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ABSTRACT

An extensive review and evaluation of the optimal models to asses the dynamic effects

of moving vehicle on a bridge is performed. These models, with increasing grades of

complexity, represent the best approximation of the problem under certain assumptions.

Case studies are also performed with these models.

In addition to the dynamic analyses, which allow evaluations of the problem and gives

valuable hints on the optimal design of bridges subjected to moving vehicles, vibration

control devices such Tuned Mass Dampers (TMD) and Multiple Tuned Mass Damper

(MTMD) are presented. Results from different authors are included, which allow assessing

the applicability and effectiveness of these methods.
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1. Introduction

The vibrations caused by the passage of vehicles have become an important

consideration in the design of bridges. The reasons for this are twofold:

- The stresses increase above those due to a static application of the load.

- An excessive vibration may be noticeable to persons on the bridge. This may

have a psychological effect of mistrust on the users of the structure.

With the rapid development of high-speed railways, the dynamic response of railway

bridges has received much attention from researchers. To evaluate the complex

interaction between the vehicle and the bridge, the vehicle can be modeled as a moving

force, as a moving mass or as a moving suspension mass.

In order to control excessive vibrations in bridges under moving loads, it is first

necessary to understand how exactly the bridge behaves.

In Part I of this thesis we present various dynamic analysis methods of increasing

degree of complexity. While in the literature we can find many different formulations to

this problem, here we shall restrict our attention to the simplest ones that suffice to

model the problem with engineering accuracy. Through the knowledge of how the

various physical parameters affect the dynamic behavior of a bridge, we can maintain its

response within acceptable limits.

In Part II, we review various methodologies and devices to control or ameliorate

vibrations of the bridge, and present practical examples of their effectiveness.
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DYNAMIC ANALYSIS

2. Vehicles models

According to Au, Cheng, Cheung [1], the interaction problem between moving

vehicles and the bridge structures can be approached in four different ways:

- Moving-force model, in which the vehicle is modeled as a force moving along the

bridge. The dynamic response of the bridge under the action of a vehicle is

captured by this model, although the interaction between the vehicle and the

bridge is not considered.

- Moving-mass model, in which the vehicle is represented as a moving mass. This

is the most common method, appropriate when the mass of the vehicle is not

negligible.

- Moving-vehicle model, in which the vehicle is modeled as a mass with a spring

and a damper. It considers the vibrations of the moving mass, which is

significant in the presence of road surface irregularities for vehicles running at

high speeds.

- Moving-vehicle model considering vehicle's pitching effects presented by Yang,

Chang and Yau [2], in which the vehicle is modeled as a rigid beam supported by

two spring-dashpot units. It can simulate the pitching effect of the car body on

the vehicle and on the response of the bridge. It has been demonstrated that for

the case with no track irregularities, the pitching effect can be neglected.

However if the dynamic behavior of the vehicle is of major concern, then the

pitching effect cannot be generally neglected. Furthermore, the vehicle response

will be enormously amplified in the presence of track irregularities. Therefore it is

unsafe to disregard this effect in high-speed trains from the point of view of

design and also the riding comfort of passengers.

8
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3. Bridge models

A beam model can be adopted in the vast majority of problems to explain the

essential characteristics of a bridge.

A plate model may be necessary for slab bridges and in cases in which the

movement of the vehicle is not along the centerline. In these cases the modal

superposition method may require less computational effort than the commonly used

finite element method (FEM).

4. Significant parameters

The most significant parameters affecting the response of the bridge are:

- Natural frequencies of the bridge

- Vehicle velocity

- Relative position of the vehicle on the bridge

- Damping characteristics of the vehicle and the bridge.

- Road irregularities and roughness

5. Analysis of two high-speed trains crossing on a bridge

In cases of bridges with two tracks, it is important to check the response of the

vehicle-bridge interaction elicited by trains moving in opposite directions. Lin and Ju [3]

used a three-dimensional finite element analysis of a bridge and concluded that the

maximum dynamic response caused by two-ways trains is at most twice that of a one

way train, and it occurs when both trains travel at the same speed. Finite element

results also indicate that the averaged response ratio in the three global directions is

about 1.65 when the two-way trains run at the same speed.
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6. Modeling a train over a bridge as a beam under a moving load:

analytical solution

vt F

I m. EI

x

L

Figure 1 Bridge with a vehicle modeled as a force load.

The analytical solution for the modal response a simple supported beam, subjected

to concentrated load, at a point xF, position of the force in the spam, neglecting

damping is:

with

Un+W 2 -u F. n 1F

mM- [O (x)]2dx

If it is a simply supported beam and prismatic with m = linear mass, the

eigenvectors $, and the eigenvalues con are:

On (x)= sin C (2)

n 2 /T2co = 2  L (3)

For a moving load with constant velocity v, xF= vt hence, the governing equation

of the vertical displacement of the bridge is:

2.~ *u = 2*- F .7l-vt (4)Aoi+ Cod 2n for tism 
(4)

According to Biggs [4], the modal solution for this equation is:
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Un =-2 2 -(L )n
M-1-wn

(5)

The DLF or Dynamic Load Function is defined as the ratio of the dynamic and

static responses.

We see now that this case is the same as that of a single beam without damping,

subjected to a sinusoidal forcing function. We solve for the general case:

F sin Qt
M y+ ky = F sin fQt s""" > y = C, sin wot + C2 cos ot +±-- 2

M O2 Q2
(6)

with initial conditions:

F sinG
Y=0= C sinO+C 2 cosO + 2

F-Q cos0
yO=0=Ccoo-C 2 cocos0 + 2-

m cJ o2

(7)

(8)

Solving C, and C2 and plugging into the general solution, we get the response y :

(9)
F sinQt Q sinQt

Y M (t)2 _ Q 2 Ct C92 _ Q 2

From here we get that in our case, the Dynamic Amplification Function is:

DLF =2 sin f~t

-

- Q - sin con t
Con~

with Qn = 1 V
/

Finally, the response y of any point x of the bridge through time is:

N

n=1

2F
yAx) =- M1

N

- L 2 .2
n=I (n -Q 2

" sin cont -sin
0)n

These equations only apply when the force is still on the span. After the force has

passed, the response is a free vibration with initial conditions equals to the conditions in

the beam at the moment when the force leaves the span.

11
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We can see from the equations that the response under a moving load can be

critical if the velocity of the load is such that Qn similar to con.

We will have resonance of the loads with the bridge if:

7r V
C= (n velocity of resonance with the structure

SV - (13)

We also see that the largest participation is generally in the first mode, because the

higher modes have larger frequencies co,, which would in turn require larger velocities

to attain resonance.

Nevertheless, if the velocity of the load approaches the velocity of resonance, we will

get unacceptable deflections, which can be critical in design.

The DLF difference between static and dynamic response for the case of a simple

supported beam can be expressed in each mode as:

DLF =n 2 2 2L 2 2 EI -C
:1- sin n -v

2~ -V)

- ' sin n 22

n2/T2 EI 12

2 m

EI t(14)

We will conduct an analysis of the response of the bridge in each mode, so that we

can, from here on, neglect those modes that don't produce a significant response.
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6.1. Case study:

If we consider a typical railway bridge [5] with the following properties:

L = 50 m

Vveicie =90[m / sg]

E = 3.303*1010 [N/m2]
m = 43650.864 [kg/m]

I = 18.638 [m4]

3.5 m

14 m

Figure 2. Cross section of the bridge.

With the formulas given previously, a MATLAB program has been developed (see

Appendix A) that gives the response of any point of the bridge. With that program, the

following figure is drawn, in order to compare the deflection through the bridge in time.

We conclude that the point x = L/2 is in where the deflection is largest, so the

midspan is the most appropriate location to install a control device to limit the deflection.
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Comparison between the response at different positions
with 1000 modes
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We can see the response in each mode for the midspan position:

We notice in the graphs that the first mode response is large

and that the total response can be considered, with a very

response of the first mode.

compared with the rest

small error to be the

If a high accuracy is needed and we want to include more modes, we can also note

that the third mode response is also larger than the subsequent ones, so only the first

and the third modes suffice for calculations, and the rest can be neglected.

In the third graph, the response considering only 1 mode is plotted against the

response taking into account the first 1000 modes. We can appreciate the insignificant

differences between them.

15

N wn Qn Max Max response/max response of first

response mode

1 2495.402135 6.981247195 1.66328E-12 100.000 %

2 9981.60854 13.96249439 1.27792E-29 0%

3 22458.61922 20.9437416 2.0489E-14 1.2318%

4 39926.4342 27.9249888 1.5963E-30 0 %

5 62385.0534 34.906236 2.6289E-15 0.1581%

6 89834.4769 41.8874832 4.7047E-31 0%

7 122274.705 48.8687304 6.8424E-16 0.0411%

8 159705.737 55.8499776 1.9937E-31 0%

9 202127.573 62.8312248 2.4178E-16 0.0145%

10 249540.214 69.8124719 3.9243E-31 0%



Response in each mode at x=L/2 through the
time in each mode

1.8E-12

1.6E-12

1.4E-1 2

1.2E-1 2

1E-12

8E-13

6E-13

4E-13

2E-13

0

-2E-13

First mode response
Fourth mode response

Time [sg]

Second mode response
Fifth mode response

Third mode response

Figure 3. Modal response of the bridge for the given excitation.
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If we see only the odd modes larger than the first one, and we plot it in a different

scale than in the previous figure:

Comparison between the response of odd modes
at x=L/2

2.5E-14 -

2E-14

1.5E-14

1E-14

5E-15

0

-5E-15

-11E-14

-1.5E-14

-2E-14

-2.5E-14

0.2 0.4/ 0.5

Time [sg]

- Third mode - Fifth mode Seventh mode Ninth mode
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E
&..a

(U

.
--
B

Figure 4. Responses of the bridge in the third, fifth , seventh and ninth mode.



Comparison of response at x=U2 calculated with
I mode and with 1000 modesx 109

1i response with 1 mode

response with 1000 modes

0.1 0.2 0.3 0.4 0.5 0.6
Time [sg]

Figure 5. Comparison of the deflection calculated with one and 1000 modes.
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It was shown before that, for practical reasons, only the fundamental mode of the

bridge will be excited.

We include here an abacus that gives the maximum dynamic amplification factor for

any given known parameters EI , m, L and v, which can be useful for preliminary

design. The MATLAB program used to create this abacus is included in appendix B.

If v/L = 1 to 5 the dynamic amplification factor is less than 1:

0.35

0.3

0.25

0.21

0.
U-

0

0.1

0.05

0

Maximum Dynamic Amplification Factor for the range v/L =(1 ...5)

VL=1

v/L=1.1

v/L=1.2

v/L=5
0 0.1 0.2 0.3 0.4 0.5 0.6

sqrt(E*lI/m)/L 2

Figure 6. Design Abacus: DLF for a simple supported beam. Overview.
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100

90

80

70

60

0.01
0.05 0.1 0.15 0.2 0.25
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Maximum Dynamic Amplification Factor for each v/L

0 v/L=5

0.02

0.1 0.2 0.3 0.4

sqrt(E*I/m)/L 2

Figure 7. Design Abacus: DLF for a simple supported beam.
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7. Modeling a train over a bridge as a beam under a rolling mass:

analytical solution

~YC

fvg 1g

Figure 9. Bridge subjected to a moving mass.

The simplified analysis previously presented is sufficient, if the mass of the train is

small compared to the mass of the bridge.

For more accurate solutions, we must consider the effect of the mass of the train on

the response of the bridge.

Following Biggs [4], the actual force applied to the beam at any instant, assuming

that the train to be always in contact with the bridge:

Force =M'g -M J

The equation of the deflection of the bridge in terms of the modes is:

U, +CO 2. u 2 -MV_
n n M - 1

g
.. n)- nr 1 vt

- y sin-
1

y, is the deflection of the point where the mass is, considering that y, is:

yv = LUn - sinfl -v
n=11

Plugging (16) into the general equation:

Un+ 2-1 -sin L Un
) - n1

sin n -vt +O),-U,
2-M -g

m-1
sin

1

(15)

(16)

(17)

As was explained before, we can neglect the effect of the modes other than the first

one. If we also consider U, = yc, (midspan deflection), we get:

y 1+ -sin 2 71vt
o2 =2-Mv-g . n7r- vt

+co1 - sn (18)

23
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8. Modeling a train over a bridge as a beam subjected to a

moving sprung mass: analytical solution

V

MVS ---
Z

k V

Vt

m, El

1

Figure 10. Bridge subjected to a sprung moving mass

This case takes into account the interaction between the vehicle and the bridge. The

train is modeled as a mass M. that always stays in contact with the bridge, a spring

k, and an unsprung mass M,,. According to Biggs [4], the force applied to the beam

from the idealized vehicle is:

Force = Mu(g - j<)+[k,(z -y,) +Mvg]

z is the absolute deflection of the mass M, , it is measured from the neutral spring

position. We substitute this force in the modal equation of the motion:

Un+ o,2 -U =

We know also, that y, is:

y V = NU n sin nrc vt
N ngr vt

yV = U sin

n=1

If we rearrange the equation of motion:

24

2- (Mv(g -y)+ [kv(z - y)+Mg]) .in nr-vt

M -1 1
(19)

(20)

(21)



M1 + M sin n Vt -"v) . sin nc -vt m 2 -U
2 +1 (n=/ ) 2

/ (22)
L( +M,)-g+k z- U sin nr -VtIj sin n7rvt

This system has one degree of freedom more than the previous ones, the additional

equation, is the dynamic-equilibrium of the mass M, :

MV,2 +k z U in nri-fvt=0 (23)

These set of equations cannot be solved analytically, but numerically for the modes

of the beam and the sprung mass.

As we have observed before, the first mode dominates the response of the structure.

If we want to have a simplified set of equations, if suffices to include only one beam

mode. Considering that yc = U,, we can plug it into (22):

ml 2 nrv.vt. mlw . 7r-vt . r-Vt

U +MU sin 1 y + 2-y =- W, +kv - z -yc sin sin

(24)

M,,E + k, z yc sin = (25)

We must keep in mind that to apply these equations to the vibration analysis of a bridge

under a heavy vehicle we are making certain assumptions [4]:

- The bridge consists of a floor system and girder may be modeled by a single

beam of equivalent rigidity.

- Only the fundamental mode of the bridge need be taken into account (we have

already proved the validity of this assumption)

- The vehicle, although having two or more axles and various systems of springs

and dampers, may be considered as a one-degree-of-freedom system.

- The entire weight of the vehicle is applied to the bridge at the center of vehicle

mass, rather than at the actual wheels.

25



9. General solution of the vibration of multi-span bridges under

N moving sprung masses

This method was presented by Cheung, Au, Zheng and Cheng

formulation that allows the calculation of bridges of n spans with

as two degree of freedom systems over them. It is based on the

using modified beam vibration functions.

in [6]. It is a general

N vehicles idealized

Lagrangian approach

The great advantage of this method is that the total number of unknowns is really

small compared with the classical finite element method used by other authors. The

convergence is fast and it generally needs less than 20 terms to give good results.

All the formulae can be expressed in matrix form, and therefore is very easy to

implement in a code.

A multi-span bridge can be modeled as a continuous linear elastic Bernoulli-Euler

bridge with Q+1 point supports. The N vehicles that drive through the bridge are

modeled as systems of two degree of freedoms with MS1, Ms2 , Cs' k, , where

s = 1,2,..., N. that drive with a velocity v(t) across the bridge.

Each vehicle is composed by a unsprung mass Msi and a sprung mass Ms

connected by a spring k, and a dashpot c,.

y1 1 x1(t) 2

X,(1

C

ai~

Q

M12

Figure 11. Bridge of Q spans with N vehicles. Capture from [6]

We define the degree of freedoms of the system:

26



0 w(x, t) = deflection of the bridge, > 0 if it is upwards.

" y,1 (t) = vertical displacement of the unsprung mass Ms

" y5 (t) = vertical displacement of the sprung mass Ms2 , both ys,(t) and ys2(t)

are measured from their equilibrium position.

" r(x) = roughness of the bridge, vertically upward difference from the mean

horizontal profile

We can see that the yI (t), displacement of the unsprung mass is:

y,5 (t)= [w(x, t) + r(x)]x (t)

dy (t) [aw aw dr1

dt L at ax dxJXX (1)

d 2yS,(t) [a2W

dt 2 at 2

a 2w 2
2 W +a+v2 d 2w dri

+2v--+v a- +a--
axat ax2 ax dx2 dxj)

The force in the contact between vehicle and bridge fs (t) can be expressed by:

fa,(t)= (M 1 + M,2 ). g + Af (t)

With g = gravity acceleration and Afe,(t) is the variation of the contact force in

time.

The equilibrium of forces in the vertical direction for M, 1 and M, 2 are:

(26)

(27)

(28)

(29)

M, d2y, (t) =k[ (t-
dt 

2

M d2 y (t)
dt2

y5 1 (t)]+-c, Ldys (t) dys, (t)
dt dt I = (

+ Afe,(t)

=-k [y 2  W(t) - Y (t)] + c S, LdY s(t) _dy,(t)
dt dt XX t

From (29) to (31), the fc, (t) the contact force can be expressed as:

fe,(t)=(M,1 + M 2 ). g + M 1 d y (t) + M 2dt2 
s

d 2y 2 (t)

dt2

27
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If we express the vibration of the bridge as the summation of n generalized modes:

n

w(x, t)= q (t)Xi (x) (33)

x are the generalized coordinates

X1(x), i = 1,2,...,n are the assumed vibration modes that satisfy the boundary same

boundary conditions in all the supports:

Xi(x)= Xi + X(x) (34)

Xi (x) , i = 1,2,..., n are the vibration modes of a beam of total length 1 of the

bridge with the same end supports.

X(x) , i = 1,2,...,n are cubic spline expressions (or trial functions) that are so

chosen that Xi (x) satisfies the boundary conditions at all supports.

We can used the well known Lagrangian equations with the Lagrangian function L,

being Q, (t) the generalized force we have:

d (aL) aL N

= E Q,(0),i = 1,2,...,h (35)
dt aqj taqj =,

Q (t) = -fe (t)Xi (x)=X (t) (36)

Plugging equation (32) into this expression:

Q* (t) = (M, + M,1)g . X (xs (t))- MIXi (xs (t)Xv2r "(x, (t)) + ar'(x, (t)))

- MsIX (xs (t))Z {4, (t)Xj (x, (t)) + 2v4 (t)X'(x, (t)) + qj (t)[v2 X" j(x (t)) + aX' (xs(t))j}

- M, 2 jY, 2Xi(xS(t)

(37)
The Lagrangian function L:

L=V-U (38)

For this problem V and U are respectively:
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V L pA(x)&w(x, t) 2dx (39)
2 at j

U i EI(x) La2w(xt) dx (40)
2 ax2

If we define my and k, as:

m= pA(x)Xi(x)X,(x)dx (41)

k = EI(x)X"i(x)X"'(x)dx (42)

Plugging into equations (39) and (40) the expression given in (33) and with the

definitions (41) and (42):

V = 1 4i(t)MUyy(t) (43)
i=1 j=1

U = 2 j qj(t )muqj(t ) (44)
i=1 j=1

With these expressions we can express the equation of motion of the bridge and the

vehicles by using the Lagrange equation (35):

m 4j (t) + Ic 4j (t) + Ik qj (t)+$ ,x()y2
=1 j=1 (45)

=p (t) i =12, ...,n

This is a compact notation, each term express:
N

mU (t) = m + LMjK (x, (t))Xj (x, (t)) (46)

N

c( (t) (2v) M4Xj (x , (t))X (x (t)) (47)
S=1

N

1((t = + L S~ X ti[l''( t + C&aX()]48
s=1

p(t) [ M I + Ms 2 )gi (X, (0)) + Ms I Xix (t)vr" (xs (t)) + ar (xs (t)))] (49)

These formulae assume that N vehicles are on the bridge; if a vehicle leaves the

bridge, it should be excluded from the summation.
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The equation of motion of the masses Ms2 , that is the motion of the passenger if

there are not further suspension devices, can be derived from equation (31):
N 'Nrk

- ZcX,(x,(t))XS (t) - ZkX1(x,(t))+ vcX'(x,(t))]. qj(t)+ M, 2 ,2 (t)
=1 j=1 (50)

+ Cp,2 (t) +ksy, 2(t)= ksr(x,(t))+ vcsr'(x,(t)) s =1,2,...,N

In order to implement this formulation in a code, it is best to express it in matrix

form:

M* XM 2]f4 [ C* olj 4K* K0] q
0 M 2  Y2  -CXT C l2 -KXT-VCXT KY2 (51)

Kr +vCr

M* = m(t)] i, j = 1,2,..., n (52)

C* = c ( i, j =1,2, ...,In (53)

K= [k(t)] i, j= 1,2,...,n (54)

p* =[p*(t) i =1,2,...,n (55)

M 2 =diagMi2] i=1,2,...,n (56)

C = diag [ci i, j=1, 2,..., n (57)

K=diagk1 ] i=1,2,...,n (58)

X=X(xj(t))j i=1,2,...,n, j=1,2,...,N (59)

The differential equation (51) can be solved with different integration techniques:

central differential method, Newmark implicit method, Wilson-G method...

An important advantage of this approach of the problem is that we don't have many

degrees of freedom, hence the size of the matrix is relatively small and the

computational effort is not large, regardless of the method used.
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VIBRATION CONTROL

10. Introduction

The great expansion of the cities and the automobile industry over the last two

centuries has necessitated the development of better transportation structures, such as

railways and highways. Because of the cost and scarcity of land, many transportation

structures in urban areas have been built with bridges.

The development of stronger but at the same time, lighter materials in the last

decades have produced more slender structures, and the bridges are not an exception in

this trend

The flexibility of these bridges, combined with the increasing velocities of the new

generation of high speed trains, can result in large deformations, potentially dangerous

for the bridges and in annoying vibrations for the users of the vehicles.
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11. Tuned Mass Dampers (TMD)

A tuned mass damper (TMD) is a device composed by a mass, a spring, and a

damper that is attached to a structure in order to reduce its dynamic response.

The tuned mass dampers have turned out to be very effective to control the

response of high buildings, and nowadays they have been installed in more than 300

buildings. One of their later applications is to reduce the vibration in bridges under high

speed moving loads. The tuned mass damper (TMD) can be installed in a structure more

easily than other control devices.

The TMD is a useful device to reduce the response when the external load is in

resonance with the structure. However, its utility decreases outside resonant conditions.

As it was explained previously, the larger deflection in a single span bridge takes

place in the middle of the span. That is the best location to place the TMD.

The TMD is only tuned to one frequency, however since the bridge has one principal

frequency of resonance, its action is very effective if it is well tuned.

Yb

kb

mnw9 Yw

k,, cw

L m. EI

Figure 12. Model of a two spring mass vehicle.

Following the formulation given by [5] :

The equations of motion for the vehicle body Yb and wheel y,:

mwYw + mbyb +c (pj>+ p)+k,(yw - y) = 0 (60)

mab +cb(b-)+kb(Yb -Yw) =0 (61)
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The equation of motion of the bridge crossed by vehicle moving at a constant

velocity v:

EI +c-+m =F(x,t) (62)
8x4  Ot 0t2

F(x, t) = {(mv + mb)9 + mJy + mbYb }8(x - vt) (63)

Known 4,, modal damping ratio, co, natural frequency and $(x) eigenfunction of

the bridge, and the frequency and damping ratio of the vehicle body:

jkb
mb

(O kb
(MW +Mb)'

b Cb
2mbwb

C+w2(MW +mb )w

(64)

(65)

Some non-dimensional parameters should be included to have a clearer formulation:

= +mb) 6
ml

m m~bMW b ml'
Ml i

Vt
S = ,

72f =

(w

CO=

1

Also, introducing y,, static deflection of the bridge:

= Cs,ic,(mw + mb)g

M mlco

yw y , y-, 
YM YM YM YM

non dimensional equations of motion for the bridge and vehicle can be

expressed as:

Q2 Yw + (g /,)Y+ 2(e/c))Q(Yw+Y)+(e/ew) (Y,+Y )=0

2 + 2b,7 yf(Y -Y) ,)+f(Y -Y)= 0

u, + 2n(COw/c)u +( n /cI) 2un = (C + 6bYb + C Ywn (4)
M,2 C,,aic
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With A =1.0 for forced vibration and A =0.0 for free vibration.

The nondimensional vertical displacement of the bridge Y is:

Y({,t)=Iu,,(r)(O,() T=Ot (74)
n=1

The response of the bridge with a TMD in its midpoint of the span:

m. EI
L

x kz cz y

TMDz

Figure 13 Bridge with Tuned Mass Damper.

The equation of motion of the TMD is given in [5] as:

m Y+c (i -j)+k,(z - y) =0 (75)

While the force applied on the bridge by the vehicle acts at the contact point

between vehicle and bridge, the TMD inertia force acts at the center of the bridge [5]:

F(x, t)= {m, + mb)g + m~Y + mbyb - V) + (mg - mA)9X - (76)

Defining some parameters as:

z = , = m, 7z = (77)
y,, ml co~

The equation of motion for the TMD is:

f2 Z + 24-zQ2(Z -Y)+ (Z-Y) )= 0 (78)

The equations of motion for the system in matrix form results is:

M+CP+ Kp =Q (79)

Where:
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(6b leEw)o 2

0
0

- Acwly 1 (Mv)/M 2

- Ae ly 2 ( v)/M2

0

-Aeho 2 ( v )/ M 1

0

0

6)l9p, ( L/ 2)/M 1
CZ,0?2 ( L12)I M2

0 2{,(E/-.)Q ,( ,)
- 2 bQ 7f 2 gbQvf

0 0
0

0

0

0

z

0

0 - 0

0
- 24,z2y0 (L/2)

0

2{w(c/ew)efiPJv)
0

- 2, f22(L/2)

0

2(,n(o2 / col

0 (e/.)e(0,)
0

- yz j(L/ 2)

(0, /w)2
0

0

0
0

A9 o,(,

A9 2 (v

Y,

z

U'

U2

(6/6w) 02(0v

0
- y7 gy2 (L/2)

0

(CO2 / o 3
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0

1

0

(80)
0

1

0
2

7f
0

0

0

(e/c.)
-7f2

0

0

0

(81)

0
2

0

0

Cstatm12

CstatM2

(82)

(83)

(84)
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11.1. Tuning condition of the TMD:

There are many tuning conditions proposed, however, the most commonly used [7]
is Den Hartog's optimum tuning condition [8]:

= , = C" (85)ml (+85)

- = )2 36 = 2mz co (86)
(2

cc 8(1+6zY cc w(

TMD damping affects the dynamic response of the structures more extensively than
the damping values of the structures [5]. The critical damping proposed by Tsai [9]
keep away from response increase due to inadequate damper tuning and beating
phenomenon:

z = n + F (87)

The mass ratios ez E (0.01-0.04) are generally recommended [5].
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11.2. Case study:

The formulation here shown, was presented by [5] in the same article we can find a

example of the effectiveness of the TMD:

L=50m

E = 3.303*1010 [N/M2]

m = 3852 [kg/m3]
Damping ratio (%1) = 0.3

Vvezicie =90[m / sg]
I =18.638 [M 4 ]

A = 11.332 [M 4 ]

Wheel TGV:

Locomotive

M = 2382 kg

k =1.0 e7

c=4e7

Body TGV:

Locomotive

M = 13,760 kg

k =5.0 e7

c=8e4

Semi-passenger

M =2382

k =2.35e6

c =4e4

Semi-passenger

M =17,000

k =2.86e6

c=8e4

Passenger car

M =2383

k =1.0e7

c=8e4

Passenger car

M =17,000

k =5.0e7

c=8e4

3.5 m

14 m

40 m 40 m

Figure 14. Bridge and vehicle's parameters [5]
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Comparisc

velocities:

1.10

+1 1.00

0.800.I
U.u 

50

in the response of the bridge under a TGV traveling with different

150 250 350
Velocity, km/h

Figure 15. Maximum response at point x=L/2 at different velocities. Capture [5]

It is important to notice that the response with a smaller velocity can be higher. That

is because the loading space has its own speed which makes the bridge response

maximum. Therefore it is difficult to know a priori which velocity would produce the

maximum response, and it is necessary to try with different velocities to find the worst

case scenario.

Comparison between the fast Fourier transform (FFT) for the bridge with and

without a TMD of mass ratio Ez = 0.01
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3

2.5

2

1.5

I

0.5

A
0 1 2 3 4 5 6

Frequency, Hz

Figure 16. FFT of the displacement x=L/2 without TMD. Capture [5]

3

2.5

2

~1.5

41

0.5

0
0 1 2 3 4 5 6 7

Frequency, Hz

Figure 17. FFT of the displacement x=L/2 witht

8 9 10

TMD. . Capture [5]

The acceleration in the vehicles can affect passenger's comfort and cause mistrust in

the structure. In this case little acceleration reduction is observed because the time that

the vehicle needs to pass across the bridge is too short to increase TMD motion, unlike

other cases like earthquake loading.
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0.10

I
.I

0.05

0.00
0.

-0.05

-0.10

Time, sec

Figure 18. Acceleration of the vehicle body. Capture [5]

0.10

0.05-

0.00

<-0.05

---- w/o TMD

--- w/ TMD
-010

Time, sem
Figure 19. Acceleration of the wheel. Capture [5]
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11.3. Conclusions:

We can draw from [5] important conclusions:

- There can be sub-critical speeds within the bridge design speed.

- The bridge impact factors must be changed to adequate levels considering the

response of the bridge under a train traveling at sub-critical speeds.

- TMD reduces in a 21% the vertical displacement and free vibration dies out

fast when a TGV passes.
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12. Multiple Tuned Mass DamDer (MTMD)

In [10] Kajikawa et al. concluded that a single TMD couldn't suppress effectively the
vibrations caused by traffic, because the dynamic response of a bridge is frequency

variant due to vehicle motion. We have seen in the case study [5] in the previous

section, the vertical acceleration couldn't be controlled with a TMD.

The control effectiveness of a single TMD comes from the capacity to tune its
frequency with the structure. The error in the estimation of the natural frequency of a

structure, will affect significantly the design and effectiveness of the TMD. The accuracy
in the determination of the natural frequency of a structure is very important. However,

because of the uncertainties in the rigidity and mass of the structure as well as its
finished details, the frequency of the fundamental mode can be difficult to ascertain with

any great accuracy.

A system of multiple tuned mass dampers (MTMD), a multiple parallel placed TMD,

can overcome the danger of detuning because it is possible to adjust the natural
frequency for each TMD, covering a wider range of frequencies so that the risk that the
natural frequency of the structure is not contained by them is reduced drastically.

Xu and Igusa [11] were the first ones to propose an MTMD with uniform distribution

of natural frequencies. It has been proved that the MTMD is more reliable and effective

in limiting the building vibrations.

Here we present the formulation of a bridge with a MTMD given by Lin et al in [12]

and their conclusions in the success of the MTMD in controlling the vibration.

Consider an MTMD with p SDOF TMD installed in parallel on a straight bridge with

length L at section x = x,. The It, TMD is away from the centerline at a distance esi. A

train with N, number of moving loads passes with a velocity v and eccentricity ev.

If we adopt certain assumptions [12]:

- Bridge modeled as a two dimensional homogeneous, elastic, isotropic beam.

- The train loads are applied in the centerline of the track and it moves with

constant speed v.
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y
L

-+ x

HH
Figure 20. Bridge with TMD at section x = x, Capture [12]

The flexural and torsional motions of the bridge at section x are [12]:

a2 y(x, t) x y(xt) + 2 y(x,t)

at2 +C () at + x
2 EI(x) a 2y(X, 0 = F (x, t)

,(x) a2 (xt) +
J()at

2 + CO(x) aO(x,t) - GJr (x) xt) - ECa(x) a3 (xt) =
ax ( a C(x ax3 ) F(x,t) (89)

ii(x), C,(x), and EI(x) represent mass per unit length, the damping coefficient of the

flexural motion, and the rigidity of the flexural motion of the bridge at section x.

J,(x), C9(x), GJT(x), and EC,(x) are the polar mass moment of inertia per unit

length, the damping coefficient of the torsional motion, the rigidity in pure torsion , and

the rigidity of warping torsion of the bridge at section x.

Yang et. al [13] proposed the following equation for the train load, where Pk is the

magnitude of the kh load and tk denotes the time when the kh load reaches the bridge.
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F,(x,t) = -1 p9X - v(t - tk )]u( - t)
k=1

(90)
- y(x,, t) - es(x,, t)] + c,/ i - f(xS, t) - e,1d(x,, t)](x - x,)+ {kS, [z,1

i=I

The second term on the right hand side determines the location of the kh load on the

bridge, the third term determines whether the kh load is on the bridge or not

The FO proposed in [12]:

Nv

F(x,t) = -I evpk8[x -v(t -tk )i' -tk)
k=1

+ e
i=1

(91)
{ks, [z - y(x,,t) - e,,(xs,t)] +cs, [Zs - P(x,,t) -eld(x,,t)p(x - x,)

H(t,tk) = U(t-tk)-Ut-(tk + v/L)] , U(t) and 8(t) are the step function and the Dirac

delta function:

f18(x)dx= 
1 :, X =0

10, Xw 0

U(t) = 13
0, t <O

(92)

(93)

The vertical motion of the ih TMD is:

m5,25,(t)+ c,1j*, -.j(x,,t) -es, 1 (x,,t)]+kl[z,, -y(x,,t) -es,0(x,,t)]= 0

Ms, cs,, and k, I are the mass, damping coefficient, and stiffness coefficient of the it

TMD, y(x,t) , O(x,t) and zI(t) indicate the vertical displacement of the bridge, the

torsional angle of the bridge, and the vertical displacement of the i,, TMD, respectively.

The pk depend on the train model. Depending on the level of complexity we want the

problem to have, the train can be considered as:

- Force model:
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Pk =mMg (95)

- Mass model:

Pk = mk{g+ ,(t)} (96)

- Moving suspension mass model where the wheel masses are neglected:

Ak Mvk [g + zt) (97)

kxh load

Figure 21. Bridge with the three models of loads: force, moving mass and
sprung moving mass. Capture [12]

mk ad z,(t) are the mass and the vertical displacement of the k,, train.

Modal analysis is employed to separate the governing parameters [12]:

N

y(x,t) = L #j(x)q1 (t) = I'(x)7(t) (98)
]=1

N

9(x,t) = XL' 1 (x)7 1 (t) =yT(x)y(t) (99)
j=1

N = number of nodes to be considered

0'(x)={#A(x), (x)...N(x)}, and T (x)={yI(X), 2(x)...N(X)} mode shape vectors.
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/(t) and 1(t) are the modal-response vectors.

ve,(t) = zl(t)-y(x,, t)-eO(x,, t) is the stroke, the displacement of the Ith TMD relative to

the bridge where the 1,h TMD is located.

If we plug equations (90), (91), (98) and (99) in equations (88) and (89) and we

premultiplying 1(x), I(x), we get in matrix form:

My7j(t) + C,6(t + KYq(t) = Fv(t) + FMTMD(t)

Moij(t) + Coi(t) + K07r(t) = F6 (t) + FMTMD(t)

Where My, MO , C, , C0 and K, , K0 are N * N matrices, representing modal

mass, damping and stiffness of the bridge flexural motion and of the bridge torsional

motion respectively. After the application of ID(x) , P(x) , we get N uncoupled

equations:

qj (t)+2g .co Q(t) + cor(t) = F (t) + FTMD(t)

y1 (t) + 2 f,(t) + oyj (t) = F; (t) + FM TM D (t)

(102)

(103)

cow= kg1/my 3 and gj=c,/2mYcoj are the Jih flexural modal frequency and

damping ratio of the bridge

OO = k /m. and O = c./2mwc, are the j,, torsional modal frequency and

damping ratio of the bridge and:

m1 = f -(x)# (x)dx, , = .. .J(X)Y (x)dx,

c = f CY(x) (x)dx,

ky1 = f EI(x)#(x),

C= rC(x)V2(x)dx,

k,= JT(x) , (x)I +EC,(x)y4(x) I x,

The j, flexural modal force F , and torsional modal force F;:

F. 1 E=1 (vt -vtk)H(t,
k=1 Myj it
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(108)
Fv--vNv P

FMTDE = -eW (Vt -v t)Hy(t,t
k=1 MO

FI'I" = P p,, +<n, O)2V/

FJAITM = 2{p,9,P=

(109)

(110)

and p = #jx,)m,,/mO are ratios of the 1 TMD mass

to the j,,, flexural and torsional modal mass of the bridge

The equation (94) can be rearranged into the displacement of the Ith TMD:

[p,(t) + (DT(xs)i (t) + esYT (x)(t) + 24,pwj's,5(t) + co2 vS, (t) = 0

If we express the equations of motion in matrix form:

M, y
0

-M, S

K,,
+ 0

-0

0 0 ij(t) ~C[,
Moo 0 +(t) + 0

M,0 M, j, (t) [ 0

0 K,

K KI 21(t)
0 K,_ vs()

0

COO
0

C i
CO

CS

F,,(t)

=F(t)-l0J

I
(111)

(112)

where 0 is the null matrix and :

[, (x,)

# 2 (X, )

0N, 

(xs)e

[ V2 (X, )es

YN (x, )e,

$A (x,)

S(x, )e 2
K' (Xs )e, 2
V/2 (X, )e 2

.(s~s

- -- 1(x,)1
'.. 02 (Xs )

.. N (,

''' (x)e

''' V2(X,)esp

V' N,(x )eSP
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Where psly = $/x,)m,,/m,,

+ CWlIVI S

(113)
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- 2 ,,cos psly,

C - 2 s,,AP Ay2
C,, = :

2 2,10 ps /SyN

- 2 so2s2s2

- 2 s2)s2JPs2YN

--- 25,,co,,py 1

2SPWSPuSPYIN

- 2 so~sjsj~j -
2

s2LWs2Is2o]

-2 p 02 - 2 s2ps2s
0 2

K- 2 so slpION - 2 
s2WsA2SN

2 2
-- ]Ps171 - Os2 Ps2Y

2 2[OPY - Ws2/is2Y2

2 2
- 1sIYN - Ws2/s2YN

-JS2, /Is10,.

- w2
1Ps102

-w51psO

- c2Ps01

- C022Ps02

2s2Ps20N

-- 2 Sp,, PP01
-- 2 sp,, sp02

2 
sp sp Psp ON

sp spY 2

(0S
2 /I

sp' sp N

(tw2~~

P s NJ

12.1. Dynamic of the load

A train acts on a bridge like a series of similar repetitive loads. This loading is like a

steady impact on the bridge if the train is moving with constant velocity [12], this will

have a different response that a bridge under a single vehicle load that only acts a short

time.

If the bridge is simply supported, the vertical vibration (D(x) is like we stated in

previous sections:
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fD(x) sin , sin , ...sin l

If we do the Fourier transform of F v(co)the jth flexural modal train load [12]:

F (o) =

= f "' _ N Pk j v -vt)H (t, ts t
k=1 MyL

If e sin an (t, t )dt2;rk m, _ L _

If each moving load Pk has the same magnitude and the same spacing d :

m CO2L
j () 2

1 -L

F (co) would be large as:

- sin(cod/2v) ~ 0

- or co = 2rnv / d (n = 1,2,...) where v /d is the impact frequency of the wheels

The bridge will have resonant speeds at:

V - 2(122)
2nrc

The resonance does not only occur when the train travels at high speeds, also:

V = wL (123)
nr '- -- I

The major critical condition (n = 1) only occur when the train speed is several times

the first resonant speeds; this is almost impossible for general high-speed railway

bridges [12], [13]. A single car passing through a bridge will not produce any resonant

response.
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(a) -0.91 Hz N, =50

16

6

1.82 Hz

.2,73 IIz

20

(b) NV,

16

10

0
0 1 2 3 4

Frequency (Hz)

Figure 22. First modal Fourier transform with 1) 50 loads and 2) One load. Capture [12]

12.2. Case study:

In [12] we can find in addition to the formulation of the MTMD, numerical examples
of the effectiveness of the MTMD in a Taiwan High-Speed Railway Type for different
train types.
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Figure 23. Maximal displacement and accelerations for a Taiwan High-Speed Train with
and without MTMD. Capture [12]
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12.3. Conclusions:

Important conclusions for the design of bridges can be derived from [12]:

- If the natural frequencies of the bridge are multiples of the impact frequency of the

of the train, the resonant effect will take place, although the train doesn't travel at high

speeds.

- The MTMD can control effectively the dynamic response of the bridge and train

only if are dominated by the resonant response within the design train speed.

- The error in the estimation of the bridge frequencies and the bridge-train

interaction will affect the control effectiveness of a single TMD. However a MTMD

system with the same mass but a wider range of frequencies, is less affected by the

detuning effect, being more reliable and robust than a single TMD.
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APPENDIX A:

MATLAB CODE TO GET THE ANALYTICAL DEFORMATION AT ANY GIVEN
POINT UNDER A MOVING LOAD

L=5 0

n=1000 %number of nodes

xcontrol =5*L/10 ; %Point of beam where deflection is analysed

v= 90 %velocity of the train in m/sg

F= -1 %Weight of the force

m=43651.935 %[kg/m] Linear density

E=3.303e10 %Young Modulus [N/m2]

I=18.638 %Moment of inertia [m4]

timestep = 0.001

T=[0:timestep:L/v] %Range of t in which I see the response

y=zeros(size(T)) '; %Column vector

for i=1:n ;

Wn=i*pi*v/L;

wn=i^2*pi^2/L^2* (E*I/m)A0 .5;

deltay=2*F/ (m*L) / (wn^2-WnA2) * (sin (Wn*T)

-Wn/wn*sin(wn*T'))*sin(i*pi*xcontrol/L);

y=y+deltay;

end

plot (T,y, 'r-')

hold on

end
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APPENDIX B:

MATLAB CODE TO GENERATE A DYNAMIC AMPLIFICATION FACTOR

%%% Generation of dynamic amplification factor curve %%%%%

hold off

n=1 % Mode in which I am looking the dynamic amplification factor

% Number of curves that I get with the parameter v/L

curve0 = 0.2 % Initial curve

curvefin = 1 % Final curve

curvestep = 0.01 % Interval of the curves

curves= [curveO:curvestep:curvefin] % Vector that stores the vL parameters

% The x axis:

xO= 0.02 % Where x starts

minunitaxis = 0.01 ; % Minimum unit of x

xfin = 0.4 % Where x finishes

% IMPORTANT!! xfin = x0 + q* minutaxis with q integer

x-axis = [xO:minunitaxis:xf in] ; % Axis vector adimensional (E*I/m)^0.5/L^2

% The y axis stored for each x

DLF = zeros(size(curves),size(xaxis)); % Matrix in which

% amplification factors will be stored

% Each row is the DLF for a given relation

timestep= 0.001

for p = 1:(curvefin-curve0)/curvester-

v_L = curves(p)

for j=1:(xfin-xO)/minunitaxis+l

timestep = 1/(100*vL);

T=[0:timestep:1/vL];

ck = x_axis(j)

Wn=n*pi*vL;

wn=n^2*pi^2*ck;

the dynamic

of v/L relation

% We do a cycle for each curve

%Range of t in which I see the response

DLFT=1/(wn^2-Wn^2)*(sin(Wn*T)-Wn/wn*sin(wn*T));

DLF (p,j)= max(abs(DLFT));
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end

end

for q=l:(curvefin-curveO)/curvestep +1

cur = DLF(q,:)

figure(8);

plot(xaxis,cur,'k-')

hold on

end

end
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