
Rover Mosaic: E-mail Communication for a
Full-Function Web Browser

Alan F. deLespinasse

Submitted to the Department of Electrical Engineering and
Computer Science

in partial f~~lfillment of the requirements for the degrees of

Master of Engineering

and

Bachelor of Science
in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995

@ Massachusetts Institute of Technology 1995. All rights reserved.

. Author .. ,.
Department of Electrical Engineering and Comp

- - ay 6,1995 - ascience
. -. Certified by . :-. . .

.-

-* . David K. Gifford
Professor of Electrical Engineer1 g and Computer Science

/ f k A Thesis#upervisor

. Accepted by . .-r -;-. i.u. , I --- -L;- :%#I- - -

& kd Morgenthaler
,,,,~S::AC.;MJSE~ ~ ~ M R n a n , ~ e ~ a h e n t Committee 0 ;'Graduate Theses

OF TECHNOLOGY

AUG 10 1995
- mew-

Rover Mosaic: E-mail Communication for a Full-Function

Web Browser

Alan F. deLespinasse

Submitted to the Department of Electrical Engineering and Computer Science
on May 26,1995, in partial fulfillment of the

requirements for the degrees of
Master of Engineering

and
Bachelor of Science

in Electrical Engineering and Computer Science

Abstract

The increasing availability and power of mobile computing devices are creating
a demand for network applications which can accommodate slow or intermit-
tently available network connections. A prototype system for browsing the
World Wide Web on such a network was implemented, using caching, prefetch-
ing, and queued communications to hide communication latencies. Electronic
mail was used as the underlying transport mechanism because of its ubiqui-
tousness and fundamentally queued operation. A modified user interface based
on NCSA Mosaic was designed to accommodate queued communications. The
experimental system was found to be well-suited to the task, as well as to have
significant advantages in the areas of reliability and user interface functional-
i ty.

Thesis Supervisor: David K. Gifford
Title: Professor of Electrical Engineering and Computer Science

Contents

1 Introduction 5

1.1 The Rover project . 6

1.2 Other related work . 7

2 Design I1

2.1 Internals . 11

2.2 User interface . 12

3 Implementation 17

3.1 Rover Mosaic- the control program 18

3.2 The gateway server . 20

3.3 The cache filler . 21

4 Evaluation 24

5 Conclusion 28

A Rover Mosaic user's guide 31

A.1 Options . 32

A.2 Environment variables . 34

B Rover Mosaic administrator's guide 35

. B.l Downloading and compiling the source 35

B.2 Setting up a client site . 36

B.3 Setting up a gateway server . 37

C Message formats 38

C.1 The request message . 39

C.2 The reply message . 39

Chapter 1

Introduction

The explosive growth of computer network connectivity in the past few years

has led to a corresponding increase in the number of ways to use it. New

applications allow users to find, retrieve and exchange information more

quickly, easily and casually than was previously imagined possible. The

most striking examples of such applications are those that provide access to

the World Wide Web [4].

While the speed and spread of traditional hard-wired networks improve,

a curiously opposite trend has also started: many users are trading their

hardware's ability to communicate rapidly at any time for other features,

such as physical mobility or decreased cost. These variations are a natural

result of the ever increasing and diversifying user population, but many of

the popular new communication standards are not flexible enough to accom-

modate all the different hardware configurations. For example, thz World

Wide Web's Hypertext Transfer Pr~t~ocol [5] assumes that the hardware can

support a high-speed TCP connection [I31 to any Web server on the Internet

a t any time. A user of a laptop computer which is only occasionally plugged

into its docking bay for data exchange cannot provide Web pages for access

from other sites, and can only access the pages stored at other sites when

docked.

The goal of this thesis is to explore the practicality of expanding the Web

protocols to allow access from mobile clients, and to show how this might be

done. A prototype system is described which uses caching, prefetching, and

queued communications in an attempt to hide latencies and periods of net-

work unavailability. All communications to and from the client machine are

done through electronic mail because of its universal availability and it fun-

damentally queued delivery operation. Results of performance experiments

and user evaluations are reported.

1.1 The Rover project

The problem of mobile connectivity is addressed in a general sense by MIT's

Rover project [14]. Current research focuses on ways to more efficiently

use communications channels which have very low bandwidth, and/or which

may not be available (or have the same bandwidth) at all times. "Dockable"

notebook computers and those with infrared, microwave or cellular phone

connections fit this description. Rover attempts to optimize these channels

by supplementing standard protocols with Queued Remote Procedure Calls

(QRPC) and Dynamic Relocatable Objects.

Dynamic Relocatable Objects are data objects which can be copied from

one host machine to another, bringing along procedures to perform actions

on the data, in a manner similar to standard object-oriented design. This

allows flexible distribution of work, and can often save a large amount of

communication time. For example, a small CGI script [21] might easily

produce a very large document to be downloaded via HTTP; it would be

much more efficient, if possible, to move the script to the client machine and

run it there. Another useful example would be to send highly compressed

data along with a specialized decompression algorithm. In some cases, an

object can be modified by these procedures and sent back to its origin, in

which case there is a possibility of update conflicts; these can be resolved by

application-specific conflict resolution procedures, which are also attached to

the objects.

When objects are sent around, they may have to wait for a slow or tem-

porarily unavailable connection. It is therefore not practical to wait for a

reply to an object message after sending it; all communications must be

asynchronous. This calls for a queue of outgoing messages on each host.

Many messages can be added to a queue and forgotten about while other

work is done; if and when a reply comes back, the current work may have

to be suspended while the reply is dealt with. These messages have been

named Queued Remote Procedure Calls (QRPC). In the case of applications

which have until now called for communicating at interactive speeds, such

as browsers for the World Wide Web, this may require some modification to

the user interface (see Chapter 2).

This thesis can be thought of as a small part of the Rover project, ad-

dressing the specific problem of providing World Wide Web access to users of

mobile or other computers which are only occasionally connected, or which

have relatively slow connections. It provides the first test of the QRPC

strategy, but does not make use of Dynamic Relocatable Objects.

1.2 Other related work

Traditionally1, users of computers without direct connections to the Internet

have had one crude, last-ditch method for accessing the World Wide Web.

They can send the URL (Uniform Resource Locator) [6] of the document they

want in a n e-mail message to a n automated gateway server in Switzerland, at

address agora@mail.w3.org. This server will then download the document,

'The word "traditionally" is used in a very relative sense here, since the Web has only
been in existence for about five years.

I

I Client Machine : I

I Server Machine :
(a) : I Browser kpd Web I

I Server

I - : - - - - - - -
- - - - - - - - - - - - - - - - -

I I - - - - - - - - - -
I Client Machine : : Gateway Machine I I Server Machine :

j SMTP ; E-mail
f system

I - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
I I I - - - - - - - - - - Client Machine I Gateway Machine I I Server Machine

Figure 1-1: Different methods of accessing the World Wide Web. (a) Conven-
tional method. (b) The Agora mail-server method. (c) New method. "IPC"
is used as a generic name for all forms of Unix interprocess communication,
including signals, pipes and program executions.

I I I I I I

format it as clearly as possible in plain ASCII text (with hypertext links

(c) 1

numbered), and send it as a reply message to the user. The user can follow

links by replying in turn, with the number of the link to follow. This strategy,

I --,,-,-' ,,,,,--,, I I - - , , - - - - , - - , - - - - J ' - - - - - - L ' - - , l

called Agora [31], is contrasted with the standard Web protocols (and the new

Browser

strategy described in Chapter 2) in Figure 1-1.

E-mail IPC -

The advantage of this method is that anyone can use it- e-mail is always

the first application implemented on any network, and gateways are always

1 SMTP 1

7 7

provided, if possible, to the Internet, and hence to the above address. The

didvantages are obvious and severe. To begin with, this method is slow,

E-mail
system

especially for people who are not in Switzerland. This problem can be par-

I P ~ Gateway I HTTP Web 1

server 7 1 Server
I
I

tially relieved by setting up many servers in strategic locations. Of course,

portables without wireless links will still have to be docked before the mes-

sages can get through (and wireless links come with their own limitations

on speed and geographical movement). Another problem is that the user

must manually send e-mail each time a new document is desired, instead of

simply following links by clicking on them, as in most popular Web browser

applications. In addition, Web documents can contain text formatting infor-

mation, pictures, video, sound, forms to be filled out, and many other kinds

of data. All of these are filtered out by the Agora server, leaving only plain

ASCII text that standard mail readers can cope with.

Recently, several researchers have devoted attention to the specificprob-

lem of accessing the Web from mobile clients. The Infopad project [18] treats

a wireless machine as basically a dumb terminal, with all the work happen-

ing on a stationary workstation. The W4 applicr.tion [I] adds very simple

caching and prefetching of one screenfull of text at a time to its wireless

palmtop interface. The Wit project, with its W* browser application [33],

also uses a palmtop with wireless communication, with a much more sophis-

ticated caching and prefetching method. It also uses lazy evaluation and

futures techniques to hide latency; these give some of the same advantages

as queued requests.

In a precursor to the Rover project, MIT researchers experimented with

dynamic documents [15], a form of the Dynamic Relocatable Objects men-

tioned in the previous section. By combining these with simple caching and

prefetching algorithms, they were able to make great improvements in the

efficiency of network usage when accessing specially modified servers. The

Mobisaic system [32] uses active documents to provide special services that

are particularly useful on mobile clients, including pages that automatically

change themselves based on the user's location.

The Coda file system [I71 [30] represented pioneering work in the use of

prefetched caching and network scheduling to overcome slow or intermit-

tently available network connections when accessing a file system. Ebling

et al. [ll] give a very concise overview of the issues involved in creating the

Coda file system and other mobile network applications. The Little Work

Project [12] and the Ficus [29] file system continued work in this direction.

The usefulness of electronic mail as a general-purpose transport mech-

anism was pointed out by researchers who were implementing massively

parallel algorithms for factoring very large integers [19]. They used e-mail

instead of more specialized protocols because of its ubiquitousness; they were

not interested in its automatic queueing features.

A new experimental Web browser, DeckScape [S], was only brought to

the author's attention afier the work described in this thesis was completed.

DeckScape9s user interface offers background fetching and document list

organization features that are strikingly similar, and in some ways superior,

to those found in the browser created for this thesis. However, DeckScape

is not designed to work in a mobile environment, and does not support a

queued communications model. It also does not implement inlined images

or HTML forms.

Design

Like Agora, the experimental browsing system built for the Rover project

uses e-mail to communicate with an automated gateway. However, as shown

in part (c) of Figure 1-1, it adds a browser-style user interface to the front end

of the mail system. This browser handles the sending and receiving of the

e-mail communications and presents all types of data to the user in the same

way as standard Web browsers. It thus solves all of the problems mentioned

in reference to Agora except for speed. The speed issue is circumvented by a

combination of queueing requests and caching pages.

2.1 Internals

All documents retrieved are stored in a cache in the client machine's local

file system. If the user wishes to see a document that has fairly recently

been saved in the cache, it can be displayed extremely quickly To make

requested documents more likely to be in the cache, certain ones can be

prefetched, based on links from the ones explicitly requested already. The

problem is how to determine when a cached copy of a document is old enough

that it should be either reloaded or deleted to make room. A simple least-

recently-used elimination algorithm would seem to be the obvious choice;

but in the case of HTTP-retrieved documents, additional information may be

available which could lead to more efficient algorithms [5]. In some cases,

a document actually comes with an explicit expiration date, before which it

is (weakly) guaranteed not to change significantly. In most other cases, a

"last-modified" date is specified; a relativdy old one can be considered an

indication of stability. There is one major problem, however: the results

of HTML form submissions [9] have no natural "lifetime". For example,

two documents retrieved by identical requests in rapid succession may be

completely different, and it may be desirable to keep both for comparison, or

there may be no reason to keep either at all. For this reason, combined with

user interface considerations described in the next section, it was decided to

let the cache be manually controlled by the user, rather than automatically

filled and flushed. (One other option, recommended and used by CERN [20],

is not to cache form results at all, but this would require a major departure

from our highly successful policy of only displaying cached documents.)

When the document requested by the user is not in the cache, a request

for it must be sent out via e-mail. These requests are queued (by the e-mail

system) and delivered asynchronously to the gateway server, where replies

are generated and sent, again asynchronously, back to the browser. They

therefore represent a very simple form of Queued Remote Procedure Calls

(QRPC), as mentioned in Chapter 1. The fact that any document (including

prefetched ones not yet explicitly requested- see Chapter 3) may arrive a t

any time presents an interesting user interface design problem.

2;2 User interface

One possible design for the system's user interface would be to make

it exactly like a standard Web browser, such as Mosaic [22] (see Figure 2-

1): the user clicks on a hyperlink within a displayed document, and then

Figure 2-1: Main window of NCSA's Mosaic. Hyperlinks are underlined. The
links with solid underlines have not been visited, while the ones with dashed
underlines have.

waits while the document a t the other "end" of that link is loaded from the

server. This interface is fine for locally cached documents as well, but it is

obviously unacceptable when a fetch request may take several hours to be

serviced. Newer browsers, notably the commercial Netscape NavigatorTAy

package (Figure 2-21 [25], offer an improvement: the user can continue to

scroll around in the old document while the new one is on its way. This is

still not ideal. I t would be much more useful if the user could browse around

in all of the documents stored in the cache, plus request multiple additional

non-cached documents- that is, aRer all, the whole point of queueing the

requests. Alternatively, if documents are very slow in arriving, it would be

nice to allow the user to shut down the application altogether, to allow the

efficient use of other large applications or the termination of power to the

0
 5 v
 5

CD

ti

n

D

3
 E*

2 z Eu
 5

C
,

0

3

K?
.

n
l

CD

'9

9,

Ef
. < F;
' =r

2
 z Ds
 PI

CD

tn

w

Figure 2-3: Rover Mosaic's cache list window. The user interface is simplified
using the -kiosk option added in Mosaic 2.5.

me cle:

.d not *

ar that
.. ..

1). This method failed to adequately notify the user if the link in question was

not visible when the page arrived, i.e., if the user was reading an unrelated

Pa hich were

It eve , the ut rn a list of

all requests made, along with the status ot each request and a way to view

the resul xlfilled ones. this, it was a leap to add buttons to

"delete" 2 !loadw 6 .ched document, giving the user complete control

over cache operations. 'llhe list was implemented as a dynamically updated

HTML dl nt, which could be shown browser window just like any

Given

 to acc
'Dl ,,

ser wo'
A

uld ha e shou

A

1 small

'The implementation of this design also had the more practical drawback of requiring
modificat~on of Mosaic's ~nnards, wh~ch are an awful mess and ought to be left alone.

other, as shown in Figure 2-3. At first, to conserve screen space and memory,

the list was considered the user's "home page", and it could be viewed in the

browser's main window alternately with other pages. Eventually it became

clear that even this was too restrictive, and a second window was added to

display only the list.

Chapter 3

Implementation

The experimental system is shown in greater detail in Figure 3-1. It runs

on a local network of Sun SPARCStations running SunOS and Intel Pen-

tium PCs running the BSD/OS operating system [Z], and should be easily

portable to other variants of UNM. It has been dubbed Rover Mosaic: Rover

after the name of the larger project it is a part of, and Mosaic after the pop-

ular Web browser [22] used as its user interface. Two copies of Mosaic are

actually run simultaneously; one displays the pages requested by the user,

just as standard Mosaic does (Figure 2-I), while the other shows the cache

list (Figure 2-3). (Mosaic is a rather large application to be running multi-

ple copies of, but this is only an experimental system. A production system

would hopefully be much more efficient.) Both copies are controlled by a

; Client Machine I

I I

I Mosaic Mosaic I
I
1

I
I
I I

r - . - - - - - - - I - - - - - -

I
I ' Gatewav Machine I

!J- IPC 1 ' - - - - - - - - - - - - - - - - I

HTTP -

I - - - - - - - -
I Server Machine

Figure 3-1: Detailed diagram of Rover Mosaic.

separate program, called rmosaic, which is really in control of the whole

operation. It makes requests via e-mail to the gateway server program, rm-

gate, which fetches documents and returns them as more e-mail messages.

The meache program reads these messages, places the documents in the

cache, and notifies mosaic ofthe changes.

3.1 Rover Mosaic- the control program

Rover Mosaic is started by running the rmosaic program, which begins by

spawning two instances of Mosaic version 2.5 for the X Window System, as

provided by the NCSA [22]. Both are configured to obtain all documents

through a proxy EMTP server on the same machine, and rmosaic serves as

that server. It therefore has complete control over what is shown in both

windows in response to any request. It can also force them to request spe-

cific documeats at any time by sending "remote control" commands, which

are implemented with Unix signals and files [23]. By these means rmosaic

exercises a large degree of control over both copies of Mosaic, and can ba-

sically use them as an interface to its own functionality. A few of Mosaic's

b c t i o m are completely beyond the control of external programs; these are

genedy handed by really ugly hacks, which are documented in the code's

comments (see Appendix 33 for instructions for downloading code).

The first copy of Mosaic run is meant to behave just like standard Mo-

saic whenever possible, i.e., whenever the document the user asks to see is

already in the cache. It looks exactly like any other instance of Mosaic, as

shown in Figure 2-1. But when a requested document is not in the cache,

mosaic sets in motion a complex sequence of events which may overlap

with other sequences like it, or with other events caused by the user. The

first thing that happens is that an empty response (HTTP response 204 [5])

to the request is sent, telling Mosaic to continue on as it was in the previ-

ous document. (In fact, Mosaic does not quite correctly react to this part of

the HTTP specification: it unobtrusively displays a rather enigmatic error

message, "And silence filled the night," before continuing.) The second thing

that happens has to do with the cache list displayed in the other window.

The list stored internally by rmosaic contains an entry for each document

requested from andlor returned by the gateway server. However, only the

documents explicitly requested by the user are marked as "visible"; these are

the entries displayed by the other copy of Mosaic (see Figure 2-3). Each entry

contains the name of the document requested, plus the name of the document

it was requested from, to aid the user's memory. The names shown are the

HTML-specified titles of the documents, if known; otherwise, the URL is

used instead. Also shown are the time and date of the last operation on

the entry (either the request or the arrival) and whether or not the request

contained HTML form information (those that did are marked "query"). If

the response to the request has not yet arrived from the gateway server, the

entry is marked "pending"; otherwise, the entry is marked "viewed" or "not

viewed," depending on whether the user has looked at the document yet,

and three hyperlinks are shown: "View," "Reload" and "Delete." The URLs

attached to these links are actually special codes which tell rmosaic to take

the appropriate action.

As soon as the empty response to the original request is sent, rmosaic

adds a "pending" entry to the cache list and invokes the sendmail program

(or whatever program is appropriate to send an e-mail message) to send the

request on to the gateway server. The message contains the entire HTTP

request, along with several pieces of auxiliary information (including the

user's name, the return address and instructions for inlined images and

prefetching- see Section 3.2 and Appendices A and C). Then the second

Mosaic is told to reload the updated cache list, and browsing continues as

before.

3.2 The gateway server

On the gateway server machine, the rmgate program is configured to run

every time a request message arrives, with the message sent to the program's

standard input (see Appendix B). If the document is to be fetched by any

protocol other than HTTP (FTP [27] or WAIS 1161, for example), rmgate just

runs CERN's line-mode browser, www [26], sends the results back to the

client, and exits. HTTP- fetched documents are handled directly by rmgate

for a variety of reasons.

First of all, www cannot handle HTML forms at all, so HTTP must be

implemented by rmgate. Also, www is designed to be interactive, which

means it only tries to make an HTTP connection for a short while before

giving up. Since rmgate is part of a queued, background process, it can

afford to be much more persistent, actually making it more reliable than

conventional Web browsers.

If an HTTP-fetched document is in the HTML format, rmgate parses it

for hyperlinks and inlined images as it creates the response message. Inlined

images are immediately fetched and mailed back to the client; they will usu-

ally arrive before the HTML document, so that they can be displayed along

with it. Linked documents may or may not be added to a list for prefetching

after the parsing is done. This allows processing of prefetched documents to

take place afier the explicitly requested ones, so that the documents which

are definitely wanted arrive first. Prefetching depends on two parameters

which are sent from mosaic as part of the request (Appendix C). The first

is the number of levels of recursive prefetching to do: 0 means no prefetching

at all; 1 means fetch all the documents directly linked to from the requested

one; 2 means also fetch documents linked from those; and so on. The see

ond parameter specifies a number of seconds. If the request message took

longer than this to arrive at rmgate (according to a time-stamp field in-

cluded with the message), then communications arq assumed to be slow, so

that prefetching is an important thing to do. Otherwise, no prefetching is

done, to conserve cache space and communication bandwidth. The defaults

are 1 level of prefetching if the message takes more than 3600 seconds (1

hour).

Of course, since the topography of the World Wide Web is practically

unlimited, recursive prefetching means that a document may be referred to

more than once during an invocation of rmgate. Also, it is common for one

inlined image to be used many times within a single document, as an item

list "bullet," for instance. For these reasons, a hash table is kept of d l the

documents fetched during a particular invocation of rmgate, and multiple

references are ignored.

The response messages are sent by invoking sendmail or some such

low-level e-mail program. There is a separate message for each document

fetched. The document is encoded in MIME'S base 64 format [7] to allow non-

text files, such as pictures and audio. Several other pieces of information,

such as the name of the user who made the request, are also included (see

Appendix C for a full list), to help the cache filler program, rmcache, store

the document correctly in the cache.

It should be recognized that more than one instance of rmgate may be

active at once. They will have no interaction with each other; two simulta-

neous instances may both fetch the same document and never even notice.

Such is not the case with the cache filler.

3.3 The cache filler

The cache filler program, rmcache, runs on the client machine alongside

mosaic; like rmgate, it is run every time a message arrives. But since

multiple instances of rmcache must interact with a single copy of mosaic ,

they are not as independent as instances of rmgate.

The mail messages are sent to a special e-mail address on the client

machine, which is configured to pipe each message to rmcache. Data must

be written to files in the user's home directory, and a signal must be sent

to the user's rmosaic process, so rmcache must be run with superuser

priviledges (see Appendix B).

The rmcache program begins by writing the document to a file. It then

appends all other information necessary for the cache list (titles, time stamps,

and so on) to a special file which serves as an input queue for rmosaic. Since

this file may be simultaneously opened by several copies of rmcache plus

mosaic, it uses the advisory locking mechanism provided by BSD Unix

[28, p. FLOCK(2)l to prevent race conditions. Once the file is written, a

Unix signal is sent to rmosaic to notify it (unless rmosaic is no longer

running, in which case rmcache can simply terminate; the file will be read

automatically by rmosaic next time it is run). Rmosaic reacts by loading

in the new information, deleting the file (taking care not to do so when

it's locked), and updating its display of the cache list. The document can

then be loaded fkom the first file created above to be viewed at any time.

Documents which were never explicitly requested by the user (prefetched

pages and inlined images) are marked as not "visible" in the cached list (see

Section 3.1). This means they are not displayed in the cache list window.

If an invisible document is ever explicitly requested by the user, its cache

entry becomes visible when the document is displayed. (The cache entries of

inlined documents never become visible.)

The presence of "invisible" cache entries creates a bit of a problem, in

that the cache is supposed to be manually controlled by the user. If the

user never happens to decide to view a particular prefetched document, it

will never become visible, A d the user will not have a chance to delete it.

To prevent the unbounded growth of the cache, a simple garbage collection

scheme is used, which removes any invisible cache entry which is not referred

to via hyperlinks, directly or indirectly, by a visible one. This algorithm is

run once every time mosaic exits.

Chapter 4

Evaluation

This system can never reasonably hope to perform as quickly as a standard

Web browser on similar hardware. To see why this is so, consider that the

same process which is normally used to fetch a document (HTTP, FTP, or

whatever) is here used in exactly the same manner, by the gateway server

instead of the client. The gateway machine could, of course, be closer in

terms of network topography to the server machine that the client machine

is, making the fetching process faster; but since the additional e-mail transit

uses essentially the same underlying transport mechanisms (usually TCP

[13]) as the Web protocols, the total time taken will always be at least as

long. Added to this are the inefficiencies caused by binary file encoding,

parsing at various stages, and additional information to pass around.

The results of some idealized timing experiments are shown in F'igure

4-1, comparing a mail-served gateway architecture (marked HTTP-SMTP)

with direct HTTP, as normally used for Web access. The experiments were

done on a local 10-megabit Ethernet network carrying no other significant

traffic, with the client on a SPARCstation IPX, and the gateway and the

server sharing a single SPARCstation 5. Highly simplified versions of the

client and gateway programs were used, in order to eliminate any delays

caused by inefficient implementation. The server was NCSKs HTTPD 1.3

0.01 + HTTP
+ TCP

Bytes Sent and Received

Figure 4-1: Idealized timing experiments.

[24]. To compute each data point; a request was made for a special URL

containing the number of bytes to return. The server generated a document

of the appropriate size by calling a CGI script [21]. The time was measured

from the start of the initial request transmission to the end of the document's

final receipt at the client. The simplified gateway program did not encode

the document into MIME'S base 64 format as the full implementation does

(see Appendix C), so the diagram should accurately reflect a lower bound on

the added overhead of a mail-served gateway It is quite evident from the

diagram that this overhead is substantial. (The third curve, marked "TCP,

shows the times needed to transfer data over a simple raw TCP [13] connec-

tion. It is shown to indicate the limits on possible future optimizations of the

protocols, assuming they do not use additional compression techniques.)

Of course, this system was not designed to be used when the standard

methods are available. But, in spite of the loss of absolute performance, this

architecture may have certain advantages, even for a traditional station-

ary, hardwired workstation environment. All time-consuming operations

are performed by queued background operations, allowing the user to keep

working. The act of loading a document into a viewer (when it is possible) is

actually faster than with a traditional browser, since the document is cached

locally. This could be particularly advantageous when dealing with very

large amounts of data, such as video files: the communications could even

be given very low priority (although such capability is not yet implemented

in this system) and allowed to happen overnight.

This is also the only known fully-functional Web browser which allows

the user to request several more documents while ones already requested are

still being loaded. (DeckScape [B] cannot yet be considered fully-functional.)

This can be thought of as "clicking ahead" of the incoming data stream, in the

same way that keyboard buffers allow the user to "type ahead" of a slow user

interface. The cache list makes it very easy to remember which documents

have been requested, and of those which have been viewed. It can be used

as a memory aid, in case the user gets distracted by intriguing links which

are unrelated to the topic being researched (a very common occurrence).

As noted in Section 3.2, Rover Mosaic is much more persistent than stan-

dard browsers when trying to contact Web servers, and is therefore more

reliable about returning requested pages. Regular users of Mosaic are all to

familiar with the "unable to contact server" message which necessitates try-

ing again; Rover Mosaic simply does all the repeated attempts automatically.

Unfortunately, the improvement is reduced by certain bugs in Mosaic which

seem to be only brought out by mosaic, causing Mosaic to occasionally

crash or freeze at apparently random times.

The system has been used and evaluated by several people, who have

generally agreed that it is a reasonably good solution to the problem of mo-

bile Web access. Their comments and suggestions have contributed heavily

to the evolution of the interface (see Section 2.2), which now seems to be

approaching the ideal goal of being almost as easy to use as standard Mosaic

while offering increased functionality and mobility, although there still are

(and always will be) plenty of opportunities for improvement1.

'Admittedly, the people consulted for evaluations were not exactly a broad cross section
of the population at large: they were all either students or professors of computer science
at MIT.

Chapter 5

Conclusion

The Rover Mosaic system can be considered a success. It has shown itself to

be a working solution to the problem of mobile World Wide Web access, and

also provides certain other features not available in standard Web browsers.

The implemented system still contains a few bugs, mostly because of the

clumsy adaptation of Mosaic to do things for which it was not originally de-

signed. To be used in the real world, a much better-integrated system would

have to be developed, preferably from scratch. The creation of such a system

would be an excellent opportunity to incorporate functional improvements,

as well. Here are some suggestions:

a Priority queueing

a Dynamic Belocatable Objects

User interface features

Bypassing the gateway

Priorities would be a very useful addition to the queued RPC model. For

instance, as mentioned in Chapter 4, some very large documents could be

given low priority and allowed to amive overnight, while collections of small,

tightly linked hypertext documents would benefit from fast delivery and

should be given high priority. Research in this direction is already taking

place for applications other than Web browsing as part of the Rover project.

Another Rover concept that might improve a Web browsing system is

Dynamic Relocatable Objects. Scenarios in which these could be put to good

use were described in the Introduction. Unfortunately, their effective use

would require modification of existing Web servers, and would thus consti-

tute a change in the architecture of the Web itself Nevertheless, research is

continuing on the topic, as the benefits could potentially be enormous.

Beyond that, many small improvements could be made to Rover Mosaic's

user interface. Some users have stated that they would like to be able to

choose which information was shown for each entry in the cache list: some

would prefer to always see the URL of a document instead of its HTML-

specified title; and various extra information, such as the dates of expiration

and last modification, might be found useful. Also, user notification of docu-

ment arrival is subtle at best; perhaps a small icon in the corner of the screen

could change color and ring a bell, similarly to the familiar xbiff program,

especially when mosaic is not running.

Finall1~, since some mobile computers may at times be attached to stan-

dard full-speed networks, it would be nice to provide an option to bypass

the e-mail and gateway server stages entirely, and simply use the standard

Web protocols as they were originally designed. This would allow the user

to enjoy the (usually) fast fetch latencies of standard Web clients, while also

benefitting from Rover Mosaic's other advantages.

These advantages include background fetching, which minimizes the time

spent waiting for documents to load; "clicking ahead" and explicit document-

list control, which help the user to navigate through nonlinear hypertext

geometries; and increased reliability in certain situations, as noted in Section

3.2 and Chapter 4. The only immediate disadvantage (aside from bugs and

inefficiencies, which could be solved by rewriting the system) is the added

complexity of the user interface, which may also lead to a shortage of screen

real estate. However, there is one other possible problem which is harder to

see,

One of the great features of the World Wide Web's hypertext structure, as

seen by many advocates [3], is the style of publishing it encourages. Since

links are very easy to create and quick to follow, any single page can be

very small, to cover a specific subject at a particular level of detail. Further

details and closely related topics can be in separate pages, connected by

hyperlinks. This leads to a natural structure which mimics the structure

of a particular field of knowledge, rather than being limited to sequential

text in the manner of conventional printed articles. When designed well,

hypertext documents can be much more effective tools for the transfer of

knowledge than are printed documents.

Rover Mosaic has the potential to work against this benefit. Since its

users cannot always follow links quickly, hypertext authors will now have an

incentive to organize their writings into larger, more linear segments, rather

than small documents with maay links. This could represent a major step

backward in the evolution of world connectivity.

It is the author's sincere hope that this will not happen- that authors

will, in fact, completely ignore the needs of mobile users and continue to

compose hypertext documents as if access to them could always be instan-

taneous. In the future, perhaps better ways around the delays can be found

(for instance, a group of closely interconnected documents could be explicitly

marked as a group, so that they could all be fetched at once if communication

latency is high). For now, though, Rover Mosaic should be thought of, not

as a regression in the progress of publishing technology, but as a small new

addition to the growing number of options available to its users.

Appendix A

Rover Mosaic user's guide

This appendix is intended to help users who are already familiar with
Mosaic and the basic concepts of the World Wide Web to get started using
Rover Mosaic. If you have never used normal Mosaic, try it out before reading
this. (On most systems, this means typing "Mosaic" or clicking on the NCSA
Mosaic icon. Talk to your system administrator if you can't find it.)

Before running Rover Mosaic, you must create a subdirectory named
".mosaic-cache" within your home directory. (Note: future versions of Rover
Mosaic ought to do this automatically when first run.) Do this by typing
"mkdir m/.rmosaic-cache". Rover Mosaic stores cached documents in this
directory.

To start Rover Mosaic, type "rmosaic". This will open two windows on
your screen: one which looks pretty much like regular Mosaic (we'll call it
the main window; see Figure A-1), and one which looks like Mosaic with a
simplified user interface (which we'll call the cache window; see Figure A-2).
The cache window will be empty the first time you run Rover Mosaic.

When you click on a hyperlink in the main window, one of two things
will happen. If the page you're requesting happens to be cached on your
machine, then the main window will display it, just like normal Mosaic. If
it's not cached, then it won't be displayed; rather, a new entry will be added
to the cache window, saying that the page has been requested. (Figure A-2
shows the cache window with several entries already in it.) This entry will
at first be marked (pending), meaning hat the page is on its way, but is still
not in the cache. When the page arrives, the entry will change to display
three hyperlinks, to View, Reload, and Delete the document, respectively.
(This may take anywhere fkom a few seconds to several hours or even longer,
depending on the size of the document and the speed of your network con-
nection.) You may then view the page by clicking on the View link, or by
clicking on the original hyperlink again.

The Delete link is used to remove the entry fkom the cache window and
the page fkom the cache. You will want to do this frequently to keep the cache
fkom getting too large. The Reload button is intended to request a fresh copy

Figure A-1: Rover Mosaic's home page.

of the page, in case you suspect that it may have changed. This feature is
not yet implemented, however.

A Options

Rover Mosaic may be started with any of several command-line options to
rmosaic. These are:

-clear Empties the cache before starting.

-d Causes mosaic to spew large amounts of information about what it is
doing. Meant for debugging purposes.

-force Forces rmosaic to run, even if it thinks another copy is already
running. This may be necessary after a crash caused by one of Rover
Mosaic's many bugs. If another copy of rmosaic is already running,
this option may really mess things up.

-p port Makes Rover Mosaic use port as the port number for its local socket
communications. Default is 8080.

Figure A-2: The cache window.

-pf level Causes Rover Mosaic to perform prefetching of hyperlinks level
levels deep. Default is 1.

-pft time Sets the minimum time limit for request transmission time, below
which no prefetching will be done. Specified in seconds. Default is 3600
(1 hour).

The last two deserve some explanation. If the network is slow enough,
Rover Mosaic may download into the cache certain pages which you haven't
explicitly requested. Which pages to get are determined by following hyper-
links from the pages you have requested. If the -pf option is set to 0, this is
not done at all; if it is 1, each page directly linked to from a page you request
it retrieved; if it is 2, all the pages linked to from those pages are retrieved;
and so on. These pages do not show up in the cache window unless you later
decide to view them.

If the network connection is fast enough, the -pf option is ignored, and
no prefetching is done at all. The -pft option sets the criteria for how fast
the network must be to do this. The time in question is the delay between
when an e-mail message is sent from your machine and when it arrives at

the Rover Mosaic gateway server machine (e-mail is used for fetching all
documents under Rover Mosaic). If you want prefetching to always occur,
use -pft 0.

A.2 Environment variables

Two environment variables can be set to customize the behavior of Rover Mo-
saic (in addition to all the varia-bles that standard Mosaic already
recognizes- see NCSA's documentation [22]). Usually users need not worry
about these, as system administrators should set the defaults to appropriate
values.

WEBMAILCMD The command line for sending e-mail to the Rover Mo-
saic gateway server. This should be the command line for a program
which, when run, will take its standard input to be a standard e-mail
message, as formatted for SMTP [lo], including the headers. This pro-
gram should then send the message to an appropriate Rover Mosaic
gateway server site. A typical value would be "/usr/lib/sendmail web-
serv@vienna.lcs.rnit .edu" .

WEBREPLY The e-mail address at your site for the gateway server to send
fetched documents back to. Under normal circumstances, it should be
completely unnecessary to set this variable.

Appendix B

Rover Mosaic administrator's
guide

Administrating a Rover Mosaic installation might mean one or both of two
things: running a client site for users, or running a gateway server for
client sites to connect to. The necessary software for both comes together
in a single package; after obtaining it, you can choose to install whichever
parts you like. Compiling requires that the Berkeley Sockets library [28, p.
SOCKET(211 is supported. So far, we've mainly just run the whole system on
an Intel Pentium processor running BSD/OS from Berkeley Software Design,
Inc. 121. It should port fairly easily to other systems. If there are any major
problems, feel fiee to report them to aldel@mediammitmedu.

B.l Downloading and compiling the source
The source package is available on the Web at
httpd/~mpsrgmlcsemitmedfl a l d e l l t h e s i o s c m t e (sorry, no FTP
access is available). Put this by itself in a directory somewhere and unpack
it. Edit the MakeGle to set certain options; then run make. The default is to
make everything; to make only the client side or gateway side executables,
type "make rmosaic rmcache" or "make rmgate", respectively.

There are only three options to set in the Makefile. The first is simply to
choose a C compiler; gcc works quite well for us. The second option sets the
default e-mail command line (including the default gateway server to use)
for rmosaic. You will want to change this if sendmail is not in /usr/lib
on your system; if some program other than sendmail is to be used; or if
you want to use a gateway server other than viennamlcsemitmedu. Please
change the default gateway server if at all possible; vienna is one of our user
workstations, and we would like to avoid loading it down. We recommend
setting up your own gateway server, in which case you will want to use
that instead of ours. The third option is the e-mail address for all incoming

documents from the gateway to be sent to; it should be set to NULL, unless
there is a user on the system named webcache, which strikes us a very
unlikely. If there is, the WEBREPLY variable should be set to the full
address you decide to use, including your client site's hostname.

If there are any problems compiling, you might want to try switching
compilers; if that doesn't work, you may have to edit the source code. The
top of mgate.~, in particular, contains some definitions that are supposed
to be provided by standard header files, but aren't on all systems; you might
need to comment out or decomment certain lines to compile correctly.

B.2 Setting up a client site
A client site is an installation of Rover Mosaic which allows user to browse
the World Wide Web via e-mail. In many cases, it will be installed on a
portable machine, which means the administrator may be the only user. The
following instructions describe installation for a more general multi-user
scenario; it should work for a single user as well.

The executable mosaic is the one that users actually run to use the sys-
tem, so it should be placed somewhere in the standard path. The rmcache
program need not be placed in the standard path, as it is never called by the
user. Instead, it should be run automatically whenever e-mail arrives at the
address for incomirig documents (usually webcache- see above). This usu-
ally means putting a line in the /etc/aliases file, along the lines of "webcache:
I /usr/local/rmosaic/webcache". The program referenced in this line should
be an executable script that changes to an appropriate directory and runs
rmcache, which may dump error reports to a file called rmcache.errlog
in the directory. (You may want to periodically check this file to make sure
your installation is working correctly, and erase it when it gets too large.)

Since rmcache must write to files in usersy home directories, it is impor-
tant that it is run with superuser privileges. Make sure its file permission
flags include setuid, with the file owned by root. It is true that this program
writes to a filename specified by the incoming mail message, but since the
filename is not allowed to contain any path specification (see Appendix C),
this should not create a security hole.

Since the -kiosk option, which simplifies Mosaic's interface, was not of-
fered in earlier versions, you should make sure that Mosaic 2.5 or later is
installed on your system. (If this is impossible for some reason, replace the
string "-kiosk" in rmosaic.~ with empty quotes.)

B.3 Setting up a gateway server
A gateway server should be set up on a machine which is permanently con-
nected to the Internet. It responds automatically to requests contained in
e-mail messages by downloading World Wide Web pages and sending them
in reply e-mail messages.

Set up the rmgate program to be automatically run whenever ernail ar-
Fives at a particular address on the system (typically websedhostname).
The e-mail should be piped to rmgate as its standard input, and it may be

. necessary to include a few arguments on rmgate's command line (see below).
The current directory when rmgate is run is likely to end up containing a file
named rmgate.emlug, which contains any error messages generated by the
program. For this reason, it is generally a good idea to have the letddiases
file entry for webserv run a shell script which changes to an appropriate
directory, then runs rmgate with the correct arguments. It is not necessary
for rmgate to have root privileges.

By default, m a t e tries to send e-mail by running sendmail, with no
path specified. You can either make sure that sendmail is in the execution
search path when rmgate is run, or specify a different command (with path
optionally included) as the first command-line argument to rmgate. The
e-mail address to be sent to will be appended to this command as its find
argument.
To fetch Web pages via any protocol other than HTTP, =gate runs the

CERN line mode browser, www, with command line %nvw -n -sourcew plus
the URL of the page. If www is not in the search path, you can specify
an alternative command as rmgate's second argument. Make sure to use
double quotes to make the entire command one argument if it contains any
spaces.

Appendix C

Message formats

The e-mail messages passed from mosaic to rmgate and back to rmcache
are MIME-compliant messages [?I with special extended header fields. Most
of these are common to messages sent in both directions, so they are all
described first. Most of the fields specify either strings, which extend to
the end of the line; integers, which are in decimal notation; or booleans,
which are specified as either yes or no. Fields are optional and valid in both
directions of communication unless otherwise stated.

X-Page The unique name that tne page is known by. This is always in the
form of a URL, and is usually the actual URL of the page, but may not
be, especially when forms are involved. Must always be included in
both directions.

X-Pagetitle The HTML-specified title of the page.

X-Sowce The unique name of the page that was shown when the request
was made; generally assumed to be a page that contains a link to the
current one in question.

X-Sourcetitle The HTMGspecified title of the above source page.

X-URL The real URL of the page. Ignored by rmgate, since it is also
specified in the message body. Defaults to be same as X-Page within
rmcaclhe.

X-Reply E-mail address to send fetched document to. Mandatory for re-
quest message; invalid in reply (although the reply should contain the
same string in its To: field).

X-User The user name (on client system; must not contain the hostname)
of the person requesting the page. Mandatory in both directions.

X-Path The name of the file to save the page in at the client. May not
contain any path information (slashes) for security reasons. Optional,
since rmcache will make up a new name if not specified.

X-Form Boolean. Tells whether or not the request contains query data
(either as part of the URL after a question mark, or as an H'ITP message
body with the POST method). Default is no.

X-Time1 The time at which the original request was made. Specified in the
typical Unix format of the number of seconds since midnight, January
1,1970 GMT.

X-Time2 The time at which the page was fetched at the gateway. Same
format as X-Timel. Valid only in reply.

X-Prefetch The number of levels of recursive prefetching to do (see Section
3.2). Default is 1. Valid only in request.

X-Preftime The minimum time limit, in seconds, on message latency before
prefetching is turned on (see Section 3.2). Default is 3600 (1 hour).
Valid only in request.

X-Inline Boolean. Whether or not to automatically fetch inlined images.
Default is yes.

(3.1 The request message
Exactly one e-mail message is sent for every page requested. This usually
contains all of the header fields mentioned above except for Pagetitle and
Time2. The message body contains the exact text, in untranslated ASCII, of
the HTTP request message [5], including all of its headers and body.

C.2 The reply message

Exactly one e-mail message is sent for every page fetched. Since prefetching
and inlined images result in fetching of pages which were not requested, this
means that more reply messages than request messages may be sent. The
headers should usually contain all of the above fields except Reply, Prefetch,
Preftime, and Inline. (The current implementation also omits the Pagetitle
field, which is filled in by mcache later on. This is inefficient.) The omission
of the Path field indicates that the document was not explicitly requested,
and should therefore not be marked "visible" in the cache.

The body of the message contains the entire response from the fetch
operation (including the HTTP headers, if HTTP was used). In the current

implementation, the body is always encoded in MIME's base 64 format,
to allow binary files. A more efficient implementation might aliow text
documents to be in a normal ASCII format,

Both the request and the reply could theoretically be broken up into
smaller messages, using MIME's partial message facility; or conversely there
could be several requests or replies within a single message, using the mul-
tipart message type. Neither of these features is currently implemented.

Bibliography

[ll J. Bartlett. Experience with a wireless World Wide Web client. In
Compcon '95,1995.

[2] Berkeley Software Design, Inc. Berkeley software design: Home page.
http://www. bsdi.com/.

[31 T. Berners-Lee. Style guide for online hypertext.
http://www. w3 .orglhyperte~/Provider/Style/Overview. html.

[4] T. Berners-Lee, R. Cailliau, A. Luotonen, H. Frystyk, and A. Secret. The
World Wide Web. Communications of the ACM, August 1994.

[5] T. Berners-Lee, R. T. Fielding, and H. Frystyk. Hypertext Transfer
Protocol - HTTP/1.0. IETF HTTP Working Group Draft, March 1995.

[6] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Loca-
tors (URL). Internet RFC 1738, December 1994.

[7] N. Borenstein and N. Freed. MIME (Multipurpose Internet Mail Exten-
sions) part one: Mechanisms for specifying and describing the format
of internet message bodies. Internet RFC 1521, September 1993.

[8] M. Brown and R. Shillner. DeckScape: An experimental web browser.
DEC Systems Research Center Research Report 135a, March 1995.

[Q] D. We Connolly. HyperText Markup Language (HTML): working and
background materials.
http://www. w3 .org/hypertex~/M:arkUp/MarkUp~ html.

1101 David H. Crocker. Standard for the format of ARPA internet text mes-
sages. Internet RFC 822, August 1982.

[Ill M. Ebling, L. Mummert, and D. Steere. Overcoming the network bottle-
neck in mobile computing. In Workshop on Mobile Computing Systems
and Applications, 1994.

[I21 L. B. Huston and Honeyman. Disconnected operation for AFS. In
U S . Symposium on Mobile and Location-Independent Computing,
August 1993.

[13] Information Sciences Institute. Transmission Control Protocol: DARPA
internet program protocol specification. Internet RFC 793, September
1981.

[I41 A. Joseph, A. delespinasse, J. Tauber, D. Gifford, and F. Kaashoek.
Rover: A toolkit for mobile information access. Unpublished draft,
1995.

1151 F. Kaashoek, T. Pincknex and J Tauber. Dynamic documents: Mobile
wireless access to the U r n . In Workshop on Mobile Computing Sys-
tems and Applications, 1994.

[16] B. Kahle and A. Medlar. An information system for corporate users:
Wide Area Information Servers. Technical Report TMC-199, Thinking
Machines, Inc., April 1991.

[I71 J. J. Kistler and M. Satyanarayanan. Disconnected operation on the
Coda file system. ACM Dansactions on Computer Systems, October
1992.

[I81 M. T. Le, F. Burghardt, S. Seshan, and J. Rabaey. Infonet: the network-
ing infrastructure of Infopad. In Compcon '95,1995.

[I91 A. K. Lenstra and M. S. Manasse. Factoring by electronic mail. In
Advances in Clyptology: Proceedings of E UROCRYPT, 1989.

[20] A. Luotonen, H. Frystyk, and T. Berners-Lee. CERN httpd.
http://www.w3.org/hyperte~Daemon/Status.html.

[21] Rob McCool. Common Gateway Interface.
http://.hoohoo.ncsa.uiuc.edu/cgi/intro. html.

[22] National Center for Supercomputing Applications. NCSA Mosaic Home
Page.
http:///www.ncsa.uiuc.edu/SDG/Software/Nos~~oc~elp-about . html.

[23] National Center for Supercomputing Applications. Using Mosaic by
remote control.
http:l/~.ncsa.uiuc.edulSDG/Soft~are~osaidremote-~0ntr01.htm1.

[24] NCSA httpd Development Team. NCSA httpd Overview.
http://hoohoo.ncsa.uiuc.edu/docs/Overvie.

[25] Netscape Communications Corporation. Welcome to Netscape.
http://home.mcom.com/home/~e1c0me.htm1.

[26] N. Pellow, T. Berners-Lee, and H. Frystyk. WWW line mode browser.
http://lwww.w3 . o r g ! h y p e r t e x t l W W W / L i n e M o d .

[27] J. Postel and J. Reynolds. File Transfer Protocol (FTP). Internet RFC
959,1985.

[28] Regents of the University of California. Unix Programmer's Reference
Manual. USENM Association, April 1986.

[29] P. Reiher, J. Heidemann, D. Ratner, G. Skinner, and G. J. Popek. Re-
solving file conflicts in the Ficus file system. In USENIXSummer 1994
Technical Conference, 1994.

[30] M. Satyanarayanan, J. J. Kistler, L. B. Mummert, M. R. Ebling, P. Ku-
mar, and Q. Lu. Experience with disconnected operations in a mo-
bile environment. In USENM Symposium on Mobile and Location-
Independent Computing, August 1993.

[31] A. Secret. Agora: Retrieving WVWV documents through mail.
http://www.w3.~rg/hyperte~/Ag0ra/OveIlrie~.htm~.

[32] G. M. Voelker and B. N. Bershad. Mobisaic: an information system
for a mobile wireless computing environment. In Workshop on Mobile
Computing Systems and Applications, 1994.

[33] T. Watson. Application design for wireless computing. In Workshop on
Mobile Computing Systems and Applications, 1994.

	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif
	00000008.tif
	00000009.tif
	00000010.tif
	00000011.tif
	00000012.tif
	00000013.tif
	00000014.tif
	00000015.tif
	00000016.tif
	00000017.tif
	00000018.tif
	00000019.tif
	00000020.tif
	00000021.tif
	00000022.tif
	00000023.tif
	00000024.tif
	00000025.tif
	00000026.tif
	00000027.tif
	00000028.tif
	00000029.tif
	00000030.tif
	00000031.tif
	00000032.tif
	00000033.tif
	00000034.tif
	00000035.tif
	00000036.tif
	00000037.tif
	00000038.tif
	00000039.tif
	00000040.tif
	00000041.tif
	00000042.tif
	00000043.tif

