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Abstract
In zero-knowledge proofs of knowledge, a single prover tries to convince a single verifier
that he has possession of some knowledge s. The verifier accepts with probability 1
if the prover is honest (completeness), and rejects with high probability otherwise
(soundness). In either case, the verifier learns nothing about s other than the bit of
information as to whether or not the prover knows s (zero-knowledgeness).

In [OkOh], Okamoto and Ohta introduce the notion of divertibility, a certain
zero-knowledge proof of knowledge scenario in which the verifier is in turn able to
disseminate the prover's proof of knowledge and even convince others that he knows
some secret s when in reality, this information is known only to the prover. There
are both positive and negative aspects to this scenario. The immediate complaint
of this situation is that the verifier is know able to profess and claim knowledge of
something he doesn't really know, and in applications like identification schemes, this
is definitely undesirable. However, [OkOh] and [BuDeItSaSh] have ventured forth
useful applications divertible proofs, namely for untraceability, blind signatures and
subliminal-free transmissions.

In this thesis, we generalize this idea of divertibility by introducing and exploring
the secret-chain model, a proof system characterized by the existence of multiple
provers, arranged in a linear fashion. In this manner, each prover is only allowed to
interact with the provers who are his immediate neighbors. In addition, each prover
knows some secret information that can be part of a larger "super-secret". If we
replace the chain of provers with a single "super-prover", then this super-secret is
knowledge this super-prover claims to know and can exhibit a proof of knowledge
for. We define a model and formulate these ideas further assuming the existence
of a commutative random self-reducible (CRSR) relation that is both one-way and
non-trapdoor.

Secret-chains appear useful for applications in which privacy protection and un-
traceability are desired. For example, consider an information broker/consultant who
furnishes clients with information. He may assemble and collate information from
his own personal resources and from one of many information banks or sources that



are willing to exhibit a zero knowledge proof for information they know provided the
price is right. Naturally, he wishes to keep his sources of information secret from his
customers, and furthermore, he may not want his sources to know what he is doing
with their information, so prefers that the identity of his clientele remains unknown
to his sources.

The use of secret-chains may be useful for situations in which the presence of an
overseer is desired to monitor some party in the system, so that this party cannot
function properly without the overseers consent. Furthermore, secret chains may not
be limited to proofs of knowledge, but might have possible applications to proofs of
computational power. In this thesis, we discuss several possible applications, and
construct a blind signature scheme based on a secret-chain. Lastly, we exhibit a
secret-chain zero-knowledge proof for Graph Isomorphism.

Thesis Supervisor: Shafi Goldwasser
Title: Professor of Computer Science and Engineering
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Chapter 1

Intro duction

Before formalizing secret chains and discussing their relationship to zero-knowledge

and divertibility, we sketch an illustration that is not completely precise or accurate,

but should suffice to afford the reader an introductory impression and glimpse of

secret chains.

1.1 An Illustration

We return to the neverending saga of two memorable pioneers in cryptography by

adding yet another chapter to the exploits of the ever inquisitive Alice and the mis-

chievous Bob. This time, our heroes have joined the United States Navy, where Alice

is no longer just plain "Alice" but "Commander Alice", and Lieutenant Commander

Bob is a soon-to-be commander as well. They have discovered that the Navy too has

been blessed with the modern benefits and grace befitting to a bureaucracy, and as a

result, possesses a very strict hierarchical rank structure.

There are two types of commands that an officer may issue - those that are granted

automatically because they come with his rank, and those that require approval from

his superiors. Thus, each rank comes with certain delegated powers and privileges,

and an officer is authorized to approve these. Any commands that do not fall in his

jurisdiction of authority cannot be issued without clearance from a higher official.

All commands are represented by public keys, and on promotion to a higher rank,
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an officer is bestowed the set of secret keys corresponding to powers that accompany

his new station. In this manner, an officer possesses the secret key for all commands

he is authorized to issue, and consequently, he can exhibit a proof of knowledge of

this secret as an indication of his approval for the fulfillment command. Note that

here, the officer knows the secret key in its entirety, in the case of a command that

requires intervention by a higher authority, the officer holds only a portion of the

corresponding secret key.

This is a very reasonable and natural command structure, and we see it at work

when Lieutenant Commander Bob desires to take a short leave of absence 7 days to

attend the annual Crypto conference in August and visit the casinos of Las Vegas

to test the laws of probability. Before any bags can be packed however, he must

first secure permission by petitioning the next officer of higher rank, Commander

Alice. Since Alice is Bob's direct superior, she can choose to either outright reject the

request, or go along with it. Assuming she is not averse to his petition, once finding

that her rank comes with the authority to grant this request, Alice exhibits a proof

of knowledge of the proper secret key to, in effect, grant his request.

Having successfully obtained permission for some time off, LC Bob also wishes to

inquire about his promotion papers, and once again, approaches his superior officer,

Alice. Alice supports his bid for promotion; however, she does not have the autho-

rization to ratify it since she holds only a portion of the corresponding secret-key

while higher agents hold the remaining portions. In order to issue commands of this

nature, she must in turn clear it first with her own superior officer, Captain Eve.

The process repeats once again. Captain Eve can exercise her option of denial

and immediately refuse the request. On the other hand, if she consents with the

proposed action, she too checks if she has clearance to approve it. If she does, she can

supply Alice with the needed proof, and no other personages in the hierarchy need to

be consulted. If she also doesn't have the authority, then Bob's request proceeds up

the line of command in a manner similar to that described until someone disapproves

of the request, or until it reaches someone who is vested with the proper authority.

When this someone is finally reached, a proof of knowledge for the final part of the
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secret key is obtained. This proof is then passed back down the chain in a manner so

that each agent in the ladder uses his share of the secret in combination with the proof

exhibited by his superior officer to create his own authorization for the action. When

Bob finally receives his proof approving his promotion, this proof will be a proof for

the entire corresponding secret key; the fact that this is a proof for the entire secret

key signifies that all holders of the various portions have endorsed their support for

the request by incorporating their share of the secret into the proof.

The fact that Alice needed to get approval from a higher authority is hidden from

Bob; in this case, Bob may believe that Alice was completely authorized to approve

the request, since she was able to supply a proof for the complete secret key of the

corresponding public key in question. Furthermore, note that the "height" of the

ladder (i.e. how far up the chain of command the request went) is unknown to Bob

(and to everyone else in the ladder except the highest officer reached). Thus, in short,

as far as he is concerned, his request was either directly rejected or wholly approved

by his immediate commanding officer, Alice.

Although there are subtleties that this illustration does not address, this is the

basic intuition behind a secret-chain, and the linear chain of officers whose approval

had to be secured for Bob's request is essentially an example of a secret-chain. To set

the stage for our work, let us first briefly examine previous relevant research before

describing the details of a secret-chain zero-knowledge proof.

1.2 Overview

Interactive proofs of membership were first introduced by Goldwasser, Micali and

Rackoff [GoMiRa]. Such proofs allowed an unbounded probabilistic prover to prove

to a probabilistic polynomial-time verifier the membership of some x E L. Informally,

the verifier would accept correct proofs with high probability (probability of 1), and

would reject in cases where x L. The additional characteristic of being zero-

knowledge restricted the amount of information divulged to the verifier as a result

of the proof - aside from learning about the membership of x in L, the verifier
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should learn nothing that it could not have computed itself (in polynomial time).

Zero-knowledge interactive proofs of "knowledge" [ToWo, FeFiSh, BeGo] and zero-

knowledge interactive proofs of "computational power" [Yu, OkChOh] are similar

variations in which the prover demonstrates possession of some information and the

ability to solve some problem respectively. In this thesis, we will be concerned with

zero-knowledge proofs of knowledge.

Consider a function with the property that if it is hard, then it is uniformly

hard. Theses were described by Angluin and Lichtenstein [AnLi] as being random

self-reducible(RSR), and have appeared elsewhere in the literature [GoMi, BlMi].

Examples of RSR functions are based on factoring, discrete logarithms, RSA and

quadratic residuosity modulo a composite. Tompa and Woll [ToWo] related random

self-reducible problems with zero-knowledge interactive proofs(ZKIP) by showing that

a ZKIP existed for any RSR problem, and they provided constructions for graph

isomorphism, quadratic residuosity modulo a composite, and the discrete logarithm

problems.

In [OkOh], the notion of a divertible ZKIP of knowledge is introduced and de-

fined. Informally, a ZKIP of knowledge (P, V) between a prover P and a verifier V, is

diverted by a third party W if W engages P in (P, W) and transparently uses the con-

versation from (P, W) to participate in a second (simultaneous) protocol (W, V) (such

that one can discern no unique connection between the conversation from (P, W) and

that of (W, V)). Using this proof (W, V), W can convince V that W "knows"(notion

defined in Chapter Two) some knowledge P knows, when he fact, he does not.

In addition, Okamoto and Ohta focused on a subset of RSR problems for which

a commutative law of composition existed. Calling these commutative random self-

reducible(CRSR) problems, they showed in [OkOh] that a divertible ZKIP existed

for all CRSR problems. The work of Burmester and Desmedt [BuDe] expanded this

front and proved that all languages in NP possess divertible ZKIPs assuming the

existence of probabilistic encryption homomorphisms.

The secret-chain model to be described in this thesis is reminiscent of the di-

vertibility scenario. Our work generalizes the notion of a divertible ZKIP in that a

14



zero-knowledge proof of knowledge given by a single prover can be shared, diverted

and replayed down a chain of multiple verifiers. However, in our scenario, the text

of the conversation between prover W and verifier V in (W, V) is not simply an "un-

traceable" version of the conversation from (P, W) - W does not pretend to be P

by advertising knowledge of P's secret. Instead, W professes knowledge of a greater

secret (call it ), built upon that of P. But since W actually does not possess P's

secret (P's portion of ), he must rely on interaction with P whenever a proof for

knowledge of x is needed.

In short, this work with secret-chains stems from consideration of the other end

of the spectrum - namely, from examining the consequences and possibilities that

result from having a linear chain of multiple provers who are collectively responsible

for creating this zero-knowledge proof of knowledge.

The initial reaction to havoc that may result from divertible proofs is understand-

ably negative, and rightly so in the light and context of many cryptographic situations;

however, as [OkOh] and [BuDeItSaSh] describe, there are positive applications for

divertibility as well. As in their papers, we draw upon these positive aspects in our

generalization to secret chains.

Secret-chains appear useful for applications in which privacy protection and un-

traceability are desired. For example, consider an information broker or consultant

who furnishes his clients with information. This information may be collected and

collated from his own personal resources and from one of several information banks

or other sources. Information is provided by a source in the form of a zero knowledge

proof of knowledge of this information, in return for monetary compensation. The

consultant then uses this proof and augments it, so that the end result is a proof

of knowledge for the entire collection of information he is to provide. Naturally, he

wishes to keep his sources of information secret from his customers, and furthermore,

he may not want his sources to know what he is doing with their information, so

prefers that the identity of his clientele remains unknown to his sources.

This idea of multiple provers is not new. A "distributed" linear arrangement of

two provers and one verifier as a possibility for digital signatures in a new approach
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to electronic currency in the observer model [BrChCrFePe, Ch2, PeCh]. In this sit-

uation, each consumer has a tamper-proof smartcard that represents his electronic

wallet. Resident on each card is an "observer", a processing unit trusted by the bank.

In order to spend any of his money which is stored on this card, a consumer must

first obtain "permission" from his observer. This permission is basically willingness

on the part of the observer to participate in a digital signature algorithm in which

the secret key is partitioned between the consumer and the observer. Thus, the ob-

server can oversee the consumer's transactions and monitor his behavior, prohibiting

him from cheating and double spending any of his electronic coins by refusing to

partake in the digital signature scheme. Protocols including those for setting up the

observer/consumer digital signature scheme, withdrawing and spending coins, have

already been proposed in these papers and others.

Recently, it was brought to our attention that the concept of multiple provers had

also been discussed by Guillou and Quisquater [GuQu]. In each of the two scenarios

they propose and describe, there are two entities (provers). In the first setting, two

entities with different identities are interacting with a verifier, and it is known to the

verifier that there are in fact two provers participating in the protocol. In the other

setting, the verifier believes he is interacting with a single prover, but behind the

scenes, there are actually two provers. This is more in line with our notion of secret-

chains; however, both provers of their scenario realize that they are simulating this

larger single prover together. In secret-chains, developed independently from their

work, the multiple provers do not enjoy this same piece of knowledge. The role of

secret-chain provers are more asymmetric and there is some feature of the protocol

unknown to all parties: (1) a prover never knows if the secret it is proving knowledge

of is part of a larger one and if its proofs are being used elsewhere; (2) verifiers

believe they are interacting with a single prover that knows the secret it is proving

in its entirety, and are not aware of the actual number of provers behind the curtain;

and (3) intermediate parties (whom we shall see play prover and verifier-like roles),

including Alice and our information broker, face both of these unknowns. The exact

relationship between our work and that of [GuQu] deserves further investigation and
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exploration at a later time.

The organization of this thesis is as follows: Chapter Two provides some helpful

notation and definitions of zero-knowledge proofs and CRSR relations; Chapter Three

presents a definition of secret-chains and shows how a secret-chain ZKIP can be

constructed given the existence of a CRSR relation R; Chapter Four extends this

work to include blind signatures (defined in Chapter Four) that are signed by multiple

parties; a secret-chain ZKIP for Graph Isomorphism appears in Chapter Five; and

finally Chapter Six discusses some future work and concludes this thesis.

17



Chapter 2

Notation and Background

In this chapter, we present some notation before describing relevant previous work

and formally defining secret-chains and related protocols.

An interactive protocol is modelled by an ordered pair (A, B) of probabilistic

polynomial-time Turing machines(PTM) A and B which take turns being active for

a polynomial number of rounds. Each machine has an extra read-only tape and an

extra write-only tape that serve as a means for communication during each round -

the write-only tape of one machine serves as a read-only tape for the other and vice

versa. Denote (A(m), B(n))(x) as the interactive protocol between A and B where

m and n are the private inputs of A and B respectively, and x is input common to

both.

Machine A initiates the protocol and they alternate being active, exchanging mes-

sages with each other. The protocol terminates when either A rejects, or B enters a

reject or accept state. We say that B accepts(rejects) (A(m), B(n))(x) if the protocol

terminates, leaving B in an accepting(rejecting) state. Note that either party can

terminate and reject the protocol by entering a rejecting state if messages sent by

the other party are not valid - i.e. they deviate from the prescribed protocol. Any

output, which may be either private to a party or shared by both machines, is written

on the appropriate write-only tape of the machine in question.

Both machines keep a history of the interaction and for each round of messages,

this history aids them in ascertaining the state of the protocol and in deciding a

18



subsequent course of action.

The view of a PTM consists of all the quantities the PTM sees during an interactive

protocol (i.e. its coin flips, its private computation, quantities from tapes that it has

access to). For the protocol (A(m), B(n))(x), we denote A's view and B's view as

VIEWA((A(m), B(n))(x)) and VIEWB((A(m), B(n))(x)) respectively.

Let the following triple of probabilistic polynomial-time turing machines (A, B, C)

represent a three party interactive protocol in which interaction occurs only between

A and B, and between B and C. We adopt the following notation from Itoh, et.

al. [ItSaSh]. Let (A, Buc) denote the interactive protocol between a prover A and a

verifier B, where a second simultaneous interactive protocol occurs in which B is a

prover and C is a verifier. We will adopt flexibility in this graphical notation so that

(A-AB, C) then represents the interactive protocol between prover B and verifier C,

in which B is also the verifier in a simultaneous interactive protocol with prover A.

Note that (A, B " C) and (ARB, C) can actually refer to the same protocol, but from

the perspectives of different parties involved.

For turing machines X and Y, let XY denote X using Y as a blackbox subroutine,

where X is able to save away Y's computation state, rewind Y's input tapes, etc.

Let lxI denote the length of the binary representation of x.

The notation x ER X means that x is randomly and uniformly selected from X.

Also, let II denote concatenation and let Ix I be the length of the binary representation

of x. If b is a bit, let b represent the negation of b.

Definition 2.0.1 Let A( be a countable infinite set. For any N E A(, let XN, YN be

finite sets that can be easily sampled. Let RN be a binary relation {(x,y)Jl E XN,Y E

YN} testable in polynomial time.

2.1 Interactive Proofs of Knowledge

We present a brief description of interactive proof systems for polynomial-time rela-

tions, and define what it means to be zero-knowledge. Finally, we review the idea of

divertible zero-knowledge interactive proofs.

19



In interactive proofs of knowledge [ToWo, FeFiSh, BeGo], the prover demonstrates

the possession of certain information. In particular, assuming there exists a binary

relation RN and an x E XN, we will focus on interactive proofs systems for relation

RN in which the prover demonstrates that he "knows" a y such that (, y) E RN.

In particular, we will borrow the definition of interactive proofs for relations and

zero-knowledge from Feige and Shamir's work [FeSh]. Let v(n) be any function van-

ishing faster than the inverse of of any polynomial; namely, Vk, 3n > N such that

v(n) < .

Definition 2.1.1 Let (P(y), V)(x) be a protocol between a pair of interacting PTM,

prover P and verifier V, where x is common input and y is P 's private input. Then

(P(y), V)(x) is an interactive proof for relation RN that P "knows" a y such that

(x,y) E RN if:

* (completeness) V(x, y) E RN, Prob(V accepts (P(y), V)(x)) > 1 - v(n)

where the probability is taken over the coins of P and V.

* (soundness) There eists a polynomial-time knowledge etractor E such that

VP', VX E XN, VY',

Prob(V accepts (P'(y'), V)(x)) < Prob(EP'( Y') outputs y" such that (x,y") E

RN) + v(n), where the probabilities are taken over the coins of P', V and E.

The completeness condition specifies that whenever P is honest and does in fact

"know" a y such that (, y) E RN, the verifier accepts with an overwelming probability

of 1 - v(n). The soundness property states that for any prover P', if participation

in (P'(y'), V)(x) leaves V in an accepting state, then there exists a polynomial-time

knowledge extractor EP' that outputs y'

In the case when there is only a unique y E YN for every x G XN, if the proof

(P'(y'), V)(x) is accepted by V the knowledge extractor outputs exactly this y'.

Definition 2.1.2 Let (P(y), V)(x) be a protocol between a pair of interacting PTM,

prover P and verifier V, where x is common input and y is P's private input.
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Then (P(y),V)(x) is a (computational/statistical/perfect) zero-knowledge inter-

active proof system for relation RN that P knows a y such that (,y) E RN if the

following additional property holds:

a (zero-knowledge) There exists a simulator SIM that runs in expected polynomial-

time, such that V PPT V', for any (,y) E RN and any auxiliary input s to

V', SIMV'(x, s) is computationally/statistically/perfectly indistinguishable from

(P(y), V'(s))(x). Note that simulator SIM is allowed to use algorithm V' as a

black box subroutine.

2.2 Commutative Random Self-Reducibility

The idea of random self-reducibility has been previously mentioned in literature by

Blum and Micali [BlMi] and later by Goldwasser and Micali [GoMi]. These papers

offered examples based on discrete logarithms and quadratic residues modulo a com-

posite respectively.

Tompa and Woll appear to be the first to formulate a definition in [ToWo]. And

from this, Okamoto and Ohta developed the notion of a commutative random self-

reducible relation.

Inspired by Okamoto and Ohta's definition, we present a modified version that

explicitly specifies a function relating pairs in the relation. Note that a set can be

"easily sampled" if an element of the set can be randomly chosen with a uniform

distribution.

Definition 2.2.1 Let Af be a countable infinite set. For any N E A(, let XN, YN be

finite sets that can be easily sampled and let fN : YN --4 XN be a one-way non-trapdoor

polynomial-time computable function. The relation RfN = {(fN(Y),y)jY E YN} is

(one-way nontrapdoor) commutative random self-reducible(CRSR) if there exists a

polynomial-time algorithm AN: XN X YN -- XN such that when x E XN and r E

YN,x' = AN(x,r) and the following five properties hold:

1. If r ER YN, then x' E XN is randomly and uniformly distributed.
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2. Given x, r and y' where x' = AN(X, r) and (x', y') C RN, there exists a polynomial-

time algorithm to find y E YN such that (, y) E RN.

3. There exists a law of composition, : YN x YN - YN such that (YN, e) is a

commutative group and if (x, y) E RN and x' = AN(x, r), then y' = y r and

(X', y') E RN.

4. There exists a PTMT such that if x' = AN(X, r) for some r C YN, then T(x, x')

outputs x* such that (x*, r- 1) E RN.

The definition tendered by Okamoto and Ohta had the following additional re-

quirement:

Given x,r and y where x' = AN(x,r) and (x,y) E RN, there exists a

polynomial-time algorithm to find y' E YN such that (x', y') E RN.

However, this follows from the law of composition in condition 3 of this definition;

namely, given x, r and y where x' = AN(X, r), then y' can be computed as y r.

Note that for a relation R C X x Y, by RN C XN X YN we mean that the pairs in

RN are drawn from XN = {xlx E X, lx = N} and YN = {YIY E Y, IYI = N}. And we

often write RN in place of Rf, since the function f is implicit in the relation. Also,

by our formulation, for any y E YN, there exists a unique x = XN (namely x = f(y))

such that (,y) RN.

We make explicit the function f relating pairs in RN, and require f to be one-way

and non-trapdoor. In other words, given any x E XN, it is difficult to find a y E YN

such that (, y) C RN. More formally, V PTM C, Vx sufficiently large, Vd > 0,

1
Prob(y - C(x, RN)Ix C XN, Y E YN, (,y) E RN) <

where the probability is taken over the coins of C.
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2.2.1 Example of CRSR Based on Discrete Logarithms

Let p be a prime such that IpI = N, and let g be a generator of Zp. Then YN = Zp-l

and XN = Z;. Let f(y) = gY mod p where y E YN. The relation RN is then defined

to be {(x,y)Ix = gy mod p,y E YN}, and

f(y) = g mod p,

AN(x, r) = xg' modp,

Y1 Y2 = Y 1 + Y2 mod (p).

If r is randomly chosen, then xzg mod p is randomly distributed in Zp. Also,

given x,r and y', we can find a value for y such that x = gY mod p; namely, y-

y'- r mod +(p). Furthermore, addition modulo p is a commutative group. Lastly,

given x' = xg' mod p, T(x, x') outputs x* = g-' mod p since (x*, -r) E RN. In this

case, we can view T as finding an z* such that x*x' - x mod p.

2.2.2 Example of CRSR Based on Quadratic Residues

Let A/' be a product of two primes, p and g where I = ql = N. Let XN be the set of

quadratic residues in ZAr, and let YN = Z . Define f(y) = y2 mod Jf where y E ZA(.

Then, RN = {(x,y)lx = y2 mod .A, y E YN)}, and

f(y) = y2 moda ,

AN(x,r) = xr2 mod N

yl * Y2 = Y1Y2 mod A/.

If r is randomly selected, then xr2 mod NA is a random quadratic residue modulo

K. Given x, r and y', we can find a value for y such that x = y2 mod N; namely,

y yr - mod N. Multiplication of elements of Zf is a commutative group (identity
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= 1, inverse exists since elements are relatively prime to modulus). Lastly, given

x'= xr2 mod A, T(x,x') outputs xz* = r-2 mod n since (x*,r - 1) RN. In this

case, we can view T as finding an x* such that x*x' = x mod ]N.

2.3 Divertibility

A divertible zero-knowledge interactive proof is a ZKIP of knowledge supplied by a

prover to a verifier, that is in turn replayed by this verifier in subsequent interaction

with a second verifier as a proof of knowledge when in fact, the verifier in reality does

not possess this knowledge, but can falsely convince the second verifier that he does.

A more formal definition inspired by [OkOh] is as follows:

Definition 2.3.1 LetK be a countable infinite set. For any N E A, let XN, YN be fi-

nite sets that can be easily sampled. An interactive triple of probabilitistic polynomial-

time turing machines (A(y),B,C)(x) is a divertible (computational/perfect) zero-

knowledge interactive proof to C that B knows some y satisfying (x, y) E RN, where

RN C XN X YN is a relation, if the following conditions hold:

1. (A(y), B-C)(x) is a (computational/perfect) zero-knowledge proof for relation

RN that the prover A with private input y knows some y such that (x, y) E RN.

2. (A(Y)-B, C)(x) is a (computational/perfect) zero knowledge proof for relation

RN that the prover A()' B knows some y such that (, y) E RN.

3. Let A, B and C be honest parties in the ideal scenario. Let A* be any polynomial-

time prover such that C does not reject (A*, C)(x) and let C* be any polynomial-

time verifier such that A does not reject (A, C*)(x), then V polynomials Q,

Vr, s C {E0,1}QI,

* VIEWA((A(y, r), (Be4 C*(s))(x)) is computationally indistinguishable from

VIEWA((A(y, r), C(s))(x))

* VIEWc((A '(Y,')B, C(s))(x)) is computationally indistinguishable from

VIEWc((A(y, r), C(s))(x)).
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Note that r and s represent possible private auxiliary inputs of A and C respec-

tively.

In [OkOh], Okamoto and Ohta then show the following theorem:

Theorem 2.3.2 If RN is a CRSR relation then on input x, then there exists a

polynomial-time divertible ZKIP of knowledge (A(y), B, C)(x) for a y such that (x, y) E

RN.
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Chapter 3

The Secret Chain Model

3.1 High-level Description

Before formalizing the notion of a secret-chain, we hope to instill a clearer notion of

the model by going yet another level deeper. Recall the illustration from Chapter One

in which the issuance of certain commands required the intervention of two or more

provers(officers) arranged in a linear fashion (hence the term, "chain"). Consider the

following secret-chain of 3 parties:

P +W V,

where P is a prover and V is a verifier. Here, the -* symbol denotes direct interaction.

Notice that W is able to interact with both P and V, but P and V never communicate

with each other during the protocol.

In our setting, we consider the case when W plays the role of a prover. Each prover

possesses some knowledge or secret that the others do not. Collectively, however, they

all know disjoint parts of a larger secret' So, each of P and W has his own secret yl

and Y2 respectively, however, these are in turn part of a greater secret g = g(yl, y2) for

some deterministic polynomial-time computable function g. If P and W are treated

1Note that we mean "larger" in a semantic conceptual sense, and not necessarily in the physical
size of the secret.
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collectively as a single party, then, only when they collaborate using their respective

secrets, can P and W (taken as a unit) exhibit a proof of knowledge of y. In this

model, V can obtain a zero-knowledge proof of secret g so that, informally,

1. (completeness) if both P and W know legitimate portions that together form

the secret y (by applying g), V will accept the proof with high probability.

2. (soundness) if an honest verifier V accepts the proof, then there exists a "ex-

tractor" E that can extract the secret j from P and W in polynomial time.

3. (zero-knowledge) W learns nothing about P's share of the secret yl, and V

learns nothing 2 about y.

4. (unsuspicious parties)

* V is unable to tell that the secret is not completely known to W, and

hence does not realize that W requires interacting with P in order to

complete his proof.

* P does not realize that his secret is part of a larger whole, and hence does

not suspect that his conversation with W is being used elsewhere (i.e. as

a basis for interaction between W and V).

In general, if we let (P, W1 , ..., W,, V) represent a secret-chain, the leftmost party

of the chain will always be a "prover" and the rightmost party, a "verifier". The roles

of the intermediate parties (W1 ,..., Wn) will vary. The divertibility model of [OkOh]

considered only a single prover and multiple verifiers, so Wi played a verifier role and

simply diverted proofs. In our case, we consider the possibilities that occur when W

plays a prover role, where in addition to diverting proofs, W must first incorporate

his share of the secret into the proof before presenting the proof to the next party

down the chain.

2 As far as V is concerned, V does not know that the secret is partitioned among multiple provers,
so it suffices to say that V learns nothing about (and hence nothing about either of P or W's
shares).
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3.2 Formalization

This section formally defines the intuition described above. For simplicity, we define

secret-chains of three parties; the generalization to n parties can be easily made and

is discussed later.

Definition 3.2.1 Let Af be a countable infinite set and let N E . Let RN C

XN x YN be a relation for finite sets XN, YN. Let g: YN YN be a polynomial-time

computable function, and let I(yl; y2) be information theoretic notation expressing the

mutual information between Yi and Y2.

An interactive triple of probabilistic turing machines (A(xi, y), B(zx, X2, Y2, x), C(x))

where (1,yl),(x 2,y 2 ), (, g(y,y2)) RN and I(yl;y2) = 0 is a secret-chain inter-

active proof of knowledge for relation RN if the following conditions are satisfied:

1. (A(yl),B)(xi) is an interactive proof for relation RN that A knows some y'

such that (l,yl) E RN.

2. (A-B(x 2,y2),C)(x) is an interactive proof for relation RN that AB knows

some y such that (, ) E RN.

In other words, (A(xzl,yl),B(xl,2,y 2 ,x),C(x))(N) is a proof to B that A can

compute some yj satisfying (xl, yi) E RN), and a simultaneous proof to C that ARB

can compute some j satisfying (, g) E RN

Basically, conditions (1) and (2) describe the properties of the protocol itself,

while condition (3) is concerned with the protocol's state of execution. Condition (3)

captures the fact that B for example, does not know yl, and under the intractability

assumption (one-way and non-trapdoor properties of f from Definition 2.2.1), cannot

compute it from A's public information, xl. If all three conditions hold, then not only

does B accept A's proof of knowledge, but C also accepts A- B's proof of knowledge.

Next, we define the zero-knowledge properties of a secret-chain interactive proof

of knowledge.

Note that there is a subtle difference between our notion of indistinguishability

and that presented for divertible zero-knowledge interactive proofs (see Definition
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2.3.1). To clarify this difference, we will use the divertibility scenario described in

their paper, where there is one prover and two verifiers. In section 3.6.2, we show that

this situation is in fact a special case of a secret-chain, and for illustrative purposes,

assume for the moment that this is so. The following is the divertibility scenario from

[OkOh]:

P - V1 V 2.

Viewpoint of V2

From our secret-chain viewpoint in Definition 3.2.2, V2 cannot distinguish interaction

with PV 1 from interaction solely with V1; in other words, it can't tell that V is in

turn interacting with P so it cannot ascertain whether V1 actually knows the secret

in its entirety, or whether V1 knows only a portion and consequently must enlist the

aid of a third party.

In [OkOh], the interpretation is that V2 cannot distinguish interaction with P'Vi

from interaction with P, so the presence of the intermediary V1 is undetectable.

Viewpoint of P

Similarly, let us also examine the prover's viewpoint of this protocol. In our approach,

P cannot distinguish it's interaction with V1
' v2 from interaction with just V1; in other

words, it cannot figure out if V1 is using results from its interaction with P as a basis

for interaction with other verifiers, so P cannot tell if there is a chain of verifiers

behind V1.

In [OkOh], P cannot distinguish interaction with Vfv2 from interaction with V2,

meaning that it too cannot detect any intermediary verifiers, but is only aware of the

ultimate verifier V2.

Our definition is as follows:

Definition 3.2.2 Let A( be a countable infinite set and let N E KV. Let RN C

XN x YN be a relation for finite sets XN, YN. Let g: YN -- YN be a polynomial-time
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computable function.

A secret-chain interactive proof of knowledge for relation RN, (A(xi, yl), B(xi, X2, Y2, ), C(X))

where (XI, Yl), ( 2, Y2), (i, g(Y1, Y2)) E RN, is (computational/statistical/perfect)

zero-knowledge, if the following hold:

1. (A(yl), B)(xi) is a (computational/statistical/perfect) zero-knowledge interac-

tive proof of knowledge for relation RN.

2. (A B(x 2, y2), C)( ) is a (computational/statistical/perfect) zero-knowledge in-

teractive proof of knowledge for relation RN.

3. For any polynomial-time prover A* such that B does not reject (A*(yi)B)(x),

and any polynomial-time verifier C*, if A, B, C are honest parties that adhere

to the protocol:

* VIEWA((A(yl), BEc* )(x)) is computationally indistinguishable from

VIEWA((A(yl), B)(xi))

* VIEWc((A* B(xl, 2, y2), C)()) is computationally indistinguishable from

VIEWc((B(x, X2, Y2), C)(Z))

3.3 A Secret-Chain Construction

Theorem 3.3.1 Let A( be a countable infinite set and let N E . Let A, B, C be

probabilistic polynomial-time turing machines and if the relation RN is CRSR, then

there exists a polynomial-time secret-chain zero-knowledge interactive proof

(A(xi, y), B(x1, 2, Y2, ), C(z)) where y = Yi . Y2 and (, y), ( 2, Y2), (, ) E RN

Proof.(by Construction) Before detailing the construction, we first clarify the public

and private information of each party. These are summarized in Table 3.1. By

convention, the public information of A will be zl, for which the corresponding secret

is y. The public information of both A and B will be denoted as x. This means

that B's share of the corresponding secret S is Y2 such that = AN(xl,y2) and

(i,yl * y2) E RN. Note that y2 alone and zl suffice to construct , so in all of
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the secret-chain protocols described in this paper, the value of x2 is never really

used in the protocols themselves. It is included in the table for completeness (since

presumably all users of the system already have public-secret pairs), and since B

leaves his footprints in the protocols (y2), if Y2 can be derived from transcripts of the

protocols, then B can be identified by finding x2 such that ( 2,y2) E RN.

Table 3.1: Summary of Public and Private Information

We now describe a secret-chain zero-knowledge interactive proof

(A(xi,yi),B(xl,x 2,y 2,x),C(x)) that A can compute some y satisfying (,y) E RN,

and consequently, B can compute some g satisfying (, Y) E RN. The procedure de-

tailed in Table 3.2, is repeated t = O(N) times. Recall that the algorithm TN(., ) was

specified by condition 5 in Definition 2.2.1, and that the term "ow" is an abbreviation

for "otherwise".

This construction is rather straightforward. For clarity and ease of understanding,

we purposely segregate B into its constituent "verifier" and "prover" roles (embodied

by the three columns spanned by B in Table 3.2) to highlight the added steps and to

emphasis similarities with the divertible scenario. They can be easily combined into

one concise description for B's overall behavior.

In the style of [OkOh], the second prover B first diverts its interaction with A.

Then, it incorporates its share of the secret into the proof before presenting it to C,

who verifies the proof for Y, the (collective) secret corresponding to x. In essence, it

is easy to see that the first prover A is proving to B that it knows a secret yj corre-

sponding to x1, while B is trying to prove to C that it knows the secret information

corresponding to F, which is dependent on x1 and Y2 (and hence,dependent on yi and
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Party Public Private Relationship

A zX Yi (xl yl) E RN
B Z2 Y2 (X 2 , 2 ) E RN

A"-B = AN(X1, 2),

= Y1 · y2,
._ _ () E RN



Y2).

Note that each iteration of the protocol of Table 3.2 runs in polynomial-time since

there are a polynomial number of rounds and, A, T, the composition and testing

membership in RN all run in polynomial-time. And because there are a polynomial

number of iterations (i.e. t), the entire proof is performed in polynomial time.

3.3.1 Proof of Correctness

An outline of the proof is to show that (A(xl,yl),B(xl, 2,y 2 ,x),C(i)) is indeed a

secret chain and that this protocol satisfies our criteria for zero-knowledgeness.

Correctness

The correctness of A's proof to B is easy to verify. To verify A"B's proof to C,

consider the four possibilities that result from the different choices for e and .

We will present our argument in the framework of a general CRSR function. Keep

in mind that if (, y) E RN, then after computing x' = AN(x,r),(x',y · r) E RN (from

Definition 2.2.1).

* Case 1: e = 0 and 3 = 0

When this occurs, the following quantities result:

X2= AN(AN(xr2),Y2) = AN(x',r 2 * Y2)

X1 = T1

Z2 = 1 e · r 2

Recall that = AN(xi,y 2 ). Verifier C must verify that ax = N(i,z 2) or

'2 = A(N, , z2. Y2) = AN(z1, ri e r2 Y2) which is true, since AN(xi, ri) = x'.

* Case 2: e = 0 and 3 =1

When this occurs, the following quantities result:

X = AN(AN(xr),Y 2) = AN(X',r2 * Y2)
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Zl = rl · Y1

Z2 = r2 (rl Y1 ) 2

Recall that (xi,yl) E RN. Thus, (x,y 1 * rl) E RN. After computing x, this

became (', Y1 r1 * r2 * Y2) E RN, and the second component is precisely z2.

* Case 3: e = 1 and S = 0

When this occurs, the following quantities result:

X'= AN(A N(N(x1,x),r 2),Y2)

Z1 =rl Y1

= r2 (1 y1)-1

Once again, we will base our argument on the transformation of pairs in RN

resulting from the application of A. In particular, we find that since T returns

x* such that (x*, r') E RN, where rl was the value used in the computation of

x1 by A. After the calculation of x2, we know (x', r1 ' r2 * Y2) E R to be true.

Recall that (, Y1 * Y2) E R. Verifier C must also endeavor to show that x' =

AN(X, Z2) or that (, (y ·* Y2)· Z2) E R. We show that the second component

is equal to (rI1 · r 2 Y2), so, from above, this verification is successful.

Since z2 = r2 (rl·yl) - 1 and we can easily show that (rl yl)-l = (rl)- ·(yl)-l,

we find that (Y1· Y2)ez2 = (Y1ly 2)r 2 (rl y l ) = (yl · y2)er 2 e(rl)-l'·(yl) - =

r 1 r2 Y2.

* Case 4: e = 1 and = 1

When this occurs, the following quantities result:

= AN(AN(3X(ax1, z),r2),y2)2 -

Z1 = rT1

Z2 = r2 er 1 y 2
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We will use an argument similar to that of Case 2 and 3. Recall that we began

with (xi,yl) E RN and that x = AN(xl,rl). Since T outputs x* such that

(X*, r 1) E RN, computation of x2 results in (x*, r7l *r 2 0Y2) C RN. The second

component here is precisely z2.

Soundness

Next, we address the soundness of these protocols. If an honest verifier B accepts a

proof (A*, B), then we can construct an extractor EA ' that outputs A's secret y as

follows:

1. Simulate the protocol to completion to obtain z1, and let b be the value of B's

challenge bit 3'.

2. Rewind the tapes of A* to the state immediately before B's challenge is trans-

mitted, and set 3' to be b, the negation of b. Obtain z.

The extractor now possesses z and z, and can compute yl = z ·0 z- 1 since

(RN(XN), *) is a commutative group and therefore, a unique inverse exists for z =

r1 E RN(XN)-

The construction of E(A'B') is very similar. The tapes of A* are rewound as

before; however, the tapes of B* must also be reset to the point just before C transmits

its challenge bit. By obtaining, in a similar manner, results for both values of challenge

3, the extractor can then recover (if we wanted to, we can recover only Y2 by

rewinding the state of B* to an earlier point when it has just received A*'s first

message and is about to select an e, doing this repeatedly until B* selects the other

value for e).

Zero-Knowledgeness

We can construct a simulator for both (A(yi), B)(xi) and (A-B(x 2 , Y2), C)(x) to show

that the verifiers of both protocols cannot obtain any additional information from

participating in the protocol than from simulating the interaction themselves. The
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simulator attempts to anticipate the verifier's guess and formulates valid responses for

both cases. The simulator for both of these protocols are identical to that constructed

in [ToWo] for their zero-knowledge interactive proof for relation RN between a single

prover and a single verifier.

By the specification of A and random selection of r2, X2 is perfectly independent

of x;. Likewise, i and /3i are independent, as are z2 and z. Given any VIEWA =

{I,x,p',z,rI,y} and any VIEWc = {(,z,,3,z 2}, one can always try to find

values for r2 and y2 by solving for e = Plf3', and consequently obtaining the following

two equations in two unknowns (variables from Table 3.2 have been combined):

Z2 = r2 zl-2e · y2, (3.1)

Av(x', r 2 · y2) if e = 0
2I2 = ~ (3.2)

AN(fTN(xlxx),r 2 eY2) otherwise

But because of our one-way and non-trapdoor assumptions, these equations cannot

be solved for Y2 despite the fact that the value of r1 and even r2 may be known.

Having satisfied the completeness, soundness and zero-knowledge conditions, the

protocol in Table 3.2 is then a secret-chain zero-knowledge interactive proof.

3.3.2 A Note on Relation RN...

Here, we discuss the rational behind our requirement that fN in Definition 2.2.1 be

one-way and non-trapdoor. The requirement that fN is one-way is reasonable, for if

it were not, then given x, y can be found easily by anyone in the system.

Notice that for the above protocol and the divertible protocols of [OkOh], all

parties are given N as input. We cannot assume that players are not somehow able

to gain other information about N (say factorization of N). We impose the restriction

that no trapdoor information exists that could increase the probability of finding y

such that (, y) E RN given a value for z. This would, for example, disqualify using
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the CRSR relation based on quadratic residues modulo a composite in SCZKIP since

the factors of N constitute this undesired trapdoor information.

Note that this extra restriction is necessary for SCZKIP, but not for the divertible

proofs in [OkOh]. In the divertible scenario, the intermediate party V1 diverts its

conversations with P so that if P and V2, who suspect they have two views derived

from the same protocol execution through V1, were to get together after the protocol

and try to match these views, they will always find values for the bridging variables

for all possible P and V2 views.

The intuition behind a secret-chain protocol is slightly different. Assume for

illustration that we were using the "square roots mod N" as the CRSR relation R.

If neither P nor V2 knew the factors of N, then both would be unable to solve the

above Equations 3.1 and 3.2 for r2 and y2, since by doing so, we would be able to use

P or V2 as a subroutine for an algorithm that could compute square roots modulo a

composite N without knowing the factorization of N, which is believed to be difficult.

In the divertible scenario, V1 left no identifying trace in the communication; in

secret-chains, the secret corresponding to his own public information is incorporated

into the protocol. Therefore, if the factorization of N were known to P or V2, then

r2 and y2 can be easily computed, and V1 can be detected and even identified by

computing fN(y2) and comparing it to the public information of all players and finding

the matching 2 . Hence we restrict the class of CRSR relations for SCZKIP to be

those that are one-way and not trapdoor in nature.

3.4 SCZKIP Construction Based on Discrete Log-

arithms

For easier understanding, we describe a SCZKIP based on the discrete logarithm

problem in this section. Recall from Chapter Two that this entails the following

definitions for f, A and T:
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f(y) = g mod p,

AN(x,r) = xgrmodp,

Y1 Y2 = YI+Y 2mod (p),

T(x, x') = x(x')- mod p.

This means that if xl,x 2 and are the public information of A,B and A-B

respectively, then the corresponding secret information is Y1, Y2 and yl + Y2 mod (p),

where xl = gYl mod p, x2 = gY2 mod p and =- gYl+Y2 mod p.

The protocol in Table 3.3 then ensues.

3.5 SCZKIP Construction Based on Quadratic

Residues

Similarly, a SCZKIP based on quadratic residues modulo a composite number is

detailed. Recall from Chapter Two that the definitions for f, A and T are as follows:

f(y) y 2 mod A/,

AN(x,r) = xr2 mod A/

Y Y2 Y1Y2 mod AJ

T = x(x') - l mod A.

This means that if x1 , x2 and ,: represent the public information of A, B and AHB

respectively, then the corresponding secret information is yl, y2 and Y1 Y2 mod A where

X = y2 mod A, x 2 = y2mod and 2 = (Y1Y2) 2 mod and mod .

The protocol in Table 3.3 then ensues.
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3.6 Variations on a Theme

Having described the notion of a secret chain and constructed a SCZKIP using a

CRSR relation, we next taxonomize the different possibilities that can occur in longer

chains, (P, W1, ..., w,, V).

3.6.1 Multi-Prover Single-Verifier Model Extension

The protocol construction from the previous chapter which involved only two provers

can be easily generalized to the (n + l)-prover (n > 2) scenario in which (W1, ..., Wn)

assume the role of a prover. The idea is very straightforward; the ith prover proves

some knowledge to the (i + l)-t prover, but in order to do so, he must engage the aid

of the (i - )"t prover (and remainder of the chain before him). The interface to and

the protocol for each of these additional provers is in fact identical to that of B in

Table 3.2- i.e. divert the messages while adding in your share of the secret.

3.6.2 Single-Prover Multi-Verifier Model Extension

We can likewise consider the case where (W1, ..., W,) play the parts of verifiers. This

extension to multiple verifiers results in the divertible scenario posed in [OkOh].

Theorem 3.6.1 A divertible (computational/statistical/perfect) zero-knowledge in-

teractive proof is a special case of the secret-chain zero-knowledge interactive proof.

Proof: The idea behind secret chains is that each prover in the chain of provers knows

part of a greater secret . In the (P1 , P2, V) case, P2's secret can be "degenerate",

meaning that it can in fact contribute nothing at all to the overall secret g. So, in

fact, we know that = f(yl, Y2), and in this case, f is a function that takes two

arguments, and returns the first as its output. This means that the secret that P2 is

trying to prove knowledge of, is precisely the secret held entirely by P1 and P2 does

not possess any part of it. In terms of the protocol constructed above, this means
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that Y2 would be, in fact, the identity elements of RN(XN). It is easy to see that

the protocol in Table 3.2 reduces to the divertible multi-verifier scenario defined in

[OkOh].

U

3.6.3 Multi-Prover Multi-Verifier Model Extension

We may also consider the case where for some i, (W1,...Wi) play prover roles and

(Wi+l, ... , W,) act as verifiers. The protocol of messages are uniform enough, that the

prover and verifier roles can be fitted together in a straightforward manner to create

a chain of provers connected directly to a chain of verifiers. A more general variation

that might have some interesting applications is a chain in which prover and verifier

roles are arbitrarily intermingled and assigned to (W1, ..., W,).

Note that a single-prover single-verifier model returns us to the usual ZKIP system

of Goldwasser, Micali and Rackoff.

3An identity element exists since from the definition of CRSR, (RN(XN), *) is a commutative
group.
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Chapter 4

Application to Blind Digital

Signatures

4.1 Blind Digital Signatures

Previously, zero knowledge interactive proofs have been shown to have applications

to digital signatures [FiSh, OhOk, MiSh]. In [OkOh], divertible zero-knowledge

interactive proofs were used to construct blind digital signatures (which are informally

described below). Likewise, the secret-chain zero-knowledge construction can be used

to create blind digital signatures, in which, by virtue of a secret-chain, a signature

requires the participation of all provers, and by virtue of it being a blind signature,

the message to be signed remains unknown to them.

In [GoMiRi], a digital signature scheme was defined by:

* A security parameter k that governs the length of messages and signatures, etc.

* A message space M C {0, 1}k', for some constant c > 0, of valid messages that

may be signed.

* A polynomial-time generating algorithm 5 such that g(1k) outputs (s,p) where

s represents a secret key used during signing, and p represents the corresponding

public key for use in the verifying algorithm.

43



* A polynomial-time signing algorithm uf that uses the secret key s to output a

signature (m, s) for a message m E M.

* A polynomial-time verifying algorithm p that uses the public key p to test if a

signature or(m, s) is a valid signature for message m. If p(or(m, s), m, p) outputs

true, then the signature is valid, otherwise, the signature is rejected.

Blind signatures were first introduced by Chaum [Ch]. Assume signer S has

a digital signature scheme described by (s,p, a,p) for some message space M (as

described above). We say that a signature for a message m E M is a blind signature

if the signer produces a signature for m but does not know m. After issuing such

a blind signature, given m0 and ml, such that one of them is the message m while

the other is a message randomly chosen from M, the signer cannot correctly identify

which of mo,ml corresponded to the message he just signed with a probability of

success greater than random guessing.

Let P1, P2 and V be probabilistic polynomial-time turing machines. In our defini-

tions and construction, we consider the 3-party case, (P1 , P2, V), in which the verifier

V obtains the blind signature of a message m that must be signed with the coopera-

tion of both signers P1 and P2. By convention, we allow V to select this message m

(so in some sense, m can be thought of as private input to V, or can be regarded as

a message randomly selected in part by V via its coin tosses).

In our earlier SCZKIP construction from Chapter Three, the entire protocol was

executed sequentially t = O(N) times. In the parallel version, which we will use for

our blind signature construction, the t messages that would have been sent separately

during the same step of each of the t iterations are concatenated together, and sent as

a single message. Thus, the number of rounds and messages sent is the same as in the

sequential version, however, each message is t times as long. The resulting parallel

version is not necessarily zero-knowledge [FeFiSh], but as in parallel versions of

divertible zero-knowledge interactive proofs, there is no transfer of useful information

[OkOh, FeFiSh], and so is suitable for our purposes.

Definition 4.1.1 Let Af be a countable infinite set and let N E JV. Let RN C
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XN x YN be a relation for finite sets XN, YN. Let g: YN -4 YN be a polynomial-time

computable function. Let M C {O, 1 }N' be some message space.

Let (P (xi, yl), P2(xi, x2 , y2, ), V(X)) be a zero-knowledge secret-chain interactive

proof of knowledge where (l,Yl),(x 2,Y 2), (,g(Y,Y 2)) E RN. Let m E M be the

message to be signed. We say that (Pl(xz, yl), P2(x ,x 2, Y2, X), V(F)[m]), where m is

private to verfier V, outputs a blind digital signature of m if the following hold:

1. (keys) The public and secret key pair is (, ) where Y = g(y2,y2). Note that

this pair satisfies the relation RN.

2. (signing algorithm) There is a polynomial-time signing algorithm O. that outputs

a signature o(m, P) for message m computed using secret key g.

3. (verifying algorithm) There is a polynomial-time verifying algorithm p such that

p(m, or(m, g), i) outputs true if cr(m, P) is a valid signature for message m under

public key x, and false otherwise.

4. (blindness) The signature signed by PitP 2 is a blind signature; neither P1 nor

P2 know the message m.

5. (parallelness) (Pl(xl, yl), P2(x, 2, Y2, ,), V(z)) is a parallel version of the se-

quential SCZKIP detailed in Table 3.2.

6. (unsuspecting parties) Let P1, P2 represent a pair of honest provers, and let V

represent an honest verifier in the ideal scenario. Let Z(P1'P2, V[m])(i) denote

the probability space of blind signatures of a message m (verifiable using public

key x) that is output by verifier V after interaction with signer P+P 2.

Let PTM V* represent any verifier and PTM P* represent any prover.

* VIEWp (P, P2v*)(xl) is computationally indistinguishable from

VIEWp] (Pi, P2)(xi)

* Z(P1*P2 , V[m])(Z) is computationally indistinguishable from Z(P2, V[m])(i)
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We show that if RN is CRSR, then (Pi(xl,yl),P 2(xl,:x2, y 2,x), V()[m]) outputs

a blind signature for message m. This construction is depicted in Table 4.1. Observe

that this is a combination of the secret chain of provers from Table 3.2 and the blind

signature scheme of [OkOh] in which the single prover in their scheme is replaced

by a secret-chain consisting of two provers. The interface between the signer(s) and

verifier is preserved and is highlighted in the table by double vertical lines.

Note 7 = {hi} is a family of polynomial-time computable functions where hi 

{0, 1}* -- {0, 1} randomly hashes its arguments to a single bit. Furthermore, we use

{x} to represent the set of elements {xi, * * xt}.

Public and Private Keys

The public key for the signature scheme is x, and the corresponding secret key is .

Furthermore, since each signer knows a portion of y, all provers must participate in

the protocol to create the signature. This is then a signature scheme in which all

provers must cooperate.

How to Obtain a Signature

Given a message m E M, the signing algorithm engages the secret chain of provers in a

SCZKIP. More specifically, it assumes the role of V in (Pl(xi, yl), P2(x , x 2, y2, x), V()).

However, there are some differences compared to the original SCZKIP protocol de-

tailed in Table 3.2.

In particular, the protocol is a parallelized version, therefore the initial message

from P2 to V consists of a sequence of t messages {x'}. These values are then

"diverted". By diverted, we mean that they are randomly mapped to some other

values {X3} by applying algorithm AN, much in the manner of a verifier in a divertible

scenario.

V then must reply with a set of t challenges, Instead of selecting Pli, 1 < i < t

at random, V computes f3 = hi(m, {x3}).

When the protocol terminates, the final set of responses {z2} obtained from P2

are also diverted to {za}. The signing algorithm then outputs as its signature for m,

46



A

el,mI

Icc

A

13

1:4

47



the tuple: {{X3}, z3}}.

Since there are a polynomial number (t = O(N)) of messages sent during each

parallelized round, and as in the sequential version, all computation (including A used

for diverting quantities and hi for hashing values) can be performed in polynomial-

time, the signing algorithm is polynomial-time.

How to Verify a Signature

The verifying algorithm p takes as input the message m, it's signature (4}, z3 }))

and the public key 2. Recall, {x3} is notation for the sequence of {2x3,1, X3,2, ... , X3,t}-

To check the signature for m, it computes 3i = hi(m, {(X}), 1 i < t. If pi = 0

and x, = AN(, z3,i) then p accepts. Also, if 3li = 1 and (3,i, Z3,)ERN then p also

accepts. In all other cases, p rejects. If p accepts these checks for all values of i, then

the signature for m is valid, otherwise, the signature is rejected.

The verifying algorithm runs in polynomial-time since hi can be computed in

polynomial-time and AN is a polynomial-time algorithm. Furthermore, membership

in (z,y) in RN can be tested in polynomial-time by applying the polynomial-time

computable f (from Definition 2.2.1) and checking that x = f(y).

Blindness

By construction, the message m is revealed to neither P1 nor P2. Furthermore, V's

selection of di and r3,i are randomly and uniformly distributed, therefore, the diverted

quantities computed by V and the output of hi (i.e. fi) likewise obey a uniform

random distribution. As a result, P2 is unable to trace and link the signature to any

particular execution of the protocol.

Unsuspecting Parties

The first condition follows from the underlying secret-chain protocol. The intuition

is that P1 could not tell in the SCZKIP setting that his proof was being built upon

and used by P2, and so likewise, in the blind signature signing scheme, P1 should still

not be able to tell that he is not the final signer.
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The second condition represents the verifier's perception of the signature scheme;

namely, that from the distribution of signatures, V does not realize that P2 is not the

sole signer and that several signers participated in securing the signature.

Lastly, we show that given message m, it is difficult for a forger F to find values

for a signature (X,Z) that the verifying algorithm will accept as valid. To see why

this is so, consider the simpler case where, instead of t values, there is only one value

in each set; i.e. X = {xi} and Z = {zl}. Next, F flips a coin to obtain a value h.

This 3 is in effect F's guess for the value of, in this case, /31. If 3 = 0, then F selects

a random value for z and computes xl = A4N(i, z1 ). If p = 1, then F again selects

a random value for z and computes x = f(zi). Only if = 3 = hi(m, x1 ) will F's

signature be accepted by the verifying algorithm. This occurs with probability 2.

If instead, there are t values, as in the protocol, then to be able to forge a signature,

F must be able to correctly guess all t values for /i, 1 < i < t, and succeeds only with

probability t
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Chapter 5

A Secret-Chain Zero-Knowledge

Protocol

In this chapter, we apply our model and exhibit a SCZKIP for the Graph Isomorphism

problem and the Graph 3-Colorability problem.

5.1 Basic Graph Notation

Let G be a graph, often represented as G = (V, E), where V is the set of vertices,

and E, the set of edges.

A permutation 7r of a graph is simply a renaming of the vertices of the graph. More

specifically, if G = (V, E) and 7r is a permutation, then 7r(G) represents a permutation

of G according to 7r, so r(G) = (V, E') such that (u, v) E E X (r(u), 7r(v)) C E'. Let

SymV denote the set of possible permutations of a graph G. For two permutations

r, v C SymV, we denote (r o v) or rv as their composition, i.e. r o v(G) = 7rv(G) =

7r(v(G)). Also, note that given a permutation 7r, its inverse r- ' can be computed in

polynomial-time.

Let (X, Y) denote an ordered pair, where X and Y can be any two quantities,

such as graphs or permutations.
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5.2 Graph Isomorphism

This section presents a secret-chain zero-knowledge protocol for the Graph Isomor-

phism problem, built upon the divertible zero-knowledge proof described in [BuDe].

Given two graphs G and G', there is currently no known efficient algorithm to

ascertain whether or not G is isomorphic to G'. This is the Graph Isomorphism

problem, and can be stated more precisely using the instance-question format of

[GaJo]:

GRAPH ISOMORPHISM

INSTANCE: Graphs G = (V, E) and G' = (V, E')

QUESTION: Is there a one-to-one function f: V --+ V such that {u, v} E

E X {f(u), f(v)} E E'.

Note that the Graph Isomorphism problem is not known to be NP-complete. Fur-

thermore, because commutativity of permutation composition does not hold, RG =

{(G', Ir)lG' = 7r(G)} is not a random self-reducible relation.

5.2.1 Construction

For clarity, Table 5.1 summarizes the public and private information of the various

parties.

Table 5.1: Summary of Public and Private Information for Graph Isomorphism

Let (Go, G1) be prover A's public information, for which only A knows a permuta-

tion o- E SymV such that Go = cr(Gi). Similarly, let (Ho, H1 ) be B's public informa-
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Party jJ Public Private Relationship I
A (Go, G1) 0 Go = (Gi)
B (Ho, H1) v Ho = v(H)

A"B (Fo, F1) vav -1 Fo = vav-'(Fi)
Fo = v(Go)
F1 = v(G1)



tion and let v E SymV be a permutation known only to B such that Ho = v(H). The

public information of AtB (i.e. ) is then a pair of graphs (F0o, F) = (v(Go), v(Gi)).

Note that (H0, H1), the public information of B is never really used in the protocol;

only the permutation v permuting H1 to Ho plays a role in the protocol for obtaining

the combined public key for A4B, i.e. = ((Go),v(Gi)), and the corresponding

secret key v = vrv - 1.

The relationship of all graphs in the protocol are depicted in Figure 5-1 for easier

understanding. These graphs are all derived as permutations of A's public informa-

tion. Note that the public information of B is not included in the graph, only the

permutation v, B's private information and his passport to obtaining (Fo0, F) from

(Go, G1).

Fo F1

TIr
Go' G1Go -0 GI~

G' G'

o G1

Figure 5-1: Relationship Between the Graphs of SCZKIP for Graph Isomorphism.

The construction for (A((Go, G1), o), B((Go, G1), (Ho, H1 ), v, (Fo, F1)), C(Fo, F1))

is rather straightforward, and the protocol, which is executed t times, is shown in

Table 5.2. Note that as in [BuDe], the first message sent by prover A is derived from

two instances of the same graph, Go. This provides the prover with an opportunity
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to show that Go and G1 are indeed isomorphic (with the use of a), and the bit 

serves to randomize the ordering of graphs and the message 3' (so that ' = a with

probability ).

5.2.2 Proof of Correctness

Completeness

The proof of correctness is similar to those of [BuDe] and [BuDeItSaSh]. It is easy

to see that if each of A and B is honest and possesses knowledge of a and v, then

they can successfully participate in (A((Go, G,), a), B((Go, G1), (Ho, H ), v, (F0, F,)))

and (A"B((Go, G1), (Ho, HI ), v, (Fo, F,)), C(Fo, F,)) respectively'.

Soundness

We prove soundness for each of these interactive protocols by exhibiting an extractor

machine for both cases.

For protocol (A, B), probabilistic polynomial-time machine EA((Go,Gl),O) partici-

pates in the protocol using A as a blackbox subroutine. It runs A to obtain G', issues

a bit /' and receives (o,, k) in response. The extractor then rewinds A's tapes back

to the point where A is awaiting a challenge bit2 , and sends 13' instead. After learning

A's responses, EA now has ro and rooa (as well as 7rl and rla), and from these, A's

secret permutation a can be compute as a = 7rol(7r0).

The extractor for the (A- B, C) part of the protocol is similar. As a result of prob-

ing AR'B for responses to both challenges P and , EA-B((Go,G,),(H,H,),v,(Fo,Fl)),C(Fo,Fl))

acquires the pairs of permutations:

(r<rav'1,ir rv-1) and (Or7rov -, rl71V).

Consider the first quantity of each pair: r'or0ov - 1 and rr 0v- 1. From the latter, the

'For the remainder of this section, we will denote these as (A, B) and (A- B, C) for simplicity
and clarity.

2 For example, E resets A and reruns A on the same input and random tapes.
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value of ('rov-) - l = v-7rl(?r) - can be found. When composed with the former,

we get (7rl(7r') - 1) o (r)7ro-v - ) = vr-l'7roov-l = vorv-, and this is precisely the

private information held by AH-B.

Zero-Knowledgeness

The protocol for Graph Isomorphism is zero-knowledge if expected polynomial-time

simulators SIMB* and SIMC* can be constructed to probabilistically mimic the

behavior of A and AB respectively.

First, we show that simulator SIMB*((Go, G1)) produces an output whose proba-

bility distribution is (computationally/statistically/perfectly) indistinguishable from

VIEWsB((A(a), B*)((Go, G1))).

Here we outline a description of SIM. In all invocations of B*, SIM will place

a pair of graphs on B*'s input tape, and a sequence of randomly chosen bits (fixed

across invocations) on B*'s random tape. Based on its input, its random coins and

perhaps a history of interaction so far, B* writes a random challenge on its write-only

output tape, which is then read by SIM. It is the goal of SIM to be able to output

t successful conversations with B*, so depending on B*'s choice of a challenge, SIM

will appends another conversation to its compilation, or repeats the invocation.

More specifically,

1. SIM chooses a random a ER {0, 1}. This represents his guess of B*'s challenge

i'.
2. SIM selects two random permutations 7ra, rb ER SymV and gives (7ra(Ga), rb(Gc))

as input to B*. Based on this input, its random coins, and its history, B* returns

its challenge /'.

(a) (a = /3') In this case, SIM succeeded in guessing B*'s challenge. It can

answer B*'s challenge by sending (ra, '7rb), in which case B* will successfully

verify that Go = r,(Gp,) and G1 = rb(Ggs). The successful conversation

{(7r(G.), rb(GU)),/3', (7r, rb)} is then appended to SIM's compilation.
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(b) (a 4 3/') Nothing is added to its compilation, instead, SIM repeats the

current invocation.

These steps are iterated until SIM has a compilation of t successful conversations.

Note the SIM will terminate in expected polynomial-time. Each invocation is

polynomial-time, and since B*'s choice of 3' and SIM's selection of (ira(G), 7rb(G-))

are independent, the probability that a = 3' is 2. Hence each invocation is expected

to be repeated twice before a successful conversation is found, and the total expected

time for SIM is thus polynomial.

In this manner, the simulator generates a whole transcript of conversations whose

probability distribution is supposedly identical to that of (A(o), B*)((Go, G1)). Let

S = {((G, Gb),/3', (r,rb))lG = r.(G,6),Gb = rbGX,,f' = B*'s challenge. As in

[GoMiWi], we can show that there exists a 1-1 mapping between S and SymV x

SymV, where the inverse mapping,

i.e. (,rb) -b ((7,ra(G1), Xb(G1 )), ,'(7r., rb), (ral- ', 7rbo')) where /3'(7r, rb) is B*'s

challenge, corresponds to the way an element of S is selected in (A(o), B*)((Go, G 1)).

SIM on the other hand, randomly chooses a, 7r, and rb are randomly chosen. As a

result, raGa and rbGa are randomly permuted versions of Go and G1. Given the fact

that Go - G1, as far as B* can tell, these "look like" two random permutations of Go,

and this is exactly the case in the first transmission of (A(or), B*)((Go, G1 )). Given a

value of ' = a, the conversation recorded by SIM, i.e. ((r(Ga-), rb(Gc)), ', (ra, 7b)},

is also a random, uniformly selected, element of S.

Thus the two distributions are identical.

A simulator for (AB, C) can be specified in practically the same manner, and

hence, both protocols (A, B) and (A-B, C) are zero-knowledge.

Given any VIEWA = ((G', G1),,3', (O, b)) and any VIEWe = ((Gg, G'1),3, (o, bl)),

an attempt might be made to reconstruct the entire protocol. With /3 and i3', the

value for e can be computed, and we end up with the following equations where 7r0, 7rl

and v-l, are unknown:
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= 'Go = ire(Ge)

'61 = (4O'° be) °V

Notice that if r or r can be found, then v can be computed as well. Assuming

there are a polynomial number of possible users, one might then be able to iden-

tify the intermediary party B who partook in the protocol responsible in these two

views. However for large enough graphs, finding whether or not the two graphs are

isomorphic and finding a permutation from one to the other is not believed to be in

P. Hence, we expect that it it is difficult to compute (r,, 7r), and consequently, v and

the identity of B remains unknown. In short, given some (Go0 , G1 ) (belonging to some

P1) and some (Fo0, F), neither P1 nor a verifier can tell whether or not these pairs of

graphs are element-wise isomorphic.
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Chapter 6

Conclusions

Much work has been done and is currently being pursued in the area of cryptography,

and in particular, zero-knowledge. Applications for zero-knowledge and its many

variants and flavors are constantly being contemplated, devised and explored. Secret-

chains are another of these efforts to understand and grasp the extent of the notions

first put forth in Goldwasser, Micali and Rackoff's seminal paper.

In this thesis, we presented the idea of secret chains, and formalized a model for

zero-knowledge proofs which is topologically based on a linear chain of provers. Each

of these provers possessed part of a "larger" secret, and whenever a proof was needed

for this larger secret, joint participation was required.

In Chapter 3, we saw that the verifier and prover roles in the secret chain model

were modular enough and their interfaces uniform enough, that they could be glued

and stringed together into chains with an arbitrary number and mix of verifiers and

provers. Specifically, the multi-verifier model (Okamoto and Ohta's divertibility sit-

uation) was indeed a special case of the secret-chain model in which intermediate

parties have degenerate prover roles and only play verifier roles which diverted the

various quantities.

It is always an interesting phenomenon how the same protocol can be viewed

differently, depending on the parties involved and the model used. This is really

exemplified here between the secret-chain model and the divertibility models, which

present two distinct outlooks for the same situation.
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We also specified a secret-chain zero-knowledge protocol based on a CRSR rela-

tion, under the assumption that this relation was one-way and non-trapdoor. Fur-

thermore, this protocol was used as a basis for a secret-chain blind signature scheme

and for exhibiting a secret-chain zero-knowledge proof for graph isomorphism. It

would be interesting to find a clean and elegant SCZKIP proof for an NP-complete

language(relation).

The key idea behind secret-chains is that the ability to successfully provide a proof

is contingent upon the cooperation of all secret holders. However, even though their

participation is required, they may be oblivious to this fact that they hold shares of

a larger secret. Relaxation of this restriction allows for applications like the observer

model. Indeed, further research by Okamoto, Ohta and Fujisaki [OkOhFu] is also

being done to unify the secret-chain model and the observer model presented by

Chaum, et.al. for use in electronic cash systems.

Nevertheless, with this restriction in place, it is still possible to realize blind

signature schemes. The untraceability can also be exploited to handle situations like

our information broker described earlier in Chapter One, where the broker is basically

"in on" it all, but wishes to keep everyone else in the dark regarding his sources for

information and his client pool.

In addition to proofs of knowledge, the secret-chain model may also be applica-

ble to proofs of computational power. Assume that Alice's proof of computational

power somehow represents some function that she is able to compute but that oth-

ers cannot (perhaps because she has the resources and technology available, or the

function is too complex or costly for the general user to implement, or for some rea-

son she wishes to maintain sole proprietary rights to the function code/algorithm,

etc). Bob on the other hand has also devised an algorithm to solve another problem,

but his code makes use of Alice's function as a subroutine because he may lack the

ability/resources/know-how to compute it. In this case, anyone who needs to use

Bob's algorithm can do so by supplying the appropriate inputs. Even though Al-

ice's algorithm is not revealed, procedural abstraction allows Bob's algorithm to be

implemented, and Bob simply must enlist Alice aid in a secret-chain manner. The
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case when even the inputs to these functions are somehow hidden is reminiscent of

instance-hiding proofs, so perhaps these have divertible and secret-chain counterparts.

One other extension is removal of the linear chain topological restriction. Consider

a smaller subset of CRSR relations, where a law of composition ): XN x XN - XN

exists such that (XN, ) is a commutative group. Let there be a homomorphic

property for f (from Definition 2.2.1 such that f(y1) 0 f(y2) = f(y1 · y2) (these

were described briefly in [OkOh] and called "one-way homomorphic functions" in

[OkOhFu]). It is then possible to dispense with the linear arrangement and opt for a

tree instead. The interesting feature about a tree structure is that several branches

coverage at a node; in terms of our information broker, he is able to combine several

sources of information together. In terms of Bob, he is not limited to using only

Alice's computational ability, but can use combinations of Alice's, Eve's, Victor's,

Jim's....

Indeed, the questions are endless and there is vast territory to be explored. This

thesis will have hopefully uncovered some small fragment of this huge iceberg.
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