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ABSTRACT

This paper considers the problem of efficient coding (in the
i{nformation theory sense) for finite, discrete, memoryless message
sources and finite, discrete, memoryless, noiseless channels.

It describes important known results and methods and includes some
new results, Various classes of the coding problem are clearly
distinguished. Emphasis is placed on the classes in which the
number of message blocks is restricted either to the number of
original messages or to the number ‘of channel symbols, whichever

" 48 larger. THowever, procedures for larger numbers of message

blocks, which lead to perfect efficiency, are also discussed.
Various bounds on the efficiency are described for different
procedures,

The case of cost-weighted channel symbols is discussed in
parallel with the equal-cost case which has received the most
attention in the literature so far. Cost-~weighted symbols in-
clude those which have, for instance, unequal time dwratioms.

An extension of the Shannon procedure and bounds to this cost-
weighted case is described. An interesting question as to the
admissibility of proper signal sets in the cost-welghted case is
raised but not solved.

Phesis Supervisor: Peter Elias
Pitle: Associate Professor of Electrical BEngineering
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DISCRETE NOISELESS CODING

1. THE CODING FROBIEM

1.1 THE COMMUNICATION SYSTEM

We are interested in coding as it may be applled to the

transmission of information in any communication system. For this
discussion we shall adopt the point of view accepted in infermatien
theory as proposed by Shannon}* From this point of view we conceive
the general communication system as containing (among other things)
1) an information source or message source, 2) a transmitter or coder,
3) a channel, and 4) a receiver. The aim is to transmit the informe~
tion to the receiver in some efficient way. To do this the transmitter
codes the messages from the information source into signals which it
sends over the channel,  Here, then, coding involves the representa-
tion of messages by signals. The coding device may be thought of as
e transducer which accepts information in one form and sends it out
in a more useful form. We would like to make this transducer error
free, efficient, and simple.

In this discussion we consider only discrete systems in which both
the message and the signal are selected from sets of a finite number of
elements. The messsge Set contains m elements (written mo3i= 1,2,000,m)0
The signal set contains D elements which may be called channel symbols
(written dj 1 = 1;2....,D5. The signal set may be called an alphabet.
Coding may then be deseribed as the process whereby the message, my
or a sequence of messages called a message block (written Mk i E=1,2,...,M)
is replaced by a sequence of channel symbols called a code word

Written Wk H k = l’z’QOD’M). . )
In general, one may associate with each symbol d, a cost e,.

J J
This cost is most frequently thought of as a time duration of the symbol

(c'j = tj seconds) but it may be expressed in terms of power, bandwidth,

or any other economically motivated consideration. If we do not wish

NS G SN S RS S A . WS e D W mam em . SeN  Gn  ewn et wwn S pw e NS Wt tamS e GGh e een  Gmn  Sam  meh e

*Superscripts refer to Feferences listed in the Bibliography.
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ta specify a particular unit, we may give the general unit Mune" to
the 3385* |

Bach message has a certain a prioril probability of occurence which
is written Py- For this discussion we consider these probabilitites
to stay fixed and the source is then called "memoryless". (A source
which has memory may be represented, to a first appreximation, by a
memoryless one by considering p; as the probability of my averaged over’

all possible situations). The information content or entropy, H, of

a memoryless message source is given byl H =3 Py log Py bits/meSSage%*
where the logarithm is to the base two. For a channel with memory H
will actually be less than this, the difference increasing with the

dependence on past history.

1.2 CHANNEL CAPACITY
The channel capacity, C, may be defined as the maximum rate
at whicﬁ information may be transmitted over the channel. Shannon1
defines the capacity as follows
¢ =ltn,,, i&N@ bits/second (1)
where N(?) = the number of allowed signals of duration T.
This definition will be shown to be equivalent if we replace seconds
by unes.
To find the rate of trangmission, R, over the channel we need to
¥now the probability with which each symbol, dj’ is used. Let us write
these probabilities pj. Then R is given by

~Zp; s my
z chj

R = bits/unc (2)

L

We let the average cost per symbol be written € where

S = p,e, unes /symbol (3)
*Unc, which rhymes with bunk, is an abbreviation for Munit cost".

**In this paper the summation is taken over the entire range of
the index unless otherwise noted. '
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Phus the rate is the ratio of the average information content per symbol
to the awerage cost per symbol. Then to find C we want to maximize R,
i.s., find the set of p:js for which R is a maximum. Let us assume that
we are free to use the symbols in any order we choose, (Otherwise there
are constraints in the channel. This case will be treated in an example

in Section 1.3). Then we may ma.ximige R subject only to the constraint:
Z py = 1 ' (&)

To do this we use the method of Lagrange multipliers. let

y=R+2Z p, o (5)
v _ c(=1n 2 -1ogpi)+ci§: ij. log P, o (6)
QPJ '32
where 1ln 2 = lcge 2
Now let 3 E :
-éL = 0 for p, =P (the maximizing probabilities) (7)
Py J mJ
Then 3¢
c{(ln2 +1logP ,)=¢c,P ,logP
c
Bus ' -
z PmJ‘ log ij = =Cc (9)
Hence
c(ln 2 + log ij + ch) = \G? (10)

To evaluate A let us multiply dy Pm and sum for all j:

J

3¢ 5 D

e(C = ngSy * z ij 1oglej + in z: ij) |

= 2% 3 By = A52 = 3(C3 - €5 + 1n 2) (1)
Hence

A= ——-—1-;’5 2 (12)
Then _ A

¢ log ij =c¢c(ln2~1n2 +ch)' ' (13)
or ~Ce

Py=2 J | (1h)
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Since I gﬁd =3 2"603 =1, we have C as the real-valued solutien to
the eguation

® 20 21 (13)

1t can be shown® that R < C if any of the pj's depend on preyiaus
symbols. C, in general, 1s measured in bits per unc. For .cj = tj
seconds, ¢ will be measured in bits per second., For the case in which
all cy are equal (say to cl) we have ‘

w 270¢5 - pplel o or D=2 (16)
" Then '
_ 6 = 208D _ (17)
1

1.3 EXAMPLES OF CHANNELS - = TELEGRAPH AND TELETYPE
The teletype channel has two symbols which are used in all
possible permutations of length five. As an ldealization we may say

that these two symbols are equal in ceost with e, = c2 = 30 milliseconds.
Then from eq. 17 we have

¢ = (log 2)/30:c10"2 A '33 bits/second (18)

If we measure cost by some factor other than time we might find,
however, that, for instance, e, = 1l unec and c, = 2 unes. The capa~
city is then the solution of the equation

2704272 (19)
which is C = 0,695 bits/unc.
The International Morse Code uses a channel which has several symbols
which may be weighted according to their time duration. One way to

describe the symbols follows on the next page3:

- e . YN e s SER e AE G G NS GAE G G SO G s WD NS Gn e G G WD G O mh ket Swen  mm  wem  wma  wmm  eeve

*See Fano% p. III 36, or Shannon} p. 22, We mst, of course,
extend the definition of R suitably. The value of C in (15) is the
same as Shannon obtains with his definition for C.
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SYMBOL DESCRIPTION TOTAL COST
4 dot one unit of time "on", one Woffh 2 taps

d.2 dash three ® | I L] it ] h B

63 letter space = two units of time Moff" » 2

dﬂ word space five ¥ LR " 5 0

fhe unit cost is now the unit of time which we call the tap. In this

ease, however, we are not free to use the symbols in whatever order we
cﬁoose. * Fer instance, we cannot distinguish at the recelver five letter
spaces in a row from two successive word spaces. Practically, any

number of successive spaces become very difficult to decode at the receiver.
We may then place theconstraint on the channel that two spaces may not

be sent successively, To célculaﬁe the capacity we may consideria new

set of dﬁs which can be used with no constraints and which generates

4

all allowable sequences of the old dj‘s. For example:

-SYMBOI: TO‘:‘AL COST _ - -
d.i = dl 2 taps ) o
i =4 o |
d_é =:.d3d1 » y #

. d.L"' = d3d2 6 0
dg =44 7"

. dé = dLl-d'Z : 9 "

Thus C is fthe solution of

~26 | B -MC | 60

2 + 2 ¢

+ 277 ¢

+27% 21 (20)

which gives € = 0,590 bits/tap.* This value.for C is again the same
as would be obtained with the Shannon definition., In this manner a

channel with constraints can be transformed into one without constraints
having the same capacity.

Gt G wem e N RS D NEED ety M) SIS S =t Nw G Nl S R M et G N Gun WS G Gt e S WES W e s e ee  men s Sam

*Shannonl gives a slightly higher cost to the spaces and gets
C = 0.539 bits/tap.
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1.4 THE FUNDAMENTAL THEEOREM

The Fundamerntal Theorem for a noiseless channel staiesl that
it is possible to encode any message source Into any chammel with capacity
¢ in such a way that

R=0C-c¢ for any >0 (21)

and it is not possible to perform an encoding such that R > C.

This theorem suggests that C is really a good measure of channel
_ capacity since we can transmit informaiien over the channel at a rate
as close to its capacity as we like with suitable coding procedures,
This, in turn, provides substantial evidence to support the soundness
of the definition of the measure of informetion. (See Fanoz p. I1II 10
for an elaboration of this point). 7

The latter part of the theorem is true since we have defined C as
the maximum R. To prove the first part1 we consider all possible se-
quences of messages of length L. We then consider all possible code
words of a given cost. We may then show that the latter number is
big enough to encode a large enough group of the former such that the
information rate approaches C as L approaches infinity. The sequences
of messages which are not coded by code words of the given cost must
be coded by more costly code words, However, this group has such small
probebility as L appreaches infinity that the information rate still
approaches C.

Phis is of the nature of an existence proof. A constructive pro-
cedure which attains a rate C in the limit is also given by Shannonl
for the special case of equal-cost channel symbols. This method 1is
extended to the cost-weighted case in this paper.

1.5 CRITERIA FOR GOOD CODES

One criterion for a good code will be its efficiency, e,

which is defined by e = R/C. Another criterion for a good code is
the ease with which it can be implemented by apparatus in any given
situation. There is no single mathematical measure for this latter

criterion but there are some measures which may give us an idea of the
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compléxity of the code and, hence, possibly the difficulty of its im-
plementation. These are the number of message blocks, M, (which is
also the mumber of code words), the maximum word cost, ) max’ and the
number of messages in the longest message block, Do
M may indicate the size of the "code book" needed or may otherwise

indicate the complexity in the coding apparatus. e max is similarly
important. If cost is in time then Cr max determines the longest delay
in being able to determine what the message was, It therefore measures
the storage capacity necessary at the decoding apparatus. If the cost
is in power or bandwidth, etc., there may be some upper limit beyond
which it would be impossible for the costliest signal to go due to physical
limitations of the apparatus. Similarly, n . DAYy measure the storage

capaclity needed at the encoder.

1.6 CLASSES OF THE CODING FROBLEM

The coding problem may be divided intoc three classes depend-
ing on the relative numbers of original messages, m, message blocks
(and hence code words), M, and channel symbols, D. In Class I the
number of messages is greater than or equal to the number of channel
"gymbols. The original messages are rgpfesented direetly by code words,
Class II occurs when there are fewer messages than channel symbols.
Here the messages are coded first into message blocks which are repre-
sented directly by channel symbols. Class III considers the most com~
plicated type of coding in which messages are coded into blocks and
are represented by code words., Summérizing, we find the following

"relations:

Class 1 m=M>D -

Class II n<M=0D (22)
Class III m<M>D

Bach of the above classes may be subdivided into two groups:

Group A Equal-cost, all <:.j are equal

Group B Cost-weighted, some cj may be unequal
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Classes IA, IIIA, and to a lesser extent IIIB, have received the
most attention in the literature so far. Class III has been analyzed
mostly for the limiting case of perfect efficiency. ' Phis paper censiders
all the classes,

2. SOME FRELIMINARY CONSIDERATIONS ON CODING

2.1 THE TREE GRAPH FCR CODING

It has been found convenient to think of all the possible
code words as branches on a tree-like structure. (See Pigs. 1, 3, and 4).
From the root on the left extend D branches to the right, each ome
representing one symbol of the alphabet. The projection of the length
of each branch on a horizontal axis is made proportional to the cost of
the symbol. Since 1log ij = -ch by eq. 13, we may make the projected
1ength.of each branch equal to (~log ij). From the right node of )
each branch extends another "fan" of D branches to the right. The D
branches in these D fans then represent all possible code words with
Jjust two symbols. By further extensions code words of greater numbers
of symbols are represented. The code'word which any branch represents
can be found as the sequence of channel symbols associated with the
.branches on the path from the root to the branch in question (including
that branch). The horizontal distance from the root to the far node
of any branch is the normalized cost, written Gy of the word, i.e., the
cost multiplied by C. It is measured in bits. (Note that one multiplies
by C to get the normalized cost ftather than divides since C varies in-
versely as the cests).

2.2 DECODABILITY .

A set of branches from the tree wilf then represent the code
words of a signal set. One necessary restriction on the signal set
(for error-free operatien) is that it be decodable. That is, when a
sequence of symbols arrives at the receiver we must be able to decompose
this sequence in a unigue manner into code words, This problem is con-
sidered in detall later (see e.g., Section 10.1) but for the present
we may say that a sufficient condition for this unique decomposability
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is that no code word be a prefix of any other code word. This econdition
is sufficient since knowing when a code word begins we cén determine
when it ends.

In terms of this tree picture the prefix conditien states that no
used branch is allowed to lie along the path of another used branch.
(A used branch is a branch which represents a code word that is in the
signal set and the path of a branch is the sequence of branches from
the root to that branch). We term a signal set which obeys the prefix
rule as Ergger; On the other hand we may consider sets of code words '
such that any infinite sequence of channel symbols has at least one
code word as a prefix. Such a set will be called complete. If there is
one and only one code word as a prefix to any infinite sequence, then
the set is both complete and proper and the used branches form a cut
gset of the tree.

2.3 THE KRBAFT IHEQUALITY
Let us demonstrate a certain inequallty.  First we shall

define the stiructure function, SP as follows:
=P %
5, =50 2 (2%)

This function tells us, in some sense, how much of the tree is Yused wp®
by the branches representing Wl through WP. The value for Sp when p is
the total number of branches comsidered is written S.

Now consider the cut set of just D branches, For these branches

e D o= _ <D ,log Ppy _ -
§8=3_,2 = zj:l 2 nj = E_ij =1 (25)

Now considér the cut set formed by replacing one of these branches by the
D branches in the fan at its right. Say this Was the branch for the sym—
bol a. Then for the sum § = 20-1

k=1
log ij =P we have ;.D 2108 P + Py _
ma “j=1

2"% ye have the same terms as be~
fore except instead of 2

D
Pma. Zj=l
that if we replace any branch by the D branches extending in a fan from

P P . Therefore, S = 1 as before. It 1is easily seen

nj = “ma

it , the S value will remain unchanged. Since any cut set can be gen=-

erated from the cut set of D branches by a series of such replacements
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(in which D - 1 branches are added at each step), then the value of S
for any cut set must be one. Bubt a proper code must consist of the
branches of a cut set or some of the branches of a cut set bubt not more
than a cut set. Therefore, for a proper code S <1 in which the
equality holds i1f and enly if the code is complete. This is knewn as
the Kraf‘bs inequality.*

3. DISCUSSION OF CIASS IA
3.1 BEST EFFICIENCY -~ IDEAL AND ACTUAL
Let us first consigler coding for the case designated as

Class IA. TFor equal-cost symbols the tree is symmetrical and the cost
of word Wk is Jjust 9y = n, log D, where . is the number of symbols
in W,. We note that R ¢an be expressed in terms of the word costs and
probabilitles rather than channel symbol figures as follows:

-2 Pk 1°g Pk B E- 3 H
b Py z P log D R log D

R = (23)

where Py is the probability of the kth message block (which is here
a single message)**

E is the entropy of the message source
==z P My, = the average number of symbols per message
We see then, that in Class IA, for a given channel of D symbols and
source with entropy H, the problem is to minimize the average number
of symbols per message, n.
Now let us determine under what conditioms the value for n will
be a minimum. As we have seen QG = Iy log D for the equal-cost case.

For a proper code we have:

S=nt 2% .z 280 5 <7 (26)

*It has a,}sc been called the Szilard inequality, since Mandelbret
claims Szilard' discovered it in a structurally indentical problem con-
cerning Maxwezl Demons in Thermodynamics.

**Note eq. 23 assumed that the p 's are constant, i.e., memoryless
coding. The notation Py for the prlg'ba,bilities of the messagezblocks
should not be confused “with p 3 and Py sinee the context should make
the meaning clear. '



Now we minimize R = Z pn_ subject to the comstraint = k<1

in order to find the ideal value for n. For n to be minimum the equality
sign must hold in the Kraft inequality. Otherwise we could reduce some
n, while 8till keeping S5 <1 and hence reduce n. We may now minimize
2 subject to the comstraint = D °K = 1. We again employ the Lagrange
multiplier technique: Let '

y=2pa +A(E D= 1) (27)
' - oy
To find the value of o, which minimizes n we set ank =0
-g%—k = Py D%k 1nD=0 (28)

To evaluate A we sum over k

1=zpk=x1nnzn'nk=x1nn (29)
Hence,

A=1/1n D (30)

D%k = p, (31)
or, =log py

P T -logyp, = log D

The minimum value of n is then 'ﬁm where

in
-Z p,. log
= X Py B .
Bin = z Py = log D T log D (32)
This gives the 1deal efficiency,  ox
o -H £ % - B £ 1 =1 (33)
Ao - H/log D log D

which is also the best we could do according to the Fundamental Theorem
We see from eq. 31 that to code with maximam efficlency we want

B, --.'-log23 SN Because (-logD pk), is in general not an integer this

cannot be done exactly. This is an example of a typlcal problem which

occurs in discrete coding: One has to use intesral values of a variable

to satisfy certain conditions and in general one can only approximate



3.1,3.2 . 17

the desired result. The actual best efficiéncy then, in general, falls
short of the ideal.:
In finding a soltion for a certain class of cases one may ask two

kinds of questions: 1) How well does this solution do (say with respect

to efficiency) compared to the best possible solution (either ideal {e:= 1)
or the actual optimum solution)? 2) What bound on the efficiency, good
for the whole class, can be achieved by this solution? A solubion that
gives a good answer to one of these questions does not nécessarily provide

a good answer to the other.

3.2  SUFFICIENCY OF COST SET SATISFYING KRAFT INEQUALITY

Let us show that a proper code exists with a given set of
n, if the set satisfies the Kraft inequality. We can show that this is
so by a constructive procedure. The siructure function may be written
S =3 Wa) p? a=1,2,...,L (34)
ml 9 ] 9
where L is the length of the longest word
N¥(a) = the number of words such that n = a.

Now let us pick ¥(1) code words of length 1. In general, there
will be some code words of length 2 which do not have any of the N¢{1)
code words of length one as prefixes. Pick N(2) of these. Now there
should be some code words of length three which are not prefixed by any
of the used words of length one or two. This process can be continued
until there are code words for all of the n . The only reason that this
wouldn't wordk is that the tree got "used up". 3But this would mean
S. > 1 for some p <M, But this would violafzgthe Eraft inequality.

D
Thus we have proven our contention.



3.3 THE SHANNON FROCEDURE

We have seen that in general we cannot pick n, = -logD'pk
because (~logD pk) may not be an integer. But we can pick n, such
that n = [—logD pg], where [x] means the smallest integer that
is bigger than or equal to x. There are several ways in which this
procedure may be shown to work. Let us order the messages according
to decreasing probability. Then let us pick a code word for message
my of length n, = [;logD pi}. Similarly, we pick code word WZ such
that n, = [~ngD Py and Wz obeys the prefix rule. This procedure
is continued, 2lways picking n, greater than but as close as possible
to the ideal value. If the procedure is to fail it would be because
thére was no suitable branch to pick, i.e., for some p, Sp > 1. But
we have picked n, 2 -logD Py - Therefore,
s=SM=zn“nk52D“l°gDPk=2pk=1 (35)
Hence,
Spfsmfl for p<M (36)

Therefore, the procedure will always work.
In the Shannon procedure the number of symbols for any word is
bounded by

-logy P <y = [-logy p,| < -log; p, + 1 (37)

This, in turn, gives the following bound on the average number of symbols

per message:

n=3%pn <3 pk(-logD Dy + 1) =
Zp,_logop
k k H
Z Py - loz D =1+ (38)
Hence, - q
n < Tz D * 1 (39)
Hence,
H H(1/loz D) 1
e = = > = (40)
1nC H log D ‘
Toz D + 1 7t 1

Comments on the goodness of this method will come after other methods .
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have been described. ,

Before we mention other methods we may show how this method could
be proven in other ways. One way is to show that the signal set satisfles
the Xraft inequality:

s 0%k = 3 D—.—[-logn Pk] <z DlogD P .3y Py = 1 (1)

Therefore, by the sufficiency of the Kraft inequality, there exlsts a
proper signal set with these By .

Shannonl, describes a simple procedure for performing the above type
of coding for the binary alphabet and showing that this gives a code
obeying t.he prefix rule. WP is forlged. by expanding EP as a binary number
for nP places where

Bp = oy Py n, = [-Loeny ] (42)

Wp must differ from Wk for k > p sinece Ek must be greater than EP by at
least 2 °P and hence must have a different binary expansion in the first
n, plac'es.

0f course the Shannon procedure is not optimum in general since in
most cases we could reduce some of the n, and stlll have a prefix code.
We could describe modified procedures following the same general pattern
which would be better but they would still not be optimum and we could
not easily obtain better bounds from them. We could, for instance,
deseribe a somewhat improved method for picking the words originally.
This would be to plick the cheapest word available for Wp such that

SP < Ep-{»l' This would work since Sp < SM =S5 < Em-bl = 1.
4, THE EXTENDED SHANNON FROCEDURE (IB) o

Let us now consider how the Shannon procedire may be extended to the
case of cost-weighted symbols. First we must see what costs should be
associated ideally with the words designating the various messages.

We wish to minimize the average cost of a message, W

- i Zh% (43)
=¢= "¢

subject to the constraint T 27 < 1. This is very similar to the
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variational problem we solved to minimize 1 and we see the solution to be:

% = =108 Dy ()
The efficiency is- then:
-Z p, log p :
o = L- -k, (45)
q -2 Py log p,

Since maximum efficiency is achieved, the channel is being used
in the optimum way and the symbols are then being used with probabilities

-GCJ. It is true here, as in the equal-cost case, that

given by ij =
(~log Pk> may not correspond to the cost of any possible word. However,
we may describe the following extension to the Shannon procedure:

Order the meésages according to decreasing probability. Draw a
vertical line through the tree at a distance (-log pl) from the root.
This line will cut some branches of the tree forming a cut set. (Some
of the branches may be cut at their far nodes). For Wl pick the cheapest
word corresponding to any branch cut. Draw another line at distance
(=1log pz'}}. For Wz pick the cheapest word corresponding to any branch
cut .which .is notlprefized .'t?)‘y:iz,wi";w.ﬂonﬂih‘qe this procedure, always picking
the cheapest branch cut which is not prefixed by previously chosen words,
until all M words are chosen.

For this manner of picking words, the lowest the cost will be is
for perfect match, i.e., Q. = -log Py On the other hand, the cost
can be no more than this value plus the normalized cost of the costliest
symbol (i.e., the length of the longest branch) which is (~log Pml))
which we write LD’ Thus the cost of each word is bounded as follows:

~log Py < q < =log p_+ Lp : (46)

Wé note that there 1s no possibility of equalfty on the right hand side
"since if a line passes through a node we always pick the branch on the
left of the node. We may then bound the average cost as follows:

a=2pqu<2pk (-lagpk)+2pkLD=H+LB

i-e’, -
ESq<E+IL (47)
Hence,
H H 1
e == > = - (48)
T " E+I 142D



The proof that this procedure works follows the same kind of reason-
ing we have already used in the equal-cost case. First, we note that
1f the procedure is to fail it is because we have "run out" of tree to
use. However, an inspection of the method will show that if there are
no more words to be chosen we have cut through the tree, i.e., the previcus
words chosen form a cut set. Now consider the structure function for

the first p words which was defind by eq. 24:
=5 P o=k
5, = 2,5 2 (49)

Also consider the sum of the probabilities of all messages which we may

write Ep+l according to eq. 42:

Bl = Teop Py (50)
Since a4 2 =log pk, we have ‘

Sp =iy 2 snl 2P gP op oo (51)
But for a cut set of p words Sp = 1, Hence, Ep+l = 1, This indicates

that if ever the tree got used up (i.e., a cut set were formed) then

all the messages would have been used up also. Therefore, we can never
have a message for which there is no code word and the proof is completed.
The remarks given in the last paragraph Section 3.3 as to the optimality
of the procedure also apply here.

Two other methods which are peossible involve the same kind of pro-
cedure except we start with the least probable message and pick either
the top-most or bottom-most branch cut and continue to the most probable
message. Although the author is convinced that these procedures will
always work also (by trying examples), he has not been able to prove it.
The difficulty is that some of the branches which might be used may be
“left out", i.e., a cut set may not be formed.™ Hence, it is no longer
true that Sp_g Ep+1' In order to prove the procedure one must show,
in some way, that if branches are left out there must be sufficient
mismatching between message probabilities and word costs to allew branches
for all messages.

It may be wondered whether any "reasonable" method of picking Wk
such that -=log pk‘s 9 < =log P + LD might work. This is not the
case. One "reasonable" method would be to choose the largest Q. possible
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subjeet to the above constraint. But here the inefficiency in using the
tree that this rule necessitates may cause it to fail. If the code words
are to be chosen in order of decreasing probability, this method will
fail for some cases as»witnevssed by the following example: Let 02 =2e1,
then P, = 0,618+and P o = 0.382. (See Fig. 2). Let py = .11; p, = 14
= .. = P6 = ,09 ; Py = Pg = oo =Py = .056 . Here we see that when
we get to Ml the tree is already "used up". We may note that P, through
P1g were chosen so as to use up as much of the tree as possible with
messages of relatively little probability. The method would have worked,
in this example, if the messages had been consideied in order of increas-—
ing probability. |

It seems that schemes such as these are inherently better if words
are plcked from M]. to MM rather than vice versa. All examples tried
show the first way to be better except when the messages are equiprobable
in which case there is no difference between the methods.

5. FANO AND BLACHMAN PROCEDURES (IA AND IB)

Wé see from eq. 14 that for the binary equal-cost channel the syﬁbels
should be used with equal probability. In order to achieve channel capacity
it is necessary that these pfoba,'bilit_:ies be constant from symbol to symbol

and not merely average out to the desired values, for if the probability
distribution ever differs from that given by eq. 14, the average infor-
mation rate must be lower than the maximum possible rate. This is another
way of saying that the probability of each symbol should be independent
of what symbols preceded it. Then in the binary equal-cost case we want
each symbol to have the probability one-half at any position in the code.
One way of approximating this condition was described by Fanos. It
follows: '

_ Order the messages by decreasing probabiﬁt.y. Separate the messages
into an upper and a lower group such that the difference between the sum
of the probabilities of the messages of each group is as small as pessible.
To all messages of the first group make dl the first symbol of each word
and. to all message§ of the second group assign the first symbol dz.
Now subdivide the first group into two groups which ars again of nearly

equal probability. Assign d‘l as the second symbol to all words in one



of these subgroups and dz for the other subgroup. Do the same for the
second group. Continue making subdivisions and assigning symbols in
this way until each subgroup has only one member.

This procedure seems to be always more efficient than the #straightt
Shannon procedure (though no proof of this has been found) but not neces=-
sarily moré efficient than the Shannon procedure with modifications.

No simple bound has been proved as has been in the Shannon procedure.

Hew let us consider the extension to the general D symbol cost-
weighted case as described by Blachman? Here we divide the messages
up into groups whose probabilities are close to the probabilities we
want for the symbols. These groups are similarly divided into subgroups
as before. Mde precisely let

_ op=l |
B = Py Px | (52)
and
Se1
Vs = Z,j:l ij { (53)
We shall represent the ptﬂ message by the symbol sequence dal* d o3 sees
a
Q__geoe,d of n symbols, where
ar an
< <
Var < Bor va(r+1) (54)
ahd
Ep(r+l) = (Epr = Var)/Pmar ' (55)
Blachman states that the following cenditions hold:
n n=1
ro1 Pmar = pp < r21  mar (56)

However, the inequality on the left is not always true. Consider the

P : o= = 2 1 =3
following counterexample: Py = <7, P, = .3, Pml .6, sz L. The
Blachman code for this situation is Just Wl = dl and Wz = dZ' This
gives P, = o3 < sz = .4 in contradiction to relation 56. No proof or
counterexarmple has been found for the right hand inequality. If it were

true we could derive the same bound as in the Shannon procedure as follows:

n n-1
qP = “2r=1 log P = -Er= log Pmar - log Pm <
L_ - log el g <L, -1logp | (57)
D 7 r=l T mar D P

We note that in most cases the Blachman procedure does not give a



50, 6. 2L

eut set and comld ususally be improved upon in those cases. The Blach-
man procedure again seems better than the straight Shannon procedure
but net necessarily better than the Shannon procedure with modificatiens.

6.. OPTIMUM CODING (IA) - THE HUFFMAN PROCEDURE
The above mdhods work and seem to give us good results most of the

time in terms of effieiency. We may ask, however, for a given probability
distribution of the message source and a given set of costs for the channel
symbols, how may we obtain the optimum code, i.e., the signal set which
gives the maximum efficiency. It is to be noted that for Class I max-
imum efficiency is not necessarily close to one.

In obtaining the optimum code for Class I we are faced with the
first significant difference between the equal-cost and the cost-weighted
ceses. In the equal-cost case we have a relatively simple procedure
(the Huffman preocedure) for obtaining the optimum code., In the cost-
weighted case, on the other hand, we have discovered no simple systematic
procedure, outside of trying all the possibilities, which will insure
obtaining the optimum solutien in the general case.

The Huffmen procedurelo is essentially a method of building the
optirmam signal set onithe code tree by starting at the far branches and
working back to the root. We now describe the method first for the
binary channel,

Order the messages by decreasing probability. The last two messages
have code words which are the same length and differ only in the last
symbol., Assign the last symbol to each of these words. Replace these
two messages by a single equivalent message whose probability is the
sum of the probabilities of the messages. Reorder the messages, if
mecessary, to keep them in order of decreasing probability. The last
two messages agadn have code words whose length is the same and which
differ only in the last symbol. Repeat assignment of symbols, combination
of the messages, and regrouping of the messages as before. Continue
this procedure until only one message remains. At each step we build
ﬁp the tree by adding on two more branches. These branches may represent
code words or prefixes of code words. »

The D symbol case is similar but we combine the D least probable
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messages at a time. The exception to this is the initial step in which
only m  messages are combined, where L is an integer between 2 and D - 1,
inelusive, such that (M - mo)/D ~ 1 1is an integer. TFor examples see
Euffman.lo

Let us show that the Huffman procedure is optimum for the binary
channel case. ¥First we assert that an opbimum signal set must be a
cut set, i.e., every word equal to or shorter in length than the longest
code word must be elther a code word, a prefix of one, or prefixed by one.
This must be true of words shorter than the longest code word (for n < nM2
since if it were not true we could substitute the shorter word for a
longer code word and decrease the average cost. It must also be true
for words such® that n, = hM’ since if it were not we could drop the
last letter of any code word whiéh had the same first ny = 1 letters as
the word in question. This new code word would still obey the prefix
role and the average cost would again be decreased.

Secondly, we have the order rule which asserts that the lengths of

code words must increase as the probabilities of the corresponding messages
decrease; 1.e., 1, X n, X ... Xy (where the messages are ordered

by decreasing probability). If , for instance, ny > n,, we could inter-
change Wl and, WZ and reduce the average cost. By observing the tree
structure, we see that these two assertions make it necessary that

Py = Paeye

If the optimum code is such that there are more than two messages
whose'code word lengths equal Ty the maxXimum code word length, there
must be an even number of them because of the cut-set nature of the
signal set. We may then arbitrarily select a code for which the WM and
WM—I have the same prefix, since if there exists any optimum code for
which this isn't true, we can rearrange that code, with no increase in
cost, to make it true. -

We then assert that an optimum code for the new message ensemble, E!,
which is obtained by replacing MM and MM—l by a new message, M&—l' whose
probability is Py + Pyqs will give an optimum code for the original
ensemble, E, by adding the two symbols, in turn, to Wﬁ-l %o getb WM and
WMél' To prove this assume there is an optimum code for B! with cost

Eépt which when expanded in the above manner does not give andoptimum
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code for B. This means

- - ~‘ -
R = Dot * Py + Py Bopt 4 (58)
But then we could take an optirmm code for B and reduce it to .get a c‘ost_

'ﬁé = iopt -‘PM‘ - pﬂ-l < Eépt . | ' (59)

This conbtradiction proves our assertion. The same reasoning holds for
each additional regrouping and thus these successive regroupings must
determine an optimum code.

We say an optimum code and net the optimum code because of the
many permutations of letters in the words which are possible. First
of all, at eachh of these regroupings there is an arbitrary choiee of
assignment of channel symbols. So i:f there are R regroupings there are
ZR variations possible. In the second place, if there are more than two
~words of a given length they can be interchanged so that successive
messages do not necessarily have the same prefix. Thirdly, for equiproba~
ble messages and equivalent messages, code words can be interchanged.
This wonld add to the number of variations so far considered only if
there were a different number of letters in some of théSe words., Ve may
say that the Huffman procedure determines an admissible class oi" codes
and 21l other optimum codes may be obtained by a suitable rearrangement
of letters.*

In the D symbol case the optimum signal set rust be a cut set or
almost a cut set. We obserwve that a cut set for the D symbol tree con-

$ains M members, where

M=D4+a(@-1) = p(D-1) + 1 (69)
where a and b are integers.
We can see that this is so by observing that the set of all D symbols
is a cut set and any other cut set may be obtained by successively re-
placing one branch dy D others. If the number of messages is one of
those given by eq. 60, we must have a cut set for the optimum signal set.
The same reasoning as in the binary case applies to words of smaller

S - GTE Ve —t Wy D b . G = - o w—n - cth gy o v e ews W ey D G D WEE  eemd B ey GMS S mem e W

*Otter 20 gives a discussion which bears on the number of signal
sets possible with the same cost.
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l,epgth than nM(opg)’ For_:wqrds equal in length to ny, we must also have
for each fan e,ithe_rlall D of the branches used as code words ar none of
the branches used as code words. Thid 4& true since eq. 60 is satisfied
and we see by observing the tree that if it were not true we could regroup
the code words so as to make 1t true and reduce some of the cede word‘
lengths in doing so.

If eq. 60 is not satisfied, say

HM=b(DP~1)+ m, where 1<m <D (61)

then the optimum set must be some set which is a cut set except for D - m
"misging! branches of length Dy The same reasoning as above applies
where o < Tyge From eg. 60 we know that the number of missing branches
must be I(D -1) - m, + 1 where I is some integer. But I must equal
one for if 1t were greater we could "consolidate" the code tree as sug-
gosted above and reduce some of the code word lenmgths.

Among all the optimum codes, which include those which vary in the
placing of the missing branches, the Huffman procedure restricts itself
t0 that class which contains all the missing branches in one fan., The
game arguments apply as in the binary case except that now m of D messages
are combined in the first step and the number of messages is reduced by
D - 1 at each succeeding step. For D > 2 there are more possibilities
for variations on the optimum code if eq. 60 is not satisfied.

7. MESSAGE ENSEMBLES WHICH MATCH POCRLY (IA)*

Now that we have found a procedure for determining the optimum code
we may ask how good the optimum code is for varieus classes of message
ensembles. We may first inquire whether there are any ensembles for
which the Shannon bound on cost is approached by the optimum code.

A simple exam;oi'e of just such an ensemble is oné for which M = 2 and

Py — l. Then éach message must be represented by a single symbol of

a binary channel. We then have q = pi + P, which approaches one.

H = —(pl log Py + D, log pz) approaches zero. Therefore, q ~H =8—1

Thus the difference between average cost and entropy, which we
write 8, approaches the maximum value given by the Shannon beund for
this example. We may extend the result to the case of the D symbol

S G WP mmt WD Ghus SV S — W wn AR =D = G e e e e e S WEP o aem s D G vwes  ovt win  vows  wow  wmwe o

*fhe material of this Section is due mainly to P. Blias,
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channel»_an&:\fer which B is arbitrarily large. The nasty distributien
which will pfove the point has one large probability approaching one
and a lot of small probabilities. Specifieally, let

=14+ (ﬂ—l)DNz

Py = 1-1/x (62)

1

pkzm for k = 2,3,...,HM

We may determine that the optimum code has

=1
1 (63)
nk = Hz + 1
Then | .
qd=nlog D= 1log D(l ~%+"N’2'§t‘l"’> (64)
Therefore, q->(log D)(1 + N) as N->e, But
: ' 1
H = -p, log p; + glog (M-1)¥
= -p, log p, = = lo u+-’f-1og(n-1)+i“-2-10 D (65)
=P R Tyt ty N %8
Hence,
E-»>F log D asz N>, (66)
Hence,

8§ =q-H~> (N +1-N)logD=1log D (67)
ags N~»® and H~>®, Of course since H—»>®, e -1, '

The large § in the above examples seems to result in some way from
the one large probability. One may then wonder whether & would be arbi-
trarily small for the optimum code if the maximum probablity, I
were sufficlently small. That this is not true_we can show by counter-
example. Consider M equiprobable messages. Then Prox = 1/M. Suppose
M/Da =r where 0 <r <1 and a is an integer. Since M is not a power
of D we know there must be some mismatching and some § = Gm > 0. If
we now consider M! = MIJb (b is an integer), we see that the same code
as above will be used to divide the M! messages inte M groups. Onto
these M words all the Db"a' combinations of b~a letters will be perfectly
matched with the information provided by each digit being log D but the
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same mismateh ocbﬁi"'s for the original code so that 6 remains Sm.\ This

is true fer\any b and hence for b approaching infinity and Pox approaching
zéro. As an examwple, consider D = 2 and M! = Bx,ZN. Then Huffman coding
will lead to three equiprobable groups of messages which mast be assigned
code words d’l’ d.zdl, and dzd.z. Thus for the preliminary choice among

the three groups n = 5/3 = 1,667, H = 1.586 and & = 0.081 > O while

gm ax approaches zere.

The worst case for the binary channel and equiprobable messages
occurs when (M - -ZS)/Zs ap}ﬁrcximately equals 0.385, where S is the
largest integer such that ZS < M. 8§ is the largest for this situation
and equals about 0.086. What the largest value of 8 is in this situ-

ation for D > 2 is an unanswered question.

The question may then be asked for a given Prox what is Gmax‘
Elias has determined an upper bound for amax(Pmax) for the binary channel.
It is 60 - ZPmax
*nex =% " T Zos (68)

.
where § =2 - (Z-me) . c=1/2

This bound approaches 0.172 as p mex SPProaches zero. We note from the
previous example that for the binary channel we can state that the
following relation holds: 0,086 < SM(O) < 0.172. What the actual

as p approaches gero is another unanswered

upper bound j.s for Bmax

question.

We have described above some examples in which the best coding
gives as 'peor as possible a match between the probablitity distridbution
of the message ensemble and the channel. It may be remarked that for
the average distribution, which is to say a d;tri‘outicn picked at
random in some way, the match will most likely be much better. More
of this later,
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8. OPTIMUM OODING (IB)
8,1 GENERAL COMMENTS

Let us now discuss the optimum code for Class IB., First we
shall show that the optirmm signal set must be a cut set or almest so.
" Suppose WM for the optimum code has cost Qe Then any word with cosit
less than Oy must be used as was shown for the equal-cost case. But
because of the unsymmetrical nature of the tree this does not mean that
all fand are filled (i.e., that all branches in a fan are used). There
may be some fans filled if thelr roots are at a distance from the most
cestly word given by Ay = 4. < LD’ where a, is the cost at the roet of
the fan. Of course, in any case, at least two branches, if any, must
be used on s fan., Again, as in the equal-cost case, the binary channel
is the only case -in which the aptiﬁ_mm 8ignal set has to be a cut set.
Obviocusly the order rule still holds, i.e.,

What 1s lost is the simplicity of the relationshi;o between B, and Qe

Twe words of the same length may have quite different costs. Therefors,
W8 C¢an no rlong;er say that the last two words, WM and wM—l’ have the same

" length and there is no simple extension of the Huffman procedurs.

~ What we can do in general is: 1) apply the extended Shannon procedure

and then reduce the costs of some of the words by making a cut set if

we do not already have one; 2) use the Blachman procedure with similar
modifications; 3) use the Euffman "Shakedown" procedure; 4) try by

trial and error to match costs to probabilities.

8.2 THE HUFFMAN "SHAKEDOWN" FPROCEDURE

The Huffman "Shakedown" procedure* jis based on an extension
to the order rule. Suppose at a given node, A, we sum the probabilities
of all code words whose branch paths pass through A. Call this sum Py
Take a second node, B, which is on a different path. Similarly, find Pge
Then for minimum cost it must follow that Py > Py if B is to the right
of A on the tree and vice versa., If this were not trme we could inter-
change the code structure branching out from node A with that from node B.

W G o S S PR WD GuD e Gae e G NP e e WS Wme WG e G RS wWP GwmE N GEN MEA e e e Gbw i mee  mah e e e e Sw

*D.A., Huffman, unpublished results.
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The saving in c‘gst would be !ij - prxl'g_A = agls whers q and ap are
costs at A and B, respectively.

The procedure is a repeated use of this rule. For D = 2 one may
start with 8 cut set containing M branches. Initially, assign the words
by the simple order rule. Then one looks for vielations of the exbended
order rule and rearranges the code structure to satisfy the rule. No
single detailed method of doing this which will gaurantee obtaining the
optimum solutien when all node pairs are satisfied has been found.

8.3 EQUIPROBABLE MESSAGES

The special case of equiprobable messages (pk = 1/M) is solved.
First define a vertical signal set as a set of branches cut by a vertical
line drawn at some cost-distance, vy, from the root of the tree. This
line may cut a bra.nch‘at either end. We then assert that an optimum
signal set for the bixiary channel is a vertical cut set with M branches.
Consider the costliest word., This is labeled M in the drawing below: .

A

N .

Consider anonther code word, say B, which is not cut by a vertical line
2 -
throvgh branch M. Then Gy < Q. But Py =N > Py = ¥ This violates

the extendéd order rule. Therefore, all code wofds mist lie on a vertieal
set.sct.  Bub since the optimum code must be a cut set, the solution is
a vertical cut set with M branches. We may find this cut set by moving
an imaginary vertical line to the right from the root until M branches
“are cut., If there is a set of nodes with the same cost, Qs such that
the number of branches cut for y < 4, is less than M but the number of
branches cut for y > 9, is torse than M, there is a certain ambiguity
as to which cut set of M to choose. However, these are obviously squiva-
lent from the cost point of view.

For the D symbol channel the argument that the optimum code is on

a vertical set is true, a fortiori, since Py 2 ‘% But now the solution
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is not necessarily a ecut set. However, for minimum cost, it is clear
that we want the M least costly words from some vertical set. Let us
denote such a set by M(y), where y is the cost corresponding to the
leftmost line which cuts the set. Iet us émiderathecM(y)sby imcreasing y.
If the y lihe cuts more than one node at a time we consider firs{ the
signal set.with first one of the fans from these nodes as being in the
get, written M(yl), then twe fans from the node, written Mﬁyz), and so on.

The reason that we do not always choose the first set is that we
might reduce the cost by replacing some of the most costly words and
the least costly word by some of the words having the least costly word
as a prefix. It can be seen that the cost decreases continuously up to
a certain y and then continuously increases. It is possible, as is
always true for the binary channel, that the least costly M(y) is the
first one. In any case, we move thé imaginary vertdéeal y line from left
to right until the cost for M(y) starts increasing. The optimum signal
set is then the one before the cost starts to increase. It should be
clear that the optimum value for y is less than yo 4 I'D’ where v, is the
first y.

For this optimum M(y) the following relation must hold:

W=y S+l (70)
where I'l is an abbreviation for (-log P ml)’ etc.

Relation 70 must hold., for if it 4id not, we could replace the most costly
word and the least costly one by two words made up of the least costly
word and symbols d.l and dz, respectively. The saving in cost would be
Ay ﬁ'ql 5;(1.1 + I.z) > 0. N

For D = 3 we may say that the optimum M(y) is the first one for
which rela.tidn 70 holds. In any case we may bgund the total cost as
follows:

g SlogM + 1L +1L, k =1,2,...,M (71)
Hence,

<Ly + I, + Llog M (72)

This is an improved bound over the Shannon bound if I’l + Lz < LD.
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8.4 D=2, M=37

Let us consider the problem of finding the optimum code for the
binary channel when there are only three messages. Let r= c,fc..

We must consider two cases; I) 1<r <2 (r > 1, since ¢, 2 ¢, by con-

vention) and ZI)rz 2. There are two cut sets possible for M = %. These
give code 1 (0, 10, 11) -~ written in the binary number alphabet for
simplicity -~ and code 2 (1, 00, 0l), If the matching of messages to
signal wofds follows the order rule, then there is only ons way to assign
signal words for code 1. This is the order (0, 10, 11) with costs given
by (1, 1+r, 2r). However, for code 2 there are two ways: 1) (1, 00, 01)
with costs cl(ﬁ, 2, l+r) for r< 2, and 2) (00, 1, Ol) with costs
01(2, r, l4r) for r > 2.

For case I we see by the generalized order rule that we should use
code 1 for p, + p3 < Py and code 2 for Py + pB‘Z Py- For by *+ p3 =P, = 0.5,
there is no difference in cost. DFor case II we see that the cost for
code on€ is 51 = chpl 4+ (l+r)p2 + 2rp3) and for code 2 we see that
§2 = cl(Zp1 + TP, + (l+r)p3). Therefore, we should use code 1 or code 2
according as P, + (r-‘-l)p3 is less than or greater than P1s respectively,

For case II we note that the answer depends on r.

- 8.5 DIFFICULTY OF SIMPLE SOLUTION IN GENERAL

For M = 4 there are five codes to consider. These fall in
three cases depending on the rangé of r. We have found no simple pro-
cedure for determining which code is optimum except to compare all possi-
bilities. As M increases the complexity increases greatly. There are
many more codes for a given M than in the equal-cost case. To get a
sinple procedure to determine the optimum code we have to reduce the
problem for a large M into g simpler problem or-in some other way describe
an algorithm which greatly reduces the procedure of examining all pessible
codes. The analysis of a program for a digital computer whiéh would
examine all codes could prove instructive. Linear programming procedures

might also prove helpful in this problem.
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8.6 LOWER BOUND ON § = 3 2”%
The Kraft inequdlity tells us that the code words cannot be

too cheap in a certain sense. We also know that the code words do not

have to be too expensive and can use this fact to lower bound the function
S =T 4 2"%, From eq. 46 we kmow for the Shannon code: 4 < -log p, + L
Hence, \

- =L
s =3 27% ™D = P
z > I Py D (73)

Together with the original Kraft inequality we then have:

Po<z2¥g (74)

For the equal-cost case this reduces to:
1/p<eDv ik -32%<2 (75)

We may inquire as to whether these lower bounds apply to the optimum
code. For the equal-cost case the answer is "yes", with the following
simple argument to prove it. Suppose relation 75 &id not hold. Then

for some b

@, 2 log D - log p (76)

We can then shorten word Wb by one symbol and form word W% and still have

ay 2 =log py (77)

Then el '
St =2k =5+2. 2%

s+2®MD-1)<1/D+ /D)D-1) =1 (78)

i

Therefore, this new code 1s proper, since it obeys the Kraft inequality,
and we have a contradiction. This proves that S > 17D for the optimum
code.

We can show that this result holds for the cost-weighted case as well.
Consider the optimum signal set. We shall show.that if 8 < 1/D, there
are unused branches whose cost is less than Qy and therefore the signal
set is not optimum in contradiction to the hypothesis. We know that the
optimum signal set is a cut set except for some "left-over" branches on
the fringes of the tree. We could form a cut set by adding on to all
the branches which are used, all the branches cut by the line y = Oy
which are not used and do not have prefixes which are used. Let us

suppose there are L of these "left-over" branches., We define SLo by
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s, =3 2 | (79)
where q, are the costs of the left-over branches.
" Then :
Sy, +5=1 (80)

Row e%‘ery left~-over branch must be in a group with no more than D ~ 2
left-over branches. We assert that for every such group there mmst be at
least one usedckbode word.. :(A used code word is a word in the signal set).
This is true since there is at least one branch in the group which is
either a used code word or prefixes a used code word. If not a used code
word, there 1s another group for which at least two branches are used
code words or prefixes. Siﬁce for each branch which is a prefix there
exists at least two used code words, we see that there must be at least

one used code word for each group which has some left-over branches,

But since
27U < "W (81)
we have
SLop < (D - 2)2"W (82)
where § =32 2°qi, summed over all i in any particular group.

Lop::

Now suppose the left-over branches occur in G groups. Then

: -qy ‘
51, < (D - 2)27% (83)

But there must be at least G used branches, hence

s> 62" W (84)

Hence, . ’
‘ SLo <(- 2)8 u (85)

But if S < i/D, then

s. < (D- 2)% (86)

Lo D |
Hence

) T D~1
1=SL°+S<(D-2+1)'5=—-T—' <1 (87)

which is a contradiction. Therefore, the assumption that S < 1/D
for an optimum signal set is impossible and the opposite assertion
that S > 1/D is proved.
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9. MESSAGE ENSEMBLES WHICH MATCH POORLY (1B)

We may now inquire about message ensembles whose probability dis-

tributions will cause trouble in trying to code efficiéntly.

Pirst we

note that coding may be inefficlent for the binary channel in which one

symbol is much more costly than the other.

For M = 2 we have

H=log2=1

If we let L2 —> o gnd Ll-> 0, then

L

6=§-H——>-é-g-—l-'.=

In the general case we may pick

following code is optimum:

W, =1
W, =10
= 100

T
]
u

1000...00
0000...00

]
1}

For the above code

i}

q

:‘41.2 (M-1) +

For large enough M
H=1log ¥> H
and _ -1

Lz - log M=

QM) @, + B + I.2 + 2L

vept—

MI‘2+

I

2

2.

(M=-2 O's)
(M-1 O's)

1

(M-1 )L

M=
zlLl -

Consider eguiprobable messages.

(88)

(89)

L, so large that, for a given M, the

g;
L}
—~
T
X
|~

-t

+ e.e + I‘z + (M=-1)L

(50)

for any preassigned Ho

e

logM—L +M.Ll-logM

(1)

Thus for the binary chamnel we can find distributions for which

8§ £1L,,

> It is obvious that we cannot expect to find distributions so
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bad that 8 =L
if the LD---is made large enough, we could do better merely by disregarding
it and using only D - 1 symbols.

If we throw out the .Bth symbol we can still apply the extended
Shannon procedure to the D - 1 symbol channel and obtain

H+ I'D-—l

w< T—_ (92)

D for the general D symbol-channel. This is so because

. .
where C! is the capacity of the D -~ 1 symbol channel.

But now - '
o=z ="Tav Xg (93)
Then

XA where A = C!'/C (o4)

If ]‘a]:> is very large comparéd to I’D—i" A will be close to one. We note that

D _=Cc, D=1 ~Clcs _
Z.i=1 277l =1 and zj=__1 277 %=1 (95)
Let . ‘
- (3 ]
_ G, =C - cC! _ | | | | (96)
Then : _ : . ;
5D ,=Cley _ zD-l(chcj)(z-ch) 5750401 D=1 ,=Cey _
J=1 =1 < J=
2°4%1(1 - ¢ ) (97)
mD
Hence, 1
: -
C, <= log 75— (98)
A Sy 1 PmD .
Then 1
C-C c == log T
a=ctfe= —2 c1.h >y L TPw (99)

PTherefore, if I'D"’ o, PmD'-aO and A -1,

It is an open question as to the efficiengg‘of coding when there is
one large probability close to one and many small probabiiities. If the
small probabilities are all equal, it seems intuitively clear that the
coding will be, in some sense, more efficient than for the equal-cost case
since one should be able to match these probabilities better. Just how
much better is not known. It seems reasonable that we could not have the
same 8 approaching LD for the large M situation for the cost-weighted case
that we had in the equal-cost case. This is espeéially true if the costs



9., 10.1 38

are incommensurate, For the incommensurate case the nodes on the tree
seem to spread out more and more uniformly along the horizontal cost
axis as the tree branches out.*

It seems similarly true that the lower bound on 8 for the equiprobable
message case is reduced. This should be even more true as Prax approaches
zero but there is still probably some greatest lower bound which is

greater t@an.zero.

10. CODING DOTHER THAN PROPER CODING

10.1 SARDINAS-PATTERSON RULE FOR UNIQUE IECOMPOSABILITY

We have seen that a sufficient condition fn the signal set
for the code to be uniquely decomposable is that it obey the prefix rule.
That this is not a necessary condition may be seen by considering the
signal set Wl = 0, W2 = 0l. Sardinas and Pattersonl1 give a procedure
for determining whether a given signal set is uniquely decomposable.
It follows:

The signal set itself is called segment class zero, written Sego.

If one word prefixes another, the remainder of the second word is in
segment class one, written Segl. If one word in Sego prefixes a word
in Segl, or vice versa, the remainder of the longer word is placed in
Segz. In a like fashion Segi+l is generated from Segi and Sego. The
rule then states that the code is uniquely decomposable if no word in
Sego appears in Segi, i> 1.

Since the maximum word length is bounded (nmax) the algorithm will
give a definite answer in a finite number of steps. There are two possi-
bilitigs for success: 1) Seg:.L is empty for some i1 and hence, Segj is empty
for a1l j > i; 2) Segj = Segi (Segi is not empty) for some J > i.

For the latter case the segment classes repeat If a periodic fashion,
the period being j - 1. 1In case 1) the code has local decodability

(a term invented by Schutzenberger), in case 2) it does not. A code
has local decodability if there exists L < ® such that for any given
m we can uniquely decode the first m - D oox symbols into messazes once

the first L symbols are known.

ot - " — ot ot ot o ——— e o — o moay  oee e Mm e wmms  mam wewe e W —

*See Gnedenko and Kolmogorev21 for mathematical details.
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10.2 AN INEQUALITY FOR FROEMR SIGNAL SETS

We shall now find necessary and sufficient conditions on the
set of words in a signal set such that there exists a proper signal set
with the given set of costs. We do this first for D= 2. The cost of
a word is characterized by the number of 4, and 4, symbols in 1t. Let

1 2

the number of code words with x dl‘s and ¥ az's be given by N(x,y).

The total number of words with this composition is Cx
* ?

S ) H (100)

Hence

(101)
But if any code word with composition (x',¥') is used such that x' < x
and y! <y, then we cannot use all Gx ¥ words of composition (x,y) as

®

code words. Specifically, there are C words of composition

z-x!,y-7"
(x,y) which are prefixed by the word of composition (x',y!) and hence
cannot be used simultaneously with it. Similarly, if we have N(x',y')

words of composition (x!,y') we may not use N(x!,y!)C ‘words

X-x! 0y"y’
of composition (x,y). In the same way, if there are any words of compo-

sition (x",y") such that =" < x and y" <y, we cannot use H(x",y")cx e
N P

additional words of composition (x,y). We now consider all words which
are prefixes of words of composition (x,v). A necessary condition on

the N(x,y) for a prefix code is then given by

x ¥ . .
$i=0 :j:O H(X—1,yag)ci’. < C (102)

Jd T Xyy

This must hold simultaneously for all (x,y) compositioms. It should
be clear that if it holdsfor some (x,y) it also holds for any (x',y')
such that x! < x and y' < y. Also, if it holds for some (x,y) it also
0 for all i+j > O.

Then if for a given signal set the maximum n = X + y for a code word

holds for any (x+i,y+j) as long as N(x+i,y+J)

1]

is n , the conditions 102 reduce to the n + 1 inequalities such
max max

that x + y = nm .

We note that if the equality holds for some (x,y) then the tree is
full for that (x,y). If the equality holds for all (x,y) such that

X 4+ y = n then the tree is full and the signal set is a cut set.
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We mey see that conditions 102 are sufficient in the following way.
Make code words for all (x,y) such that n = x + y = 1. Then make code
words 6beying the prefix condition for all (x,y) such that n = x + y = 2,
Continue this procedure. If it fails, at least one of the conditions 102
must net be satisfied. '

We may easily extend these resulits to the D symbol case and obtain
necessary and sufficient conditions corresponding to conditions 102 as
follows:

X- X
2 1 sz seos E.D N -1 X = ce -i G
1,20 "1,=0 “ #1520 (x, 1'; 20e e+ vigip) IS B
-< ¢ '
= TEaXpyeess Ty (103)

where N(xi—il,xz—iz,...,x.g-in) is the number of code words

- !
with e il d.1 s, etc.and .le’xz’“"xn

o | - _(_;x1+x2+...+xD)!
Xy9ZpseeerZy xllle...x.nl

is given byla

* 10,3 ADMISSIBILITY OF FROPER SIGNAL SETS

One may ask whether any of these non-prefix codes could be
more efficient than the best prefix code. This is answered6 in the
negative in the equal-cost case by a simple argument. First we show
that the Kraft inequality is a necessary condition for a uniquely de-
composable code. We employ a proof by contradiction. Suppose it is not
so. Then there exists a good code such that

22 % =148 S 8>0 | ' (104)

Then consider a message probability distri’butién such that Py = 2"% . €t

where € > 0 and = € = 8. Then

- _ - ~ 3

a=2pq <3q 2 (105)
and - -

H=-2p logp =~ 2(2"% - g) log(2 Ue <) (106)
but

~log(2”"% - € > = log 2"% - 9 (107)
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Hence, =~ g E(Z-Qk - ek)qk =3 S (108)

Butthis contradicis the Fundamental Theorem. Q.E.D.

We know,:however, that the Kraft inequality is a sufficient con-
dition that there exists a prefix code in the eqna;—cost case with a
given q =1y log D. Therefore, since the optimum code must satisfy
the Xraft inequality, there exists a prefix code as good as the optimum
code. I.e., the class of prefix codes is admissible when considering
efficiency for the equal-cost case. It is believed that the same result
ghould hold for the cost-weightd case but this has not been proven yet.
One stuhbling block is that the Kraft'inequality is no longer sufficient
$0 insure a prefix code with z given set of Q- Consider, for example,
costs 9 = Lz and 9, = 2L2. Then Zsz + 2_2L2 = Pm2~+ Piz <1 and the
Kraft inequality is satisfied. But .the only signal set will be Wl = d2
and, Wz = dzdz, which is clearly not a prefix code.

We could prove the hypothesis for the cost-weighted case if we
could prove a somewhat stronger one which is probably true. Namely,
any signal set which passes the Sardinas-Patterson test can be changed
into a signal set which is proper, if it is not already so, merely by
rearranging some of the symbols in the words. This proper signal set
would then have the same cost structure. We could also prove the hypéthesis
by proving the following statement, which is also probably true: if one
of the conditions 102 is not satisfied, the signal set fails the Sardinas-
FPatterson test. ‘

If we could prove the admissibility hypothesis inithe general case,
one might be tempted to say that we may as well forget about any codes
but proper ones, since proper codes seem simpler to use. However, some
codes already in use* are non-proper and, besides, efficieﬁcy is not the
only criterion for a good code, as we have seent Other considerations
(see, o.2., Schntzenbergerlz and Laemmell9), including resistance to noise
and facility of synchronization, might outweigh the efficiency consideration.

v W S D Gm) NP S SR Gmuy A Gt D Gemy W e St e Gt Wme A Wt P mmE  tm AR me® W ot S e St e M Gung  moat b n —

*An example is spoken English. George Millerc¢éf Harvard pointed out
that the followingz pair of sentences could be confused due to the fact
that spoken words may have the same sound prefix: 1) The good can decay
many ways; 2) The good candy came anyways.
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11. GEOMETRIC PICTURE OF THE CODING FPROBLEM

The discussion of Section 9 leads us to consider another way of
looking at the coding problem as describved by Mandelbrot.13 It is a

geometrical picture for visualizing the problem of picking a signal set
to match a given message set. TFirst we describe a geometric interpreta-
tion for a set of probabilities. For M = 2 the probability distribution
can be represented by a point on a line segment of unit length. See the
following figure:

e} ——

— p ————te—

~ The point divides the line segment into segments of length pl and p
Obviously, there is a one to one correspondence between any point on the
line and any probability distribution. Similarly, for M = 3, we can
represent any probability distribution by a unique point inside an equi-
lateral triangle of unit altitude, and vice versa. See the following

figure:

This follows from the geometric fact that the sum of the distances of a
point inside an equilateral triangle to the sides is equal to the alti-
tude of the triangle. These distances then represent the three probabi-
lities. Similarly, in three dimensions, we can think of a probability
set with four members as being represented by the distances from a point
inside a regular tetrahedron to its faces. In general, a set of M
probabilities can be represented by the distances from a point in an
"equilateral hypertriangle’ of dimension M-1l, The co-ordinates used

for the representation are known as barycentric co-ordinates.

42
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Phe entropy, H = - p log p, of a probability distribution is a
function only of the p!s. We may then think of a surface in M dimensional
space whose distance is H from the point in the hypertriangle given by
the probabilities. The distance is measured along an axis perpeddicular
to the other M - 1 axes. For example, for M = 2, we see that the H

surface is a convex curve. See the following figure:

H(p, k)

L

|

= R

Hetd1=1

-
X

For M = 3, we see (Fig. 2) that the H surface is a dome-shaped affair
like the roof of Kresge auditorium at M.I.T, TFor M >3 the visualizing
bescomes impossible except in an abstract way.

Finally, we want to include the cost of coding in the geometrical
pictare. Let us consider a given code with its set of costs,-qk. The
cost of using this code is q = % Py which is a linear function of the
probabilities. Therefore, the q surface, where g is measured along the
same co-ordinate as H was, will be a hyperplane. EHere we note that the
probabilities and costs are no longer ordered by decreasing probability
or increasing cost, in general.

The distance between the cost hyperplane amd the H surface is
8 = q - H and is a measureof the inefficiency of the code. Wherever
the plane is tangent to the H surface the code is a perféct match for
that set of probabilities, i.e., the efficiency is one.

There is a cost hyperplane for each code. The optimum code for a
given message probability set will be that one whose cost hyperplane is

closest to the H surface at the point corresponding to the probability set.
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If we consider the locus of the optimum cost plane for each point of the
hypertriangle, we get a cost surface consisting of sections of planes.
Tor exampls, consider M = 3 and observe Fig. 2 in which a section of the
cost surface is shown., For M = 3 the cost surface is just made up of
.gections of ordinary planes. '

It may be shown13

that both the cost surface and the H surface ampe
convex. Therefore, a cost hyperplane can be tangent to the H gurface at
only one point. TFor the binary channel any optimup signal set must be

a cut set. But for a cut set there is a set of probabilities for which
H = g, namely Py = 2~ %, Therefors, for the biﬁary channel, all sections
of the cost surface are tangent at one point. This~is not true for D > 2
where some optimuﬂcodeé need not be cut sets and some sections of the
cost surface will not touch the H surface.-

The most inefficient codes are{seetho be those for which‘two or
more sections of the cost surface intersect. This is true since by the
convex nature of the H surface, any movement away fromoan intersection
mst decrease § = q - H. '

We now see that it is, in general, better to have as small a D as
‘pbssible as far as the possibility of efficlent co&iﬁg is concerned.

This is true, because for a given M, the most possible combinations of
optimum codes will occur for the smallest D, namely D = 2. Therefore,
with more segments the cost surface matches the H Surface more closely.
Tor the same reason the cost-weighted channel is, in general, more
efficient than the equal-cost channel. There are a greater number of
codes:in:zthe:tost-weighted case because pe&mnta&ions of éhannel éymbols

give codes with different costs, unlike the equal-cost case.

12 EXAMPLE: CODING ENGLISH LETTERS - THE Mﬂﬂgg CODE

.. As an example of several of the coding properties we have been_
talking about, let us consider the problem of encoding the letters of
the English glphabet. We take for our message ensemble the 26 letters
plus the word space. A set of probabilities for these 27 messages is
given in Table 1. Tor these probabilities H = 4,03 bits/letter.

The Morse Code channel, as described in Section 1.3, has a capacity of
C = 0.590 bits/tap. The average time for code words in the Morse Code

is 8.661 tapsfletter. Therefore,
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H 4,03
= F6 T B.6Lx .go1 = 0790 (109)

Another code, the American Morse Code, has another space symbol of
duration 2 taps which is used between dots and dashes of some code words
for the letters. Thils channel, which has been discarded because of the
confusion that arose in trying to distinguish among the space symbols,
naturally has a higher capacity. The characteristic equation, using

the constraint that no two space symbols may follow one ancther is

v 278, 2770 0 g (110)

2"20+, 2~38, M0, R, 2-50

The solution of eg. 110 is C = 0.736 bits/tap. This assumes, of course,
that the tap is the same unit of time in each calculation. The average
time per letter for the American Morse Code has been calculated to be
7,765 taps/letter. This is about 10 per cent faster than the International
Morse Code (GasperB says about 5 per cent) and gives an efficiency of 0.705.
Could the International Morse Code be made more efficient? If one
restricts oneself to using the spaces as letter and word ends and to
keeping the maximum number of symbols per letter at four, then the only
consideration. required to obtain optimum efficieﬁcy under these restric-
tions is to use all of the 27 least-costly sequences-of dots and dashes
of length four or less so that the order rule is obeyed. The Morse Code
obeys this rather well except that the letter "O" is given too long a
sequence and the sequences 0011 and 0101 are not used (0 = dot, 1 = dash).
The optimum code, given as code 1 in Table 1, would have a cost of
8.260 bits/letter, the largest part of the improvement coming from
correcting the code word for "O", This would give an efficiency of 0.827.
We may now ask what efficiency could we obtain if we consciously
strove to matéh cost and probability according to the optimizing con-
dition of eq. 14. To apply this condition to The Morse Code channel as
given would require a complicated analysis which might include spaces in
letters., Let us rather consider a simplified Morse Channel with Jjust

the ‘dot and dash. The capacity for this channel is the solution of

2720 4 27 _ 4 (111)

which is C = (1/2)(0.695) = 0.347 bits/tap.

R R U T e T T o SV VU U U

Text continued on page 47.
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RAJE  MESSAGE FROBABILITY*
1 word Sypace 0.200
2 B .105
3 T 072
I 0 0654
5 A 063
6 N .059
7 1 .055
8 R L0354
9 S .052
10 : o7
11 D .035
12 L .029
13 kol .023
14 7 .0225
15 i .0225
16 M .021
17 P .0175
18 W .012
19 T 012
20 G .011
21 B .0105
22 v .008
23 X .003
2L X .002
25 J .001
26 Q .001
27 Z .001
Table 1

10
000
010
001
0000

100
11
1000
0010
110

101
0100
0l1
0001
1011

111

0110
1100
1001
0011

0101
0111

000
0010
0010
01000
0101

0110
10000
100
1010
1100

01001
01110
100010
10110
11010

11100
1111
01111
100011
10111

11011
111010
1110110
111011100
111011101

111011110
111011111

Lg

CODE 3
00

010
1001
1100
1101

1111
0110
€111
10110
10100

10000
11101
101111
101010
101011

100011
111000
1011100
1011101
1000100

1000101
1110010
111001110
111001100
111001101

1110011110
1110011111

T S e T e I T R

*The probability values were taken from Brillouin.14

**The word space is represented by the symbol "word space".
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Using the tree of Fig. 3, we start with the most common message, the
word space, and assign branches with close to the proper cost. This
gives code 2 of Table 1. The average cost for this code is W = 11.726
‘taps/letter. Therefore, e = (4.03)(1/0.347)(1/11.726) = 0.99.

If we code into a channel with two equal-cost symbols, we may use
the Huffma}z procedure to get the optimum result. This is code 3 of
Table 1 and Fig. 4, In this code the efficiency is e = 0.97. We note
that the redundancy, given by 1 -~ e, is three times as great for code 3,
This is an example which substantiates our conjecture that the cost-weighted
channel is in general more efficient.

Code 2 was obtained quickly with about as much effort as for code 3.
If it is not the optimum code, it is certainly very close in the value
for efficiency. '

13, CODING FCR CLASS IIA

13.1 GENERAL COMMENTS
Let us consider the problem of coding a message set, m, s inte
a channel with symbols, dj' such that m < D, In order to make use of
the capacity of the channel one will want to code certain blocks of the

my to be transmitted as a single symbol. (For the present discussion

let us assume that one wishes to transmit the channel symbols singly

and not coded into signal words). Let us begin by taking the csse in
which the channel symbols are equal-cost. This, then is problem IIA.
Problem IIA, in a sense, seems to be the reverse 'of the problem of coding
many equiprobable messages into a cost-weighted channel with fewer sym-
bols than messages. We mey, therdfore, inguire whether a good code for

the one problem might not alsoc be a good code for the other. Such, indeed,
turns out to be the case. -
' The set of blocks of messages is called the message set. It is
found convenlent to describe the possible message:blocks by a message
tree, just as code words were represented by branches on a signal tres.
The tree has m branches in each fan. BEach branch corresponds to one of
the original messages, m, The length of a branch, or more precisely
its horizontal component, is (~log ;pi), i.e., the self-information of

the message my .
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We see that the message set must be complete. This must be true in
order to be able to encede any possible infinite sequence of messages. |
(Consider, for example, any sequence begimning with an "uncovered sequence®
and contimuing with that sequence repeated over and over). If the message
" set is complete, there is one and only one way to form any sequence of
messages into message blocks. (For a finite sequence there may be some
pessages left over). Since successive message blocks are independent of
one another, the probability of using any glven message block is then
Jjust the product of the probzbilities of the messages in that block.

The cost of coding will always be _
a=2pq =Zg logD=1logD L (112)

The problem then is to pick the meséage blocks so as to maximize

‘E=-2p logp = "Ei,k Py 108 By ' (113)

where a is the number of my in Mk’

ik
This, of cou{ée, also maximizes e = H/§ = H/leg D. To do this we would
like to make the pk's as "equal as possible" for if they were all equal
we would have H = log D and e = 1, This is similar to the reverse prob~
lem where we seek to make the signal words as equal in cost ss possible.
There, however, we seek to minimize zk,j akjc,j’ where uk,j is the number
of dJ.'S in Wk.

13.2 THE VERTICAL CUT SET SOLUTION

In order to approximate the ideal result we take the message
set to be the vertical cub set on the message tree with D elements. This

can be done as long as
D=b(m-1) +1 b is an integer (114)

BEq. 114 is obtained by the same reasoning that eq. 60 was., Assuming
eq. 114 holds, we may bound log D) a8 follows:

"IOg PM - ("1°g pl) ..<. s (115)

where s = ~log Py the self-informatlion of the least probable messagse,
- and the M‘k are ordered by decreasing Py
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Hence,
=log py 2 -log p, 2 -log py -~ s 2 log D -s (116)

Hence,
H =3 pklog Py > Z pk(log D-s)=1logD = s (117)

We can use the inequality in (117) since not all of the equalities in

(116) can hold at once. Thus we can bound the éfficiency by

_ log D-s _, _ s
€= 3 > logD 1" Tz D (118)

For a given message ensemble we see that e->1 as D>, If s > log D,
the bound is useless. However, for Py approaching one and m = D we have
e approaching zero for the best signal set anyway. Therefore, we cannot
expect to find a better universal bound with the same parameters.

Now suppose eq. 114 is not satisfied but rather

D= b(m-1) + 1+ LI 1< m < D (119)

]

We cannot then get a cut set such that M = D, But we can find one such
that M = D - m. We could then use just D -~ m of the channel symbols,

The efficiency is this case can be bounded as follows:

H > log(D - mo) -8 (120)
Hence, log(D - mo) - 5
e > Tog D (121)

Of course when eq. 119 applies we can improve the efficiency by
using m, message blocks in addition to the D - m  message blocks in the
vertical cut set. However, the message set would no longer be proper.
This means (as will be shown in an example in this Section) that some
of the message blocks may have to be stored until later messages determine
them as the correct message block to be transmitted. The complication
in encoding, in effect, makes the effective number of message blocks
greater than D, Thus non-proper message coding in Class II is similar
in effect to using a Class IIl type procedure. Since the probabilities
of the message blocks are no longer independent of past message blocks,
we cannot hope to achieve an efficiency of one. We note that although
we know that an increased efficiency is possible, it is difficult to get
an improved bound over relation 121 since it is very difficult to deter—

mine the probabilities of the message blocks due to lack of independence.
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We conjecture that the vertical cut set with M message blocks has
the greateét entropy (H) of any proper set with M elements. This would
mean that the vertical cut set method is optimum for Class IIA, The
proof of this conjecture should follow along lines similar to the proof
-in Section 8.3.that the optimum signal set for equiprobable messages
was also a vertical cut set. There we wanted to minimize g = % PG =
1/M = Qe The proof in that case followed simply from the fact that
q was a linear function of the costs. Here we want to maximize H =
~Z Py log.pk. This is more involved since H is not a linear function
of the corresponding variable (~log pk). However, we should be able to
prove the result by considering the first, second, and third derivatives

of H. This proof has not been carried out in detail.

13.3 POSSIBILITY OF NON<PROFPER MESSAGE SET

We may now show that someiimes an increased efficiency can
be obtaiﬂediby using a non-proper message set for the case where m = 2
even though we can always find a cut set with just D elements in this
case. If there is t0 be an improvement in efficiency it will be because
we can meke the probabilities of using the message blocks more equal
than for any proper message set., So let us start with an original message
source for which any proper message set will be quite "tilted',

For example, we pick m = 2, Py = 0.9, Py = 0.1, and D = 3. We write

m =& andm, = b. Then the optimum proper message set is (aa, ab, b).
This gives

H

]

‘ -(.81 log .81 + .09 log .09 + .1 log .1) = 0.891
and e = H/log D = 0.891/1.58 = 0.563 (122)

Let us consider instead the non-proper message set (Ml =a, M, = b,
My = eaa). Ve see immedistely that the encoding operation is not yet

1
often as possible., It may be necessary, then, to store up some of the

determined. We must say when to use M, and M3' Let us say use HB as

my and delay coding the message blocks until sufficient information is
available. For example, for the sequence aab, one would have to wait
for the b to decide that the first a should be encoded as Ml rather than

as part of M3' But now the message blocks are no longer independent.
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The probabilities, Dy» aTe no longer merely products of the Py and as a
matter of fact they may change depending on the previous history of the
source. _For example, after message Ml is sent the probability of M3
becomes zero. To determine the information rate for the channel we must
" determine all the probabilities for the various states the channel may
be in and avérage the rate for all of these states accerding to the
probabilities of the states. A state diagram of the coding operation

follows:

A33 729

The three states with possible transitions from sach are shown..

Some simple combinatorial analysis gives the probabilities associated

with each transition. Then the state probabilities, EA' EB' and P,

are determined from the following set of equations:
P, = 0,171 P, (123)
1=’c = 0,395 PB = 0,0675 PA

The solutions are PA'= 0.808, Py = 0.138, Py = 0,054, The infermation
rate for each state is just the entropy of the probebility distributien
of the transitions from that state. Thus we have

HA = ={s729 log 729 + .171 log 171 + .1 log .1l) = 1,101 bits
By = -(.605 log +605 + .395 log .395)+= 0.947 bits
H,==-1logl =0

¢
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The average entropy is then
H= PAHA + PBHB + PGHG = ,890 + .130 = 1.02 bits (124)
This gives a higher efficlency than for the optimum proper code.

1.02
1.585.

e =

= 0,644 > 0.563 (125)

We see that if we considered message blocks of lensgth three we would
get the fgllowing proper code of type Class IIIA; (We write the channel

symbols in ternary numbers).

MESSAGE BLOCK COIE WCORD
Ml = aaa 0
MZ = aab 112
MB = aba 121
; _M4 = abb 122
' M5 =:baa 211
Mg = bab 212
M7 = bba 221
M8 = bbb 222

14, CODING FOR CLASS IIB

The problem for the cost-weighted channel (Class IIB) is more dif-
ficult than for the equal-cost channel (Class IIA). EHere the cost is
no longer just log D but is given by

d =3 paq, (126)

where 4 = -log ij for some Jj.

For minimum cost we want to obey the order rule so we set k = j, where
the Mk's are arranged according to decreasing probability and the dj‘s
according to increasing cost. So now we want to maximize

i -2 py log v,

a & pqu

e =

(127)

by proper choice of the Mk. We obtain an efficiency of one, which we

know is an absolute maximum by the Fundamental Theorem, for Gy given by
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Let us restrict ourselves to proper codes for the present. Therefore,
we have to pick a cut set of D branches in the message tree which most
eiosely satisfies eq. 128, We note that the extended Shannon code in
reverse (i.e., pick an Mk such that 9 + 8 > =log pk:z_qk)will not work
since this does not, in general, give a cut set. We could consider
picking the message blocks corresponding to the node to the left of the
first bran%? from the top which is cut by theitvertical line corresponding
te.qk, and which had not previously been prefixed by a used message
block. This would give the bound 9, 2 =log Py 2 Q. - S. We cannot de
this for all Qs however, since we would use up the tree,ilngeneral,
before we got to pe However, we could follow this procedure at first
and then follow the extended Shannon procedure, changing over from one
to the other at a point so as tb obtain a cut set. We are assured that
this is poésible as long as eq. 114 is satisfied. The combined bound
on a single message block is then

N q + 8 > =log Py > QG - S
-q —q (129)
pm2 K < Py <(2 k)/pm
Thus -2 p._log p
k k s )
e = Ep—q >1-"—M'—'—-—' >1l - E - s
Kk Zem1 P
or
s/p (-log p_)/p
6> 1-—% i'-‘_qk =1- ——— 58 (130)
Tl %% “Z5o Ppy 108 Py

where H is the entropy of the message set._

If eq. 119 rather than eq. 114 is satisfied, we cannot obtain

_ a cut set with D message blocks. Here, as in Class IIA, we may use just
the first D - o, channel symbols. The bound 130 still applies where M
now equals D - m,. Again, as in Class IIA, we may increase the afficiency
at the cost of added complexity by adding m, message blocks and making

the message set non-proper.,
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We nete that no optimum solution has been obtained for Class I1IB
and the problem of the optimum solution appears about as difficult as
for ClassI¥B. In practice, to achlieve an efficient solution one could
_set up the message tree and make good approximations to the ideal. One
could also apply the Blachman procedure in which we treat the channel
symbols as messages with probabilities Qe to be encoded into channel
symbols equal in number to m which have costs such that the probabilities
of the_}.r optimum use are Py the proba’bil'_lties of the messages. Of course
the me;sage set obtained rmust be reduced to a cut set.

15. CODING FOR CLASS 1II

. We now consider the most general coding problem (within the scepe
of this paper). This is problem III in which the message source is
first- coded into message blocks and these blocks are then coded into
sequences of channel symbols called code words. We may abbreviate this
" description by referring to it as "block coding”. For Class III relation~
ship 22c applies: m <M > D. For problem III it is very imporfa.nt
to consider complexity when comparing two coding precedures, This is
true because we can make the efficiency arbitrarily close to one by a
sufficiently complex code as will be shown (and, indeed, as follows
from the Fundamental Theorem).

15.1 EQUAL LENGTH BLOCES

The simplest kind of block coding occurs when the message
sét consists of all ?ossi‘ble permutations of length L of the messages.
This is a convenient arrangement as far as the message set is concerned.
This message set may then be coded into signal words by any proecedure.
(The Huffman procedure will give maximum efficIéncy in the equal-cost
‘case). The message set has M = mL members, The costliest word is
bounded by

Is Sqy < Is + L, (131)

The entropy of the message set, which we write H, is easily shown to be:
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H = LHO, where Ho'is the entropy of the original message source. (See
proof in footnote*)., The extened Shannon procedure gives us the bound

A<E+Iy=1IE +1L (132)

_Hence, IE

B ! 1
®>F+i; T I _+I; - L (133)
° 3] 1 4 =2
LHO

Thus the efficiency approaches one as L approaches infinity. This is a
direét constructive proof of the Eundamenfal Theorem. It was given by
Shannonl=fer the binary equal-cost channel.

It may be showna’9 that for the Fano and Blachman procedures the
efficiency also approaches one asi the block length approaches infinity.
for the equal length block coded message set. (One difficulty in the
proef for the Blachman procedure hasialready been noted in Section 5.
The conclusion should sbill be valid, however).

15.2 BALANCED BLOCES
Another block coding scheme may be called balanced coding.

In this procedure one attempts to code a message set of equal or nearly
equal probabilities for the message blocks into a signal set of equi-

- T S MW Gue NS e NS GRS WA Gre T e G WRG e G e B G Gwy e S S SR eeip WS GEwe WS e S WP W Weav e eeus e e

* E =-Zp, lgp, (134)

H =2 P; eeeD: 108 D, P, +.sP., ' (135)
dp" T Jydy T

L L
where pdl is the probability of the symbol used in the first peosition, etec.

b
jl,jz""’JL Jl

H=-3, . P, p p, (logp, + ... +logp,) =
31032"“ QJL Jl .jzo- .JII Jl {- . JL

<

- . e300 . 10 ‘00--2- oo 1 . 1
But if we take the first sum over all 12’33"°"JL we get
-z 1 S . H esel).. =
5 .'pjl og le =H since 252'“% sz pJL 1 (137)

Hence,
H=H +.H0+... +H =1H (138)
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costly (or nearly so) signal words, i.e., the coding groups are to be
balanced in cost, Qs and probability, Py Specifically, pick a given
M, Then take the first vertical cut set in both the message and signal
trees to have M members., The message blocks in order of decreasing
probability are then matched to the signal words in order of increasing
cost. The order rule says that this is the best match for the #we given
sets. '
Of Bourse it is not possible to find just Mimembers in each caut set
unless we satisfy egs. 114 and 60. However, if m = D we may always find
a match for any M = b(m = 1) + 1 or if m # D we may find a matech for
some M (namely those such that M= a(m= 1) + 1 =b(D = 1) + 1 for some
integral values of a and B). In general we may always pick M = a(m - 1) + 1
and then pick the first signal cut s,_et with M or more branches and dis-
card the mest costly signal words u,ii‘til Just M are left. If this is done
- we have
WY Sl (139)
and '
- log p; - log py <8 (140)
where Py and. Dy ave the probabilities of the least and most probable
messagecblocks, respectively.
A crude* bound may be obtained on the efficisency as follows

P < 1/M, hence, ~log py 2 log M (141)
Hence,
: ~log P, 2 =log P, 2 -log py; ~ s 2dlogM=-s (142)
Hence,
H:-zpklogpk>2pk(logM-s) =log M -s (143)

We have a strict inequality in (143) since all the equalities cannot
hold at once in(142) for all k.

Similarly, we may bound q
q=Zpa I pk(log M+ LD) = log M + LD (144)
Hencs,
- hd . 1
e > log M - s _ Ll=sflog M (145)

logM+LD - 1+ Lp/log M

We note that the efficiency approaches one as M approaches infinity.
This is another conmstructive proof of the Fundamental Theorem. We may

W s M D - S e WS WP e v " o won  wwn oy e = 4w S wt Smm W G iy 4D mwt D ey wem s emm mew o wwmm waw o

*Bound 147 is better.
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also wyite

e K

Yog M + L, (146)

Assuming that the balanced method gives at least as good a result
" as does the extended Shannon procedure with the same messagze set (a
statement which seems clearly true but has not been proven), we may

use the bound given in relation 48, Thus

e > 1 T, > ;"‘IT (147)
1+ HQ 1+ _°D
log M - s

We may compare Palanced coding with equal block length coding
in‘three areas. In the first place we note that badanced coding is
' advantageous where it is desired to keep the costliest signal word from
being to0 expensive. We see from eq. 46 that

q <log M+ Ly =1L log m+ Ly (148)

For equal length block coding, on the other hand, the least probable

' message gets far from the mean and we may approach the bound 131
Ls < g < Ls + Ly (149)

We know that s 2 log m, with the possibility of the inequality being
quite pronounced if the original message distribution is strongly tilted.
Therefore, for large L we may have Ay > qﬁ, where the primed and un-
primed q's refer to balanced and equal length block coding, respectively.

Secondly, the bound for 15.2 is better in some sense than that for
15.1. That is, if M is big enough, for the sage M, e' > e or e!' = e
for M! < M,* We see that this is so as follows:

e = "‘L (150)

*Note that e and e' are here bounds on the éfficiency in the two
cases and not the actual efficiencles.
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% T o)

1+ H! L+ log M~ s

where H! is the entropy of the M messages in the balanced message set.

~ But 1

M= | (152)

et > L T (153)
1+

Hence,

D
L(log m - s/L)

For large L, s/L becomes imsignificant and the expression in parenthesis
becomes essentially log m, as compared to Ho in the expression for e.

But log m 2_30 with the insquality again more pronounced for more tilted
original message distributions. Thus our hypothesis is proved for large

L which means large M., This does not say which message set would actually
b6 better as far as efficiency is concerned and, in general, it could

‘be either.

As a third consideration, however, a particular class of distribu~
tions exists for which it is definttely better to use the balanced message
set to get the best efficiency for a given M whem M is small. This occurs
when Pq is close to one and L1 >> -log Py Here we cannot expect to get
a good match until <log Py = Ll (where Py is the probability of the
first message block, with the subscript k added here to distinguish it
from the'probability of the most probable original message, pl.) The
valanced message set athleves this result for the smallest value of M.
(See Bennett,l6 Shannon™ (p. 33), 2nd Eliasl7).

15.4 THE TREE PICTURE AGAIN

We note that eq. 127 applies to Class III as well as Class II,
Thus the efficiency has a perfect value of onef%f,énd only if , q = -log Py
for all k., Here Q. may be the cost of any code word. We may then think
of the problem as one of matching the message tree and the signal tree
such that a message set is matched to some signal set. This is a useful
interpretation when one is actually trying to match a specific message

ensemble to a2 given channel.
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15.5 POSSIBILITY OF A NON-PROPER MESSAGE SET

, We may show that for a given M we may achleve a greater
-efficiency with a non-proper message set than with any proper message
_set., Let m = 2, pl=p2=l/2, D=3,¢ =1,c¢, =1, c3=B, M= 3.
The proper message set is either (a, b) or (ab, aa, b).

e = H/C = R/C : (1:54)

Since 0 is fixed we may maximize the efficiency by maximizing the rate, R.
Tor set one, R = 1/1 =1 bit/fmc. For set two R is given by

R = oS+ 5+ 5 _ 1.5
T T W5 4 25 + J25B T .75 + .25B

bits/unec.

Let us now consider the non-proper message set: Ml = a, M2 =b,
MB =‘aa,a:a.. We further stipulate that M3 should be used as often as
possible. We then have the following state diagram describing the pro-

"~ cess. The probabilities of transition are given.

Msi‘i : b 1

The probabilities of the various states are determined by the following
set of equations:

PA+PB+PG+PD=1

P, =7/16 P

B A (155)
Py = 2[7 Py = 3/16 P,

Py=1/3 %, =1/16 P,

These give

‘¥
]

A 16/27, By = 7/27, Py = 3/27, Py = 1/27 (156)
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For B = 3 we obtain the following information rates for the probability

distributions of the states:

R, = A/”"A = 1.?7/1.125 = 1.128
Ry = B[, = .97/1 = 0.97
- (157)
Rc = HC/WC = .91/1 = 0.91
Ry = HD/WD = 0/1 = O.
This gives a total average information rate R _
R = PR, + PyRy + PR, + PR, = 1.02 (158)

This is greater than the rate for either proper message set (which is

one for B = 3). Indeed, for a range of B values up to b = 3.6 this

non~-proper message set is more efficient than any proper one for M = 3,

However, as we noted for the example of an efficient non-proper message set
¥ for Glass IIA in Section 13, this code is more complicated and should

perhaps be compared with a message set with 24 = 16 blocks.

14, MULTIPLE-COST CODING

Suppose each symbol has two costs associated with it. For example,
one cost in time and one in power. What, then, can we mean by maximizing
the information rate?! There are two information rates now (one for each
cost). One solution would be to decide the relative importance of the
two cost factors and combine them to make a single cost factor., For
example, if cs represents one set of costs and cg another, we may decide

that the first set is r times more important than the second one and get

a combined cost factor set, cj, where

c, =rct + ct et (159)

J J J
Of course this is directly extended to many sets of cost factors.
Another way to approach the problem is to consider the information
rates separately. Let us call them R, and RZ.
-Z lo .
P, g PJ
% p.ct
Ps%

R, =

B .
1 =27+ By, =" (160)
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We may thean ask for the pJ set which will maximize R1 for a given R,,
or vice versa. Blachmang’shows that the solution should be of the ferm

_ o=bel - vel
By = 2 J-vel . Py (161)

b and v are positive constants such that Rz equals the givep value and
p> PJ = 1, If there is more than one solution meeting these conditioms,
the solution for which Rl is the maximum is the one teo choose. Several
other ways of maximizing the information rate have solutions of the
form of (161)., TFor example, maximize R, for a given ch, etc. After the
ij are determined the coding may be done as before.

17, OTHER FORMULATIONS OF THE CODING FROBLEM

One may describe the coding opération in terms other than the message
block and code word picture given above. Shannon, Laemmel, and Schutzen-
berger all give such‘descriptions. For example, Shannon1 describes the
coder as a transducer which accepts input symbols(what we call messages)
and transmits outpuﬁ symbols (channel symbols). The transducer is des-
eribed by two functions:

d = f(mn_, a_)
n n’ “n (162)
gl = g(mn, q‘n)

~ where m_is the 2*® input message
& is the state of the transducer at the nth message

dn is the channel symbol (or sequence of channel symbols)

produced when m is introduced and if the state is @,

Q is the state after 4 is transmitted.
n+l n

To enable this description to include all codes previously considered
we must allow one of the symbols to be a blank, i.e., for some inputs
we do not #mmediately prescribe any channel symbol. Note that in general
we want to use storage dévices in the coding operation to allow a steady

continuous flow of channel symbols.
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Laemmslu'lg

uses the Shannon formulation and classifies extensively
various types of codes with the aid of state diagrams of the coding
operation. He gives much discussion to the complexity of the coding
apparatus and other practical problems which are only briefly mentioned
in this paper.

Sch:u.tzenbergerl2 uses the notions and properties of semi-groups
to develop a mathematical formulation of the coding process and to
investigate seme properiies of this process including the decodability
eriterion of Sardinas and Patterson and the effect of an original error
on the decoding.

18. SOME MORE GENERAL CONSIDERATIONS

Certain assumptions have been made or implied which restrict the
generality of this discussion. In the first place we considered only
memoryless message sources. If a source has correlation among succes-
sive messages, as 1s true for instance for the letters of the alphabet
when considered in written text, the rate of information generated by
the source is lower than the rate indicated by the average probabilities
of the letters. For one kind of source the probabilities depend only
on a finite number, say p, of past messages, We could code efficiently
for this kind of source if we made a separate code for each of the w
possible probability distributions. However, if the dependence is chiefly
on just a few past messages, we could achieve greater efficiency for the
same complexity (in terms of entries in a code boek) by coding for blocks
of messages of length pl depending_ontthe N previous messages, wherg
Py + Py =P + 1. This would give m': entries in m'2 codes for a total

of w1l P2 o P +1 entries, the same as before. Of course we can
achieve greater efficiency by increasing Py whif: holding pz'censtant.
Efficiency approaching unity is obtained by making p, = P and letting
Py approach infinity.

A somewhat more general description is a finite state Markov pro-
cess, Here the probabilities depend on which of a finite number of states
the source is in. A state is determined by the previous state and message.

We may code for each state either for single messages or blocks of them.
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Even more general sources could be described by an infinite state
Markov process or by a generalized ergodic process which ceuld depend
~on time as well as past history. This paper considered, specifically,
only finite numbers of messages. We could consider an infinite number
or even a continuum,

The channels considered were finite, discrete, noiseless, and, for
the most part, time invariant. We did consider to some extent the possi-
bility of a channel with certain kinds of constraints. There remains the
possibility of more general channels whose constraints and costs are var-
iable in a fashion similar to variations of probabilities for sources.

It should alsd be pointed out that mubh consideration should be given
to the difficulty of applying the information theory model of the commumni-
cation problem to real situations. It is possible that weights other than
or in addition te (~log p) might be applicable for the information cohtent
of messages in certain cases. Practical problems of complexity of epera-
tion and susceptibility to error may atweigh factors like efficlency in
the information theory semnse. Still, it is important to have the informa-
tion theory model as a guide to how well the coding can be domne. Finélly,
we note that only error-free coding was considered. TFor R > C we must

have errors.

19. SUGGESTIONS FOR RESEARCH TOPICS
For those interested in a thesis topic (about the Master's level) the

author offers the following observations. There are several unanswered
problems of varying importance and interest stated in this paper. An eval-
uation of recent work in the field which is either discussed in this paper
or in the references is pessible. A discussion of coding for more compli-
cated sources and channelg,as mentioned in Section 18, is indicated.

There are two general regions of the coding problem. One is the math-
ematical formulation. The Schutzenberger work is largely in this regién.
The secénd is application to real and practical problems. Much of Laemmel's
work is pointed in this direction. A prospective researcher who is not
equipped for work in the first region could find many problems in the second.
The epplication of the theory to actual situations is what determines a pard
of the usefulness of the mathematical formulation. Of course part of the
usefulness of the mathematical formulation is also in leading to other form-
ulations and to a better understanding of the nature of the problem.
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Fig. 1. A tree graph for coding
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