
Implementation of a Design Rule Checker
for Silicon Wafer Fabrication

by

Evren R. Onver

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 1994

© Massachusetts Institute of Technology 1994. All rights reserved.

7aa 0 ·A
'Sf

Author
Department of ElectricalEngineering and Computer Science

May 16, 1994

Certified by , - t .- -,

/ Donald E. Troxel
Professor of Electrical Engineering

Co-Thesis Supervisor
· - . .

rA^;-;s g,

Accepted by

L111vu UY u

;

Implementation of a Design Rule Checker
for Silicon Wafer Fabrication

by

Evren R. Unver

Submitted to the
Department of Electrical Engineering and Computer Science

May 16, 1994

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

A table based design rule checker for silicon wafer processing has been implemented to
verify the integrity of process flow recipes. Its goal is to enhance the safety of the
operators and machines in the fabrication facilities while reducing the amount of time
spent on the development and approval of process flows. The Design Rule Checker can be
used either as an off-line process design aid, or as an on-line process monitoring tool. The
first stages of integrating the Design Rule Checker into the graphical tree editor of the
MIT Computer Aided Fabrication Environment (CAFE) have been completed. It is hoped
that this new design rule checker will be both a powerful design tool for fabrication
engineers as well as a useful utility for the software development personnel.

Co-Thesis Supervisor: Donald E. Troxel
Title: Professor of Electrical Engineering

Co-Thesis Supervisor: Michael B. McIlrath
Title: Research Scientist

Implementation of a Design Rule Checker
for Silicon Wafer Fabrication

by

Evren R. Unver

Submitted to the
Department of Electrical Engineering and Computer Science

May 16, 1994

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

A table based design rule checker for silicon wafer processing has been implemented to
verify the integrity of process flow recipes. Its goal is to enhance the safety of the
operators and machines in the fabrication facilities while reducing the amount of time
spent on the development and approval of process flows. The Design Rule Checker can be
used either as an off-line process design aid, or as an on-line process monitoring tool. The
first stages of integrating the Design Rule Checker into the graphical tree editor of the
MIT Computer Aided Fabrication Environment (CAFE) have been completed. It is hoped
that this new design rule checker will be both a powerful design tool for fabrication
engineers as well as a useful utility for the software development personnel.

Co-Thesis Supervisor: Donald E. Troxel
Title: Professor of Electrical Engineering

Co-Thesis Supervisor: Michael B. McIlrath
Title: Research Scientist

Contents

1 INTRODUCTION ... 8

1.1 Motivation and Rationale ... 10
1.2 Background ... 11
1.3 Design Rules ... 12

2 PREVIOUS WORK ... 16

2.1 VLSI Design Rule Checking ... 16
2.2 Wenstrand's Model for Specification, Simulation and Design of Semiconductor

Fabrication Processes 17
2.3 Constraint Based Programming 18
2.4 Supervisory Control Theory 18
2.5 Duane Boning's Design Rule Checker ... 21
2.6 The Hitachi Process Flow Validation System ... 22

3 CIDM SOFTWARE OVERVIEW ... 25

3.1 GESTALT 28
3.2 Schema . .. 29
3.3 Process Flow Representation . .. 29

3.3.1 PFR Syntax and Structure 30
3.3.2 PFR Fabrication ... 34
3.3.3 Process Flow Tree vs. Task Flow Tree ... 34

4 APPROACH TO DESIGN RULE CHECKING ... 36

4. 1 Finite State Machine Representation 36
4.2 Algorithm for design rule checking ... 37

4.2.1 Determine process wafers 38
4.2.2 Check processing and update state.. 41
4.2.3 Apply design rules... 43
4.2.4 Repeat in the body 43

4.3 Important Features ... 46
4.3.1 Use of Database Objects ... 46
4.3.2 Splits and Joins ... 48

4.2.3 Use of the Task Flow Tree structure.. 49

5 OVERVIEW OF THE SOFTWARE ... 51

5.1 W afer representation ... 51
5.1.1 I DRC-W afer ...51
5.1.2 Printed Representation 53
5.1.3 The W afer List .. 54

5.2 Operation W afers .. 55
5.3 Updating the W afer State .. 56
5.4 Program representation of the rules ... 58

6 INTEGRATION INTO CAFE .. 61

6.1 Command-line control ... 61
6.2 The Tree Editor 62
6.3 Automatic checking... 64

7 CONCLUSION ... 65

7.1 Contributions 65
7.2 Future work .. 66

7.2.1 Optimization ... 67
7.2.2 Further Integration into CAFE 67
7.2.3 Expandedfunctionality ... 68

APPENDIX A: DEVELOPER'S GUIDE 70

A. 1 How to add a rule70
A. 1.1 The Structure of the Safety Rules 70
A. 1.2 The Structure of the W afer State operations... 72

A.2 Additional wafer state ... 73

APPENDIX B: PROGRAM CODE ... 74

BIBLIO G RA PH Y ... 90

List of Figures

Figure 1-1: The fabrication process sequence of integrated circuits 9

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:

Figure 3-1:
Figure 3-2:

(a) Generator plant and (b) Input/Output plant .. 19
Plant with Controller feedback loop ... 20
Supervisory control scheme... 21
Example of process flow mistake... 24

CAFE system architecture ... 27
Process Flow Tree and Task Flow Tree ... 35

Figure 4-1: FSM Approach to Design Rules .. 37
Figure 4-2: (a) Wafer, (b) Waferset, (c) Waferlot data types ... 40
Figure 4-3: Wafer state at each process node ... 42
Figure 4-4: Sample warning messages .. 44
Figure 4-5: Threading the tree ... 45
Figure 4-6: Following the fringe tasks.. 45
Figure 4-7: Textual Process Flow .. 46
Figure 4-8: Installed Process Flow .. 47
Figure 4-9: Excerpt from a flow with many splits... 49
Figure 4-10: Example Task Flow structure .. 50

Figure
Figure

5-1: Example drc-wafer ... 52
5-2: W afer list .. 55

Figure 6-1 Example of task tree ... 63

List of Tables

Table 3-1: Gestalt M ethods .. 29

Table 5-1: Drc-wafer accessors ... 52
Table 5-2: W afer State .. 57
Table 5-3: Design Rules ... 58

Chapter 1

1 INTRODUCTION

Since the creation of the first integrated circuit in 1960, there has been an ever increasing

density of devices manufacturable on semiconductor substrates. The number of devices

manufactured on a chip exceeded the generally accepted definition of very large scale

integration, or VLSI (i.e. more than 100,000 devices per chip), somewhere in the mid-

70's. This number is currently on the order of millions of devices per chip. Progress in

VLSI manufacturing technology seems likely to continue to proceed in this manner, and

even further reductions in the unit cost per function are projected. A simplified model of

the processing required to fabricate integrated circuits using current technology can be

seen in Figure 1-1.

With ever increasing automation and computer integration in the field of integrated circuit

fabrication, the number and complexity of process steps required to manufacture a product

have increased as well. As a result, it has become difficult to assess the overall effect of

process steps and their inter-relations easily and quickly.

8

9

CHAPTER 1: INTRODUCTION

V - --- --

INGOT

WAFER ETCH

OXIDIZE. DIFFUSE
IMPLANT,

EVAPORATE.
DEPOSIT

WAFER PROCESSING

L

I ICE I

DIE
ATTACH

ENCAPSULATE
AND TEST

GATE

-50

5 TO 20,m
t- 0 TO 40m

'7 BIPOLAR
TRANSISTOR

COLLECTOR

Figure 1-1: The fabrication process sequence of integrated circuits. Reprintedfrom Silicon
Processing, by Wolf & Tauber [1].

CRYSTAL
GROWTH

PATTERN

WAFER SLICE
AND POLISH

WAFER
PROBE

LEAD
BOND

- ~ ~ ~ ~ ~ ~

0r fJ~~

CHAPTER 1: INTRODUCTION

As process steps have grown in complexity, they have also been broken down into smaller,

modular building blocks, allowing them to be strung together to create larger processes.

This layer of abstraction has also made it easy to overlook aspects of the underlying

components. It is possible to inadvertently specify process flows that can cause damage to

the wafers, or fabrication equipment. At the MIT Integrated Circuit fabrication facilities,

there are currently no automated safeguarding mechanisms. To avoid potentially

dangerous situations, as well as aid in the development of well-formed process flows, a

Design Rule Checker is essential.

The goal of this thesis is to develop an extensible and general framework for design rule

checking, and, using this framework, to implement the design rule constraints that have

been identified through discussions with Linus Cordes, the director of the MIT

semiconductor fabrication facilities.

1.1 Motivation and Rationale

In its simplest form, a Design Rule Checker can be used off-line, as an optional

verification of the correctness of a process flow, before using it in processing. Eventually,

it can evolve into an integral part of the design and manufacturing process, providing both

interactive debugging help in the creation of process flows, and a measure of safety during

the manufacturing, by monitoring dynamic fabrication conditions. This is especially useful

in the cases where the processing recipe must be altered for various reasons during the

processing. At this point, the Design Rule Checker can be used to verify the integrity and

10

CHAPTER 1: INTRODUCTION

validity of the new process. This will allow checks to be performed on each step of the

process flow as it is executed (on-line monitoring), by evaluating each step in the context

of the processing sequence undergone, blocking hazardous steps as necessary. By

performing dynamic checking, more flexibility is gained from a processing point of view,

as in situ changes can be made to the process flow without the risk of damaging wafers or

equipment. This is especially important in light of the fact that it is possible to create

processes "on the fly" in the fab by stringing together modular process building blocks.

By integrating such a design rule checker into the CAFE system, both users and the

facilities will benefit from factors such as laboratory integrity and time saved in manual

design rule checking. This will translate to improvements in the overall goal of fabricating

wafers.

1.2 Background

The Computer Aided Fabrication Environment (CAFE) is a software system being

developed at MIT for use in the fabrication of integrated circuits and microstructures. It is

intended to be used in all phases of process design, development, planning and

manufacturing of integrated circuit wafers [2]. CAFE is currently being used at the

integrated circuit processing facilities of the MIT Integrated Circuit Laboratory, Lincoln

Laboratories and Case Western University.

11

CHAPTER 1: INTRODUCTION

The CAFE manufacturing system is unique in the development of a Process Flow

Representation (PFR) and its integration into actual fabrication operations. The motivation

behind developing the PFR was to create a single, unified wafer processing representation

in order to facilitate the integration of design and manufacturing in integrated circuit

fabrication [3]. The PFR is a knowledge representation language, and is intended to

represent information in a way that is not specific to any particular application. The PFR

represents a process as a sequence of hierarchical operations to be performed on a group

of wafers. This hierarchical representation can be visualized as a tree, with operations

having child and parent operations associated with them. The syntax of the PFR is very

similar to LISP.

The fabrication of wafers with a process represented as a PFR involves several steps [4].

A suitable PFR for the specified process must be created and installed in the CAFE system

database. Wafer lots are then created, and "started", to create a task data structure that is

isomorphic to the flow data structure. Actual machine operations are accomplished by

instructions given to the operator and machines. Then data collected from the operation

can be input into the database.

1.3 Design Rules

These are the process rules that have been identified through discussions with Linus

Cordes, the director of the MIT semiconductor fabrication facilities, and implemented as

part of the work. A brief explanation is given for each rule.

12

CHAPTER 1: INTRODUCTION

1) No Photoresist in diffusion tubes

Photoresist is an organic material. If wafers coated with Photoresist are exposed to a

high temperature furnace operation the wafers will be ruined and the furnace tube will

be contaminated.

2) No Photoresist in RCA clean

Photoresist will contaminate the RCA clean bath.

3) No Photoresist in Nitride wet etch

Photoresist will contaminate the Nitride wet etch bath.

4) No Photoresist in Varian metallization system

The tubes that are used for metal deposition will be contaminated by Photoresist.

5) No RCA clean after metal deposition

The metal will be destroyed and the RCA clean bath will be contaminated.

6) No Piranha clean after metal deposition

The metal will be destroyed and the Piranha (H2SO4) clean bath will be contaminated.

7) No Oxide etch after metal deposition

The metal will be destroyed and the Oxide etch bath will be contaminated.

8) No Nitride wet etch after metal deposition

The metal will be destroyed and the Nitride wet etch bath will be contaminated.

13

CHAPTER 1: INTRODUCTION

9) Metallized wafers in tube B7 or B8 only

This is a facility specific rule. To reduce metal contamination metallized wafers are

only processed in furnace tubes B7 and B8.

10) No fused uartz wafers in the Varian metallization system

The Varian metallization system is equipped with optical sensors, which require an

opaque wafer surface for proper operation. As fused quartz wafers are not opaque

they cannot be used in the Varian.

11) Must have Oxide etch prior to Nitride wet etch

The nitride layer cannot be etched properly if there is a native oxide on the wafer (a

thin layer grows spontaneously even at ambient conditions). Therefore a Nitride wet

etch must always be proceeded by an Oxide etch.

12) Wafers must go through Coater prior to Stepper

The order of the lithography steps must be maintained, and after wafers are coated

with Photoresist they must go directly into the Stepper (where the photoresist is

exposed to UV light). The only step allowed in between is an inspection.

13) Wafers must go through Developer following Stepper

After the Stepper, the next step must always be the Developer. As in rule (12), the

only step allowed in between is an inspection.

14

CHAPTER 1: INTRODUCTION

14) BPSG deposition must be followed by BPSG flow

Borophosphosilicate glass (BSPG) films tend to be hygroscopic and unstable, and

should therefore be flowed immediately following deposition. The only step allowed in

between is an inspection.

15) Wafers must have oxide etch following Phosphorous deposition prior to drive

Before entering a furnace tube the residual native oxide from the Phosphorous

deposition must be removed.

16) Wafers must have pre-metal clean prior to metallization if preceded by a photo

lithograph step

Some test structures, such as certain capacitors, are built without any lithography

steps. In this case, there is no need to perform a pre-metal clean before metallization.

However, at all other times metallization must be preceded by a pre-metal clean.

17) Tube A2 must be used only for thin oxide growth (<500A) on high resistivity

(>10.cm) silicon

This is another facility specific rule. Tube A2 is used solely for gate oxide growth, and

should not be used for other purposes.

18) No wafers with high phosphorus concentration in tubes Al or A2

This is another facility specific rule. These tubes are used for growing high quality

oxides, and Phosphorus contamination is to be avoided.

15

Chapter 2

2 PREVIOUS WORK

The ideas of computer aided wafer fabrication and using a unified process flow

representation are relatively new, and consequently there has not been much research in

this specific area regarding design rule checking. However, the concepts encountered are

similar to some other research areas, and it is important to review them in order to benefit

from work already done.

2.1 VLSI Design Rule Checking

There has been a lot of interest in design rule checking for the circuit layout level of

integrated circuit manufacturing. The need for and benefits of automation in this field were

recognized early on, and consequently there have been many different approaches to this

problem. Early implementations relied on various software based systems, as in Baird [5],

followed by hardware assisted design rule checkers, such as Seiler [6], Blank et al. [7] and

Longhead and McCubbrey [8], providing gains due to the custom built hardware. More

16

CHAPTER 2: PREVIOUS WORK

recently, however, due to the general increase in computing power, and the more flexible

approach, most design rule checkers have migrated back to software based solutions [9].

In general, these systems typically rely on various geometric pattern matching algorithms

to perform the rule checking.

2.2 Wenstrand's Model for Specification, Simulation
and Design of Semiconductor Fabrication Processes

In his 1991 Ph.D. thesis [10], Wenstrand develops an object-oriented model for the

specification, simulation and design of semiconductor fabrication processes. In doing so,

he investigates the idea of using explicit design constraints to construct objective functions

for optimization of process parameters. By associating design goals with the

manufacturing process specification, in addition to providing a statement of intended

effect, the verification of the correct behavior of a module is simplified.

According to Wenstrand, the process simulation and verification needs to be approached

through qualitative and quantitative simulation. Using quantitative simulation, actual

numerical design goal parameters can be compared to values obtained from a numerical

process simulator, such as SUPREM III. By comparing the results to minimum and

maximum acceptable values for the processing step, the process flow can be monitored.

17

CHAPTER 2: PREVIOUS WORK

Through qualitative simulation, the objective is to check process sequences to flag

potential safety, manufacturing, and equipment hazards, without requiring actual

numerical processing data. This is the general approach that will be followed in this thesis.

2.3 Constraint Based Programming
In Steele's thesis on constraint based programming languages [11], a constraint is defined

to be a "declarative statement of relationship" or "a computational device for enforcing the

relationship". Similar ideas will be used in developing a design rule checker that is driven

by the rules that are implemented by the system. For example, one constraint could be that

"A furnace step must be preceded by a cleaning operation or a furnace step". In this case,

a process sequence that violated this constraint would cause an error.

The difference from Steele's view of constraints is that in the design rule checker the

constraints will not be used to actually repair a dangerous process flow, but will only

point to the problem.

2.4 Supervisory Control Theory

In Supervisory Control Theory, the notion of the controllability of a problem is

investigated. According to Balemi et al. [12], a plant model can be seen in two ways, as in

Figure 2-1.

18

CHAPTER 2: PREVIOUS WORK

Figure 2-1: (a) Generator plant and (b) Input/Output plant

In the first case (Figure 2-1(a)), a plant event "generator" produces events "wildly", and

the only way to affect the behavior of the plant is by enabling and disabling the

controllable events. In this scenario, the plant alone schedules the occurrence of both

controllable and uncontrollable events.

However, to better model the plant, an input-output perspective is required, as in most

real systems events do not occur spontaneously, but only as responses to commands

(Figure 2-1(b)). Therefore, by connecting the plant with a controller to complete a

feedback loop, events can be directed in the desired way (Figure 2-2). In this case, the

inputs to the system, or the commands, would be the process flow (recipe) for the

operation.

19

CHAPTER 2: PREVIOUS WORK 20

Controller

responses commands

Plant

Figure 2-2: Plant with Controller feedback loop

To make the system safe, a Supervisor is connected between the Controller and the Plant

(Figure 2-3). The Supervisor serves a dual purpose. First, by combining it with the

Controller, a supervised (checked) process is obtained. Second, by combining it with the

Plant, a supervised Plant is obtained, ensuring on-line safety. Similarly, the Design Rule

Checker can be thought of as a Supervisor.

CHAPTER 2: PREVIOUS WORK

command requests

I I

commands

I
I

l

N

II I
_ _ _ _ >~~~~~~~~~~~~~~~~~~~~~] '' J~~~~~~~~~~~~~~~~~~

responses
. /

Supervised

Process

Supervised

I/O Plant

Figure 2-3: Supervisory control scheme

2.5 Duane Boning's Design Rule Checker
The outline for a collection of independent design rule checks for CAFE was proposed by

Duane Boning in 1989. These included fabrication safety rules as well as internal

consistency checks. However, only two checks were implemented, and they were never

integrated into the CAFE system. They were based on the textual representation of the

PFR, and were intended for single wafer operations.

Controller (PFR + human)

Supervisor (DRC)

I/O Plant

.
| j i

!

l l

l - l

21

I

I

I

I

I

I

I

I
100

CHAPTER 2: PREVIOUS WORK

2.6 The Hitachi Process Flow Validation System

A Rule-Based VLSI Process Flow Validation system with macroscopic process simulation

has been developed at the Hitachi Central Research Laboratory [13]. The starting point of

this project is that it is difficult to catch process flow mistakes on run sheets as they can

become long and complicated. An example where a cleaning step is missed between ashing

and oxidation steps is shown in Figure 2-4.

The rules considered are grouped into four categories. These are:

1) Process window:

These are the simplest type of rules. They do not require any prior knowledge of wafer

state or process sequence. Only the possible or allowable conditions within a single

process step are needed. Examples of this type of rule include furnace temperature and

etching gas species.

2) Process sequence:

These rules require knowledge about the process sequence and conditions. Examples

of this type of rule include pre-cleaning, annealing and post-cleaning.

3) Wafer-process constraint:

Wafer-process constraints are defined as the constraints between wafer state and

process or equipment. Here the wafer state includes information on macroscopic wafer

structure, that is, the kind of substances and contamination existing on a Si wafer, and

22

CHAPTER 2: PREVIOUS WORK

their geometries (thickness, patterned/non-patterned) and properties (implanted/non-

implanted, baked/non-baked).

To check for these rules, wafer state and process condition information is necessary.

These rules include "Contaminated wafers should not be loaded into clean furnaces"

and "Resist removal condition depends on resist properties (thickness, hardened,

etc.)".

4) Optimum conditions

This last group of process rules concerns the optimum sequence and conditions to

fabricate the intended VLSI structure and characteristics. Some of this knowledge

depends on the total process type, such as CMOS, bipolar or BiCMOS. To perform

this type of a rule check, a variety of information is needed, such as process flow,

intended structure and characteristics, purpose of experiment, and results of other lots,

in addition to detailed process and device simulations.

This type of rule checking is only discussed conceptually, and is not implemented.

Rules belonging to the first three groups have been implemented in a dialect of Common

LISP on a HITAC M680 mainframe computer. The system has about 180 design rules.

The system is used as an off-line process design aid. The main beneficiaries are process

experts who used to check designed flows and can now perform higher level checks.

23

CHAPTER 2: PREVIOUS WORK 24

I i tliography

1

I

(cl ca i rig)

oxidization

\1 ·Si N,
I I/I~~~~
Si substrate

I !

{-

con tamin ia t i on

I I

(a)

wafer

Step
1 i thlography

etching 1

2

inspect ion

ashing
ion I

dopilng 2

3

4

cleanilng
Oxidization

1

O

O
0

O

0
0_U
C)..

0

4

_

()

O0

0

5

0

j
O

_.
O

. _

6

0

C

O

_5.°
-O

7

0

7

0

O7_75

8

-o

O
OO
O5

(b)

Fig. 1. Example of process flow mistake. Contaminated wafers will be
loaded into clean furnace. (a) Contaminated wafers loaded into clean
furnace. (b) Same mistake as (a) in a real process flow. Each wafer is
processed in circled steps. Wafer 9 and 10 should be cleaned before
oxidation.

Figure 2-4: Example ofprocessflow mistake. Reproducedfrom article by Funakoshi and Mizuno
published in the IEEE Transaction on Semiconductor Manufacturing [13].

9

O
O

O

O

10

•O_._0
0

_.

,-f _ _

2 .

Chapter 3

3 CIDM SOFTWARE OVERVIEW

The Computer Integrated Design and Manufacturing (CIDM) group at MIT is focused on

developing and demonstrating critical elements of a framework for the design and

manufacture of advanced integrated circuits. One of the key software applications that

have resulted from this effort is CAFE, the Computer Aided Fabrication Environment.

CAFE provides a framework for many different types of fabrication applications, including

process design, development, simulation, laboratory scheduling, wafer lot management,

and manufacturing of integrated circuit wafers. CAFE currently provides day to day

support to research and production facilities at MIT with both flexible and standard

product capabilities.

25

CHAPTER 3: CIDM SOFTWARE OVERVIEW

The CIDM software environment was developed to provide a single, unified system for

wafer fabrication. All CIDM software programs share the same database interface layer

and information representation. This environment is also intended to be extensible, easily

modifiable, and modular, having well defined interfaces between separate components.

As seen in Figure 3-1, the CIDM System Architecture can be broken down into three

levels. The lowest level is the CIDM Infrastructure Architecture, comprising an object

oriented database model which is implemented in a layered manner on top of a relational

database. The database schema is based on GESTALT [14], an object oriented, extensible

data model. GESTALT is a layer of abstraction which provides a mapping of user defined

objects onto existing database systems, in this case INGRES M , a relational database.

The second layer is the CIDM Data and Tool Integration Architecture level. This level

includes the conceptual schema and models used to represent the integrated circuit

manufacturing domain if CAFE, and the user and programmatic interfaces to the various

higher level applications.

The third layer is the Applications level, which is made up of the separate software

programs for scheduling, fabrication support, data collection, design rule checking, etc.

INGRESTM is a trademark of Ingres Corporation.

26

CHAPTER 3: CIDM SOFTWARE OVERVIEW

c-

C

2 as
O 15

M 6

CIDM
System Architecture

Figure 3-1: CAFE system architecture

27

CHAPTER 3: CIDM SOFTWARE OVERVIEW 28

3.1 GESTALT

GESTALT is an expressive database programming system developed at MIT [14]. It

provides the top level database interface to the CIDM software. Its purpose is to provide a

simple database interface to an application program in the program's host language. This

way, the application programs are shielded from the details of the underlying database's

query language.

In GESTALT, objects are modeled as belonging to a certain type and having certain

attributes. They may also contain and/or share other objects. GESTALT currently

provides selectors, mutators, constructors and inverse fetch functions in Lisp and C. The

LISP interface uses the Common LISP Object System (CLOS) [15]. These accessors are

implemented as CLOS methods.

The selector functions allow the user to get a handle on a certain database object using

attributes such as parent/child relationships. The mutator functions allow the user to

change the attributes associated with an object. The constructor functions allow the user

to create a new object of the given type. The inverse fetch functions allow the user to get

a handle on database objects using attribute values, such as the name.

This provides for very simple and straightforward integration into the application code.

Some example GESTALT methods in LISP are:

CHAPTER 3: CIDM SOFTWARE OVERVIEW 29

SELECTOR: (task-subtasks task)
MUTATOR: (setf (task-subtasks task) tasks)
CONSTRUCTOR: (make-task)
INVERSE FETCH: (tasks-with-name task)

Table 3-1: Gestalt Methods

In the current CAFE system the underlying database, where the data is actually stored, is

INGRES. However, GESTALT is designed to be flexible enough to be used with other

databases as well.

3.2 Schema

There are over 70 different GESTALT data types that have been defined in the schema.

There are basically two types of data: Domain Specific, and non-Domain Specific. Non-

Domain Specific data do not have instance identity; i.e. they are "values", not "objects".

These include integers, floating point numbers, strings, booleans, etc. Domain Specific

data, on the other hand, are GESTALT objects with attributes. These attributes in turn

may be other GESTALT types. Wafers, Wafersets, Tasks, Machines are examples of

Domain Specific data. Each Domain Specific instance of an object has a unique identifier.

3.3 Process Flow Representation

The CAFE manufacturing system is unique in the development of a Process Flow

Representation (PFR) and its integration into actual fabrication operations. The motivation

behind developing the PFR was to create a single, unified wafer processing representation

in order to truly facilitate the integration of computers into wafer processing.

CHAPTER 3: CIDM SOFTWARE OVERVIEW

The Process Flow Representation was developed at MIT by Michael McIlrath and Duane

Boning to meet the requirements of such a unified wafer processing representation [3].

The PFR is a knowledge representation language, and is intended to represent information

in a way that is not application specific, but general.

The PFR represents a process as a sequence of hierarchical operations to be performed on

a group of wafers. This hierarchical representation can be visualized as a tree, with

operations having child and parent operations associated with them.

3.3.1 PFR Syntax and Structure

The syntax of the PFR is very similar to LISP. Some of the important features are:

Define The define construct allows a symbol to be bound to a value or procedure.

The form is:

(define <name> <form>)

The <form> value can either be a simple constant or a more complicated form. For

example:

(define OxideGrowthTime 3600)

(define GateOxTube "tubeAl")

(define gate-oxide

(operation

(:change-wafer-state

(:deposit :material :oxide

:thickness (:microns 1)))))

30

CHAPTER 3: CIDM SOFTWARE OVERVIEW

The define construct can also accept arguments, thus creating parameterized definitions

(also called "functions" in this context). The form is:

(define (<name> [(<parameter-name>

(<parameter-name parameter-default>))])

(<forms>))

An example of a parameterized definition is

(define (HMDS-prime

(operation

(:machine

(recipe 1))

"HMDS")

(:settings :material "HMDS"

(:time-required

:recipe recipe)

(:minutes 45))))

HMDS-prime could be called as illustrated below:

(define calling-operation

(operation

(:body

(HMDS-prime :recipe 3) ; called with recipe = 3

< OR >

; called using default value

31

;

(HMDS- -p ime)

CHAPTER 3: CIDM SOFTWARE OVERVIEW

Operation The operation construct actually defines a wafer processing operation

and its attributes. It is currently interchangeable with the flow construct. The basic form

for an operation is:

(operation

[(:doc <documentation-string>)]

[(:version <version-entries>)]

[(:permissible-delay <delay>)]

[(:advice <advice>)]

[(:time-required <time-required>)]

[(:body <body>)]

[(:change-wafer-state <change-wafer-state>)]

[(:treatment <treatment>)]

[(:machine <machine>)]

[(:instructions <instructions>)]

[(:readings <readings>)]

[(:settings <settings>)]

[(:opset <opset-name>)]

Note that :doc, :version, :permissible-delay, etc. aretheattributesfor

the operation. The attribute: body defines sub-operations for this operation. The

following example defines an operation named "examplel" with values for the : doc,

: version, : time-required, and: body attributes. In this example, the values

for the : body attribute are in terms of their defined operations, but another unnamed

operation could be defined instead.

32

CHAPTER 3: CIDM SOFTWARE OVERVIEW 33

(define examplel

(operation

(:doc "Example of operation construct")

(:version 1.1)

(:time-required (:minutes 30))

(:body

subexamplel

subexample2

subexample3)))

If One of the more powerful features in PFR is that of conditionals. The if construct is a

special form and allows branching on condition:

(if <condition>

<then-clause>

[<else-clause>])

An example of using the if construct is:

(define (furnace-rampdown-treatment start-temperature

(anneal-time (:minutes 30)))
(sequence

(if (>? anneal-time 0)

(:thermal :temperature start-temperature

:time anneal-time :ambient :N2)) ; Anneal

(:thermal :temperature start-temperature :ambient :N2

:time (:minutes (/ (- start-temperature 800) 2.5))
:temp-rate -2.5) ; Ramp-Down

(:thermal :temperature 800

:time (:minutes 20) :ambient :N2))) ;Stabilization

CHAPTER 3: CIDM SOFTWARE OVERVIEW

There are many other important constructs in the Process Flow Representation. More

information on the PFR may be found in [16].

3.3.2 PFR Fabrication

The fabrication of wafers with a process represented as a PFR involves several steps. A

suitable PFR for the specified process must be created and installed into the database. This

is accomplished by "evaluating" the textual representation of the PFR, and creating

persistent flow objects, which are then stored in the database.

The tree structure of these objects reflects the hierarchical decomposition of the PFR

encoding. Wafer lots are then created, and "started", to create a task data structure.

Actual machine operations are accomplished by instructions given to the operator and

machines. Then data collected from the operation can be input into the database.

3.3.3 Process Flow Tree vs. Task Flow Tree

The actual fabrication operations are not driven by the flow tree structure. The process

flow tree contains all of the information pertaining to a specific procedure, but does not

contain information such as the status of the operation in progress. When the processing

of a certain lot of wafers begins, a taskflow tree specific to that flow and wafer lot is

created. Therefore in most respects the process flow tree and task flow tree are

isomorphic data structures (Figure 3-2).

34

CHAPTER 3: CIDM SOFTWARE OVERVIEW

Figure 3-2: Process Flow Tree and Task Flow Tree

Differences primarily arise when the task flow tree associated with a lot that is being

processed is edited "on the fly", during processing (for example to change the temperature

or duration of a furnace operation). In this case, the edited node of the task flow tree no

longer points to the old node in the isomorphic process flow tree, but may point to a

different, unconnected process flow tree instead.

35

Chapter 4

4 APPROACH TO DESIGN RULE
CHECKING

4.1 Finite State Machine Representation

The way to visualize the behavior of the process rules is to think of each design rule as a

finite state machine. This approach was proposed by Michael McIlrath in an unpublished

memo [17].

In this description based on discrete automata, a conceptual "supervising automaton" (or

monitor) controls the state transitions. A state transition takes place in the machine under

supervision only if allowed by the supervisor.

For example, the state diagram for rule (1), "No Photoresist in diffusion tubes" is shown in

Figure 4-1.

36

CHAPTER 4: APPROACH TO DESIGNRULE CHECKING 37

strip resist (otherwise)(otherwise)

! , OK OK
RESIST NO RESIST

... PRESENT PRESENT

deposit resist

ERROR OK

Figure 4-1: FSM approach to Design Rules

4.2 Algorithm for design rule checking

The basic algorithm used for design rule checking is quite straightforward. The approach

is to construct a system that checks for design rule constraints at each subsequent

processing step, based on the current state of the wafer. By wafer state here we refer not

only to the simulated or measured process effects at the present node, but also to the

process history.

Rules may include "sanity" checks, that is, obvious rules which wouldn't necessarily cause

any damage (such as putting wafers through the Stepper without Coating them first) as

well as "safety rules", which if ignored would damage equipment and wafers (i.e.

photoresist in diffusion tubes). Each design rule is a separate entity, and can be developed

CHAPTER 4: APPROACH TO DESIGN RULE CHECKING

and applied independently. This way, it is not necessary to sequentially run multiple design

rule checking programs to check for multiple rules.

The basic steps are as follows:

4.2.1 Determine process wafers

At each node of the process flow tree, the wafers to be processed are identified. The

actual mechanisms for doing so depends on whether a process flow tree or task flow tree

is being checked, and will be discussed in further detail in Chapter 5.

The function of identifying the process wafers is specifically isolated from the rest of the

system, as there is not a complete agreement to the issue of what the lowest common

denominator for wafer processing is. This confusion arises from the fact that wafers are

hierarchically grouped into three levels, each represented by a GESTALT data type. The

simplest is the type "wafer". It denotes a single wafer, and its properties. Among these

properties is the wafertype, which contains information about the starting material. The

second type is a "waferset". A waferset is a grouping of wafers which have undergone the

same processing and is intended as a means of simplifying the representation and providing

a useful layer of abstraction. The third type is a "waferlot". A waferlot is the set of all of

the wafers that are specified in the processing. See Figure 4-2 for examples of these three

data types.

38

CHAPTER 4: APPROACH TO DESIGNRULE CHECKING 39

Since the PFR is very flexible by nature, there are no enforced rules regarding the uses of

wafersets, and their specification. Therefore the wafers specified in the PFR may in fact

represent more than one individual wafer, if they are going through the same process

steps.

In other words, from the point of design rule checking there is no difference between a

flow with a single wafer, or a dozen wafers, as long as they all go through the same

processing. The key issue is that the waferset abstraction must be used in a consistent

manner.

CHAPTER 4: APPROACH TO DESIGN RULE CHECKING

#<WAFER 35720040> is an instance of class #<Gestalt-Class
WAFER 34104620>:
The following slots have :INSTANCE allocation:
%ENTITY 12221200
ID "splits,5"
TYPE #<WAFERTYPE PP+NTYPE 56517600>
LASERID "F1"
TIME_BROKEN NIL

(a)

#<WAFERSET splits-Fl 34750560> is an instance of class
#<Gestalt-Class WAFERSET 34105200>:
The following slots have :INSTANCE allocation:
%ENTITY 12205944
NAME "splits-Fl"
TIME #<TIMEINTERVAL 35720060>
WAFER (#<WAFER 35720040>)
PARENT NIL
ADVICE NIL

(b)

#<LOT splits 34750700> is
Class LOT 34074240>:
The following slots have
%ENTITY
ID
LABUSER
CREATIONDATE
WAFERSET

STATUS
TASKS
STATUS_COMMENT
RESPONSIBLE_USER
TASKSTRUCTUREMODIFIED
TASKSTATUSMODIFIED
REPORT
35720220>
PRIORITY
READYTASKS
PROCESS INSTANCE

an instance of class #<Gestalt-

:INSTANCE allocation:
12080352
"splits"
#<LABUSER evren 34410000>
"103/24/94"
(#<WAFERSET splits-Fl 34750560>
#<WAFERSET splits-E5 34750600>
#<WAFERSET splits-F6 34663640>)
"ACTIVE"
(#<TASK GEN_1-EVREN 34750720>)
NIL
#<LABUSER evren 34410000>
#<TIME 35720240>
NIL
#<REPORTCACHE splits Traveller

"NORMAL"
(#<TASK RCA-CLEAN 35720200>)
#<PROCESSINSTANCE 35720160>

(c)

Figure 4-2: (a) Wafer, (b) Waferset, (c) Waferlot object instances

40

CHAPTER 4: APPROACH TO DESIGNRULE CHECKING

4.2.2 Check processing and update state

To maintain an accurate description of the wafer state at each processing node, it is

necessary to track the processing steps that are relevant to the design rules we are

checking for. For example, consider rule (4), "No Photoresist in Varian metallization

system". For this rule to function properly, the steps that deposited Photoresist and etched

Photoresist (if they existed) would have to have caused a change in the state of the wafers

that were identified as being processed at that step.

This is accomplished through what Wenstrand calls Qualitative Process Simulation in his

thesis [10]. Similar to the rule checking, the process simulation is table driven as well, so it

is possible to add or subtract the process steps that are monitored by the system,

depending on the rules being checked.

After the effective processing has been simulated, and the relevant aspects of the change in

wafer states have been recorded, this new wafer state is stored at that node of the

processing tree (Figure 4-3).

In effect, this provides a qualitative summary of the processing that those wafers have

undergone. This is very convenient, as once a flow has been checked in its entirety, each

node contains a description of the wafer state up to that point. Now, if a modification is

made in one of the sub processes, it is not necessary to check the flow from the beginning.

41

CHAPTER 4: APPROACH TO DESIGN RULE CHECKING

#<TASK METAL-DEPOSITION 35714460> is an instance of class

#<Gestalt-Class TASK 34102100>:

The following slots have :INSTANCE allocation:

%ENTITY 12277168

NAME "METAL-DEPOSITION"

LOT #<LOT eutestl 35720740>

WAFERSETS (#<WAFERSET eutestl-wl 35720720>

#<WAFERSET eutestl-w2 35720700>

#<WAFERSET eutestl-w3 35720660>

#<WAFERSET eutestl-w4 35720640>)

STATUS "PLANNED"

MACHINES

SCHEDULED_TIMEINTERVAL

FLOW

35714040>

SUBTASKS

35720500>

NIL

NIL

#<PROCESSFLOW METAL-DEPOSITION

(#<TASK ORGANIC-CLEAN&ETCH

#<TASK INSPECT-THICKNESS

35720460>

35720360

PLANOPI:

NEXT_LE

ADVICE

#<TASK SPUTTER-DEPOSIT

>)

NST NIL

AF_TASK NIL

"(:OPSET \ "mvarian\" :WAFERSTATE

((\"wl\" . #S(WAFER RESIST T METAL NIL))

(\"w2\ . #S(WAFER RESIST T METAL NIL))

(\"w3\" . #S(WAFER RESIST T METAL NIL))

(\"w4\" . #S(WAFER RESIST T METAL T))))"

Figure 4-3: Wafer state at each process node

42

CHAPTER 4: APPROACH TO DESIGN RULE CHECKING

4.2.3 Apply design rules

As mentioned earlier, the rule checking at each process node is table driven. Each rule in

the table is a constraint associating wafer state information and process step information.

The constraint is active just when the process step information matches the attributes of

the process step specified in the PFR. Thus only steps that are significant to the particular

design rule are taken into account.

If a constraint is not satisfied, an error is signaled. Unsatisfied constraints thus block

further execution of the process. If a design rule is violated, a warning message is

displayed, stating the design constraint, the predicate that caused it to fail, the wafer

affected, the name of the flow and the back-trace of the processing sequence to point out

where the problem occurred. See Figure 4-4 for an example of the warning messages.

4.2.4 Repeat in the body

The same steps described previously are repeated for every node of the processing tree.

The tree structure is in effect linearized, as the processing is inherently sequential. The

order in which the tree is traversed is top-down and left-to-right (Figure 4-5).

43

CHAPTER 4: APPROACH TO DESIGN RULE CHECKING

CAFE>(rules2 b)

Warning: NO-METAL-IN-RCA and METAL-PRESENT on wafer "wl" in
flow: "RCA-CLEAN"

TRACE: (EUTEST2 unnamed FLOW WELL-DRIVE RCA-CLEAN)

Warning: NO-METAL-IN-TUBES and METAL-PRESENT on wafer "wl"
in flow: "FURNACE-OPERATION"

TRACE: (EUTEST2 unnamed FLOW WELL-DRIVE FURNACE-OPERATION)

Warning: NO-METAL-IN-PIRANHA and METAL-PRESENT on wafer "w2"
in flow: "PIRANHA-CLEAN"

TRACE: (EUTEST2 unnamed FLOW PIRANHA-CLEAN-OPERATION
PIRANHA-CLEAN)

Warning: NO-METAL-IN-OXIDE and METAL-PRESENT on wafer "w3"
in flow: "OXIDE-BOE-ETCH"

TRACE: (EUTEST2 unnamed FLOW NITRIDE-WET-ETCH GENERIC-WET-
ETCH OXIDE-BOE-ETCH)

Warning: NO-METAL-IN-OXIDE and METAL-PRESENT on wafer "w4"
in flow: "OXIDE-BOE-ETCH"

TRACE: (EUTEST2 unnamed FLOW NITRIDE-WET-ETCH GENERIC-WET-
ETCH OXIDE-BOE-ETCH)

Warning: NO-METAL-IN-NITRIDE and METAL-PRESENT on wafer "w3"
in flow: "NITRIDE-WET-ETCH-OPERATN"

TRACE: (EUTEST2 unnamed FLOW NITRIDE-WET-ETCH GENERIC-WET-
ETCH NITRIDE-WET-ETCH-OPERATN)

Warning: NO-METAL-IN-NITRIDE and METAL-PRESENT on wafer "w4"
in flow: "NITRIDE-WET-ETCH-OPERATN"

TRACE: (EUTEST2 unnamed FLOW NITRIDE-WET-ETCH GENERIC-WET-
ETCH NITRIDE-WET-ETCH-OPERATN)

"EUTEST2"

CAFE>

Figure 4-4: Sample warning messages

44

CHAPTER 4: APPROACH TO DESIGNRULE CHECKING

Figure 4-5: Threading the tree

This is somewhat different from simply traversing the fringe tasks of the tree structure

(which is what is done to determine the next fabrication operation in CAFE, as in Figure

4-6).

Figure 4-6: Following the fringe tasks

45

CHAPTER 4: APPROACH TO DESIGNRULE CHECKING

It is possible that the parent node contains change in wafer state or treatment information

that is not specified in the child nodes. Therefore by choosing the first method, all of the

processing is accounted for.

4.3 Important Features

In this section various aspects of the design rule checking system are discussed.

4.3.1 Use of Database Objects

The PFR is a platform that may yet change in the future. So to be independent of the

current PFR syntax, and to be able to implement on-line monitoring, it was decided to use

the database representation of the flow objects instead of the textual representation

(Figure 4-7), providing greater flexibility.

Figure -4-7: Textual Process Flow

(fl-load "/usr/cafe/pfr/lib/lib-loc.fl")

(fl-library :database)

(fl-load "utils.fl")

(define EUTEST3

(flow

(:body

nitride-wet-etch

(oxide-boe-etch :ACID "7-lboe" :TIME 15 :TANK 2 :ADD-

TIME 900)

(resist-develop :RECIPE 20)

(resist-expose :MASK CD :MASK-ID "CD"

:DSWJOB "NEW DA CWR1" :INSTRUCTIONS"")

(resist-coat :INSTRUCTION ""))))

46

CHAPTER 4: APPROACH TO DESIGNRULE CHECKING

The database representation of an installed flow tree is shown Figure 4-8. The attributes

such as the sub-flows or the change in wafer state of the process flow are easily accessible

via the GESTALT layer commands described earlier in section 3.1.

#<PROCESSFLOW EUTEST3 34751260> is an instance of class

#<Gestalt-Class PROCESSFLOW 34077540>:

The following slots have :INSTANCE allocation:

%ENTITY 12053296

NAME "EUTEST3"

VERSION NIL

TIMEREQUIRED NIL

SUBFLOWS (#<PROCESSFLOW NITRIDE-WET-ETCH

34661340>

#<PROCESSFLOW OX

#<PROCESSFLOW RE

#<PROCESSFLOW RE

#<PROCESSFLOW RE

INSTRUCTIONS NIL

TREATMENT "NIL"

DOC NIL

CHANGEWAFERSTATE "NIL"

SETTINGS "NIL"

READINGS "NIL"

MACHINE "NIL"

ADVICE "(:FILE

\ "/amd/garcon/a/evren/pfr/eutest3. fl \

WAFERSETNAMES "NIL"

IDE-BOE-ETCH 34751020>

SIST-DEVELOP 34751000>

SIST-EXPOSE 34750760>

SIST-COAT 34750740>)

:NAME \"EUTEST3\")"

Figure 4-8: Installed Process Flow

47

CHAPTER 4: APPROACH TO DESIGN RULE CHECKING

4.3.2 Splits and Joins

In actual processing, especially in a research environment, there are often many splits in a

wafer lot. Frequently the operator will use certain settings for one batch of wafers, take

measurements, and based on the empirical results modify the recipe to obtain better results

for subsequent wafers.

Especially in long and complicated flows, the addition of complex splits can make it very

difficult for the operator to be fully aware of all the steps that all of the wafers are going

through, and the inter-relations of the process steps (see Figure 4-9 for an example of a

flow with many splits). This is exactly the kind of situation where the Design Rule

Checker will be of great assistance to the operators, as it can maintain and update the state

of each wafer in the lot.

48

CHAPTER 4: APPROACH TO DESIGN RULE CHECKING

(define GENSIMOX

(flow

(:wafers ("948" "960" "964"

"co"))

(:doc "Ge implanted NMOS on

(:version

(:modified :number 1.0 :by

1993"

"967" "968" "969" "B3" "B6"

SIMOX with Tsi splits")

"Quan Xiong" :date "Nov. 15,

:what "Create PFR"))

(:body

(flow

(:wafers ("960" "964" "967" "968" "969"))

(flow

(:wafers ("960" "964" "967"))

(dfieldl-lk :instructions "Wet 02 Time=20mins, recipe

114, use Tube B2 if possible" :names "110A-Field-Oxide"))

Figure 4-9: Excerptfrom aflow with many splits

4.3.3 Use of the Task Flow Tree structure

The Design Rule Checker can be used either with the process flow structure, or the task

flow structure. The task flow tree is initially isomorphic to the process flow tree, but

contains information more specifically related to the wafer lot being processed. See Figure

4-10 for an example of the task flow structure.

49

50CHAPTER 4: APPROACH TO DESIGN RULE CHECKING

This reflects the two distinct modes that the Design Rule Checker is meant to be used in:

the first, utilizing the process flow structure, can be thought of as a process design aid,

where it is used completely off-line, in the initial development stages of a process flow. By

checking the flow, the general well-formedness of the flow can be verified, and the user

can be warned if an illegal or incorrect process flow has been specified so that any

corrections that are needed can be made.

In the second mode, by utilizing the task flow structure, it is possible to use the design rule

checker in a more active way, during the actual processing of the wafers. This way a

higher level of laboratory integrity can be maintained, and depending on the policies of the

fabrication facility, design rule checking can be made mandatory before each step.

Figure 4-10: Example Task Flow structure

Chapter 5

5 OVERVIEW OF THE SOFTWARE

This chapter presents the software organization of the Design Rule Checker. One of the

main design principles of the Design Rule Checker was to separate the code as much as

possible into logical modules. For example, wafer-state manipulation functions are

independent of the design rule functions, and so on. Also rules themselves are separated

from the code. The advantage of this approach is that future improvements in one module

can go on without having to modify the other modules. Also, it makes the structure of the

program easier to understand for future developers.

5.1 Wafer representation

5.1.1 DRC-Wafer

A specialized representation of the wafer is stored as a CLOS [15] object to keep track of

the necessary state information. It is similar to a standard wafer type, but it has slots for

Photoresist and Metal states. These are binary states, which are either true or false. An

example drc-wafer (design-rule-check wafer) is seen in Figure 5-1.

51

CHAPTER 5: OVERVIEW OF THE SOFTWARE

Figure 5-1: Example drc-wafer

There are accessors defined that allow easy manipulation of the drc-wafer and its

attributes:

make-drc-wafer Create a new drc-wafer with default values

drc-wafer-resist Access the resist slot

drc-wafer-metal Access the metal slot

Table 5-1: Drc-wafer accessors

It is possible to change the value of the slot by using constructs such as:

(setf (drc-wafer-resist <drc-wafer>) t)

to change the value of the slot.

#<DRC-WAFER 56516000> is an instance of class #<Standard-
Class DRC-WAFER 35712420>:

The following slots have :INSTANCE allocation:

TIME 2977487318

CONCENTRATION 0.0

DOPANT NIL

ORIENTATION :11001

MATERIAL :SI

METALIZED NIL

RESIST NIL

52

CHAPTER 5: OVERVIEW OF THE SOFTWARE

5.1.2 Printed Representation

The drc-wafer structure is convenient as it provides a layer of abstraction and ease of

access to the storage and representation of the wafer state. However, it has one drawback:

It is not of a readable form in LISP, and consequently cannot be coerced into a string.

This proves to be important, because as described in Chapter 4, it is necessary to store the

wafer state information at each node of the process tree. The simplest place to store this

wafer state information is in the "advice" slot of the task structure. The advice slot

provides for general extensibility and is used by different programs to store various items

of information, such as the location of a traveller file (a summary of the processing steps),

or the name of a Statistical Process Control file. By convention, the advice slot is a

property list, that is, a list of name-value pairs. Each program reads and writes the

properties it knows about and leaves the rest untouched.

Since the advice field is a string, it is not possible to save the drc-wafer form there

directly. The solution is to use a structure which has been designed to be a simplified form

of the state information stored in the drc-wafer, and automatically has a readable printed

representation. The printed representation of a wafer structure is:

(#S WAFER RESIST NIL METAL NIL)

53

CHAPTER 5: OVERVIEW OF THE SOFTWARE

(xform-drc <drc-wafer>)

T'his function simply takes a CLOS wafer, which contains certain wafer state properties

(Figure 5-1) and converts to the structure, maintaining the same state information. Thus a

readable representation of the same information is obtained.

Note that the #S printed representation is used only to store the wafer state at the process

nodes. The internal calculations are based on the drc-wafer CLOS object, which is stored

in memory during the execution of the Design Rule Checker program.

The only time the #S printed representation is converted back to the drc-wafer object is

during the initialization of the wafer states at the beginning of the design rule checking. If

the flow has been previously checked (and consequently has wafer states stored at the

nodes in #S structure representation) then the drc-wafers are created using the saved (#S

representation) wafer state.

5.1.3 The Wafer List

The state of each wafer being processed in the lot is stored in the global variable *wafer-

list*, which looks something like:

54

CHAPTER 5: OVERVIEW OF THE SOFTWARE

CAFE>*wafer--1 i st*

(("wl"

. #<DRC-WAFER 5

("w2"

. #<DRC-WAFER 5

("w3"

. #<DRC-WAFER 5

("w4"

. #<DRC-WAFER 5

("w5"

. #<DRC-WAFER 5

6517320>)

6517300>)

6517260>)

6517240>)

6517560>))

Figure 5-2: Wafer list

At each node, after the specified subset of wafers undergoes the "Process Simulation", the

changes in the wafer state are stored back here.

5.2 Operation Wafers

The wafers that are to be operated on at each node of the process tree are stored in a

stack, called *op-wafers* (a global variable). The wafers of the current node are always at

the top of the stack, and by default the bottom of the stack is the list of all the wafers

included, or the wafer lot.

The way the *op-wafers* stack is updated depends on whether the Design Rule Checker

is being used to check process flows or task flows. For task flows, the process wafers for

55

CHAPTER 5: OVERVIEW OF THE SOFTWARE

each node are explicitly specified, therefore it is trivial to obtain them and push them on

the stack.

For process flows, however, the only indication comes from the (:wafers ...)

attribute in the flow. If this attribute does not exist, then it is assumed that the operation

wafers are the same as of the parent process. Put another way, in a process flow without

any splits in it, there would likely be no wafers specified at all in the PFR.

Therefore, while checking task flows, it is possible to obtain the initial lot of wafers

directly from the task tree, in the case of process flows it is necessary to have the user

specify them manually. When design rule checking process flows the user is first asked to

input the list of wafers:

"Please input list of wafers to be processed [ex: (wl w2)]"

This way the initial wafer lot is established, and operation wafers for subsequent nodes can

be established by inheriting wafers from the parent process if none are explicitly specified.

In the case of checking process flows, the program also verifies that the wafer list input by

the user are actually specified in the PFR.

5.3 Updating the Wafer State
The mechanism for performing the simple qualitative process simulation is as follows:

56

CHAPTER 5: OVERVIEW OF THE SOFTWARE

the processing steps that are relevant to the rules we are interested in checking are

identified. For the set of rules used here, only depositing photoresist, etching photoresist

and depositing metal are of importance (etching metal is not relevant because in the

current group of rules that have been implemented all of the metal-related rules only care

if a wafer has ever been metallized or not).

The wafer state operations are represented in the program in table form as function pairs

made up of a process predicate and a change wafer state operation, as in Table 5-2.

Process predicate Change wafer state operation

deposits-resist deposit-resist

etches-resist etch-resist

deposits-metal deposit-metal

Table 5-2: Wafer State

After the operation wafers for a processing node are determined, these wafer steps are

applied sequentially, and if the process predicate returns true for the processing node, then

the change wafer operation is invoked, which modifies the wafer state for the current

wafers.

Due to the simple table driven structure, it is easy to modify the wafer state operations

that are tracked.

57

58CHAPTER 5: OVERVIEW OF THE SOFTWARE

5.4 Program representation of the rules

The heart of the Design Rule Checker program, the design rules, are quite similar in

format to the wafer state operations used to update the wafer state. The program

representation of the list of rules that were identified in Chapter 1 are seen in table form in

Table 5-3.

Process step predicate BLOCKING wafer state predicate

1) resist-not-allowed resist-present

2) no-resist-in-RCA resist-present

3) no-resist-in-Nitride-Wet-Etch resist-present

4) no-resist-in-Varian resist-present

5) no-metal-in-RCA metal-present

6) no-metal-in-piranha metal-present

7) no-metal-in-oxide metal-present

8) no-metal-in-nitride metal-present

9) no-metal-in-tubes metal-present

10)no-quartz-in-varian failed

11l)need-oxide-before-nitride failed

12) must-have-coater-before-stepper failed

13)must-have-developer-after-stepper failed

14)must-have-bpsg-flow-after-dep failed

15)must-have-oxide-after-phos failed

16) must-have-pre-metal-clean failed

17) only-high-resistivity-in-a2 failed

18)only-thin-ox-in-a2 failed

19)cannot-enter-tube-Al-or-A2-after-Phos. failed

Table 5-3: Design Rules

CHAPTER 5: OVERVIEW OF THE SOFTWARE

The process step - blocking wafer state design rule pairs that are implemented in this table

can be divided into two major categories. The first group of rules (rules 1-8) depend on

the wafer state that has been simulated and recorded for the wafers. The second group of

rules (rules 9-19) depend only on the sequence of the processing steps. These rules are

independent of the processing the wafers have undergone, or the wafer state they are in.

Some of the rules, like rule (9), "Metallized wafers in tube B7 or B8 only" are specific to

the MIT Integrated Circuit Laboratory (ICL), and wouldn't be directly applicable to a

different fabrication facility. However, most of the rules have been implemented in a more

general fashion, based on processing fundamentals, and are facility-independent.

Note that it may appear that rules like (10) and (17) appear to be dependent on wafer

state. However, the relevant properties (whether it is made of quartz, or high resistivity

silicon in these cases) of the wafers do not change with processing. Therefore they do not

need to be tracked, and are determined from the wafertype attribute which specifies the

starting material (see section 4.2.1).

It should be also noted that the cost of implementing and integrating new design rules is

low. As can be seen in the program listings in Appendix B, each design rule module is

quite simple in itself One of the major goals of this project was to develop a general and

extensible framework for design rule checking, allowing for portability. Thus it is relatively

easy to customize the program for specific needs.

59

CHAPTER 5: OVERVIEW OF THE SOFTWARE 60

Mechanisms for locating the previous and next leaf tasks already exist in the system. These

can be commonly used by all of the design-rule modules. Consequently it is very simple to

design multi-level sequence related rules using simple logical operators such as AND, OR,

etc. By factoring in wafer state information even more advanced rules can be devised with

ease.

Chapter 6

6 INTEGRATION INTO CAFE

To make the Design Rule Checker a truly useful tool, it must be presented in a form that is

intuitive as well as simple to use. If it can only be used by people familiar with the

intricacies of LISP its appeal will be severely limited.

To this end, the first steps have been taken to integrate the Design Rule Checker into the

Computer Aided Fabrication Environment.

6.1 Command-line control

The most rudimentary interface to the Design Rule Checker is through the LISP Listener

in CAFE. For process flows, the Checker requires only the name of the installed flow, and

for task flows, the Checker requires the unique id. of the task. So a process flow or a task

can be checked by simply entering:

(rules <flow name>) or,

(rules2 <task eid>)

61

CHAPTER 6: INTEGRATIONINTO CAFE

The wafer state operations and the safety rules that are used by the program will be the

values of the variables *wafer-state* and *safety-rules*. The output will be any resulting

warning messages.

This method of using the program is very basic, and suitable for debugging purposes.

However it requires some knowledge of the underlying structure.

6.2 The Tree Editor

The Tree Editor is a program that was developed at MIT by Albert Woo as a generic

graphical tree editor for wafer processing using the Tcl/Tk command language and X11

toolkit [18]. It is meant to ease the process of composing and editing wafer fabrication

sequences using the PFR by providing a graphical interface.

It is currently possible to skip, delete, add or modify tasks using the Tree Editor. Adding a

Design Rule Checker option to the Tree Editor was a natural extension, as the already

existing functions for selecting and manipulating the task tree objects fit well with the style

in which the Design Rule Checker was intended to be used.

62

CHAPTER 6: INTEGRA TION INTO CAFE

Tree Editor--TASK mode
Click on the node to check

.. hl[''...........................

.:..: ::;- Edit
kDeleteip

Delete
Insert Tag
Insert Flow
Modify Field

A--
Click on the node to
check, then ACCEPT
ACCEPT CANCEL

Toggle lines
·· · · · · · · · · · · · · · · · ·.,

,n-m s~ara

Figure 6-1: Example of task tree

_

Quit

___ 111-11.1_ __'_ ~I

1

63

L~i~i
REEBOK

EMSIMIM -�·9�L�EI·

_G28MMEEM

LMMMM1

LMMMM~~~?I

CHAPTER 6: INTEGRA TION INTO CAFE

The communication link between the Tree Editor and the Design Rule Checker is very

simple. The only information passed from the Task Tree is the unique identifier of the task

to be checked.

To invoke the Design Rule Checker program through the Tree Editor, the user must first

load the task tree to be checked. The Rule Check option is located under the Edit menu,

and clicking on it will prompt the user to pick the node to start the checking from. The

first time the check is performed, it must be done from the root of the tree, in order to

ensure correct wafer state information. Now, if the user decides to modify certain

parameters, insert or delete steps, it is possible to only check the branches of the tree that

will be affected by the changes without having to recompute everything.

6.3 Automatic checking

Another, more integrated way in which the Design Rule Checker can function is through

automatic checking of the process flows that are being fabricated.

The obvious places this can be done are at "Start-Lot" time, when a process flow and a

wafer lot are merged to create a task tree and begin fabrication, and at "Operate-Machine"

time, i.e., before each machine operation is performed.

These issues depend mainly on the policies and goals of the fabrication facility.

64

Chapter 7

7 CONCLUSION

The Design Rule Checker project as described in this thesis is available to the CIDM

personnel for testing. The initial reactions from the faculty, staff and graduate students

who have seen the program have been very positive and encouraging. It is considered that

the Design Rule Checker will be a useful tool. However, the real test will be whether it

actually proves to be useful in the day to day operations of the fab.

7.1 Contributions

A rule based design rule checker has been developed for use with the MIT Process Flow

Representation. Previous to this program the only way to check the validity of a process

flow recipe was to do it manually, in a time consuming and tedious fashion. From the

point of the Computer Aided Fabrication Environment project, the Design Rule Checker is

a natural extension and fulfills an existing requirement.

One of the most important aspects of this program which is different from other design

rule checkers is that it is possible to use it for on-line fabrication monitoring. The Process

65

CHAPTER 7: CONCLUSION

Design Aid described in Wenstrand's thesis and the Hitachi Rule-Based Process Flow

Validation System are limited in their scope in that they can only be used in the initial

creation stages of the process flow development operation.

By enabling on-line fabrication monitoring, more realistic design rule checking is possible,

as every modification made up to the point of actually fabricating the device is accounted

for. In addition, the possibility of compromising the actual safety and integrity of the

facilities and personnel are reduced to a minimum.

At the MIT Integrated Circuits Laboratory, only roughly half of the lots that are processed

are processed using the Process Flow Representation. At Lincoln Labs, however, all lots

use the PFR. Over the past year, graphical tools such as the Task Tree Editor and the

Flow Tree Editor have made the user interface to developing flows much simpler. This has

encouraged people previously intimidated by the LISP-like appearance of process flows to

use the PFR. It is hoped that the process design aid aspect of the Design Rule Checker

will contribute to the usefulness and ease of PFR-based fabrication.

7.2 Future work

In its current state the Design Rule Checker is an independent program that, when called

with a process flow tree or a task flow tree, outputs a series of warning messages. A

working model and framework for design rule checking within the CAFE system have

66

CHAPTER 7: CONCLUSION

been demonstrated. However, this does not mean that this project should be viewed as

completed. There are many improvements and extensions that should be considered.

7.2.1 Optimization

There is room for improvement and optimizations in the program code. Though

acceptable for most applications if considered a one-time computational cost, depending

on the complexity of the flow, the number of splits & joins, and the number of rules being

checked, the computation can take a long time. For example, the Defect Array (DA) flow,

which is considered to be the longest flow implemented under the PFR at the MIT ICL,

takes around ten minutes to check on a Sun SPARC station 10 under average load.

It is typically difficult to determine which operations take the most time to compute

without performing careful benchmark analyses. If one tries to optimize the code simply

by attacking the areas that are assumed to be slow, chances are that the initial guesses

were wrong. Having said this though, possible improvements might come from minimizing

and caching the database accesses, and simplifying the algorithm for updating the wafer

state for multiple wafers going through the same processing.

7.2.2 Further Integration into CAFE

As described in Chapter 6, it is possible to invoke the Design Rule Checker from within

the Task Tree Editor. This is an example of the direction that should be followed in further

integration into the CAFE system.

67

CHAPTER 7: CONCLUSION

A simple graphical front end needs to be implemented to select the basic parameters for

the design rule check. This would include a browser for the rules that were being checked,

their descriptions, etc. For example, if a person only processes silicon wafers it is not

necessary to check for rules such as (10), "No fused quartz wafers in the Varian

metallization system". Hooks should be placed in the Flow Tree Editor so that the rule

checker can be invoked from there as well.

To take full advantage of the on-line fabrication monitoring, performance-functionality

trade-offs need to be investigated to determine the optimal method for design rule

checking. Some issues include whether the rules are checked at "Operate machine" time,

or "Start Lot" time, etc.

7.2.3 Expanded functionality

As it exists now the Design Rule Checker has a library of 18 rules. In comparison, the

Hitachi Process Flow Validation System has over 180, including highly specialized rules

that take into account factors such as differences in hardness, thickness and other

properties of materials. Obviously there are many more rules that can be added to the

Design Rule Checker's existing ones, that will further increase the program's functionality.

As the rules were separated from the body of the program in a logically distinct way, it is

quite easy to add more rules to the system.

68

CHAPTER 7: CONCLUSION 69

Future work can also include more aggressive functionality in the system. Currently the

design rule checking is only a passive mechanism which issues warning messages. In

Steele's thesis on constraint based programming, constraints are also seen to have an

active role in addition to a declarative role. In this sense, the Design Rule Checker could

be expanded to actually change and repair flows that did not pass the rules.

Appendix A

DEVELOPER'S GUIDE

The Design Rule Checker has been developed in an extensible and open-ended manner.

Consequently the difficulty of developing new rules to add to the existing library is

relatively low. The specifics of the information required are presented in this section.

A.1 How to add a rule

It is very straightforward to add a new rule to the Design Rule Checker. It is only

necessary to append the new rule to the existing ones in the *safety-rules* table. Detailed

knowledge of the program is not necessary.

A.1.1 The Structure of the Safety Rules

The program representation of the rules are stored in the global variable *safety-rules*, as

described in section 5-4. Each rule consists of a process step predicate and a wafer state

operation predicate that blocks (in effect violates) the rule.

70

APPENDIX A: DEVELOPER 'S GUIDE

The process step predicate and the wafer step predicate are functions that have been

defined to check for a certain rule. The process step predicate is called with the current

flow-node that is being checked. For example, for rule (1), "No photoresist in diffusion

tubes" the process step predicate is resist-not-allowed. To check this rule, the

fiunction

(resist-not-allowed <task/flow>)

is called at each node of the tree. This function checks whether the operation at that node

involves a diffusion tube. If not, it returns NIL, and the next rule is called. If it is indeed a

diffusion tube operation, then it returns TRUE.

When a process step predicate returns a value of TRUE, the corresponding wafer step

predicate is automatically called. The wafer step predicate is called with the current wafers

being processed. In this case:

(resist-present <wafer>)

will be invoked. This checks the current state of the operation wafer, and if it returns

TRUE, then the rule has been violated, and an error message will be generated.

The error message is generated by combining the names of the process step predicate and

wafer step predicate along with wafer and flow location information, therefore it is

advisable to remain consistent in naming the functions to define the rules.

71

71

APPENDIXA: DEVELOPER 'S GUIDE

To incorporate the rule into the list of rules to be checked, it is sufficient to simply append

the new rule to the list of current safety rules. The order is not important.

A.1.2 The Structure of the Wafer State operations

The wafer state operations used to track the qualitative process simulation undergone by

the wafers are structured very similarly to the safety rules. They consist of a process

predicate and a change wafer state operation. The process predicate is a function called

with a flow node, and the change wafer operation is a function called with a wafer

representation. To simulate metal deposition on a wafer, for example, the function

(deposits-metal <task/flow>)

would be called. Similarly, if it returns TRUE, then the function to modify and update the

wafer state will be called:

(deposit-metal <wafer>)

As with the safety rules, to add new wafer state operations it is sufficient to append the

new process predicate/change wafer operation pairs to the current list (*wafer-state*).

72

72

APPENDIXA: DEVELOPER'S GUIDE

A.2 Additional Wafer State

In the future if there is a need for rules that require wafer state information that is not

currently tracked (i.e. other than resist and metal), the drc-wafer CLOS object can be

modified to meet the demands.

The current representation is derived from the simwafer class:

(defclass drc-wafer (simwafer)

((resist :initform nil :initarg :resist :accessor drc-wafer-resist)

(metalized :initform nil :initarg :metal :accessor drc-wafer-metal)))

The corresponding printed representation can be modified in an analogous manner.

73

73

Appendix B

PROGRAM CODE

(in-package :cafe)
(require :fl "fl")

(export '(rules))

;;; (Adapted from Duane Boning's drc-resist)

(defun rules2 (flow-op)
(declare (special *wafer*) ;needed by core flow evaluator

(special *operation-trace*)
(special *the-flow*)
(special *has-seen-photo-step*)
(special *wafer-list*))

(setf *wafer* (make-drc-wafer))
(setf *op-wafers* (list (get-wafers2 flow-op)))
(if (task-waferstate flow-op)

(setf *wafer-list* (initialize-wafer-list flow-op))
(setf *wafer-list* (make-wafers)))

(setf *operation-trace* nil)
(setf *the-flow* flow-op)
(setf *has-seen-photo-step* nil)
(rules-interp flow-op))

;; We use a specialized representation of the wafer to keep track of a
;; few pieces of state information needed for the design rule checks.

(defclass drc-wafer (simwafer)
((resist :initform nil :initarg :resist :accessor drc-wafer-resist)
(metalized :initform nil :initarg :metal :accessor drc-wafer-metal)))

(defun make-drc-wafer (&rest args &key resist &allow-other-keys)
(declare (ignore resist))
(apply #'make-instance 'drc-wafer args))

74

APPENDIX B: PROGRAM CODE 75

;; Uses the following information from the flow representation:
Resist state

;; :cws :deposit - to add resist
;; :cws :etch - to remove resist

(defun rules-interp (op-object)
(declare (special *operation-trace*))
(let ((op-name (task-name op-object)))
(if op-name (push op-name *operation-trace*))
(cond ((null op-object) nil)

(t
;; get the list of wafers, or pass down previous

(push (get-operation-wafers2 op-object) *op-wafers*)
; check if wafers actually specified initially
; (check-if-wafers-specified) ;don't need if used under task-
mode

(check-wafer-steps op-object)
(check-op-loop op-object (first *op-wafers*))
(update-advice-waferstate op-object) ;add waferstate to advice

slot
go into the body, if it exists

(if (task-subtasks op-object)
(dolist (op-part (task-subtasks op-object))

(rules-interp op-part)
(pop *op-wafers*)))))

(if op-name (pop *operation-trace*))))

LOOP FOR CHECKING *WAFER-STEPS*

(defun check-wafer-steps (form)
(let ((i 0))

(loop
(if (= i (list-length *wafer-steps*)) (return))
(let ((op (nth i *wafer-steps*)))
(check-wafer-process form op (first *op-wafers*)))

(setf i (1+ i)))))

(defun check-wafer-process (form op wafers)
(let ((process-result (funcall (step-predicate op) form)))

(if process-result
(update-wafer-processing op wafers))))

(defun update-wafer-processing (op wafers)
(let ((i 0))
(loop
(if (= i (list-length *wafer-list*)) (return))
(if (member (car (nth i *wafer-list*))

wafers :test #'string-equal)
(funcall (step-wafer-op op) (nth i *wafer-list*)))

(setf i (1+ i)))))

.,

APPENDIX B: PROGRAM CODE 76

;; LOOP FOR CHECKING *SAFETY-RULES*

(defun check-op-loop (form wafers)
(let ((i 0))
(loop
(if (= i (list-length *safety-rules*)) (return))
(let ((rule (nth i *safety-rules*)))
(check-operation form rule wafers))

(setf i (1+ i)))))

(defun check-operation (form rule wafers)
(let ((i 0))

(loop
(if (= i (list-length *wafer-list*)) (return))
(let ((the-wafer (nth i *wafer-list*)))
(if (member (car the-wafer)

wafers :test #'string-equal)
(let ((process-mesg (funcall (rule-process-predicate rule)

form)))
(if process-mesg

(let ((wafer-mesg (funcall (rule-wafer-predicate rule)
the-wafer)))

(if wafer-mesg
(progn
(format t "Warning: -A and -A on wafer -S in flow:

-(rule-process-pS-%redicate rule)"
(rule-process-predicate rule)
(rule-wafer-predicate rule)
(car the-wafer)
(task-name form)) ;was fl-name

(format t "TRACE: -A-%-%"
(reverse *operation-trace*)))))))))

(setf i (1+ i)))))

;Used only for the Flow-Mode (not Task-Mode)
(defun get-wafers ()
(declare (special *op-wafers*))
(format t "Please input list of wafers to be processed [ex: (wl

w2)]-%")
(setf *op-wafers* (list (read))))

for Task-Mode
(defun get-wafers2 (form)
(declare (special *op-wafers*))
(setf *op-wafers* (get-operation-wafers2 form)))

(defun make-wafers ()
(declare (special *wafer-list*))
(setf *wafer-list*

(mapcar #'(lambda (x) (cons x (make-drc-wafer)))
(first *op-wafers*))))

;use this to init. the *wafer-list* if processing starts somewhere down
the
;tree where the wafer properties may have changed
(defun initialize-wafer-list (task)I

APPENDIXB: PROGRAM CODE 77

(let* ((waferstates (task-advice-waferstate task)))
(setf *wafer-list* (mapcar #'initialize2 waferstates))))

(defun initialize2 (tagged-s)
(let* ((id (car tagged-s))

(ss (cdr tagged-s)))
(cons id

(make-drc-wafer :resist (wafer-resist ss)
:metal (wafer-metal ss)))))

(defun get-operation-wafers2 (op-object) ; gets wafers from
tasks

(let* ((waferset (task-wafersets op-object))
(wafers (mapcar #'waferset-wafers waferset))
(wafers2 (flatten2 wafers))
(laserids (mapcar #'wafer-laserid wafers2))
(laserids2 (remove-duplicates laserids)))

laserids2))

;Used only for Flow-Mode
(defun check-if-wafers-specified ()

(let ((j 0))
(loop
(if (= j (list-length (first *op-wafers*))) (return))
(let ((all-wafers (first (reverse *op-wafers*))))

(if (not (member (nth j (first *op-wafers*))
all-wafers :test #'string-equal))

(progn (format t "Warning: Wafer -A not specified
initially.-%-%" (nth j (first *op-wafers*)))

(format t "TRACE: -A-%-%" (reverse *operation-trace*)))))
(setf j (1+ j)))))

;; #S wafer state for the task-advice slot representation
;; ______________________

(defstruct wafer resist metal)

(defun yap (x)
(cons x (make-wafer)))

(defun make-them-wafers (task)
(mapcar #'yap (get-operation-wafers2 task)))

(defun task-advice-waferstate (task)
(let* ((advice (task-advice task)))
(advice-slot-value advice :waferstate)))

;convert the drc-wafer representation to the #S notation w/ xform
(defun xform-drc (drc-wafer)
(make-wafer :resist (drc-wafer-resist drc-wafer)

:metal (drc-wafer-metal drc-wafer)))

(defun xform2 (named-wafer)
(cons (car named-wafer)

__

APPENDIX B: PROGRAM CODE 78

(xform-drc (cdr named-wafer))))

(defun xform (wafer-list)
(mapcar #'xform2 wafer-list))

(defun update-advice-waferstate (task)
(let ((waferstate (xform *wafer-list*)))
(set-task-waferstate task waferstate)))

,,,,,;;,,,,,,,,,,,,,,,,;;
;; *WAFER-STEPS* that are traced to update the wafer state ;;

;; ;;

(defvar *wafer-steps*

;; process predicate change wafer op

'((deposits-resist deposit-resist)
(etches-resist etch-resist)
(deposits-metal deposit-metal)))

(defun rule-process-predicate (rule) (car rule))
(defun rule-wafer-predicate (rule) (cdr rule))

(defun step-predicate (step) (car step))
(defun step-wafer-op (step) (cdr step))

; deposits-resist

(defun deposits-resist (task)
(let* ((form (task-flow task))

(chws (change-wafer-state form)))
(if chws

(if (listp (first chws))
(let ((flat-chws (flatten chws)))
(member t (mapcar #'resist-check-c flat-chws)))

(resist-check-c chws)))))

(dolist (op-part chws)
(resist-check op-part))

(resist-check chws)))))

(defun resist-check-c (chws)
(cond ((and (listp chws) (keywordp (first chws)))

(let ((cws-primitive (first chws)))
(cond ((eq cws-primitive :deposit)

(resist? (fl-form-keyvalue :material chws))))))))

(defun deposit-resist (wafer)

APPENDIX B: PROGRAM CODE

(setf (drc-wafer-resist (cdr wafer)) t)
(setf *has-seen-photo-step* t))

(defun resist? (material)
(cond ((or (eq material :resist)

(eq
(eq
(eq
(eq
(eC
(ec
(eq

material
material
material
material
material
material
material

; this is for rule#16

:positive-resist)
:negative-resist)
:exposed-positive-resist)
:exposed-negative-resist)
:developed-positive-resist)
:developed-negative-resist)
:baked-resist)

(string-equal material "Kodak 820"))
material)
(t nil)))

; etches-resist

(defun etches--resist (task)
(let* ((form (task-flow task))

(chws (change-wafer-state form)))
(if chws

(if (listp (first chws))
(let ((flat-chws (flatten chws)))
(member t (mapcar #'etch-check

(etch--check chws)))))
flat-chws)))

(defun etch-check (chws)
(cond ((and (listp chws) (keywordp (first chws)))

(let ((cws-primitive (first chws)))
(cond ((eq cws-primitive :etch)

(resist? (fl-form-keyvalue :material chws))))))))

(defun etch-resist (wafer)
(setf (drc-wrafer-resist (cdr wafer)) nil))

; deposits-metal

(defun deposit:s-metal (task)
(let* ((form (task-flow task))

(chws (change-wafer-state form)))
(if chws

(if (listp (first chws))
(let ((flat-chws (flatten chws)))
(member t (mapcar #'metal-check

(metal-check chws)))))
flat-chws)))

(defun metal-check (chws)
(cond ((and (listp chws) (keywordp (first chws)))

(let ((cws-primitive (first chws)))
(cond ((eq cws-primitive :deposit)

(metal? (fl-form-keyvalue :material chws))))))))

<defun deposit-metal (wafer)
(setf (drc-wafer-metal (cdr wafer)) t))

__ ·

79

80.APPENDIXB: PROGRAM CODE

(defun metal? (material)
(cond ((or (eq material :aluminum)

(eq material :gold)
(eq material :silver)
(string-equal material "metal")
(string-equal material "aluminum")
(string-equal material "gold")
(string-equal material "silver"))

material)
(t nil)))

; t
; *SAFETY-RULES* that are being checked ;
; =====================================

(defvar *safety-rules*

;; process step predicate
BLOCKS

'((resist-not-allowed

(ever-metallized-not-allowed
(uses-tube
(metal-not-allowed
(polyimide-not-allowed

waiting for spec from linus
; (no-hi-phos-allowed
; (uses-thin-ox-tube

; ((and uses-thin-ox-tube not-thin

wafer state predicate THAT

resist-present)))

ever-metallized)
phosphorus-doped-oxide-present)
metal-present)

polyimide-present)

hi-conc-phos-present)
not-hi-resistivity-si-surface)

L-ox) . nil)))

;; predicates that block:
;; - - _ _ _ _

(defun resist-present (wafer)
(drc-wafer-resist (cdr wafer)))

(defun metal-present (wafer)
(drc-wafer-metal (cdr wafer)))

(defun failed (anything) t)

;; routines for PhotoResist related *safety rule*Is

i

r

r

r

.;

I

I

I

I

I

81A PPENDIX B: PROGRAM CODE

;; (1) No PR in Diffusion Tubes

;; (resist.-not-allowed resist-present)

(d.efun resist-not-allowed (task)
(let* ((form. (task-flow task))

(trmt (treatment form)))
(if trmt

(if (listp (first trmt))
(let ((flat-trmt (flatten trmt)))
(mapcar #'resist-check-t flat-trmt))

(resist-check-t trmt)))))

(defun resist-check-t (treatment)
(cond ((and (listp treatment) (keywordp (first treatment)))

(let ((treatment-primitive (first treatment)))
(eq treatment-primitive (or :furnace

:thermal))))))

(defun flatten (crap)
(if (listp crap)

(if (listp (first
(apply #'append

(list crap))))

(defun flatten2 (crap)
(if (listp crap)

(if (listp (first
(apply #'append

crap)))

crap))
(mapca

crap))
(mapca

(2) No PR in RCA Clean

(no-resist--in-RCA

Lr #'flatten crap))

Lr #'flatten2 crap))

resist-present)

:defun no-resist-in-RCA (task)
(let* ((mach (task-machines task))

(result: (mapcar #'rca? mach)))
(if (member t result) t)))

(defun rca? (machine)
(let ((name (machine-name machine)))

(if (string-equal name "rca") t)))

; (3) No PR in Nitride Wet Etch

; (no-resist--in-Nitride-Wet-Etch . resist-present)

(defun no-resist-in-Nitride-Wet-Etch (task)
(let* ((mach (task-machines task))

(result (mapcar #'nitride? mach)))
(if (member t result) t)))

(defun nitride? (machine)
(let ((name (machine-name machine)))

(if (strinLg-eqtaldeame "nitride") t)))

- - X

S |_I _

APPENDIX B: PROGRAM CODE

;; (4) No PR in Varian Metallization System;; -=================
;; (no-resist-in-Varian resist-present)

(defun no-resist-in-Varian (task)
(let* ((mach (task-machines task))

(result (mapcar #'varian? mach)))
(if (member t result) t)))

(defun varian? (machine)
(let ((name (machine-name machine)))
(if (string-equal name "varian") t)))

;; routines for Metal related *safety rule*'s
..__

(5) No Metal in RCA Clean

(no-metal-in-RCA metal-present)

(defun no-metal-in-RCA (task)
(let* ((mach (task-machines task))

(result (mapcar #'rca? mach)))
(if (member t result) t)))

;rca? defined in rule#2

;; (6) No Metal in Piranha Clean

;; (no-metal-in-piranha metal-present)

(defun no-metal-in-piranha (task)
(let* ((mach (task-machines task))

(result (mapcar #'piranha? mach)))
(if (member t result) t)))

(defun piranha? (machine)
(let ((name (machine-name machine)))
(if (string-equal name "pre-metal") t)))

(7) No Metal in Oxide Etch

(no-metal-in-oxide metal-present)

(defun no-metal-in-oxide (task)
(let* ((mach (task-machines task))

(name (task-name task))
(result (mapcar #'oxide? mach)))

(if (and (member t result)
(not (string-equal name "FINAL-RINSE")))

t)))

82

;;

;;

;;
,,
;;
;;

APPENDIX B: PROGRAM CODE 83

(defun oxide? (machine)
(let ((name (machine-name machine)))
(if (string-equal name "oxide") t)))

;;
;; (8) No Metal in Nitride Wet Etch;; -- __
;; (no-metal-in-nitride metal-present)

(defun no-metal-in-nitride (task)
(let* ((mach (task-machines task))

(result (mapcar #'nitride? mach)))
(if (member t result) t)))

(defun nitride? (machine)
(let ((name (machine-name machine)))

(if (string-equal name "nitride") t)))

;;
;; (9) Metal only allowed in tubes B7, B8 (= No Metal in /tubeB7,
/'tubeB8)

;; (no-metal-in-tubes metal-present)

(defun no-metal-in-tubes (task)
(let* ((mach (task-machines task))

(result (mapcar #'tubes? mach)))
(if (member t result) t)))

(defun tubes? (machine)
(let ((name (machine-name machine)))
(if (and (typep machine 'furnace)

(not (or (string-equal name "tubeB7")
(string-equal name "tubeB8"))))

t)))

;; (10) No Quartz Wafers in Varian Metallization System

(no-quartz-in-varian failed)

(defun no-quartz-in-Varian (task)
(let* ((mach (task-machines task))

(result (mapcar #'varian? mach))) ;varian? defined in (4)
(if (member t result)
(check-for-quartz task))))

(defun check-for-quartz (task)
(let* ((wsets (task-wafersets task))

(result (mapcar #'check2 wsets)))
(if (member "quartz" result :test #'string-equal) "quartz")))

(defun check2 (wset)
(let ((wafers (waferset-wafers wset)))
(if (member "quartz" (mapcar #'check3 wafers) :test #'string-equal)

"quartz")))

84APPENDIX B: PROGRAM CODE

(defun check3 (wafer)
(let* ((type (wafer-type wafer))

(name (wafertype-name type)))
name))

;; routines for Sequence related *safety rule*'s I
... __-

;; these rules are independent of wafer state

;; (11) Must have oxide etch prior to nitride wet etch

(need-oxide-before-nitride failed)

(defun need-oxide-before-nitride (task)
(let* ((mach (task-machines task))

(result (mapcar #'nitride? mach)))
(if (member t result)
(failed-oxide-before-nitride task))))

;nitride defined in (8)

(defun failed-oxide-before-nitride (task)
(let* ((prevl (first (task-prev_leaf_tasks task)))

(prev2 (if prevl
(first (task-prev_leaf_tasks prevl))

nil))
(mach-pl (if prevl (task-machines prevl) nil))
(mach-p2 (if prev2 (task-machines prev2) nil)))

(if (not (or (member t (mapcar #'oxide? mach-pl))
i.n (7)

t)))

;oxide defined

(and (member t (mapcar #'oxide? mach-p2))
(member t (mapcar #'inspection? mach-pl)))))

(defun inspection? (machine)
(let ((name (machine-name machine)))
(if (or (string-equal name "ellipsometer")

(string-equal name "nanospec"))
t)))

;; (12) Wafers must go through Coater prior to Stepper

;; (must-have-coater-before-stepper failed)

(defun must-have-coater-before-stepper (task)
(let* ((mach (task-machines task))

(result (mapcar #'stepper? mach)))
(if (member t result)
(failed-coater-before-stepper task))))

(defun stepper? (machine)
(let ((name (machine-name machine)))

APPENDIXB: PROGRAM CODE 85

(if (string-equal name "stepper") t)))

(defun failed-coater-before-stepper (task)
(let* ((prevl (first (task-prev_leaf_tasks task)))

(prev2 (if prevl (first (task-prev_leaf_tasks prevl)) nil))
(mach-pl (if prevl (task-machines prevl) nil))
(mach-p2 (if prev2 (task-machines prev2) nil)))

(if (not (or (member t (mapcar #'coater? mach-pl))
(and (member t (mapcar #'coater? mach-p2))

(member t (mapcar #'inspection? mach-pl)))))
t)))

(defun coater? (machine)
(let ((name (machine-name machine)))
(if (string-equal name "coater") t)))

;;
;; (13) Wafers must go through Developer following Stepper

;; (must-have-developer-after-stepper failed)

(defun must-have-developer-after-stepper (task)
(let* ((mach (task-machines task))

(result (mapcar #'stepper? mach))) ;stepper defined in (12)
(if (member t result)
(failed-coater-before-stepper task))))

(defun failed-coater-before-stepper (task)
(let* ((nextl (first (task-next_leaf_tasks task)))

(next2 (if nextl (first (task-next_leaf_tasks nextl)) nil))
(mach-nl (if nextl (task-machines nextl) nil))
(mach-n2 (if next2 (task-machines next2) nil)))

(if (not (or (member t (mapcar #'developer? mach-nl))
(and (member t (mapcar #'developer? mach-n2))

(member t (mapcar #'inspection? mach-nl)))))
t)))

(defun developer? (machine)
(let ((name (machine-name machine)))
(if (string-equal name "developer") t)))

;; (14) BPSG deposition must be followed by BPSG flow

(must-have-bpsg-flow-after-dep failed)

(defun must-have-bpsg-flow-after-dep (task)
(let* ((mach (task-machines task))

(result mapcar #'BPSG? mach))
(super (task-supertask task))
(super-name (if super (task-name super) nil)))

(if (and (member t result)
(not (string-equal super-name "LTO-DEPOSITION")))

(failed-bpsg task))))

(defun BPSG? (machine)
(let ((name (machine-name machine)))

- -

APPENDIXB: PROGRAM CODE 86

(if (string-equal name "tubeA8") t)))

(defun failed-bpsg (task)
(let* ((next: (first (task-next_leaf_tasks task)))

(next2 (if nextl (first (task-next_leaf_tasks nextl)) nil))
(mach-n: (if nextl (task-machines nextl) nil))
(mach-n2 (if next2 (task-machines next2) nil)))

(if (not (or (member t (mapcar #'BPSG-flow? mach-nl))
(and (member t (mapcar #'BPSG-flow? mach-n2))

(member t (mapcar #'inspection? mach-n)))))
t)))

(defun BPSG-flow? (machine)
(let ((name (machine-name machine)))
(if (string-equal name tubeB6") t)))

(15) Must have oxide etch following Phos. Dep

; ; (must-have-oxide-after-phos failed)

(defun must-have--oxide-after-phos (task)
(let* ((mach (task-machines task))

(result (mapcar #'Phos-dep? mach)))
(if (member t result)

(failed-oxide-before-phos task))))

(defun Phos-dep? (machine)
(let ((name (machine-name machine)))

(if (string-equal name "tubeA4") t)))

(defun failed-oxide-before-phos (task)
(let* ((nextl (first (task-next_leaf_tasks task)))

(next2 (if nextl (first (task-next_leaf_tasks nextl)) nil))
(mach-nl (if nextl (task-machines nextl) nil))
(mach-n2 (if next2 (task-machines next2) nil)))

(if (not (or (member t (mapcar #'oxide? mach-nl))
(and (member t (mapcar #'oxide? mach-n2))

(member t (mapcar #'inspection? mach-nl)))))
t)))

;; (16) Wafers must have pre-metal clean before metallization if ever
preceeded by a photo step

(must-have-pre-metal-clean failed)

(defun must-have-pre-metal-clean (task)
(if (and (deposits-metal task)

has-seen-photo-step)
(no-pre-imetal-clean task)))

(defun no-pre-In:metal-clean (task)
(let* ((prev:l (first (task-prev_leaf_tasks task)))

(prev2 (first (task-prev_leaf_tasks prevl)))
(mach-pl (task-machines prevl))
(mach-p2 (task-machines prev2)))

APPENDIX B: PROGRAM CODE 87

(if (not (or (member t (mapcar #'pre-metal? mach-pl))
(and (member t (mapcar #'pre-metal? mach-p2))

(member t (mapcar #'inspection? mach-pl)))))
t)))

(defun pre-metal? (machine)
(let ((name (machine-name machine)))
(if (string-equal name "pre-metal") t)))

;; (17a) Only high-resistivity (> lohm/cm) Si in tube A2

(only-high-resistivity-in-a2 failed)

(defun only-high-resistivity-in-a2 (task)
(let* ((mach (task-machines task))

(result (mapcar #'tubeA2? mach)))
(if (member t result)
(check-resistivity task))))

(defun check-resistivity (task)
(let* ((wsets (task-wafersets task))

(result (mapcar #'check-res2 wsets)))
(if (member t result) t)))

(defun check-res2 (wset)
(let ((wafers (waferset-wafers wset)))

(if (member t (mapcar #'check-res3 wafers)) t)))

(defun check-res3 (wafer)
(let* ((type (wafer-type wafer))

(epi-res (wafertype-epi_resistivity type))
(sub-res (wafertype-substrate_resistivity type))
(resistivity (if epi-res epi-res sub-res))
(result (floatinterval-lower resistivity)))

(if (< result 1) t)))

;; (17b) Only thin oxide growth in tube A2

;; (only-thin-ox-in-a2 failed)

(defun only-thin-ox-in-a2 (task)
(let* ((mach (task-machines task))

(result (mapcar #'tubeA2? mach)))
(if (member t result)
(check-oxide-thickness task))))

(defun check-oxide-thickness (task)
(let* ((form (task-flow task))

(chws (change-wafer-state form)))
(if chws

(if (listp (first chws))
(let ((flat-chws (flatten chws)))
(member t (mapcar #'cot2 flat-chws)))

(cot2 chws)))))

APPENDIXB: PROGRAM CODE

(defun cot2 (chws)
(cond ((and (listp chws) (keywordp (first chws)))

(let ((thick (fl-form-keyvalue :thickness chws)))
(if thick

(let ((thick2 (inexact-mean thick)))
(> thick2 500)))))))

(defun tubeA2? (machine)
(let ((name (machine-name machine)))

(if (string-equal name "tubeA2") t)))

;;
;; (18) Wafers should not go directly into tube Al or A2 after Phos.

;; (cannot-enter-tube-Al-or-A2-after-Phos failed)

(defun cannot-enter-tube-Al-or-A2-after-Phos (task)
(let* ((mach (task-machines task))

(result (mapcar #'Phos-dep? mach)))
(if (member t result)
(failed-Al-or-A2 task))))

(defun Phos-dep? (machine)
(let ((name (machine-name machine)))

(if (string-equal name "tubeA4") t)))

(defun failed-Al-or-A2 (task)
(let* ((nextl (first (task-next_leaf_tasks task)))

(next2 (if nextl (first (task-next_leaf_tasks nextl)) nil))
(next3 (if next2 (first (task-next_leaf_tasks next2)) nil))
(mach-nl (if nextl (task-machines nextl) nil))
(mach-n2 (if next2 (task-machines next2) nil))
(mach-n3 (if next3 (task-machines next3) nil)))

(if (or (member t (mapcar #'Al-or-A2? mach-nl))
(member t (mapcar #'Al-or-A2? mach-n2))
(member t (mapcar #'Al-or-A2? mach-n3)))

t)))

(defun Al-or-A2? (machine)
(let* ((name (machine-name machine)))

(if (or (string-equal name "tubeAl")
(string-equal name "tubeA2"))

t)))

; ; _

(setf *safety-rules*
'((resist-not-allowed
(no-resist-in-RCA
(no-resist-in-Nitride-Wet-Etch
(no-resist-in-Varian
(no-metal-in-RCA
(no-metal-in-piranha
(no-metal-in-oxide
(no-metal-in-nitride
(no-metal-in-tubes
(need-oxide-before-nitride
(must-have-coater-before-stepper

. resist-present)
resist-present)
resist-present)
resist-present)
metal-present)
metal-present)
metal-present)
metal-present)
metal-present)
failed)
. failed)

88

.2

; (1)
; (2)
; (3)
; (4)
;(5)
; (6)
; (7)
; (8)
; (9)
; (11)
; (12)

APPENDIX B: PROGRAM CODE 89

(must-ha.ve-developer-after-stepper . failed) ; (13)
(must-ha.ve-bpsg-flow-after-dep failed) ; (14)
(must-have-oxide-after-phos failed) ; (15)
(cannot-enter-tube-Al-or-A2-after-Phos failed) ; (18)
(must-have-pre-metal-clean failed) ; (16)
(only-high-resistivity-in-a2 failed) ; (17a)
(only-thin-ox-in-a2 failed) ; (17b)
(no-quartz-in-varian failed))) ; (10)

BIBLIOGRAPHY

[1] Wolf, S., Tauber, R., Silicon Processingfor the VLSI Era, Volume I - Process

Technology, Lattice Press, 1986. pp. xxiii.

[2] McIlrath, M., Troxel, D., Heytens, M., Penfield, P., Boning, D., Jayavant, R.,

"CAFE - The MIT Computer-Aided Fabrication Environment," IEEE

Transactions on Components, Hybrids and Manufacturing Technology, vol.

15, no. 3, pp. 353-360, June 1992.

[3] McIlrath, M., Boning, D., "Integrating Semiconductor Process Design and

Manufacture Using a Unified Process Flow Representation," in Proc. Second

Int. Conf. on Computer IntegratedManufacturing, Troy, NY, May 1990, pp.

224-230.

[4] Fischer, G., "Beginners Guide to Fabrication Using CAFE," MIT CIDMMemo

no. 92-3, Oct. 1992

[5] Baird, H. "Fast Algorithms for LSI Artwork Analysis,". in Proceedings of the

14th Design Automation Conference, pp. 303-311. June 1977.

90

91BIBLIOGRAPHY

[6] Seiler, L., A Hardware AssistedMethodology for VLSI Design Rule Checking,

Ph.D. thesis, Massachusetts Institute of Technology, February 1985.

[7] Blank, T., Stefik, M., vanCleemput, W. "A Parallel Bit Map Processor

Architecture for DA Algorithms," in Proceedings of the 18" Design

Automation Conference, pp. 837-845, June 1981.

[8] Longhead, R., McCubbrey, D., "The Cytocomputer: A Practical Pipelined

Image Processor," in Proceedings of the 7" Annual International Symposium

on Computer Architecture, pp. 271-277, May 1980.

[9] Wittenmeyr, D., Offline Design Rule Checkingfor VLSI, S.M. thesis,

University of Toledo, 1992.

[10] Wenstrand, J., An Object-OrientedModelfor Specification, Simulation, and

Design of Semiconductor Fabrication Processes, Ph.D. thesis, Stanford

University, March 1991.

[11] Steele Jr., G., The Definition and Implementation of a Computer

Programming Language Based on Constraints, Ph.D. thesis, Massachusetts

Institute of Technology, August 1980.

[12] Balemi, S., Hoffmann, G., Gyugyi, P., Wong-Toi, H, Franklin, G.,

"Supervisory Control of a Rapid Thermal Multiprocessor," Joint Automatica -

IEEE Transaction on Automatic Control Special Issue on "Meeting the

Challenge of Computer Science in Industrial Applications of Control", Nov.

5, 1991.

BIBLIOGRAPHY

[13] Funakoshi, K., Mizuno, K., "A Rule Based VLSI Process Flow Validation

System With Macroscopic Process Simulation," in IEEE Transactions on

Semiconductor Manufacturing, vol. 3, no. 4. Nov. 1990.

[14] Heytens, M., Nikhil, R., "GESTALT: An Expressive Database Programming

System," in ACMSIGMOD Rec., vol 18, no. 1, pp. 54-67, Mar. 1989

[15] Steele Jr., G., Common Lisp: The Language, 2nd ed., Bedford, MA: Digital,

1990, pp. 770-864.

[16] Boning, D., McIlrath, M., "Guide to the Process Flow Representation", MIT

MTL Memo no. 93-724, MIT Microsystems Res. Ctr. September 1993.

[17] McIlrath, M., "An Automata-Based Approach to Process Rules,"

UnpublishedMemo, Oct. 1993.

[18] Woo, A., A Generic Graphical Tree Editorfor Wafer Processing, S.M.

thesis, Massachusetts Institute of Technology, May 1993.

92

