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Abstract

In this thesis we consider practical ways of disseminating information from multiple
senders to multiple receivers in an optimal or provably close-to-optimal fashion. The
basis for our discussion of optimal transmission of information is mostly information
theoretic - but the methods that we apply to do so in a low-complexity fashion draw
from a number of different engineering disciplines. The three canonical multiple-input,
multiple-output problems we focus our attention upon are:

• The Slepian-Wolf problem where multiple correlated sources must be distribut-
edly compressed and recovered with a common receiver.

• The discrete memoryless multiple access problem where multiple senders com-
municate across a common channel to a single receiver.

• The deterministic broadcast channel problem where multiple messages are sent
from a common sender to multiple receivers through a deterministic medium.

Chapter 1 serves as an introduction and provides models, definitions, and a discus-
sion of barriers between theory and practice for the three canonical data dissemination
problems we will discuss. Here we also discuss how these three problems are all in
different senses ‘dual’ to each other, and use this as a motivating force to attack them
with unifying themes.

Chapter 2 discusses the Slepian-Wolf problem of distributed near-lossless com-
pression of correlated sources. Here we consider embedding any achievable rate in
an M -source problem to a corner point in a 2M − 1-source problem. This allows us
to employ practical iterative decoding techniques and achieve rates near the bound-
ary with legitimate empirical performance. Both synthetic data and real correlated
data from sensors at the International Space Station are used to successfully test our
approach.

Chapter 3 generalizes the investigation of practical and provably good decoding
algorithms for multiterminal systems to the case where the statistical distribution
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of the memoryless system is unknown. It has been well-established in the theoret-
ical literature that such ‘universal’ decoders exist and do not suffer a performance
penalty, but their proposed structure is highly nonlinear and therefore believed to be
complex. For this reason, most discussion of such decoders has been limited to the
realm of ontology and proof of existence. By exploiting recently derived results in
other engineering disciplines (i.e. expander graphs, linear programming relaxations,
etc), we discuss a code construction and two decoding algorithms that have polyno-
mial complexity and admit provably good performance (exponential error probability
decay). Because there is no need for a priori statistical knowledge in decoding (which
in many settings - for instance a sensor network - might be difficult to repeatedly ac-
quire without significant cost), this approach has very attractive robustness, energy
efficiency, and stand-alone practical implications.

Finally, Chapter 4 walks away from the multiple-sender, single-receiver setting
and steps into the single-sender-multiple receiver setting. We focus our attention
here on the deterministic broadcast channel, which is dual to the Slepian-Wolf and
multiple access problems in a number of ways - including how the difficulty of practical
implementation lies in the encoding rather than decoding. Here we illustrate how
again a splitting approach can be applied, and how the same properties from the
Slepian-Wolf and multiple access splitting settings remain. We also discuss practical
coding strategies for some problems motivated by wireless, and show how by properly
‘dualizing’ provably good decoding strategies for some channel coding problems, we
admit provably good encoding for this setting.

Thesis Supervisor: Muriel Médard
Title: Associate Professor
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Chapter 1

Introduction

In this thesis we consider practical ways of disseminating information from multiple

senders to multiple receivers in an optimal or provably close-to-optimal fashion. The

basis for which we discuss optimal transmission of information is mostly information

theoretic - but the methods that we apply to do so in low-complexity fashions draw

from a number of different engineering disciplines. The three canonical multiple-input,

multiple-output problems we focus our attention upon are

• The Slepian-Wolf problem where multiple correlated sources must be distribu-

tively compressed and recovered with a common receiver.

• The discrete memoryless multiple access problem where multiple senders com-

municate across a common channel to a single receiver.

• The deterministic broadcast channel problem where multiple messages are sent

from a common sender to multiple receivers through a deterministic medium.

Chapter 2 discusses the Slepian-Wolf problem of distributed near-lossless compres-

sion of correlated sources. As in the case of the multiple access channel, it has been

known for decades that simple encoding strategies combined with an optimal decoder

result in no performance loss. The optimal decoder, except in certain ‘corner’ cases,

however is highly complex and has served as the major barrier between theory and

practice. Motivated by an analogous technique in the multiple access literature, we

15



introduce practical new tools for communicating at all rates in the achievable region

by means of a ‘source-splitting’ strategy that allows for parallelized encoding and

pipelined decoding at the speed of a single-user decoder. Here we also discuss how

using low-complexity iterative decoding techniques with this approach leads to a sig-

nificant simplification in part of the decoding process, and illustrate the achievability

of non-vertex rates near the theoretical boundary with empirical performance.

Chapter 3 continues the investigation of practical and provably good decoding

algorithms for multiterminal systems - but when the statistical knowledge of the

memoryless system is unknown. It has been well-established in the theoretical liter-

ature that such ‘universal’ decoders exist and do not suffer a performance penalty,

but their structure is highly nonlinear and complex. For this reason, most discussion

of such decoders has been limited to the realm of ontology and proof of existence.

By exploiting recently derived results in other engineering disciplines, we construct

polynomial-complexity algorithms and discuss constructing codes that together admit

provably good performance. Because there is no need for a priori statistical knowl-

edge in decoding (which in many settings - for instance a sensor network - might

be difficult to repeatedly acquire without significant cost), this approach has very

attractive robustness, energy efficiency, and stand-alone practical implications.

Chapter 4 walks away from the multiple-sender, single-receiver setting and steps

into the single-sender-multiple receiver setting. We focus our attention here on the de-

terministic broadcast channel, which is dual to the Slepian-Wolf problem in a number

of ways. As opposed to the Slepian-Wolf and multiple access problems, the determin-

istic broadcast problem manifests its practical difficulties in the encoding operation.

Here we illustrate how again a splitting approach can be applied, and how the same

properties from the Slepian-Wolf and multiple access splitting settings readily apply.

We also discuss practical coding strategies for some problems motivated by wireless,

and show how by properly ‘dualizing’ provably good decoding strategies for some

channel coding problems, we admit provably good encoding for this setting.

16



1.1 Multiple Senders, One Receiver

Here we will discuss two canonical information theory problems where there are mul-

tiple senders and one receiver. The receiver must takes its observations and recover

the information sent by all senders with arbitrarily small probability of error. In

these settings, it is usually the case that constructing good low-complexity encoding

mechanisms is far simpler than constructing good low-complexity decoders.

1.1.1 The Discrete Multiple Access Channel

In the discrete multiple access problem, senders X1, X2, . . . , XM transmit messages

to a common receiver Y under channel uncertainty, here modeled as a memoryless

conditional probability distribution P
(
Y |X1, . . . , XM

)
. The capacity region is the

closure of a union of polyhedra [Ahl71, Lia72]:

cl


 ⋃

P (X1)···P (XM )

{
R ∈ RM

+

∣∣ ∑
i∈S

Ri < I (X(S);Y |X(Sc)) ∀ S ⊆ {1, 2, . . . ,M}
}


where X(S) = {Xj}j∈S and cl(·) denotes closure.

Certain ‘corner’ points have intuitive interpretations. For instance, when M =

2, the rate pair (I(X1;Y |X2), I(X2;Y )) may be achieved as follows. The receiver

first treats X1 as noise, and then reliably decodes X2 for any R2 ≤ I(X2;Y ). The

receiver then uses its knowledge of X2 in Y and reliably decodes X1 for any R1 ≤
I(X1;Y |X2). Similarly, by reversing the roles of X1 and X2, we see that the pair

(I(X1;Y ), I(X2;Y |X1)) also lies in the capacity region. By using time-sharing, any

convex combination of the corner points may be achieved as well.

It has also been found recently [GRUW01] that performing ‘rate-splitting’ (whereby

one user splits its rate into virtual users who contain codebooks that appear to be

noise to each other) may achieve any point in the M-user capacity region, using no

more than two virtual users per physical user, with a maximum of 2M − 1 virtual

users. For each user, the virtual users split rate to code for a single-user point-to-point

channel with rate that accounts for the other users’ presence.
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1.1.2 The Slepian-Wolf Problem

The Slepian-Wolf problem of distributed near-lossless compression of correlated sources

(see (L) of Figure 1-1) has been understood theoretically for many years [SW73]. It

has received a lot of attention recently due to its relevance as a sub-component of nu-

merous distributed data dissemination systems. Practical techniques, however, have

remained elusive for quite a long time. The challenges include: finding provably good

codes, low-complexity decoding, and choosing source coding rates. Recently, proper

application of channel coding developments to this setting has been successful at ad-

dressing some of these challenges. However, explicit practical solutions that apply to

all instantiations of the problem have not yet been constructed. This thesis applies

channel coding developments to broaden the class of problems with low complexity

solutions. Indeed, any instance of the problem can be addressed practically with our

approach.

The achievable rate region R
[
P
(
u1, . . . , uM

)]
for M memoryless sources

(U1, . . . , UM) with joint probability distribution P
(
u1, . . . , uM

)
is given by [SW73]:

R
[
P
(
u1, . . . , uM

)]
=

{
R ∈ RM

+

∣∣ ∑
i∈S

Ri ≥ H (U(S)|U(Sc)) ∀ S ⊆ {1, 2, . . . ,M}
}
(1.1)

where U(S) = {U j}j∈S. (See (R) of Figure 1-1.) In [Cov75], Cover simplified the

proof by proposing a code design strategy whereby each encoder randomly places all

possible source sequences into bins and gives the bin index to the decoder. Linear

block codes can be used to perform binning practically and with no loss in either the

achievable rate region or the error exponent [Csi82]. In code operation, the decoder

receives a single bin index from each transmitter and then searches for a collection(
Û

1
, . . . , Û

M
)

of ‘jointly typical’ sequences [CT91, pp. 194-197] lying in the described

bins. This can be done with high probability provided that the rates lie within the

achievable region. At certain rate points, which we call ‘vertices’ or ‘corner points’,

this joint search over all codebooks for ‘jointly typical’ sequences can be done suc-

cessively. The corner points are the rate tuples (R1, . . . , RM) that are obtained by

18



u1

u2

E(u1)

E(u2)

û1

û2

encoder

encoder
decoder

H(U1|U2)H(U1)
R1

H(U2|U1)

H(U2)

R2

Figure 1-1: The Slepian-Wolf problem: (L) model (R) achievable rate region

expanding H(U1, . . . , UM) by M successive applications of the chain rule and assign-

ing to each rate the unique corresponding term in the expansion. For instance, if users

would like to communicate at the rate (R1, R2) = (H(U1), H(U2|U1)), then we de-

scribe the source U1 at rate H(U1) by entropy-encoding U1. (We can do this by using

either a variable-rate lossless code or a fixed-rate near-lossless code.) After successful

decoding, U1 can be used as side information to help decode U2 at rate H(U2|U1).

By exchanging the roles of U1 and U2, it follows that the same approach applies to

encoding at rate (R1, R2) = (H(U1|U2), H(U2)). Thus, in this case, the decoding

process can be decomposed into a pipelined approach that operates at the speed of

a single-user decoder. Recently, a lot of attention has been paid to the construction

of low-complexity decoders to achieve rates of R2 very close to H(U2|U1). These

attempts, which include iterative techniques for turbo-code [BGT93] constructions

[GFZ01, AG02, BM01, LXG03a] and low-density parity check code (LDPC) [Gal62]

constructions [TGFZ03, SPR02, LXG03b, GFZ03, LLN+03], have met much success

when U1 and U2 are binary random variables.

While these codes can be combined using time-sharing to achieve non-vertex rates,

time-sharing has practical drawbacks. Rate fluctuations arise at different points of

the encoding process, and the delay required to communicate near a target rate can

be prohibitively long. Furthermore, as we will see in Section 2.3, significant error

exponent reduction can ensue.

We consider in Chapter 2 a practical method to perform ‘source-splitting ’, which
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transforms all points in the Slepian-Wolf achievable region into vertices in a Slepian-

Wolf achievable region with more sources. Once the rate point becomes a vertex, we

can parallelize encoding and pipeline decoding. Source-splitting was introduced in

[RU97], but that approach required shared randomness at the encoders and decoder,

and the outputs of the splitting operation had alphabets larger than the original

source. Another approach that allows parallelized encoding and pipelined decoding

is [Wil88], but this also requires common randomness at the encoder and decoder

and involves searching for jointly typical sequences at the encoder. Our splitting

technique involves a simple thresholding operation followed by specifying a bin index,

reduces the alphabet size of the outputs of the splitter, and does not require common

randomness.

We also illustrate via the ‘method of types’ [Csi98] and reasoning similar to

[GRUW01] that performing the proposed splitting strategy at most once per user

can achieve any rate in the Slepian-Wolf achievable rate region with parallelized en-

coding and pipelined decoding. We also discuss how the splitting strategy may be

combined with iterative decoding in a practical setting. Our splitting technique has an

important simplification in part of the decoding process. Simulation results confirm

the practicality and effectiveness of this approach.

1.1.3 Slepian-Wolf, Multiple Access Duality

We would like to briefly mention that just as in the case of point-to-point commu-

nication, there is a precise duality between any instance of a Slepian-Wolf problem

and any instance of a particular class of multiple-access problems. This is succinctly

stated in [CT91, pp. 416-418] and precisely quantified in [Csi82]. In the point-to-point

case, it is well known that any instance of a fixed-rate near-lossless data compression

problem is precisely dual to any instance of a particular class of channel coding prob-

lems. The Slepian-Wolf, multiple access duality can be thought of as a multiterminal

extension of this point-to-point case. The duality is as follows.
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Point-to-point

Consider a discrete memoryless source U with probability distribution W . Without

loss of generality, we assume that U = {0, 1, . . . , Q−1} where Q = 2t for some integer

t ≥ 1. Thus we may assume that U takes on values in F2t . We consider the case

where a linear mapping

H =




−H ′
1−

−H ′
2−
...

−H ′
M−




: UN → UM

is used to map u ∈ UN to s ∈ UM via s = Hu where M < N and U is memoryless

with probability distribution W ∈ P (U). We will denote the rate R as

R = t
M

N
(1.2)

and note that this corresponds to rate in a data compression sense and not in a

channel coding sense (which would correspond to t− R). The decoder knows that u

must be consistent with s, in other words it must lie in the coset

Co (H, s) = {u
∣∣ Hu = s}, (1.3)

and selects û as the ‘best’ coset member. This encompasses two settings:

a) Fixed-to-fixed length near-lossless data compression, where u is identified as the

sourceword and s is the syndrome, the output of the compression operation.

b) An additive noise channel Y = X ⊕ U . By using a linear code C for x, and

identifying the parity check matrix H with C as

C = {x : Hx = 0} , (1.4)
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then we have that a sufficient statistic for decoding is

Hy = Hu = s.

Successfully decoding for the noise vector u is equivalent to successfully decoding

for the transmitted codeword x:

x̂ = û⊕ y.

Note that for the same matrix H used in (a) and (b), decoding error probability is

identical. For both problems (a) and (b), it is known [Csi82] that linear codes attain

all achievable rates (as well as the random coding error exponent).

Multiterminal

Consider a universal pair of discrete memoryless sources (U1, U2) drawn according

to a joint probability distribution W . For k ∈ {1, 2} we define Qk = |Uk| = 2tk and

without loss of generality assume Uk = {0, 1, . . . , Qk−1} . For k ∈ {1, 2} we consider

the case where a linear mapping Hk:

Hk =




−Hk
1
′−

−Hk
2
′−

...

−Hk
Mk

′−




: Uk
N → Uk

Mk

is used over F2tk to map u ∈ UN to s ∈ UMk via sk = Hku where Mk < N . We will

denote the rates as

R1 = t1
M1

N
(1.5)

R2 = t2
M2

N
(1.6)
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The decoder knows that
{
uk

}2

k=1
must be consistent with

{
sk
}2

k=1
, in other words

each uk must lie in the coset

Co
(
Hk, sk

)
= {uk

∣∣ Hkuk = sk}, (1.7)

and selects
{
ûk

}2

k=1
as the ‘best’ coset member. This encompasses two settings:

a) Fixed-to-fixed length near-lossless Slepian-Wolf data compression, where
{
uk

}2

k=1

are identified as the sourcewords and
{
sk
}2

k=1
as the syndromes, the outputs of

the compression operation.

b) A multiple access channel where x1 ∈ U1 and x2 ∈ U2 are mapped to

y =
(
(y1

1, y
2
1), (y

1
2, y

2
2) . . . (y

1
N , y

2
N)

)
∈ {U1 × U2}N

according to

(
yk = xk ⊕ uk

)
k=1,2

By using linear codes Ck for xk, and identifying the parity check matrix Hk with

Ck as

Ck =
{
x : Hkx = 0

}
, (1.8)

then we have that a sufficient statistic for decoding is the pair

(
Hkyk = Hkuk = sk

)
k=1,2

Successfully decoding for
{
uk

}2

k=1
is equivalent to successfully decoding for the

transmitted codewords
{
xk

}
k = 1, 2:

x̂k = ûk ⊕ yk.
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Note that for the same matrices {H1, H2} used in (a) and (b), decoding error probabil-

ity is identical. It was also shown in [Csi82] that for both problems (a) and (b),linear

codes attain all achievable rates (as well as the random coding error exponent).

1.1.4 Universal Decoding

The techniques previously mentioned all require knowledge of the joint probability

distribution of sources (U1, . . . , UM). We next pursue universal decoding algorithms

that deliver the same performance (in terms of achievable rates and rate of probability

of error decay) without that knowledge. Csiszár’s minimum-entropy decoder is one

such universal decoder for a class of discrete memoryless systems [CK82, Csi82, Csi98],

including the Slepian-Wolf problem as well as the type of multiple access problem

discussed in Section 1.1.3. However, those pieces of work do not consider decoder

complexity. Universal decoding is potentially very useful if it can be implemented

with low complexity, since limited feedback and rate loss can make it difficult to

estimate unknown statistics. To date, as far as we know, there has not been much

effort at trying to build practical universal decoders.

In Chapter 3 we address the universal coding problem, taking into account com-

plexity. We consider both point-to-point and multiterminal coding problems, given by

the Slepian-Wolf problem as well as their dual multiple access problems of the type

given in Section 1.1.3. Our perspective takes techniques from the channel coding

literature and applies them to the universal setting. We construct two polynomial-

complexity encoding and decoding algorithms that exhibit an exponential decay in

error probability. One of them relies on a linear programming relaxation to decoding,

while the other is an iterative bit-flipping approach. It is our hope that the method-

ologies presented here will form the basis for significant advances in the practical

universal coding domain.
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1.2 One Sender, Multiple Receivers

In Chapter 4 we will discuss a canonical information theory problem, whose capacity

region is known, where there is one sender and multiple receivers. In this setting, the

encoder must take multiple messages and combine them into a single channel input so

that each receiver can decode its message with arbitrarily small probability of error.

The decoders work independently and are far easier to design.

The deterministic broadcast channel has one sender and multiple (M) receivers.

The sender combines the messages {mj}Mj=1 into a single length-n channel input X =

{X1, . . . , Xn}, where mj ∈ {1, . . . , 2nRj} is the message for receiver j. Receiver j

receives a deterministic function of X, i.e. Y j
i = fj(Xi), and from this it attempts

to reconstruct mj, m̂j = dj(Y
i). The capacity region of the deterministic broadcast

channel is given by

cl


 ⋃

P (X)

{
R ∈ RM

+

∣∣ ∑
i∈S

Ri < H (Y (S)) ∀ S ⊆ {1, 2, . . . ,M}
}
 ,

where Y (S) = {Y j}j∈S.

We start off by motivating consideration of such channels by considering inter-

ference effects of simple wireless networks. We next show that any instance of a de-

terministic broadcast problem with M receivers may be reduced, via a rate-splitting

transformation, to another (2M − 1)-receiver problem where a successive encoding

approach suffices. Analogous to rate-splitting for the multiple access channel and

source-splitting for the Slepian-Wolf problem, all achievable rates (including non-

vertices) apply. This amounts to significant complexity reduction at the encoder.

Here we also discuss practical schemes for first-stage coding at vertices of any de-

terministic broadcast problem, using Cover’s ‘enumerative source coding’ [Cov73]

technique.

We then consider specific classes of deterministic broadcast channels and provide

complete practical solutions. For all degraded deterministic broadcast channels, we

show that the ‘enumerative source coding’ technique can be applied with zero error
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for all stages of vertex coding. We also show that for classes of two-receiver channels

where transmission to one user puts constraints on the alphabet available to trans-

mission to the other, a strong duality exists with coding over erasure channels. We

then illustrate how the capacity-achieving ‘LT codes’ erasure-correcting codes frame-

work of [Lub02] can be ‘dualized’ to construct encoders with side information for our

domain. We show that we can attain certain rates on the boundary of the capacity

region using this practical approach. Such problems include our wireless interfer-

ence management examples, as well the Blackwell channel - the simplest non-trivial

deterministic broadcast channel.
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Chapter 2

Practical Approaches to

Slepian-Wolf Data Compression

Problem

Background: Previous attempts to practically address the Slepian-Wolf problem

have generally only been able to attain corner points of the region. Time-sharing

between different corner points can attain all achievable rates, but this has its prac-

tical drawbacks. A source-splitting technique to attain all achievable was previously

proposed, but this assumed common randomness at encoders and the decoder.

Our contribution: We propose a source-splitting technique for the Slepian-Wolf

problem that requires no sources of common randomness. The technique is effi-

cient - involving thresholding operations, and significantly reduces complexity in

estimation when using iterative decoding. We use low-density parity check codes

and iterative decoding to confirm the effectiveness of this approach - from simula-

tions using both synthetic data and real data from the International Space Station.

In this chapter we also compare source-splitting and time-sharing from a theoret-

ical perspective. We demonstrate that source-splitting also has its benefits over

time-sharing - from an error exponent perspective.

In this chapter we discuss a splitting transformation for the Slepian-Wolf problem

that allows for any achievable rate to be encoded and decoded. Our approach uses

parallelized encoding and pipelined decoding that operates at the speed of a singe-user

decoder. Following the splitting transformation previously used for discrete multiple
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access channel coding, this approach further manifests the duality discussed in [CT91,

pp. 416-418], [Csi82]. The decoding methods in this chapter use a priori knowledge

of the joint probability distribution between the correlated sources at the decoder.

The practical effectiveness of this approach is illustrated with empirical performance

using good channel codes and an iterative decoder.

2.1 Model and Definitions

In this paper, we will consider a set of M discrete memoryless sources U1, U2, ..., UM

drawn according to P
(
u1, u2, ..., uM

)
with alphabets U1,U2, ...,UM . We denote U i

j as

the jth symbol from process U i. We use the following notation:

[r] � {1, 2, . . . , r}

R(S) �
∑
i∈S

Ri for any set S of integers, where Ri ∈ R+

US �
(
U i

)
i∈S for any set S of integers

US � (Uj)j∈S for any set S of integers

Sc � [M ]\S

Π(U) = {π|π permutes U}

H (U) �
∑
a∈U

−PU (a) log2 (PU (a))

H (U) � lim
n→∞

1

n
H

(
U [n]

)
D (P‖Q) �

∑
a∈U

P (a) log2

(
P (a)

Q(a)

)

2.1.1 Dominant Face

The dominant face D
[
R

[
P(u[M ])

]]
consists of all R ∈ R

[
P(u[M ])

]
that satisfy

R([M ]) = H(U [M ]). (2.1)
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Note that any point in R is dominated (with respect to the standard partial order on

RM
+ ) by a point in the dominant face.

Throughout the paper, we exploit the chain rule for entropy

H(UT ) = H(US) + H(UT \S |US) ∀S ⊆ T ⊆ [M ]. (2.2)

We may now apply the chain rule to derive an alternative description of the dominant

face D. By combining the chain rule with (1.1) and (2.1), we arrive at

R(S) = R([M ])−R(Sc) = H(U [M ])−R(Sc) ≤ H(U [M ])−H(US
c|US) = H(US).

So we see that achievability (1.1) and lying on the dominant face (2.1) imply that

H(US |USc

) ≤ R(S) ≤ H(US) ∀S ⊆ [M ]. (2.3)

Conversely, we see that the leftmost inequality in (2.3) directly implies achievability

(1.1) and setting S = [M ] in (2.3) directly implies lying on the dominant face (2.1).

Hence, we may alternatively characterize the dominant face as

D =
{
R ∈ RM

+

∣∣ H(US |USc

) ≤ R(S) ≤ H(US) ∀S ⊆ [M ]
}
. (2.4)

Vertices are the rate tuples R[M ] ∈ D that occur at the intersection of the bounding

surfaces (for instance, they are the two ‘corner points’ of Figure 1-1). They are

obtained by expanding H(U [M ]) into M terms by M − 1 successive applications of

the chain rule, and assigning to Ri the value of the unique term in the expansion

having the form H(U i|US) for some set S ⊆ [M ]. Each unique vertex of the dominant

face corresponds to a rate-tuple that is single-user decodable given side information

of the previously decoded sources. Most of the practical methods [GFZ01, AG02,

BM01, LXG03a, TGFZ03, SPR02, LXG03b, GFZ03, LLN+03] to achieve rates near

the Slepian-Wolf achievable rate region boundary are only applicable to vertices.
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2.2 Source-Splitting for Slepian-Wolf

Let us now consider taking each symbol of a DMS U = (U1, U2 . . .) where Ui ∈
U = {0, . . . , |U| − 1} and splitting it into a collection of random variables of smaller

cardinality. We write Ui ↔ (Ua
i , U

b
i ) if there is a bijection between the random

variables Ui and (Ua
i , U

b
i ). We consider the following way to perform source-splitting:

Ui �→


 Ua

i = min(π(Ui), T )

U b
i = max(π(Ui), T )− T


 �→ Ui = π−1

(
Ua

i + U b
i

)
, (2.5)

where T ∈ U operates as a thresholder and π ∈ Π(U) is a permutation operator.

Definition (2.5) gives many possible splits, since there are many possible values

of π ∈ Π(U) and T ∈ U . For a nontrivial splitting threshold (T ∈ U \ {0, |U| − 1}),
Ua

i ∈ {0, . . . , T},U b
i ∈ {0, . . . , |U| − 1 − T}, and there are

(|U|
T

)
distinct ways to map

the |U| symbols to the splitting sets in (2.5). This provides a total of

|U|−2∑
i=1

(
|U|
i

)
= 2|U| −

(
|U|
0

)
−

(
|U|

|U| − 1

)
−

(
|U|
|U|

)
= 2|U| − |U| − 2 = O(2|U|)

distinct ways to perform the splitting mechanism and form the bijection Ui ↔
(Ua

i , U
b
i ).

If we have two discrete memoryless sources (U1, U2) drawn according to P (u1, u2),

then we can split U1 to form (U1a, U1b) as shown in (2.5). At this point, we have

three sources, each of which can be encoded separately at rates R1a, R1b, R2. We note

that because U ↔ (U1a, U1b), H (U1, U2) = H
(
U1a, U1b, U2

)
. Through the chain rule

for entropy, we consider the rates

R1a = H
(
U1a

)
(2.6a)

R2 = H
(
U2|U1a

)
(2.6b)

R1b = H
(
U1b|U2, U1a

)
(2.6c)

R1 = R1a + R1b. (2.6d)
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Figure 2-1: Source splitting and decoding for a two-source Slepian-Wolf problem

For any nontrivial split, (R1, R2) is not a vertex in R [P (u1, u2)], but (R1a, R2, R1b) is

a vertex inR
[
P
(
u1a, u2, u1b

)]
. This directly implies a parallelizable encoding strategy

and pipelined single-user decoding strategy that operates with the complexity of a

smaller-alphabet decoder. By varying across the different values of the threshold

T ∈ U and π ∈ Π(U), we may sweep across O(2|U|) distinct non-vertex points on

the dominant face D [R [P (u1, u2)]]. Figure 2-1 illustrates the proposed encoding and

decoding strategy.

Source-splitting may be performed to transform a source U of cardinality |U| into
|U| − 1 binary random variables:

Ui �→




U1
i = 1{π(Ui)=1}

U2
i = 1{π(Ui)=2}

...

U
|U|−1
i = 1{π(Ui)=|U|−1}



�→ Ui = π−1


|U|−1∑

k=1

kUk
i


 (2.7)

where π ∈ Π(U) and 1{A} = 1 if event A occurs and 0 otherwise. Each π ∈ Π(U)

yields new splits and thus there are |U|! splits.

The motivation for binary splitting is the reduction in complexity of near-lossless

block-compression of high-rate sources: the splitting approach allows for parallelized

encoding and pipelined single-user decoding of low-rate binary sources.
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In the next section we show that although this method generates a finite number

of distinct splits, we may group consecutive symbols together and interpret them as

a single outcome of a source of larger alphabet. Because of the exponential growth

in the number of splits as a function of the source alphabet size, it follows that

long super-symbols lengths are not required. We also discuss in the next section a

controlled way to map super-symbols to a desired rate point. Moreover we arrive at

similar details about the required number of splits per source, as in case of multiple

access [RU97].

2.2.1 Two Sources: At Most One Split Per Source Required

We consider a DMS U drawn according to pmf Q over alphabet U = {0, 1, . . . , |U|−1}
and assume without loss of generality that Q(a) > 0 for each a ∈ U . We treat the

first n outcomes U [n] of the source U as the single outcome of a DMS with alphabet

{0, . . . , |U|n − 1} through the standard integral representation

sr
(
u[n]

)
=

n∑
j=1

uj|U|j−1. (2.8)

Splitting sr
(
U [n]

)
according to (2.5) on sr

(
U [n]

)
yields (Ua

[n], U
b
[n]) and a total of

2|U|
n − |U|n − 2 = O(2|U|

n
) non-trivial splits. We use the ‘method of types’ [Csi98]

to take a subset of all π ∈ Π(sr (Un)) and T ∈ |U|n − 1, parametrize them according

to ε ∈ [0, 1], and demonstrate that PUa
[n](ε)

(·) tends to a continuous function of ε and

1
n
H

(
Ua

[n](ε)
)

tends to εH (U). Moreover, we illustrate in Theorem 2.2.5 that any

point on the dominant face of the two-user Slepian-Wolf achievable rate region can

be transformed to a vertex in a three-user problem via source-splitting. Since the

number of nontrivial splits grows as O(2|U|
n
), operating near any target rate does not

require long super-symbol lengths. We introduce some intermediate lemmas that are

useful in the proof of Theorem 2.2.5.

We denote the set of all probability distributions on U by P (U). For a length-n

sequence u = (u1, u2, . . . , un) ∈ Un, the type Pu ∈ P (U) is the probability distri-
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bution defined by Pu(a) = 1
n

∑n
i=1 1{ui=a}, for all a ∈ U . We denote by Qn the

pmf induced on Un by n independent drawings according to Q. We denote by

Pn (U) = {P 0,n, P 1,n, . . .} the subset of P (U) consisting of the possible types of

sequences u ∈ Un. For any type P j,n ∈ Pn (U), the type class T (P j,n) is the set of all

u ∈ Un such that Pu = P j,n. From [Csi98] we note thAT:

|Pn (U)| =

(
n + |U| − 1

|U| − 1

)
≤ (n + 1)|U| (2.9)

Qn (u) = 2−n(H(Pu)+D(Pu‖Q)) ∀ u ∈ Un. (2.10)

Define:

J (n) = {0, 1, . . . , |Pn (U)| − 1} (2.11)

K(j, n) = {0, 1, . . . , |T
(
P j,n

)
| − 1}, j ∈ J (n) (2.12)

A (j, ε, n) =
⌈
ε
∣∣T (

P j,n
)∣∣⌉ , j ∈ J (n). (2.13)

We now construct the set of permutations Πε,n(sr (Un)) ⊂ Π(sr (Un)). For each

j ∈ J (n), order the members of T (P j,n) lexicographically. Then any u[n] ∈ Un

can be uniquely specified by
(
j(u[n]), k(u[n])

)
where j(u[n]) ∈ J (n) satisfies u[n] ∈

T
(
P j(u[n]),n

)
and k(u[n]) ∈ K(j(u[n]), n) denotes the lexicographically ordered posi-

tion of u[n] in T
(
P j(u[n]),n

)
. Conversely, we define uj,k

[n] to be the (k + 1)st member of

T (P j,n).

We define the type class integral representation parametrized by ε as

τε
(
u[n]

)
=


j(u[n])−1∑

i=0

A (i, ε, n)


 + k(u[n]). (2.14)

We then construct a set Πε,n(sr (Un)) of permutations on sr (Un) so that any πε,n ∈
Πε,n(sr (Un)) satisfies

∀ u[n] s.t. k(u[n]) < A
(
j(u[n]), ε, n

)
: πε,n(sr

(
u[n]

)
) = τε

(
u[n]

)
. (2.15)
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Finally, we define the threshold

Tε,n =
∑

j∈J (n)

A (j, ε, n) =
∑

j∈J (n)

⌈
ε
∣∣T (

P j,n
)∣∣⌉ . (2.16)

Intuitively, any πε,n ∈ Πε,n(sr (Un)) maps approximately a fraction ε of the members

of each type class P j,n to values below the threshold Tε,n, and the remaining ones to

values at or above Tε,n. As n grows, this approximation becomes more exact. The set

Πε,n(sr (Un)) contains more than one permutation since the definition given by (2.15)

does not specify the order for strings u[n] that satisfy k(u[n]) ≥ A
(
j(u[n]), ε, n

)
.

We now split U [n] into Ua
[n](ε) and U b

[n](ε)

U [n] �→


 Ua

[n](ε) = min(πε,n(sr
(
U [n]

)
), Tε,n)

U b
[n](ε) = max(πε,n(sr

(
U [n]

)
), Tε,n)− Tε,n


 (2.17)

where πε,n ∈ Πε,n(sr (Un)) and Tε,n is given by (2.16). Note that Ua
[n](ε) has cardinality

Tε,n + 1 and all πε,n ∈ Πε,n(sr (Un)) lead to the same random variable Ua
[n](ε).

We next demonstrate the asymptotic continuity of the distribution of Ua
[n](ε) with

respect to ε. The given property is not obvious because for 0 ≤ ε′ < ε ≤ 1 and large

enough n, Tε,n > Tε′,n. Moreover, for the same value of r < Tε′,n < Tε,n, the event

{Ua
[n](ε) = r} does not necessarily correspond in any sense to the event {Ua

[n](ε
′) = r}.

Nonetheless, Lemma 2.2.1, proved in Appendix A.2, shows that asymptotic Lipschitz

continuity of PUa
[n](ε)

(·) essentially holds. Lemma 2.2.2, proved in Appendix A.3,

shows the corresponding property for the joint distribution PUS
[n],Ũ

a
[n](ε)

(·, ·).

Lemma 2.2.1. For any ε, ε′ ∈ [0, 1], Ua
[n](ε) forms a bijection with another random

variable Ũ
a

[n](ε) that satisfies

lim
n→∞

∣∣∣PŨ
a
[n](ε)

(·)− PŨ
a
[n](ε

′) (·)
∣∣∣
1
= 2|ε− ε′|.

Lemma 2.2.2. Let (Ua
[n](ε), U

b
[n](ε)) be a split of the discrete memoryless source U ,

and let US be another set of discrete memoryless sources. Then for any ε, ε′ ∈ [0, 1],
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Ua
[n](ε) forms a bijection with another random variable Ũ

a

[n](ε) that satisfies

lim
n→∞

∣∣∣PUS
[n],Ũ

a
[n](ε)

(·, ·)− PUS
[n],Ũ

a
[n](ε

′) (·, ·)
∣∣∣
1
= 2|ε− ε′|.

Lemma 2.2.3, proved in Appendix A.4, demonstrates the relationship between the

entropy rate H (Ua(ε)) and H(U). Lemma 2.2.4, proved in Appendix A.5, shows the

corresponding continuity for the conditional entropy.

Lemma 2.2.3. For ε ∈ [0, 1], the random variable Ua
[n](ε) defined in (2.17) satisfies

H (Ua(ε)) = εH(U).

Lemma 2.2.4 (Range Lemma). Let (Ua
[n](ε), U

b
[n](ε)) be a split of the discrete mem-

oryless source U . Then g(ε) = H
(
US |Ua(ε)

)
defines a continuous function from [0, 1]

onto the interval [H(US |U), H(US)].

Together, these results prove that any point on the dominant face of the achievable

rate region can be approximated to arbitrary accuracy using the given approach, as

shown in Theorem 2.2.5.

Theorem 2.2.5. For two sources U1, U2 with joint distribution P (u1, u2), any point

on the dominant face D of R [P (u1, u2)] can be transformed via source-splitting U1

according to (2.17) to a vertex in R
[
P
(
u1a, u2, u1b

)]
.

Proof. Using the chain rule for entropy and the fact that U1 ↔ (U1a(ε), U1b(ε)), we

have that

R1 + R2 = H
(
U1, U2

)
= H

(
U1, U2

)
= H

(
U1a(ε), U1b(ε), U2

)
= H

(
U1a(ε)

)
+H

(
U2|U1a(ε)

)
+H

(
U1b(ε)|U1a(ε), U2

)
.

By the Range Lemma we can set ε so that R2 = H (U2|U1a(ε)). We may then define

Ra = H (U1a(ε)) and Rb = H
(
U1b(ε)|U1a(ε), U2

)
where Ra + Rb = R1. Then we

note from the Slepian-Wolf theorem that the rate-tuple (Ra, R2, Rb) is achievable,

and furthermore, it is a vertex of the region R
[
P
(
u1a, u2, u1b

)]
.
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2.2.2 M Sources: At Most One Split Per Source Required

We now apply the source-splitting procedure for the Slepian-Wolf problem withM > 2

users and show that 2M−1 virtual sources are sufficient. The argument is based upon

a recursive generalization of Theorem 2.2.5. The technique employed to show this is

analogous to Section II of [GRUW01]. From there it follows from direct manipulation

of the arguments in Section III of [GRUW01] that at most one split per source is

required.

Theorem 2.2.6. Consider M correlated sources U [M ] with product distribution

PU [M ]

(
u[M ]

)
, and letR

[
PU [M ]

(
u[M ]

)]
and D be the corresponding Slepian-Wolf achiev-

able rate region and dominant face. Any R[M ] ∈ D may be transformed to a vertex in

a 2M − 1 source Slepian-Wolf achievable rate region by splitting each source at most

once using (2.17).

Proof. SupposeR[M ] ∈ D. Apply the split (2.17) to source UM to arrive at
(
Ua(ε), U b(ε)

)
.

For each S ⊆ [M − 1] the inequality

R(S) ≤ H
(
US |Ua(ε)

)
(2.18)

is valid for all sufficiently small ε ∈ [0, 1] by the following argument. For ε = 0 it is

valid, since

R(S) ≤ H
(
US

)
= H

(
US |Ua(0)

)
.

Since H
(
US |Ua(ε)

)
is continuous in ε, there exists a largest interval JS = [0, εS ] ⊂

[0, 1] such that (2.18) is fulfilled for all ε ∈ JS .

Hence, for any S ⊆ [M − 1] we have from (2.18) that

R(S) ≤ H
(
US |Ua(εS)

)
(2.19)

and from the definition of εS it follows that

R(S) = H
(
US |Ua(εS)

)
. (2.20)
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Choose

ε′ = min
S⊆[M−1]

εS (2.21)

and let T ⊆ [M − 1] be the largest subset of [M − 1] that satisfies εT = ε′. From

(2.20) with S = T we have

R(T ) = H
(
UT |Ua(ε′)

)
. (2.22)

Define a virtual (M+1)-source
(
U1′, . . . , UM+1′

)
=

(
U1, . . . , UM−1, U b(ε′), Ua(ε′)

)
.

Let (R′1, . . . , R
′
M+1) be the (M + 1)-tuple defined by R′i = Ri, i ∈ [M − 1] and

R′M+1 = H (Ua(ε′)) (2.23)

R′M = RM −R′M+1.

We next show that (R′1, R
′
2, . . . , R

′
M+1) ∈ D′ where D′ is the dominant face of the

Slepian-Wolf achievable rate region corresponding to the M + 1 sources. We first

illustrate that (2.1) holds and then show achievability (1.1).

Note that by the definition of (R′1, R
′
2, . . . , R

′
M+1) and since the splits form a

bijection we have that

R′([M + 1]) = R([M ]) = H
(
U [M ]

)
= H

(
U [M+1]′

)
. (2.24)

It remains to be shown that the rate tuple (R′1, R
′
2, . . . , R

′
M+1) is achievable, i.e.

R′(S) ≥ H
(
U ′
S |U ′S

c
)
, ∀ S ⊆ [M + 1]. (2.25)

We note from (2.24) and the chain rule for entropy that R′(Sc) ≤ H
(
U ′S

c
)

would

imply

R′(S) ≥ H
(
U ′

[M+1]
)
−H

(
U ′
Sc
)

= H
(
U ′
S |U ′S

c
)
. (2.26)

Therefore it suffices to show that R′(Sc) ≤ H
(
U ′S

c
)

for each Sc ⊆ [M + 1]. We
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enumerate the cases:

• {M,M + 1} ⊂ S or {M,M + 1} ⊂ Sc: this holds by (2.4).

• M + 1 ∈ Sc and M ∈ S:

R′(Sc) = R′M+1 + R′(Sc\{M + 1})

= R′M+1 + R(Sc\{M + 1})

≤ H (Ua(ε′)) +H
(
US

c\{M+1}|Ua(ε′)
)

(2.27)

= H
(
Ua(ε′), US

c\{M+1}
)

= H
(
U ′
Sc
)

where (2.27) holds by (2.23), (2.21), and (2.19).

• M ∈ Sc and M + 1 ∈ S:

R′(Sc) = R(Sc \ {M}) +
(
RM −R′M+1

)
= R(Sc)−R′M+1

≤ H
(
US

c)−H (Ua(ε′)) (2.28)

= H
(
US

c\{M}, UM
)
−H (Ua(ε′))

= H
(
US

c\{M}, Ua(ε′), U b(ε′)
)
−H (Ua(ε′))

= H
(
US

c\{M}, U b(ε′)|Ua(ε′)
)

(2.29)

≤ H
(
US

c\{M}, U b(ε′)
)

= H
(
U ′
Sc
)

where (2.28) holds by (2.4) and (2.23).

Thus we have that (R′1, R
′
2, . . . , R

′
M+1) ∈ D′. Note further that by our choice of ε′

there exists a T ⊆ [M − 1] such that

R′(T ) = R(T ) = H
(
UT |Ua(ε′)

)
= H

(
U ′
T |Ua(ε′)

)
. (2.30)
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It follows that, in addition to (2.23), we also have that for any S ⊆ T ,

R′(S) = R′(T ) + R′({M + 1})−R′ ((T \S) ∪ {M + 1})

≥ H
(
U ′
T |Ua(ε′)

)
+H (Ua(ε′))−H

(
U ′
T \S

, Ua(ε′)
)

= H
(
U ′
T
, Ua(ε′)

)
−H

(
U ′
T \S

, Ua(ε′)
)

= H
(
U ′
S |U ′T \S , Ua(ε′)

)
∀S ⊆ T . (2.31)

Finally, for all S ⊆ [M ] \ T ,

R′(S) ≥ H
(
U ′
S |USc ′

)
(2.32)

by (2.25).

This suggests the following parallelizable way of decoding (R′1, R
′
2, . . . , R

′
M+1).

First note that from (2.23), we can entropy encode and decode Ua(ε′) at rateH (Ua(ε′)).

Knowledge of Ua(ε′) can be kept at the decoder and we see that the group U ′T can be

encoded and decoded according to (2.30). This follows from (2.31) and the Slepian-

Wolf coding theorem. Finally, it follows from (2.32) that with knowledge of Ua(ε′)

and U ′T at the decoder, we may decode the remaining group of users. Each of these

three groups has size at most M − 1. From the M = 2 case, we know that ev-

ery rate point on the dominant face can be achieved by rate-splitting with at most

2M − 1 = 3 virtual sources. Let us assume by induction that for the M − 1 user

case, every rate tuple may be achieved with rate-splitting using at most 2(M − 1)− 1

virtual sources. We just saw that for the M -user case, we can decompose it into a

single-source encoding problem, and two Slepian-Wolf encoding problems of size m

and M −m, respectively, where 1 ≤ m < M . By applying the induction hypothesis

on these two smaller Slepian-Wolf encoding problems, we see that any rate-tuple in

the M -user region can be achieved by rate-splitting with at most

1 + (2m− 1) + (2(M −m)− 1) = 2M − 1
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virtual sources.

Finally we observe that each user needs to split at most once to achieve any

rate point on the dominant face. Algebraic topology techniques used to prove the

analogous result in the discrete multiple access setting ([GRUW01], sec. III) directly

apply in this setting.

2.2.3 M Sources: The Boundary of the Dominant Face

Now we show that rate tuples on the boundary of the dominant face can be divided

into two sets of sources that may be decoded successively but otherwise independently.

We can express the dominant face D
[
R

[
P(u[M ])

]]
in three ways:

D = D1 =
{
R ∈ RM

+

∣∣ H(US |USc

) ≤ R(S) ∀S ⊆ [M ], with equality for S = [M ]
}

(2.33)

= D2 =
{
R ∈ RM

+

∣∣ H(US |USc

) ≤ R(S) ≤ H(US) ∀S ⊆ [M ]
}

(2.34)

= D3 =
{
R ∈ RM

+

∣∣ R(S) ≤ H(US) ∀S ⊆ [M ], with equality for S = [M ]
}
(2.35)

where (2.33) is a restatement of (1.1),(2.1); (2.34) is a restatement of (2.4); and (2.35)

follows because D3 ⊇ D2 holds directly and D3 ⊆ D1 holds by exchanging S in D3

with Sc in D1 and applying the chain rule for entropy.

We say a rate tuple R ∈ D lies on the boundary of D if there exists a proper

subset A ⊂ [M ] such that

R(A) = H
(
UA

)
. (2.36)

Rates that are on the boundary of D have the desirable property that they allow

serial, but otherwise independent, decoding of sets of sources and their complements.

More specifically, if R is on the boundary of D and A satisfies (2.36), then we can

jointly decode the subset of inputs with index in A and subsequently jointly decode

the subset of inputs with index in Ac = [M ]\A. The proof is as follows.

By definition, for a point on the boundary there is at least one A ⊂ [M ] such that
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(2.36) holds. Now note that for any L ⊂ A,

R(L) = H
(
UA

)
−R(A\L)

≥ H
(
UA

)
−H

(
UA\L

)
(2.37)

= H
(
UL|UA\L

)
(2.38)

where (2.37) follows from (2.35). From (2.33) and (2.38), (2.36) we now have

RA ∈ D
[
R

[
P
(
uA

)]]
(2.39)

where RA = (Ri)i∈A. Thus UA can be decoded independently of UA
c

. Finally, since

R ∈ D
[
R

[
P(u[M ])

]]
, (2.33) allows for UA

c

to be decoded successfully by using a

successive decoder with UA as side information.

2.3 Time-Sharing versus Source-Splitting: an Er-

ror Exponent Analysis

In this setting we discuss alternative approaches to attain achievable rates on the

dominant face of the Slepian-Wolf region. Here we will focus on the two-user set-

ting, but this can naturally be generalized. Consider two sources (U1, U2) with joint

probability distribution W (u1, u2).

Generally speaking, the decoder must find a pair of ‘jointly typical’ sequences

[CT91, pp. 194-197] consistent with what is observed. This is in general a computa-

tionally difficult task. At vertex rate points, the joint search over both codebooks for

a pair of ‘jointly typical’ sequences can be done successively. For instance, if users

would like to communicate at the rate of (R1, R2) = (H(U1), H(U2|U1)), then we

note that communicating at a rate of H(U1) can be done by simply entropy-encoding

either a variable-rate lossless fashion or a near-lossless fixed-rate fashion. After suc-

cessful decoding, U1 can be passed as side information to help decode U2 at a rate of

H(U2|U1). By exchanging the roles of U1 and U2, it follows that the same approach
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applies to encoding at the vertex rate (R1, R2) = (H(U1|U2), H(U2)). Recently, a lot

of attention has been paid to the construction of low-complexity decoders to achieve

rates of R2 very close to H(U2|U1).

A more interesting question concerns communicating at any rate in the achievable

rate region - not necessarily vertices. The most efficient communication schemes

minimize sum rate and thus attain rates lying on the dominant face, D {R [W ]},
given by

(R1, R2) ∈ R [W ] : R1 + R2 = H
(
U1, U2

)
.

Two candidate approaches of using decoding strategies that rely upon vertex decoding

are:

• time-sharing, where coding for a non-vertex point is done by coding a certain

fraction α ∈ [0, 1] of the time at one vertex, and the remaining fraction 1 − α

of the time at the other vertex

• source-splitting (see Section 2.2), where coding for a non-vertex point in a two-

source problem is done by splitting one of the sources and coding at a vertex

rate in the corresponding three-source problem

We would like to understand here the performance of the two candidate approaches

at rates near the joint entropy boundary, in terms of error probability. We illustrate

below that the source-splitting approach is more robust for decoding at arbitrary

rates on the dominant face as compared to time-sharing, which can have significant

error exponent penalty at rates close to vertices. As a by-product of our analysis, we

show an interesting connection between information theory and estimation theory:

the error exponent of vertex decoding in an arbitrary instance of the Slepian-Wolf

problem depends on the inverse of the Fisher information of Gallager’s ρ-parametrized

tilted distribution.
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2.4 Error Exponents

Here we discuss the near-lossless fixed-to-fixed distributed data compression setting

where n samples of the memoryless source {(U1
i , U

2
i )}

n
i=1 are separately encoded. For

each source j, the
{
U j

i

}n

i=1
symbols will be mapped to 2nRj output symbols. The

error exponent for a particular coding scheme k will be denoted by

Ek(R1, R2) � lim inf
n→∞

− 1

n
logP k

e (R1, R2).

As illustrated in the appendix (A.45), for random variables X,Y with joint distribu-

tion W , the error exponent Ex|y (R) for source coding X at rate R with side informa-

tion Y has a flat slope at R = H(X|Y ):

d

dR

{
Ex|y (R)

}
R=H(X|Y )

= 0.

Thus to capture the behavior of the exponent at R = H(X|Y ) + δ, we must consider

second order effects:

Ex|y (H(X|Y ) + δ) =
1

2
δ2 d2

dR2

{
Ex|y (R)

}
R=H(X|Y )

+ o(δ2)

=
1

2
δ2E ′′x|y (H(X|Y )) + o(δ2).

We will denote the error exponent for time-sharing as Et(R1, R2) and that for source-

splitting as Es(R1, R2). We are interested in the behavior of the error exponent at

rates near the dominant face.

2.4.1 Time-Sharing

Time-sharing is one approach to attain any rate on the dominant face. For α ∈ [0, 1],

αn of the samples are encoded near the vertex

(R1, R2) =
(
H

(
U1

)
, H

(
U2|U1

))
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and the remaining (1− α)n samples are encoded near the other vertex

(R1, R2) =
(
H

(
U1|U2

)
, H

(
U2

))
.

We will assume that decoding is done with the pipelined vertex decoding approach

described above. Thus for the decoding of the αn symbol pairs at the rate

(H (U1) + δ,H (U2|U1) + δ), we have

P t,α
e ≤ P

([
Û

1
]αn

1
#=

[
U1

]αn
1

)
+ P

([
Û

2
]αn

1
#=

[
U2

]αn
1

∣∣∣∣∣ [U1
]αn

1

)

= 2−nα[Eu1(H(U1)+δ)−o(n)] + 2−nα[Eu2|u1(H(U2|U1)+δ)−o(n)]

For the decoding of the (1−αn) symbol pairs at the rate (H (U1|U2) + δ,H (U2) + δ),

we have

P t,1−α
e ≤ P

([
Û

2
]n
αn+1

#=
[
U2

]n
αn+1

)
+ P

([
Û

1
]n
αn+1

#=
[
U1

]n
αn+1

∣∣∣∣∣ [U2
]n
αn+1

)

= 2−n(1−α)[Eu2(H(U2)+δ)−o(n)] + 2−n(1−α)[Eu1|u2(H(U1|U2)+δ)−o(n)]

Thus it follows that for (R1, R2) ∈ D,

Et(R1 + δ, R2 + δ) = min

[
αEu1

(
H

(
U1

)
+ δ

)
, αEu2|u1

(
H

(
U2|U1

)
+ δ

)
,

(1− α)Eu2

(
H

(
U2

)
+ δ

)
, (1− α)Eu1|u2

(
H

(
U1|U2

)
+ δ

) ]

=
1

2
δ2 min

[
αE ′′u1

(
H

(
U1

))
, αE ′′u2|u1

(
H

(
U2|U1

))
,

(1− α)E ′′u2

(
H

(
U2

))
, (1− α)E ′′u1|u2

(
H

(
U1|U2

)) ]
+ o(δ2)

where α satisfies

R1 = αH
(
U1

)
+ (1− α)H

(
U1|U2

)
. (2.40)
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2.4.2 Source-Splitting

As discussed in Section 2.2, source-splitting transforms a point on the dominant face

of the two-source problem to a vertex point in a three-source problem:

U1
i �→


 U1a

i = fa (U1
i )

U1b
i = fb (U

1
i )


 �→ U1

i = f
(
U1a

i , U1b
i

)
(2.41)

where fa : U1 → U1, fb : U1 → U1 and f : U1 → U1 satisfy f (fa(u), fb(u)) = u for each

u ∈ U1. As an example of how to construct {fa, fb, f}, see (2.5). This corresponds to

a vertex in the U1a, U1b, U2 problem by using the chain rule for entropy and encoding

at rates given by (2.6). Also in this scheme, coding to attain a non-vertex is mapped

to coding at a vertex. Here we also assume that decoding is done with the pipelined

vertex decoding approach. Thus for the decoding, we have

P s
e ≤ P

(
Û

1a #= U1a
)

+ P
(
Û

2 #= U2|U1a
)

+ P
(
Û

1b #= U1b|U1a, U2
)

= 2−n[Eu1a(H(U1a)+ 1
2
δ)−o(n)] + 2−n[Eu2|u1a(H(U2|U1a)+δ)−o(n)]

+ 2−n[Eu1b|u2,u1a(H(U1b|U2,U1a)+ 1
2
δ)−o(n)]

Thus it follows that for (R1, R2) ∈ D,

Es(R1 + δ, R2 + δ) = min

[
Eu1a

(
H

(
U1a

)
+

1

2
δ

)
, Eu2|u1a

(
H

(
U2|U1a

)
+ δ

)
,

Eu1b|u2,u1a

(
H

(
U1b|U2, U1a

)
+

1

2
δ

)]

=
1

2
δ2 min

[
1

4
E ′′u1a

(
H

(
U1a

))
, E ′′u2|u1a

(
H

(
U2|U1a

))
,

1

4
E ′′u1b|u2,u1a

(
H

(
U1b|U2, U1a

)) ]
+ o(δ2).

Note that to attain a rate of (R1 + δ, R2 + δ) we have to allocate 1
2
δ extra rate to U1a

and 1
2
δ to U1b, as compared to the usual δ to U1 in the time-sharing case.
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2.4.3 Comparison

It is the purpose of this discussion to observe how the error exponents behave for

the two approaches when coding at rates (R1 + δ, R2 + δ) where (R1, R2) ∈ D. From

the onset it is not clear which approach has better exponents - both cases exhibit

error exponent degradation. In the case of time-sharing, error exponent degradation

is caused by a reduction in the effective block length by factors of α and 1−α. In the

source-splitting scenario, error exponent degradation arises because of error propaga-

tion in decoding three sources rather than two, along with the reduction by a factor of

1
4

due to the splitting operation. Furthermore, the comparison is not straightforward

because the source-splitting operation creates a new joint distribution on the three

sources, as compared to the original joint distribution on the two sources. Although

these distributions are in some sense equivalent because (U1
i , U

2
i ) and (U1a

i , U2
i , U

1b
i )

form a bijection, the behavior of the error exponent’s second derivative involves more

complicated functions of the distribution than just entropy:

Lemma 2.4.1.

E ′′x|y (H(X|Y )) =
1

−H(X|Y )2 +
∑

x,y Q(x, y) log2[Q(x|y)]
.

Proof details are in the appendix.

What is interesting about this denominator is that it can be characterized in terms

of the Fisher information of Gallager’s ρ-tilted distribution [Gal76]. In particular, if

we define Qρ(x, y) as the product of Qρ(y), given by (A.39), and Qρ(x|y), given by

(A.40), then we can calculate the Fisher information of this parametrized probability

distribution:

F (ρ) =
∑
x,y

(
d logQρ(x, y)

dρ

)2

Qρ(x, y) (2.42)

Then we can characterize the error exponent’s second derivative in terms of the inverse

of the above Fisher information quantity:
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Lemma 2.4.2.

E ′′x|y (H(X|Y )) =
1

F (ρ)

∣∣∣
ρ=0

.

Proof details are in the appendix. This leads to another interesting connection

between information-theoretic quantities (error exponents) and estimation theoretic

ones (MMSE and Fisher Information). In particular, the connection relates the error

exponent’s second derivative to the inverse of a Fisher information - which is a bound

on minimum mean-squared error. The common thread appears to lie in the infor-

mation geometry [AN00] interpretation of the Kullback-Leibler distance. However in

our opinion, an in-depth understanding of this relation remains to be found.

2.5 Examples on Randomly Constructed Joint Prob-

ability Distributions

Here we randomly construct joint probability distributions W on (U1, U2) and com-

pare Es(R1 + δ, R2 + δ) with Et(R1 + δ, R2 + δ). In the figure pairs below, the top

figure in each pair shows the Slepian-Wolf achievable rate region and the target rate

points on the dominant face. The bottom figure in each pair shows Es(R1 +δ, R2 +δ)

and Et(R1 + δ, R2 + δ) as a function of α, where α satisfies (2.40). For the split-

ting case, splitting is done according to (2.5). The takeaway theme from all these

examples is that the minimum Es(R1 + δ, R2 + δ) for points (R1, R2) ∈ D is bounded

away from 0 whereas Et(R1 + δ, R2 + δ) decays to 0 linearly as α approaches 0 or

1. Consequently at rates close to vertices, the second order source-splitting exponent

significantly dominates that of time-sharing. At rates halfway between vertices, in

some cases source-splitting wins, and in other cases time-sharing does. We were not

able to find many cases where the second-order time-sharing exponent significantly

dominates that of source-splitting. Thus in terms of error exponents, source-splitting

appears to be more robust across various rates than time-sharing.
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2.6 Source-Splitting and Iterative Decoding for Slepian-

Wolf

We discuss in this section how we can combine iterative decoding methods with

source-splitting and point out how the splitting strategies defined in (2.5) and (2.7)

significantly facilitate part of the decoding process. We conclude by showing simula-

tion results.

Using the successive decoding approach of Section 2.2 we can near-losslessly com-

press a pair of sources (U1, U2) drawn according to P (u1, u2) at any rate (R1, R2) on

the dominant face D of R [P (u1, u2)]. The strategy performs the splitting operation

(2.5) and allocates rates according to (2.6a)-(2.6d).

Good binning strategies exist to perform successing decoding at rates that are

vertices of the Slepian-Wolf region. Iterative decoding using ‘syndrome-former’ LDPC

encoders [TGFZ03, SPR02, LXG03b, GFZ03, LLN+03] and punctured turbo code

encoders [GFZ01, AG02, BM01, LXG03a] have been extremely successful.

The iterative decoding technique applied here is the sum-product algorithm [KFL01],

which operates on the graphical structure of the code. For example, Figure 2-2 illus-

trates a normal graph representation [For01] of an LDPC used as a syndrome-former

encoder, where the syndrome s is the index of the bin in which input u lies. The sum-

product algorithm produces symbol-wise a posteriori probabilities (APP s), which are

approximate on graphs with cycles. We use carefully constructed graphical represen-

tations that allow for the approximate APP s to give credible empirical performance.
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Figure 2-2: Normal syndrome-former encoding graph

In the context of our problem, the bin indices handed to the decoder for (U1a, U1b, U2)

are denoted as (s1a, s1b, s2). At each level of the pipeline, the APP outputs of pre-

viously decoded users are used as inputs to the currently operating decoder. The

outputs of the iterative decoders are the approximate APP s

P
(
U1a

i = u|s1a, s1b, s2
)

� app1a
i (u) ,

P
(
U1b

i = u|s1a, s1b, s2
)

� app1b
i (u) ,

P
(
U2

i = u|s1a, s1b, s2
)

� app2
i (u) .

Let the outputs of the decoder be the estimate (Û
1
, Û

2
), which may be constructed

from the APP s of (U1, U2) by performing the symbol-based Maximum A Posteriori

(MAP) decoding:

Û j
i = arg max

u∈{0,1,...|U|−1}
appj

i (u) .

While app2
i (u) is the direct output of one of the iterative decoders,

(app1a
i (u) , app1b

i (u)) must be combined to yield app1
i (u). The splitting strategy (2.5)

leads to the implication

j #= T : U1a
i = j ⇒ U1b = 0 (2.43)

j #= 0 : U1b
i = j ⇒ U1a = T (2.44)
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Figure 2-3: Combining iterative decoding with source-splitting

and thus app1
i (u) can be constructed with very low complexity:

u < T : P
(
U1

i = u|s1a, s1b, s2
)

= P
(
U1a

i = u, U2
i = 0|s1a, s1b, s2

)
= P

(
U1b

i = 0|U1
i = u, s1a, s1b, s2

)
P
(
U1a

i = u|s1a, s1b, s2
)

= P
(
U1a

i = u|s1a, s1b, s2
)

= app1
i (u) by (2.43)

u > T : P
(
U1

i = u|s1a, s1b, s2
)

= P
(
U1a

i = T, U1b
i = u− T |s1a, s1b, s2

)
= P

(
U1a

i = T |U1b
i = u− T, s1a, s1b, s2

)
P
(
U1b

i = u− T |s1a, s1b, s2
)

= P
(
U1b

i = u− T |s1a, s1b, s2
)

= app1b
i (u− T ) by (2.44)

P
(
U1

i = T |s1a, s1b, s2
)

= 1−
∑
u �=T

P
(
U1

i = u|s1a, s1b, s2
)

= 1−
(

T−1∑
u=0

app1a
i (u)

)
−


 |U|−1∑

u=T+1

app1b
i (u− T )


 .

Figure 2-3 gives a schematic of the decoding process. In the case of binary splitting

(2.7), the decoder observes bin indices s1, s2, . . . , s|U|−1 and the iterative successive

decoder outputs will be the APP s

P
(
U1

i = u|s1, s2, . . . , s|U|−1
)

� app1
i (u) ,

...
...

P
(
U
|U|−1
i = u|s1, s2, . . . , s|U|−1

)
� app

|U|−1
i (u) .
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In this case the implication

k ∈ {1, . . . , |U| − 1} and Uk
i = 1⇒ U r

i = 0, ∀r #= k (2.45)

holds and we can construct appi (u) again with very low complexity:

k #= 0 : P
(
Ui = k|s1, . . . , s|U|−1

)
= P

(
Uk

i = 1, U r
i = 0, r #= k|s1, . . . , s|U|−1

)
= P

(
U r

i = 0, r #= k|Uk
i = 1, s1, . . . , s|U|−1

)
·P

(
Uk

i = 1|s1, . . . , s|U|−1
)

= P
(
Uk

i = 1|s1, . . . , s|U|−1
)

= appk
i (1) owing to (2.45)

P
(
Ui = 0|s1, . . . , s|U|−1

)
= 1−

|U|−1∑
k=1

P
(
Ui = k|s1, . . . , s|U|−1

)

= 1−
|U|−1∑
k=1

appk
i (1) .

2.6.1 Simulation Results

Synthetic Data

We now discuss simulation results that illustrate the promise of this splitting tech-

nique. The experiments begin with the random selection of a joint probability dis-

tribution for sources over U1 = U2 = U = GF (2m) for some m. We then draw n

independent samples and encode using an irregular LDPC with degree distribution

drawn according to the density evolution results provided in [AU]. Once the non-zero

components of the parity matrix are constructed, their values are selected randomly

from {1, . . . , 2m − 1}. We perform the sum-product update rule in its dual form

([For01], section IX), which operates on the Fourier Transform of APP s. Also we

note that in the case of GF (2m), the transormed APP s lie in R rather than C. Thus

the same gain in decoding complexity reduction is attained here as is in the binary

case.

Figure 2-4 illustrates the achievability of non-vertices in the two source Slepian-
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Figure 2-4: Symbol error rate for source-splitting to achieve non-vertex rate pairs.

Wolf problem using splitting and iterative decoding for m = 2 and n = 5000. The

leftmost plot shows four non-vertex rate pairs on the boundary of the achievable

region. We perform iterative decoding in their neighborhoods for a collection of

points. The rightmost plot shows the symbol error rate as a function of the difference

between the sum rate and the joint entropy. The given results show error probabilities

of 10−4 at sum rate penalties between 0.1 and 0.25.

Quantized Data from International Space Station Sensors

Here we present the methods and results of applying the splitting methodology to

actual data from the International Space Station. The Beta Gimbal Assembly (BGA)

of the two solar array wings on the International Space Station (ISS) [FGH02] is

responsible for rotating the solar panels in order to keep them directed at the sun.

There is one BGA for each wing, referred to as BGA 4B and BGA 2B (see Figure 2-5).

The data consists of various parameters such as Active Angle, Filtered Angle Error,

and Motor Drive Current, represented as fixed point numbers at a typical sampling

rate of 1Hz. BGA 4B was not functioning properly (spikes were observed in its current

motor drive), so its data had to be analyzed to explore the problem. However, the

time to download this data from the ISS to Earth is of the order of days. Clearly,

there is a benefit to compressing the data before transmitting it, and to do so by

utilizing the correlation among the data streams.

We found the Filtered Angle Error from each BGA to be highly correlated. To
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Figure 2-5: Description of the International Space Station

preprocess the data to better fit within the model of a discrete memoryless source,

we took samples from each of the two data sequences (which we call U1 and U2), and

created new sequences by taking the difference between consecutive values. These

new sequences are shown in figure 2-6. The spikes in the data represent large jumps

in the filtered angle error, and correlation between the location and sign of the spikes

can be seen. These two sequences were further quantized into one of four values.

Values less than 0.05 in magnitude were quantized to 0, values greater than 0.05 were

quantized to 1, values less than −0.05 were quantized to 2, and values that were

unknown owing to failures were quantized to 3. The end result was a sequence of

symbols of cardinality 4, and one that more closely approached a memoryless source.

We partitioned 20, 000 samples of the two data sequences into 4 blocks of length

5000. The decoding algorithm requires an a priori joint probability distribution for

the two sources. We approximated this distribution by calculating the empirical

distribution of the sample sequence, which is given in Table 2.1. Figure 2-7 provides

the simulation results. The top plot shows the rate points that were tested for four

of the splits, and the bottom plot shows the corresponding symbol error rates, as

a function of the distance of the sum rate point from the joint entropy. For this

particular source distribution, the splits and rate allocations given by (2.5) and (2.6)
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Figure 2-6: Differential of the two data sequences. The dotted lines indicate the
threshold used to quantize the values.
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U1\U2 0 1 2 3

0 0.9798 0.0015 0.0020 0
1 0.0020 0 0 0
2 0.0011 0 0 0
3 0.0005 0 0 0.0131

Table 2.1: Empirical joint distribution for U1 and U2.
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Figure 2-7: Symbol error rates for four distinct splits
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did not yield a variety of uniformly spaced rate points at distinct locations across the

diagonal rate boundary - instead, they were clustered. As expected, the symbol error

rate generally decreased as the distance from the entropy boundary increased, and

some of the splits approached zero error probability within 0.05 bits from the joint

entropy bound.
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Chapter 3

Provably Good Strategies for

Polynomial Complexity Universal

Decoding

Background: Previous discussions on universal block coding for discrete memo-

ryless settings either illustrated the existence of universal codes but neglected to

take complexity considerations into account, or discussed the penalty in decoding

according to an inaccurate probability distribution. In the context of decoding for

general linear codes with knowledge of the probability distribution, it has been

known that optimal decoding is provably computationally complex. However, oth-

ers have developed techniques to guarantee exponential error probability decay for

all achievable rates with polynomial complexity for these non-universal settings -

usually with a ‘codes on graphs’ divide and conquer approach - including linear

programming decoding and ‘expander codes’ iterative decoding.

Our contribution: In this chapter we show that optimal universal decoding for

general linear codes is also provably computationally complex. We next illustrate

the existence of good universal codes that have a sparse ‘codes on graphs’ struc-

ture. We then discuss two polynomial complexity universal decoding approaches

that guarantee exponential error probability decay. One approach has a subcom-

ponent that uses linear programming decoding, while the other has a similar theme

to the ‘expander codes’ iterative decoding framework - with universal decoding

subcomponents.

The previous chapter discussed low-complexity encoding and decoding techniques
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for the Slepian-Wolf problem when the joint probability distribution associated with

the sources is known, and helps bias the decoder to operate properly. In lots of

practical settings, such as fading channels and sensor networks, the cost of tracking

this information may hinder robustness, energy efficiency, and stand-alone practicality

issues. For instance, in wireless settings, the sender transmits a ‘pilot’ sequence of

symbols known to the receiver so that it can estimate the channel law by studying

received signal statistics. Afterwards, the receiver usually decodes the remaining

transmission with a maximum likelihood (ML) decoder tuned to the estimated channel

law. However, it is well known that such a ‘mismatched decoding’ approach has its

drawbacks [MKLSS94, Lap96, GLT00] - in terms of both error rates and capacity.

In the information theory literature there has been discussion on universal coding,

where encoders and decoders are constructed that operate without knowledge of the

underlying probability distribution. From an ontological perspective, there has been

much success - it has been shown that for numerous settings [Gop75, Csi82, LZ97,

FL98], there exist block encoders and decoders that can attain the same error expo-

nent (exponential rate of decay in probability of error) as that of the random coding

exponent corresponding to maximum-likelihood decoding. Such universal decoding

algorithms have also served as subcomponents of other multiterminal communication

systems - for instance statistical inference problems under data compression con-

straints [AH89, HA95, HA98, Jor01, JY02]. As in the typical channel coding case,

the encoding situation is not nearly as difficult as the decoding situation. Indeed, the

proposed universal decoding algorithms’ nonlinearities and difficulty of implementa-

tion have obfuscated the desire for people to construct practical code constructions

and decoding algorithms. This apparent intrinsic difficulty in universal decoding

manifests itself in the consideration of other decoding algorithms [MKLSS94, Sec. I]:

“Theoretically, one can employ universal decoding; however, in many applications, it

is ruled out by complexity considerations.”

However, we take a fresh perspective by looking back at how key advances mani-

fested themselves in the traditional coding literature:

• Linear codes have been known to be sufficient for many channel coding problems
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to attain all achievable rates and the random coding exponent. However, ML

decoding for general linear codes has been shown [BMvT78] to be an intrinsically

complex (NP-complete) problem.

• A ‘divide-and-conquer’ approach has been employed by coding theorists since

the beginnings of information theory to construct large linear codes from smaller

good components with polynomial complexity decoding algorithms whose per-

formance is empirically good [Gal62] as well as provably good [For65, For66].

Indeed, Forney’s seminal work “Concatenated Codes” [For65, For66] construc-

tion illustrated how to encode and decode in polynomial time at all achievable

rates with exponential error probability decay.

• The ‘divide-and-conquer’ approach to error-correcting codes has been sharpened

with help of a well-formalized ‘codes on graphs’ perspective [For01, KFL01] as

well as new ‘expansion’ results in graph theory [LPS88] to construct linear

complexity iterative decoding algorithms that achieve capacity from both an

empirical [BGT93, CGFRU01] as well as theoretical [SS96, Z0́1, BZ02] per-

spective. Furthermore, the iterative algorithms with empirical performance

guarantees have been shown [KV03, VK04] to be deeply connected to a linear

programming relaxation decoder [FWK03, Fel03, FS05] that is easier to analyze

theoretically.

and try to walk an analogous path to address practical code constructions and de-

coding algorithms for the universal setting:

• Linear codes have already been known to universally attain all achievable rates

with exponential error probability decay. In this chapter we show that uni-

versal decoding general linear codes is also a provably complex (NP-complete)

problem.

• We employ a ‘divide-and-conquer’ graph-based approach to show that large

linear codes constructed from smaller ‘universally good’ component codes are

aggregately provably good under optimal universal decoding.
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• With this codes on graphs perspective, we use expander graphs to construct lin-

ear codes and two polynomial complexity decoding algorithms, both of which

exhibit exponential error probability decay. One approach is a linear program-

ming relaxation based decoder inspired by [FWK03, Fel03, FS05] and the other

is a linear complexity iterative decoder inspired by the ‘expander codes’ frame-

work of [SS96, Z0́1, BZ02].

We also extend these approaches to multiterminal settings including Slepian-Wolf

distributed data compression and certain types of multiple-access channel coding. It is

our hope that these results will form a foundation to bring forth further developments

in efficient, practical code and decoding designs for the universal setting.

3.1 The General Universal Decoding Problem for

a Single Source

3.1.1 Model and Definitions

Throughout this discussion we will consider a discrete memoryless source (DMS) U

over U = {0, 1, . . . , Q − 1}. The set of all probability distributions on U is given by

P (U). For a length-N sequence u = (u1, u2, . . . , uN) ∈ UN , the type Pu ∈ P (U) is

the probability distribution defined by Pu(a) = 1
N

∑N
i=1 1{ui=a}, for all a ∈ U . We

denote by WN the pmf induced on UN by N independent drawings according to W .

We denote by PN (U) the subset of P (U) consisting of the possible types of sequences

u ∈ UN . For any type P ∈ PN (U), the type class T (P) is the set of all u ∈ UN such
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that Pu = P. To summarize, we have that

P (U) =

{
P =

(
{Pa}a∈U

)
: P ≥ 0,

∑
a∈U

Pa = 1

}

Pu =

({
1

N

N∑
i=1

1ui=a

}
a∈U

)
for u ∈ UN (3.1)

PN (U) =
{
P ∈ P (U) : P = Pu for some u ∈ UN

}
T (P) =

{
u ∈ UN | Pu = P

}
.

For a random variable U with probability distribution W we will denote its entropy

as H (U) which is a function of W . When we instead want to explicitly speak of the

entropy as a function of some P ∈ PN (U), then we will denote this as h (P ). For two

random variables with conditional and marginal distributions given by PU |V and PV ,

we will denote the conditional entropy H (U |V ) explicitly interms of PU |V and PV as

h
(
PU |V |PV

)
.

From [Csi98] we note the following:

|PN (U)| ≤ (N + 1)|U| (3.2)

|T (P)| ≤ 2Nh(P) (3.3)

W n (u) = 2−N[h(Pu)+D(Pu‖W)] ∀ u ∈ UN (3.4)

Thus the number of types is polynomial in N .

3.1.2 The General Problem

In this discussion we consider code constructions for fixed block length universal cod-

ing for the two dual settings of data compression and channel coding. The compression

scenario mentioned could be relevant, for instance, in a wireless sensor network where

the following two points apply:

1) Time-varying nature of field makes knowledge of field being sensed, the proba-

bility distribution on the data is not completely accurately modeled,
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2) Complexity, memory, and energy constraints make a universal fixed-to-fixed

length algebraic compression approach more viable than a universal fixed-to-

variable length compression approach (such as Lempel-Ziv [LZ77, LZ78] or

Burrows-Wheeler [EVKV02]) that requires dictionaries and table-lookups.

Similarly, due to the time-varying and multipath effects of the wireless channel, the

universal channel coding scenario could be relevant where phase information cannot

be accurately tracked.

More specifically, we take interest in universal decoding for discrete memoryless

settings, where the decoder does not have knowledge of the probability distribution

to aid in decoding. Consider a DMS U with probability distribution W ∈ P (U).

Without loss of generality, we assume that U = {0, 1, . . . , Q − 1} where Q = 2t for

some integer t ≥ 1. Thus we may assume that U takes on values in F2t . Our goal is to

design a fixed-rate universal code that permits a decoding algorithm that is blind to

W to have provably good performance. We consider the case where a linear mapping

H =




−H ′
1−

−H ′
2−
...

−H ′
M−




: UN → UM

is used to map u ∈ UN to s ∈ UM via

s = Hu (3.5)

where M < N and U is memoryless with probability distribution W ∈ P (U). We

will denote the rate R as

R = t
M

N
(3.6)

and note that this corresponds to rate in a data compression sense and not in a

channel coding sense (which would correspond to t−R). Throughout the rest of this

chapter we will speak of rate in a data compression sense. The decoder knows that u
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must be consistent with s, in other words it must lie in the coset

Co (H, s) = {u
∣∣ Hu = s}, (3.7)

and selects û as the ‘best’ coset member (in a universal sense). This encompasses two

settings:

a) Fixed-to-fixed length near-lossless data compression, where u is identified as the

sourceword and s is the syndrome, the output of the compression operation.

b) An additive noise channel y = x ⊕ u. By using a linear code C for x, and

identifying the parity check matrix H with C as

C = {x : Hx = 0} , (3.8)

then we have that a sufficient statistic for decoding is

Hy = Hu = s.

Successfully decoding for the noise vector u is equivalent to successfully decoding

for the transmitted codeword x:

x̂ = û⊕ y.

We assume that the rate R is achievable (i.e. tM
N

> H (U)). It has been known in the

information theory literature for quite a while [Gop75, Csi82] that in the universal

setting, linear codes still suffice to attain all achievable rates and can the same error

exponent as the random coding exponent. Note that for any u ∈ UN , we have that

P (u) = 2−N[D(Pu‖W)+h(Pu)].
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Thus an ML decoder with knowledge of W operates by selecting

û ∈ arg min
u∈Co(H,s)

D (Pu‖W ) + h (Pu)

It has been shown [Csi82] that there exist linear codes satisfying

lim inf
N→∞

− 1

N
logPML

e (N) ≥ Er (R,W ) ,

Er (R,W ) = min
P∈P(U)

D (P‖W ) + |R− h (P)|+ . (3.9)

Note that Er (R,W ) > 0 for all R > H(U). Now we note that the only dependence

on the distribution W in the above equation is in D (Pu‖W ) and from the law of

large numbers, with very high probability Pu → W . Since D (·‖W ) operates in a

distance-like manner, is continuous, and satisfies D (W‖W ) = 0, dropping the term

D (Pu‖W ) for a universal decoder doesn’t seem completely nonsensical.

Indeed, Csiszár’s ‘minimum-entropy’ decoder selects as the source reconstruction

the coset’s entropy minimizer

û ∈ arg min
u∈Co(H,s)

h (Pu) . (3.10)

In [Csi82], Csiszár shows that not only do there exist linear codes such whose rates

can be arbitrarily close to H(U) when such a decoder is applied, but also that min-

imum entropy decoding achieves the same error exponent as the optimal maximum-

likelihood (ML) decoder:

lim inf
N→∞

− 1

N
logP univ

e (N) ≥ Er (R,W ) .

Another interpretation of the universal decoding paradigm is that it is a manifes-

tation of Occam’s razor: “Find the explanation most easy to accept.” Since the

entropy function measures the inherent uncertainty or difficulty in explaining some-

thing, selecting the lowest entropy candidate consistent with observations is the same

as selecting the easiest to accept candidate consistent with observations.
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3.2 Universally Good Linear Codes

Csiszár’s lemma specifying good encoders [Csi82, Sec. III] illustrates the existence

of linear mappings H : UN → UM such for any joint type P ∈ PN (U2) with the

definitions

NH (P) �

∣∣∣∣∣∣

(u ∈ U

∣∣ Hu = Hũ

Pu,ũ = P
for some ũ #= u



∣∣∣∣∣∣ , (3.11)

every joint type P ∈ PN (U2) satisfies:

a) NH (P) ≤ 2−N(R−h(P)−δN ) (3.12)

b) if h
(
PU−Ũ

)
≤ R− δN then NH (P) = 0 (3.13)

where δN → 0 as N → ∞. We will denote such codes as universally good. Note

that the bound (3.12) can be strengthened to:

NH (P) ≤ 2−N(R−h(P)−δN )

= 2N(h(PU )−(R−h(PŨ|U |PU)−δN))

⇒ NH (P) ≤ 2
N

“
h(PU )−|R−h(PŨ|U |PU)−δN |+

”
(3.14)

≤ 2
N

“
h(PU )−|R−h(PŨ)−δN |+

”

where (3.14) follows because by the definition ofNH (P),NH (P) ≤ |T (PU)| ≤ 2Nh(PU ).

3.2.1 The Gilbert-Varshamov Distance

One important property of any linear code C with associated parity-check matrix H

is its minimum distance

dmin(H) = min
u∈Co(H,0)\0

wh (u)
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where wh (·) is the Hamming distance. It is well known that the larger the minimum

distance of a code, the larger the number of errors it can guarantee to correct:

wh (u) <
1

2
dmin(H)⇒ wh (u + 0) < wh (u + ũ) ∀ ũ ∈ C \ 0. (3.15)

Because of the linearity of the code C this can be generalized to

wh (u + û) <
1

2
dmin(H)⇒ wh (u + û) < wh (u + ũ) ∀ ũ ∈ Co (H,Hû) \ û. (3.16)

Here we briefly note how condition (3.13) of universally good codes relates to a

standard bound on good linear codes. It has been well known that random lin-

ear codes with parity-check matrix H have minimum distance lying on the Q-ary

Gilbert-Varshamov distance bound with high probability [WK03, p. 42-43]:

dmin(H) ≥ N
(
h−1
Q (R)− ε

)

where hQ(α) for 0 < α ≤ Q−1
Q

is given by

hQ(x) = x log(Q− 1)− x log x− (1− x) log(1− x).

Lemma 3.2.1. Universally Good Linear Codes lie on the Gilbert-Varshamov bound.

Proof. Setting ũ = 0 we have from condition (3.13) of universally good codes that

any u ∈ Co (H, 0) \ 0 satisfies h (Pu) ≥ R − εN , where εN → 0 as N → ∞. Now if

we see what this means in terms of hamming distance, we can perform the following

minimization:

min wh (u)

s.t. h (Pu) ≥ R− εN .

From the concavity of the entropy function h (·), u∗ will in (1 − δ)N positions be 0
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and in δ
Q−1

N positions be a, for each a ∈ U \ 0. Thus we have that

R− εN = h (Pu∗)

= −(1− δ) log(1− δ)− (Q− 1)
δ

Q− 1
log

(
δ

Q− 1

)

= −(1− δ) log(1− δ)− δ log

(
δ

Q− 1

)
= −(1− δ) log(1− δ)− δ log δ + δ log(Q− 1)

= hQ(δ).

3.2.2 Guarantees on Universal Decoding Success

In this subsection we discuss some conditions for which guaranteed universal decoding

success applies. Although none of these discussions will be related to error probability

analysis for our proposed decoding algorithms later in the chapter, we present them

to fall in analogy with previously well-established conditions for minimum-distance

decoding.

Decoding Success Guarantees for Binary Linear Codes: the Universal Dis-

tance

We now discuss the ‘universal distance’ of a binary linear code C with parity check

matrix H, given by

duniv � min
u∈C,u �=0

min (wh (u) , wh (1⊕ u)) . (3.17)

We illustrate the motivation for using the universal distance in code design using the

following example. Consider any linear code with parity check matrix H for which 1

is a member of C = Co (H, 0). Then the minimum-entropy decoder has probability of

error equal to 1
2

by the following argument. For any u ∈ Co (H, s), u⊕ 1 ∈ Co (H, s).

Further, h (Pu) = h (Pu⊕1). Thus u and u ⊕ 1 are indistinguishable to a minimum-

entropy decoder. Note that the universal distance of any such linear code H is 0,

which captures this undesirable effect.

69



We know that from (3.15) under minimum-distance decoding, if the error sequence

has hamming weight less than half the minimum distance, then we can guarantee

success. It is natural to consider an analogous statement regarding universal distance

and minimum-entropy decoding:

Lemma 3.2.2. Consider any M by N binary matrix H and its associated duniv =

Nδuniv, given by (3.17). If wh (u) < 1
2
duniv or wh (u⊕ 1) < 1

2
duniv, then u is the

unique solution to

min
û∈Co(H,s)

h (Pû) .

Stated alternatively, if h (Pu) < hb

(
1
2
δuniv

)
then u is the unique solution to

min
û∈Co(H,s)

h (Pû) .

Proof : see Appendix.

Decoding Success Guarantees for Non-Binary Codes

Here we would like to speak to condition (3.13) of universally good codes. Define the

universal rate Runiv associated with matrix H to be the largest R such that condition

(3.13) holds for H with δN = 0.

Lemma 3.2.3. Consider any M by N Q− ary matrix H over F2t and its associated

Runiv. If h (Pu) <
1
2
Runiv then u is the unique solution to

min
û∈Co(H,s)

h (Pû) .

70



Proof. Note that

h (Pu−ũ,u,ũ) = h (Pu,ũ) + h
(
Pu−ũ|u,ũ|Pu,ũ

)
= h (Pu,ũ) (3.18)

h (Pu−ũ,u,ũ) = h (Pu−ũ) + h
(
Pu,ũ|u−ũ|Pu−ũ

)
(3.19)

⇒ h (Pu−ũ) = h (Pu,ũ)− h
(
Pu,ũ|u−ũ|Pu−ũ

)
(3.20)

≤ h (Pu,ũ) (3.21)

≤ h (Pu) + h (Pũ) . (3.22)

Now we proceed with a proof by contradiction. Suppose Hũ = Hu and h (Pũ) ≤
h (Pu). Then note that

h (Pu−ũ) ≤ h (Pu) + h (Pũ)

≤ 2h (Pu)

< Runiv

by definition there can be no such ũ #= u with Hũ = Hu and thus we have a contra-

diction.

3.2.3 (β,E) universal robustness: Error Exponent General-

ization

We now perform a generalization of the error exponent analysis of universally good

codes exhibited by Csiszár[Csi82]. This generalization will be useful in the linear

programming framework for universal decoding, to be introduced later in this chapter.

Suppose that U has been transformed by H to s according to (3.5). Consider the

event

Euniv
β = {∃ ũ #= U | ũ ∈ Co (H, s) , h (Pũ) ≤ h (PU) + β}

where β ≥ 0. We say that a linear mapping H is (β,E) universally robust if

− 1

N
logP

(
Euniv
β

)
≥ E.
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By defining the set

T univ
β �

{
P ∈ PN

(
U2

)
| h (PŨ) ≤ h (PU) + β

}

we have that universally good codes satisfy

P
(
Euniv
β

)
≤

∑
P∈T univ

β

NH (P) 2−N [D(PU‖W )+h(PU )] (3.23)

≤
∑

P∈T univ
β

2
n

“
h(PU )−|R−h(PŨ)−δN |+

”
2−N [D(PU‖W )+h(PU )] (3.24)

≤ (N + 1)U
2

max
P∈T univ

β

[
2
−N

h
D(PU‖W )+|R−h(PŨ)−δN |+

i]
(3.25)

≤ 2(N + 1)U
2

max
P∈T univ

β

[
2
−N

h
D(PU‖W )+|R−h(PŨ)|+

i]
(3.26)

≤ 2(N + 1)U
2

max
P∈T univ

β

[
2−N[D(PU‖W )+|R−h(PU )−β|+]

]
(3.27)

≤ 2(N + 1)U
2

max
P∈Pn(U)

[
2−N[D(PU‖W )+|R−h(PU )−β|+]

]
(3.28)

= 2(N + 1)U
2

2−NEr(R−β,W ). (3.29)

Thus universally good codes of rate R are also (β,E) universally robust whenever 0 ≤
β > R−H(U) and 0 < E ≤ Er (R− β,W ). Note that for β = 0 and E = Er (R,W )

we get the typical random coding bound.

3.2.4 (β,E) robustness for ML decoding

Unsurprisingly, we now make the same claim about an ML decoder. In [FS05] a

Gallager-style [Gal68] error exponent derivation approach such good codes in the

binary case [FS05]. Here we use the method of types and show that for any alphabet,

universally good codes are also (β,E)-robust with respect to ML decoding. Consider

the event

EML
β = {∃ ũ #= U | ũ ∈ Co (H, s) , D (Pũ‖W ) + h (Pũ) ≤ D (PU‖W ) + h (PU) + β} .
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We say that a linear mapping H is (β,E) ML robust if

− 1

N
logP

(
EML
β

)
≥ E.

By defining the set

T ML
β =

{
P ∈ PN

(
U2

)
| D (PŨ‖W ) + h (PŨ) ≤ D (PU‖W ) + h (PU) + β

}

we have that universally good codes also satisfy

P
(
EML
β

)
≤

∑
P∈T ML

β

NH (P) 2−N [D(PU‖W )+h(PU )] (3.30)

≤
∑

P∈T ML
β

2
n

“
h(PU )−|R−h(PŨ)−δN |+

”
2−N [D(PU‖W )+h(PU )] (3.31)

≤ (N + 1)U
2

max
P∈T ML

β

[
2
−N

h
D(PU‖W )+|R−h(PŨ)−δN |+

i]
(3.32)

≤ 2(N + 1)U
2

max
P∈T ML

β

[
2
−N

h
D(PU‖W )+|R−h(PŨ)|+

i]
. (3.33)

Let us consider the constraint for any P ∈ T ML
β :

D (Pũ‖W ) + h (Pũ) ≤ β + D (Pu‖W ) + h (Pu) (3.34)

⇔ D (Pũ‖W )− h (Pu)− β ≤ D (Pũ‖W )− h (Pũ) . (3.35)

If h (Pu) > R− β, then

D (Pu‖W ) + |R− h (Pũ)|+ ≥ D (Pu‖W )

= D (Pu‖W ) + |R− β − h (Pu)|+ .
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If on the other hand h (Pu) < R− β:

D (Pũ‖W ) + |R− β − h (Pu)|+ = D (Pũ‖W ) + (R− β − h (Pu))

≤ D (Pu‖W ) + (R− h (Pũ)) via (3.35)

≤ D (Pu‖W ) + |R− h (Pũ)|+

⇒ D (Pu‖W ) + |R− h (Pũ)|+ =
1

2

[
D (Pu‖W ) + |R− h (Pũ)|+

]
+

1

2

[
D (Pu‖W ) + |R− h (Pũ)|+

]
≥ 1

2

[
D (Pũ‖W ) + |R− β − h (Pu)|+

]
+

1

2

[
D (Pu‖W ) + |R− h (Pũ)|+

]
≥ 1

2

[
D (Pũ‖W ) + |R− β − h (Pu)|+

]
+

1

2

[
D (Pu‖W ) + |R− β − h (Pũ)|+

]
=

1

2

[
D (Pu‖W ) + |R− β − h (Pu)|+

]
+

1

2

[
D (Pũ‖W ) + |R− β − h (Pũ)|+

]
≥ Er (R− β,W ) .

Thus it follows that

P
(
EML
β

)
≤ 2(N + 1)U

2

2−NEr(R−β,W )

so universally good codes of rate R are also (β,E) ML robust whenever 0 ≤ β >

R−H(U) and 0 < E ≤ Er (R− β,W ).

3.3 The Complexity of Universal Decoding with

Linear Codes

Here we consider the computational complexity issues involving performing minimum-

entropy decoding for general linear codes. We consider the binary case here - and

illustrate that even in this setting complexity issues manifest themselves. Consider a

binary linear code C specified by its parity check matrix H ∈ {0, 1}M ×{0, 1}N , given

74



by (3.8). We consider the case where a linear mapping H : {0, 1}N → {0, 1}M is used

to map u ∈ {0, 1}N to s ∈ {0, 1}M via (3.5), where M < N and U is memoryless with

P (Ui = 1) = p. The decoder knows that u must be consistent with s, in other words

it must lie in the coset Co (H, s) given by (3.7). In the case of ML decoding, if the

decoder knew that p < 1
2
, then it selects û as the coset’s smallest hamming weight

member - termed coset leader :

û = arg min
u∈Co(H,s)

wh (u) . (3.36)

In a universal setting, the decoder is unaware of the sign of p − 1
2
, and selects û as

the coset’s empirical entropy minimizer, given by (3.10).

It has been shown in [BMvT78] that ML decoding for general linear codes - per-

forming (3.36) for a general matrix H - is NP-complete. Thus it is not overwhelmingly

surprising the following theorem holds, but we state it here for the sake of complete-

ness, a solid foundation, and motivation for future approximation techniques in this

chapter:

Theorem 3.3.1. The algorithm MINIMUM-ENTROPY[H, s] for general binary

linear codes is NP-complete.

Proof. Our approach to proving this will be the usual suspect in complexity theory:

a reduction. Our base NP-complete problem will be COSET-LEADER[H, s], and

we will reduce it to MINIMUM-ENTROPY[H, s].

Suppose we are given an instance of the problem COSET-LEADER[H, s],

which performs (3.36). We would like to reduce this to minimum-entropy decod-

ing by showing that if there exists a polynomial-time algorithm for MINIMUM-

ENTROPY[H, s], which performs (3.10), then it can be used to solve any instance

of COSET-LEADER[H, s]. Consider the coset Co
(
H̃, s̃

)
where

H̃ =


 H 0

0 IN


 , s̃ =


 s

0


 ,
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where IN is the N × N identity matrix. Consider any ũ =


 u

u′


 ∈ Co

(
H̃, s̃

)
and

note that ũ must satisfy

u′ = 0, u ∈ Co (H, s) . (3.37)

Furthermore, note that any ũ ∈ Co
(
H̃, s̃

)
satisfies

1

2N
wh (ũ) ≤ 1

2
⇔ Pũ(0) ≤

1

2
. (3.38)

Since the binary entropy function is monotonically increasing on [0, 1
2
), we have that

the two optimization problems

MINIMUM-ENTROPY
[
H̃, s̃

]
: min

ũ∈Co(H̃,s̃)
h (Pũ) ,

COSET-LEADER
[
H̃, s̃

]
: min

ũ∈Co(H̃,s̃)
wh (ũ)

have the same optimal solution(s). Let ũ∗ =


 u∗

u′∗


 be an optimal solution from

above. Then from (3.37) and we have that u∗ is an optimal solution to COSET-

LEADER[H, s].

3.4 Codes on Graphs

Here we will be interested in graphical realizations of linear systems to describe the

coset Co (H, s). Here we will use Forney’s “normal graph realizations approach”

[For01, Sec VIII.B]. For our discussion, we will discuss normal realizations whose

graphical models have the following properties:

• A graph G = (V,E∪ Ē) with |E| = N two-sided edges and
∣∣Ē∣∣ one-sided edges.

For a vertex j ∈ V we denote Γ (j) as the set of edges e ∈ E adjacent to j and

Γ̃ (j) as the set of edges ē ∈ Ē adjacent to j.

• Each local constraint Cj is represented by a vertex j ∈ V
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sj

sj′

ue

Hj

Hj′

Figure 3-1: Graphical representation of a linear system representing Co(H, s)

• The state variable ue ∈ F2t corresponds to a two-sided edge e ∈ E and is

involved in the two local constraints corresponding to the vertices adjacent to

e. Thus there are N total state variables and as a vector they are represented

as u. For a vertex j ∈ V we abbreviate {ue}e∈Γ(j) as uj.

• The symbol variable sē ∈ F2t corresponds to a one-sided ‘leaf-edge’ (also termed

a ‘half-edge’ or ‘dongle’) ē ∈ Ē and is associated with the one local constraint,

corresponding to the vertex adjacent to the half-edge ē. For a vertex j ∈ V , we

abbreviate {sē}ē∈Γ̃(j) as sj.

• Each vertex j and its associated code Cj imposes the constraint that

Hjuj + sj = 0 ⇔ Hjuj = sj ⇔ uj ∈ Co
(
Hj, sj

)
. (3.39)

Fundamentally important, the coset Co (H, s) can be expressed as

Co (H, s) =
{
u
∣∣ uj ∈ Co

(
Hj, sj

)
, ∀ j ∈ V

}
. (3.40)

77



We would like to emphasize that there are more than one ways to decompose Co (H, s)

into a graphical realization. Indeed, the key to low-complexity decoding algorithms

arises in using graphical representations of Co (H, s) that have nice properties. For a

particular graph G = (V,E) we denote COG
(
G, {Hj}, {sj}

)
as the way in which we

specify Co (H, s) in terms of (3.40).

3.4.1 Parity-Check Representation

One such code on graph representation, perhaps the simplest, is the parity-check

representation where we express H as

H =




− H ′
1 −

− H ′
2 −

− . . . −
− H ′

M −



, s =




s1,

s2,

. . . ,

sM




and representing G with V = A ∪ B, where |A| = N and |B| = M . As illustrated in

Figure 3-2, each j ∈ A corresponds to a repetition code where each edge adjacent to

j must be equivalent. Each j ∈ B corresponds to a row in the H matrix and enforces

the constraint that

H ′
ju = sj.

3.4.2 Universal Expander Codes

Now we consider building a code on graph where G has a particularly nice structure

that facilitates practical decoding with provably good performance. Here we consider

a graphical representation of Co (H, s) where G is a bipartite expander graph. Thus

V = A ∪ B where |A| = |B| = 1
2
|V | = n and each edge e ∈ E has one endpoint in

A and one in B. Each node j ∈ V is adjacent to ∆ edges and has Mj ≤ ∆ dongles

corresponding to sj.
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Figure 3-2: Parity-check representation for the coset Co(H, s)

The idea here is to think of concatenated codes as in Forney [For66] where we let

∆ be a large but fixed quantity. Thus there are N = n∆ edges and N corresponds to

the block length of our codes. We let every code Cj for j ∈ A have Ma constraints

where

H(U) < Ra =
Ma

∆
< R

and let every Cj for v ∈ B have Mb constraints where

Rb = t
Mb

∆
= t

(
M

N
− Ma

∆

)
= R−Ra.

The idea here is that each local code Cj for j ∈ A is locally achievable to block

compress U to its entropy, i.e. Ra > H(U). The codes Cj are nearly rateless and their

main purpose is to correct a constant fraction of errors in ∆. Moreover, we make

each local Hj be universally good.

Properties of Expander Graphs

Expander graphs have the property that every sufficiently small set of vertices has a

very large number of neighbors - despite the fact that it is ∆-regular where ∆ does

not grow with |V |.

A common way to characterize the expansion properties of a graph G is to examine

the second-largest eigenvalue λ2(G) of its adjacency matrix. The largest eigenvalue
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of any ∆-regular graph is ∆, and the larger the eigenvalue separation, the better the

expansion properties:

Lemma 3.4.1. [AC89] Let G = (V,E) be a ∆-regular graph such that λ2(G) = λ. Let

T be a subset of the vertices of G of size α |V |. Then, the number of edges contained

in the subgraph induced by T in G is at most α |V |
(

∆α
2

+ λ
2
(1− α)

)
.

The best possible value of λ2(G) is known to be 2
√

∆− 1 and it surprisingly can be

explicitly achieved with polynomial-time constructions [LPS88]. We denote a graph G

as G∆,n when G is a ∆-regular bipartite graph with |V | = 2n and λ2(G) = 2
√

∆− 1.

Moreover, we define ECOG
(
G∆,n, {Hj}, {sj}

)
to be the graphical representation of

Co (H, s) where each Hj is universally robust. From here we discuss some properties

of expander graphs discussed in [FS05].

Definition [FS05] We will say that a ∆-regular graph G is a (α, ρ)-expander if for

every induced graph G′ = (V ′, E ′) with |V ′| ≤ α |V |, we have |E ′| ≤ ρ∆ |V ′|.

We note that this definition is slightly different than the typical notion of an expander

graph [SS96, Sec. III], but will be more convenient for our analysis. We will use

Lemma 3.4.1 as in [FS05] to construct a ∆-regular graph that is an (α, ρ)-expander

where α = 2ρ− λ
∆
.

Definition [FS05] A ρ-orientation of a subgraph G′ = (V ′, E ′) of a ∆-regular graph

G is an assignment of directions to every edge in E ′ such that each node in V ′ contains

at most ρ∆ incoming edges from E ′.

With this definition we can state the following lemma, which will be useful in our

error probability analysis:

Lemma 3.4.2. [FS05] If a ∆-regular graph G is a (α, ρ)-expander where ρ∆ is an

integer, then all subgraphs G′ = (V ′, E ′) with |E ′| ≤ αρ∆ |V | contain a ρ-orientation.
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3.4.3 Universal Goodness of Bipartite Graph Codes

Here we consider how a bipartite graph code of the form ECOG
(
G∆,n, {Hj}, {sj}

)
performs under minimum-entropy decoding, as ∆ grows. We first consider the fol-

lowing lemma that will be useful for our analysis:

Lemma 3.4.3. Consider a set A where |A| = n and suppose that {Pj ∈ P∆ (U2)}j∈A,
P ∈ Pn∆ (U2). Then:

∑
1
n

P
j∈A Pj=P

∏
j∈A

2−∆(Ra−h(P
j)−δ∆) ≤ 2−n∆(Ra−h(P)−ε′∆)

where ε′∆ → 0 as ∆→∞.

Proof.

∑
1
n

P
j∈A Pj=P

∏
j∈A

2−∆(Ra−h(P
j)−δ∆) =

∑
1
n

P
j∈A Pj=P

2−n∆(Ra− 1
n

P
j∈A h(P

j)−δ∆) (3.41)

≤
∑

1
n

P
j∈A Pj=P

2−n∆(Ra−h(
P

j∈A
1
n

P
j)−δ∆) (3.42)

=
∑

1
n

P
j∈A Pj=P

2−n∆(Ra−h(P)−δ∆)

≤
∣∣P∆

(
U2

)∣∣n 2−n∆(Ra−h(P)−δ∆)

≤ (∆ + 1)n|U|
2

2−n∆(Ra−h(P)−δ∆) (3.43)

= 2−n∆(Ra−h(P)−δ∆−|U|2 log(∆+1)
∆ )

= 2−n∆(Ra−h(P)−ε′∆)

where (3.42) follows from the concavity of entropy, and (3.43) follows from (3.2).

Now let N = n∆ and P ∈ PN (U2) correspond to the joint type of any length-N

pair (u, ũ) satisfying Hu = Hũ. Define Pj ∈ P∆ (U2) to correspond to the joint type
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of any local length-∆ pair (u′, ũ′) satisfying Hju
′ = Hjũ

′. Then we have:

NH (P) ≤
∑

1
n

P
j∈A Pj=P

∏
j∈A
NHj

(
Pj

)

≤
∑

1
n

P
j∈A Pj=P

∏
j∈A

2−∆(Ra−h(P
j)−δ∆) (3.44)

≤ 2−N(Ra−h(P)−ε′∆) (3.45)

where ε′∆ → 0 as ∆→∞, (3.44) follows from (3.12), (3.45) follows from Lemma 3.4.3.

Thus it follows that H becomes universally good for large ∆, when thought of having

rate R′ = Ra − ε′∆.

3.4.4 Encoding

Encoding for the compression situation is done quite simply. u is mapped to s setting

the edges on the graph G to u, and applying sj = Hjuj for all j ∈ V . We note that

there are n nodes and each node has degree ∆, and since there are N = n∆ edges,

this is done with linear complexity. For the channel coding scenario, the encoding

done is the same as discussed in [SS96, BZ02].

3.5 Linear Programming Decoding Methods with

Polynomial Complexity

Here we will be interested in executing linear programs to solve a provably good

approximation to the decoding problem (3.10) with polynomial complexity when

Co (H, s) is specified in a codes on graphs description COG
(
G, {Hj}, {sj}

)
. This

approach is inspired by the work of Feldman [Fel03, FMS+04, FS05], which addressed

linear programming relaxations to ML decoding in the binary alphabet case. Here we

will consider universal decoding in multiterminal settings over non-binary alphabets.
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A linear program (LP) is an optimization problem of the form

min c′x (3.46a)

s.t. Ax = b (3.46b)

x ≥ 0. (3.46c)

The constraint set is a polyhedron, which is simply a finite intersection of half-spaces.

In the event that the polyhedron is bounded, it is termed a polytope. For any polytope

B we say that a point v ∈ B is a vertex if it cannot be expressed as a convex

combination of two other elements of B. The convex hull of a finite set S ⊆ Rn of

points is simply the set

{
x s.t. x =

∑
si∈S

λisi,
∑
i

λi = 1, λi ≥ 0

}

Some model and definitions we abide by are as follows:

CH(S) � the convex hull of S

V (B) � {v : v is a vertex of the polytope B}

H (B) � the number of half-spaces representing B

One fundamental property of linear programming is the following [BT97, Sec. 2.6]:

if an LP has an optimal solution then there exists a vertex which is optimal. Linear

programs fall within the class of convex optimization problems that exhibit strong

duality [BT97, Sec 4.3]. Consequently, for every linear program given by (3.46) - which

we call the primal LP - with an optimal solution, there exists another corresponding

dual LP given by

max p′b (3.47a)

s.t. p′A ≤ c′ (3.47b)
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with an optimal solution of the same cost. Finally, LPs can be performed efficiently

in the sense that the LP {min c′x s.t. x ∈ B ⊆ RN} has an algorithmic complexity

upper bounded by a polynomial function of H (B) and N .

3.5.1 From Discrete to Continuous Optimization

Note that (3.10) is a discrete optimization problem with an exponential number

(2N(t−R)) of feasible solutions. Our first step is to replace (3.10) by a continu-

ous optimization problem. We first construct indicator variables Ia,e ∈ {0, 1}, for

a ∈ U , e ∈ {1, . . . , N}, such that Ia,e = 1{ue=a}. Thus Ia,e specifies u ∈ Un as

u = µ(I), where ue = µe(I) =
∑
a∈U

aIa,e. (3.48)

Note that any u ∈ Co (H, s) must satisfy the constraints of the linear code. We

impose these code constraints on I by defining

I(H, s) = {I s.t. µ(I) ∈ Co (H, s)}. (3.49)

For any I ∈ I(H, s) and the corresponding u = µ(I), we can construct Pu as a linear

mapping

P = τ(I), where P (a) = τa(I) =
1

N

N∑
e=1

Ia,e, a ∈ U .

Thus we can define the polytope Bi,p(H, s) as

Bi,p(H, s) = {(I, P ) s.t. I ∈ CH(I(H, s)), P = τ(I)} .

Note that for every (I, P ) ∈ V (Bi,p(H, s)):

• I corresponds to a coset member u = µ(I) ∈ Co (H, s).

• The empirical type Pu associated with u = µ(I) satisfies Pu = P = τ(I).

Since the entropy function is strictly concave, and since minimizing a strictly concave

function over a polytope B has the property [HT96] that an optimal solution lies in
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V (B), we can perform (3.10) in the continuous domain as

min h (P ) (3.50a)

s.t. (I, P ) ∈ Bi,p(H, s) (3.50b)

and take the minimum-entropy solution as u∗ = µ(I∗) where (I∗, P ∗) is an optimal

solution to (3.50). At first glance, there are two difficulties that arise in trying to

perform (3.50):

1) Since ML-decoding for linear codes is generally NP-complete [BMvT78], the

best bound on H (B) (and thus H (Bi,p)) is O(2n). As a result, it is not obvious

how to efficiently represent Bi,p.

2) In (3.50), |V (Bi,p)| = O(2n) and concave minimization over a polytope is NP-

hard [HT96] - generally requiring a visit to every v ∈ V (Bi,p).

However, even though |Co (H, s)| = O(2n), from (3.2) it follows that the number of

distinct types associated with Co (H, s) is polynomial in n. This observation suggests

somehow restricting our attention to the vertices of the projected polytope Bp(H, s),

given by

Bp(H, s) = {P | (I, P ) ∈ Bi,p(H, s) for some I}

Note that any P ∈ V (Bp(H, s)) is the type of some u ∈ Co (H, s).

3.5.2 LP Decoding for Arbitrary F2t

Without loss of generality we define U = {0, 1, . . . , 2t − 1}. For a ∈ U , define γa �
− log2 P (Ui = a). We note that the ML decoder selects u∗(s) = µ (I∗(s)) where

I∗(s) = arg min
I∈I(H,s)

(∑
e

∑
a∈U

γaIa,e

)

= arg min
I∈CH[I(H,s)]

(∑
e

∑
a∈U

γaIa,e

)
.
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Without loss of generality we assume that γa < ∞ so that this is well-defined.

As already discussed, this is an NP-complete problem and thus there is no poly-

nomial bound on H (B). So we consider an LP relaxation where we minimize the

same objective function over a different polytope B̃ that is easily represented in

the sense that H
(
B̃
)

is polynomial in n. This approach is inspired from Feldman

[Fel03, FMS+04, FS05] but here we consider the arbitrary alphabet case and we will

eventually lead to universal decoding algorithms, with this approach as a subcompo-

nent.

Here we consider performing an LP for an arbitrary Co (H, s) where a codes on

graphs representation, as discussed in Section 3.4 is provided: COG
(
G, {Hj}, {sj}

)
.

For any node j ∈ V we have a local code uj associated with a subset of the constraints,

Hj and sj. Analogous to Feldman’s approach, we construct our LP relaxation to be

the intersection of all polytopes that are locally consistent with (Hj, sj).

LP-PRIMAL
(
G, {γa}, {Hj}, {sj}

)

min
∑
e

∑
a∈U

γaIa,e s.t.

∀ j :
∑

ũj∈Co(Hj ,sj)

wj,ũj
= 1 (3.51a)

∀ e = (j, j′), a ∈ U : Ia,e =
∑

ũj∈Co(Hj ,sj):

ũj [e]=a

wj,ũj
=

∑
ũj′∈Co(Hj′ ,sj′):

ũj′ [e]=a

wj′,ũj′ (3.51b)

w ≥ 0, I ≥ 0 (3.51c)

where wj,ũj
corresponds to a convex hull variable associated with ũj ∈ Co

(
Hj, sj

)
.

We shall denote the primal relaxed polytope B̃
(
G, {Hj}, {sj}

)
as the set of all (I, w)

satisfying the above constraints (3.51a)-(3.51c).

We note that there are Q|Γ(j)|−|Γ̃(j)| variables of the type wj,ũj
associated with each

node j ∈ V and there are |E| |U| variables of the type Ia,e. So by defining

Γ̄(G) = max
j∈V

|Γ (j)| −
∣∣∣Γ̃ (j)

∣∣∣ (3.52)

N ′ = |V |QΓ̄(G) + |E| |U| (3.53)
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we have that

B̃
(
G, {Hj}, {sj}

)
⊆ RN ′

.

Since there are |V | constraints associated with (3.51a), |E| |U| constraints associated

with (3.51b) and at most N ′ constraints associated with (3.51c),

H
(
B̃
(
G, {Hj}, {sj}

))
= O (N ′ + |V |+ |E| |U|) .

We note that

• For a family of codes COG
(
G, {Hj}, {sj}

)
where Γ̄(G) does not grow with

|E|, we note that both N ′ and H
(
B̃
(
G, {Hj}, {sj}

))
are O(N), and thus per-

forming LP-PRIMAL
(
G, {γa}, {Hj}, {sj}

)
is guaranteed to have running time

polynomial in the block length N . We note that low-density parity-check codes

COG
(
G, {Hj}, {sj}

)
according to Section 3.4.1 fall within this category, as do

the universal expander codes ECOG
(
G∆,n, {Hj}, {sj}

)
.

All valid coset members still correspond to vertices B̃
(
G, {Hj}, {sj}

)
, but non-

integral vertices, termed pseudocodewords, also arise and thus compete in the LP. By

[FKKR01, FKV01, KV03], pseudocodewords also compete with true codewords when

the min-sum algorithm is applied to the same graphical realization COG
(
G, {Hj}, {sj}

)
.

Furthermore, [KV03] shows that the region over which the pseudocodewords compete

with true codewords is in fact B̃. Discussions in [KV03, Fel03, VK04] suggest that the

two decoders have essentially the same performance. This gives another motivation

for considering the LP decoding paradigm - it is more amenable to concrete analysis

and is intimately connected to iterative decoding algorithms.

The Dual LP

In a dual LP, we will have the constraints of the form p′Ak ≤ ck for each column k

of A. Each pm variable corresponds to one of the constraints (rows) in the matrix A

of the primal LP. Note that for a fixed a ∈ U , any particular edge e = (j, j′), will

be involved in exactly two constraint equations of the form (3.51b). Thus we can
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define those particular pm variables to be of the form (τe,j,a, τe,j′,a). Also note that the

column Ak in A, where k corresponds to one of the Ia,e variables, will have exactly

two positive ones, corresponding to the two equations (3.51b) involving edge e. Thus

we get dual constraints of the form

τe,j,a + τe,j′,a ≤ γa.

Also note that there will be equations of the form (3.51a) for each node j ∈ V

corresponding to a local code. Thus we define those particular pm variables to be vj.

The column Ak in A, where k corresponds to one of the wj,uj
variables, will have a

1 in a row location corresponding to node j in (3.51a) as well as values of −1 in row

locations (3.51b) corresponding to each edge e ∈ N(j). Thus we get dual constraints

of the form

vj −
∑

e∈N(j)

∑
a∈U

Iũj ,a,e
τe,j,a ≤ 0,

where Iũj ,a,e
= 1{ũj [e]=a}. Thus the dual LP becomes

LP-DUAL
(
G, {γa}, {Hj}, {sj}

)
:

max
∑
j∈V

vj s.t.

∀ j, ∀ũj ∈ Co
(
Hj, sj

)
:

∑
e∈N(j)

∑
a∈U

Iũj ,a,e
τe,j,a ≥ vj (3.54a)

∀ e = (j, j′), ∀ a ∈ U : τe,j,a + τe,j′,a ≤ γa (3.54b)

3.5.3 Performance Guarantees for LP Decoding on Universal

Expander Codes

Consider the decoding problem of trying to infer u provided the information

ECOG
(
G∆,n, {Hj}, {sj}

)
and the log-likelihoods {γa}. We define the cost γ

(
ũj, j

)
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of a local codeword ũj ∈ Co
(
Hj, sj

)
at node j as

γ
(
ũj, j

)
=

∑
a

∑
e∈Γ(j)

Iũj ,a,e
γa (3.55)

Let us now define

T (u) �
{
j ∈ A | ∃ ũj ∈ Co

(
Hj, sj

)
\ uj, γ

(
ũj, j

)
− γ

(
uj, j

)
≤ β∆

}
(3.56)

Nbad (u) � |T (u)| . (3.57)

Since each Hj is universally robust, with exponentially high probability in ∆ a node

j in A will not lie in T (u). Thus any j ∈ T (u) we label “bad”. This leads to the

following theorem.

Theorem 3.5.1. Suppose s = Hu where Co (H, s) can be represented in terms of

COG
(
G, {Hj}, {sj}

)
. Consider an instance of LP-PRIMAL

(
G, {γa}, {Hj}, {sj}

)
where the following conditions are satisfied:

1) 0 < mina∈U γa < maxa∈U γa < γ̄ <∞

2) For all j ∈ A, Hj is (β,Er (Ra − β,W )) robust

3) G is an (α, ρ) expander where

0 < δA = min
j∈A

dmin(Hj)

∆

0 < δB = min
j∈B

dmin(Hj)

∆

ρ′ =
δB

1 + δB/δA + γ̄/β
1

2
ρ′ ≤ ρ ∈ Z ≤ ρ′

0 < α = 2ρ− λ2(G)

∆

Then if Nbad (u) ≤ n α
∆+1

then the LP decoder succeeds with u as the unique optimal

solution.
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Proof. We define Γ(T ) to be the nodes in the neighborhood of T and note that because

G is bipartite, Γ(T ) ⊆ B. We will explicitly provide a dual feasible solution with cost

equal to the primal cost of u. Note that the cost of u in the primal LP is

∑
j∈A

γ
(
uj, j

)
,

which is an upper bound on the cost of any dual solution. We now show we can

achieve this cost, which means that u is indeed an optimal solution. We define

τ̂e,j,a =


 γa, j ∈ A

0 j ∈ B
(3.58)

vj =
∑

e∈N(j)

∑
a∈U

Iuj ,a,e
τ̂e,j,a (3.59)

=


 γ

(
uj, j

)
, j ∈ A

0 j ∈ B
(3.60)

τe,j,a = τ̂e,j,aIuj ,a,e
+ τ̃e,j,a(1− Iuj ,a,e

) (3.61)

where τ̃e,j,a is yet to be specified. Note that

∑
j∈V

vj =
∑
j∈A

γ
(
uj, j

)

which is the cost of u in the primal. Also note that for j ∈ V , with ũj = uj ∈
Co

(
Hj, sj

)
:

∑
e∈N(j)

∑
a∈U

Iuj ,a,e
τe,j,a =

∑
e∈N(j)

∑
a∈U

Iuj ,a,e

(
τ̂e,j,aIuj ,a,e

+ τ̃e,j,a(1− Iuj ,a,e
)
)

(3.62)

=
∑

e∈N(j)

∑
a∈U

Iuj ,a,e
τ̂e,j,a (3.63)

= vj. (3.64)

So the dual constraint (3.54a) is satisfied for ũj = uj ∈ Co (Hj, sj).

We have to be careful with how we set the auxiliary edge weights (τ̃e,j,a, τ̃e,j′,a) for
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A

B

T

Γ(T )

γ̄ + β δB
δA

−γ̄ − β δB
δA

−β

β
β

γa − β − ε γa − ε

0

Figure 3-3: Edge weight τ̃e,j,a settings for each node j

the dual constraint where ũj ∈ Co
(
Hj, sj

)
\ uj. To do this, we define a direction for

each edge in the graph. All edges that are not incident to T are directed toward the

nodes A . Edges incident to T are directed according to a ρ-orientation of the subgraph

induced by (T ∪Γ(T )). This is possible using Lemma 3.4.2, since |T ∪ Γ(T )| ≤ αn by

assumption, and so |{Γ (j)}j∈T | ≤ αρ∆n by expansion. To satisfy the edge constraints

(3.54b) of the dual LP, the sum of these two weights should be strictly less than γa.

We give the assignment in detail below (also see Figure 3.5.3), where ε > 0 is a small

constant the we specify later:

edge location τ̃e,j,a, j ∈ A τ̃e,j,a, j ∈ B

e leaving T γ̄ + β δB

δA
−γ̄ − β δB

δA

e entering T −β β

e incident to Γ(T ) but not T γa − β − ε β

all other e (not incident to T or Γ(T )) γa − ε 0

Note that from summing up up each row in the weighting assignments, all the dual

constraints given by (3.54b) are satisfied with slack. Thus from complementary slack-

ness [BT97, Sec 4.3] u∗ will be the unique solution. We now show the above weight

assignment also satisfies all the dual constraints given by (3.54a):

(i) For a node j ∈ T , there are at most ρ∆ ≤ ρ′∆ incoming edges e with weight

−β. The remaining (outgoing) edges have weight γ̄ + β δB

δA
. Furthermore, for

any ũj ∈ Co
(
Hj, sj

)
\uj we have that wh

(
uj + ũj

)
≥ δA∆ so in the worst case,

we have that
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1. ρ′∆ edges, in locations where ũj[e] #= uj[e], have weight τ̃e,j,a = −β

2. (δA − ρ′)∆ edges, in locations where ũj[e] #= uj[e], have weight τ̃e,j,a =

γ̄ + β δB

δA

3. the remaining (1 − δA)∆ edges - denoted as Ẽ(j) - in locations where

ũj[e] = uj[e], have weight τ̂e,j,a = γa.

Thus

∑
a∈U

∑
e∈Γ(j)

Iũj ,a,e
τe,j,a ≥ −ρ′∆β + (δA − ρ′)∆

(
γ̄ + β

δB
δA

)
+

∑
a∈U

∑
e∈Ẽ(j)

Iuj ,a,e
γa

= −ρ′∆β + (δA − ρ′)∆

(
γ̄ + β

δB
δA

)

+ vj −
∑
a∈U

∑
e∈(Γ(j)\Ẽ(j))

Iuj ,a,e
γa

≥ −ρ′∆β + (δA − ρ′)∆

(
γ̄ + β

δB
δA

)
+ vj − δA∆γ̄

= vj + ∆

[
βδB − ρ′

(
γ̄ + β + β

δB
δA

)]

= vj.

(ii) For a node j ∈ Γ(T ), there are at most ρ∆ ≤ ρ′∆ incoming edges e with weight

τ̃e,j,a = −γ̄ − β δB

δA
and the remaining (outgoing) edges have weight τ̃e,j,a = β.

Furthermore, for any ũj ∈ Co
(
Hj, sj

)
\ uj we have that wh

(
uj + ũj

)
≥ δB∆ so

in the worst case, we have that

1. ρ′∆ edges, in locations where ũj[e] #= uj[e], have weight τ̃e,j,a = −γ̄ − β δB

δA

2. (δB − ρ′)∆ edges, in locations where ũj[e] #= uj[e], have weight τ̃e,j,a = β

3. the remaining (1−δB)∆ edges, in locations where ũj[e] = uj[e], have weight

τ̂e,j,a = 0.
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Thus

∑
a∈U

∑
e∈Γ(j)

Iũj ,a,e
τe,j,a ≥ −ρ′∆

(
γ̄ + β

δB
δA

)
+ (δB − ρ′)∆β

= ∆

[
δBβ − ρ′

(
γ̄ + β + β

δB
δA

)]
= 0

= vj

(iii) For a node j ∈ (A \ T ), we have that every incident edge e is incoming and has

weight τ̃e,j,a equal to either γa− ε or γa− β− ε. In the worst case, they all have

weight τ̃e,j,a = γa − β − ε. So for any u #= ũ ∈ Co
(
Hj, sj

)
we have

∑
a∈U

∑
e∈Γ(j)

Iũj ,a,e
τe,j,a ≥

∑
a∈U

∑
e∈Γ(j)

Iũj ,a,e
γa −∆(β + ε)

= γ
(
ũj, j

)
−∆(β + ε)

> ∆(β + ε) + γ
(
uj, j

)
−∆(β + ε)

= γ
(
uj, j

)
= vj

where the second inequality holds for small enough ε because j ∈ (A \ T ) and

Hj is robust.

(iv) For a node j ∈ (B \ Γ(T )), we have every edge is leaving j and thus we have

that τ̃e,j,a = 0 for all a and all e ∈ Γ (j). Thus

∑
a∈U

∑
e∈Γ(j)

Iũj ,a,e
τe,j,a = vj.

The Universal LP Decoding Algorithm

Here we assume that u ∈ UN has been mapped to s via H, and the decoder has

knowledge of the COG
(
G, {Hj}, {sj}

)
representation:
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UNIV-DEC-LP
(
G, {Hj}, {sj}

)
0. Set u∗

.
= ũ for any ũ satisfying Pũ = U.

1. For each P ∈ P∆ (U) do

2. Execute LP-PRIMAL
(
G, {− log P(a)}, {Hj}, {sj}

)
.

3. If the optimal solution I∗ to LP-PRIMAL
(
G, {− log P(a)}, {Hj}, {sj}

)
is integral and h

(
Pµ(I∗)

)
≤ h (Pu∗) then set u∗

.
= µ(I∗).

4. end for

5. return u∗

where U is the uniform probability distribution. Note that this algorithm has com-

plexity proportional to the complexity of executing a single instance of

LP-PRIMAL
(
G, {− log P(a)}, {Hj}, {sj}

)
.

Error Probability Analysis

Let us define P∗∆,W ∈ P∆ (U) as the following:

P∗∆,W ∈ arg min
P∈P∆(U)

|P−W |1 .

Note that lim∆→∞ P∗∆,W → W . Thus in step 2 of UNIV-DEC-LP
(
G∆,n, {Hj}, {sj}

)
,

when P = P∗∆,W , with very high probability u will be the optimal solution to LP-

PRIMAL
(
G, {− log P(a)}, {Hj}, {sj}

)
.

Theorem 3.5.2. For sufficiently large but fixed ∆, the family of code construc-

tions ECOG
(
G∆,n, {Hj}, {sj}

)
exhibits exponential error probability decay in n under

UNIV-DEC-LP
(
G∆,n, {Hj}, {sj}

)
decoding.

Proof. Let us define the events

E1 �
{
Nbad (U) ≥ n

α

∆ + 1

}
(3.65)

E2 � {h (Pũ) ≤ h (PU) for some ũ #= U where Hũ = HU} . (3.66)

Note that the error event E for UNIV-DEC-LP
(
G∆,n, {Hj}, {sj}

)
can be expressed
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as E ⊆ E1 ∪ E2. Thus we have that

P (E) ≤ P (E1 ∪ E2)

≤ P (E1) + P (E2) .

Let us define the event

E(U j, β, j) =
{
∃ũ ∈ Co

(
Hj, sj

)
\ uj s.t. Hjũ = Hjuj,

D
(
Pũ‖P∗∆,W

)
+ h (Pũ) ≤ D

(
Puj
‖P∗∆,W

)
+ h

(
Puj

)
+ β

}

and note that the indicator variable 1{E(Uj ,β,j)} has the property that

p1
∆ � E

{
1{E(Uj ,β,j)}

}
= P

(
E(U j, β, j)

)
≤ 2−∆[Er(Ra−β,W )−ν∆]. (3.67)

where ν∆ → 0 in (3.67) follows because P∗∆,W → W . So we have

Nbad (U) =
∑
j∈A

1{E(Uj ,β,j)},

E[Nbad (U)] = np1
∆
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Note that for any 0 < β < R−Ra we define p2
∆ and note that it satisfies

p2
∆ =

α

∆ + 1

=
1

∆ + 1

(
2ρ− λ2(G)

∆

)

=
1

∆ + 1

(
2ρ− 2

√
∆− 1

∆

)

≥ 1

∆ + 1

(
ρ′ − 2√

∆

)

=
1

∆ + 1

(
δB

1 + δB/δA + γ̄/β
− 2√

∆

)

=
1

∆ + 1

(
δB

1 + δB/δA + log(∆)/β
− 2√

∆

)

= Θ

(
1

∆ log ∆

)

because λ2(G) = 2
√

∆− 1. Note that our condition for LP decoding success is

Nbad (u) ≤ n
α

∆ + 1

= np2
∆

So for sufficiently large ∆, we have p2
∆ > p1

∆. Combining this with how the random

variables
{
1{E(Uj ,β,j)}

}
j∈A

are i.i.d. because G is bipartite, we have

P (E1) = P
(
Nbad (U) > np2

∆

)
= 2n[o(n)]P

(
Nbad (U) = np2

∆

)
≤ 2−n[D(p2

∆‖p1
∆)−o(n)].

Note that even if Ec
1 occurs, an error can still occur of there is another ũ #= u

with smaller empirical entroy. This corresponds to event E2. Characterizing E2 is

straightforward because by Section 3.4.3 our constituent codes are good:

P (E2) ≤ 2−NEr(Ra−ν2
∆,W)

where ν2
∆ → 0 as ∆→∞.
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3.6 Iterative Decoding Decoding Methods with Lin-

ear Complexity

Here we will be interested in using iterative decoding to solve a provably good ap-

proximation to the decoding problem (3.10) with linear complexity when Co (H, s)

is specified in a codes on graphs description COG
(
G, {Hj}, {sj}

)
. This approach

is inspired by the work of Barg and Zémor [BZ02], which addressed approximations

to ML decoding over the binary symmetric channel. Here we will consider universal

decoding in multiterminal settings over non-binary alphabets.

Let u ∈ {0, 1}N be the true sequence that has been mapped to s ∈ {0, 1}M according

to (3.5). Before we describe our decoding algorithm, we present two subcomponents.

Let us define

dME (H, s) = arg min
ũ∈Co(H,s)

h (Pũ) (3.68)

dMD (H, s, u′) = arg min
ũ∈Co(H,s)

wh (ũ + u′) (3.69)

φ = φ({Hj}) = min
j∈V

1

2
dmin(Hj) (3.70)

λ = λ2(G) (3.71)

Technically speaking there might be more than one solution to each of the top two

above optimization problems so we say that the output of the functions in such a case

is any optimal solution. Our algorithm contains an iteration counter variable i ∈ Z, a

fixed point detection variable FP ∈ {0, 1}, a set variable V ′ ⊂ V which is either A or

B, a state variable û ∈ UN which is the current iteration’s estimate of u, and a state

variable û′ ∈ UN which is the previous iteration’s estimate of u. For any 0 < α < 1

our decoder proceeds as follows:
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UNIV-DEC-ITER
(
G, {Hj}, {sj}

)
0. Initialize: i

.
= 0, FP

.
= 0, and V ′

.
= A.

1. Set ûj
.
= dME

(
Hj, sj

)
for each j ∈ V ′.

2. while i ≤ log(αn(φ−λ
∆ ))

log(2−α)
and FP = 0 do

3. Set V ′
.
= V \ V ′ and û′

.
= û.

4. Set ûj
.
= dMD

(
Hj, sj, û

′
j

)
for each j ∈ V ′.

5. Set i
.
= i + 1.

6. Set FP
.
= 1{û′=û}.

7. end while

8. return û

Let us consider the ECOG
(
G∆,n, {Hj}, {sj}

)
setting and performing UNIV-DEC-

ITER
(
G∆,n, {Hj}, {sj}

)
. Because ∆ is fixed and does not vary with n, the complexity

of performing (3.68) and (3.69) is a fixed constant. Furthermore, note that because

the graph is bipartite and V ′ is either A or B, each instance of dME

(
Hj, sj

)
for j ∈ V ′

can be done in parallel and thus the overall complexity of performing step 1 is O(N).

Analogously, the same holds true for dMD

(
Hj, sj, û

′
j

)
for j ∈ V ′ and so 4 also has

O(N) complexity.

3.6.1 Error Probability

Now we consider the error probability associated with this decoder. Before doing so

the following lemma will come in handy.

Lemma 3.6.1. [Z0́1, Lemma 5] Suppose φ ≥ 3
2
λ2(G). Let A′ ⊆ A be such that

|A′| ≤ αn

(
φ− λ

∆

)
(3.72)

where α < 1. Suppose B′ ⊆ B and Y ⊂ E satisfy

1) every e ∈ Y has an endpoint in A′.

2) every j ∈ B′ satisfies |Γ(j) ∩ Y | ≥ φ.
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Then |B′| ≤ 1
2−α

|A′|.

This lemma states provided ∆ is large enough so that the condition φ ≥ 3
2
λ2(G)

is met, then for any point in the while loop of the decoding algorithm we define the

‘survivor’ nodes in V ′ as

TV ′ (u, û) =
{
j ∈ V ′ s.t. wh

(
uj + ûj

)
≥ φ

}
(3.73)

then the algorithm exhibits a contraction property and will converge to u in a loga-

rithmic number of steps (which is upper-bounded by the quantity on the right-hand

side of the inequality in step 2 of UNIV-DEC-ITER
(
G∆,n, {Hj}, {sj}

)
). Thus we

have

Corollary 3.6.2. If the original number of survivor nodes

TA(u) �
{
j ∈ A s.t. dME

(
Hj, sj

)
#= uj

}

satisfies |TA(u)| ≤ n
(
φ−λ

∆

)
then UNIV-DEC-ITER

(
G∆,n, {Hj}, {sj}

)
successfully

decodes u.

That the overall decoding complexity is O(N) follows from using a circuit of size

O(N logN) and depth O(logN), as discussed in [SS96, BZ02]. We are now in position

to claim exponential error probability decay:

Theorem 3.6.3. For sufficiently large but fixed ∆, the family of code construc-

tions ECOG
(
G∆,n, {Hj}, {sj}

)
exhibits exponential error probability decay in n under

UNIV-DEC-ITER
(
G∆,n, {Hj}, {sj}

)
decoding.

Proof. For large enough ∆ the condition φ ≥ 3
2
λ2(G) in Lemma 3.6.1 is surely satisfied

- because when the {hj}j∈V are universally good codes, φ grows linearly in ∆ and

λ2(G) = O(
√

∆). Let us define the event

E(U j, j) =
{
∃ũ ∈ Co

(
Hj, sj

)
\ U j s.t. Hjũ = HjU j,

h (Pũ) ≤ h
(
PUj

)}
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and note that the indicator variable 1{E(Uj ,β,j)} has the property that

p1
∆ � E

{
1{E(Uj ,j)}

}
= P

(
E(U j, j)

)
≤ 2−∆Er(Ra−ε∆,W ).

Furthermore, the random variables
{
1{E(Uj ,j)}

}
j∈A

are i.i.d. because G is bipartite

and U is memoryless. So we have

Nbad (U) � |TA(u)| =
∑
j∈A

1{E(Uj ,β,j)},

E[Nbad (U)] = np1
∆

Now by defining p2
∆ as

p2
∆ = α

(
φ

∆
− λ

∆

)

= α

(
φ

∆
− 2

√
∆− 1

∆

)

> α

(
φ

∆
− 2

√
∆

∆

)

= α

(
φ

∆
− 2√

∆

)

we have that since φ is linear in ∆, for sufficiently large ∆, p2
∆ > p1

∆ and thus

Pe ≤ P
(
Nbad (U) > np2

∆

)
= 2n[o(n)]P

(
Nbad (U) = np2

∆

)
≤ 2−n[D(p2

∆‖p1
∆)−o(n)].

3.7 Universal Decoding in Multiterminal Settings

In this section we consider universal decoding for a pair of discrete i.i.d. sources

(U1, U2) ∈ U = U1×U2 drawn according to a joint probability distributionW ∈ P (U).

For k ∈ {1, 2} we define Qk = |Uk| = 2tk and without loss of generality assume

Uk = {0, 1, . . . , Qk − 1} . For k ∈ {1, 2} we consider the case where a linear mapping
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Hk:

Hk =




−Hk
1
′−

−Hk
2
′−

...

−Hk
Mk

′−




: Uk
N → Uk

Mk

is used over F2tk to map u ∈ UN to s ∈ UMk via

sk = Hku (3.74)

where Mk < N . We will denote the rates as

R1 = t1
M1

N
(3.75)

R2 = t2
M2

N
(3.76)

The decoder knows that

u �
(
(u1

1, u
2
1), (u

1
2, u

2
2) . . . (u

1
N , u

2
N)

)
∈ UN

must be consistent with

s � (s1, s2),

in other words it must lie in the coset

Co (H, s) � Co
(
H1, H2, s1, s2

)
�

{
u
∣∣ H1u1 = s1, H2u2 = s2

}
, (3.77)

and selects û as the ‘best’ coset member (in a universal sense). This encompasses two

settings:

a) Fixed-to-fixed length near-lossless Slepian-Wolf data compression, where u is

identified as the sourceword and s is the syndrome, the output of the compres-

sion operation.
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b) A multiple access channel where x1 ∈ U1 and x2 ∈ U2 are mapped to

y =
(
(y1

1, y
2
1), (y

1
2, y

2
2) . . . (y

1
N , y

2
N)

)
∈ UN

according to

(
yk = xk ⊕ uk

)
k=1,2

By using linear codes Ck for xk, and identifying the parity check matrix Hk with

Ck as

Ck =
{
x : Hkx = 0

}
, (3.78)

then we have that a sufficient statistic for decoding is the pair

(
Hkyk = Hkuk = sk

)
k=1,2

Successfully decoding for u is equivalent to successfully decoding for the trans-

mitted codeword xk:

x̂k = ûk ⊕ yk.

We assume that the rate pair (R1, R2) is achievable [SW73]:

R1 ≥ H(U1|U2) (3.79a)

R2 ≥ H(U2|U1) (3.79b)

R1 + R2 ≥ H(U1, U2) (3.79c)
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As discussed in [Csi82], linear code pairs still suffice to attain all achievable rates and

can universally attain the same error exponent Er (R1, R2,W ) given by

R3 � R1 + R2 (3.80)

E1
r (R,W ) � min

P∈PN (U)
D (P‖W ) +

∣∣R− h
(
PU1|U2|PU2

)∣∣+ (3.81)

E2
r (R,W ) � min

P∈PN (U)
D (P‖W ) +

∣∣R− h
(
PU2|U1|PU1

)∣∣+ (3.82)

E3
r (R,W ) � min

P∈PN (U)
D (P‖W ) + |R− h (P)|+ (3.83)

Er (R1, R2,W ) � min
i∈{1,2,3}

Ei
r (Ri,W ) (3.84)

lim inf
N→∞

− 1

N
logPML

e (N) ≥ Er (R1, R2,W ) ,

under the minimum-entropy decoding rule

û ∈ arg min
u∈Co(H,s)

h (Pu) . (3.85)

Note that Er (R1, R2,W ) > 0 for all achievable rate pairs (R1, R2).

3.7.1 Universally Good Code Pairs

Csiszár’s lemma specifying good encoders [Csi82, Sec. III] illustrates the existence

of pairs of linear encoders
(
Hk : UN

k → UMk
)
k=1,2

such that for any joint type P ∈
PN (U2) with the definitions

NH1,H2 (P) �

∣∣∣∣∣∣∣∣∣




(u ∈ U
∣∣∣∣∣

H1u1 = H1ũ1

H2u2 = H2ũ2

Pu1,ũ1,u2,ũ2 = P

for some (ũ1, ũ1) #= (u2, u2)




∣∣∣∣∣∣∣∣∣
, (3.86)

P i
N

(
U2

)
=




P = Pu1,ũ1,u2,ũ2 ∈ PN

(
U2

) ∣∣∣∣∣



ũ1 #= u1, ũ2 = u2 i = 1

ũ1 = u1, ũ2 #= u2 i = 2

ũ1 #= u1, ũ2 #= u2 i = 3




(3.87)
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for i ∈ {1, 2, 3} with R3 � R1 + R2, every joint type P = Pu1,ũ1,u2,ũ2 ∈ P i
N (U2)

satisfies:

a) NH (P) ≤ 2−N(Ri−h(P)−δN ) (3.88)

b) if h
(
PU1−Ũ1,U2−Ũ2

)
≤ Ri − δN then NH (P) = 0 (3.89)

where δN → 0 as N → ∞. We will denote such code pairs as universally good.

Note that the bound (3.88) can be strengthened to:

NH1,H2 (P) ≤ 2−N(Ri−h(P)−δN )

= 2N(h(PU1,U2)−(Ri−h(PŨ1,Ũ2|U1,U2 |PU1,U2)−δN))

⇒ NH1,H2 (P) ≤ 2
N

“
h(PU1,U2)−|Ri−h(PŨ1,Ũ2|U1,U2 |PU1,U2)−δN |+

”
(3.90)

≤




2
N

h
h(PU1,U2)−|R1−h(PŨ1|U2 |P ˜

U2)−δN |+
i

i = 1

2
N

h
h(PU1,U2)−|R2−h(PŨ2|U1 |P ˜

U1)−δN |+
i

i = 2

2
N

h
h(PU1,U2)−|R1+R2−h(PŨ1,Ũ2|U1,U2 |PU1,U2)−δN |+

i
i = 3

(3.91)

where (3.90) follows because by the definition ofNH1,H2 (P),NH1,H2 (P) ≤ |T (PU1,U2)| ≤
2Nh(PU1,U2) and (3.91) follows from (3.87).

Distance Properties of Universally Good Code Pairs

By defining the ordered pair (0, 0) to correspond to 0 in the usual hamming weight

definition, we have that for u ∈ UN = {U1 × U2}N ,

wh (u) =
N∑
i=1

1{(u1
i ,u

2
i ) �=(0,0)}.

We define the minimium distance here as

dmin(H
1, H2) � min

u∈Co((H1,H2),0)\0
wh (u) .
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Without much effort it follows that

dmin(H
1, H2) = min

k∈{1,2}
dmin(H

K).

Note that from (3.89) that universally good code pairs will satisfy that condition

for each k ∈ {1, 2}, dmin(H
K) will lie on the Gilbert-Varshamov bound and thus

dmin(H
1, H2) will also grow linearly in N .

(β,E) Robust Code Pairs

As in the point-to-point case, we generalize the notion of error exponents for uni-

versally good code pairs. This will be useful in the error probability analysis for

multitierminal LP decoding to be discussed later. Consider the events

Euniv
β =

{
∃ (ũ1, ũ2) #= (u1, u2)

∣∣∣
(ũ1, ũ2) ∈ Co

(
(H ,H2), (s1, s2)

)
,

h
(
Pũ1,ũ2

)
≤ h

(
Pu1,u2

)
+ β

}
EML
β =

{
∃ (ũ1, ũ2) #= (u1, u2)

∣∣∣
(ũ1, ũ2) ∈ Co

(
(H ,H2), (s1, s2)

)
,

D
(
Pũ1,ũ2‖W

)
+ h

(
Pũ1,ũ2

)
≤ D

(
Pu1,u2‖W

)
+ h

(
Pu1,u2

)
+ β

}

where β ≥ 0. We say that the pair (H1, H2) is (β,E) universally robust if

− 1

N
logP

(
Euniv
β

)
≥ E.

and (β,E) ML-robust if

− 1

N
logP

(
EML
β

)
≥ E.

For i ∈ {1, 2, 3}, by defining the sets

T univ
β,i �

{
P ∈ P i

N

(
U2

)
| h

(
PŨ1,Ũ2

)
≤ h (PU1,U2) + β

}
T ML
β,i �

{
P ∈ P i

N

(
U2

)
| D

(
PŨ1,Ũ2‖W

)
+ h

(
PŨ1,Ũ2

)
≤ D (PU1,U2‖W ) + h (PU1,U2) + β

}
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we have from direct application of the analysis in Sections 3.2.3 and 3.2.4 that uni-

versally good code pairs are both (β,E) universally robust and (β,E) ML-robust for

any E satisfying

0 < E < Er (R1, R2, β,W ) � min
i=1,2,3

Ei
r (Ri − β,W ) .

Note that whenever {Ri−β}i=1,2,3 all lie within the Slepian-Wolf region thenEr (R1, R2, β,W ) >

0.

3.7.2 Code Pairs On Graphs

Here we consider the codes on graphs approach applied in the previous section to

multiterminal settings. Here we would like to consider code constructions that employ

one graph G = (V,E) to specify the whole multiterminal system in the following way:

• Each j ∈ V is associated with a code pair (C1
j , C

2
j ) and a syndrome pair (s1, s2).

• Each edge e ∈ E is associated with a pair of states ue = (u1
e, u

2
e).

• Each local code pair (C1
j , C

2
j ) enforces the constraint that

(
uk
j ∈ Co

(
Hk

j , s
k
j

))
k=1,2

⇔ uj ∈ Co
(
(H1

j , H
2
j ), (s

1
j , s

2
j)
)
. (3.92)

The coset pair Co ((H1, H2), (s1, s2)) can be expressed as

Co
(
(H1, H2), (s1, s2)

)
=

{
u
∣∣ uj ∈ Co

(
(H1

j , H
2
j ), (s

1
j , s

2
j)
)
, ∀ j ∈ V

}
. (3.93)

For a particular graph G = (V,E) we denote COG
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
as the

way in which we specify Co ((H1, H2), (s1, s2)) in terms of (3.93).

Parity-Check Representation

In some situations, universal decoding might need to be performed when the structure

of the codes is out of the control of the designer of the decoding algorithm - and
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Figure 3-4: Graphical representation of Co ((H1, H2), (s1, s2))

thus the expander graph construction with universally good constituent code pairs

does not apply. One example of such a scenario is network coding for correlated

sources [HMEK04], where nodes throughout a network locally perform random linear

operations and the coefficients are handed to the decoder. In such a setting, we can

consider without loss of generality the parity-check representation (as discussed in

Section 3.4.1) for each individual source is provided, and thus we have the information

G1, G2, {(H1
j , H

2
j )}, {(s1

j , s
2
j)}. In this case we define G to be {G1, G2} and still use

the terminology COG
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
.

Expander Code on Graph Pairs

From here on, unless specified otherwise, we assume that we are working with struc-

tured encoders with a single graph G that is an expander, i.e. G∆,N . For j ∈ A,

we let each code pair (Hk)k=1,2 with rates (Ra,k)k=1,2 be universally robust and we

assume they are achievable, i.e. they satisfy (3.79). For j ∈ B we let each code pair
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(Hk)k=1,2 with rates (Ra,k)k=1,2 also be universally robust, where

(Rb,k = Rk −Ra,k)k=1,2 .

We adhere to denoting such code pairs on graphs as ECOG
(
G∆,n, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
.

3.7.3 Universal Goodness of Bipartite Graph Code Pairs

Here we consider how a bipartite graph code of the form

ECOG
(
G∆,n, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
performs under minimum-entropy decoding, as

∆ grows. Let N = n∆. For i ∈ {1, 2, 3}, let P ∈ P i
N (U2) correspond to the

joint type of any length-N 4 − tuple (u1, ũ1, u2, ũ2) satisfying {Hkuk = Hkũk}k=1,2.

Define Pj ∈ P i
∆ (U2) to correspond to the joint type of any local length-∆ 4-tuple

(u1
j , ũ

1
j , u

2
j , ũ

2
j) satisfying {Hk

j u
k = Hk

j ũ
k}k=1,2. Then by defininig Ra,3 = Ra,1 + Ra,2

we have:

NH1,H2 (P) ≤
∑

1
n

P
j∈A Pj=P

∏
j∈A
NH1

j ,H
2
j

(
Pj

)

≤
∑

1
n

P
j∈A Pj=P

∏
j∈A

2−∆(Ra,i−h(P
j)−δ∆) (3.94)

≤ 2−N(Ra,i−h(P)−ε′∆) (3.95)

where ε′∆ → 0 as ∆ → ∞, (3.94) follows from (3.88), and (3.95) follows from

Lemma 3.4.3. Thus it follows that the pair (H1, H2) becomes universally good for

large ∆, when thought of having rate R′i = Ra,i − ε′∆.

Encoding

Encoding for the compression situation is done by applying applying {skj = Hk
j u

k
j}k=1,2

for all j ∈ V . For the channel coding scenario, the encoding done is the same as

discussed in [SS96, BZ02].
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3.7.4 Decoding Methods

LP Decoding Methods

The LP decoding algorithm for the multiterminal setting is almost completely a direct

application of Section 3.5. We consider a codes on graphs representation We first

construct indicator variables Ia,e ∈ {0, 1}, for a ∈ U = (U1 × U2), e ∈ V , such that

Ia,e = 1{ue=a}. Thus Ia,e specifies u ∈ Un as

u1 = µ1(I) =
∑

(a1,a2)∈U

a1I(a1,a2),e

u2 = µ2(I) =
∑

(a1,a2)∈U

a2I(a1,a2),e.

When COG
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
corresponds to G which is a single graph,

the coset pair Co ((H1, H2), (s1, s2)) is well-defined from (3.77) and polytope

B̃
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
is well-defined from direct application of the definitions

in Section 3.5.2.

When COG
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
corresponds to G = {G1, G2}, then the

polytope B̃
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
is easily defined as

B̃
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
=

{
I | µ1(I) ∈ B̃

(
G, {H1

j }, {s1
j}
)
,

µ2(I) ∈ B̃
(
G, {H2

j }, {s2
j}
)}

where B̃
(
G, {Hj}, {sj}

)
is discussed in Section 3.5.2 and given by (3.51a)- (3.51c).

The formulation of the LP relaxation LP-PRIMAL
(
G, {γa}, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
for this setting follows directly from the definition of Co

(
(H1

j , H
2
j ), (s

1
j , s

2
j)
)
. We can

thus consider the following universal decoding algorithm
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UNIV-DEC-LP
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
0. Set

(
u1∗, u2∗) .

=
(
ũ1, ũ2

)
for any

(
ũ1, ũ2

)
satisfying Pũ1,ũ2 = U.

1. For each P ∈ P∆ (U) do

2. Execute LP-PRIMAL
(
G, {− log P(a)}, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
.

3. If the optimal solution I∗ to LP-PRIMAL
(
G, {− log P(a)}, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
is integral and h

(
Pµ1(I∗),µ1(I∗)

)
≤ h

(
Pu1∗,u2∗

)
then set

(
u1∗, u2∗) .

= (µ1(I∗), µ1(I∗)).

4. end for

5. return
(
u1∗, u2∗)

By defining

0 < δA = min
j∈A

dmin(H
1
j , H

2
j )

∆

0 < δB = min
j∈B

dmin(H
1
j , H

2
j )

∆

p1
∆ = 2−∆Er(Ra,1,Ra,2,β,W )

p2
∆ =

1

∆ + 1

(
δB

1 + δB/δA + log(∆)/β
− 2√

∆

)

where β > 0 is such that Er (Ra,1, Ra,2, β,W ) > 0, we have from Theorem 3.5.1

that for sufficiently large but fixed ∆, the error probability Pe of UNIV-DEC-

LP
(
G∆,n, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
satisfies

Pe ≤ 2−n[D(p1
∆‖p2

∆)−o(n)].

Iterative Decoding Methods

The iterative expander decoding algorithm for the multiterminal setting is almost

completely a direct application of Section 3.6. Define

dME

(
(H1, H2), (s1, s2)

)
= arg min

ũ∈Co((H1,H2),(s1,s2))
h (Pũ)

dMD

(
(H1, H2), (s1, s2), u′

)
= arg min

ũ∈Co((H1,H2),(s1,s2))
wh (ũ + u′)

φ = φ({Hj}) = min
j∈V

1

2
dmin(H

1
j , H

2
j )

λ = λ2(G)
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and consider for any 0 < α < 1 the algorithm:

UNIV-DEC-ITER
(
G, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
0. Initialize: i

.
= 0, FP

.
= 0, and V ′

.
= A.

1. Set ûj
.
= dME ((H1, H2), (s1, s2)) for each j ∈ V ′.

2. while i ≤ log(αn(φ−λ
∆ ))

log(2−α)
and FP = 0 do

3. Set V ′
.
= V \ V ′ and û′

.
= û.

4. Set ûj
.
= dMD

(
(H1, H2), (s1, s2), û′j

)
for each j ∈ V ′.

5. Set i
.
= i + 1.

6. Set FP
.
= 1{û′=û}.

7. end while

8. return û

By defining

p1
∆ = 2−∆Er(Ra,1,Ra,2,W )

p2
∆ = α

(
φ

∆
− 2√

∆

)

we have from Corollary 3.6.2 that for sufficiently large ∆ the error probability Pe of

UNIV-DEC-ITER
(
G∆,n, {(H1

j , H
2
j )}, {(s1

j , s
2
j)}

)
satisfies

Pe ≤ 2−n[D(p1
∆‖p2

∆)−o(n)].
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Chapter 4

Reasons and Practical Methods for

Coding on the Deterministic

Broadcast Channel

Background: Several notions of duality between the Slepian-Wolf, multiple ac-

cess, and deterministic broadcast channel have been previously established. Rate-

splitting techniques to pipeline the decoding process for attaining any set of achiev-

able rates have been previously established for Slepian-Wolf and multiple access.

Our contribution: Here we motivate the consideration of deterministic broadcast

channels with wireless interference management examples. We next extend this

‘triangle of duality’ by illustrating a rate-splitting approach for pipelining the en-

coding process to attaining any set of achievable rates for deterministic broadcast.

We also illustrate that a practical ‘enumerative source coding’ approach can apply

to first-stage vertex coding for any deterministic broadcast problem. We also show

that for degraded deterministic broadcast channels, this enumerative approach can

be extended for encoding with side information and decoding to provide a complete

solution for all achievable rates. For two-receiver deterministic broadcast settings

where encoding for one receiver imposes constraints on the alphabet of other re-

ceivers, we characterize the optimal input probability distribution and illustrate

that for vertex rates on the boundary of the capacity region, the second stage of

pipelined encoding has an ‘erasure channel’ interpretation. From this interpretation

we dualize the low-complexity erasure correction ‘LT codes’ and develop capacity-

achieving codes for our problem. Such settings include our motivating wireless

examples as well as the Blackwell channel - the simplest non-trivial deterministic

broadcast channel.
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The structural similarity between the capacity regions and random coding achiev-

able rate strategies for the Slepian-Wolf problem [SW73] and the deterministic broad-

cast channel problem [Mar77, Pin78] has been illustrated in [Cov98, sec. III] (see also

Figure 4-1). Duality connections between the capacity regions of the discrete multiple

access channel [Lia72, Ahl71] and the deterministic broadcast have been recently dis-

cussed in [JVG03]. Also, the error probability analysis for jointly typical decoding in

the discrete multiple access channel is dual to that of the Slepian-Wolf problem [CT91,

p. 416-418]. Indeed, a more precise notion of duality between these two problems is

mentioned in [Csi82]. Different aspects of these dualities have also been explored in

[DFK04, SCX04]. This suggests the existence of a strong relationship amongst these

three canonical information theory problems.

Practically speaking, the decoding process is one of the biggest challenges in

achieving rates near the boundary of the achievable region in the Slepian-Wolf prob-

lem and the discrete multiple access channel, as a single decoder must jointly de-

code messages from multiple senders. Analogously, the encoding process represents

a formidable challenge for the deterministic broadcast channel, as one encoder must

jointly incorporate multiple messages into a single channel codeword (see Figure 4-2).

Recently, splitting techniques have been discussed as a way to significantly reduce

the complexity of decoding in the discrete multiple access [GRUW01] and Slepian-

Wolf problems ([RU97], Chapter 2), for any achievable rate - not just a ‘vertex’ or

‘corner point’. Paralleling the source coding example discussed at length in Sec-

tion 2.2, this technique decomposes the problem of jointly decoding M users into a

set of 2M − 1 pipelined single-user channel decoding with side information.

Motivated by the strong relationship between the Slepian-Wolf, deterministic

broadcast, and discrete multiple access channel problems along with the splitting

techniques for Slepian-Wolf and multiple access, we consider a rate-splitting tech-

nique for deterministic broadcast. The goal here is to take an arbitrary point in the

M -receiver deterministic broadcast channel achievable rate region and transform it,

by rate-splitting each source at most once, to a vertex of another 2M − 1-receiver

deterministic broadcast channel achievable region.
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Deterministic broadcast is of interest in part because it gives a very simple model

of interference in wireless scenarios. We provide a couple of multiple antenna wireless

broadcast examples to illustrate this. In this chapter we discuss practical strategies

to attain all achievable rates. We first consider techniques that are applicable to

any instance of an M -receiver deterministic broadcast problem. These include rate-

splitting, and an ‘Enumerative Source Coding’ [Cov73] approach for first-stage vertex

encoding. Then we discuss specific examples of two-receiver problems (including the

wireless examples as well as the Blackwell channel) that relate to coding for the

erasure channel. We show how in these settings, dualizing the ‘Luby Transform’

[Lub02] code construction and encoding/decoding algorithms applies to second-stage

vertex encoding for these problems. Together the general-purpose first-stage vertex

encoding approach and the second-stage ‘Luby Transform’ dualization approach give

low-complexity, capacity-achieving deterministic broadcast codes for these specific

examples. These are to our knowledge the first such codes for any deterministic

broadcast channel in the literature.

4.1 Background on the Deterministic Broadcast

Channel

The deterministic broadcast channel, illustrated in Figure 4-2, has one sender and M

receivers. Let mj ∈
{
1, . . . , 2nRj

}
denote the message for receiver j ∈ {1, . . . ,M}.

The sender combines the M independent messages {mj}Mj=1 into a single length-n

channel input x = (x1, . . . , xn)
′ ∈ X n. At receiver j each symbol yji ∈ Yj is a deter-

ministic function of xi, i.e. yji = fj(xi). The jth decoder attempts to reconstruct mj,

i.e. m̂j = dj(y
j). A memoryless probability distribution P (x) on X, combined with

f1, . . . , fM , induces a memoryless joint distribution P (y1, . . . , yM) on {Y 1, . . . , Y M}.
For a fixed memoryless P (x), the set of all achievable rates is given by [Pin78, Mar77]

R [P (x); f1, . . . , fM ] =

{
R ∈ RM

+

∣∣∣ ∑
i∈S

Ri < H (Y (S)) ∀ S ⊆ {1 . . .M}
}

(4.1)
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Figure 4-1: The dual relationship between the deterministic broadcast and Slepian-
Wolf problems
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DM
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m̂2

m̂M

.........

Figure 4-2: Basic Model for the Deterministic Broadcast Channel.

where Y (S) = {Y j, j ∈ S}. The similarity between R [P (x); f1, . . . , fM ] and the

Slepian-Wolf achievable rate region is illustrated in Figure 4-1. The full capacity

region of the deterministic broadcast channel is given by

R [f1, . . . , fM ] = cl


CH


 ⋃

P (x)∈P(X )

R [P (x); f1, . . . , fM ]






where cl denotes closure and CH denotes convex hull.

4.1.1 Binning as an Achievable Strategy

As discussed in [Cov98, sec. III], the achievable rate strategies for the Slepian-Wolf

and deterministic broadcast problems allow for one problem’s encoder to mimic the
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Figure 4-3: Joint encoding with binning for the deterministic broadcast channel.

other’s decoder, and vice versa. We here describe the code design used in the achiev-

ability proof for the deterministic broadcast capacity region. Given a fixed distribu-

tion P (x) on the channel input X, let P (y1, . . . , yM) be the distribution that results

from setting {Y j = fj(X)}Mj=1. We place each Y j ∈ Yn
j uniformly and randomly into

one of 2nRj bins and use dj(Y
j) to denote the resulting bin index. The encoder first

maps indices (m1, . . . ,mM) to any tuple (Y 1, . . . , Y M) such that (Y 1, . . . , Y M) are

jointly typical and dj(Y
j) = mj for each j. The encoder then maps (Y 1, . . . , Y M) to

a corresponding channel input by chosing xi ∈ ∩M
j=1f

−1
j (yji ) for each i ∈ {1, . . . , n}.

The jth decoder receives Y j and decodes to message dj(Y
j). Since there is no noise in

the system, communication fails if and only if the encoder fails. Figure 4-3 illustrates

this encoding strategy.

4.1.2 Vertices: Successive Encoding

If we consider an encoding strategy with a memoryless probability distribution P (x),

then the set of achievable rates R [P (x); f1, . . . , fM ] has ‘vertices’ or ‘corner points’

associated with expanding H(Y 1, . . . , Y M) into M terms by successive applications of

the chain rule for entropy and assigning to each rate the unique corresponding term

in the expansion. Transmitting at such rates allows for the joint search over all users’
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Figure 4-4: Pipelined encoder for communicating at a vertex rate for the deterministic
broadcast channel.

bins to be done successively. For example, consider communicating at the vertex rate

(R1, R2, . . . , RM) =
(
H(Y 1), H(Y 2|Y 1), . . . , H(Y M |Y 1 . . . Y M−1)

)
:

• Encoding message m1 at rate R1 = H(Y 1) can be done by searching in the bin

of message m1 for a typical y1 sequence. There are 2nR1 such bins, one for each

possible value of m1, and there are asymptotically 2nH(Y 1) typical y1 sequences.

• Consider any j ∈ {2, . . . ,M}. After successful choice of channel outputs

y1, . . . , yj−1 to describe m1, . . . ,mj−1, encoding message mj at rate

Rj = H(Y j|Y 1 . . . Y j−1) can be done by searching in bin mj for a sequence yj

that allows for (y1, . . . , yj) to be jointly typical. There are 2nRj such bins, and

there are asymptotically 2nH(Y j |Y 1...Y j−1) sequences yj that allow for (y1, . . . , yj)

to be jointly typical.

Figure 4-4 illustrates the successive encoding mechanism.

4.1.3 Practical Challenges for the Deterministic Broadcast

Channel

Deterministic broadcast channel code design presents a variety of challenges that differ

from other practically solvable multi-terminal binning problems (such as Slepian-Wolf
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[SW73]).

Shaping

First, the optimal input to the channel P (x) need not be uniform. Thus, a shaping

code is needed to map uniform message bits to channel input symbols with often non-

uniform probabilities. This operation is in some sense the dual of lossless compression,

which takes non-equiprobable source symbols and maps them to uniform compressed

bits. Gallager [Gal68, pp. 208-209] discusses one encoding approach using linear

codes, but he also notes that the decoding process is prohibitively complex.

Binning

As discussed in Section 4.1.1, the binning strategy required for code design maps the

messages {mj}Mj=1 to channel outputs
{
yj
}M

j=1
for which each yj falls in bin mj and{

yj
}M

j=1
is jointly typical. Unfortunately, for all achievable rates, with high proba-

bility there will be exponentially many such jointly typical codewords. The possi-

bility of finding multiple jointly typical solutions represents an important challenge

in designing low complexity binning codes for deterministic broadcast channels. In

particular, traditional iterative coding algorithms may never converge if the solution

is not unique.

4.2 Wireless Motivations for Interest in Practical

Channel Codes for Deterministic Broadcast

One major issue in wireless networks is interference. At a high level, we understand

how to deal with noise relatively well, but our understanding of the interaction be-

tween multiple transmitters and receivers is still somewhat limited. As a result, most

network designs attempt to suppress these interactions by making the different users

orthogonal or performing successive cancellation. When properly managed, these

interactions can actually result in a net benefit to the system.
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Rx 2Tx 1 Rx 1 Tx 2

High Data Rate Connection

Figure 4-5: A wireless downlink communication scenario. One user, Rx 1, receives
signals from both transmitters Tx 1 and Tx 2. The the second user, Rx 2, receives only
the signal from the second transmitter. If the two transmitters are connected by a high
data rate link such as a land-line for terrestrial transmitters or a laser communication
link for satellites, transmitter cooperation can increase the communication rate.

Consider the wireless communication scenario shown in Figure 4-5 where two

users both receive signals from a pair of cooperating transmitters. Intuitively, the

interference to Rx 2 from Tx 1 is negligible since the signal from Tx 1 experiences much

higher path loss than Tx 2. In contrast, Rx 1 receives potentially interfering signals

from both Tx 1 and Tx 2. Similar situations can arise in wireless networks employing

multi-hop transmission as illustrated in Figure 4-6. How can we model such scenarios

to understand the effect of such interference and develop efficient communication

schemes? One approach is to consider a Gaussian broadcast channel model where the

transmitter has perfect channel side information (CSI) describing the propagation

parameters. For such models, the capacity region [WSS04] is obtained using Costa’s

idea of writing on dirty paper [Cos83].

Unfortunately, this approach requires perfect knowledge of the channel. Thus

it is not clear to what extent the so-called dirty paper coding ideas apply to non-

coherent communication or to relay networks like the one in Figure 4-6, which employ

distributed transmitter cooperation. Furthermore, even when perfect channel state

information is available, no practical coding scheme is known that achieves capacity.

Specifically, to our knowledge, the best known dirty paper coding systems are at least

a decibel away from capacity [EtB05, SLSX05]. At low signal-to-noise ratios, which

are common in certain types of wireless networks, a decibel may correspond to a
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Rx 2Rx 1

Relay 1 Relay 2

Tx 0

Figure 4-6: A wireless relay communication scenario. A single transmitter, Tx 0,
sends a message intended for two receivers Rx 1 and Rx 2 via multi-hop transmission.
The two intermediate relay nodes each decode the message, re-encode, and transmit
to the ultimate destination. Rx 1 receives potentially interfering signals from both
relays, while Rx 2 sees only the signal from Relay 2.

large fraction of the transmitted power or rate. For multi-antenna channels, the gap

to capacity may be larger.

The existence of this gap to capacity may seem surprising in light of the spectacular

success of turbo codes [BGT93], low density parity check codes (LDPCs) [Gal62], and

other codes on graphs in approaching capacity for single user channels. Intuitively,

the gap to capacity for dirty paper coding is caused by the lack of efficient codes for

the shaping/binning required in the random coding arguments for broadcast channels.

We approach the wireless network communication problem in Figures 4-5 and

4-6 from a different perspective. Since dealing with noise via coding is fairly well

understood, we focus purely on interference issues by considering a deterministic

broadcast channel. This allows us to develop clearer insights into the code design in

systems with interference.

We now consider a deterministic broadcast channel model based on Figures 4-5

and 4-6 with a pair of binary input symbols X = [X1, X2]′ and two outputs Y 1, Y 2.

Intuitively, X i corresponds to the channel input for Tx i or Relay i in Figures 4-5

and 4-6. If the two channel inputs are the same, then they are perfectly received at

both receivers. If they differ, then receiver 2 receives X2 correctly while receiver 1

suffers destructive interference and can’t determine X1. We model this scenario via
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the deterministic broadcast channel in (4.2):

if X1 = X2 then Y 1 = X1 and Y 2 = X2 (4.2a)

if X1 #= X2 then Y 1 = ∗ and Y 2 = X2 (4.2b)

where ∗ means ‘erasure’. Thus we have the following input-output relationship:

(X1, X2) Y 1 Y 2

(−1,−1) −1 −1

(−1, 1) ∗ 1

(1,−1) ∗ −1

(1, 1) 1 1

The channel in (4.2) can model a variety of physical scenarios. Perhaps the simplest

is binary phase shift keying (BPSK) with additive combining. For this model, the

channel inputs are X i = ±1 with Y 2 = X2 for the receiver without interference and

additive interference corresponding to Y 1 = X1 + X2 for the other receiver. Thus

the ∗ output in (4.2b) represents the case where X1 = −X2 resulting in a received

signal of Y 1 = 0. Equation (4.2) can also represent non-coherent modulation such

as frequency shift keying (FSK). In an FSK model, each transmitter sends either on

frequency f0 or f1 corresponding to X i = −1 or 1. If the two transmitted signals

both equal t, then both receivers see a signal on frequency ft and decode correctly.

If the two transmitted signals are opposite, the first receiver sees no interference

and decodes correctly while the second receiver observes signals on both frequencies,

corresponding to an erasure.

4.3 Complexity-Reduction Techniques for Arbitrary

Deterministic Broadcast Channels

Here we discuss complexity reduction techniques that apply to an arbitrary instance

of a deterministic broadcast problem.
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4.3.1 Rate-Splitting

We now illustrate that for a fixed memoryless distribution P (x), a rate-splitting

approach can be applied so that any rate inR [P (x); f1, . . . , fM ] can be transformed to

a vertex in anotherR
[
P (x); f̃1a, f̃1b, . . . , f̃(M−1)a, f̃(M−1)b, fM

]
, for some appropriately

defined functions
{
f̃1a, f̃1b, . . . , f̃(M−1)a, f̃(M−1)b

}
. The dominant face is given by

D [R [P (x); f1, . . . , fM ]] =

{
R ∈ R [P (x); f1, . . . , fM ]

∣∣∣ M∑
i=1

Ri = H
(
Y 1, . . . Y M

)}
.

Since any point in R [P (x); f1, . . . , fM ] is dominated (with respect to the standard

partial order on RM
+ ) by a point in D [R [P (x); f1, . . . , fM ]], we restrict our attention

to rates lying on D [R [P (x); f1, . . . , fM ]].

We now discuss the two-receiver problem where m1 ∈ {1, . . . , 2nR1}, m2 ∈ {1, . . . , 2nR2}
and (R1, R2) ∈ D [R [P (x); f1, f2]] but (R1, R2) is not a vertex. Consider the prob-

ability distribution P (y1, y2) induced by P (x) and f1, f2. The splitting operation

constructs Y 1a
i = f1a(Y

1
i ), Y 1b

i = f1b(Y
1
i ) such that (Y 1a

i , Y 1b
i ) and Y 1

i form a bijec-

tion. We again use the splitting algorithm from Section 2.2. Assuming, without loss

of generality, that Y1 = {0, 1, . . . , Q− 1}, the splitting mechanism is constructed as

follows:

f1a(y
1) = min(π(y1), T ) (4.3a)

f1b(y
1) = max(π(y1), T )− T (4.3b)

f1(y
1a, y1b) = π−1

(
y1a + y1b

)
(4.3c)

where T ∈ Y1 and π is a permutation of Y1. Such a splitting mechanism induces

a memoryless distribution P (y1a, y1b, y2) where H(Y 1a, Y 1b, Y 2) = H(Y 1, Y 2). As

discussed in Section 2.2.2, splitting according to (4.3) allows for any rate R ∈
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D [R [P (x); f1, f2]] to satisfy

R1a = H
(
Y 1a

)
(4.4a)

R2 = H
(
Y 2|Y 1a

)
(4.4b)

R1b = H
(
Y 1b|Y 1a, Y 2

)
(4.4c)

R1 = R1a + R1b. (4.4d)

Now let us assume the splitting operation has been performed so that (4.4) holds. The

encoder takes the message m1 ∈ {1, . . . , 2nR1} and represents it as a pair of messages

m1 ∈ {1, . . . , 2nR1} (4.5a)

⇔

(m1a,m2a) ∈
(
{1, . . . , 2nR1a}, {1, . . . , 2nR1b}

)
. (4.5b)

It partitions all possible y1a sequences into 2nR1a bins, all possible y1b sequences

into 2nR1b bins, and all y2 sequences into 2nR2 bins. Encoding is done as if to con-

struct a jointly typical (y1a, y1b, y2). Note that although (R1, R2) is not a vertex

in R [P (x); f1, f2], (R1a, R1b, R2) is a vertex in R [P (x); f1a ◦ f1, f1b ◦ f1, f2]; thus the

encoding strategy described in Section 4.1.2 suffices. See Figure 4-7. The decoder

for receiver 2 observes y2 and specifies its bin number m2. Receiver 1’s decoder ob-

serves y1, performs the splitting operation to construct (y1a, y1b), and specifies the

bin numbers (m1a,m1b). Finally, the message pair (m1a,m2a) is combined to form the

message m1 by simply reversing the operation (4.5). See Figure 4-8. This approach

generalizes to M users.

Theorem 4.3.1. Any achievable rate for an arbitraryM-receiver deterministic broad-

cast channel can be attained via rate-splitting to give an equivalent (2M − 1)-receiver

deterministic broadcast channel, where each user is split at most once and successive

encoding suffices.
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Figure 4-7: Rate-splitting based encoding.
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Figure 4-8: Rate-splitting based decoding.

Since D [R [P (x); f1, . . . , fM ]] has precisely the same characterization as the dom-

inant face of the M -source Slepian-Wolf achievable rate region, the proof of the-

orem 4.3.1 follows from the analogous source-splitting results for the Slepian-Wolf

problem in Chapter 2.

4.3.2 Practical First-Stage Vertex Pipelined Encoding for

the General DBC

We now consider communicating at a vertex rate and attempt to construct the first

sequence yj in the pipeline, which has a rate given by Rj = H (Y j). We use Cover’s

enumerative source coding [Cov73], which relies on the method of types [Csi98]. De-
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fine:

M = {0, 1, . . . 2nR − 1}

Py =

({
1

n

n∑
i=1

1yi=a

}
a∈Y

)
for y ∈ Yn

Pn (Y) =
{

P ∈ P (Y) : P = Py for some y ∈ Yn
}

T (P) =
{
y ∈ Yn : Py = P

}

For a target distribution P (yj), we select type P∗nY j such that

P∗nY j ∈ arg min
P∈Pn(Y|)

∣∣P− P (yj)
∣∣
1
. (4.6)

Because Q is dense in R, P∗nY →P (yj). Moreover, since

|T (P∗nY j)| =

(
n

nP∗nY j(0) . . . nP∗nY j(|Y1| − 1)

)
(4.7)

= 2n[h(P
∗n

Y j)−o(n)]

where o(n)→ 0, we have that

1

n
log |T (P∗nY j)| → H

(
Y j

)
.

We construct a lexicographic order on yj ∈ T (P∗nY j). Any two sequences yj, ŷj ∈
T (P∗nY j) can be compared order-wise by observing the first leftmost symbol i such

that yji and ŷji differ. The order relation gives higher precedence to the sequence with

larger value in the ith symbol. For example, for the type P = (1
2
, 1

2
) with n = 6:

111000 > 110100 > 110010 > . . . > 000111.

The encoder Ej :Mj → T (P∗nY j) maps mj to the mjth lexicographically ordered se-

quence yj ∈ T (P∗nY j). Likewise, the decoderDj = E−1
j : T (P∗nY j) →Mj operates in

the reverse direction. The mapping is accomplished with low complexity by perform-
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ing combinatorial calculations and exploiting (4.7). If we consider multiplication as

a fixed cost operation, then encoding and decoding can be done in O(n) time by sav-

ing in memory, throughout the process, previously counted operations and dividing

or multiplying by at most |Y| numbers. The encoding and decoding process follows

from [Cov73].

4.4 Practical Algorithms for Specific Classes of De-

terministic Broadcast Channels

Here in this section we consider specific types of deterministic broadcast channels that

admit a low-complexity solution for coding at vertices. We will discuss an extension

of the enumerative source coding approach for vertex rates of degraded deterministic

broadcast channels that admits zero-error coding, as well as an iterative encoding

approach for binning when an erasure-style situation is present.

4.4.1 Enumerative Source Coding at Vertex Rates for De-

graded Deterministic Broadcast Channels

Here we consider degraded deterministic broadcast channels where y1 and y2 are

degraded in the sense that X → Y 2 → Y 1 forms a Markov chain. Since y1 and

y2 are functions of x, this is equivalent to saying that y1 = g(y2) for some de-

terministic function g, and thus H(Y 1|Y 2) = 0. Now consider the vertex rate

(R1, R2) = (H (Y 1) , H (Y 2|Y 1)). In this setting, as in the case of more general

degraded broadcast channels [Cov98], we can code for y1 to specify a cloud center,

and for y2 to specify satellite codewords. Since y1 can be recovered by both decoders,

we can consider extending the enumerative source coding approach discussed in Sec-

tion 4.3.2 to all stages of pipelined vertex coding. Specifically, select P∗nY 1,Y 2 according

to (4.6). We can enumeratively source code y1 from message m1 with a distribution
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P∗nY 1 induced from P∗nY 1,Y 2 . Note that for any y1 ∈ T (P∗nY 1),

∣∣{y2 :
(
y1, y2

)
∈ T (P)

}∣∣ =

∣∣T (
P∗nY 1,Y 2

)∣∣
|T (P∗nY 1)|

= 2n[H(Y 2|Y 1)−o(n)].

To begin encoding m2 into y2 given y1, the encoder next partitions the set of indices

{1 . . . n} into the sets
{
ia(y

1)
}
a∈Y1

where

ia(y
1) =

{
i : y1

i = a
}
. (4.8)

Note that for each y1 ∈ T (P∗nY 1),
{∣∣ia(y1)

∣∣}
a∈Y1

= {nP∗nY 1(a)}a∈Y1
. Consider the

induced conditional types

{
P∗nY 2|Y 1(·|a)

}
a∈Y1

=

{
P∗nY 1,Y 2(·|a)

P∗nY 1(a)

}
a∈Y1

and note that there are 2n[PY 1 (a)H(Y 2|Y 1=a)−o(n)] distinct y2
|ia(y1)

sequences such that(
y1, y2

)
∈ T (P). Thus we can represent m2 ∈

{
1 . . . 2nR2

}
as a set of messages

m2 ∈ {1, . . . , 2nR2} (4.9a)

⇔

(m2a, . . .m2a′) ∈
(
{1, . . . , 2nR2a}, . . . , {1, . . . , 2nR2a′}

)
. (4.9b)

Then for each a ∈ Y1 separately, let R2a = PY 1(a)H (Y 2|Y 1 = a) and enumeratively

source code m2a to y2
|ia(y1)

according to Section 4.3.2. Decoding of Y 2 can be done

with zero error because we are in a degraded setting where for some g, Y 1 = g(Y 2).

So the decoder for Y 2 can first recover y1 = g(y2), and from this it can recover the

indices ia(y
1). Next it can perform the enumerative decoding algorithm described in

Section 4.3.2 to map, for each a ∈ Y1, y
2
|ia(y1)

to m2a. Finally, using (4.9), {m2a}a∈Y1

can be mapped to m2. Since

R2 =
∑
a∈Y1

R2a =
∑
a∈Y1

PY 1(a)H
(
Y 2|Y 1 = a

)
= H

(
Y 2|Y 1

)
,
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this approach attains the vertex corner point (R1, R2) = (H (Y 1) , H (Y 2|Y 1)).

We note that this approach does not apply to general deterministic broadcast

channels because the side information y1 cannot always be constructed at the decoder

for y2.

4.4.2 Low-Complexity Capacity-Achieving Codes for Erasure

Encoding with Side Information

We now consider coding at vertex rates for a class of deterministic broadcast channels

that have an erasure correcting style situation at the encoder:

Lemma 4.4.1. Consider a deterministic broadcast channel specified with two re-

ceivers Y 1 and Y 2. Suppose that there exists an a∗ ∈ Y1 such that for all a ∈ (Y1\a∗),

Y 1 = a⇒ Y 2 = b for some b ∈ Y2.

Define

B∗ = {b ∈ Y2 : ∃ x s.t.f1(x) = a∗, f2(x) = b} .

Then the dominant rate points (R1, R2) ∈ R [f1, f2] that maximize

µR1 + (1− µ)R2 (4.10)

for µ ∈ (1
2
, 1] can be achieved by corner points (R1, R2) = (H(Y 1), H(Y 2|Y 1)) of the

regionR [P ′(x); f1, f2] where P
′(x) has the property that the induced

{
P ′Y 1,Y 2 (a∗, b)

}
b∈B∗

are equal.

Proof. Note that since µ ∈ (1
2
, 1], for any distribution P (x), a vertex rate ofR [P ; f1, f2]

corresponding to (R1, R2) = (H(Y 1|Y 2), H(Y 2)) will not suffice: interchanging R1

and R2 gives a strictly larger objective function. Now consider achieving the point

(R1 = H(Y 1), R2 = H(Y 2|Y 1)) ∈ R [P ; f1, f2] for some distribution P . Define P ′ as

P ′ =

|B∗|!∑
k=1

1

|B∗|!πk(P ) (4.11)
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where πk operates on B∗ as the kth element of the symmetric group and πk is the iden-

tity operator on (Y2\B∗). Let us denote H ′() as the entropy corresponding to P ′. Note

that since P ′ is a convex combination of permutations of P , by the Shur-concavity

of the entropy function, H ′(Y 1) ≥ H(Y 1). Also note that
{
P ′Y 1,Y 2 (a∗, b)

}
b∈B∗

are

equal. Thus

H ′(Y 2|Y 1) = PY 1 (a∗)H ′(Y 2|Y 1 = a∗)

= PY 1 (a∗) log2(|B∗|) (4.12)

≥ PY 1 (a∗)H(Y 2|Y 1 = ∗)

= H(Y 2|Y 1)

where (4.12) follows from (4.11).

Note from this Lemma and (4.12) in particular that coding at rateR2 = H ′(Y 2|Y 1)

for Y 2 given Y 1 as side information seems somewhat related to coding over an erasure

channel. We now pursue this observation in detail.

Low-Complexity Code Constructions: Duals of LT Codes

Let us now consider coding at rates (R1, R2) = (H(Y 1), H(Y 2|Y 1)) with joint dis-

tributions P ′ as discussed in the proof of Lemma 4.4.1. Note that to encode Y 1 at

rate R1 = H (Y 1), we can use the enumerative source coding approach discussed in

Section 4.3.2.

To encode y2 given y1, as discussed in Section 4.1.1, binning suffices as an achiev-

able strategy. One general approach for using linear codes for binning purposes is as

follows. A code and its parity check matrix H are fixed before transmission begins. A

sequence y1 is selected for Rx 1 based on the shaping code discussed in Section 4.3.2.

To send a message m2 which we represent as a vector s2, to Rx 2, two conditions

must be satisfied. The first is that H · y2 = s2, which ensures that Rx 2 can decode

the message s2 by looking at the bin index of y2. The second condition is that y1 and

y2 are consistent, which is represented by the equation T · y1 = T · y2 where T is the
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identity matrix with entries corresponding to the a∗ symbols in y1 set to 0. We can

combine these equations into a single linear system using block matrices to get

[H T ] · y2 = [s T · y1].

Thus a general linear code used for this problem needs a matrix inversion to determine

y2 requiring O(n3) complexity. Ideally, we would like to use a low density parity check

code or some other sparse graph code to reduce this complexity.

Throughout the remainder of this section we assume for convenience that Y1 =

{0, 1, ∗} and Y2 = {0, 1, } but these results can directly be extended to F2t . We now

exploit the structure of this problem and its similarity to binary erasure quantization

using codes on graphs [MY03]. In that setting, a sequence of symbols y1 ∈ {0, 1, ∗}n

is given to an encoder which decodes to x ∈ C for some binary linear code C such

that x agrees with y1 in non-erased positions. There are an exponential number of

such x’s for any typical y1, just as in our case. The authors exploit the fact that a

k-dimensional binary linear code C of length n can be expressed in two ways:

C = {x | Hx = 0} = {uG}u∈{0,1}k (4.13)

where H is the parity-check matrix and G is the generator matrix. They discuss how

the dual code C⊥ can be expressed as

C⊥ = {x | Gx = 0} = {uH}u∈{0,1}n−k . (4.14)

They combine this with Forney’s ‘normal graph’ representation [For01] for codes on

graphs to dualize a code by using the same graph and simply replacing each local

code associated with a vertex in the graph by its dual (for instance, see Figure 4-9

ignoring the bit values on the dongles). By dualizing capacity-achieving parity-check

graphical representations of linear codes for the binary erasure channel (BEC), the

authors construct a rate-distortion optimal generator-form graphical representation

of the linear code for binary erasure quantization. The dual quantization algorithm
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discussed in [MY03] fails if and only if the analogous BEC decoding algorithm fails.

One slight difference in our setting is that there is an extra constraint that must be

satisfied: if H is the parity-check matrix for C, then we must have Hy2 = s2 where

s2 is the message bin index. Thus mapping from a parity-check representation to a

generator representation will not apply here, because the generator matrix for any

code produces codewords x that lie in C, which means that Hx = 0. Moreover,

attempting to dualize a generator representation that has a graphical representation

like that of an LDPC will provably fail: any representation with a constant fraction of

nodes with bounded degree will have a non-negligible probability of encoding failure

[MY03, Theorem 1].

Luby has constructed LT codes [Lub02] that have degrees O(log n), are decoded

in generator-representation form, and are provably capacity-achieving on the BEC

under the following low-complexity algorithm:

ERASURE-DECODE-BEC(G, y)

1. While u has at least one unrecovered sample do

2. if ∃ one unerased (check) i connected to exactly one neighbor uj then

3. Recover uj immediately and propagate it to any adjacent

unerased checks i′ via yi′
.
= yi′ ⊕ uj.

4. else return FAIL

5. end if

6. end while

7. Set u to the values from the checks obtained from y

8. return u

Reversely analogous to [MY03], dualizing an LT code in generator form yields another

code in parity check matrix form. Once in parity matrix form, we can transform this

to a syndrome-former representation by adding dongles on checks to represent the

coset constraints for the message index [For01, sec. VIII.B]. The dual algorithm is as

follows:
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Figure 4-9: (L) Generator form LT code for decoding on a binary erasure channel;
(R) syndrome former dual LT code for encoding on a deterministic broadcast channel

ERASURE-ENCODE-DBC(H, s, z)

1. While z has at least one erased sample do

2. if ∃ one zi connected to exactly one neighbor check j then

3. Reserve zi to later satisfy check j with syndrome sj and erase check j

4. else return FAIL

5. end if

6. end while

7. Arbitrarily set unreserved erased zi values.

8. Set reserved variables to satisfy the corresponding checks starting from the

last reserved variable and working backward to the first reserved variable

9. return z

We are now in position to state the following proposition:

Proposition 4.4.2. Consider a linear code with generator matrix G and its dual code

with G⊥ = H. The algorithm ERASURE-DECODE-BEC(G, y) fails in step 4

if and only if the algorithm ERASURE-ENCODE-DBC(H, s, z) fails in step 4

where y has erasures specified by e and z has erasures specified by e⊥ = 1− e.

The proof follows directly from [MY03, Proof of Theorem 4], where it is shown
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that the Luby BEC decoding algorithm on a code in parity-check form H fails if and

only if the dual BEQ encoding algorithm fails on the dual code in generator form

with G = H⊥.

The algorithm for decoding LT codes ERASURE-DECODE-BEC(G, y) has

O(n log n) and thus so does ERASURE-ENCODE-DBC(H, s, z). Figure 4-9 (L)

gives an example of decoding with a generator form LT code. The partially erased

received sequence y lies on the right and the decoder must recover u corresponding to

the non-existent symbols on the left. ERASURE-DECODE-BEC(G, y) performs

successfully here and the unique solution is given by u = (1, 1, 0, 0) and thus uG =

(1, 0, 0, 1, 1, 1, 0)′. (R) of Figure 4-9 gives the syndrome-former dual of the LT code

in (L). Here, the syndrome is given on the left part of the graph by s = (1, 0, 1, 0)′.

The partially erased sequence z lies on the right and the encoder must recover z.

ERASURE-ENCODE-DBC(H, s, z) performs successfully here and one possible

solution is given by z = (0, 0, 0, 1, 1, 1, 1)′

We now first discuss the wireless interference management problem provided in

Section 4.2 and develop dual LT codes for a class of rates on the boundary of the

capacity region.

Wireless Interference Management

Let us re-examine the example problem from Section 4.2 that served as a motivation

for considering deterministic broadcast channels. We will evaluate R [f1, f2] and iden-

tify rates on the boundary that can be attained with our dual LT code construction

framework.

Let us consider a point (R1, R2) on the boundary of R [f1, f2] that maximizes

µR1 + (1− µ)R2 (4.15)

where µ ∈ (1
2
, 1]. By identifying y1 = ∗ as a∗, note that Y 1 and Y 2 satisfy the condi-

tions of Lemma 4.4.1. Thus encoding at the vertices (R1, R2) = (H(Y 1), H(Y 2|Y 1))

using P ′(x) given in Table 4.1 will attain all rates on the boundary of R [f1, f2] for
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(X1, X2) Y 1 Y 2 P ′(·)
(−1,−1) −1 −1 1

2
(1− 2p)

(−1, 1) ∗ 1 p
(1,−1) ∗ −1 p
(1, 1) 1 1 1

2
(1− 2p)

Table 4.1: Optimal input distributions for a portion of the boundary of R [f1, f2] for
the wireless interference management example.

X Y 1 Y 2 P ′(·)
1 1 1 1− p
2 0 1 1

2
p

3 0 0 1
2
p

Table 4.2: Optimal input distributions for a portion of the boundary of R [f1, f2] for
the Blackwell channel.

µ ∈ (1
2
, 1]. Furthermore, using the code construction and encoding algorithms con-

sisting of enumerative source coding for Y 1 and dual LT encoding for Y 2 given Y 1

suffices. Maximizing R1 +R2 (i.e. µ = 1
2
) corresponds to making X uniform and this

can be achieved by P ′ in Table 4.1 with p = 1
4
. Note that the distribution that maxi-

mizes sum rate has as the other corner point (R1, R2) = (H(Y 1|Y 2), H(Y 2)) = (1, 1),

which also maximizes R2. Thus it suffices to only consider using distributions of the

form P ′. Figure 4-10 shows the capacity region, as well as the boundary points that

can be attained with our enumerative followed by dual LT encoding approach (in

green).

The Blackwell Channel

The Blackwell channel is considered the simplest non-trivial deterministc broadcast

channel, and it also satisfies the conditions of Lemma 4.4.1. In this two-receiver

channel, the input is X ∈ {1, 2, 3} with binary outputs. Its input-output relationship

is given in Table 4.2. We now discuss the capacity region. Consider a point (R1, R2)
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Figure 4-10: The capacity region of the wireless example. The boundary points in
green can be attained with our proposed approach.

on the boundary of R [f1, f2] that maximizes

µR1 + (1− µ)R2 (4.16)

where µ ∈ (1
2
, 1]. By identifying y1 = 0 as a∗, note that Y 1 and Y 2 satisfy the condi-

tions of Lemma 4.4.1. Thus encoding at the vertices (R1, R2) = (H(Y 1), H(Y 2|Y 1))

using P ′(x) given in Table 4.2 will attain all rates on the boundary of R [f1, f2] for

µ ∈ (1
2
, 1]. Furthermore, using the code construction and encoding algorithms con-

sisting of enumerative source coding for Y 1 and dual LT encoding for Y 2 given Y 1

suffices. Maximizing R1 + R2 (i.e. µ = 1
2
) corresponds to making X uniform and

this can be achieved by P ′ in Table 4.2 with p = 2
3
. To maximize µR1 + (1 − µ)R2

where µ ∈ [0, 1
2
), we simply reverse the roles of Y 1 and Y 2 and from the symmetry of

the problem the reasoning above follows. Thus enumerative source coding for Y 2 at

rate R2 = H (Y 2) followed by dual LT encoding Y 1 given Y 2 at rate R1 = H (Y 1|Y 2)

suffices. The boundary points that can be attained with our enumerative followed by
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Figure 4-11: The capacity region of the Blackwell channel. The boundary points in
green can be attained with our proposed approach. The rest of the points can be
attained by time-sharing.

dual LT encoding approach are shown in green in Figure 4-11. Note that all other

boundary points can be achieved with time-sharing.
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Chapter 5

Summary and Future Work

5.1 Summary

In this thesis we presented a family of information-theoretic multiterminal information

dissemination problems that have recently sparked interest in the research community.

We have used a number of recent results in the applied math and electrical engineering

literature to attack these problems and construct solutions with low complexity and

good performance - quantified both theoretically and empirically.

To attack the Slepian-Wolf problem in Chapter 2, we applied the notion of ‘rate-

splitting’ that was introduced in other communities and applied it here. This allowed

us to significantly reduce the complexity of decoding by using a pipelined, single-user

approach with side information. Furthermore, we used iterative decoding algorithms

highly successful in the channel coding literature and showed that they are equally

as successful in attaining points on the theoretical boundary. We justified this with

simulations using simulated data as well as empirical data from the International

Space Station.

In Chapter 3, we addressed polynomial complexity algorithms for universal coding

when linear codes suffice. To do so, we used a ‘divide-and-conquer’ approach to

construct large good codes from smaller good ones and connect them with the edges

of a graph with good expansion properties. The expansion properties of the graph

allowed us to formulate linear programming and iterative decoding algorithms that
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provably work with exponentially high probability. Hopefully these provably good

algorithms and code constructions will lead to further developments in constructions

and algorithms for universal coding with better performance vs. complexity tradeoffs.

Finally, we addressed the deterministic broadcast channel in Chapter 4. First

we illustrated how this problem bears similarities with the Slepian-Wolf near-lossless

distributed data compression problem - both in terms of its achievable rate region as

well as sufficient encoding/decoding strategies (binning). We also illustrated how a

rate-splitting technique applies in this setting to reduce the complexity of encoding for

an arbitrary number of receivers to encoding for one receiver with side information.

However, we also showed that there are significant differences in the two problems in

terms of searching through the bins. This observation also tells us that we cannot

directly apply iterative techniques that have been successfully applied to channel

coding and Slepian-Wolf problems.

However, we were able to have some success with low-complexity encoding. Be-

fore illustrating this, we first discussed why the deterministic broadcast channel is

even interesting to consider. At first glance, one might not see this, since the out-

puts are deterministic functions of the inputs. We introduced some multiterminal

wireless scenarios that, with some basic modulation techniques, can be cast into such

deterministic channel models. Furthermore, we did have some success in construct-

ing low-complexity encoding techniques. When encoding at vertices with pipelined

approaches, we illustrated that the first stage of the encoding process can be done

with 0 probability of error and linear complexity using Cover’s ‘enumerative source

coding’ technique. Furthermore, for our wireless scenario (as well as the Blackwell

channel), we were able to construct a complete solution for certain rate points lying

on the boundary of the achievable rate region by dualizing some codes and decoding

algorithms for the binary erasure channel.
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5.2 Future Work

Universal Coding

We note that the error exponents for the linear programming based universal de-

coder and the iterative ‘expander codes’ based decoder both have an error exponent

characterized in terms of a Kullback-Leibler distance between an exponentially de-

caying quantity in the inner block length ∆ and another quantity that decays much

slower in ∆. The analysis derived here gives the latter approach a larger error ex-

ponent. However, empirical comparisons between linear programming decoding and

expander code decoding on the same graphical representation of a code show that

linear programming performs much better [FS05]. Thus we think a better error prob-

ability analysis for linear programming based decoding is possible to illustrate this

observation theoretically.

Although the theoretical results of Chapter 3 discuss polynomial (and even linear)

complexity decoding algorithms with guaranteed exponential error probability decay,

the coefficients in the polynomials can be large enough to prevent implementation in

silicon. Most likely, an approach with good empirical performance but no theoretical

guarantees (such as applying iterative algorithms on bipartite graph codes with small

fixed degrees and cycles) will have higher likelihood to make its way into real sys-

tems. Thus, one possible step in that direction is to consider designing iterative low-

complexity algorithms that mimic the UNIV-DEC-LP
(
G, {Hj}, {sj}

)
and UNIV-

DEC-ITER
(
G, {Hj}, {sj}

)
algorithms of Sections 3.5.2 and 3.6 with low complexity

and good empirical performance.

Also, we find it worthwhile to mention that although linear codes suffice for all

instances of point-to-point near-lossless data compression problems as well as their

multiterminal counterparts (the Slepian-Wolf problem), this is in general not the case

for channel coding. Indeed, a uniform probability distribution need not be capacity-

achieving for all discrete memoryless channels (the same statement holds for multiple

access). So the best we could hope for if we use universal coding under linear codes

is to get close to (or attain) the random coding exponent corresponding to a uniform
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input distribution. Characterizing the error exponent loss in such settings could

potentially be the direction of future work.

Deterministic Broadcast Channels

In Chapter 4, we first illustrated through rate-splitting that for any achievable rate

(which can be attained with a binning approach), we can isolate the encoding process

to vertex coding - where a series of encoding with side information problems applies.

Furthermore, we constructed a general-purpose linear complexity encoder to perform

the first stage of the vertex encoding process. However, performing a general-purpose

binning scheme with side information to code at below or at the conditional entropy

seems quite daunting. In the erasure scenario, we were able to exploit the strong

notion of joint typicality which can be expressed algebraically. This allowed us to

dualize decoding schemes for the binary erasure channel and directly apply them to

this problem. The same approach was shown to work for the Blackwell channel -

again for the same reason: the one-to-one relationship between typicality and an al-

gebraic constraint. Since matrix inversion is essentially all that is involved to find

such a typical sequence, a worst-case O(n3) complexity is an upper bound on what

would be required. We were able to construct codes and aglorithms with O(n log n)

complexity that with probability approaching 1 can attain all achievable rates. Re-

cently, Shokrollahi constructed ‘Raptor Codes’ [Sho03] for decoding on the BEC in

generator-form that have higher probability of success and O(n). It would not be

surprising if one could dualize these codes to construct a linear complexity encoder

for the same setting that we discussed above.

In the most general setting, however, the special cases that allow an algebraic

constraint to characterize joint typicality does not exist. Thus a matrix inversion does

not suffice, and in general the worst-case scenario of just searching through all bins has

exponential complexity. Equally as daunting, it is not yet evident how to generalize

our algorithms. One step in that direction might be to take the ‘Survey Propagation’

[BMZ05, BMWZ02, MZ02] framework, which attempts to solve iteratively an NP-

hard 3-SAT problem (which also has an exponential number of equally good candidate
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solutions consistent with what is observed) and does so with high probability provided

certain conditions hold.
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Appendix A

Proofs of Chapter 2 Lemmas

A.1 Definitions

The following definitions and lemma are useful for proving Lemmas 2.2.1, 2.2.3

and 2.2.4. Define

emin (Q,U) = inf
P∈P(U)

{H (P ) + D(P‖Q)} (A.1)

emax (Q,U) = sup
P∈P(U)

{H (P ) + D(P‖Q)} . (A.2)

Lemma A.1.1. Consider any Q ∈ P (U) such that |U| > 1 and Q(a) > 0 for each

a ∈ U . Then emin (Q,U) as defined in (A.1) satisfies emin (Q,U) > 0, and emax (Q,U)

as defined in (A.2) satisfies emax (Q,U) <∞.

Proof. For any P ∈ P (U),

H (P ) + D(P‖Q) =
∑
a∈U

−P (a) log2 (Q(a)) . (A.3)

Since Q(a) > 0 for each a ∈ U , Q(a) < 1 for each a ∈ U . Thus − log2 (Q(a)) > 0 for

each a ∈ U . Since Q is fixed in the optimization (A.1), and since the log function is

monotonic, there exists a P ∗ that minimizes (A.3) and satisfies P ∗(amax) = 1 where
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amax ∈ arg maxa∈U Q(a). Thus

emin (Q,U) = − log2 (Q(amax)) > 0.

Since Q(a) > 0 for each a ∈ U , − log2 (Q(a)) < ∞ for all a ∈ U . Again, since Q is

fixed in the optimization (A.2), and since the log function is monotonic, there exists

a P ∗ that maximizes (A.3) that satisfies P ∗(amin) = 1 where amin ∈ arg mina∈U Q(a).

Thus

emax (Q,U) = − log2 (Q(amin)) <∞.

To aid in proving Lemmas 2.2.1, 2.2.2, and 2.2.4, map each u[n] ∈ Un to τ1

(
u[n]

)
∈

{0, 1, . . . , |U|n − 1} using the type class integral representation given in (2.14) with

ε = 1:

τ1

(
u[n]

)
=


j(u[n])−1∑

i=0

|T (P i,n)|


 + k(u[n]). (A.4)

Define ξ = |U|n and the random variable Ũ
a

[n](ε) with alphabet {0, 1, . . . , |U|n−1}∪{ξ}
in terms of U [n] as

Ũ
a

[n](ε) =


 τ1

(
U [n]

)
if k(U [n]) < A

(
j(U [n]), ε, n

)
ξ if k(U [n]) ≥ A

(
j(U [n]), ε, n

)
.

(A.5)

For every ε ∈ [0, 1],

Ua
[n](ε) = τε

(
uj,k

[n]

)
iff U [n] = uj,k

[n] and k < A (j, ε, n) (A.6)

Ũ
a

[n](ε) = τ1

(
uj,k

[n]

)
iff U [n] = uj,k

[n] and k < A (j, ε, n) (A.7)

Ua
[n](ε) = Tε,n iff k(U [n]) ≥ A

(
j(U [n]), ε, n

)
(A.8)

Ũ
a

[n](ε) = ξ iff k(U [n]) ≥ A
(
j(U [n]), ε, n

)
. (A.9)
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Thus Ũ
a

[n](ε) and Ua
[n](ε) form a bijection. Note the following properties of PŨ

a
[n](ε)

(·):

PŨ
a
[n](ε)

(ξ) = PUa
[n](ε)

(Tε,n) (A.10)

PŨ
a
[n](ε)

(
τ1

(
uj,k

[n]

))
= 1{k<A(j,ε,n)}PU [n]

(
uj,k

[n]

)
∀ j ∈ J (n), k ∈ K(j, n). (A.11)

Since Ua
[n](ε) is a function of U [n], it follows that US[n] → U [n] → Ua

[n](ε) forms a

Markov chain. Since Ua
[n](ε) ↔ Ũ

a

[n](ε), U
S
[n] → U [n] → Ũ

a

[n](ε) also forms a Markov

chain. Thus for any j ∈ J (n), k ∈ K(j, n),

PUS
[n],Ũ

a
[n](ε)

(
uS[n], τ1

(
uj,k

[n]

))
=

∑
u[n]

PŨ
a
[n](ε),U [n]

(
τ1

(
uj,k

[n]

)
, u[n]

)
PUS

[n]|U [n]

(
uS[n]|u[n]

)

= PŨ
a
[n](ε),U [n]

(
τ1

(
uj,k

[n]

)
, uj,k

[n]

)
PUS

[n]|U [n]

(
uS[n]|uj,k

[n]

)
= PŨ

a
[n](ε)|U [n]

(
τ1

(
uj,k

[n]

)
|uj,k

[n]

)
PUS

[n],U [n]

(
uS[n], u

j,k
[n]

)
= 1{k<A(j,ε,n)}PUS

[n],U [n]

(
uS[n], u

j,k
[n]

)
(A.12)

PUS
[n],Ũ

a
[n](ε)

(
uS[n], ξ

)
= PUS

[n]

(
uS[n]

)
−

∑
j∈J (n)

∑
k∈K(j,n)

PUS
[n],Ũ

a
[n](ε)

(
uS[n], τ1

(
uj,k

[n]

))
.

Define

DP n,ε,ε′ (·, ·) � PUS
[n],Ũ

a
[n](ε)

(·, ·)− PUS
[n],Ũ

a
[n](ε

′) (·, ·) (A.13)

and note that for any 1 ≥ ε > ε′ ≥ 0, A (j, ε, n) ≥ A (j, ε′, n) implies

DP n,ε,ε′
(
uS[n], τ1

(
uj,k

[n]

))
=

(
1{k<A(j,ε,n)} − 1{k<A(j,ε′,n)}

)
PUS

[n],U [n]

(
uS[n], u

j,k
[n]

)
≥ 0(A.14)

DP n,ε,ε′ (uS[n], ξ
)

= −
∑

j∈J (n)

∑
k∈K(j,n)

DP n,ε,ε′
(
uS[n], τ1

(
uj,k

[n]

))
≤ 0.(A.15)
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A.2 Proof of Lemma 2.2.1

Assume without loss of generality that 0 ≤ ε′ ≤ ε ≤ 1. Since ε ≥ ε′ implies A (j, ε, n) ≥
A (j, ε′, n),

Ũ
a

[n](ε
′) = 1{Ũa

[n](ε)<Tε′,n}Ũ
a

[n](ε) + 1{Ũa
[n](ε)≥Tε′,n}ξ (A.16)

PŨ
a
[n](ε)

(ξ) ≤ PŨ
a
[n](ε

′) (ξ) (A.17)

PŨ
a
[n](ε)

(r) ≥ PŨ
a
[n](ε

′) (r) ∀ r ∈ {0, . . . , |U|n − 1}. (A.18)

As a result,

∣∣∣PŨ
a
[n](ε)

(·)− PŨ
a
[n](ε

′) (·)
∣∣∣
1
= PŨ

a
[n](ε)

(ξ)− PŨ
a
[n](ε

′) (ξ) +

|U|n−1∑
r=0

[
PŨ

a
[n](ε)

(r)− PŨ
a
[n](ε

′) (r)
]

=


1−

|U|n−1∑
r=0

PŨ
a
[n](ε

′) (r)


−


1−

|U|n−1∑
r=0

PŨ
a
[n](ε)

(r)




+

|U|n−1∑
r=0

[
PŨ

a
[n](ε)

(r)− PŨ
a
[n](ε

′) (r)
]

= 2

|U|n−1∑
r=0

[
PŨ

a
[n](ε)

(r)− PŨ
a
[n](ε

′) (r)
]

= 2
∑

j∈J (n)

∑
k∈K(j,n)

(
1{k<A(j,ε,n)} − 1{k<A(j,ε′,n)}

)
PU [n]

(
uj,k

)
(A.19)

= 2
∑

j∈J (n)

(A (j, ε, n)− A (j, ε′, n)) 2−n[H(P j,n)+D(P j,n‖Q)]

= 2
∑

j∈J (n)

(
5ε|T

(
P j,n

)
|6 − 5ε′|T

(
P j,n

)
|6
)
2−n[H(P j,n)+D(P j,n‖Q)].

Note that

∣∣5ε|T (
P j,n

)
|6 − 5ε′|T

(
P j,n

)
|6 − (ε− ε′)|T

(
P j,n

)
|
∣∣ ≤ 1,∑

j∈J (n)

(ε− ε′)|T
(
P j,n

)
|2−n[H(P j,n)+D(P j,n‖Q)] = ε− ε′, (A.20)
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where (A.20) follows from

1 =
∑

u[n]∈Un

PU [n]

(
u[n]

)
=

∑
j∈J (n)

∣∣T (
P j,n

)∣∣ 2−n[H(P j,n)+D(P j,n‖Q)].

Therefore

∣∣∣∣∣∣PŨ
a
[n](ε)

(·)− PŨ
a
[n](ε

′) (·)
∣∣∣
1
− 2(ε− ε′)

∣∣∣ ≤ 2
∑

j∈J (n)

2−n[H(P j,n)+D(P j,n‖Q)]

≤ 2 |Pn (U)| 2−nemin(Q,U) (A.21)

≤ 2(n + 1)|U|2−nemin(Q,U), (A.22)

where (A.21) is due to (A.1) and (2.11) and (A.22) is due to (2.9). Thus

lim
n→∞

∣∣∣∣∣∣PŨ
a
[n](ε)

(·)− PŨ
a
[n](ε

′) (·)
∣∣∣
1
− 2(ε− ε′)

∣∣∣ = 0,

by Lemma A.1.1. �

A.3 Proof of Lemma 2.2.2

Proof. Assume without loss of generality that 0 ≤ ε′ < ε ≤ 1. Thus

∣∣∣DP n,ε,ε′ (·, ·)
∣∣∣
1

=
∑
uS
[n]



∣∣∣DP n,ε,ε′ (uS[n], ξ

)∣∣∣ + ∑
j∈J (n)

∑
k∈K(j,n)

∣∣∣DP n,ε,ε′
(
uS[n], τ1

(
uj,k

[n]

))∣∣∣



= 2
∑
uS
[n]

∑
j∈J (n)

∑
k∈K(j,n)

DP n,ε,ε′
(
uS[n], τ1

(
uj,k

[n]

))
(A.23)

= 2
∑

j∈J (n)

∑
k∈K(j,n)

(
1{k<A(j,ε,n)} − 1{k<A(j,ε′,n)}

)∑
uS
[n]

PUS
[n],U [n]

(
uS[n], u

j,k
[n]

)
(A.24)

= 2
∑

j∈J (n)

∑
k∈K(j,n)

(
1{k<A(j,ε,n)} − 1{k<A(j,ε′,n)}

)
PU [n]

(
uj,k

[n]

)

=
∣∣∣PŨ

a
[n](ε)

(·)− PŨ
a
[n](ε

′) (·)
∣∣∣
1

(A.25)
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where (A.23) is due to (A.15), (A.24) is due to (A.12), and (A.25) is due to (A.19).

From here we finish the proof by applying Lemma 2.2.1.

A.4 Proof of Lemma 2.2.3

Proof. For an arbitrary ε ∈ [0, 1],

1

n
H

(
Ua

[n](ε)
)

=
1

n

Tε,n∑
k=0

−Pr
(
Ua

[n](ε) = k
)
log2

(
Pr

(
Ua

[n](ε) = k
))

= − 1

n

∑
j∈J (n)

A (j, ε, n) 2−n[H(P j,n)+D(P j,n‖Q)] log2

(
2−n[H(P j,n)+D(P j,n‖Q)]

)

− 1

n
Pr

(
Ua

[n](ε) = Tε,n

)
log2

(
Pr

(
Ua

[n](ε) = Tε,n

))
=

∑
j∈J (n)

[
H

(
P j,n

)
+ D(P j,n‖Q)

]
A (j, ε, n) 2−n[H(P j,n)+D(P j,n‖Q)]

− 1

n
Pr

(
Ua

[n](ε) = Tε,n

)
log2

(
Pr

(
Ua

[n](ε) = Tε,n

))
. (A.26)

Therefore

H (Ua(ε)) = lim
n→∞

1

n
H

(
Ua

[n](ε)
)

= lim
n→∞

∑
j∈J (n)

[
H

(
P j,n

)
+ D(P j,n‖Q)

]
A (j, ε, n) 2−n[H(P j,n)+D(P j,n‖Q)] (A.27)

= lim
n→∞

∑
j∈J (n)

⌈
ε
∣∣T (

P j,n
)∣∣⌉ [H (

P j,n
)
+ D(P j,n‖Q)

]
2−n[H(P j,n)+D(P j,n‖Q)]

where in (A.27), (A.26) vanishes because for any p ∈ [0, 1], 0 ≤ −p log2 p ≤ 1
2
.

Note that

0 ≤ 5ε|T
(
P j,n

)
|6 − ε|T

(
P j,n

)
| ≤ 1,∑

j∈J (n)

ε
∣∣T (

P j,n
)∣∣ [H (

P j,n
)
+ D(P j,n‖Q)

]
2−n[H(P j,n)+D(P j,n‖Q)] = εH(U) (A.28)
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where (A.28) follows from (2.10) since

H (U) =
1

n
H

(
U [n]

)
=

1

n

∑
u[n]∈Un

−PU [n]

(
u[n]

)
log2 PU [n]

(
u[n]

)

= − 1

n

∑
j∈J (n)

∣∣T (
P j,n

)∣∣ 2−n[H(P j,n)+D(P j,n‖Q)] log2

(
2−n[H(P j,n)+D(P j,n‖Q)]

)

=
∑

j∈J (n)

∣∣T (
P j,n

)∣∣ [H (
P j,n

)
+ D

(
P j,n‖Q

)]
2−n[H(P j,n)+D(P j,n‖Q)].

Thus

0 ≤ H (Ua(ε))− εH(U) ≤ lim
n→∞

∑
j∈J (n)

[
H

(
P j,n

)
+ D(P j,n‖Q)

]
2−n[H(P j,n)+D(P j,n‖Q)]

≤ lim
n→∞

|Pn (U)| emax (Q,U) 2−nemin(Q,U) (A.29)

≤ emax (Q,U) lim
n→∞

(n + 1)|U|2−nemin(Q,U) (A.30)

= 0 (A.31)

where (A.29) is due to (A.1), (A.2), (2.11); (A.30) is due to (2.9); and (A.31) is due

to Lemma A.1.1.

A.5 Proof of Lemma 2.2.4

Proof. We first show that H
(
US , Ua(ε)

)
is continuous in ε. Assume 0 < ε′ < ε < 1.

Note from Lemma A.1.1 that

emin

(
QUS ,US

)
> 0

emax

(
QUS ,U ,US × U

)
< ∞. (A.32)
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Define

L(ε, ε′, n) � − 1

n

∑
uS
[n]

[
PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)
log2

(
PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

))

−PUS
[n],Ũ

a
[n](ε

′)

(
uS[n], ξ

)
log2

(
PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)) ]
DHn(ε, ε

′) � 1

n

[
H

(
US[n], U

a
[n](ε)

)
−H

(
US[n], U

a
[n](ε

′)
)]

Then

DHn(ε, ε
′) =

1

n

[
H

(
US[n], Ũ

a

[n](ε)
)
−H

(
US[n], Ũ

a

[n](ε
′)
)]

= L(ε, ε′, n)

− 1

n

∑
uS
[n]

∑
j∈J (n)

∑
k∈K(j,n)

DP n,ε,ε′
(
uS[n], τ1

(
uj,k

[n]

))
log2 PUS

[n],U [n]

(
uS[n], u

j,k
[n]

)
.

We now bound L(ε, ε′, n). Note that, for all n > n0 = 5 1

emin(QUS ,US)
6 and all uS[n],

PUS
[n],Ũ

a
[n](ε)

(
uS[n], ξ

)
≤ PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
≤ PUS

[n]

(
uS[n]

)
≤ 2−nemin(QUS ,US) <

1

2

where the first inequality follows from (A.15). Since the function g(x) = −x log2 x is

monotonically increasing on [0, 1
2
), for all n > n0 and all uS[n],

−
[
PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)
log2 PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)

−PUS
[n],Ũ

a
[n](ε

′)

(
uS[n], ξ

)
log2 PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

) ]
≤ 0
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which implies L(ε, ε′, n) ≤ 0. We can also lower bound L(ε, ε′, n) as follows:

L(ε, ε′, n) =
1

n

∑
uS
[n]

[
PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
log2 PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)

−PUS
[n],Ũ

a
[n](ε

′)

(
uS[n], ξ

)
log2 PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

) ]

+
1

n

∑
uS
[n]

(
PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
− PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

))
log2 PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)

=
1

n

∑
uS
[n]


PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
log2


PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)





+
1

n

∑
uS
[n]

(
PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
− PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

))
log2 PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)

≥ 1

n


∑

uS
[n]

PUS
[n],Ũ

a
[n](ε

′)

(
uS[n], ξ

) log2

(∑
uS
[n]
PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

))
(∑

uS
[n]
PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)) (A.33)

+
1

n

∑
uS
[n]

(
PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
− PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

))
log2 PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)

=
1

n

(
PŨ

a
[n](ε

′) (ξ)
)

log2

(
PŨ

a
[n](ε

′) (ξ)
)

(
PŨ

a
[n](ε)

(ξ)
)

+
1

n

∑
uS
[n]

(
PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
− PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

))
log2 PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)
≥ 0 (A.34)

+
1

n

∑
uS
[n]

(
PUS

[n],Ũ
a
[n](ε

′)

(
uS[n], ξ

)
− PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

))
log2 PUS

[n],Ũ
a
[n](ε)

(
uS[n], ξ

)

≥ −1

2
emax

(
QUS ,U ,US × U

) ∣∣∣DP n,ε,ε′ (·, ·)
∣∣∣
1

(A.35)
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where (A.33) follows from the log-sum inequality [CT91, p. 29], (A.34) is due to

(A.17), and (A.35) is due to (A.2), Lemma A.1.1, and (A.23). Thus

−1

2
emax

(
QUS ,U ,US × U

) ∣∣∣DP n,ε,ε′ (·, ·)
∣∣∣
1

≤ DHn(ε, ε
′)

≤ emax

(
QUS ,U ,US × U

)∑
uS
[n]

∑
j∈J (n)

∑
k∈K(j,n)

DP n,ε,ε′
(
uS[n], τ1

(
uj,k

[n]

))
(A.36)

=
1

2
emax

(
QUS ,U ,US × U

) ∣∣∣DP n,ε,ε′ (·, ·)
∣∣∣
1
, (A.37)

where (A.36) is due to (A.32), and (A.37) is due to (A.23). Thus

∣∣∣ lim
n→∞

DHn(ε, ε
′)
∣∣∣ =

∣∣H (
US , Ua(ε)

)
−H

(
US , Ua(ε′)

)∣∣ ≤ emax

(
QUS ,U ,US × U

)
(ε− ε′)

by Lemma 2.2.2. Thus H
(
US , Ua(ε)

)
is continuous in ε.

Finally, H
(
US |Ua(ε)

)
is continuous in ε due to the continuity of H (Ua(ε)) and

H
(
US , Ua(ε)

)
along with the chain rule for entropy. The endpoints are contained

because Ua
[n](0) is a point mass and thus 1

n
H

(
Ua

[n](0)
)

= 0 and Ua
[n](1) is bijective

with U , and thus 1
n
H

(
Ua

[n](1)
)

= H (U).

A.6 Proof of Lemma 2.4.1

Here we consider the ML decoding error exponent for source decoding x when side

information y is known at the decoder. Denote Pe(y) to be the error probability

conditioned upon receiving y. Then from [Gal76] we have that

−1

n
logPe(y) ≥ Ex|y (R, y) � max

0≤ρ≤1
ρR− E0,x|y (ρ, y)

E0,x|y (ρ, y) � (1 + ρ) log

[∑
x

Q(x|y)
1

1+ρ

]
(A.38)
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For future reference, let us define the tilted distributions

Qρ(x|y) � Q(x|y)
1

1+ρ∑
x Q(x|y)

1
1+ρ

(A.39)

Qρ(y) �
P (y)

[∑
x Q(x|y)

1
1+ρ

]1+ρ

∑
y P (y)

[∑
x Q(x|y)

1
1+ρ

]1+ρ . (A.40)

Differentiating with respect to ρ to find a stationary point, we can relate Ex|y (R, y)

and R parametrically in terms of ρ:

R =
∂E0,x|y (ρ, y)

∂ρ
= H (Xρ|y)

where the second equality above can be verified with calculation, as mentioned in

[Gal76]. Now let us consider averaging over y when y itself is memoryless. Again,

from [Gal76], we have:

− logPe

n
≥ Ex|y (R) � max

0≤ρ≤1
ρR− E0,x|y (ρ) ,

E0,x|y (ρ) � log


∑

y

P (y)

[∑
x

Q(x|y)
1

1+ρ

]1+ρ

 (A.41)

Differentiating with respect to ρ to find a stationary point, we can relate Ex|y (R) and

R in terms of ρ:

R =
∂E0,x|y (ρ)

∂ρ
= H (Xρ|Yρ) (A.42)

⇒ Ex|y (R) = ρH (Xρ|Yρ)− E0,x|y (ρ)

⇒ ∂

∂ρ
Ex|y (R) = ρ

∂

∂ρ
H (Xρ|Yρ)

⇒ E ′x|y (R) � dEx|y (R)

dR
=

∂Ex|y (R)

∂ρ
= ρ (A.43)

⇒ E ′′x|y (R) =

∂E′
x|y(R)

∂ρ

∂R
∂ρ

=
1

∂
∂ρ
H (Xρ|Yρ)

(A.44)
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where the second equality in (A.42) can be verified with tedious calculations, as

mentioned in [Gal76]. Note from (A.42),(A.39) (A.40), and (A.43) that

E ′x|y (H(X|Y )) = 0. (A.45)

Now note that

∂

∂ρ
{H (Xρ|Yρ)} =

∑
y

∂

∂ρ
{Qρ(y)H (Xρ|y)}

=
∑
y

H (Xρ|y)
∂Qρ(y)

∂ρ
+

∑
y

Qρ(y)
∂

∂ρ
{H (Xρ|y)} (A.46a)

To address ∂Qρ(y)

∂ρ
, note that in general for any differentiable function g, we have

g′(ρ) = g(ρ) d
dρ
{log g(ρ)}. Thus

logQρ(y) = logP (y) + (1 + ρ) log

[∑
x

Q(x|y)
1

1+ρ

]

− log


∑

y

P (y)

[∑
x

Q(x|y)
1

1+ρ

]1+ρ



= logP (y) + E0,x|y (ρ, y)− E0,x|y (ρ) (A.47)

⇒ ∂ logQρ(y)

∂ρ
= H (Xρ|y)−H (Xρ|Yρ) (A.48)

⇒ ∂Qρ(y)

∂ρ

∣∣∣
ρ=0

= Q(y) [H (X|y)−H (X|Y )] (A.49)

where (A.47) is due to (A.38), (A.41). As for ∂H(Xρ|y)

∂ρ
, note that

H (Xρ|y) = −D (Qρ(x|y)‖U) + log |X | (A.50)

⇒ ∂

∂ρ
{H (Xρ|y)} = − ∂

∂ρ
{D (Qρ(x|y)‖U)} (A.51)
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where U(x) = 1
|X | . Dabak and Johnson show in [DJ02] that for any two probability

distributions W0 and W1, the distribution Wt defined by

Wt(x) � W0(x)
1−tW1(x)

t∑
a W0(a)1−tW1(a)t

(A.52)

are related to the Fisher information F (t) according to:

d

dt
{D (Wt‖W0)} = tF (t), (A.53)

F (t) �
∑
x

(
d logWt(x)

dt

)2

Wt(x) (A.54)

=
∑
x

Wt(x)

[
log

W1(x)

W0(x)

]2

−
[∑

x

Wt(x) log
W1(x)

W0(x)

]2

(A.55)

We would like to characterize Qρ(x|y) in terms of a Wt of the form (A.52):

0 ≤ ρ ≤ ∞

ρ = 0 : Qρ(x|y) = Q(x|y)

ρ =∞ : Qρ(x|y) =
1

|X |

⇐⇒
0 ≤ t ≤ 1

t = 0 : Wt(x) = W0(x)

t = 1 : Wt(x) = W1(x)

Thus by setting

W0(x) = Q∞(x|y) =
1

|U|
W1(x) = Q0(x|y) = Q(x|y)

t =
1

1 + ρ
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it follows that

∂H (Xρ|y)
∂ρ

= − ∂

∂ρ
{D (Qρ(x|y)‖U)}

= − dt

dρ

d

dt
{D (Wt‖W0)}

∣∣∣
t= 1

1+ρ

=
1

(1 + ρ)3
F

(
1

1 + ρ

)

⇒ ∂H (Xρ|y)
∂ρ

∣∣∣
ρ=0

= F (1)

= −H(X|y)2 +
∑
x

Q(x|y) log2[Q(x|y)] (A.56)

Thus it follows from (A.44),(A.46), (A.49), and (A.56) that

E ′′x|y (H(X|Y )) =
1

−H(X|Y )2 +
∑

x,y Q(x, y) log2[Q(x|y)]

A.7 Proof of Lemma 2.4.2

Note that

logQρ(x, y) = logQρ(x|y) + logQρ(y)

=
1

1 + ρ

[
logQ(x|y)− E0,x|y (ρ, y)

]
+ logP (y) + E0,x|y (ρ, y)− E0,x|y (ρ)

⇒ ∂ logQρ(x, y)

∂ρ
=

−1

1 + ρ

∂E0,x|y (ρ, y)

∂ρ
+

−1

(1 + ρ)2

[
logQ(x|y)− E0,x|y (ρ, y)

]
+

∂E0,x|y (ρ, y)

∂ρ
− ∂E0,x|y (ρ)

∂ρ

=
−1

1 + ρ
[H(Xρ|y) + logQρ(x|y)] + H(Xρ|y)−H(Xρ|Yρ) (A.57)
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Thus

(
∂ logQρ(x, y)

∂ρ

)2 ∣∣∣
ρ=0

= (logQ(x|y) + H (X|Y ))2

= H (X|Y )2 + 2 logQ(x|y)H (X|Y ) + log2 [Q(x|y)]

⇒ F (ρ)
∣∣∣
ρ=0

= −H(X|Y )2 +
∑
x,y

Q(x, y) log2[Q(x|y)]. �
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Appendix B

Proofs of Chapter 3 Lemmas

B.1 Proof of Lemma 3.2.2

Suppose we have that a parity check matrix H has duniv = d = Nδ. From the

definition of duniv in ((3.17)) it follows that for any nonzero ũ ∈ Co (H, 0), the following

holds:

wh (ũ) ≥ d ⇔ wh (ũ⊕ 1) ≤ n− d (B.1)

and wh (ũ) ≤ n− d ⇔ wh (ũ⊕ 1) ≥ d. (B.2)

Then if

wh (u) <
1

2
d⇔ wh (u⊕ 1) > n− 1

2
d (B.3)

is satisfied, we have

1.

wh (u⊕ ũ) ≤ wh (u) + wh (ũ)

<
1

2
d + n− d owing to (B.3),(B.2)

= n− 1

2
d
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2.

wh (u⊕ ũ) = n− wh (u⊕ ũ⊕ 1)

≥ n− [wh (u) + wh (ũ⊕ 1)]

> n−
[
1

2
d + n− d

]
owing to (B.3),(B.1)

=
1

2
d.

Likewise, if

wh (u⊕ 1) <
1

2
d⇔ wh (u) > n− 1

2
d (B.4)

then

1.

wh (u⊕ 1⊕ ũ) ≤ wh (u⊕ 1) + wh (ũ)

<
1

2
d + n− d owing to (B.4),(B.2)

= n− 1

2
d

2.

wh (u⊕ 1⊕ ũ) = n− wh (u⊕ 1⊕ ũ⊕ 1)

≥ n− [wh (u⊕ 1) + wh (ũ⊕ 1)]

> n−
[
1

2
d + n− d

]
owing to (B.4),(B.1)

=
1

2
d.

Thus in either case, because of the following properties:

i. δ ≤ 1
2

(this follows from the definition (3.17) of duniv),

ii. The binary entropy function hb (·) is monotonically increasing on [0, 1
2
) (see

Figure B-1),
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Figure B-1: The binary entropy function

iii. The binary entropy function hb (·) is symmetric around 1
2

(see Figure B-1),

we have that h (Pũ⊕u) > h (Pu). Thus if we define s = Hu then we have that u is the

unique solution to

min
û∈Co(H,s)

h (Pû) .

The alternative statement in the lemma holds because the two statements are

equivalent:

• wh (u) < 1
2
duniv or wh (u⊕ 1) < 1

2
duniv,

• h (Pu) < hb

(
1
2
δ
)
.

This also follows from properties i.–iii. above.
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