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A3STRACT

This paper considers the problem of efficient coding (in the

information theory sense) for finite, discrete, memoryless message

sources and finite, discrete, memoryless, noiseless channels.

,i- It describes important known results and methods and includes some

!, ntnew results. Various classes of the coding problem are clearly
distinguished. Emphasis is placed on the classes in which the
number of message blocks is restricted either to the number of

a:?i original messages or to the number of hannel symbols, whichever
is larger. However, rocedures for larger numbers of message
blocks, which lead to perfect efficiency, are also discussed.
Various bounds on the efficiency are described for different:.9 ~/procedures.

The case of cost-weighted channel symbols is discussed in

parallel with the equal-cost case which has received the most
attention in the literature so far. Cost-weighted symbols in-
elude those which ave, for instance, unequal time durations.

'"- % An extension of the Shannon procedure and bounds to this cost-

weighted case is described. An interesting question as to the

admissibility of proper signal sets in the cost-weighted case is

raised but not solved.

Thesis Supervisor: Peter Elias
:! Title: Associate Professor of Electrical Engineering
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DISCRETE NOISMT3LSS CODING

1. TE CODING PBLt1M

i~ . 1.1 TH COMOICATION SYSTEM

We are interested in coding as it may be applied to the

transmission of information in any communication system. For this

discussion we shall adopt the point of view accepted in information

theory as proposed by Shannon. From this point of view we conceive

the general commnication system as containing (among other things)

1) an information source or message source, 2) a transmitter or coder,

3) a channel, and 4) a receiver. The aim is to transmit the informa-
tion to the receiver in some efficient way. To do this the transmitter

codes the messages from the information source into signals which it
sends over the channel. Here, then, coding involves the representsa

tion of messages by signals. The coding device may be thought of as
a transducer which accepts information in one form and sends it out

in a more useful form. We would like to make this transducer error
free, efficient, and simple.

In this discussion we consider only discrete systems in which both

the message and the signal are selected from sets of a finite number of

*g -elements. The message set contains m elements (written m. ; i = 1,2,...,m).

The signl set. contains D elements which may be called channel smbols

* - (written d ; = 1,2,..,1). The signal set may be called an alphabet.
a11~ji Coding may then be described as the process whereby the message, mi,

or a sequence of messages called a message block (written M ; k = 1,29... ,M)

is replaced by a sequence of channel symbols called a code word

X -written Wk ; k = 1,2,... ,M).

In general, one may associate with each symbol d a cost 

This cost is most frequently thought of as a time duration of the symbol

! *:i (c( = tj seconds) but it may be expressed in terms of power, bandwidth,
or any other economically motivated consideration. If we do not wish

*Superscripts refer to eferences listed in the Bibliography.

.it,



1.1, 1.27

tQ specify a articular unit, we may give the general unit "unic" to

the ele
Each message has a certain a priori probability of occurence which

is written p.. For this discussion we consider these probabilitites

to stay fixed and the source is then called memoryless". (A source

which has-memory may be rpresented, to a first approximation, by a

memoryless one by considering pi as the probability of mi averaged over

all possible situations). The information content or entrooy, , of

memoryless message source is given by H = -EZpi log pm bits/mesage**

where the logarithm is to the base two. For a channel with memory H
will actually be less than this, the difference increasing with the

dependence on past history.

1.2 CHAN NMt CAPACITY

The channel caiacity, C, may be defined as the maximum rate
at which information may be transmitted over the channel. Shannon

defines the capacity as follows

C = Q lim T() bits/second (1)
T

where (T) = the number of allowed signals of duration T.

This definition will be shown to be equivalent if we replace seconds

by unes.

To find the rate of transmission, R, over the channel we need to

know the probability with which each symbol, d, is used. Let us write

these probabilities pj Then R is given by
-7,

-Z P log p
R = " -~- --, bits/unc (2)E Pjcj

We let the average cost per symbol be written B where

he c L= Pjcj uncs/symbol (3)

*Unc, which rhymes with bunk, is an abbreviation for unit cost".

**In this paper the smmation is taken over the entire range of
the index unless otherwise noted.
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Thus the ate is the ratio of the average information content per -symbol
to the aerage cost per symbol. Then to find we want to imize R,

.! :~i~ ~i.e., find the set of p's for which R is a maximm. Let us assume that
we are free to use the symbols in any order we choose, (Otherwise there
are constraints in the channel. This case will be treated in an example

in Section 1.3). Then we may maximize R subject only to the constraint:

p =1 (4)

To do this we use the method of Lagrange multipliers. Let

R + XZ P (5)

c (-lnZ -2 log P) + . l $ g (6)
bp ~-2 (6)

where In 2 = log e 2

f:Now let
ow let for p = Pm (the maximizing probabilities) (7)

Then
c(ln 2 + log Pz) - C Pm log 

m X ' 0

But
P log Pj -Cc (9)

'~:~:~: ' ]Rence

rence( cln 2 + log Pm + Cc) = (10)

To evaluate X let us multiply by P and sum for all j:

c( x PmJ, E Pm log P + n 2 P)

Then

.*-*c''log P = (ln 2 - n 2 +cj) (13)

"~, or=
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Since E P = 2 C cj = 1, we have 0 as the real-valued solution to

the equat ion

E 2Icj 1 (15)

'~JriI~ It can be shown* that R < if any of the pj.'s depend on previous

symbols. C, in general, is measured in bits per unc. For cj - t

seconds, will be measured in bits per second. For the case in which

all cj are equal (say to cl) we have

E 2-c = D2 - CCl 1 or D = 2Ccl (16)-Then l _ (17)
1.3 3nrsAMPLS OF cHAELS - TfIRAPH AND ITBYP

The teletype channel has two symbols which are used in all

possible permutations of length five. As an idealization we may say
that these two symbols are equal in cost with c1 = c2 = 30 milliseconds.

Then from eq. 17 we have

C = (log 2)/30x10 33 bits/second (18)

If we measure cost by some factor other than time we might find,

however, that, for int.tance, c1 = 1 unc and c2 2 uncs. The capa-

city is then the solution of the equation

2-C 2 -2C 1 (19)

which is C 0.695 bits/unc.
The International Morse Code uses a channel which has several symbols

which may be weighted according to their time turation. One way to

describe the symbols follows on the next page:

2
*See ano, p. III 36, or Shannon, p. 22. We must, of course,

extend the definition of R suitably. The value of C in (15) is the
same as Shannon obtains with his definition for C.

..;~~
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SYMBOL DSCRIPTION TOTAL COST

dl dot one unit of time "on", one "off" 2 taps

d2 dash three" " " n " " 4 

d3 letter space two units of time "off" 2 "

d word space five " 50

The unit cost is now the unit of time which we call the tap. In this

case, however, we are not free to use the symbols in whatever order we

choose. For instance, we cannot distinguish at the receiver five letter

spaces in a row from two successive word spaces. Practically, any

number of successive spaces become very difficult to decode at the receiver.

[!iBiJXjl We may then place theconstraint on the channel that two spaces may not

be sent successively, To clculate the capacity we may consider a new

set of ds which can be used with no constraints and which generates

all allowable sequences of the old ds. For example:

SYMBOL TOTAL COST

d =d 2 taps
Ir d = d2 4 0
-

"JIdj =d3dl 4
d4 =d 3d 6 "

d -d 4d1 7 "

da - dd2 9 

Thus C is the solution of

2 -+2 + 2 -4 2- 6C + 2- 7 + 2-901 (20)

which gives C - 0.590 bits/tap.* This value,-for is again the same
as would be obtained with the Shannon definition. In this manner a

channel with constraints can be transformed into one without constraints

having the same catacity.

*Shaqnon gives a slightly higher cost to the spaces and gets

C 0.539 bits/tap.

~i::.
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1
The Fundamental Theorem for a noiseless channel states that

it is possible to encode any message source into any channel with capacity

0 in such a way that

R =C- e for any >0 (21)

and it is not possible to perform an encoding such that R > .

This theorem suggests that C is really a good measure of channel

capacity since we can transmit information over the channel at a rate
as close to its capacity as we like with suitable coding procedures.
This, in turn, provides substantial evidence to support the soundness

of the definition of the measure of information. (See Fano p. III 10

for an elaboration of this point).

The latter part of the theorem is true since we have defined C as
the maximum R. To prove the first part we consider all possible se-

quences of messages of length L. We then consider all possible code

words of a given cost. We may then show that the latter number is

big enough to encode a large enough group of the former such that the
information rate approaches C as L approaches infinity. The sequences

of messages which are not coded by code words of the given cost must

be coded by more costly code words,. However, this group has such small

probability as L approaches infinity that the information rate still
approaches C.

This is of the nature of an existence proof. A constructive pro-

cedure which attains a rate C in the limit is also given by Shannonl

for the special case of equal-cost channel symbols. This method is

extended to the cost-weighted case in this paper.

1.5 CRITERIA FOR GOOD CODES

One criterion for a good code will be its efficiency, e,

which is defined by e = R/C. Another criterion for a good code is

the ease with which it can be implemented by apparatus in any given

situation. There is no single mathematical measure for this latter

criterion but there are some measures which may give us an idea-of the
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complexity of the code and, hence, possibly the difficulty of its im-

plementation. These are the number of message blocks, M, (which is

also the number of code words), the maximum word cost, ck ma and the

number of messages in the longest message block, nmax
M may indicate the size of the "code book" needed or may otherwise

indicate the complexity in the coding apparatus. ck ma is similarly

important. If cost is in time then ck max determines the longest delay

in being able to determine what the message was. It therefore measures

the storage capacity necessary at the decoding apparatus. If the cost
is in power or bandwidth, etc., there may be some upper limit beyond

:: .which it would be impossible for the costliest signal to go due to physical
limitations of the apparatus. Similarly, nmax may measure the storage

capacity needed at the encoder.

1.6 CLASSES OF THE CODING PROBLIM

The coding problem may be divided into three classes depend-

ing on the relative numbers of original messages, m, message blocks

(and hence code words), M, and channel symbols, D. In Class I the

number of messages is greater than or equal to the number of channel
symbols. The original messages are represented directly by code words,

Class II occurs when there are fewer messages than channel symbols.

Here the messages are coded first into message blocks which are repre-

sented directly by channel symbols. Class III considers the most corn-

plicated type of coding in which messages are coded into blocks and

are represented by code words. Summarizing, we find the following

relations:

Class I m= M D

Class II m <X-.= D (22)

Class III m<M> D

Each of the above classes may be subdivided into two groups:

Group A Equal-cost, all c are equal

Group Cost-weighted, some cj may be unequal

~[,'~i
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Classes IA, IIIA, and to a lesser extent IIIB, have received the

most attention in the literature so far. Class III has been analyzed

mostly for the limiting case of perfect efficiency. This paper considers

all the classes.

2. SOME PRELIMINARY CONSIDERATIONS ON CODING

2.1 TE TRE GRAPH FOR CODING

It has been found convenient to think of all the possible

code words as branches on a tree-like structure. (See Figs. 1, 3, and 4).

From the root on the left extend D branches to the right, each one

representing one symbol of the alphabet. The projection of the length

of each branch on a horizontal axis is made proportional to the cost of

the symbol. Since log Pmj = -Ccj by eq. 13, we may make the projected

length of each branch equal to (-log Pmj). From the right node of

each branch extends another "fan" of D branches to the right. The D2

branches in these D fans then represent all possible code words with
just two symbols. By further extensions code words of greater numbers
of symbols are represented. The code word which any branch represents

can be found as the sequence of channel symbols associated with the

branches on the path from the root to the branch in question (including

that branch). The horizontal distance from the root to the far node
of any branch is the normalized cost, written qk, of the word, i.e., the
cost multiplied by C. It is measured in bits. (Note that one multiplies
by C to get the normalized cost ather than divides since C varies in-

versely as the costs).

2.2 DMCODABILITY

A set of branches from the tree will then represent the code
words of a signal set. One necessary restriction on the signal set
(for error-free operation) is that it be decodable. That is, when a

sequence of symbols arrives at the receiver we must be able to decompose

this sequence in a unique manner into code words. This problem is con-

sidered in detail later (see e.g., Section 10.1) but for the present

we may say that a sufficient condition for this unique decomposability
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is that no code word be a prefix of any other code word. This condition

is sufficient since knowing when a code word begins we can determine

when it ends.
In terms of this tree picture the prefix condition states that no

used branch is allowed to lie along the path of another used branch.

(A used branch is a branch which represents a code word that is in the

signal set and the path of a branch is the sequence of branches from

the root to that branch). We term a signal set which obeys the prefix
4

rule as proper. On the other hand we may consider sets of code words

such that any infinite sequence of channel symbols has at least one

code word as a prefix. Such a set will be called cormlete. If there is

one and only one code word as a prefix to any infinite sequence, then

the set is both complete and proper and the used branches form a cut

set of the tree.

2.3 THE KA I Q IUALITY

Let us demonstrate a certain inequality. First we shall

define the structure function, S as follows:

Sp l2 (24)

This function tells us, in some sense, how much of the tree is "used aip"
by the branches representing W1 through W . The value for S when p is

the total number of branches considered is written S.

Now consider the cut set of ust D branches. For these branches

S = 2k = = 1 (25)

Now consider the cut set formed by reJl acing one of these branches by the

D branches in the fan at its right. Say this Sas the branch for the sym-

bol a. Then for te sum S = 2 l 2-qk we have the same terms as be-
k=l

fore except instead of 2 g Pmj = P we have . 2 lo 
ma j=l

P D Pm = P . Therefore, S = 1 as before. It is easily seen
ma J=l mj ma

that if we replace any branch by the D branches extending in a fan from

it , the S value will remain unchanged. Since any cut set can be gen-

erated from the cut set of D branches by a series of such replacements

~:



2,3, 3.1 15

(in which D - 1 branches are added at each step), then the value of S

for any cut set must be one. But a proper code must consist of the

branches of a cut set or some of the branches of a cut set b not more

than a cut set. Therefore, for a proper code S 1 in which the

equality holds if and only if the code is complete. This is known as

the Eraft5 inequality.*

3. DhISCUSSION OF CLASS IA

3.1 3BfST EFFICIENCY - IIDAL AND ACTUAL

Let us first consider coding for the case designated as

Class IA. For equal-cost symbols the tree is symmetrical and. the cost

of word Wk is just qk = nk log D, where nk is the number of symbols

in We' We note that R can be expressed in terms of the word costs and

probabilities rather than channel symbol figures as follows:

P pk log Pk H HC Rk = Pknk log D - log D23)
where Pk is the probability of the kth message block (which is here

a single message)**
H is the entropy of the message source
n = Z Pknk = the average number of symbols per message

* We see then, that in Class IA, for a given channel of D symbols and

source with entropy H, the problem is to minimize the average number

of symbols per message, n.
Now let us determine under what conditions the value for n will

be a minimum. As we have seen qk = nk log D for the equal-cost case,

For a proper code we have:

S = = 2=£-nklog D = , -nk <g1 (26)

*Iit has aso been called the Szilard inequality, since Mandelbrot6
claims Szilard discovered it in a structurally indentical problem con-
cerning Maxwell Demons in Thermodynamics.

**Note eq. 23 assumed that the p 's are constant, i.e., memoryless
coding. The notation k for the probabilities of the messagezblocks
should not be confused with pj and pi since the context should make.
the meaning clear.
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Now we minimize n = pknk subject to the constraint 2 D-n k c 1

in order to find the ideal value for . ror to be minimum the equality

sign must hold in the Kraft inequality. Otherwise we could reduce some

nk while still keeping S 1 and hence reduce n. We may now minimize

R subject to the constraint Z D -
n k 1. We again employ the Lagrange

multiplier technique: Let

= z Pknk + (Z Dnk l) (27)

To find the value of nk which minimizes n we set = 0

XM fik t1. - p D nk ln h D = O o(28)
On k Pk

To evaluate X we sum over k

1 :Pk = 1lnl ° -E Dnk = X n D (29)

Hence,
X = /1n (30)

D-nk = Pk (31)

or, -log Pk
nk = -logDpkl log D

The minimum value of is then n wheremin

_-Z Pk log Pk 
mIin EPknk logD = log (32)

This gives the ideal efficiency, e

H 1 H 1e x _ _ 1 (33)
n H/log D log 

which is also the best we could do according to the Fundamental Theorem

We see from eq. 31 that to code with maximum efficiency we want

nk -logB Pk. Because (-logD k) is in general not an integer this

cannot be done exactly. This is an example of a typical problem which

occurs in discrete coding: One has to use integral values of a variable

to satisfy certain conditions and in general one can only approximate

i

g

a
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the desired result. The actual best efficiency then, in general, falls

short of the ideal.

In finding a soltion for a certain class of cases one may ask two

kinds of questions: 1) ow well does this solution do (say with respect

to efficiency) compared to the best possible solution (either ideal (.e:= 1)

or the actual optimum solution)? 2) What bound on the efficiency, good

for the whole class, can be achieved by this solution? A solution that

~71~/a gives a good answer to one of these questions does not necessarily provide

a good answer to the other.

3.2 SUFFICIENCY OF COST SET SATISFYING KRAFT INEQUALITY

Let us show that a proper code exists with a, given set of

nk if the set satisfies the Kraft inequality. We can show that this is
so by a constructive procedure. The structure function may be written

S - 1 N(a) Da a 1,2,... ,L (34)

where L is the length of the longest word
N(a) - the number of words such that nk a.

Now let us pick N(1) code words of length 1. In general, there

will be some code words of length 2 which do not have any of the NEl)

code words of length one as prefixes. Pick N(2) of these. Now there

should be some code words of length three which are not prefixed by any

of the used words of length one or two. This process can be continued

until there are code words for all of the nk. The only reason that this
wouldn't work is that the tree got "used up". But this would mean

Sp > 1 for some p < M. But this would violate the raft inequality.

Thus we have proven our contention.

?.
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3.3 TH SAMON FROCEDURE

We have seen that in general we cannot pick nk =-logD Pk

because (-log D pk) may not be an integer. But we can pick nk such

that nk [ -logD p , where [x] means the smallest integer that
is bigger than or equal to x. There are several ways in which this
procedure may be shown to work. Let us order the messages according

to decreasing probability. Then let us pick a code word for message

1 of length n1 [-logD P 11' Similarly, we pick code word W2 such

that n2 = [-logD P2l and W2 obeys the prefix rule. This procedure

;?'5'<" is continued, always picking nk greater than but as close as possible

to the ideal value. If the procedure is to fail it would be because

there was no suitable branch to pick, i.e., for some p, S > 1. But

we have picked nk > T-log k Therefore,

?;i:r s S. z oDn kS <f D - ° gogDPk = = 1 (35)

Hence,
Ai: S < S < 1 for p <M (36)

Therefore, the procedure will always work.

In the Shannon procedure the number of symbols for any word is

bounded by

-log, pk - nk = [-logD k] <-log ~k + 1 (37)

This, in turn, gives the following bound on the average number of symbols
per message:

n = z iknk < Pk(-log D Pk + ) =
Z Pk log P H

Z P~ ~Fk log + 1O- (38)

a; :~ Hence, _~n~e, H
n< log H + 1 (39)log D

Hence,
H H (l/log D) 1ie =-> (40)

H +1 }3 1logD + H

Comments on the goodness of this method will come after other methods

. [
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have been described.

Before we mention other methods we may show how this method could

be proven in other ways. One way is to show that the signal set satisfies

the raft inequality:

-nk -= -O1 Pk < Dl o- Z pk - 1(41)

Therefore, by the sufficiency of the Kraft inequality, there exists a
proper signal set with these nk.

Shannon1 describes a simple procedure for performing the above type

of coding for the binary alphabet and showing that this gives a code
obeying the prefix rule. W is formed by expanding Ep as a binary number

p p
for n. places where

p-!E = 2 t- [-logp] (42)p k=l Pk' p -L p (42)

Vp must differ from Wk for k > p since Ek must be greater than Ep by at

least 2 P and hence must have a different binary expansion in the first

np places.

Of course the Shannon procedure is not optimum in general since in

most cases we could reduce some of the nk and still have a prefix code.

We could describe modified procedures following the same general pattern

which would be better but they would still not be optimum and we could

not easily obtain better bounds from them. We could, for instance,

describe a somewhat improved method for picking the words originally.
This would be to pick the cheapest word available for W such that

p
Sp < +1 This would work since S < S = S < 1 = 1.

4. TE SHANNOII D S'rON PROcEuMi (..

Let us now consider how the Shannon procedure may be extended to the

case of cost-weighted symbols. First we must see what costs should be

associated ideally with the words designating the various messages.

We wish to minimize the average cost of a message, w

= -(Pk43)k

subject to the constraint 2 qk < 1. This is very similar to the

i
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variational problem we solved to minimize n and we see the solution to be:

k = -og k ()

The efficiency is then:
E -Z Pk log Pke =- . .. =1 (45)
q -z Pk i Pk

Since maximum efficiency is achieved, the channel is being used

in the optimum way and the symbols are then being used with probabilities
given by Pmj = 20CJ. It is true here, as in the equal-cost case, that

(-log pk) may not correspond to the cost of any possible word. However,

we may describe the following extension to the Shannon procedure:

Order the messages according to decreasing probability. Draw a

vertical line through the tree at a distance (-log pi) from the root.

This line will cut some branches of the tree forming a cut set. (Some

of the branches may be cut at their far nodes). or W1 pick the cheapest

word corresponding to any branch cut. Draw another line at distance

(-log P2). or W2 pick the cheapest word corresponding to any branch

cut. twhich is not prefied by i 0 u:ontihue this procedure, always picking

the cheapest branch ut which is not prefixed by previously chosen words,

until all M words are chosen.
For this manner of picking words, the lowest the cost will be is

for perfect match, i.e., qk = -log Pk. On the other hand, the cost

can be no more than this value plus the normalized cost of the costliest

symbol (i.e., the length of the longest branch) which is (-log P)

which we write LD, Thus the cost of each word is bounded as follows:

-log pk c qk < -log k + LD (46)

We note that there is no possibility of equalfty on the right hand side

since if a line passes through a node we always pick the branch on the

left of the node. We may then bound the average cost as follows:

= Pkk < Pk (log Pk) + Z kLD = + L 
i.e.,

H _ . < H + L (47)
Hence,

e + L 1 L48)

i

i
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The proof that this procedure works follows the same kind of reason-

ing we have already used in the equal-cost case. First, we note that

if the procedure is to fail it is because we have run out" of tree to

use. However, an inspection of the method will show that if there are

no more words to be chosen we have cut through the tree, i.e., the previous

words chosen form a cut set. Now consider the structure function for

the first p words which was defind by eq. 24:

kP=l 29qk (49)

Also consider the sum of the probabilities of all messages which we may

write %+1 according to eq. 42:

p kZl Pk (50)

Since qk >-log Pk, we have

Sp ZkPl k=l< k 2 lg Pk l P Bp (51)

But for a cut set of p words S = 1. Hence, E 1. This indicates
p pr-i-

that if ever the tree got used up (i.e., a cut set were formed) then

all the messages would have been used up also. Therefore, we can never

have a message for which there is no code word and the proof is completed.

The remarks given in the last paragraph Section 3.3 as to the optimality

of the procedure also apply here.

Two other methods which are possible involve the same kind of pro-

cedure except we start with the least probable message and pick either

the top-most or bottom-most branch cut and continue to the most probable

message. Although the author is convinced that these procedures will

always work also (by trying examples), he has not been able to prove it.

The difficulty is that some of the branches which might be used may be

"left out", i.e., a cut set may not be formed.EHence, it is no longer

true that S < In order to prove the procedure one must show,
P pl*

in some way, that if branches are left out there must be sufficient

mismatching between message probabilities and word costs to allow branches

for all messages.

It may be wondered whether any "reasonable" method of picking Wk

such that -log Pk < qk < -log Pk + LD might work. This is not the

case. One "reasonable" method would be to choose the largest qk possible

: '
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subject to the above constraint. But here the inefficiency in using the

tree that this rule necessitates may cause it to fail. If the code words

are to be chosen in order of decreasing probability, this method will

fail for some cases as witnessed by the following example: Let c2 =2Cl,

then Pl = 0.618 and P2 0.382. (See Fig. 3). Let P1 = .11; 2 = P3

- ''' P6 = .o09; P7 = P8 = *-- = P15 = 056. Here we see that when
we get to M the tree is already "used up". We may note that p7 through

P15 were chosen so as to use up as much of the tree as possible with
messages of relatively little probability. The method would have workd.d,

in this example, if the messages had been considered in order of increas-

ing probability.

It seems that schemes such as these are inherently better if words

are picked from E to MM rather than vice versa. All examples tried

show the first way to be better except when the messages ae equiprobable

in which case there is no difference between the methods.

5. AFANO AND BLACHMA PROCEUBES (IA AND IB)

We see from eq. 14 that for the binary equal-cost channel the symbols

should be used with equal probability. In order to achieve channel capacity
it is necessary that these probabilities be constant from symbol to symbol
and not merely average out to the desired values, for if the probability
distribution ever differs from that given by eq. 14, the average infor-

mation rate must be lower than the maximum possible rate. This is another

way of saying that the probability of each symbol should be independent

of what symbols preceded it. Then in the binary equal-cost case we want

each symbol to have the probability one-half at any position in the code.
One way of approximating this condition was described by Fano 8. It

follows:
Order the messages by decreasing probability. Separate the messages

into an upper and a lower group such that the difference between the sum

of the probabilities of the messages of each group is as small as possible.
To all messages of the first group make d the first symbol of each word

and to all messaged of the second group assign the first symbol d2.

Now subdivide the first group into two groups which are again of nearly

equal probability. Assign dl as the second symbol to all words in one

5

d
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of these subgroups and d2 for the other subgroup. Do the same for the
second group. Continue making subdivisions and assigning symbols in

this way until each subgroup has only one member.
This procedure seems to be always more efficient than the "straight"

Shannon procedure (though no proof of this has been found) but not neces-
sarily more efficient than the Shannon procedure with modifications.

No simple bound has been proved as has been in the Shannon procedure.

Now let us consider the extension to the general D symbol cost-
9

weighted case as described by Blachman. Here we divide the messages

up into groups whose probabilities are close to the probabilities we

want for the symbols. These groups are similarly divided into subgroups
as before M precisely let

p-1
pl -=1 Pk (52)

and
s j=l Pmj (53)

th
We shall represent the p message by the symbol sequence dal d 2 * . X

ar,.. ,d of n symbols, where

~'v <E <V (54)li.~- Par - pr a(rl) 
and

p (r+l) pr ar/Pma (

Blachman states that the following conditions hold:

r Pa <- < l P (56)
r=l mar - p r=l mar

However, the inequality on the left is not always true. Consider the

following counterexample: p = 7, 2
= .3, ml = .6, P 2 = .4. The

Blachman code for this situation is just W1 = d and W2 = T. This

gives p - .3 < P2 .4 in contradiction to rlation 56. No proof or

counterexamnle has been found for the right hand inequality. If it were
true we could derive the same bound as in the Shannon procedure as follows:

=- rl log P n- log P - log P <rel mar r=l mar man -

n-lLD - log l P < L -log p (57)-e ~, rkl mar D p (
We note that in most cases the Blachman rocedure does not give a
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cut set and could usually be improved upon in those cases. The Blach-
man procedure again seems better than the straight Shannon procedure
but not necessarily better than the Shannon procedure with modifications.

6.. OPTIMM CODING (IA) - TiE ItFM PROCDUE

The above mdhods work and seem to give us good results most of the

time in terms of efficiency. We may ask, however, for a given probability

distribution of the message source and a given set of costs for the channel

symbols, how may we obtain the optimum code, i.e., the signal set which

gives the maximum efficiency. It is to be noted that for Class I max-

imum efficiency is not necessarily close to one.

In obtaining the optimum code for Class I we are faced with the

first significant difference between the equal-cost and the cost-weighted
cases. In the equal-cost case we have a relatively simple procedure

(the Huffman procedure) for obtaining the optimum code. In the cost-

weighted case, on the other hand, we have discovered no simple systematic

procedure, outside of trying all the possibilities, which will insure

obtaining the optimum solution in the general case.

The Huffman procedure l0 is essentially a method of building the

optimum signal set ontthe code tree by starting at the far branches and

working back to the root. We now describe the method first for the

binary channel.

Order the messages by decreasing probability. The last two messages

have code words which are the same length and differ only in the last

symbol. Assign the last symbol to each of these words. Replace these

two messages by a single equivalent message whose probability is the

sum of the probabilities of the messages. Reorder the messages, if

mecessary, to keep them in order of decreasing probability. The last

two messages again have code words whose lengti is the same and which

differ only in the last symbol. Repeat assignment of symbols, combination

of the messages, and regrouping of the messages as before. Continue

this procedure until only one message remains. At each step we build

up the tree by adding on two more branches. These branches may represent

code words or prefixes of code words.

The D symbol case is similar but we combine the D least probable

i.

i
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messages at a time. The exception to this is the initial step in which
only m messages are combined, where m is an integer between 2 and D - 1,

inclusive, such that (M- mo)/D- 1 is an integer. For examples see
10

Let us show that the Huffman procedure is optimum for the binary

channel case. First we assert that an optimum signal set must be a
cut set, i.e., every word equal to or shorter in length than the longest
code word must be either a code word, a prefix of one, or prefixed by one.

This must be true of words shorter than the longest code word (for nk < nM)

since if it were not true we could substitute the shorter word for a

longer code word and decrease the average cost. It must also be true

for words such- that nk = nM, since if it were not we could drop the

last letter of any code word which had the same first n - 1 letters as

the word in question. This new code word would still obey the prefix
Fi r~rule and the average cost would again be decreased.

Secondly, we have the order rule which asserts that the lengths of

code words must increase as the probabilities of the corresponding messages

decrease; i.e., n n2 K -. n M (where the messages are ordered
by decreasing probability). If , for instance, n > n2, we could inter-
change W1 and W2 and reduce the average cost. By observing the tree

structure, we see that these two assertions make it necessary that

If the optimum code is such that there are more than two messages
whose code word lengths equal nM, the maximum code word length, there

must be an even number of them because of the cut-set nature of the
signal set. We may then arbitrarily select a code for which the WM and

WM 1 have the same prefix, since if there exists any optimum code for

which this isn't true, we can rearrange that code, with no increase in
cost, to make it true.

We then assert that an optimum code for the new message ensemble, S,
which is obtained by replacing M and MM1l by a new message, M 1, whose

probability is PM + PMl' will give an optimum code for the original
ensemble, E, by adding the two symbols, in turn, to W tI to get M and

M-I ' To prove this assume there is an optimum code for El with cost
npt which when expanded in the above manner does not give andoptimum

....1
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code for . This means

it- Pul~ + P>popt (58)

But then we could take an optimum code for E and reduce it to get a cost

- opt PM.- PM-1 < pt (59)

This contradiction proves our assertion. The same reasoning holds for

each additional regrouping and thus these successive regroupings must
det ermine an opt imum code.

We say n optimum code and not the optimum code because of the

many permutations of letters in the words which are possible. First

of all, at eachb. of these regroupings there is an arbitrary choice of

assignment of channel symbols. So of there are regroupings there are

2 variations possible. In the second place, if there are more than two
words of a given length they can be interchanged so that successive
messages do not necessarily have the same prefix. Thirdly, for equiproba-
ble messages and equivalent messages, code words can be interchanged.

ThiA would add to the number of variations so far considered only if

there were a different number of letters in some of these words. We may

say that the Huffman procedure determines an admissible class of codes

and all. other ptimum codes may be obtained by a suitable rearrangement

of letters.*

In the D symbol case the optimum signal set must be a cut set or

almost a cut set. We observe that a cut set for the D symbol tree con-

tains M members, where

M D + a(D -1) - b(D -1) + 1 (6e)

where a and b are integers.

We can see that this is so by observing that thw set of all D symbols

is a cut set and any other cut set may be obtained by successively re-

placing one branch by D others. If the number of messages is one of

those given by eq. 60, we must have a cut set for the optimum signal set.

The same reasoning as in the binary case applies to words of smaller

*Otter gives a discussion which bears on the number of signal
sets possible with the same cost.

a 3
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length tH a M(op). For words equal in length to nN we must also have

for each fan either all D of the branches used as code words ar none of

the branches used as code words. ThA ist true since eq. 60 is satisfied

and we see by observing the tree that if it were not true we could regroup

the code words so as to make it true and reduce some of the code word

lengths in doing so.

If eq. 60 is not satisfied, say

M = b(D - 1) + m where 1 < m < D (61)

then the optimum set must be some set which is a cut set except for D- m-

"missing" branches of length nM. The same reasoning as above applies

where nk < n . From eq. 60 we know that the number of missing branches

must be I(D - 1) - m + 1 where I is some integer. But I must equal

one for if it were greater we could "consolidate" the code tree as sug-

gested above and reduce some of the code word lengths.

Among all the optimum codes, which include those which vary in the

placing of the missing branches, the Huffman procedure restricts itself

to that class which contains all the missing branches in one fan. The

game arguments apply as in the binary case except that now m of D messages

are combined in the first step and the number of messages is reduced by

D - 1 at each succeeding step. For D > 2 there are more possibilities

for variations on the optimum code if eq. 60 is not satisfied.

7. MESSAGEi ZBSEMBIELS WHICH MARCH POORLY A)

Now that we have found a procedure for determining the optimum code

we may ask how good the optimum code is for various classes of message

ensembles. We may first inquire whether there are any ensembles for

which the Shannon bound on cost is approached by the optimum code.

A simple example of Just such an ensemble is onefor which M = 2 and

P - 1. Then each message must be represented by a single symbol of

a binary channel. We then have - P1
+ pZ which approaches one.

H = (P1 log Pl + P2 log P2) approaches zero. Therefore, q - H = 8 - 1

Thus the difference between average cost and entropy, which we

write 8, approaches the maximum value given by the Shannon bound for

this example. We may extend the result to the case of the D symbol

*he material of this Section is due mainly to P. Elias.

l
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channel and-&for which -is arbitrarily large. The nasty distribution
which will prove the point has one large probability approaching one

and a lot of small probabilities. Specifiea.ly, let

1 = + (D -1)

Pl i 1- 1/N (62)

Pk N(M 1) for k =2,3,...

We may determine that the optimum code has

(63)
nk 1q + 1

Then
q = nio =D log l ( - + (64)

Therefore, q--(log D)(1 + N) as -aco. But

1
=--P 1 log P1 + Flog (M-1)N

-p1 log - If log +N4 log(D-l) + log D (65)

Hence,
-*N log D ass N-Az. (66)

Hence,
-8 = - - (N + 1 - N)log D = log D (67)

as NX - and H-*0. Of course since H- a, e- l.

The large 8 in the above examples seems to result in some way from

the one large probability. One may then wonder whether 8 would be arbi-

trarily small for the optimum code if the maximum probablity, pmax'

were sufficiently small. That this is not truewe can show by counter-
example. Consider M equiprobable messages. Then max= 1/M. Suppose

M/Da = r where 0 < r < 1 and a is an integer. Since M is not a power

of D we know there must be some mismatching and some 8 = 8m > . If

we now consider M = MDb (b is an integer), we see that the same code

as above will be used to divide the MN messages into M groups. Onto
these words all the Db-a combinations of b-a letters will be perfectly
matched with the information provided by each digit being log D but the

··r
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same mismath occurs for the original code so that 6 remains 8 . This

is true for\any b and hence for b approaching infinity and p approaching
zero. As an example, consider D = 2 and M = 3x2 . Then Huffman coding

will lead to three equiprobable groups of messages which must be assigned
code words dl, d2 dl, and d2 d2 . Thus for the preliminary choice among

the three groups n = 5/3 - 1.667, H 1.586 and 8 = 0.081 > 0 while

Vmax approaches zero.

The worst case for the binary channel and equiprobable messages

occurs when (M- 2)/2 approximately equals 0.385, where S is the

largest integer such that 2S M. 8 is the largest for this situation

and equals about 0.086. What the largest value of 8 is in this situ-

ation for D > 2 is an unanswered question.

The question may then be asked for a given pmax what is 8a

Elias has determined an upper bound for 8ma (p ) for the binary channel.max mx
It is 8 -2p

J8 < 8. 0 -max (68)max - a 2-8
o

where 80 = 2 - (2 - 2 p,) c 1/2

This bound approaches 0.172 as pa approaches zero. We note from the
previous example that for the binary channel. we can state that the
following relation holds: 0.086 < 8max(0) < 0.172. What the actual

upper bound is for 8 as p approaches zero is another unansweredmax max
question.

We have described above some examples in which the best coding

gives as poor as possible a match between the probablitity distribution

of the message ensemble and the channel. It may be remarked that for

the average distribution, which is to say a distribution picked at

random in some way, the match will most likely be much better. More

of this later,

�_·______IIIIl�·j·IPI__ --------- ^L--�/
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8. OPTIMUM OODING (IB)
- -- . . .

8.1 'GMAL COMMONTS

Let us now discuss the optimum code for Class IB. irst we

shall show that the optimum signal set must be a cut set or almost so.

Suppose W. for the optimum code has cost qM. Then any word with cost

less than qm must be used as was shown for the equal-coat case. But

because of the unsymmetrical nature of the tree this does not mean that
all fand are filled (i.e., that all branches in a fan are used). There
may be some fans filled if their roots are at a distance from the most
costly word given by qM qr LD where qr is the cost at the root of
the fan. Of course, in any case, at least two branches, if any, must

be used on a fan. Again, as in the equal-cost case, the binary channel

is the only case in which the optimum signal set has to be a cut set.

Obviously the order rule still holds, i.e.,

lk 2 qj for k > - (69)

What is lost is the simplicity of the relationship between nk and qk

Two words of the same length may have quite different costs. Therefore,

,we can no longer say that the last two words, WM and WMi 1 have the same

length and there is no simple extension of the uffman procedure.

What we can do in general is: 1) apply the extended Shannon procedure

and then reduce the costs of some of the words by making a cut set if

we do not already have one; 2) use the Blachman procedure with similar

modifications; 3) use the Huffman "Shakedown" procedure; 4) try by

trial and error to match costs to probabilities.

8.2 THE HtFY Am "SHAKEDOWN" PROCEDURE

The Huffman "Shakedown" procedure*~is based on an extension

to the order rule. Suppose at a given node, A, we sum the probabilities

of all code words whose branch paths pass through A. Call this sum pA'

Take a second node, B, which is on a different path. Similarly find p.
Then for minimum cost it must follow that PA > pB if B is to the right

of A on the tree and vice versa. If this were not true we could inter-

change the code structure branching out from node A with that from node B.

*D.A. Kuffman, unpublished results.
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T he saving in cost would be IpA - PBIXIA q . here and are
costs at A and , respectively.

The procedure is a repeated use of this rule. For D = 2 one may

start with cut set containrng M branches. Initially, assign the words

by the simple order rule. Then one looks for violations of the extended

order rule and rearranges the code structure to satisfy the rule. No
single detailed method of doing this which wilI gaurantee obtaining the
optimum solution when all node pairs are satisfied has been found.

8.3 3UIPROBAB MESSAGES

ii$j The special case of equiprobable messages (Pk = 1/M) is solved.

First define a vertical signal set as a set of branches cut by a vertical

line drawn at some cost-distance, y, from the root of the tree. This

line may cut a branch at either end. We then assert that an optimum

signal set for the binary channel is a vertical cut set with M branches.

Consider the costliest word. This is labeled M in the drawing below:

A

, .?,:.

M

Consider any other code word, say B, which is not cut by a vertical line

through branch M. Then q < qA But PA = M > P = ' This violates

the extended order rule. Therefore, all code words mst lie on a vertieal
est.sat+ ' But since the optimum code must be a cut set, the solution is

a vertical cut set with branches. We may find this cut set by moving

an imaginary vertical line to the right from te root until M branches
are cut. If there is a set of nodes with the same cost, q, such that

the number of branches cut for y < qc is less than M but the number of
branches cut for y > qc is ore than M, there is a certain ambiguity
as to which cut set of M to choose. However, these are obviously equiva-
lent from the cost point of view.

For the D symbol channel the argument that the optimum code is on

a vertical set is true, a fortiori, since pA But now the solution

I
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is not necessar.ily a cut set. However, for minimum cost, it is clear

that we want the M least costly words from.some vertical set. Let us

denote such set by M(y), where y is the cost corresponding to the

leftmost line which cuts the set. Let us derethac(y)s ircreasing y.

If the y lite cuts more than one node at a time we consider first the

signal set! with first one of the fans from these nodes as being in the

set, written M(y 1), then two fans from the node, written MIy2 ), nd so on.

The reason that we do not always choose the first set is that we

might reduce the cost by. replacing some of the most costly words and

the least costly word by some of the words having the least costly word

as a prefix. It can be seen that the cost decreases continuously up to

a certain y and then continuously increases. It is possible, as is

always true for the binary channel, that the least costly M(y) is the
first one. In any case, we move the imaginary vertical y lne from left

to right until the cost for M(y) starts increasing. The optimum signal

set is then the one before the cost starts to increase. It should be

clear that the optimum value for y is less than yo + L where yo is the

first y.
For this optimum M(y) the following relation must hold:

qm-A 1 <L + 2 (70)

where L1 is an abbreviation for (-log Pml), etc.

Relation 70 must hold, for if it did not, we could replace the most costly

word and the least costly one by two words made up of the least costly

word and symbols d1 and d2 , respectively. The saving in cost would be

A a g (L 1 + L2 ) > 0.

For D = 3 we may say that the optimum M(y) is the first one for

which relation 70 holds. In any case we may bund the total cost as
follows:

qk log M + L1 +12 k = 12, M (7)

Hence,
q_ L1 + L2 + og M (72)

This is an improved bound over the Shannon bound if L1 + L2 < LD.

I
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8.4 D 2, M

Let us consider the problem of finding the optimum code for the

binary channel when there are only three messages. Let r= c2 / 1.
We must consider two cases; I) 1 < r < 2 (r > 1, since c2 > cl by con-

vention) and II)r> 2. There are two cut sets possible for M = 3. These

give code 1 (0, 10, 11) -- written in the binary number alphabet for

simplicity-- and code 2 (1, 00, 01). If the matching of messages to

signal words follows the order rule, then there is only one way to assign

signal words for code 1. This is the order (0, 10, 11) with costs given

by c1 (1, 1+r, 2r). However, for code 2 there are two ways: 1) (1, 00, 0)

with costs cl(2, 2, l+r) for r< 2, and 2) (00, 1, 01) with costs

c1 ( 2, r, l+r) for r > 2.

For case I we see by the generalized order rule that we should use

code 1 for 2 + P3 _ P1 and code 2 for P2 + p3 For 2 + P3 0.5,

there is tdo difference in cost. For case II we see that the cost for

code one is w c(P 1 + (l+r)p2 + 2rp3) and for code 2 we see that

w2 = c1 (2P 1 + rp 2 + (l+r)p3). Therefore, we should use code 1 or code 2

according as P2 + (r-l)p 3 is less than or greater than Pl, respectively.
For case II we note that the answer depends on r.

- .5 DIFFICULTY OF SIM PLE SOLUTIO I GENERAL

For M = 4 there are five codes to consider. These fall in

three cases depending on the range of r. We have found no simple pro-

cedure for determining which code is optimum except to compare all possi-

bilities. As M increases the complexity increases greatly. There are

many more codes for a given M than in the equal-cost case. To get a
simole procedure to determine the optimum code we have to reduce the

problem for a large M into a simpler problem or.--in some other way describe

an algorithm which greatly reduces the procedure of examining all possible

codes. The analysis of a program for a digital computer which would

examine all codes could prove instructive. Linear programming procedures

might also prove helpful in this problem.
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8.6 LOWM 3BOUND OS s _ 2-k
The raft inequality tells us that the code words cannot be

too cheap in a certain sense. We also know that the code words do not

have to be too expensive and can use this fact to lower bound the function

S ZMl 2 k From eq. 46 we know for the Shannon code: qk < -log k + LD.

Hence, k (3)
Hence, S 2 k > Pk 2 - D ( Pr

MD (73)

Together with the original Kiraft inequality we then have:

mD < C Z~k ~ 1 (74)

For the equal-cost case this reduces to:

1/D < z OD-f: =z 2- 'k < 1 (75)

We may inquire as to whether these lower bounds apply to the optimum
code. For the equal-cost case the answer is "yes", with the following

simple agument to prove it. Suppose relation 75 did not hold. Then

for some b

b > log - logP (76)

We can then shorten word Wb by one symbol and form word Wl and still have

q > -log ob (77)
Then

St= 2 = S + 2 b -

= S + 2-b(D 1- ) < 1/D + (1/D)(D - 1) = 1 (78)

Therefore, this new code is proper, since it obeys the raft inequality,

and we have a contradiction. This proves that S > I/D for the optimum
code.

-i We can show that this result holds for the cost-weighted case as well.
Consider the optimum signal set. We shall showthat if S: < 1/D, there

are unused branches whose cost is less than qM and therefore the signal

set is not optimum in contradiction to the hothesis. We know that the
optimum signal set is a cut set except for some "left-over" branches on

~ii!11 the fringes of the tree. We could form a cut set by adding on to all
the branches which are used, all the branches cut by the line y = qM
which are not used and do not have prefixes which are used. Let us

suppose there are L of these "left-over" branches. We define SLo by
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SL Zi (79)
o = zl-i=1

where q are the costs of the left-over branches.

Then
SLo + S - 1 (80)

Now every left-over branch must be in a group with no more than f - 2

left-over branches. We assert that for every such group there must be at

least one tisedchods *brd.`'(A used code word is a word in the signal set).

This is true since there is at least one branch in the group which is

either a used code word or prefixes a used code word. If not a used code

word, there is another group for which at least two branches are used

code words or prefixes. Since for each branch which is a prefix there
exists at least two used code words, we see that there must be at least

one used code word for each group which has some left-over brahches.

But since

27ci < 2qM (81)

we have - 2)2 82)
SLop (D - 2)-M (82)

where SLop= 2- qi, summed over all i in any particular group.

Now suppose the left-over branches occur in G groups. Then

S < G(D - 2 )2
- M (83)

But there must be at least G used branches, hence

S > Gz- (84)

Hence,
S0o < (D- 2)a a (85)

But if S < 1/D, then

So < ( - 2) (86)

Hence, D 1

1 =SLo+ S < (D- 2+ 1<-- 1 (87)

which is a contradiction. Therefore, the assumption that S < 1/D
for an optimum signal set is impossible and the opposite assertion
that S 1/D is proved.
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9. SAGE MUBLES WHICH MATCH POORLY ()

We may now inquire about message ensembles whose probability dis-

tributions will ause trouble in trying to code efficiently. irst we
·! · note that coding may be inefficient for the binary channel in which one

symbol is much more costly than the other. Consider equiprobable messages.

For = 2 we have

q = (1/2)(L + )' = log 2 = 1 (88)

If we let L and L- O. then
2 L L2

. ,' 2 2 (89)

In the general case we may pick L2 so large that, for a given M, the

following code is optimum:

.. /: ..

' W1 q1
= L2

w2 = 10 2 =' L

. = 100 q3 L2 + 2L1

w~-_2 =.oo...oo (M-2 1NM-1 = 10...00 (1-2 ots) q1 1M = L2 + (M-2)L1

wm = 0000...00 (M-1 o0s) 4% = (M-1)L

For the above code

q (1/M)(L2 + 1+ 2 + 2L1+ .. + L2 + (-1 )

- =2(M-l) + j (M-l)L1 (90)

or large enough M

H = log M > H for any preassigned H
0 0

and
-=q H = EM +J2 k 1MIr2 L1 - log M - L2 +-1-log M

and if L2 -
8 L2 - log M -12 (91)

Thus for the binary channel we can find distributions for which
8 L2* It is obvious that we cannot epect to find distributions so
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bad that 8 LD for the general D symbol channel. This is so because
if the LD is made large enough, we could do better merely by disregarding
it and using only D - 1 symbols.

If we throw out the Dth symbol we can still apply the extended

Shannon procedure to the D - 1 symbol channel and obtain

H + LD1
< C (92)

where OC is the capacity of the D - 1 symbol channel.
But now

e xj iC (93)

Then

e > E x A where A = C t /C (94)
+ LIL1

If LD is very large compared to LDi1 , A will be close to one. We note that

2CCj = 1 -1 2-ccj _ 1 
j=and Zj=l J 1 (95)

Let

CA 8: - Cl (96)

DThen 2-C'c; D .( 2CAci)(2Cc) >,2 CACl 2-Ccj 
J=l J=1 J l

2OAcl(l PD) (97)

Hence,

ThenC-C C 1 1-CA Acl
Therefore, ifL P -0 and Ad.(99)

Therefore, f LD- ~, PmD -0 and A 1.

It is an open question as to the efficiency of coding when there is

one large probability close to one and many small probabilities. If the

small probabilities are all equal, it seems intuitively clear that the

coding will be, in some sense, more efficient than for the equal-cost case
since one should be able to match these probabilities better. Just how
much better is not known. It seems reasonable that we could not have the
same 8 approaching LD for the large M situation for the cost-weighted case

that we had in the equal-cost case. This is espedially true if the costs

a
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are incommensurate. For the incommensurate case the nodes on the tree

seem to spread out more and more uniformly along the horizontal cost

axis as the tree branches out.*

It seems similarly true that the lower bound on 8 for the equiprobable

message case is reduced. This should be even more true as P approaches

zero but there is still probably some greatest lower bound which is

greater tan zero.

10. CODING = THAW PROPER CODING

10.1 SLRDITAS-PATTS0N O CR FOR UIQUE COPOSABILITY

We have seen that a sufficient condition n the signal set

for the code to be uniquely decomposable is that it obey the prefix rule.

That this is not a necessary condition may be seen by considering the

signal set Wi1 = , W2 01. Sardinas and Patterson give a procedure

for determining whether a given signal set is uniquely decomposable.

It follows:

!--'; The signal set itself is called segment class zero, written Sego .

If one word prefixes another, the remainder of the second word is in

segment class one, written Segl. If one word in Seg prefixes a word

in Seg1, or vice versa, the remainder of the longer word is placed in

Seg2 . In a like fashion Seg 1l is generated from Seg i and Seg o . The

rule then states that the code is uniquely decomposable if no word in
Sego appears in Segi, i > 1.

Since the maximum word length is bounded (n ) the algorithm will

give a definite answer in a finite number of steps. There are two possi-

bilities for success: 1) Segi is empty for some i and hence, Segj is empty

for all j > i; 2) Seg =Seg (Segi is not empty) for some J i.

For the latter case the segment classes repeat i a periodic fashion,

the period being J - i. In case 1) the code has local decodabilitZ

(a term invented by Schutzenberger), in case 2) it does not. A code

has local deGodability if there exists L < co such that for any given

m we can uniquely decode the first m - nmax symbols into messages once

the first L symbols are known.

21
*See Gnedenko and olmogorov for mathematical details.
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10.2 A INEQUALITY FOR PROP0 SIGNAL SETS

We shall now find necessary and sufficient conditions on the

set of words in a signal set such that there exists a proper signal set

with the given set of costs. We do this first for D = 2. The cost of

a word is characterized by the number of d and d2 symbols in it. Let

the number of code words with x dj's and y d2's be given by N(x,y).

The total number of words with this composition is Cx,y

C -= (100)
x,y ly

Hence
T(x, r)< C (101)

But if any code word with composition (x' ,y') is used such that x
t < x

and y' < y, then we cannot use all Cx y words of composition (x,y) as

code words. Specifically, there are Cx.xt vy t words of composition

(x,y) which are prefixed by the word of composition (xt ,y') and hence

cannot be used simultaneously with it. Similarly, if we have N(x1,y')

words of composition (x,y') we may not use 1N(x',y)xx)C y words

of composition (x,y). In the same way, if there are any words of compo-

sition (x",yI") such that x"1 < x and y" < y, we cannot use 1N(x",y")Cxx y_y

additional words of composition (x,y). We now consider all words which

are prefixes of words of composition (x,y). A necessary condition on

the T(x,y) for a prefix code is then given by

Z x j N(x-i,y-j)C < E (102)
i=0 j=0 i - x,y

This must hold simultaneously for all (x,y) compositions. It should

be clear that if it holdsfor some (x,y) it also holds for any (x',y')

such that x < x and y < y. Also, if it holds for some (x,y) it also

holds for any (x+i,y+j) as long as N(x+i,y+j) = 0 for all i+j > 0.

Then if for a given signal set the maximum n = x + y for a code word

is nmax, the conditions 102 reduce to the n + 1 inequalities such

that x + y = n .

We note that if the equality holds for some (x,y) then the tree is

full for that (x,y). If the equality holds for all (x,y) such that
x + y = n then the tree is full and the signal set is a cut set.
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We may see that conditions 102 are sufficient in the following way.

Make code words for all (x,y) such that n = x + y = 1. Then make code

words beying the prefix condition for all (x,y) such that n = x + y = 2.

Continue this procedure. If it fails, at least one of the conditions 102

must not be satisfied.

We may easily extend these results to the D symbol case and obtain

necessary and sufficient conditions corresponding to conditions 102 as

follows:

!71~ zl zi~d *** zxo_0 (x '- 'D i2 , *i . ..l-- -2 'iDo-
-< C- x1,x2, .. ,xD (103)

-where D(l-ix2 -i 2,.. ,xD-iD ) is the number of code words

with xl-i ds, etc.and C is given by1 8

c - = + (x X ...2 + D)!

.. 1 X2x. "-**, : .-:- .. xD!

10.3 ADMISSIBILITY OF PROPER SIGNAL SETS

One may ask whether any of these non-prefix codes could be

more efficient than the best prefix code. This is answered in the
negative in the equal-cost case by a simple argument. First we show

that the Kraft inequality is a necessary condition for a uniquely de-
composable code. We employ a proof by contradiction. Suppose it is not

so. Then there exists a good code such that

z -q = 1 6 > O (104)

Then consider a message probability distribution such that k = 2'qk - k'

where ¢k > 0 and Z ck = 8. Then

q = z Pk9 <Z qk 2k (105)
and

-H - k log = - E(2-k - ) log(2-k- . (106)

-log(2qk - ¢~ > - log 2-k = (0

,i
.r.

ii

s

"

(107)



Hence, H > (2-k ) (108)
B~ncB > e (108)

Butthis contradicts the Fundamental Theorem. Q.E.D.

We know,thowever, that the Kraft inequality is a sufficient con-

dition that there exists a prefix code in the equal-cost case with a

given qk = nk log D. Therefore, since the optimum code must satisfy

the Kraft inequality, there exists a prefix code as good as-the optimum

code. I.e., the class of prefix codes is admissible when considering

efficiency for the equal-cost case. It is believed that the same result

Jhould hold for the cost-weightd case but this has not been proven yet.

One stumbling block is that the Kraft inequality is no longer sufficient

to insure a prefix code with a given set of q. Consider, for example,

costs q = L2 and q2 = 2L2 . Then 2 + 2 2L2 = P2+ P <1 and them2 P2 < d
Kraft inequality is satisfied. But the only signal set will be W1 - d2

and W2 = d2d2 , which is clearly not a prefix code.

We could prove the hypothesis for the cost-weighted case if we

could prove a somewhat stronger one which is probably true. Namely,

any signal set which passes the Sardinas-Patterson test can be changed

into a signal set which is proper, if it is not already so, merely by

rearranging some of the symbols in the words. This proper signal set

would then have the same cost structure. We could also prove the hypothesis

by proving the following statement, which is also probably true: if one

of the conditions 102 is not satisfied, the signal set fails the Sardinas-

Patterson test.

If we could prove the admissibility hypothesis intthe general case,

one might be tempted to say that we may as well forget about any codes

but proper ones, since proper codes seem simpler to use. However, some

codes already in use* are non-proper and, besides, efficiency is not the

only criterion for a good code, as we have seen- Other considerations

(see, e.g., Schutzenberger1 2 and Laemmell9), including resistance to noise

and facility of synchronization, might outweigh the efficiency consideration.

*An example is spoken English. George Millerodf Harvard pointed out
that the following pair of sentences could be confused due to the fact
that spoken words may have the same sound prefix: 1) The good can decay
many ways; 2) The good candy came anyways.



11.

11. GOMETRIC PICTURE O TE CODING PROLEM

The discussion of Section 9 leads us to consider another way of
looking at the coding problem as described by Mandelbrot.13 It is a

geometrical picture for visualizing the problem of picking a signal set

to match a given message set. First we describe a geometric interpreta-

tion for a set of probabilities. For M = 2 the probability distribution

can be represented by a point on a line segment of unit length. See the

following figure:

The point divides the line segment into segments of length P1 and P2.

Obviously, there is a one to one correspondence between any point on the

line and any probability distribution. Similarly, for M = 3, we can

represent any probability distribution by a unique point inside an equi-

lateral triangle of unit altitude, and vice versa. See the following

figur e:

This follows from the geometric fact that the sum of the distances of a

point inside an equilateral triangle to the sides is equal to the alti-

tude of the triangle. These distances then represent the three probabi-

lities. Similarly, in three dimensions, we can think of a probability
set with four members as being represented by the distances from a point
inside a regular tetrahedron to its faces. In general, a set of M
probabilities can be represented by the distances from a point in an

"equilateral hypertriangle" of dimension M-1. The co-ordinates used
for the representation are known as barycentric co-ordinates.

42
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The entropy, H = - p log p, of a probability distribution is a

function only of the p's. We may then think of a surface in M dimensional

space whose distance is H from the point in the hypertriangle given by

the probabilities. The distance is measured along an axis perpeddicular

to the other M - 1 axes. For example, for M = 2, we see that the H

!. siunface is a convex curve. See the following figure:

For M = 3, we see (Fig. 2) that the H surface is a dome-shaped affair

like the roof of Kresge auditorium at M.I.T. For M >3 the visualizing

becomes imossible except in an abstract way.

Finally, we want to include the cost of coding in the geometrical

picture. Let us consider a given code with its set of costs,- qk. The

cost of using this code is q = Z Pkqk which is a linear function of the
probabilities. Therefore, the q surface, where q is measured along the
same co-ordinate as H was, will be a hyperplane. Here we note that the

probabilities and costs are no longer ordered by decreasing probability
or increasing; cost, in general.

The distance between the cost hyperplane Ind the H surface is
8 = q- H and is a measureof the inefficiency of the code. Wherever

the plane is tangent to the H surface the code is a perfect match for
that set of probabilities, i.e., the efficiency is one.

There is a cost hyperplane for each code. The optimum code for a

given message probability set will be that one whose cost hlyperplane is

closest to the H surface at the point corresponding to the probability set.
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If we consider the locus of the optimum cost plane for each point of the

hypertriamgle, we get a cost surface consisting of sections of planes.

For example, consider M = 3 and observe Fig. 2 in which a section of the

cost surface is shown. For M = 3 the cost surface is just made up of

sections of ordinary planes.
13

It may be shown that both the cost surface and the surface aes

convex. Therefore, a cost hyperplane can be tangent to the H Surface at

only one point. For the binary channel any optirmut signal set must be

a cut set. But for a cut set there is a set of probabilities for which
H = q, namely Pk = 2-qk Therefore, for the binary channel, all sections
of the cost surface are tangent at one point. This is not true for D > 2

where some optimucodes need not be cut sets and some sections of the

cost surface will not touch the H surface.

The most inefficient codes are seen'to be those for which two or

more sections of the cost surface intersect. This -is true since by the

convex nature of the H surface, any movement away froman intersection

must decrease 8 = q- H.

We now see that it is, in general, better to have as small a D as

possible as far as the possibility of efficient coding is concerned.

This is true, because for a given M, the most possible combinations of

optimum codes will occur for the smallest D, namely D = 2. Therefore,

with more segments the cost surface matches the. H urface more closely.

For the same reason the cost-weighted channel is, in general, more

efficient than the equal-cost channel. There are a greater number of
codes -nz$hee tost-weighted case because permutations of channel symbols

give codes with different costs, unlike the equal-cost case.

12'. EXAMPLE: CODING NGLISH LETTERS - TE MRSE CODIm

As an example of several of the coding properties we have been

talking about, let us consider the problem of encoding the letters of

the English alphabet. We take for our message ensemble the 26 letters

plus the word space. A set of probabilities for Utese 27 messages is

given in Table 1. For these probabilities H = 4.03 bits/letter.

The Morse Code channel, as described in Section 1.3, has a capacity of
0 = 0.590 bits/tap. The average time for code words in the Morse Code

is 8.661 taps/letter. Therefore,
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e 591 0.790 (19)8.661 x .591

Another code, the American Morse Code, has another space symbol of

duration 2 taps which is used between dots and dashes of some code words

for the letters. This channel, which has been discarded because of the

confusion that arose in trying to distinguish among the space symbols,

naturally has a higher capacity. The characteristic equation, using

the constraint that no two space symbols may follow one another is

2 + 2+ 2-4 2-4C+ 2-5+ 2-6 + 2-7C+ 2-9C =1 (110)

The solution of eq. 110 is C - 0.736 bits/tap. This assumes, of course,

that the tap is the same unit of time in each calculation. The average

time per letter for the American Morse Code has been calculated to be

7.765 'taps/letter. This is about 10 per cent faster than the International

Morse Code (Casper3 says about 5 per cent) and gives an efficiency of 0.705.

Could the International Morse Code be made more efficient? If one

restricts oneself to using the spaces as letter and word ends and to

keeping the maximum number of symbols per letter at four, then the only

consideration:. required to obtain optimum efficiency under these restric-

tions is to use all of the 27 least costly sequences of dots and dashes

of length four or less so that the order rule is obeyed. The Morse Code

obeys this rather well except that the letter t"0" is given too long a

sequence and the sequences 0011 and 0101 are not used (0 = dot, 1 = dash).

The optimum code, given as code 1 in Table 1, would have a cost of

8.260 bits/letter, the largest part of the improvement coming from

correcting the code word for "0s . This would give an efficiency of 0.827.

We may now ask what efficiency could we obtain if we consciously

strove to match cost and probability according to the optimizing con-

dition of eq. 14. To apply this condition to the Morse Code channel as

given would require a complicated analysis which might include spaces in

letters. Let us rather consider a simplified Morse Channel with just

the 'dot and dash. The capacity for this channel is the solution of

2-2 + 2-4c =1 (111)

which is C = (1/2)(0.695) = 0.347 bits/tap.

Text continued on page 47.
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M&, NSSAGM PROBABILITY* COi 1 COI 2 00 3

1 word space

2 B

3 X

4 0

A

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

I

S

H

D

L

U

M

P

W

Y

B

V

21

22

23

24

25

26

27

X

J

Q

Z

0.200

.105

.072

;0654
.063

.059
.055
.054

.047

.035

.029

.023

.0225

.0225

.021

.0175

.012

.012

.011

.0105
.008

.003

.002

.001

.001

.001

0

1

00

01

10

000

010

001

0000

100

11

1000

0010

110

101

0100

011

0001

1011

111

0110

1100

1001

0011

0101

0111

000

0010

0010

01000

0101

0110

10000

100

1010

1100

01001

01110

100010

10110

11010

11100

1111

01111

100011

10111

11011

111010

1110110

111011100

111011101

111011110

111011111

00

010

1001

1100

1101

1111

0110

0111

10110

10100

10000

11101

101111

101010

101011

100011

111000

1011100

1011101

1000100

1000101

1110010

111001110

111001100

111001101

1110011110

1110011111

Table 1

*The probability values were taken from Brillouin.1 4

**The word space is represented by the symbol "word space".
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Using the tree of Fig. 3, we start with the most common message, the
word space, and assign branches with close to the proper cost. This

gives code 2 of Table 1. The average cost for this code is = 11.726

tips/letter. Therefore, e = (4.03)(1/0.347)(1/11.726) = 0.99.

If we code into a channel with two equal-cost symbols, we may use

the Huffman procedure to get the optimum result. This is code 3 of

Table 1 and Fig. 4. In this code the efficiency is e = 0.97. We note

that the redundancy, given by 1 - e, is three times as great for code 3.

This is an example which substantiates our conjecture that the cost-weighted

channel is in general more efficient.

Code 2 was obtained quickly with about as much effort as for code 3.

If it is not the optimum code, it is certainly very close in the value

for efficiency.

13. CODING CLASS IIA

13.1 M A COMENTS
Ivet us consider the problem of coding a message set, mi, into

a channel with symbols, dj, such that m < D. In order to make use of
the capacity of the channel one will want to code certain blocks of the

mi to be transmitted as a single symbol. (For the present discussion

let us assugie that one wishes to transmit the channel symbols singly

and not coded into signal words). Let us begin by taking the case in
which the channel symbols are equal-cost. This, then is problem IIA.

Problem IIA, in a sense, seems to be the reverse of the problem of coding

many equiprobable messages into a cost-weighted channel with fewer sym-

bols than messages. We may, therfore, inquire whether a good code for

the one problem might not also be a good code for the other. Such, indeed,

turns out to be the case.

The set of blocks of messages is called the message set. It is

found convenient to describe the possible message,:blocks by a message

tree, just as code words were represented by branches on a signal tree.

The tree has m branches in each fan. Each branch corresponds to one of

the original messages, mi, The length of a branch, or more precisely

its horizontal component, is (-log pi), i.e., the self-information of

the message mi.

i
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We see'that the message set must be complete. This must be- true in

order to be able to encode any possible infinite sequence of-messages.

(Consider, for example, any sequence beginning with an "uncovered sequence"

and continuing with that sequence repeated over and-over). If the message

set is complete, there is one and only one way to form any sequence of

messages into message blocks. (For a finite sequence there--may be some

messages left over). Since successive message blocks are independent of

one another, the probability of using. any given message block is then

just the product of the probabilities of the messages in that block.

The cost of coding will always be

q = Z Pkqk = Z %. log D = log D (112)

The problem-then is to pick the message blocks so as to maximize

= Pk log k = 'Zi,k Pkik P (113)

where ik is the number of mi in Mk.

This, of counse, also maximizes e = H/1 = H/log D. To do this we would

like to make the k'S as "equal as possible" for if they were all equal

we would have H = log D and e = 1. This is similar to the reverse prob-

lem where we seek to make the signal words as equal in cost as possible.

There, however, we seek to minimize kj akJcj, where ak, is the number

of dj's inW k .

13.2 THE VRTICAL CUT ST SOLUTION

In order to approximate the ideal result we take the message

set to be the vertical cut set on the message tree with D elements. This

can be done as long as

D = b(m- 1) + 1 b is an integer (114)

Eq. 114 is obtained by the same reasoning that eq. 60 was. Assuming

eq. 114 holds, we may bound log Pk as follows:

-log PM - (-log pl) s (115)

where s -log pm, the self-information of the least probable message,

and the k are ordered by decreasing Pk

. ~ ~~ .P..
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Hence,
-log Pk -log Pl ? -log PM s > log D -s (116)

Hence,
H =.-Z Pklog Pk > Z Pk(log D- s) = log D- s (117)

We can use the inequality in (117) since not all of the equhlities in
(116) can hold at once. Thus we can bound the efficiency by

e loLs (118)
log D1 lo D

For a given message ensemble we see that e 1 as D> If s > log D,

the bound is useless. However, for Pi approaching one and m = D we have

e approaching zero for the best signal set anyway. Therefore, we cannot

expect to find a better universal bound with the same parameters.

Now suppose eq. 114 is not satisfied but rather

D - (m- 1) + 1 + m, < r < D (119)

We cannot then get a cut set such that M = D. But we can find one such

that M = D - m. We could then use just D - m of the channel symbols.

The efficiency is this case can be bounded as follows:

> log(D - mo ) - s (120)
0

Hence, log(D - m) (s

eP log D

Of course when eq. 119 applies we can improve the efficiency by

using mo message blocks in addition to the D - mo message blocks in the

vertical cut set. However, the message set would no longer be proper.

This means (as will be shown in an example in this Section) that some

of the message blocks may have to be stored until later messages determine

them as the correct message block to be transmtted. The complication

in encoding, in effect, makes the effective number of message blocks

greater than D. Thus non-proper message coding in Class II is similar

in effect to using a Class III type procedure. Since the probabilities

of the message blocks are no longer independent of past message blocks,

we cannot hope to achieve an efficiency of one. We note that although

we know that an increased efficiency is possible, it is difficult to get

an improved bound over relation 121 since it is very difficult to deter-

mine the probabilities of the message blocks due to lack of independence.
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We conjecture that the vertical cut set with M message blocks has

the greatest entropy (H) of any proper set with M elements. This would

mean that the vertical cut set method is optimum for Class IIA. The

proof of this conjecture should follow along lines similar to the proof

in Section 8.3,that the optimum signal set for equiprobable messages

was also a vertical cut set. There we wanted to minimize q = Pkq k =

1/M Z qk' The proof in that case followed simply from the fact that

q was a linear function of the costs. Here we want to maximize H =

-Z Pk lo pk' This is more involved since H is not a linear function

of the corresponding variable (-log pk ) . However, we should be able to

prove the result by considering the first, second, and third derivatives

of H. This proof has not been carried out in detail.

13.3 POSSIBILITY OF NON PROPER MESSAGE SET

We may now show that sometimes an increased efficiency can

be obtainediby using a non-proper message set for the case where m 2

even though we can always find a cut set with just D elements in this

case. If there is to be an improvement in efficiency it will be because

we can make the probabilities of using the message blocks more equal

than for any proper message set. So let us start with.an original message

source for which any proper message set will be quite "tilted".

For example, we pick m = 2, P1 = 0.9, P2 = 0.1, and D = 3. We write

m I = a and m2 = b. Then the optimum proper message set is (aa, ab, b).

This gives

H =-(.81 log .81 + .09 log .09 + .1 log .1) = 0.891

and e = H/log D = 0.891/1.58 = 0.563 (122)

Let us consider instead the non-proper message set (M1 = a, M 2 = b,

M3 = aaa). We see immediately that the encoding operation is not yet

determined. We must say when to use M1 and M3 . Let us say use M3 as

often as possible. It may be necessary, then, to store up some of the

mi and delay coding the message blocks until sufficient information is
available. For example, for the sequence aab, one would have to wait

for the b to decide that the first a should be encoded as M1 rather than

as part of M3. But now the message blocks are no longer independent.
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13.3 51

The probabilities, Pk' are no longer merely products of the pi and as a

matter of fact they may change depending on the previous history of the

source. For example, after message M1 is sent the probability of M3

becomes sero. To determine the information rate for the channel we must

determine all the probabilities for the various states the channel may

be in and average the rate for all of these states according to the

probabilities of the states. A state diagram of the coding operation

follows;

b .

C

The thrfee states with possible transitions from each are shown..

Some simple combinatorial analysis gives the probabilities associated

with each transition. Then the state probabilities, PA' PB' and P,

are determined from the following set of equations:

(123)A A-+ B + C -P3 = - 171 PA (12)

Pc = 0395 P - 0.0675 PA

The solutions are PA = 0.808, PB = 0.138, PC = 0.054. The information

rate for each state is just the entropy of the probability distribution

of the transitions from that state. Thus we have

HA -- (.729 log .729 + .171 log .171 + .1 log .1) = 1.101 bits

-- = -(.605 log .605 + .395 log .395)i= 0.947 bits

I0 -=-1 log 1 = 0

i

I
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The average entropy is then

E = PHA + PBEB + P H = .890 + .130 = 1.02 bits (124)

This gives a higher efficiency than for the optimum proper code.

1.02
e 1.585 = 0.644 > 0.563 (125)

We see that if we considered message blocks of length three we would

get the flowing proper code of type Class IIIA; (We write the channel

symbols in ternary numbers).

MESSAGE BLOCK COE WORD

M1 = aaa 0

M2 = ab 112

M3 = aba 121

M4 = abb 122

M ,,baa 211
5
M6 = bab 212

M7 = bba 221

M8 = bbb 222

14. CODING FOR CLASS IIb

The problem for the cost-weighted channel (Class IIB) is more dif-

ficult than for the equal-cost channel (Class IIA). Here the cost is

no longer just log D but is given by

= z Pkqk (126)

where qk = -log Pmj for some j. 

For minimum cost we want to obey the order rule so we set k = J, where

the Mk's are arranged according to decreasing probability and the dj's
according to increasing cost. So now we want to maximize

H -Z Pk log Pk
e= = (127)

by proper choice of the M k. We obtain an efficiency of one, which we

know is an absolute maximum by the Fundamental Theorem, for qk given by
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qk -- log k (128)

Let us restrict ourselves to proper codes for the present. Therefore,

we have to pick a cut set of D branches in the message tree which most

closely satisfies eq. 128. We note that the extended Shannon code in

reverse (i.e., pick an Mk such that qk + s 2 -log Pk > qk)will not work

since this does not, in general, give a cut set. We could consider

picking the message blocks corresponding to the node to the left of the

first branch from the top which is cut by the-tertical line corresponding

to qk' and which had not previously been prefixed by a used message

block. This would give the bound qk -log Pk -qk - s. We cannot de

this for all qk, however, since we would use up the tree,itn.general,

before we got to qD. However, we could follow this procedure at first

and then follow the extended Shannon procedure, changing over from one

to the other at a point so as to obtain a cut set. We are assured that

this is possible as long as eq. 114 is satisfied. The combined bound

on a single message block is then

q k + s > -log Pk > qk- s
(129)

2 k < Pk c(2-qk)/pm

-Thus
.Z Pk log Pk s 

Zk=l Pkk 
or

e/-m (-log Pm)/P1
e > 1- M (130)- 1- 14~11 0%2'9k -r. M (13)

Ek l q, 2k - Pmj log Pm

where H is the entropy of the message set.~

If eq. 119 rather than eq. 114 is satisfied, we cannot obtain

a cut set with D message blocks. Here, as in Class IIA, we may use just

the first D - m channel symbols. The bound 130 still applies where M

now equals D - m 0 . Again, as in Class IIA, we may increase the efficiency

at the cost of added complexity by adding m message blocks and making

the message set non-proper.
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14., 15.1

We note that no optimum solution has been obtained for Class IIB

and the problem of the optimum solution appears about as difficult as

for ClassI33. In practice, to achieve an efficient solution one could

set up the message tree and make good approximations to the ideal. One

could also apply the Blachman procedure in which we treat the channel

symbols as messages with probabilities qk to be encoded into channel

symbols equal in number to m which have costs such that the probabilities

of their optimum use ae Pi, the probabilities of the messages. Of course
the message set obtained must be reduced to a cut set.

15. CODING FOR CLASS III

We now consider the most general coding problem (within the scope

of this paper). This is problem III in which the message source is

first cded into message blocks and these blocks are then coded into

sequences of channel symbols called code words. We may abbreviate this

description by referring to it as "block coding". For Class III relation-
ship 22c applies: m < M > D. For problem III it is very important

to consider complexity when comparing two coding procedures. This is

true because we can make the efficiency arbitrarily close to one by a

sufficiently complex code as will be shown (and, indeed, as follows

from the Fundamental Theorem).

15.1 IUA ILNGTH BLOCKS

The simplest kind of block coding occurs when the message

set consists of all possible permutations of length L of the messages.

This is a convenient arrangement as far as the message set is concerned.

This message set may then be coded into signal words by any procedure.

(The Huffman procedure will give maximum efficiency in the equal-cost
L

case). The message set has M = m members. The costliest word is

bounded by

Ls qM < Ls + L (131)D~~~~~~~~~~~~1i
The entropy of the message set, which we write H, is easily shown to be:

it

I
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H - LE, wherfe H is the entropy of the original message source. (See

proof in footnote*). The extened Shannon procedure gives us the bound

g H + LD - 0o + LD (132)

Hence,
_ 0 1

e~H+L o (133)
H + LD LE0 + L- LD

L +

Thus the efficiency approaches one as L approaches infinfity. This is a

direct cnstructive proof of the undamental Theorem. It was given by
1Shannon for the binary equal-cost charnnel.

It may be shown ' 9 that for the Fano and Blachman procedures the

efficiency also approaches one asI the block length approaches infinity.
for the equal length block coded message set. (One difficulty in the

proof for the lachman procedure has already been noted in Section 5.

The conclusion should still be valid, however).

15.2 BALANCED BLOCKS

Another block coding scheme may be called balanced coding.

In this procedure one attempts to code a message set of equal or nearly
equal probabilities for the message blocks into a signal set of equi-

* lHo =-Z Pi log pi (134)

H - sjlJ2,...,j jlPJ.lPji log pjljt... p j fL (135)

where pijl is the probability of the symbol used in the first position, etc.

H =-ZI Pj P (log p ... + log p.) 
1j2' 'JL 1 2*' 1 L

p..JP, p log -- p p 0. p log p (136)
-Jl*'"JL PJ1 JL Jo J1 1 JL - L

But if we take the first sum over all 2,i3,.,**JL we get

-_ 2 p log p. H since Z Pp4... P -1 (137)
j1 1l l o J2"'L PJ2 L

Hence,

H - H + H + .+ + H = L0a o o O

I

i

(138)



15.2 56

costly (or nearly so) signal words, i.e., the coding groups are to be
balanced in coat, k, and probability, pk' Specifically, pick a given

:M. Then take the first vertical cut set in both the message and signal

trees to have members. The message blocks in order of decreasing

probability are then matched to the signal words in order of increasing
cost. The order rule says that this is the best match for the two given
sets.

Of ourse it is not possible to find just Mmemaibers in each eut set

unless we satisfy eqs. 114 and 60. However, if m = D we may always find

a match for any M = b(m - 1) + 1 or if m + D we may find a match for

some 1 (namely these such that M = a(m - 1) + 1 = b(D - 1) + 1 for some

integral values of a and b). In general we may always pick = a(m - 1) + 1

and then pick the first signal cut set with M or more branches and dis-
card the most costly signal words uhtil just M are left. If this is done

we have

qM - q1 < LD (139)
and

log P - log PM s (140)

where P1 and pI are the probabilities of the least and most probable

message, blocks, respectively.

A crude* bound may be obtained on the efficiency as follows

Pk < 1/M, hence, -log pM1 log M (141)
Hence,

Hence -log P -log P1 -log P S > log M ,

H -- Pk log pk > Z pk(log M - s) = log M- s (143)

We have a strict inequality in (143) since all the equalities cannot

hold at once in(142) for all k.

Similarly, we may bound q

q = Z kk Z Pk(log M + l) = log + LD (144)
Hence,

log M- s 1 -sllog 1
gM+L l+Dlog M (145)

We note that the efficiency approaches one as approaches infinity.

This is another constructive proof of the Fundamental Theorem. We may

*Bound 147 is better.
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also write
log + L (146)

Assuming that the balanced method gives at least as good a result
as does the extended Shannon procedure with the same message set (a
statement which seems clearly true but has not been proven), we may

use the bound given in relation 48. Thus

e > -1 -1 (-147)
1 + D 1 +LD

log M - s

15.3 cOMPARIs0F 15o.2 15.1

We may compare balanced coding with equal block length coding
inthree areas. In the first place we note that balanced coding is
advantageous where it is desired to keep the costliest signal word from

being too expensive. We see from eq. 46 that

qk < og M + L L log Mm + L (14.8)

For equal length block coding, on the other hand, the least probable

message gets far from the mean and we may approach the bound 131

Ls < m < Ls + L (149)

We know that s log m, with the possibility of the inequality being

quite pronounced if the original message distribution is strongly tilted.

Therefore, for large L we may have q ) q', where the primed and un-
primed q's refer to balanced and equal length block coding, respectively.

Secondly, the bound for 15.2 is better in some sense than that for

15.1. That is, if M is big enough, for the same M, e > e or e - e

for M' < M.* We see that this is so as follows:

e - -.... (150)
1 + D

LE

where H is the entropy of the original m messages.

*lNote that e and e are here bounds on the fficiency in the two
cases and not the actual efficiencies.
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2. 2 > 1 > (151)
LD L

HI log M - s

where H' is the entropy of the M messages in the balanced message set.

But L
M = m (152)

Hence, e 1 (153)
e I > L1.

+ (
L(log m - /L)

For large L, s/L becomes insigntiicant and the expression in parenthesis
becomes essentially log m, as compared to H in the expression for e.
But log m > Hio with the inequality again more pronounced for more tilted

original message distributions. Thus our hypothesis is proved for large

L which means large M. This does not say which message set would actually

be better as far as efficiency is concerned and, in general, it could
be either.

As a third consideration, however, a particular class of distribu-

tions exists for which it is definitely better to use the balanced message

set to get the best efficiency for a given M when M is small. This occurs

when Pi is close to one and L1 > -log P1' Here we cannot expect to get

a good match until -log Pkl L1 (where Pkl is the probability of the
first message block, with the subscript k added here to distinguish it
from the probability of the most probable original message, Pi.) The

balanced message set ahieves this result for the smallest value of M.

(See Bennett, 16 Shanon I (p. 33), and Elias1 7)

15.4 E T PICTURE AGAIN

We note that eq. 127 applies to Class III as well as Class II.

Thus the efficiency has a perfect value of one izf,and only if , qk = -log Pk

for all k. Here qk may be the cost of any code word. We may then think

of the problem as one of matching the message tree and the signal tree

such that a message set is matched to some signal set. This is a useful

interpretation when one is actually trying to match a specific message

ensemble to a given channel.
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15.5 POSSIBILITY OF A NON-PROPER MESSAGE SET

We may sow that for a given M we may achieve a greater

efficiency with a non-proper message set than with any proper message

set. Let m - 2, p = P2 = 1/2, D = 3, c - 1, c2 -= 1, c3 B, M = 3.

The proper message set is either (a, b) or (ab, aa, b).

e = / = aR/ (1-54)

Since C is fixed we may maximize the efficiency by maximizing the rate, R.

For set one, R = 1/1 1 bit/unc. For set two R is given by

R 5 +. .5 + Z5 25 bits/unc.
.5+.25+.25B = .75+.25B

Let us now consider the non-proper message set: Ml = a, M2 b,

M3 = aaaa. We frther stipulate that M3 should be used as often as

possible. We then have the following state diagram describing the pro-

-' cess. The probabilities of transition are given.

b 

M, , b 

The probabilities of the various states are determined by the following
set of equations:

A + P P + + P 1

PB = 7/16 PA
(155)

P0 = 2/7 PB = 3/16 PA

PD = 1/3 P0 = 1/16 PA

These give

P = 16/27, P = 7/27, PC = 3/27, D 1/27 (156)
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For B = 3 we obtain the following information rates for the probability

distributions of the states:

RA H A/A =1.27/1.125 1.128

P:B 1 : 3- .97/1 = .97
(157)

RC=H/C = .91/1 = 0.91

R D / D 0/1 0.

This gives a total average information rate R

R = PARA + PBRB + PR + PDRD = 1.02 (158)

This is greater than the rate for either proper message set (which is

one for B = 3). Indeed, for a range of B values up to b = 3.6 this

non-proper message set is more efficient than any proper one for M - 3.

However, as we noted for the example of an efficient non-proper message set

~ for Class IIA in Section 13, this code is more complicated and should

per'aps be compared with a message set with 2 = 16 blocks.

16. MULTIPI;E-COST CODING

Suppose each symbol has two costs associated with it. For example,

one cost in time and one in power. What, then, can we mean by maximizing

the information rate? There are two information rates now (one for each

c~ost). One solution would be to decide the relative importance of the

two cost factors and combine them to make a single cost factor. For

example, if c represents one set of costs and c" another, we may decide
j 3

that the first set is r times more important than the second one and get

a combined cost factor set, cj, where

c. = r + cll (159)

Of course this is directly extended to mny sets of cost factors.

Another way to approach the problem is to consider the information
rates separately. Let us call them R1 and R2 .

- p log H H
=1 ' = R2= -- (160)
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We may then ask for the pj set which will maximize for a given E2 ,

or vice versa. Blachm an shows that the solution should be of the form

p s -lej - roj = p (161)

p and v are positive constants such that R2 equals the given value and

pj = 1. If there is more than one solution meeting these conditions,

the solution for which R 1 is the maximum is the one to choose. Several

other ways of maximizing the information rate have solutions of the

form of (161). For example, maximize R 1 for a given ", etc. After the

Pm, are determined the coding may be done as before.

17. OTE FOsRMULATIONS OF TI CODING PROBLEM

One may describe the coding operation in terms other than the message

block and code word picture given above. Shannon, Laemmel, and Schutzen-

berger all give such descriptions. For example, Shannon describes the

coder as a transducer which accepts input symbols(what we call messages)

and transmits output symbols (channel symbols). The transducer is des-

cribed by two functions:

dn = fn, on) (162)

n+l = g (mn, ai

th-where mn is the n input message

an is the state of the transducer at the n message

dn is the channel symbol (.or sequence of channel symbols)

produced when mn is introduced and if the state is n

A is the state after dn is transmitted.

To enable this description to include all codes previously considered

we must allow one of the symbols to be a blank, i.e., for some inputs

we do not immediately prescribe any channel symbol. Note that in general

we want to use storage devices in the coding operation to allow a steady

continuous flow of channel symbols.
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Laemmel4 '19 uses the Shannon formulation and classifies extensively

various types of codes with the aid of state diagrams of the coding

operation. He gives much discussion to the complexity of the coding
apparatus and other practical problems which are only briefly mentioned

in this paper.
Schutzenberger uses the notions and properties of semi-groups

to develop a mathematical formulation of the coding process and to

investigate some properties of this process including the decodability

criterion of Sardinas and Patterson and the effect of an original error

on the decoding.

18. SO_ M GoENRAL CONSIDERATIONS

Certain assumptions have been made or implied which restrict the

generality of this discussion. In the first place we considered only

memoryless message sources. If a source has correlation among succes-

sive messages, as is true for instance for the letters of the alphabet

when considered in written text, the rate of information generated by

the source is lower than the rate indicated by the average probabilities

of the letters. For one kind of source the probabilities depend only

on a finite number, say p, of past messages, We could code efficiently

for this kind of source if we made a separate code for each of the mP

possible probability distributions. However, if the dependence is chiefly

o'i just a few past messages, we could achieve greater efficiency for the

same complexity (in terms of entries in a code book) by coding for blocks

of messages of length P1 depending ontthe P2 previous messages, where

Pl + P2 - P + 1. This would give mP l entries in mP 2 codes for a total

of mPl + P2 = mp + 1 entries, the same as before. Of course we can

achieve greater efficiency by increasing p while holding P2 constant.

Efficiency approaching unity is obtained by making P2 p and letting

PL approach infinity.
A somewhat more general description is a finite state Markov pro-

cess. Here the probabilities depend on which of a finite number of states

the source is in. A state is determined by the previous state and message.

We may code for each state either for single messages or blocks of them.
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Even more general sources could be described by an infinite state

Markov process or by a generalized ergodic process which could depend

on time as well as past history. This paper considered, specifically,

only finite numbers of messages. We could consider an infinite number

or even a continuum.

The channels considered were finite, discrete, noiseless, and, for

the most part, time invariant. We did consider to some extent the possi-

bility of a channel with certain kinds of constraints. There remains the

possibility of more general channels whose constraints and costs are var-

iable in a fashion similar to variations of probabilities for sources.

It should also be pointed out that much consideration should be given

to the difficulty of applying the information theory model of the communi-
cation problem to real situations. It is possible that weights other than
or in addition to (-log p) might be applicable for the information content

of messages in certain cases. Practical problems of complexity of opera-

tion and susceptibility to error may catweigh factors like efficiency in

the information theory sense. Still, it is important to have the informa-

tion theory model as a guide to how well the coding can be done. Finally,

we note that only error-free coding was considered. For R > C we must

have errors.

19. S UGGESTIONS FO RESEARCH TOPICS

For those interested in a thesis topic (about the Master's level) the

author offers the following observations. There are several unanswered

problems of varying importance and interest stated in this paper. An eval-

uation of recent work in the field which is either discussed in this paper

or in the references is possible. A discussion of coding for more compli-

cated sources and channelq,as mentioned in Section 18, is indicated.

There are two general regions of the coding problem. One is the math-

ematical formulation. The Schutzenberger work is largely in this region.

The second is application to real and practical problems. Much of Laemmel's

work is pointed in this direction. A prospective researcher who is not

equipped for work in the first region could find many problems in the second.

The application of the theory to actual situations is what determines a part

of the usefulness of the mathematical formulation. Of course part of the

usefulness of the mathematical formulation is also in leading to other form-

ulations and to a better understanding of the nature of the problem.

I
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