +0,)3 = 2O 0 mod 2.

Since q, commutes with the boundary operator, so does b, so we can define :=

H(?/). Now, let go denote the genus of E/CE.

Proposition 5.1. Let n = dim L. If p is a relative Pin- structure then the involution

qL has sign

-(d, k, 1) , A(d)(p(d) +)+ (1 - go)n + mn + Ikl + I
2

+ w2(V)(4'(d)) + w (d) + E Wl(da)Wl(db)
a<b

+ Wl(da)(ka - 1) + (n + 1) E (ka - 1)(ka - 2 ) mod 2.
2

a a
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If p is a relative Pin + structure, XL has sign

d, k, u(d)((d) + 1) +(1 -go)n + mn + kI + I
2

+ w2(V)(O(d)) + E wl(da,)wl(db)
a<b

+ EWl(da)(ka- 1) + (n + 1) E (ka - 1)(ka - 2) mod2.
a a

Remark 5.2. Suppose dim L < 3. Then L is Pin- by the Wu relations, so we can take

p to be a standard Pin- structure. In particular, w2(V) = 0. Since wl(Od) - !i(d)

mod 2, we have

(d, k,)I) j (d)(p(d) -1)+ (1-go)n + mn + k + 
2

+ y~ wl(da)wl(db) + y~ Wl(da)(ka - 1)
a<b a

+ (n + 1) E (ka - 1)(ka - 2 ) mod 2.
a

In the particularly simple case that E - D2 , we have

-(d, k, 1) (d)(Id) 1) + k + + + (d)(k - 1) + (n + 1) 1)(k ) mod 2.
2 2

Now, recall from Section 3 that

B1 n l,(L , d', d) := 'bP (l(L, , d') evb[ Xevbo BkP+l ,,(L, D2, d").

Note that D2 _ D2 as demonstrated by the standard conjugation

C: D2 -- D2 .

So, we have an involution CB of the second factor of the fiber product. Since L c

Fix(), the involution BB" of the second factor induces an involution B# of the

whole fiber product. Similarly, the involution Opt of the bundle £" over the second
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factor of the fiber product induces an involution 95# on the bundle # --- B#. Recall

that the natural inhomogeneous perturbation v for stable maps vanishes on bubble

components. In particular, it is -invariant. So, 5#v, defines a B# - # invariant

section of E#, which in turn induces an involution qL# of the determinant bundle

£L# -- B#. As before, qc$# induces an involution q0# of

L#' := Hom r evbi det(TL), )# _ L# evbai det(TL).
a,i a,i

Proving that the sign of A'ct is well defined and calculating it will play a crucial role

in the proof of the invariance of Ns,d,k,l. Before writing down the formula for the sign

of 5L#, let us introduce some new notation. We define

T'(d", k") :r /(d")k" - wl(Od")k" (mod 2)

and

0,

kt ,

k"- 1,

ka - 1 = k" + k' - 1,

Wl(d'b) = wl(ad" t ) = O

wl(d) = wl(adO") = 1

Wl(db) = 1, wl(d" ' ) = 0

wi(db) = O, w (ad") = 1.

Proposition 5.3. Let n = dim L. Suppose the marked point z1 does not bubble off,

i.e. 1 o. Then the involution 95'4 of the line-bundle

#' , BP,,,(L, A, d', d")

has sign

#'(d", k",,l ) : i(d")(1 (d") i 1) + w2(,(d")) + k" + 1 + "
2

+ T'(d", k") + (n + 1) k"(k" - 1) mod 2,
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with + in the Pin+ and - in the Pin- case. On the other hand, suppose now that

the marked point zl does bubble off, i.e. 1 E . Then the involution d2# has sign

S#"(db, d, k', k", 1") D(d")(u(d") ± 1)+ (
2

+ k" + 1 + 1" + T"(db, d", k', k") + wl (db)wl l(ad")

+ (n +1) ((k" -l)(k" -2)+ kbk" + kb mod 2, (5.2)

with + in the Pin+ and - in the Pin- case.

Remark 5.4. Suppose L is orientable and dim L is odd. Then, using the fact that

tu(d") is even if L is orientable, we have

5 -5# =(d") + w2('i(d")) + k" + 1 + 1". (5.3)
2

Proof of Proposition 5.3: The first term in s # comes from the formula (2.4). This

accounts for the sign of conjugation on the moduli space of unmarked disks. The

terms k" + I" + 1 account for conjugation on the configuration space of the marked

points, adding one extra point for the incidence condition. Recall from the proof of

Proposition 3.3 that the unique oriented path from z $ zo to z' in the boundary of 0,,

played an important role in determining the canonical orientation of t#'. This path

depended on the orientation of 0E, which is reversed under conjugation. The terms

T' (resp. T" + wl(d)wl(ad")) in s# ' (resp. s#") account for this dependence. The

remaining terms account for the reordering of the marked points under conjugation,

which plays a role only in even dimensions according to Definition 3.4.

We now explain in more detail how the unique oriented path from z 0 0 to z'

changes under conjugation, and how that effects the orientation of L'#. First, suppose

1 a. The path from Zbl to zbi for i E a will change when the orientation of the

boundary of the bubble 9D2 changes under conjugation. If wl(Od") = 1, this change

of path changes the orientation of (evb*iTL)u for each i E . Since, Ic = k", we

obtain the total change of orientation given by T'. The explanation of T" is similar.

The additional orientation change Wl(db)w1l(db) when 1 E o enters because then
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the path from Zbl to zo changes under conjugation. This path effects the orientation

of (evbTL)u when wl(Odb) = 1. The orientation of (evb*TL)u enters twice into the

orientation of £'# when wi(0db) = 0. It determines the orientation of evb* det(TL D

VR)*, and it determines the orientation of ulI,)bTL, which in turn determines the

orientation of det(D' $ Do). Both of these determinants appear on the right-hand

side of isomorphism (3.4). However, when wl(db) = 1 we cannot orient ul* a)bTL. So,

the orientation of (evb*TL)u enters only once into the orientation of L'#. So, there is

an extra contribution to the orientation change of L'# exactly when

W1(db)wl(Ddb) = 1.

0
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Chapter 6

Proof of invariance

Proof of Theorem 1.3. In order to prove independence from various choices, we con-

struct cobordisms from parameterized moduli spaces. Complications arise in com-

pactifying these cobordisms. For concreteness, we focus on independence of a varia-

tion of the constraints on marked points. The proof of independence of a variation of

J, E or A, B, is very similar.

Recall that the definition of N,d,k,l depends on the choice of points

Z = (ai), xai E L,

and pairs of points,

y=- (yj), yj {O, 1} X, yj(1) = O(yj(O)).

Suppose we choose different points x' and Vy satisfying the same conditions. This

corresponds to changing the forms aai and yj mentioned in Theorem 1.3. Let

x: [0, 1] - Lk l, x(O) = x, x(1) = i,

y: [0, 1] x {0, 1}' -l Xi, y(t, 1) = q(y(t, 0)),

y(O, *) = (*), y(1, *) = if(*).
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If we choose x and y generically, they we will be transverse to the total evaluation

map

ev: Mk,(L, E, d) -+ Lkl x XI .

So,

W := W(x, y) := Mk,l(E, L, d) evX(xxy)oA ([0, 1] x {0, 1)}) (6.1)

gives a smooth oriented cobordism between

ev-l(,y1- and ev-l(x, ).

However, W is generally not compact. So, in order to show the invariance of NE,d,k,l

we must study the non-trivial stable maps arising in the Gromov-compactification of

W, which we denote by OGW.

We now digress for a moment to describe OaW more explicitly. We define

MLk,a,l,O(L,d, d") : j () C Bk,,,L, , d', d").

Recall that the inhomogeneous perturbation v vanishes on the bubble D2 c S. This

means that the moduli space k,,t,o(L, A, d', d") may be singular at q-multiply cov-

ered maps. As long as p(d") > 0, this does not present a problem because Lemma 4.2

then shows that the image under the evaluation map of stable maps with -multiply

covered bubbled components has codimension at least two. Also, constant holomor-

phic disks have expected dimension. On the other hand, in the case that (X, L)

admits holomorphic disks of positive energy of Maslov index zero, we must take ¢

multiply covered maps into consideration. We postpone the argument in this case to

Section 7.

We continue now with the description of dGW. Since v = 0 on bubble components,

we have an action of PSL 2(R) on Mk,a,t,L(L, ], d', d") given by

(U (", 2",'u)) (, (U o , (po-l)lkl(2), () ( ))), 7 E PSL2(R).
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On the other hand, a generic perturbation term v will break the Aut(E) invariance

of ~v. So, we construct a section of the Aut(E) action that would exist if v vanished

in the following manner. Let

Rj: Mk,,l,(L, E, d', d") 

be the projection sending (u, z2, ') -- wj. In addition, we define

ro': Mk,,,(L, E, d', d") -- E

by 7r'(u) = zo, the point where the bubble attaches.

First, suppose that E _ D2 and I > 2. Recall from Section 4 that in the construc-

tion of Mk,l(L, E, d), we chose an interior point so E and a line f c D2 connecting

so to 9C. We imposed the conditions w1 = so and w2 E . Since so is an interior

point, w, cannot possibly bubble off onto a disk bubble, i.e. 1 Q. However, w2 could

bubble onto a disk bubble that bubbles off at n asZ. So, we consider the following

two cases. If w2 does not bubble off, i.e. 2 eo, define

Mk,,,(L, , d', d") := (7r1 x 7r2)-1(s x )/PSL2(R)

c Mk,,,a,,(L, , d', d")/PSL2(R).

If w2 does bubble off, that is, 2 E o, we define

MkclQ(L, , d', d) := ( x )-1( o x ( n ))/PSL2(R).

Now, suppose E _ S' x I and I > 1. Recall from the construction of Mk,l(L, E, d)

that we chose a line £ C E connecting the two boundary components of E and imposed

the condition wl E . So, wl could bubble off at a disk connecting to £ n aE. So, we

consider the following two cases. If wl does not bubble off, i.e. 1 Q, define

Mk,a,l,o(L, E, d', d") := r-T1()/PSL 2(R) C Mk,a,l,Q(L, r, d', d")/PSL2 (R).
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If wl does bubble off, i.e. 1 E , define

Mka,,,q(L, En d', d") := 7r-'(e n E)/PSL2(R)_

Now we turn to the case when E D2 and 1 = 0. The cases E - D2, I = 1,

and E _ S1 x I, I = 0, use a very similar argument, which we omit. Recall from

the construction of Mk,l(L, E, d) that we chose q-anti-invariant pseudo-cycles (A, f)

and (B, g) representing the Poincare dual of w and satisfying various transversality

conditions. Taking Mk,G,2,e(L, E, d', d") as defined above, we may perturb (A, f) and

(B, g) slightly so that the evaluation map

evl x ev 2 : Mk,, 2,0(L, E, d', d") + X x X

is transversal to (A x B, f x g). So, we may define

1
Mk,a,o,O(L, A, d', d") := (d)2 Mk,a,2,Q(L, E, d', d") xxxx (A x B).

Perturbing x and y slightly assures they are transverse to the total evaluation map

ev: Mk,,l,(L, E, d', d") -- X x L kl .

Each moduli space Mk,a,l,, contributes a boundary stratum of the cobordism W,

which we denote by

(aGWa,, := Mk,a,t,e(E, L, d', d) evX (xxy)oA ([O, 1] x {0, 11) .

In total, the boundary of the Gromov compactification of W takes the form

aGW = U acGWa,,
aE[1,m], aC[l1,ka]

QC[1,l]

In general, one might expect an extra term in aW coming from sphere bubbles
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attached to a constant disk. If there are no marked points on the disk, this may

happen in codimension 1. However, assumption (1.3) precludes this possibility.

Recall that Z/2Z acts on Bk,,l,(L, E, d', d") by the involution B# that exchanges

a disk bubble with its conjugate. Now, the boundary strata W,Q are constructed from

Bk,a,l,e(L, a, d', d"), X and L by considering the vanishing set of a Z/2Z equivariant

section and then taking various fiber products with respect to Z/2Z equivariant maps.

So, each stratum admits a canonical Z/2Z action by an involution that we denote

by aw. We claim this action is fixed point free and orientation reversing. In other

words,

#9GW = o,

so that

o = #9W = #(ev-l(:, ) - ev-l(, y) + cW)

= #ev-(b, ) - #ev-l( , y-). (6.2)

and N,d,k,l does not depend on the choice of -, y.

First, we show that aw is fixed point free. Indeed, as noted above, we are

presently considering the case where we may assume there are no 0-multiply covered

disks of positive energy. By definition, a 0-somewhere injective disk cannot be a fixed

point of -aw. So, qOaw could only have a fixed point if a zero energy disk bubbled

off. That would correspond to an interior marked point moving to the boundary.

Clearly, marked points that are constrained away from L cannot possibly move to the

boundary. This is where we use the fact that by Lemma 4.4 we have chosen (A, f)

and (B, g) not to intersect L.

The following calculations show that 'kaw reverses orientation. First, we consider

the case that dim X = 6 and L is orientable. Since dim L = 3, by Wu's relations,

w2(TL) = 0. So, by formula (5.3), the sign of 0k is

(d) + k" + 1" + 1.
2
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It follows that Z/2Z acts on Mk,,,I,,(L, E, d', d") with this same sign. Indeed, in the

case < 2, we need to add marked points and fiber product with the divisors along

the corresponding evaluation map. One of the extra marked points could be on the

bubble component, so that Z/2Z acts on it non-trivially. However, since the divisors

are chosen to be 0 anti-invariant, the total sign change induced on Mk,a,l,Q from the

extra marked point will be zero. Also, we note at this point that the sign of the

conjugation automorphism of PSL 2(R) is zero.

Note that the sign of laow is independent of 1". Indeed, the action of on X is

orientation reversing because q*wS3 = -w 3 . So, the sign of the Z/2Z action on the fiber

product of Mk,,.,Q,(L, E, d', d") with [0, 1] x {0, 1}t over X l where X acts non-trivially

on " of the factors of X is independent of 1". On the other hand, a straightforward

virtual dimension calculation shows that %GW,,Q must be empty unless

pu(d") = 2k" + 41".

This in turn implies that u(d")/2 ~ k" (mod 2), or equivalently,

!p(d") + k" + 1 1 (mod 2).
2

So, in this case, kaw is orientation reversing.

Now we turn to the more difficult situation where dim X = 4 and L may not

be orientable. By the Wu relations, L is Pin-. So, we assume that is given by a

standard Pin- structure. By the same argument as above, we conclude that Z/2Z

acts on M k,,,l,(L, E, d', d") with sign given by formulas (5.1) or (5.2) depending on

whether or not 1 E a. Note that b preserves the orientation of X because O*2 = w2.

This implies that (5.1),(5.2) also give the right signs for the action of kaw. Next,

observe that by virtual dimension counting, the stratum aGW,, will be empty unless

(d') + r = k" + 21" (6.3)

for r = 0 or -1. We claim that this restriction implies that the signs (5.1) and (5.2)
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always simplify to exactly 1.

We first consider the case 1 V a. Using the restriction (6.3), we calculate

k"(k" - 1)
2

(p(d") + r - 21/)(/(d") + r - 21" - 1)
2

,p(d")2 + 2rpl(d") + r2 - 41"(/(d") + r) + 41'2 - (d") - r - 21"
2

4(d ")((d") - 1) +r(r - 1) "
1 r + 1" + rp(d").2 2

(mod 2) (6.4)

Again using the restriction (6.3), we calculate

T'(d", k") - L(d")k" = p(d")2 + rp(d") + 21"/p(d")

u (d") + rp(d") (mod 2). (6.5)

Substituting equations (6.4) and (6.5) into (5.1), eliminating the remaining k" by

(6.3) and canceling expressions which occur in pairs yields

s' (d",k", 1") - r(r + 1)
2 (mod 2).

This is always exactly 1 since r = 0 or -1.

We turn now to the case 1 E a. Using the restriction (6.3), we calculate

(k" - l)(k"- 2)
2

(ju(d") + r - 21" - 1)(/(d") + r - 21" - 2)

2

= [(d")2 + 2rp/(d") + r2 - 3/p(d") - 3r
2

+2 + 41"2 + 41"(/p(d") + r) + 61"]

, p(d")(p(d") + 1) r(r + 1)= +
2 2

+ r(4d") + 1" + 1 (mod 2). (6.6)

Furthermore, using the condition w1(db) - kb + 1 and (6.3),

kbk" + kb - (wl(db) + l)(/u(d") + r + 1) (mod 2). (6.7)
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Substitute calculations (6.6) and (6.7) in sign formula (5.2) and use restriction (6.3).

Cancelling pairs of similar terms, we obtain

#, r(r + 1)
2

+ (Wl(db) + 1)(p(d") + r + 1) + T" + wl(d')wl(d")

rp(d") + r + (wl(db) + 1)(u(d") + r + 1) + T" + wl (d)wl (d"). (6.8)

Here, the second congruence follows from the fact r = 0 or -1.

We now expand T" to further analyze s#". Using the fact that Wl(db) = Wl(db) +

wl (d"), it is easy to verify that

T" = wl(db)(k" - 1) + wl (d")k'. (6.9)

By repeatedly applying restriction (6.3), the condition that wl(da) = 1 + ka and the

fact that ui(d") - wl(ad") (mod 2), we calculate,

wl(ad")k' =- wl(&d")(kb - k")

Wl(9d")(wl(db) + 1 + tp(d") + r)
wl (d")(wl(db) + wl (ad") + 1 + p(d") + r)

- wl(d")wl(db) + pI(d")(p(d") + r) (mod 2).

Substituting this calculation in formula (6.9), and using restriction (6.3) again, we

obtain

T" r wl(db)(1u(d") + r + 1) + wl(adt")wl(db) + /(d")(M(d") + r) (mod 2).

Substituting this expression for Tr in formula (6.8) an cancelling all repeated terms
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leaves

5 r (d") + r + (1)(/u(d") + r 1) + /(d")(p/(d") + r)

-- rzI(d") + r + p(d") + r + 1 + /l(d") + l (d")r

I1 (mod 2),

as desired.
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Chapter 7

An equivariant Kuranishi structure

In this section, we complete the proof of invariance of N,d,k,l in the case when (X, L)

may admit holomorphic disks of Maslov index 0. If dim L = 2, the expected dimension

of holomorphic disks with Maslov index 0 is negative. For generic J, by Lemma 4.2,

such disks don't exist. So, we consider the case dim L = 3. By assumption, L is

orientable. The main tool we use to prove invariance in this case is the notion of a

Kuranishi structure, introduced in [4] and extended in [5]. For a summary of relevant

information on Kuranishi structures, see Appendix A.

Suppose (X, IC) is a space with Kuranishi structure KC = (Vp, Ep, Fp, sp, Op). Let t

be an involution of X.

Definition 7.1. An extension of an involution to an involution of KC consists of

Fp-equivariant maps tp : Vp - V,(p) and p : E, E,(p) covering p, such that

(El) L(p) o p = Idp .

(E2) s,p) o = p o p.

(E3) V)l(p) o Lpls;l(o) = t o p.

(E4) t q maps Vpq c Vq to V,(p)(q) C KV(q)

(E5) Lp o Wpq = W,(p)L)(q) o Lq and o pq = ,(p),(q) o q.
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Note that p, pi, induce bundle morphisms

Lt: det(TVp) det(Ep) -+ det(TV,p)) 0 det(E(P))

covering p. Now, suppose that (X, K) has a tangent bundle given by 'pq. We say

that acts smoothly on (X, K) if

"'L(p)l(q) = 'ip 0 pq.

If l acts smoothly and (X, IC) is oriented, the bundle morphisms pT may either preserve

or reverse the orientation of K over each connected component of X.

Now, we give the main idea of the proof. As we will explain, it is possible to

construct an oriented Kuranishi structure with tangent bundle K = (Vp, Ep, rp, Sp, bp)

on W. Moreover, we may construct K so that the induced Kuranishi structure on 0GW

admits a smooth orientation reversing involution baow extending qow. There exists

a good coordinate system g = (P, Vp', Ep, sp, bp) for K such that its restriction to

aGW is preserved by aw. That is, awP preserves Vp' C Vp. Finally, we may choose

Oaw - OawpP equivariant generic transverse multisections Sp, approximating sp and

coinciding exactly with sp away from 0- 1'( 0 GW). Indeed, since we have avoided -

multiply covered irreducible maps by means of an inhomogeneous perturbation v, the

unperturbed sp are already transverse away from Ip1(0GW).

Note that the charts of the induced Kuranishi structure on 0W are just aVp. We

define

aGVp p:= I1(aGW) C ap.

The same applies for the charts of good-coordinate system and we use the analogous

notation. The vanishing sets of the sp,, define a 1-dimensional simplicial complex

with boundary contained in the aV'. The boundary is simply a collection of points

with signed rational weights. By the same reasoning as in equation (6.2), it suffices to

show that part of this boundary contained in 9GVp' has total cardinality zero. Again,

we use the sign reversing involutions awp to cancel the points in pairs. The only
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slight complication arises because oaw may have fixed points. However, this is easily

resolved by the observation that a point x of the vanishing set of sp,n fixed by ,aw

must have weight zero. Indeed, by definition of transversality for multisections, each

branch Sip of S' is transverse to zero. So, if si n vanishes at x, the differential

d4, TsV (Ep) 

defines a non-zero element w E det(TVp') 0 det(Ep). Since sp,n is oawP - awp equiv-

ariant,

8VWP 0 Sp,n o awp

must also be a branch of Sp,, defining an element w' E det(TVp') det(Ep). But since

ow is orientation reversing, we know that w and w' belong to opposite components

of det(TVp) 0 det(Ep) \ {0}. So, the branches of Sp,n that vanish at come in pairs

that induce opposite orientations on x. Therefore, the total weight of x is zero.

We turn our attention to the construction of KC. Recall from (6.1) that

W = Mk,l(E, L, d) evX(xxy)oA ([0, 1] x {O, 1}) .

Let a9Mk,l(Y, L, d) denote the union of all the strata of the Gromov compactification

of Mk,l except Mk,l itself. Let qaM denote the involution of Mk,l induced by qbB#.

As explained in [5, Appendix 2], a weakly submersive Kuranishi structure K/C on

Mk,l(E, L, d) naturally induces a Kuranishi structure K on the fiber product W. If

we let Z/2Z act on X by and on [0, 1] x {0, 1}1 by exchanging 0 and 1, x x y is

clearly Z/2Z equivariant. So, if KCMIoMk,l admits an extension of oa, then 1ClaGW

will admit an extension of q5aw. So, we may narrow our focus to the construction of

/CM.

We assume E = D2. The other cases are similar but easier. Interpreting (4.3) as

a fiber product, we have

Mk,l(E, L, d) = JMk,l(, L, d) x. (so x ).
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Let OMk,(E, L, d) denote the union of all strata of the Gromov compactification of

Mk,l except Mkl itself. Let ~bM denote the involution of OAMk,l induced by kB#.

Again, we reduce to constructing a weakly submersive Kuranishi structure /CM on

Mk,l(E, L, d) such that its restriction to 1aMk,l(E, L, d) admits an extension of bMo .

In [5], Fukaya et al. constructed a Kuranishi structure on the moduli space of

J-holomorphic disks with Lagrangian boundary conditions. Away from AMk,t, we

use their construction without modification. Near AMk,t we need to modify the

construction slightly to make sure we can find an extension of 0bMj. So, we briefly

recount the idea of the construction of the Kuranishi neighborhood of a point p E

Mk,l given in [5]. We assume that p is a stable map of two components. The

construction for more components is similar. By definition, p is an equivalence class of

quadruples u = (E, u, z2, t1) BkP,(L, , d', d") such that #u = 0. The equivalence

relation in the case of two components equates reparameterizations of the bubble

component. When there are more than two components, the equivalence relation

also takes into consideration automorphisms of the underlying tree of the stable map.

We choose some u such that [u] = p. Locally trivializing £# by parallel translation

and projection to A0,'(TX), we define

D = DuOV rTPu,, (L, , d', d) )6#

to be the linearization of 0v at u. Since the bubble component u" of u may be

0-multiply covered, D# may not be surjective even for generic J and v. However,

since D# is Fredholm, we may choose a finite dimensional subspace Eu c E such

that if 7r: £u - /Eu denotes the natural projection, then r o D# is surjective.

Possibly enlarging Eu, we may assume that the evaluation maps from ker 7r o D to

T,()L and T,,(,)X are surjective. This is necessary for the Kuranishi structure we

are describing to be weakly submersive. By elliptic regularity, we may choose E to

consist of smooth sections of A°l(u*TX). By the unique continuation theorem, we

may assume these sections are compactly supported away from the singular point z0.

Let u, = ( -u, x, W) be sufficiently close to u. More precisely, choose a small 6 >
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0. We allow e to differ from t in a 6 neighborhood Ns of the singular point zo. Either

z0o may move slightly, or small neighborhoods of z in each component of 2 may be

removed and their boundaries glued to smooth the singularity. In particular, outside

N6, there exists a canonical identification of E with e. The pre-gluing construction

explained in detail in [4, 16] gives a smooth map : (E', 0E') -- (X, L) that agrees

with u outside Na and stays very close to u(zo) within Na. We assume that u, is 6

close to i in the W1 ,P norm. Also, we assume that z-, We, are 6 close to z', w. Then, for

a sufficiently small, there exist unique shortest geodesics from u(z) to u,(z) for each

z E E \ N,. For sufficiently small, we may assume N6 is disjoint from the support

of the sections of Eu. So, we may parallel translate Eu along the geodesics and then

project to A°'(TX) to obtain a subspace of (#). Here, we parenthesize # because

u, may be an irreducible W 'P stable map. If 6 is sufficiently small this subspace has

constant dimension. We let Eu denote the sub-bundle of £(#) so obtained. Similarly,

we let r: (# ) (#) / E
u define the projection to the quotient bundle.

According to [5, 4], we may essentially define Vp to be the set of u, as above such

that r o a(#)ue = 0. Then, we define Ep = EuIV, and sp = (#). The definition of 1p

is tautological. A great deal of hard analysis then shows that Vp is actually a smooth

manifold with boundary modelled on

ker (r o D) x (R, oo].

However, we do not need to know the details of this analysis at all for our purposes.

Also, we note that it is necessary to further enlarge Eu in order to construct the

maps cOpq, ,pq. However, this step is essentially formal, and it is not hard to make it

0-equivariant. So, we do not discuss it here and instead refer the reader to [5, end

of Chapter 18], or for more detail [4, Chapter 15]. Finally, we note that canonical

orientation of det(D#) induces an orientation of det(TVp) det(Ep). Indeed, note that

there exist natural isomorphisms ker Dsp _ ker DaJ,, and coker Dsp - coker Da,.
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On the other hand, the exact sequence

0 - ker Dsp - TV -, Ep - coker Dsp - 0

induces a natural isomorphism

det(TVp) X det(Ep) - det(ker Dsp) ® det(coker Dsp).

We list the modifications of the above construction necessary so that it will ad-

mit an extension of $ U. Clearly, we must choose a 0-invariant metric on X for

measuring all distances, constructing geodesics, and parallel transport. We consider

two cases: First suppose po := Cko~(p) 14 p. We simultaneously construct Kuranishi

neighborhoods of p and p4 as well as the extension of q5og' Indeed, we choose the

representative u := B#(u) of p,. Furthermore, we define Eu, = -bE#(Eu). This is

compatible with the construction above because of the +-invariance of the metric.

Again, by 0-invariance of the metric, it follows that 0b# maps EUIB# to Eu,0[B#

Since 0#, is B# - qE# equivariant, it follows that B# maps aVp to AVp,. So, we

define the extension of 0M,. by

Oaip = B#|1V, 0^P; := kE#IEP.

On the other hand, suppose that F,,f(p) = p. This may happen when u" is a s

multiply covered disk of even multiplicity. It is not hard to see that we may choose u

representing p such that OB# (u) = u. Indeed, this follows from the fact that all anti-

holomorphic involutions of D2 are conjugate under the action of PSL 2(R). This said,

we may define the extension of oav~ exactly as above. This completes the construction

of KC.

Now, a minor adaptation of the proof of [4, Lemma 6.3] gives the good cover g.

To obtain generic transverse multisections sp,, such that Sp,nlaGv is qaw equivariant,

we use an argument from [5, Section 11]. That is, since I/Coaw admits an extension of

qaw, it descends naturally to a Kuranishi structure on W/(Z/2Z). Similarly, gaIGW
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descends to a good coordinate system 5 = (P', V'E, ', k) on aGW/(Z/2Z). We

denote by

ir: W -aW/(Z/2Z)

the quotient map. We can apply the standard machinery of Kuranishi structures

developed in [4, Chapter 1], reviewed in Theorem A.4, to obtain generic transversal

multi-sections 4 n on V'. Pulling back ,n under 7r, we obtain kawp--awp equivariant

transverse multisections over aGVp. Since Vp is a manifold with corners, it is not hard

to extend a transverse section from OGVp to a neighborhood of OGVp. In fact, away from

corners, a neighborhood of aGV is diffeomorphic to [0, 1) x aGVp and we can extend

sections transverse to zero as constants over [0, 1). Since dim K = 1, a transverse

section cannot have zeros at corners of V, so we can extend near corners arbitrarily.

Since s are already transverse away from aGVp, it is not hard to patch them with

the extensions we have just constructed while maintaining transversality everywhere.

This completes the proof of Theorem 1.3. 0
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Chapter 8

Calculations

In this section we prove Theorem 1.8 and Example 1.6. The main tool of the proofs

is the notion of a short exact sequence of Cauchy-Riemann Pin boundary value prob-

lems. The first step in understanding short exact sequences of Pin boundary problems

is to understand short exact sequences of bundles with Pin structure. Suppose

0 ) V,- V V V" )- 

is a short exact sequence of real vector bundles over a base B.

Lemma 8.1. Assume that at least one of V' and V" is orientable. Then a Pin

structure on any two of V, V', V," naturally induces a Pin structure on the third. If

B is a one dimensional manifold then V' (resp. V") automatically carries a Pin

structure. If, on the other hand, V' (resp. V") is one dimensional, the Pin structure

on V' (resp. V") may be chosen canonically.

Proof. For the proof of this Lemma, we write dim V' = n and dim V" = m. Choosing

a metric on V, we may identify V - V' ~ V". By symmetry of the direct sum, we

may assume that V' is orientable. Use the orientation of V' to reduce its structure

group to SO(n). So, the first claim of the Lemma follows from the existence of the
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commutative square of group homomorphisms

Spin(n) x Pin(m) > Pin(n + m)

SO(n) x O(n) - O(n + m).

Indeed, we work on the level of transition functions which satisfy the co-cycle condi-

tion. The commutativity of the two factors of the product of groups ensures that the

direct sum does not effect the cocyle condition.

The second claim of the Lemma follows because the obstruction to the existence of

a Pin structure is a second cohomology class. The final claim follows when B = RPI

because, as noted in Remark 2.7, all automorphisms of a line bundle over RP 1 preserve

Pin structure and so we can induce a Pin structure canonically from a previously

chosen one on rR - RP or R - RP'. This extends to general B because a Pin

structure on V -- B, if it exists, is determined by its restriction to loops in B. 0

Now, let E, E', E", be complex vector bundles over a Riemann surface with bound-

ary E and let F, F', F", be totally real subbundles of E, E', E", respectively, over OE.

Suppose further that we have an exact sequence

O - E' , E - E'" - 0 O

that restricts to an exact sequence

O - F' - F , F" - 0. (8.1)

We refer to such a short exact sequence as a short exact sequence of pairs of vector

bundles. Let p, p', p", be Pin-structures on F, F', F", respectively. We say that p

is compatible with the short exact sequence (8.1) if p agrees with the Pin structure

naturally induced on F by p' and p" by Lemma 8.1. If F' or F" is one dimensional,

even if it does not come equipped with a Pin structure, we extend the notion of

compatibility by equipping it with the canonical Pin structure of Lemma 8.1.
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Definition 8.2. A short exact sequence of Cauchy-Riemann Pin boundary value

problems

O - D' , D -D" , 0
consists of

* An exact sequence of pairs of vector bundles

0 - (E', F') - (E, F) - (E", F") ° 0 (8.2)

such that at least one of F' and F" is orientable.

* Orientations on each of F, F', F", which is orientable. If all three are orientable,

we assume the orientation of F agrees with the orientation induced from F' and

F".

* Pin structures p, p', p", on F, F', F", respectively. If F' (resp. F") has dimension

1, we do not require p' (resp. p") as part of the definition, since it may be chosen

canonically by Lemma 8.1.

* Cauchy-Riemann operators

D: F(E, F) , r (°a0 (E)), D' F(E',F') r (,'(E'),

D": rF(E", F") , r (01 (E")) ,

such that the diagram

0 -- rF (Q0 1(E')) - r ( 0,1(E)) -- > (Q,'(E")) > 0
D' DI D"

0 rF(E', F') - r(E, F) - r(E", F") , O0

commutes.

Note that a short exact sequence of Cauchy-Riemann Pin boundary value prob-

lems is an example of a short exact sequence of Fredholm operators. See Definition
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2.15.

Proposition 8.3. Let

O D' - D" D' 0

be a short exact sequence of Cauchy-Riemann boundary value problems. Up to a

universal sign, the isomorphism

det(D') ® det(D") -, det(D)

given by Lemma 2.16 respects the canonical orientations of Proposition 2.8 if and only

if p is compatible with the short exact sequence. The universal sign depends on the

dimension of E, E', E", the topology of E and the orientability of F, F', F", restricted

to each boundary component of E.

Proof. By a deformation argument, similar to the proof of Proposition 2.8, we would

like to reduce the problem to a standard short exact sequence. Throughout the proof,

we assume that p is compatible with the short exact sequence. The other case follows

from Lemma 2.10. As in the proof of Proposition 2.8, degenerate E along curves

'Ya to a nodal Riemann surface t with nodal points %, and irreducible components

Aa - D2 and E /aE. Simultaneously, degenerate E, E', E", to complex vector

bundles E, , , over t that all satisfy condition (2.2) for appropriate n. Now, by

degenerate, we mean identify the fibers of Ejya (resp. E'lya, E"Ija) with the single

fiber El. (resp. E, Ela). Such a degeneration satisfying condition (2.2) is unique

up to homotopy. Furthermore, we may choose the degeneration of E to extend the

degeneration of E'. These two degenerations induce a degeneration of E" via the short

exact sequence (8.2). So, we may assume that there exists a natural induced short

exact sequence

o - (E',F') - (E, F) (E",'P) , 0. (8.3)

Choose a particular isomorphism (2.2) for (Etla,P F'laa). Extend it to an iso-

morphism (2.2) for (laa, Foa,a). Denote the canonical bundle pairs over (D2, 0D 2)
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by

(E( F) 1(T Cn- lTR Rn-1), i= -1

(Cn iRn), i = .

The following diagram shows that we have a naturally induced isomorphism (2.2) for

O . (Ei,n, Fi,n) (Ei+j,n+m, Fi+j,n+m) - (Ej,m, Fj,m) --- 0

o - (E'l a, F'laA,) (EI F (lE"a,, P"la,) 0.

Here, the top row makes sense because by assumption, either i or j or both are 0.

So, the top row is tautological. The bottom row is just a restriction of short exact

sequence (8.3). Since the morphisms in the top row commute with the canonical

Cauchy-Riemann operators on the bundles Ei,n, the isomorphisms (2.2) just chosen

induce Cauchy-Riemann operators Da, D' and D", on Ela, E'la, and E"IAa respec-

tively, that commute with the morphisms of the short exact sequence (8.3). We claim

that if n + m > 3, the preceding construction is unique up to homotopy. Indeed, the

short exact sequences in the above diagram are split. So, the middle vertical mor-

phism determines both of the other vertical morphisms. On the other hand, when

n > 3, the middle vertical morphism is unique up to homotopy by Lemma 2.6. For

n = 2, we use a stabilization argument as in the proof of Proposition 2.8 to reduce to

the case n = 3.

Choose operators D, D' and D", on El, E'I and E"'l compatible with the short

exact sequence (8.3). Note that the induced isomorphism

det(D') X det(D") , det(D),

always preserves the canonical complex orientations of each side. Finally, choose

homotopies of operators D, D and D', on E, E' and E" respectively, compatible
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with the short exact sequence (8.3), such that

_ = D, D1 = #aDa#D

and similarly for D; and D'. Applying Lemma 2.16 to the short exact sequence of

families of Fredholm operators,

0 , _ , _ o' .. 0

proves that the sign is universal, as claimed. 0

We now prove a technical lemma that will be useful in the proof of Theorem 1.8.

The idea of the proof is taken from [16, proof of Theorem C.l.1O(iii)], which in turn

follows the work of Hofer-Lizan-Sikorav [7].

Lemma 8.4. Let (E, F) -, (D2, D2 ) be a vector bundle pair with dimc E = 1, and

denote its Maslov index by IS = pI(E, F) > -1. Let D be a real Cauchy-Riemann

operator on E. Let z, ... , Zk E 0D2, and wl, ... , wl D2 be distinct marked points.

Assume 1 + 2k = p + 1. Denote by

ev : ker(D) - iRk C 1

the evaluation map defined by

(f(Z),...,(Zk), ((WI), * .. ., (W)), ~ E ker D.

Then ev is always surjective.

Proof. The Fredholm index of D is well known to be ,u+ 1. It follows that the Fredholm

index of D ev is 0. So, if ev is not surjective, there must exist some non-zero

6 E ker(D) such that 6(zi) = 0, i = 1,..., k, and 6(wj) = 0, j = 1, .. , l. According

to [16, proof of Theorem C.1.10(iii)], there exists a complex linear Cauchy-Riemann

operator D' on E and a function u E W1'P(D2 , C), such that D'(u6) = 0. This leads
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to a contradiction since a holomorphic section of (E, F) may have at most zeros

where interior zeros are counted twice. O

Remark 8.5. Note that it is crucial for this argument that the underlying Riemann

surface is a disk. Otherwise, the Fredholm index of D is not L + 1. This explains,

at least in part, why Welschinger's counting scheme does not immediately extend to

curves of higher genus.

Proof of Theorem 1.8. First, we treat the case dim L = 2. Welschinger's invariants

are defined only in the strongly semipositive case when E = D2 . So, we take v = 0.

As explained in Section 4, we could consider the moduli space defined by quotienting

by the action of PSL 2(R), but for this proof it seems more natural to take a section

of the PSL 2(R). In particular, we add fixed marked points constrained to divisors,

even when 1 > 0, as explained in Remark 4.5. As in Section 4, we denote by (A, f)

and (B, g) the divisor constraint pseudo-cycles. In this proof, we will refer to the

extra added marked points as zl and Z- 2. As in Section 4, we fix zl to be at a point

so and we fix z_2 to lie on a line £.

Recall from Section 4 that, by definition,

ND2,d,k,l := #ev - '(, y-).

So, we are counting holomorphic curves through a generic collection of marked points,

just like Welschinger. The sign of a given point u = (u, z, w) E ev-l(x, y) depends

on whether or not the isomorphism

devu: det(TMk,l(L, E, d))u - ev* det (T (LIk lx X l) ) u (8.4)

agrees with the isomorphism of Theorem 1.1 up to the action of the multiplicative

group of positive real numbers. We would like to reduce this sign to the Welschinger

sign associated with the curve u, up to a universal correction factor. For this purpose,

we apply Proposition 8.3 to a particular short exact sequence of Cauchy-Riemann

boundary value problems. Indeed, we take the underlying short exact sequence of
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vector bundle pairs

0 - (TD 2 , TD 2) d (u*TX,u*TL) - (N ,NU) 0. (8.5)

Pulling back the Pin structure on TL induces a Pin structure pu on u*TL. We equip

(u*TX, u*TL) with the linearized aJ operator Du = DOJI and we denote by D' and

D" the natural operators it induces on the other terms of the short exact sequence.

Note that TOD2 is orientable and has a natural orientation, so we are in the situation

of Definition 8.2. The natural orientation on TOD2 also induces an orientation on

ker D'. In addition, note that D' is the Cauchy-Riemann operator induced by the

complex structure of D2 since u is J-holomorphic.

Before continuing, we introduce some notation for configuration space. Define the

configuration space of k boundary points and interior points of the disk to be

Ck, := (D 2)k X (D2)1 \ A.

Thinking of Mk,l as the fiber product

Mk,l := Mk,+2 XX2x(D2)2 (A x B x So x ),

we obtain Diagram 8-1. The central column of Diagram 8-1 is the short-exact sequence

0 ,Tu -k,l > TuMk,l

Tz_,z_2Co2 G ker D' TV,'Ck,l+ 2 D ker Du TCkj ker D
E Te T(A x B) D Te T(A x B)

TZ,zoC0,2 E T(X x X) - Tz_,,z_2Co,2 E) T(X x X) -, 0

Diagram 8-1

for the tangent space of the fiber product. The main content of the central row

is the short exact sequence of solutions of the the short exact sequence of Cauchy-

Riemann boundary value problems (8.5). This short exact sequence exists because by
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assumption the Cauchy-Riemann operator at each term of the sequence is surjective

and we can apply the snake lemma from homological algebra. Diagram 8-1 shows

how to construct a natural isomorphism

TMk,l - T9,Ck,l G ker D. (8.6)

Choose an orientation w on u*TL if it is orientable. Since Du is surjective by

assumption, by Proposition 3.1, w induces an orientation on ker(Du) _ det(Du).

The central row of Diagram 8-1 shows that the w orientation on ker(Du) induces

an orientation of TMk,1 ~ Tg,,Ck,l ®· ker D as the quotient of an oriented vector

space by an oriented vector space. Then, the isomorphism of Theorem 1.1 induces

an orientation of ev* det (T (Lik l x XI)) v . The sign of u is now the sign of map (8.4)

with respect to the orientations of the domain and range just outlined.

On the other hand, w naturally induces an orientation w' on NL as a quotient

bundle. Since D" is surjective, invoking Proposition 3.1 again, w' induces an orienta-

tion on ker(D") and hence on TMk,l by isomorphism (8.6). By Proposition 8.3, the

w' orientation on TMk,l agrees with the w orientation on TMk,I if and only if p is

compatible with the short exact sequence (8.5).

Recall that Welschinger's invariant counts curves with sign determined by the

parity of the isolated real double points. By the adjunction formula, a rational curve

u of degree d in a symplectic four manifold has a topologically determined total

number of double points
J(U) = dd- cl(d) - 2

2

Complex double points come in pairs. So, the parity of the real non-isolated double

points is determined by the the parity of the real isolated double points. On the other

hand, the parity of the real non-isolated double points determines the parity of the

number of twists of the real part of the curve about itself. This exactly determines

when the Pin structure p, is compatible with the short exact sequence (8.5).

Finally, we claim that the map (8.4) always preserves orientation if we consider the

w' orientation on TMk,l together with the w orientation on ev* det (T (Llkl x Xl)) v .
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Indeed, by Lemma 8.4, if we vary D" to a standard complex linear Cauchy-Riemann

operator on Nx and vary NL to a standard boundary condition keeping the marked

points distinct, the evaluation map will remain surjective during the whole variation.

So, the sign is standard for a given ordering of the marked points. Then we use

Definition 3.2 that twists the orientation of TMk,l by sign(w). Indeed, switching the

order of the marked points induces a change of sign since each marked point is a

codimension n - 1 condition. The twisting cancels this sign change.

The case n = 3 is very similar. The same exact sequence (8.5) again plays a

central role. Since N x is now two dimensional, we need to define a Pin structure on

NL with which P, may or may not be compatible. In [21], Welschinger does exactly

that using the splitting of N x into holomorphic line bundles. It is important in that

paper that X be convex so that J may be taken to be integrable. Then the Cauchy-

Riemann operator DE is the standard one, so the evaluation map is also standard

and has a standard sign. If Do were not standard, we could not apply Lemma 8.4

as before since N x is no longer one dimensional. In [22], Welschinger modifies the

definition of spinor states to take into account possible changes of orientation arising

from walls where the evaluation map is not surjective. This allows him to extend the

definition of his invariants to general strongly-semipositive real symplectic manifolds

X. O

Now we turn to the proof of the calculation in Example 1.6. We generalize Kontse-

vich's idea for calculating the closed Gromov-Witten invariants of the quintic threefold

[11] to deal with the open case as well. Extending previous notation, we denote by

r the tautological line bundle of CPn equipped with its canonical complex structure

and we denote by TR the tautological line bundle of RP n. Furthermore, we let

c: oCpn Cpn, t : T a , -

denote complex conjugation and the bundle-map of covering complex conjugation
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respectively. Let s E rF(r* 5) be a real section, i.e.

t osoc' = S.

We take

Xs = = O} C CP4, Ws = WFSIX, L = Xs n RP4.

That is, Xs is a quintic threefold equipped with the symplectic form induced by

the restriction of the Fubini-Study form of CP4 and L8 is its real part. Choosing s

generically, we may assume that Xs is a smooth manifold. When it does not lead to

confusion, we may drop the subscript s.

We define a bundle d over MMo,o(RP4 , D2 , d) by specifying its fibers,

ddU := r(U*r*5, U*7 5), u E Mo,O(RP4, D2, d)

By restricting to the image of each curve, s induces a section of .Fd that vanishes

exactly on those curves entirely contained in X,.

Lemma 8.6. The total space of YFd is orientable for each d. For d odd, JFd is an

orientable vector bundle.

Proof. Let u E Mo,o(RP4 , D2 , d) and E F,. After choosing a connection on Fd,

there exists a canonical isomorphism

T(u,t)d rF (U*T*®5, U*r. 5) rF (u*TCP4 , u*TRP 4)

F r (u* ( * 5 TCP4), u* (T;®5 TRP4 )) .

Since r*®5 EDTRP4 is orientable, after choosing an orientation, Proposition 2.8 gives a

canonical orientation on each tangent space. It is not hard to see that this orientation

varies continuously with u and .
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When d is odd, we have

Fd := r (U*T*®5, U*T® 5 ) , r (*® 5 d D2 Tr; 5 d)

where we think of D2 as one hemisphere of CP' with boundary aD2 = RP1 . Since

5d is odd, again Proposition 2.8 gives each cF, a canonical orientation that varies

continuously with u. [

Let V - B be an orientable real vector bundle. We denote by e(V) the Euler

class of V.

Proposition 8.7. Suppose is transverse to the zero section of F. Let d be odd.

Then

ND2,d,o,o = e(fd)

Remark 8.8. This proposition should still hold true when is not transverse to the

zero section of F. However, the proof will be slightly more complicated. We leave it

for a future paper.

Remark 8.9. If d is even, when the details of the necessary corrections from real curves

with empty real part are worked out, an argument similar to the proof of Proposition

8.7 should show that ND2,d,O,O is zero. Indeed, ND2,d,0,0 should be given by the self-

intersection number of the zero section of Fd. Since dim Mo,o(RP4, D2, d) = 5d + 1,

which is odd when d is even, the self intersection number should be zero.

Proof of Proposition 8. 7. Let NL8 denote the normal bundle of L8 in RP4 . By the

adjunction formula, it is isomorphic to * 5 1L8. Since NL, is one dimensional, by

Lemma 8.1, we may choose its Pin+ structure canonically. Equip T;®5 with a Pin +

structure corresponding to the Pin+ structure of NL under the isomorphism of the

adjunction formula. Choose Pin + structures on TLs and TRP4 compatible with the

short exact sequence

0 - TLs - TRP4 - NL O.
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As in isomorphism (8.6) of the proof of Theorem 1.8, we may identify

TuMo,o(L, D2 , d) _ ker D" (8.7)

where D" is the naturally induced operator on the bundle pair (N'Xs, NLs). Equip

NLS with the Pin + structure induced by the short exact sequence

0 ) TOD2 du) u*TLS NL 0.

Then, by Diagram 8-1 and Proposition 8.3, we may assume that isomorphism (8.7) is

orientation preserving when ker D' is given the canonical orientation of Proposition

2.8. From Diagram 8-2 along with its conjugation invariant part, we deduce a short

0 u* Nx - u* Nx

TD2 , u*TCP4 -, NC

I *TI
TD2 - u*TX N x

Diagram 8-2

exact sequence of Cauchy-Riemann boundary value problems

0 , (Nc, N)- (NU N 4) - (u*Nx, U*NL) - 0. (8.8)

The Cauchy-Riemann operators at each term of the sequence are induced by the

rows of Diagram 8-2. The conjugation invariant parts of the rows of Diagram 8-2

induce Pin+ structures on each of the boundary conditions in short exact sequence

(8.8). The induced Pin+ structures are compatible with the exact sequence because

the already chosen Pin + structures on the conjugation invariant parts of the first

two columns of Diagram 8-2 are compatible. Recall from the proof of the adjunction

formula that the isomorphism Nx , - r*®5 1x, is given by the differential ds. So, we
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have a diagram

r(u*Nx, u*NL)

0 - F(NX, NL) Cp 4(N4 NRp 4) Id 0.0- r( NX ,7LN@P4 R7(Uid 0.

11II
r (U**®s5, U*T 5)

Since CP4 is convex, r(N CP4 , NRP 4) has expected dimension. Since *®
5 is a line

bundle, its sections always have expected dimension. By assumption, d is an iso-

morphism. So, by the snake lemma, r(NX , NL) must have expected dimension, i.e., 0.

So, its orientation is just a sign. Since all Pin + structures in the above diagram have

been chosen compatibly, the sign is given exactly by the sign of d, as claimed. f[

Proof of Example 1.6. The section SF E r(r*®5 ) defining the Fermat quintic does not

satisfy the assumptions of Proposition 8.7 even in degree 1. However, an elementary

transversality argument shows that we may choose a nearby section s which does,

in degree 1. For such an s, we know that Xs is diffeomorphic to XSF and L is

diffeomorphic to LsF. Note that if s is not sufficiently close to SF, the topology of

L, could be different from that of L,F. However, since we choose s close to sF, we

may think of the deformation of sF to s as a deformation of complex structure, which

leaves the invariants unchanged. By Proposition 8.7, it suffices to calculate e(F1 ).

Let G(k, n) denote the Grassmannian of real oriented k planes in n space and let rG

denote its tautological bundle. It is not hard to see that

Mo,o(RP 4, D2, 1) _ G(2, 5), f F1 - Sym5(rG).

Applying the splitting principle, we calculate the Pontryagin class

p3(Sym5(TG)) = 225pl(rG) 3. (8.9)
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Then, taking square roots, we have

e(Sym5(G)) = 15e(rG) 3 = 15e('rG 3 ).

Here, we have to include G(2, 5) into G(2, n) for n sufficiently large so that both sides

of equation (8.9) are not just zero. We use the unique factorization property of the

polynomial ring H*(G(2, oo)) to justify taking square roots on both sides.

Finally, since there are two oriented 2-planes in the intersection of three generic

hyperplanes in R5, we know that

|~ ~ e(rG3 ) =2 or 0. (8.10)
(2,5)

To show the integral is actually 2, we proceed as follows. Let G(k,n) denote the

Grassmannian of unoriented k-planes in n-space and let ~Gj denote its tautological

bundle. Note that r : G(2, 5) -- G(2, 5) is the orientation cover. Moreover, lr*G - rG

and wl(~G) = w1(TG(2,5)). So, both points count the same and integral (8.10) is 2

as desired. 0
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Appendix A

Kuranishi structures

In this appendix, we briefly review the definition of a Kuranishi structure, as intro-

duced in [4] and extended in [5]. We essentially follow the conventions of [5, Appendix

2]. In the following discussion, we take X to be a compact metrizable space.

Definition A.1. A Kuranishi structure with corners on X of dimension d consists

of the following data:

(1) For each point p E X,

(1.1) A smooth manifold with corners Vp and a smooth vector bundle Ep, Vp

such that dim Vp - rank Ep = r.

(1.2) A finite group Fp acting on Ep --* Vp.

(1.3) An Fp-equivariant smooth section sp of Ep.

(1.4) A homeomorphism bp from s-l(O)/rp to a neighborhood of p in X.

(2) For each p E X and for each q E Im ip,

(2.1) An open subset Vpq c Vq containing 'ql-'(q).

(2.2) A homomorphism hpq: rq -- rp.

(2.3) An hpq-equivariant embedding pq : Vpq --* Vp and an hpq-equivariant in-

jective bundle map pq: Eq[lvp - Ep covering Wpq.
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Furthermore, the above data should satisfy the following compatibility conditions:

(Cl) Opq o Sq = Sp o (Opq.

(C2) q = po ,pq.

(C3) If r E /q (s-l1(0) n Vpq) , then in a sufficiently small neighborhood of r,

Ppq 0 (qr = pr,.

A crucial ingredient in the construction of the fundamental class of a Kuranishi

structure is the notion of the tangent bundle of a Kuranishi structure. We take the

following definition from [4, Section 5].

Definition A.2. A tangent bundle for a Kuranishi structure consists of a collection

of vector bundle isomorphisms

cIpq : NupUq - Epivpq/EqIvpq

covering the embeddings pq. Furthermore, if q E Im p and r E 1q (s-l(O) n Vpq) ,

then in a sufficiently small neighborhood of r, we have a commutative diagram

o -N NVpVr , NV. -- NvpVq 0 O

|Ior |Pr 4,Pq

o - EE ,/ E E/E, EpEq O.

We also need the notion of an orientation for a Kuranishi structure, which again

comes from [4, Section 5].

Definition A.3. An orientation of a Kuranishi structure with tangent bundle con-

sists of a family of trivializations of det(TVp) ® det(Ep) compatible with the isomor-

phisms

det(TVq) det(Eq)lvpq det(TVp) det(Ep) v,,

induced by Dpq.
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Without providing full detail, we remind the reader of certain definitions relating

to multi-sections that are used in Section 7 of this paper. For details, see [4, Section

3]. In the following, for Z a space, we denote by St(Z) its fh symmetric power. That

is

Se(Z) := Ze/

where Se is the group of permutations of objects acting on Ze by permuting the

factors. Let E - V be a vector bundle. If U C V is sufficiently small, then EJu is

trivial. So, if rank E = r, a section of E over U may be specified a map U - Rr.

After possibly shrinking U, a multi-section s is specified by a map su: U - St(Rr).

Note that globally, the multiplicity can change. By definition, the multi-section s

is said to be smooth if after possibly shrinking U again, there exists a smooth lifting

of su to the Cartesian product,

S: U -+ (Rk)e

The components of this lifting locally define i sections s of E. We call the s branches

of s over U. If E - V is a r-equivariant vector bundle, then there is a natural notion

of a r-equivariant multi-section coming from the induced action on the symmetric

power. Note that for r-equivariant smooth sections, we do not require the local lifts

su to be r-equivariant. We call a smooth multi-section transverse if each branch of

each local lifting is transverse. The vanishing set of a multi-section s is defined locally

by

-'(O) nfu = U ()- ().
i

If s is transverse and sufficiently generic, then s-l(0) admits a smooth triangulation.

If we fix a trivialization of det(E) ® det(V), then the vanishing set of any smooth

section is oriented. So, s-l'(0) actually defines a rational singular chain by weighting

each simplex of its triangulation by the signed number of branches s that vanish on

it, divided by t.

Before we can define the fundamental chain, we need to recall the notion of a
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good coordinate system introduced in [4, Section 6]. Fix a Kuranishi structure on X.

We denote the various parts of the Kuranishi structure by the same symbols as in

Definition A.1. For Vp C Vp, we denote by Ep, Ib,, sp, etc. the restrictions of all the

related parts of the Kuranishi structure. A good coordinate system specifies a finite

ordered set P c X and V c Vp for each p E P such that

X C UpEpImV.

Furthermore, for q, p E P such that q < p, it specifies a neighborhood

Vp' D ~-'(I lb)

an embedding pq: Vpq -* Vp' and an injective bundle map

Op: Eqlvp ', Ep

covering (4pq. Of course, we must require Sp o Spq = bpq o s'. Also, p4 q (resp. Opq) must

respect the actions of Fq and rp in such a way as to define a map of the quotient

orbifolds (resp. orbi-bundles). A few additional technical conditions ensure requisite

compatibility.

The following is a restatement of [4, Theorem 6.4].

Theorem A.4. Let (P, Vp', p, s, pq, Opq) be a good coordinate system on a space

X with Kuranishi structure. Suppose that X has a tangent bundle in the sense of

Definition A.2. Then, for each p E P, there exists a sequence of smooth rp-equivariant

multi-sections spn such that

(P1) Sp n (pq = (pq S,n

(P2) lim.,oo spn = Sp.

(P3) Sp,, is transversal to 0.
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(PI) The restriction to Im Opq of differential of the composition of any branch of sp,n

and the projection Ep - Ep/Eq coincides with the isomorphism q: Nv Vq -

E/Eq.

Write P = {p, P2, .. .}. The proof of Theorem A.4 uses induction on the ordered

set P. Assume the existence of perturbations Spi,n satisfying conditions (P1)-(P4) for

i < j. The embeddings opI, the bundle maps piPj and the isomorphisms PiPj , allow

the extension of sp, to a neighborhood of

U Im p.,P C Vj,.
i<j

A small perturbation of the extension produces sp,.n as desired. Full detail is given

in [4, Section 6].

105



106



Bibliography

[1] Aganagic, M., Klemm, A., Vafa, C., Disk instantons, mirror symmetry and the

duality web, Z. Naturforsch. A 57 (2002), no. 1-2, 1-28. arXiv: hep-th/0105045.

[2] Arnol'd, V. I., On a characteristic class entering into conditions of quantization,

Funkcional. Anal. i PriloZen. 1 1967, 1-14.

[3] Cieliebak, K., Goldstein, E., A note on the mean curvature, Maslov class and

symplectic area of Lagrangian immersions, J. Symplectic Geom. 2 (2004), no. 2,

261-266.

[4] Fukaya, K., Ono, K., Arnold conjecture and Gromov-Witten invariant, Topology

38 (1999), no. 5, 933-1048.

[5] Fukaya, K., Oh, Y.G., Ohto, H., Ono, K., Lagrangian Intersection Floer Theory,

Anomaly and Obstruction, Kyoto University Preprint, 2000.

[6] Gromov, M., Pseudoholomorphic curves in symplectic manifolds, Invent. Math.

82 (1985), no. 2, 307-347.

[7] Hofer, H., Lizan, V., Sikorav, J. C., On genericity for holomorphic curves in four-

dimensional almost-complex manifolds, J. Geom. Anal. 7 (1997), no. 1, 149-159.

[8] Itenberg, I. V., Kharlamov, V. M., Shustin, E. I., Logarithmic equivalence of the

Welschinger and the Gromov- Witten invariants, Uspekhi Mat. Nauk 59 (2004),

no. 6(360), 85-110, translation in Russian Math. Surveys 59 (2004), no. 6, 1093-

1116.

107



[9] Katz, S., Liu, C. C., Enumerative geometry of stable maps with Lagrangian

boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys. 5

(2001), no. 1, 1-49.

[10] Kirby, R. C., Taylor, L. R., Pin Structures on Low-dimensional Manifolds, Ge-

ometry of low-dimensional manifolds, 2 (Durham, 1989), 177-242, London

Math. Soc. Lecture Note Ser., 151, Cambridge Univ. Press, Cambridge, 1990.

[11] Kontsevich, M., Enumeration of rational curves via torus actions, The mod-

uli space of curves (Texel Island, 1994), 335-368, Progr. Math., 129, Birkhuser

Boston, Boston, MA, 1995. arXiv: hep-th/9405035.

[12] Kontsevich, M., Manin, Yu., Gromov-Witten classes, quantum cohomology, and

enumerative geometry, Comm. Math. Phys. 164 (1994), no. 3, 525-562.

[13] Labastida, J. M. F., Marino, M., Vafa, C., Knots, links and branes at large N,

J. High Energy Phys. 2000, no. 11, Paper 7, 42 pp.

[14] Li, J., Tian, G., Virtual moduli cycles and Gromov- Witten invariants of algebraic

varieties, J. Amer. Math. Soc. 11 (1998), no. 1, 119-174.

[15] Liu, C. C., Moduli of J-Holomorphic Curves with Lagrangian Boundary Con-

ditions and Open Gromov-Witten Invariants for an S-Equivariant Pair.

arXiv:math.SG/0210257

[16] McDuff, D., Salamon, D., J-holomorphic curves and symplectic topology, Ameri-

can Mathematical Society Colloquium Publications, 52, American Mathematical

Society, Providence, RI, 2004.

[17] Milnor, J. W., Stasheff, J. D., Characteristic classes, Annals of Mathematics

Studies, No. 76, Princeton University Press, Princeton, N. J., 1974.

[18] Ooguri, H., Vafa, C., Knot invariants and topological strings. Nuclear Phys. B

577 (2000), no. 3, 419-438.

108



[19] Ruan, Y., Tian, G., A mathematical theory of quantum cohomology, J. Differen-

tial Geom. 42 (1995), no. 2, 259-367.

[20] Welschinger, J. Y., Invariants of real symplectic 4-manifolds and lower bounds

in real enumerative geometry, Inventiones Mathematicae, Volume 162, Issue 1,

Oct 2005, 195 - 234. arXiv:math.AG/0303145.

[21] Welschinger, J. Y., Spinor states of real rational curves in real algebraic convex 3-

manifolds and enumerative invariants, Duke Math. J. 127 (2005), no. 1, 89-121.

arXiv: math.AG/0311466.

[22] Welschinger, J. Y., Enumerative invariants of strongly semi-positive real sym-

plectic manifolds, arXiv: math.AG/0509121.

[23] Witten, E., Topological sigma models. Comm. Math. Phys. 118 (1988), no. 3,

411-449.

[24] Witten, E., Two-dimensional gravity and intersection theory on moduli space,

Surveys in differential geometry (Cambridge, MA, 1990), 243-310, Lehigh Univ.,

Bethlehem, PA, 1991.

[25] Witten, E., Chern-Simons gauge theory as a string theory, The Floer memo-

rial volume, 637-678, Progr. Math., 133, Birkhauser, Basel, 1995. arXiv: hep-

th/9207094.

109


