
MIT Sloan School of Management

Working Paper 4427-03
August 2003

The Conditional CAPM Does Not
Explain Asset-pricing Anomalies

Jonathan Lewellen and Stefan Nagel

© 2003 by Jonathan Lewellen and Stefan Nagel. All rights reserved.
Short sections of text, not to exceed two paragraphs, may be quoted without

explicit permission, provided that full credit including © notice is given to the source.

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract=441341



 
 
 
 
 

 
 

The Conditional CAPM Does Not Explain Asset- 
Pricing Anomalies 

 
 
 
 
 
 
 

Jonathan Lewellen* 
MIT and NBER 

lewellen@mit.edu 
 
 
 
 

Stefan Nagel+ 

Harvard University 
snagel@fas.harvard.edu 

 
 
 
 
 
 

Revision: August 2003 
First draft: March 2003 

 
 
 
 
 

 

We are grateful to Joe Chen, Ravi Jagannathan, Leonid Kogan, Martin Lettau, Sydney Ludvigson, Jun 
Pan, Jay Shanken, Tuomo Vuolteenaho, and workshop participants at MIT, Purdue University, and 
NBER for helpful comments and suggestions.  We also thank Ken French and Sydney Ludvigson for 
providing data. 
 
 
 
 
* Sloan School of Management, 50 Memorial Drive, E52-436, Cambridge, MA 02142. 
+ Harvard University, Department of Economics, Littauer Center 325, Cambridge MA 02138. 



 
 

 
 
 
 
 

The Conditional CAPM Does Not Explain Asset- 
Pricing Anomalies 

 
 
 
 
 

Abstract 
 

Recent studies suggest that the conditional CAPM might hold, period-by-period, and that 
time-varying betas can explain the failures of the simple, unconditional CAPM.  We argue, 
however, that significant departures from the unconditional CAPM would require 
implausibly large time-variation in betas and expected returns.  Thus, the conditional CAPM 
is unlikely to explain asset-pricing anomalies like book-to-market and momentum.  We test 
this conjecture empirically by directly estimating conditional alphas and betas from short-
window regressions (avoiding the need to specify conditioning information).  The tests 
show, consistent with our analytical results, that the conditional CAPM performs nearly as 
poorly as the unconditional CAPM. 

 
 
 
 



 

1. Introduction 

The unconditional CAPM does not describe the cross section of average stock returns.  Most 

prominently, the CAPM does not explain why, over the last forty years, small stocks outperform large 

stocks, why firms with high book-to-market ratios outperform those with low B/M ratios (the value 

premium), or why stocks with high returns during the past year continue to outperform those with low 

past returns (momentum).  In this paper, our goal is to understand whether a conditional version of the 

CAPM might explain these patterns. 

Theoretically, it is well known that the conditional CAPM could hold perfectly – that is, condi-

tional alphas are always zero – but that time-variation in beta might lead to unconditional pricing errors 

(e.g., Jensen, 1968; Dybvig and Ross, 1985; Jagannathan and Wang, 1996).  In general, a stock’s 

unconditional alpha will differ from zero if its beta covaries with the market risk premium or with market 

volatility, as we discuss further below.  Put differently, the market portfolio might be conditionally mean-

variance efficient in every period yet, at the same time, not on the unconditional mean-variance frontier 

(e.g., Hansen and Richard, 1987). 

Several recent papers argue, in fact, that time variation in beta helps explain the size, B/M, and 

momentum effects.  Zhang (2002) develops a model in which high-B/M stocks are riskiest in bad times, 

and comovement between betas and the risk premium leads to an unconditional value premium (even 

though conditional CAPM alphas are exactly zero).  Further, Jagannathan and Wang (1996), Lettau and 

Ludvigson (2001), and Petkova and Zhang (2003) show that the betas of small and high-B/M stocks vary 

over the business cycle in a way that, according to the authors, largely explains why those stocks have 

positive unconditional alphas (see, also, Avramov and Chordia, 2002; Wang, 2003; Ang and Chen, 2003; 

Lustig and Van Nieuwerburgh, 2003). 

 In this paper, we question whether the conditional CAPM can really explain asset-pricing 

anomalies, either in principle or in practice.  The analysis is broken into two parts.  First, we argue that if 

the conditional CAPM truly holds, we should expect to find only small deviations from the unconditional 

CAPM – much smaller than those observed empirically.  Second, we provide direct empirical evidence 
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that the conditional CAPM does not explain the B/M and momentum effects. 

The first point is illustrated quite easily.  If market volatility is constant and the conditional CAPM 

holds, we show that a stock’s unconditional alpha is roughly equal to the covariance between its beta and 

the market risk premium.  This covariance is small for empirically-plausible parameters.  For example, 

suppose that the standard deviation of beta is 0.30, about our estimate for a long-short B/M strategy.  

Then, if beta is perfectly correlated with the risk premium γt, the implied unconditional alpha is a modest 

0.08% if σγ = 0.25% and doubles to a still-modest 0.15% if σγ = 0.50%.  (The average risk premium is 

around 0.50% monthly, so σγ = 0.50% represents large variation through time.)  The implied alpha is even 

smaller if beta is imperfectly correlated with the risk premium or if beta covaries positively with market 

volatility.  Empirically, the alpha of the B/M strategy is 0.59% monthly (std. error, 0.14%), and the alpha 

of a momentum strategy is 1.01% monthly (std. error, 0.28%), both substantially larger than our estimates 

for plausible alphas.1  In short, we argue that observed pricing errors are simply too large to be explained 

by time variation in beta. 

 The second part of the paper provides a simple test of the conditional CAPM.  Specifically, we 

directly estimate conditional alphas and betas using short-window regressions.  For example, we estimate 

CAPM regressions every month, quarter, half-year, or year using daily, weekly, or monthly returns, 

paying special attention to the obvious microstructure issues that affect the estimates (discussed in detail 

later).  The literature has devoted much effort to developing tests of the conditional CAPM, but a problem 

common to all prior approaches is that they require the econometrician to know the ‘right’ state variables 

(e.g., Harvey, 1989; Shanken, 1990; Jagannathan and Wang, 1996; Lettau and Ludvigson, 2001).  

Cochrane (2001, p. 145) summarizes the issue this way:  “Models such as the CAPM imply a conditional 

linear factor model with respect to investors’ information sets.  The best we can hope to do is test impli-

cations conditioned on variables that we observe.  Thus, a conditional factor model is not testable!” (his 

                                                      
1 The data are described later.  Briefly, the portfolios consist of all NYSE and Amex stocks on CRSP and 

Compustat from 1964 to 2001.  The B/M strategy invests in the top quintile and shorts the bottom quintile of firms 
ranked by B/M.  The momentum strategy invests in the top decile and shorts the bottom decile when stocks are 
ranked by past 6-month returns. 
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emphasis).  Our methodology gets around this problem because it does not require conditioning infor-

mation.  As long as betas are relatively stable within a month or quarter, then simple CAPM regressions 

estimated over a short window – using no conditioning variables – provide direct estimates of assets’ 

conditional alphas and betas. 

 Using the short-window regressions, we obtain time series of conditional alphas and betas for size, 

B/M, and momentum portfolios from 1964 – 2001.  We use the estimates in two ways.  First, we study 

the time-series properties of conditional betas and, as suggested by our earlier discussion, relate these to 

unconditional deviations from the CAPM.  Second, we directly test whether average conditional alphas 

are zero, as implied by the conditional CAPM.  It is useful to note that our tests do not require precise 

estimates of conditional alphas and betas from individual short-window regressions; the estimates must 

only be unbiased.  Thus, we can estimate the regressions over very short intervals so long as they satisfy 

standard OLS assumptions. 

Our tests suggest that betas vary considerably over time.  A nice feature of the short-window 

regressions is that they allow us to back out the volatility of true conditional betas.  Specifically, the 

variance of estimated betas should equal the variance of true betas plus the variance of sampling error, an 

estimate of which is provided by the short-window regressions (see, also, Fama and French, 1997).  Using 

this relation, the implied time-series standard deviation of beta is roughly 0.30 for a ‘small minus big’ 

portfolio, 0.25 for a ‘value minus growth’ portfolio, and 0.60 for a momentum portfolio (the data are 

described in detail below; see footnote 1 for a brief description).  The betas fluctuate over time with 

variables commonly used to measure business conditions, including past market returns, Tbill rates, 

aggregate dividend yield, and the term spread (though, interestingly, not with the consumption to wealth 

ratio of Lettau and Ludvigson, 2001).  However, we find no evidence that betas covary with the market 

risk premium in a way that might explain the portfolios’ unconditional alphas (if anything, the 

covariances have the wrong sign). 

Estimates of conditional alphas provide a more direct test of the conditional CAPM.  Average 

conditional alphas should be zero if the CAPM holds, but instead we find that they are large, statistically 
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significant, and generally close to the unconditional alphas.  The average conditional alpha is around 

0.50% for our long-short B/M strategy and around 1.00% for our long-short momentum strategy.  (We 

say ‘around’ because the conditional alphas are estimated several ways; all methods reject the condi-

tional CAPM but their point estimates differ somewhat.)  The estimates are more than three standard 

errors from zero and close to the portfolios’ unconditional alphas, 0.59% and 1.01%, respectively.  We do 

not find a size effect in our data, with conditional and unconditional alphas both close to zero for the 

‘small minus big’ strategy. 

Overall, the evidence supports our analytical results.  Betas vary significantly over time but not 

enough to explain large unconditional pricing errors.  The conditional CAPM performs nearly as poorly 

as the unconditional CAPM. 

Our analysis focuses on the Sharpe-Lintner CAPM, but we believe the conclusions should apply to 

other models as well:  in general, conditioning is unlikely to have a large impact on cross-sectional asset-

pricing tests.  In intertemporal models, consumption betas and the consumption risk premium must 

exhibit extreme time-variation in order for a conditional model to significantly outperform an 

unconditional one.  Our tests are difficult to extend directly to the consumption CAPM, because they 

require high-frequency data, but we provide tentative evidence using the mimicking-portfolio approach of 

Breeden, Gibbons, and Litzenberger (1989).  Specifically, we estimate a consumption-mimicking 

portfolio by regressing quarterly consumption growth on the Fama and French (1993) factors, either 

assuming the slopes (i.e., portfolio weights) are constant over time or allowing them to vary with Lettau 

and Ludvigson’s (2001) consumption-to-wealth ratio.  When the mimicking portfolio is used in place of 

the market portfolio in our tests, we find no evidence that time-varying consumption betas can explain 

momentum or the value premium. 

Our results differ from the conclusions of Jagannathan and Wang (1996), Lettau and Ludvigson 

(2001), and Petkova and Zhang (2003).  They suggest that conditioning can be very important in asset-

pricing tests.  While a full review is beyond the scope of this paper, the key difference with our study is 

that they focus on cross-sectional regressions rather than time-series intercept tests.  Basically, the papers 
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just test whether the effects of time-varying betas are cross-sectionally correlated with expected returns.  

To us, this seems a fairly weak test of the conditional CAPM because it ignores important restrictions on 

the cross-sectional slopes.  For example, Petkova and Zhang estimate Fama-MacBeth regressions of 

returns on stocks’ average betas and ‘beta-premium’ sensitivities (a measure of how beta covaries with 

the market risk premium).  According to the CAPM, the slope on the beta-premium sensitivity should 

equal the variance of the market risk premium, but the actual estimate appears to be roughly 5 to 10 times 

too large.2  We have similar concerns with the slopes and zero-beta rates in the other two papers, which 

makes it hard to interpret their results. 

The paper is organized as follows.  Section 2 analyzes the connection between the conditional and 

unconditional CAPM.  Section 3 introduces the data and describes our testing approach.  Section 4 

presents the main empirical results, focusing on the Sharpe-Lintner CAPM, and Section 5 explores the 

consumption CAPM.  Section 6 compares our study to other recent papers which test the conditional 

CAPM.  Section 7 concludes. 

 

2. Expected returns and the conditional CAPM 

 The conditional CAPM does not generally imply a simple unconditional CAPM.  In this section, 

we derive expressions for unconditional alphas and betas when expected returns, volatility, and 

covariances all change over time.  Our goal is not simply to show that the unconditional CAPM fails but, 

rather, to understand whether the pricing errors might be large enough to explain important asset-pricing 

anomalies like size, B/M, and momentum. 

 
2.1. Notation and assumptions 

Let Rit be the excess return on asset i and RMt be the excess return on the market portfolio in period 

t (in excess of a possibly time-varying riskfree rate).  We impose little structure on the distribution of 

                                                      
2 The slope is 0.0003 from 1963 – 2001, whereas Petkova and Zhang estimate that the variance of the market risk 

premium is around 0.00007 (using point estimates, not adjusted for bias, from their predictive regression in Table 2).  
We argue that the variance of the risk premium is likely to be even lower, at most 0.000025, which corresponds to a 
monthly standard deviation of 0.5%. 
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returns; they are simply assumed to have well-defined conditional and unconditional moments.  

Conditional moments for period t, given information at t–1, are labeled with a t subscript:  the conditional 

expected market return and variance are γt and 2
tσ , and the conditional beta is βt = covt-1(Rit, RMt) / 2

tσ .  

Likewise, the unconditional market risk premium and variance are γ and 
2
Mσ , and the unconditional beta 

is βu = cov(Rit, RMt) / 2
Mσ .  We sometimes write the conditional beta as βt = β + ηt, where β ≡ E[βt] and ηt 

is the zero-mean, time-varying component (note βu ≠ β).  We assume throughout that the conditional 

CAPM holds, implying Et-1[Rit] = βt γt, and that Rit is conditionally linearly related to the market return, or 

Rit = βt RMt + εt with Et-1[εt | RMt] = 0. 

 

2.2. Unconditional alphas and betas 

If the conditional CAPM holds, it is easy to show that E[Rit] = β γ + cov(βt, γt).  The asset’s uncon-

ditional alpha, or pricing error, is defined as αu = E[Rit] – βu γ.  Substituting for E[Rit] yields 

αu = γ (β – βu) + cov(βt, γt). (1) 

Under some assumptions, discussed below, the unconditional and expected conditional betas are similar, 

so that αu is approximately equal to the covariance between beta and the market risk premium. 

(Jagannathan and Wang, 1996, were the first to emphasize the importance of cov(βt, γt) for unconditional 

tests.)  More generally, to find βu, we need to evaluate the unconditional covariance between RMt and Rit.  

Using Rit = (β + ηt)RMt + εt, the covariance equals 

 cov(RMt, Rit) = β 2
Mσ  + E[ηt

2
MtR ] – γ cov(ηt, RMt). (2) 

To better understand this equation, break RMt into three components:  RMt = γ + (γt – γ) + st, where st is the 

unexpected return at time t.  Substituting into the expression above, and using the fact that E[ηt] = 0 and 

Et-1[st] = 0, yields: 

 cov(RMt, Rit) =  β 2
Mσ  + γ cov(ηt, γt) + E[ηt (γt – γ)2] + E[ηt 2

ts ]. (3) 

Recall that βt = β + ηt and 2
tσ  = Et-1[ 2

ts ].  Therefore, the unconditional beta is 
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 βu = β + ),cov(1])( ,cov[1),cov( 2
tt2

M

2
tt2

M
tt2

M

σβ
σ

+γ−γβ
σ

+γβ
σ
γ . (4) 

This expression says that βu will differ from the expected conditional beta if βt covaries with the market 

risk premium (2nd term), if it covaries with (γt – γ)2 (3rd term), or if it covaries with the conditional 

volatility of the market (last term).  Roughly speaking, movement in beta that is correlated with the 

market risk premium or with market volatility, γt or 2
tσ , raises the unconditional covariance between the 

stock’s return and the market. 

 For our purposes, the unconditional alpha is more important.  Substituting (4) into (1) yields 

 αu = ),cov(])( ,cov[),cov(1 2
tt2

M

2
tt2

M
tt2

M

2

σβ
σ
γ

−γ−γβ
σ
γ

−γβ








σ
γ

− . (5) 

Eq. (5) provides a very general formula for the unconditional pricing error.  It says that, even if the 

conditional CAPM holds exactly, we should expect to find deviations from the unconditional CAPM if 

beta covaries with γt, (γt – γ)2, or with conditional market volatility.  We explore the intuition behind eq. 

(5) in more detail below. 

 

2.3. Magnitude 

 The basic message from eq. (5), that time-varying betas can lead to unconditional pricing errors, 

suggests a possible explanation for asset-pricing anomalies.  Indeed, several recent studies argue that size, 

B/M, and to some extent momentum can be explained largely by movements in beta that are correlated 

with the risk premium (e.g., Jagannathan and Wang, 1996; Lettau and Ludvigson, 2001; Petkova and 

Zhang, 2003; Wang, 2003).  We use eq. (5) to explore whether time-variation in beta might really be large 

enough to explain the anomalies. 

 We should first provide some background.  To illustrate the size, B/M, and momentum effects, we 

form three long-short portfolios using all NYSE and Amex stocks on CRSP / Compustat from 1964 – 

2001.  The data are described in detail later but, roughly speaking, our size strategy is quintile 1 minus 

quintile 5 when stocks are sorted by market capitalization, our B/M strategy is quintile 5 minus quintile 1 
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when stocks are sorted by book-to-market equity, and our momentum strategy is decile 10 minus decile 1 

when stocks are sorted by past 6-month returns (all value-weighted).  Using monthly returns and the 

CRSP value-weighted index as the market proxy, the size portfolio has an unconditional alpha of -0.03% 

(standard error, 0.20%), the B/M portfolio has an unconditional alpha of 0.59% (standard error, 0.14%), 

and the momentum portfolio has an unconditional alpha of 1.01% (standard error, 0.28%).  The size effect 

is absent in our data, but the B/M and momentum effects are significant and representative of those found 

in the literature. 

 Return now to eq. (5).  Note that γ2 / 2
Mσ , in the first term, is the unconditional squared Sharpe ratio 

of the market.  This statistic is small in monthly returns and, for practical purposes, easily ignored:  from 

1964 – 2001, γ = 0.47% and σM = 4.5%, so the squared Sharpe ratio is 0.011.  Further, for plausible 

magnitudes of γt, the quadratic (γt – γ)2, in the second term, is also quite small.  For example, if γ = 0.5% 

and γt varies between 0.0% and 1.0% monthly, then the quadratic term is at most 0.0052 = 0.000025.  This 

suggests that the second component of eq. (5) is also negligible.  A special case is when γt is symmetric 

and βt is linearly related to γt (e.g., if βt and γt are bivariate normal).  Then, the covariance between βt and 

(γt – γ)2 is exactly zero regardless of the magnitude of γt.  Together, these observations suggest the 

following approximation for αu: 

 αu ≈ ),cov(),cov( 2
tt2

M
tt σβ

σ
γ

−γβ . (6) 

Eq. (6) says that the unconditional alpha depends primarily on how βt covaries with the market risk 

premium and with market volatility.  In a CAPM world, we would expect these two effects to offset:  the 

risk premium and conditional variance should move together, so βt is likely to covary similarly with both.  

To be concrete, we consider two special cases of (6): 

 
(1) Constant volatility.  If market volatility is constant, an asset’s unconditional alpha is 

 αu ≈ cov(βt, γt) = ρ σβ σγ, (7) 



 9

where σβ and σγ are the standard deviations of βt and γt and ρ is their correlation.  The pricing error given 

by (7) is small for empirically-plausible parameters. 

 Table 1 reports unconditional alphas implied by various combinations of ρ, σβ, and σγ.  We 

consider three values of σβ – 0.3, 0.5, and 0.7 – which probably span or, more likely, exceed standard 

deviations encountered in practice.3  Note, for example, that if β = 1.0 and σβ = 0.5, a two-standard-

deviation interval gives an impressive spread in beta over time from 0.0 to 2.0.  We consider five values 

of σγ, from 0.10% to 0.50% monthly.  Average γt from 1964 – 2001 is 0.47%, using the CRSP value-

weighted index, so a standard deviation as high as 0.50% implies very large changes in the expected risk 

premium (e.g., a two-standard-deviation interval roughly extends from –0.50% to 1.50% monthly, or –6% 

to 18% annualized).4  Finally, we consider two values for ρ, 0.6 and 1.0, the latter providing an upper 

bound for the pricing error. 

 The unconditional alphas in Table 1 are generally small relative to empirical estimates for B/M and 
                                                      

3 We offer three observations to support this view:  (i) We estimate later that σβ for our size portfolio is around 
0.30, for our B/M portfolio is around 0.25, and for our momentum portfolio is around 0.58; (ii) Fama and French 
(1997) estimate σβ for 48 industry portfolios and find an average of 0.12 and a maximum of 0.42; (iii) Fama and 
French (1992) report unconditional betas for beta-sorted portfolios; they find a minimum beta of 0.79, a maximum 
beta of 1.73, and a cross-sectional standard deviation of 0.31. 

4 For additional perspective, a regression of NYSE returns on log dividend yield suggests σγ = 0.30% using point 
estimates from 1946 – 2000. 

Table 1 
Deviations from the unconditional CAPM 
The table reports the unconditional alpha implied by the conditional CAPM (% monthly).  The conditional CAPM is 
assumed to hold period-by-period, and the asset’s beta (βt) and the expected market risk premium (γt) vary over time 
as indicated in the table.  σβ is the standard deviation of βt, σγ is the standard deviation of γt, and ρ is the correlation 
between βt and γt.  Return volatility is assumed to be constant. 

ρ = 0.6 σβ  ρ = 1.0 σβ 

  0.3 0.5 0.7   0.3 0.5 0.7

  Unconditional alpha (%)  Unconditional alpha (%) 
σγ  = 0.1 0.02 0.03 0.04  σγ  = 0.1 0.03 0.05 0.07

 0.2 0.04 0.06 0.08   0.2 0.06 0.10 0.14
 0.3 0.05 0.09 0.12   0.3 0.09 0.15 0.21
 0.4 0.07 0.12 0.17   0.4 0.12 0.20 0.28
 0.5 0.09 0.15 0.21   0.5 0.15 0.25 0.35
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momentum portfolios (0.59% and 1.01%, respectively).  The implied alphas are typically less than 0.15% 

monthly, with a maximum of 0.35% for our most extreme combination of ρ = 1.0, σβ = 0.7, and σγ = 

0.50% (which we regard as quite generous).  We estimate later that the B/M portfolio has σβ = 0.25, so 

Table 1 suggests that time-variation in beta can explain only a small component of the portfolio’s alpha, 

even if βt are γt are perfectly correlated and the risk premium is very volatile.  A similar conclusion 

applies to the momentum strategy, for which we estimate σβ = 0.60.  The bottom line from Table 1 is that 

the conditional CAPM, with time-varying betas, is unlikely to explain important asset-pricing anomalies 

like B/M and momentum. 

 To provide some intuition, Figure 1 plots the unconditional relation between Ri and RM.  The dark 

curve shows E[Ri | RM], the predicted return on the asset as a function of the realized market return (the 

expectation is unconditional).  The graph uses the most extreme parameters from Table 1, namely ρ = 1.0, 

σβ = 0.7, and σγ = 0.50%.  Also, for the graph only, we assume that βt and γt are bivariate normal and, 

conditional on the parameters, returns are normally distributed. 

 The graph shows that comovement in beta and the risk premium induces a slight convexity in the 

relation between Ri and RM (conditionally, Ri and RM are linearly related).  The reason is that beta tends to 

be high when the market return is high.  Changes in beta have only a small impact on the graph because 

they are very weakly correlated with realized market returns (even though beta is perfectly correlated 

with expected market returns). 

 The figure illustrates why the asset’s unconditional alpha is positive, and also why it is small.  In 

particular, αu is the intercept in a simple linear regression of Ri on RM, depicted by the thin line in Figure 

1.  Since the true relation is convex and passes through zero (if the conditional CAPM holds), the 

intercept in the linear regression must be positive.  Again, however, the unconditional alpha is small 

because changes in beta induce only slight convexity in the relation between Ri and RM.  (The effects are 

reversed, of course, when beta and the risk premium are negatively correlated; the true relation is concave 

and the unconditional alpha is negative.) 
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(2) Constant risk aversion.  The analysis above assumes that market volatility is constant, but we would 

expect that time-varying volatility would strengthen the conclusions:  Eq. (6) shows that unconditional 

alphas are increasing in cov(βt, γt) but decreasing in cov(βt, 2
tσ ).  Thus, if the risk premium and volatility 

move together, the impact of time-varying volatility would tend to offset the impact of the risk premium.  

The connection between γt and 2
tσ  is difficult to estimate, since returns are so noisy, but there is strong 

indirect evidence that the relation is positive (e.g., French, Schwert, and Stambaugh, 1987; Campbell and 

Hentschel, 1992). 

 As a simple illustration, we adopt Merton’s (1980) model of the conditional risk premium.  Merton 

suggests that, if preference are stable and hedging demands are not too important, the risk premium can 

be approximated by γt = λ 2
tσ , where λ is the relative risk aversion of the representative investor.  

Substituting into eq. (6), and using the fact that λ = γ / E[ 2
tσ ] and ][E 2

t
22

M σ+σ=σ γ , the unconditional 

Figure 1 
The unconditional relation between Ri and RM 
The figure shows the excess return predicted on stock i as a function of the market excess return.  The dark
line shows the true E[Ri | RM] and the thin line shows the unconditional linear regression of Ri on RM.  Returns 
are conditionally normally distributed and the conditional CAPM is assumed to hold period-by-period.  Beta 
(βt) and the expected risk premium (γt) vary over time:  βt and γt are perfectly correlated, βt has mean 1.0 and 
standard deviation 0.7, and γt has mean 0.5% and standard deviation 0.5%.  The conditional standard deviation 
of the market return is 5% (constant). 
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alpha simplifies to: 

 αu ≈ ),cov( tt2
M

2

γβ












σ

σγ . (8) 

The expression in brackets equals the R2 in a predictive regression for returns, while the covariance term 

is the unconditional alpha when only the risk premium varies (see eq. 7).  A predictive regression R2 

using monthly returns is typically around 1% or less, so this model suggests that unconditional pricing 

errors will be very close to zero – i.e., divide the implied alphas in Table 1 by 100.  The model is clearly 

special, but it serves to illustrate that time-varying volatility is likely to strengthen our basic conclusion:  

unconditional pricing errors implied by the conditional CAPM are simply too small to explain significant 

asset-pricing anomalies. 

 

3. Testing the conditional CAPM 

 The analysis above relies, in part, on subjective judgments about what constitute ‘reasonable’ 

parameter values.  Some readers will undoubtedly disagree with our assumptions.  Therefore, in the 

remainder of the paper, we estimate some of the parameters and provide a simple direct test of the 

conditional CAPM. 

 
3.1. Methodology 

 The basic framework for our tests is standard.  We focus on time-series CAPM regressions for a 

handful of stock portfolios (described below): 

 Rit = αi + βi RMt + εit, (9) 

where Rit is the excess return on portfolio i and RMt is the excess return on the market.  The CAPM 

predicts, of course, that αi is zero. 

For unconditional tests, we estimate (9) using the full time series of returns for each portfolio, 

restricting αi and βi to be constant.  For conditional tests, a common approach is to model betas as 

functions of observed macroeconomic variables (e.g., Shanken, 1990; Ferson and Schadt, 1996; Lettau 
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and Ludvigson, 2001), but this approach is strictly valid only if the econometrician knows the full set of 

state variables available to investors.  (The same criticism applies to alternative tests proposed in the 

literature; see Cochrane, 2001, for a review.) 

Our tests use a different methodology that does not require conditioning information:  we directly 

estimate conditional alphas and betas using short-window regressions.  That is, rather than estimate (9) 

once, using the full time series of returns, we estimate it separately every, say, quarter using daily or 

weekly returns.  By doing so, we get a direct estimate of each quarter’s conditional alpha and beta.  The 

implicit assumption here is that beta is relatively stable within the quarter, so that each regression can 

simply treat it as constant.  This seems like a fairly mild assumption.  Empirical tests often assume beta is 

stable for five or more years, and studies that allow beta to vary as a function of macroeconomic variables 

typically use very persistent series, like Tbill rates and dividend yield, implying that betas also change 

quite slowly.  For robustness, we estimate regressions over a variety of interval lengths – monthly, 

quarterly, semiannually, and yearly – and using returns measured daily, weekly, or monthly.  Also, we 

pay special attention to problems caused by nonsynchronous prices that might bias the estimates 

(discussed further below). 

The procedure above generates time series of conditional alpha and beta estimates for each 

portfolio.  We use the estimates in two ways.  First, we study the time-series properties of beta and, as 

suggested by Section 2, relate these to the portfolio’s implied unconditional alpha:  we estimate how 

volatile betas are and how they correlate with business conditions and the market risk premium.  Next, we 

directly test whether the average conditional alphas are zero, as implied by the conditional CAPM.  

Neither test requires that conditional alphas and betas are estimated precisely in individual short-window 

regressions.  The fact that each regression uses a relatively small number of data points will not mean that 

our tests have low power. 

 

3.2. Microstructure issues 

 Tests of the CAPM, and other factor models, nearly always use monthly returns.  We use daily or 
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weekly returns because the regressions are estimated over very short windows – quarterly and 

semiannually in most tests.  In principle, betas will be estimated more precisely using higher-frequency 

data, just as Merton (1980) observed for variances.  In practice, using daily and weekly returns creates at 

least two problems. 

 First, ignoring microstructure issues, betas estimated for different return horizons will differ 

slightly because of compounding (Levhari and Levy, 1977; Handa, Kothari, and Wasley, 1989).  Suppose 

that daily returns, Ri, are IID and let compounded N-day returns equal Ri(N) = ∏i(1+Ri) – 1.  The beta for 

compounded returns is 

 N2
M

N2
M

N
M

N
i

N
Mi

i ]R1[E   ])R1[(E
]R1[E]R1[E   )]R1)(R1[(E)N(
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=β . (10) 

Eq. (10) implies that beta depends on the horizon:  βi(N) increases in N if βi(1) > 1 but decreases if βi(1) < 

1 (see Levhari and Levy).  However, this effect is tiny and we ignore it in the remainder of the paper.  For 

example, if the market return has mean 0.5% and standard deviation 5% monthly, then a stock with a 

daily beta of 1.300 would have a monthly beta of 1.302. 

 Second, and more importantly, nonsynchronous prices can have a big impact on short-horizon 

betas.  Lo and MacKinlay (1990) show that small stocks react with a significant (week or more) delay to 

common news, so a daily or weekly beta will miss much of the small stock covariance with market 

returns.  To mitigate the problem, all of our tests use value-weighted portfolios and exclude NASDAQ 

stocks.  Also, following Dimson (1979), we include both current and lagged market returns in the 

regressions, estimating beta as the sum of the slopes on all lags (alpha is still just the intercept).  For daily 

returns, we include four lags of market returns, imposing the constraint that lags 2 – 4 have the same 

slope to reduce the number of parameters: 

 Ri,t = αi + βi0 RM,t + βi1 RM,t-1 + βi2 [(RM,t-2 + RM,t-3 + RM,t-4)/3] + εi,t. (11) 

The daily beta is then βi = βi0 + βi1 + βi2.  (Adding a few more lags does not affect our results.)  For 

weekly returns, we include two lags of market returns: 
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 Ri,t = αi + βi0 RM,t + βi1 RM,t-1 + βi2 RM,t-2 + εi,t, (12) 

where the weekly beta is again βi = βi0 + βi1 + βi2.  To increase precision, we estimate (12) using overlap-

ping returns (i.e., consecutive observations overlap by four days).  Finally, although not the focus of our 

tests, we estimate monthly betas including one lag of market returns: 

 Ri,t = αi + βi0 RM,t + βi1 RM,t-1 + εi,t, (13) 

where the monthly beta is βi = βi0 + βi1.  As discussed below, Dimson betas are not a perfect solution, but 

our results do not seem to be driven by measurement problems.  Indeed, unconditional alphas estimated 

by (11) – (13) are nearly identical for our test portfolios. 

 

3.3. The data 

The tests use returns on size, B/M, and momentum portfolios from July 1964 – June 2001.  Prices 

and returns come from the CRSP daily stock file, while book values come from the merged CRSP / 

Compustat database.  The portfolios are value-weighted and contain only NYSE and Amex stocks, exclu-

ding ADRs, REITs, and primes and scores. 

The size and B/M portfolios are similar to those of Fama and French (1993).  In June of every year, 

we form 25 size-B/M portfolios based on the intersection of five size and five B/M portfolios, with 

breakpoints given by NYSE quintiles.  Size is the market value of equity at the end of June, while B/M is 

the ratio of book equity in the prior fiscal year (common equity plus balance sheet deferred taxes) to 

market equity at the end of December.  Our tests are then based on six combinations of the 25 size-B/M 

portfolios:  ‘Small’ is the average of the five portfolios in the lowest size quintile, ‘Big’ is the average of 

the five portfolios in the highest size quintile, and ‘S-B’ is their difference.  Similarly, ‘Growth’ is the 

average of the five portfolios in the low-B/M quintile, ‘Value’ is the average of the five portfolios in the 

high-B/M quintile, and ‘V-G’ is their difference.  Our ‘S-B’ and ‘V-G’ portfolios are much like Fama and 

French’s SMB and HML factors, except that we exclude NASDAQ stocks and start with 25 basis 

portfolios (rather than six). 
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The momentum portfolios are constructed separately using all stocks on CRSP with the required 

data (i.e., not restricted to Compustat firms).  We sort stocks every month into deciles based on past 6-

month returns and hold the portfolios for overlapping 6-month periods, as in Jegadeesh and Titman 

(1993).  (This means, in effect, that one-sixth of each portfolio is rebalanced every month.)  Again, the 

tests focus on a subset of the 10 portfolios:  ‘Losers’ is the return on the bottom decile, ‘Winners’ is the 

return of the top decile, and ‘W-L’ is their difference. 

The tests use returns compounded over three horizons:  daily, weekly, and monthly.  Weekly 

returns are calculated by compounding daily returns over five-day intervals.  (For long-short strategies, 

we compound each side of the strategy and then difference.)  We use five-day windows, not calendar 

weeks, in part because they are easily aligned with calendar quarters and in part because the changing 

number of trading days in a week (sometimes as few as three) would complicate some of the tests.  For 

simplicity, we refer to the series simply as ‘weekly’ returns.  Monthly returns are calculated in the 

standard way, compounding within calendar months. 

Our market proxy is the excess return on the CRSP value-weighted index (all stocks), compounded 

weekly and monthly in the same manner as the other portfolios.  The tests use excess returns on all 

portfolios, net of the one-month Treasury Bill rate. 

To set the stage, Table 2 reports summary statistics for the size, B/M, and momentum portfolios 

from 1964 – 2001.  Panel A shows average excess returns measured daily, weekly, and monthly.  The 

estimates are all expressed in percent monthly; the daily estimates are multiplied by 21 (trading days per 

month) and the weekly estimates are multiplied by 21/5.  Average returns exhibit the usual cross-sectional 

patterns:  small stocks outperform large stocks (0.71% vs. 0.50% using monthly returns), high-B/M 

stocks outperform low-B/M stocks (0.88% vs. 0.41%), and winners outperform losers (0.91% vs. 0.01%).  

Estimates of average returns are always lowest using daily returns and highest using monthly returns.  A 

very small portion of this pattern could be attributed to compounding, but it more likely reflects positive 

autocorrelation in daily returns.  In particular, if daily returns are IID, monthly expected returns would be 

µmon = E[∏i(1+Ri)] – 1 = (1 + µday)21 – 1, essentially identical to 21 × µday.  However, the expected 
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compounded return is higher if daily returns are positively autocorrelated (i.e., the expectation in the last 

sentence would have additional covariance terms).  This argument likely explains why average daily and 

monthly returns are most different for small stocks. 

Table 2 
Summary statistics for size, B/M, and momentum portfolios, 1964 – 2001 
The table reports average returns and unconditional CAPM regressions for size, B/M, and momentum portfolios. 
The estimates are obtained three ways, using daily, weekly, or monthly returns.  Alphas and betas are adjusted for 
non-synchronous trading as described in the text.  Average returns and alphas are expressed in percent monthly; the 
daily estimates are multiplied by 21 (trading days per month) and the weekly estimates are multiplied by 21/5.  The 
portfolios are formed using all NYSE and Amex stocks on CRSP/Compustat.  We begin with 25 size-B/M portfolios 
and 10 return-sorted portfolios, all value weighted.  The size-B/M portfolios are formed from the intersection of five 
size (market equity) and five B/M (book equity divided by market equity) portfolios, with breakpoints determined 
by NYSE quintiles.  ‘Small’ is the average of the five low-market-cap portfolios, ‘Big’ is the average of the five 
high-market-cap portfolios, and ‘S-B’ is their difference.  ‘Growth’ is the average of the five low-B/M portfolios, 
‘Value’ is the average of the five high-B/M portfolios, and ‘V-G’ is their difference.  The return-sorted portfolios are 
formed independently by ranking stocks based on past 6-month returns.  ‘Losers’ is the bottom decile, ‘Winners’ is 
the top decile, and ‘W-L’ is their difference. 

  Size  B/M  Momentum 

  Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Excess returns 
Avg. Day 0.57 0.49 0.08  0.32 0.81 0.49  -0.10 0.87 0.97
 Wk 0.63 0.50 0.13 0.37 0.84 0.47 -0.04 0.91 0.95
 Month 0.71 0.50 0.21 0.41 0.88 0.47 0.01 0.91 0.90
     
Std error Day 0.28 0.20 0.19 0.27 0.23 0.13 0.33 0.28 0.26
 Wk 0.26 0.18 0.18 0.26 0.22 0.12 0.30 0.26 0.25
 Month 0.34 0.19 0.23 0.30 0.26 0.16 0.35 0.28 0.27
      
Panel B: Unconditional alphas 
Est. Day 0.09 0.10 -0.01 -0.21 0.39 0.60 -0.64 0.35 0.99
 Wk 0.05 0.10 -0.05 -0.22 0.37 0.59 -0.66 0.37 1.03
 Month 0.07 0.11 -0.03 -0.20 0.39 0.59 -0.63 0.38 1.01
     
Std error Day 0.15 0.06 0.17 0.10 0.12 0.12 0.18 0.13 0.26
 Wk 0.14 0.06 0.16 0.09 0.11 0.11 0.17 0.12 0.25
 Month 0.18 0.07 0.20 0.11 0.13 0.14 0.19 0.13 0.28
      
Panel C: Unconditional betas 
Est. Day 1.07 0.87 0.20 1.18 0.94 -0.25 1.22 1.17 -0.06
 Wk 1.25 0.86 0.39 1.27 1.03 -0.24 1.33 1.16 -0.17
 Month 1.34 0.83 0.51 1.30 1.05 -0.25 1.36 1.14 -0.22
      
Std error Day 0.03 0.01 0.03 0.02 0.03 0.02 0.03 0.02 0.05
 Wk 0.03 0.01 0.04 0.02 0.03 0.03 0.04 0.03 0.06
 Month 0.05 0.02 0.06  0.03 0.04 0.04  0.06 0.04 0.08

 



 18

Panel B show unconditional alphas for the portfolios (percent monthly).  The estimates are remark-

ably similar for the three return horizons.  Focusing on the long-short portfolios, S-B has a daily alpha of 

–0.01% and a monthly alpha of –0.03%, V-G has a daily alpha of 0.60% and a monthly alpha of 0.59%, 

and W-L has a daily alpha of 0.99% and a monthly alpha of 1.01%.  Thus, after adjusting for risk, the size 

effect is absent in our data but the B/M and momentum effects are strong (using monthly returns, the 

latter two are about 4 standard errors from zero). 

The contrast between Panels A and B is interesting:  excess returns increase with the return horizon 

but alphas do not.  The betas in Panel C show why:  betas increase, roughly speaking, at the same rate as 

excess returns, so the net effect is that alphas are constant across horizons (i.e., αi = E[Ri] – βi E[RM] is 

fairly constant).  Thus, nonsynchronous prices have important effects on excess returns and betas but has 

little impact on tests of the CAPM for our portfolios.  In general, betas tend to increase modestly with the 

return horizon, except for small stocks where the effect is stronger.  Focusing on the long-short portfolios, 

S-B has a daily beta of 1.07 and a monthly beta of 1.34, V-G has both daily and monthly betas of –0.25, 

and W-L has a daily beta of –0.06 and a monthly beta of –0.22.  (Weekly betas tend to be close to 

monthly betas.)  Nonsynchronous prices have almost no impact on the long-short B/M strategy and only a 

small impact on the momentum strategy. 

 

4. Empirical results 

 We now turn to the main empirical results.  The analysis in Section 2 showed that, if the 

conditional CAPM holds, time-variation in betas should explain assets’ unconditional alphas.  Thus, we 

begin by studying the time-series properties of beta, which should be of interest beyond their implications 

for the conditional CAPM (see, e.g., Franzoni, 2002).  We then provide a direct test of the CAPM, asking 

whether conditional alphas are zero. 

 The main inputs for the empirical tests are the time series of conditional alpha and beta estimates 

from the short-window regressions (see Section 3).  We have explored a variety of window lengths and 

return horizons, but the tests focus on alphas and betas estimated four ways:  (i) quarterly using daily 
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returns; (ii) semiannually using both daily (Semiannual 1) and weekly (Semiannual 2) returns; and (iii) 

annually using monthly returns.  The estimates are corrected for nonsynchronous trading using the 

methodology in Section 3.2. 

 

4.1. Time-variation in betas 

 Table 3 reports summary statistics for the conditional betas, and Figure 2 plots the time series of 

Semiannual 1 estimates (based on daily returns) for the three long-short strategies.  The key message is 

that betas vary considerably over time.  Much of the variability seems to be due to changes in true 

conditional betas, not estimation error. 

Average betas, in panel A of Table 3, are generally close to the unconditional betas in Table 2.  

Except for small stocks, they are similar for the different estimation methods.  Focusing on betas 

estimated semiannually from weekly returns, S-B has an average conditional beta of 0.32 (vs. an uncondi-

tional beta of 0.39), V-G has an average beta of –0.19 (vs. an unconditional beta of –0.24), and W-L has 

an average beta of –0.14 (vs. an unconditional beta of –0.17). 

 More importantly, Panels C and D and Figure 2 indicate that betas fluctuate significantly over time.  

Panel C shows that, except for the Big and Growth portfolios, the standard deviation of estimated betas is 

typically greater than 0.30 and, for momentum portfolios, often higher than 0.40.  Of course, some of the 

variability is due to sampling error, so we focus more on the implied variability of true betas.  

Specifically, we can think of the estimated betas as bt = βt + et, where βt is the true conditional beta and et 

is sampling error.  As long as the short-window regressions satisfy standard OLS assumptions, βt and et 

will be uncorrelated, so: 

 var(bt) = var(βt) + var(et), (14) 

where var(bt) is the variance of estimated betas and var(et) is the average squared standard error from the 

regressions (see Fama and French, 1997).  We solve (14) for var(βt) to obtain the implied variability of 

true betas, reported in Panel D. 

The volatility of betas remains substantial even after removing sampling error.  Focusing on the  
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 Table 3 
Time-variation in betas, 1964 – 2001 

The table reports summary statistics for the conditional betas of size, B/M, and momentum portfolios.  Betas are 
estimated quarterly using daily returns, semiannually using daily and weekly returns, and annually using monthly 
returns.  They are adjusted for non-synchronous trading as described in the text.  The table reports the time-series 
mean and standard deviation of the beta estimates (Panels A and C), the average standard error of beta from the 
short-window regressions (Panel B), and the implied time-series standard deviation of true betas (Panel D).  The 
portfolios are formed using all NYSE and Amex stocks on CRSP/Compustat.  We begin with 25 size-B/M portfolios 
and 10 return-sorted portfolios, all value weighted.  The size-B/M portfolios are formed from the intersection of five 
size (market value of equity) and five B/M (book equity divided by market equity) portfolios, with breakpoints 
given by NYSE quintiles.  ‘Small’ is the average of the five small portfolios, ‘Big’ is the average of the five large 
portfolios, and ‘S-B’ is their difference.  Similarly, ‘Growth’ is the average of the five low-B/M portfolios, ‘Value’ 
is the average of the five high-B/M portfolios, and ‘V-G’ is their difference.  The return-sorted portfolios are formed 
independently by ranking stocks based on past 6-month returns.  ‘Losers’ is the bottom decile, ‘Winners’ is the top 
decile, and ‘W-L’ is their difference. 

 Size  B/M  Momentum 

 Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Average betas 
Quarterly a 1.03 0.93 0.10 1.17 0.98 -0.19 1.19 1.24 0.05
Semiannual 1 1.07 0.93 0.14 1.19 0.99 -0.20 1.20 1.24 0.05
Semiannual 2 1.23 0.91 0.32 1.25 1.06 -0.19 1.33 1.19 -0.14
Annual 1.49 0.83 0.66 1.36 1.17 -0.19 1.38 1.24 -0.14
    
Panel B: Average std error 

b 

Quarterly 0.13 0.06 0.17 0.10 0.10 0.12 0.17 0.14 0.24
Semiannual 1 0.09 0.04 0.12 0.07 0.07 0.08 0.12 0.09 0.17
Semiannual 2 0.16 0.07 0.20 0.11 0.12 0.14 0.20 0.15 0.29
Annual 0.36 0.13 0.42 0.22 0.24 0.30 0.40 0.28 0.57
    
Panel C: Std deviation of estimated betas 
Quarterly 0.35 0.15 0.38 0.22 0.30 0.28 0.41 0.37 0.68
Semiannual 1 0.31 0.13 0.32 0.19 0.29 0.25 0.33 0.32 0.58
Semiannual 2 0.35 0.13 0.38 0.20 0.33 0.33 0.44 0.36 0.71
Annual 0.54 0.14 0.56 0.27 0.46 0.41 0.52 0.44 0.83
    
Panel D: Implied std deviation of true betas 

c 

Quarterly 0.32 0.13 0.33  0.19 0.28 0.25  0.36 0.33 0.63
Semiannual 1 0.29 0.12 0.30  0.18 0.28 0.24  0.30 0.30 0.55
Semiannual 2 0.31 0.10 0.32  0.16 0.31 0.29  0.36 0.32 0.62
Annual 0.35 -- 0.25  0.04 0.37 0.19  0.19 0.29 0.52

 
a Quarterly and Semiannual 1 betas are estimated from daily returns, Semiannual 2 betas are estimated from weekly 
returns, and Annual betas are estimated from monthly returns. 
b Average standard error from the quarterly, semi-annual, or annual regressions, not the standard error of the average. 

c The implied variance of true betas equals var(bt) – var (et), the difference between the variance of estimated betas and the 
average variance of the sampling error in bt (from the regressions).  The standard deviation is undefined for Big using 
annual windows / monthly returns because the implied variance is negative. 
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Figure 2 
Conditional betas, 1964 – 2001 
The figure plots conditional betas for size, B/M, and momentum portfolios.  The dark line is the point estimate and 
the light lines indicate a two-standard-deviation confidence interval.  Betas are estimated semiannually (non-
overlapping windows) using daily returns.  The notation .1 and .2 denote the first and second halves of the year.  The 
portfolios are formed using all NYSE and Amex stocks on CRSP/Compustat.  We begin with 25 size-B/M portfolios 
and 10 return-sorted portfolios, all value weighted.  The size-B/M portfolios are formed from the intersection of five 
size (market equity) and five B/M (book equity divided by market equity) portfolios, with breakpoints given by 
NYSE quintiles.  ‘Small’ is the average of the five small portfolios and ‘Big’ is the average of the five large 
portfolios.  Similarly, ‘Growth’ is the average of the five low-B/M portfolios and ‘Value’ is the average of the five 
high-B/M portfolios.  The return-sorted portfolios are formed by ranking stocks based on past 6-month returns.  
‘Losers’ is the bottom decile and ‘Winners’ is the top decile. 
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long-short strategies, S-B’s beta has a standard deviation around 0.30, V-G’s beta has a standard deviation 

around 0.25, and W-L’s beta has a standard deviation around 0.60.  These estimates are economically 

large and reveal striking time-heterogeneity in the portfolios (see also Franzoni, 2002).  The fluctuations 

can be seen most easily in Figure 2.  In particular, S-B’s beta varies from a high of 1.02 (t-statistic, 7.22) 

in 1966 to a low of –0.64 (t-statistic, –5.51) in 1989.  The B/M strategy’s beta reaches a maximum of 0.54 

(t-statistic, 5.13) in 1976 before falling to a minimum of –0.99 (t-statistic, –11.39) just six years later.  

The momentum strategy’s beta is the most volatile, which is not surprising given that the strategy almost 

certainly has the highest turnover.  Figure 2 shows that W-L’s beta varies from a high of 2.25 (t-statistic, 

8.98) to a low of –1.51 (t-statistic, –4.47). 

In Section 2, we showed that if the conditional CAPM holds and market volatility is constant (or 

uncorrelated with beta), a portfolio’s unconditional alpha is approximately equal to cov(βt, γt) = ρ σβ σγ, 

where γt is the market risk premium.  At the time, we considered values of σβ ranging from 0.3 to 0.7 to 

illustrate that implied alphas are relatively small for ‘plausible’ parameters (see Table 1).  This range 

seems reasonable given the results in Table 3. 

The time-series plots show that betas sometimes change considerably from one year to the next but, 

in general, exhibit a fair degree of persistence.  Table 4 looks more carefully at time-variation in betas, 

exploring the persistence of beta and the correlation between beta and several commonly used state 

variables.  The state variables are lagged relative to beta (i.e., known prior to the beta estimation window), 

so the correlations are predictive.  RM,-6 is the past 6-month return on the market portfolio (the six month 

period matches the formation period for momentum portfolios); TBILL is the one-month Tbill rate; DY is 

the annual dividend yield on the value-weighted NYSE index, measured over rolling 12-month windows; 

TERM is the yield spread between 10-year and 1-year Tbonds; and CAY is the consumption to wealth 

ratio of Lettau and Ludvigson (2001), which roughly measures whether stock prices are high or low 

relative to aggregate consumption (see their paper for details).  The portfolios’ lagged betas, βt-1, are 

included to test for persistence.  In Table 4, we focus on betas estimated semiannually using daily returns, 
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the same as those used in Figure 2. 

Panel A reports the correlation between betas and the state variables.  The first row shows that 

betas are persistent but that autocorrelations are far from one.  The autocorrelations are between 0.45 and 

0.68 for most of the raw portfolios and a bit lower, between 0.37 and 0.51, for the long-short strategies.5  

Momentum portfolios have the least persistent betas, again, presumably reflecting the high turnover of the 

portfolios.  Momentum betas are also highly correlated with past market returns.  Winner betas increase 

(correlation of 0.47) and Loser betas decrease (correlation of –0.53) after the market does well.  This 

pattern is intuitive:  we would expect that the Winner portfolio becomes weighted towards high-beta 

stocks when the market goes up, since those stocks tend to perform well (Ball, Kothari, and Shanken, 

1995; Grundy and Martin, 2001). 

Panel B studies the joint explanatory power of our business-condition proxies.  For the regressions, 

the state variables (including lagged betas) are scaled by their standard deviations, so the slopes can be 

interpreted as the change in beta predicted by a one-standard-deviation change in the state variable. 

The results indicate that betas vary significantly over the business cycle.  The slopes on TBILL, 

DY, and TERM are significant for many portfolios, while RM,-6 is significant only for the momentum 

portfolios (as discussed above).  Small, Value, and Winner stocks tend to have high betas when Tbill rates 

and the term spread are low (t-statistics ranging from –2.40 to –3.41) and when DY is high (t-statistics 

between 2.82 and 3.64).  Economically, the slopes are quite large.  A one-standard-deviation increase in 

TBILL or TERM is associated with a –0.08 to –0.14 drop in the portfolios’ betas, while a one-standard-

deviation increase in DY is associated with a 0.11 to 0.16 rise in the portfolios’ betas.  DY is also 

positively related to Big and Growth beta but the relations are weaker (slopes of 0.05 and 0.06, 

respectively).  The connection between past market returns and momentum betas is also quite strong.  For  

                                                      
5 Under the null that the autocorrelations are zero, the standard error of the estimates is roughly 1/ T  = 0.116, 

where T is 74 semiannual periods.  Note, also, that sampling error in estimated betas would tend to push the 
autocorrelations toward zero.  Specifically, if sampling error is serially uncorrelated (as implied by OLS) and 
unrelated to future betas, then the autocorrelation of estimated betas (bt) equals the autocorrelation of true betas (βt) 
multiplied by var(βt) / var(bt) < 1.  Comparing the Semiannual 1 variances in Panels C and D of Table 3, the 
attenuation bias is small for our data. 
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 Table 4 
Predicting conditional betas, 1964 – 2001 

The table reports the correlation between state variables and the conditional betas of size, B/M, and momentum 
portfolios.  Betas are estimated semiannually using daily returns.  The state variables are lagged relative to the beta 
estimates.  βt-1 is the portfolio’s lagged beta; RM,-6 is the past 6-month market return; TBILL is the one-month Tbill 
rate; DY is the log dividend yield on the value-weighted NYSE index; TERM is the yield spread between 10-year 
and 1-year Tbonds; CAY is the consumption to wealth ratio of Lettau and Ludvigson (2001).  Panel A reports 
simple correlations between estimated conditional betas and the state variables, and Panel B reports slope estimates 
when betas are regressed on all of the state variables together.  The portfolios are formed using all NYSE and Amex 
stocks on CRSP/Compustat.  We begin with 25 size-B/M portfolios and 10 return-sorted portfolios, all value 
weighted.  The size-B/M portfolios are formed from the intersection of five size (market value of equity) and five 
B/M (book equity divided by market equity) portfolios, with breakpoints given by NYSE quintiles.  ‘Small’ is the 
average of the five small portfolios, ‘Big’ is the average of the five large portfolios, and ‘S-B’ is their difference. 
Similarly, ‘Growth’ is the average of the five low-B/M portfolios, ‘Value’ is the average of the five high-B/M 
portfolios, and ‘V-G’ is their difference.  The return-sorted portfolios are formed independently by ranking stocks 
based on past 6-month returns.  ‘Losers’ is the bottom decile, ‘Winners’ is the top decile, and ‘W-L’ is their 
difference. 

 Size  B/M  Momentum 
 Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Correlation between betas and state variables 

βt-1 0.55 0.68 0.43  0.58 0.67 0.51  0.30 0.45 0.37
RM,-6 -0.05 -0.01 -0.05 -0.18 0.00 0.14 -0.53 0.47 0.56
TBILL -0.04 0.11 -0.08 0.15 -0.12 -0.25 0.14 -0.25 -0.21
DY 0.22 0.64 -0.04 0.37 0.40 0.18 0.13 -0.12 -0.14
TERM -0.20 0.19 -0.27 -0.12 0.01 0.10 -0.01 -0.08 -0.04
CAY -0.12 0.50 -0.31 -0.01 0.17 0.20 0.09 -0.09 -0.10
     
Panel B: Betas regressed on the state variables 

a 

Slope estimate 
βt-1 0.12 0.05 0.11 0.10 0.12 0.08 0.10 0.15 0.22
RM,-6 0.05 -0.01 0.04 0.02 0.04 0.04 -0.19 0.20 0.39
TBILL -0.13 -0.02 -0.11 -0.03 -0.14 -0.13 0.09 -0.14 -0.24
DY 0.14 0.05 0.09 0.06 0.16 0.10 -0.07 0.11 0.19
TERM -0.10 0.00 -0.10 -0.02 -0.08 -0.07 0.07 -0.11 -0.19
CAY -0.05 0.02 -0.08 -0.03 -0.01 0.03 0.00 -0.01 -0.01

t-statistic 
βt-1 3.53 3.99 2.83 4.24 3.88 2.62 3.03 5.31 4.49
RM,-6 1.52 -0.45 1.17 0.73 1.58 1.41 -5.63 7.25 7.63
TBILL -2.56 -1.39 -2.09 -1.06 -3.19 -2.98 1.79 -3.41 -3.22
DY 2.82 3.05 1.74 2.10 3.64 2.65 -1.50 2.87 2.65
TERM -2.40 -0.25 -2.21 -0.81 -2.40 -1.99 1.60 -3.07 -2.81
CAY -1.32 1.86 -1.81 -1.34 -0.17 0.98 0.07 -0.22 -0.13
      
Adj R2 0.37 0.60 0.26  0.34 0.52 0.32  0.35 0.56 0.53
 
a The state variables – including lagged beta – are scaled by their standard deviations.  The slopes can be interpreted as the 
predicted change in beta associated with a one-standard-deviation change in the state variable.  Bold denotes estimates 
greater than 1.99 standard errors from zero. 
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the long-short portfolio, W-L, beta increases by 0.39 if past 6-month market returns are one-standard-

deviation above average. 

It is interesting to note that CAY, the consumption-to-wealth ratio of Lettau and Ludvigson (2001), 

shows little relation to betas.  Lettau and Ludvigson suggest that CAY captures important information 

about the market and consumption betas of value stocks.  The correlations in Panel A provide some 

evidence that CAY is positively related to Value betas (correlation of 0.17), but the regression slopes in 

Panel B are close to zero for all portfolios. 

 In summary, Tables 3 and 4 show that size, B/M, and momentum betas vary considerably over 

time.  Betas are somewhat persistent but exhibit remarkably large, high-frequency fluctuations.  (As a 

benchmark, our non-return state variables are generally much more persistent, with semiannual 

autocorrelations ranging from 0.64 to 0.97.)  Betas also fluctuate with state variables that prior research 

shows capture information about business conditions and, to some extent, the market risk premium (e.g., 

Fama and Schwert, 1977; Fama and French, 1989). 

 

4.2. Beta and the market risk premium 

It is useful to return now to the analysis in Section 2.  If the conditional CAPM holds and market 

volatility is constant, a portfolio’s unconditional alpha is approximately equal to cov(βt, γt), where γt is the 

risk premium.  Table 4 provides indirect evidence that betas might, indeed, covary with the risk premium, 

suggesting that time-variation in betas could help explain the unconditional alphas of size, B/M, and 

momentum portfolios.  We have argued that cov(βt, γt) is likely to be small, but that conclusion relies on 

our guess about plausible variation in γt.  In this section, we directly estimate the covariance between 

betas and the market risk premium. 

We consider two ways of estimating cov(βt, γt).  Our first estimate is simply cov(bt, RMt), where we 

have replaced the true conditional beta with our estimate, bt, and have replaced the risk premium with the 

realized market return, RMt.  The logic here is that, under the assumptions of OLS, sampling error in beta 

should be uncorrelated with market returns, so the covariance between bt and RMt provides an unbiased 
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estimate of cov(βt, γt): 

 cov(bt, RMt) = cov(βt + et, γt + st) = cov(βt, γt), (15) 

which uses the fact that st must be uncorrelated with βt.  Eq. (15) is necessarily true if returns are 

conditionally normally distributed, but it does not have to hold for alternative (nonlinear) distributions.  

For example, Ang and Chen (2002) show that stocks covary more strongly in down markets, suggesting 

that, for some stocks, et and st will be negatively correlated.  (This problem is likely to be more severe for 

shorter estimation windows, in which a few large returns can have a big impact on the estimates.)  

Therefore, this first estimator should be interpreted with caution; we report it primarily as a benchmark 

rather than as an perfect estimate of cov(βt, γt). 

 Our second estimate uses the predictive regressions described above (in Table 4).  In particular, the 

estimator is given by cov( *
tb , RMt), where *

tb  is the fitted value from the regression of bt on the state 

variables and its own lag.  Because the predictor variables are all known at the beginning of the period, it 

must be the case that 

 cov( *
tb , RMt) = cov( *

tb , γt). (16) 

The estimator will equal cov(βt, γt) if the error in *
tb  is uncorrelated with the market risk premium, i.e., if 

cov(γt, βt – *
tb ) = 0.  This requires that the state variables do a good job capturing either time-variation in 

the risk premium or time-variation in betas (one is necessary, not both).  Thus, unlike elsewhere in the 

paper, this test depends on whether we know the ‘right’ state variables.  Table 4 shows that the 

instruments do capture a significant fraction of movements in betas – the regression R2 range from 0.26 to 

0.60 – but there clearly remains a large component unexplained.  Thus, we again interpret the results with 

caution, although we have no particular reason to believe that the unexplained component of beta is 

correlated with γt.6 

                                                      
6 The fitted value bt

* comes from a first-stage regression of bt on the state variables.  The results are identical if 
we reverse the procedure, first regressing RMt on the state variables and then using the fitted (expected) returns to 
estimate the covariance with bt. 
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 Table 5 reports estimates for the size, B/M, and momentum portfolios.  To calculate the 

covariances, market returns are expressed in percent monthly, so the numbers can be interpreted as the 

unconditional monthly alphas implied by the conditional CAPM under the assumption that market 

volatility is constant (i.e., αu ≈ cov(βt, γt)).7 

 Panel A shows results for the first estimator, equal to the covariance between estimated betas and 

contemporaneous market returns.  The results provide no evidence that time-varying betas can salvage the 

CAPM:  the implied alphas are either close to zero or have the wrong sign.  Small, Growth, and Winner 

betas all covary negatively with market returns, with estimates ranging from –0.07% to –0.32% for 

quarterly and semiannual estimates of beta (the covariances for annual betas are close to zero).  Large-

stock betas, in contrast, covary positively with market returns, but the estimates are economically small 

(0.07%).  For the long-short portfolios, S-B and W-L betas are higher in down markets, while V-G betas 

show little relation to market returns.  Thus, Panel A provides no evidence that conditional betas covary 

with the risk premium in a way that can explain the unconditional alphas observed for B/M and 

momentum portfolios. 

Again, we caution that the estimates in Panel A likely reflect correlation between sampling error in 

bt and unexpected market returns.  Our second estimator, in Panel B, gets around this problem.  It equals 

the covariance between predicted betas and market returns, which will be a better estimator if our state 

variables do a good job capturing time-variation in beta or time-variation in the market risk premium.  

The estimates in Panel B are almost always closer to zero than those in Panel A, but the covariances 

typically have the same sign.  Focusing on the long-short portfolios, S-B’s and W-L’s predicted betas still 

covary negatively with market returns, but now only the estimate for the size strategy is significant.  The 

quarterly and semiannual estimates are between –0.05% and –0.14%.  The B/M portfolios’ predicted 

betas show no relation to market returns, with estimates between –0.02% and 0.03% (standard errors of 

                                                      
7 Standard errors are obtained by regressing market returns on estimated betas (Panel A) or predicted betas (Panel 

B), scaling the independent variable so that the slope equals a simple covariance (i.e., dividing by the variance of the 
independent variable).  Implicitly, then, the standard errors in Table 5 condition on the sample variance of estimated 
or predicted betas. 
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0.02% to 0.05%). 

In short, although betas vary considerably over time, they do not seem to covary strongly with the 

market risk premium.  As a result, unconditional pricing errors implied by the conditional CAPM are 

much smaller that those actually observed for B/M and momentum portfolios.  Using the estimates in 

Panel B, the conditional CAPM predicts that V-G should have an unconditional alpha of 0.01%, a tiny 

fraction of the actual alpha, 0.59% (see Table 2).  W-L should have an alpha of –0.12%, small and 

Table 5 
Conditional betas and the market risk premium, 1964 – 2001 
The table reports the covariance between market returns and the conditional betas on size, B/M, and momentum portfolios. 
Betas are estimated quarterly using daily returns, semiannually using daily and weekly returns, and annually using 
monthly returns.  The market portfolio is the CRSP value-weighted index.  Excess returns on the index are measured over 
the same window as betas (e.g., quarterly betas covary with quarterly returns), but the numbers are all expressed in percent 
monthly (e.g., the quarterly covariance is divided by 3).  Panel A reports the market’s covariance with contemporaneously 
estimated betas and Panel B reports the market’s covariance with predicted betas, taken from the regression of estimated 
betas on lagged state variables (see Table 4).  The size, B/M, and momentum portfolios are formed using all NYSE and 
Amex stocks on CRSP/Compustat. 

  Size  B/M  Momentum 

  Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Covariance between estimated betas and market returns a 

Est. Qtr -0.32 0.07 -0.39  -0.20 -0.12 0.09  0.16 -0.23 -0.38
 Semi 1 -0.17 0.07 -0.24 -0.14 -0.03 0.11 -0.03 -0.07 -0.04
 Semi 2 -0.12 0.07 -0.19 -0.10 -0.03 0.07 0.15 -0.18 -0.33
 Annual 0.06 0.03 0.03 -0.03 0.01 0.04 -0.08 0.11 0.20
     
Std err. Qtr 0.08 0.03 0.08 0.05 0.07 0.06 0.09 0.08 0.16
 Semi 1 0.07 0.03 0.07 0.04 0.07 0.06 0.08 0.07 0.13
 Semi 2 0.08 0.03 0.08 0.04 0.08 0.07 0.10 0.08 0.15
 Annual 0.12 0.03 0.13 0.06 0.10 0.09 0.12 0.10 0.19
      
Panel B: Covariance between predicted betas and market returns 

Est. Qtr -0.06 0.04 -0.09 -0.01 -0.02 0.02 0.06 -0.05 -0.12
 Semi 1 -0.07 0.03 -0.10 -0.02 -0.02 0.01 0.05 -0.07 -0.12
 Semi 2 -0.04 0.02 -0.05 0.00 -0.01 0.00 0.07 -0.08 -0.14
 Annual 0.03 0.01 0.02 0.00 0.01 0.03 0.05 -0.03 -0.08
    
Std err. Qtr 0.04 0.02 0.04 0.03 0.05 0.04 0.05 0.06 0.10
 Semi 1 0.05 0.02 0.04 0.03 0.05 0.04 0.05 0.06 0.10
 Semi 2 0.04 0.02 0.03 0.02 0.05 0.04 0.06 0.05 0.10
 Annual 0.05 0.02 0.05  0.03 0.06 0.04  0.06 0.05 0.09
 
a Quarterly and Semiannual 1 betas are estimated from daily returns, Semiannual 2 betas are estimated from weekly 
returns, and Annual betas are estimated from monthly returns. 

 



 29

opposite in sign to the actual alpha, 1.03%.  Thus, time-variation in beta does not seem to explain 

deviations from the unconditional CAPM. 

 

4.3. Beta and market volatility 

The results above focus on the covariance between beta and the market risk premium.  In Section 2, 

we showed that covariance with market volatility could also be important.  With time-varying volatility, 

the unconditional alpha is (eq. 6): 

 αu ≈ ),cov(),cov( 2
tt2

M
tt σβ

σ
γ

−γβ . (17) 

In untabulated results, we find that the last term in (17), which captures the impact of time-varying 

volatility, is economically quite small.  To estimate ),cov( 2
tt σβ , we calculate conditional market volatility 

much like we do betas, using daily, weekly or monthly returns over short windows.  (The estimate 

includes an autocorrelation adjustment following the approach of French, Schwert, and Stambaugh, 1987; 

we use de-meaned returns to calculate variance, while they use raw returns, but the methodology is 

otherwise similar.)  We then estimate the covariance between market volatility and both estimated and 

predicted betas, just as we did with realized market returns in Section 4.2.  From 1964 – 2001, the 

estimates of ),cov( 2
tt σβ  are between -0.02 and 0.02 for every portfolio (percent monthly; standard errors 

of 0.01 – 0.02).  Multiplying by γ / 2
Mσ  = (0.0047 / 0.0452) = 2.32, the covariance between betas and 

market volatility has an economically small impact on the unconditional alpha, at most +/−0.05% 

monthly.  Thus, accounting for time-varying market volatility does little to improve the performance of 

the conditional CAPM. 

 

4.4. Conditional alphas 

The tests above show that the unconditional alphas of B/M and momentum portfolios are 

inconsistent with the conditional CAPM.  We now directly test whether conditional alphas are zero.  

Unlike prior tests in the literature, our short-horizon regressions allow us to test the conditional CAPM 
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without knowing the right state variables, so long as betas are relatively stable within the estimation 

window (quarterly or semiannually). 

Table 6 reports average conditional alphas for the portfolios.  Except for small stocks, the estimates 

are close to the unconditional alphas in Table 2 and provide strong evidence against the conditional 

CAPM.  V-G’s and W-L’s average alphas are economically large and statistically significant.  Depending 

on the estimation method, V-G’s average conditional alpha is between 0.47% and 0.53% (t-statistics of 

3.05 to 3.65), compared with an unconditional alpha around 0.59%.  W-L’s average alpha shows more 

dispersion, ranging from 0.77% to 1.37% (t-statistics of 2.66 to 5.12), but the estimates are in line with an 

unconditional alpha of about 1.00%.  In short, the conditional CAPM performs about as poorly as the 

unconditional CAPM. 

The alpha estimates are consistent with our analysis in Table 5.  In that table, we show how time-

varying betas would affect unconditional alphas if market volatility is constant.  In fact, the estimates in 

Table 6 
Average conditional alphas, 1964 – 2001 

The table reports average conditional alphas for size, B/M, and momentum portfolios (monthly, in percent).  Alphas 
are estimated quarterly using daily returns, semiannually using daily and weekly returns, and annually using 
monthly returns.  The portfolios are formed using all NYSE and Amex stocks on CRSP/ Compustat.  Bold denotes 
estimates greater than two standard errors from zero. 

 Size  B/M  Momentum 

 Small Big S-B Grwth Value V-G Losers Winrs W-L

Average conditional alpha (%) 
Quarterly a 0.42 0.00 0.42 -0.01 0.49 0.50 -0.79 0.55 1.33
Semiannual 1 0.26 0.00 0.26 -0.08 0.40 0.47 -0.61 0.39 0.99
Semiannual 2 0.16 0.01 0.15 -0.12 0.36 0.48 -0.83 0.53 1.37
Annual -0.06 0.08 -0.14 -0.20 0.32 0.53 -0.56 0.21 0.77
    
Standard error 

Quarterly 0.20 0.06 0.22  0.12 0.14 0.14  0.20 0.13 0.26
Semiannual 1 0.21 0.06 0.23  0.12 0.14 0.15  0.19 0.14 0.25
Semiannual 2 0.21 0.06 0.23  0.14 0.15 0.16  0.20 0.15 0.27
Annual 0.26 0.07 0.29  0.16 0.17 0.14  0.21 0.17 0.29
 
a Quarterly and Semiannual 1 alphas are estimated from daily returns, Semiannual 2 alphas are estimated from weekly 
returns, and Annual alphas are estimated from monthly returns. 
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Table 5 are very close to the difference between the unconditional alphas and average conditional alphas 

of the portfolios (Tables 2 and 6).  For example, the covariance between V-G betas and the risk premium 

(quarterly estimates) is 0.09%, roughly equal to the unconditional alpha, 0.60%, minus the average 

conditional alpha, 0.50%. 

 

5. The consumption CAPM 

 So far, our analysis has focused on the Sharpe-Lintner CAPM.  But as discussed in the intro-

duction, we believe the conclusions should apply to other models as well:  in general, conditioning seems 

unlikely to have a large impact on cross-sectional asset-pricing tests.  This section briefly explores the 

performance of the consumption CAPM. 

Analytically, the basic argument is easy to extend to the consumption CAPM:  consumption betas 

and the consumption risk premium must have large time-variation in order for a conditional model to 

significantly outperform an unconditional one.  The problem is that we do not have good intuition about 

the price of consumption risk, or how it varies over time, largely because of the poor empirical 

performance of the consumption CAPM.8 

 Empirically, our tests cannot be extended directly to the consumption CAPM because they require 

high-frequency data.  We can, however, provide at least tentative evidence using the mimicking-portfolio 

approach of Breeden, Gibbons, and Litzenberger (1989).  They observe that, in empirical tests, the 

portfolio which has the highest correlation with consumption can be used in place of consumption itself; 

betas with respect to the maximally-correlated portfolio (MCP) are proportional to betas with 

consumption, so both should explain expected returns.  For our purposes, the mimicking-portfolio 

                                                      
8 To illustrate, consider three ways to estimate the unconditional price of consumption-beta risk, denoted λ.  From 

a theoretical standpoint, λ should be roughly φ σc
2 if investors have time-additive utility, where φ is aggregate 

relative risk aversion and σc
2 is the variance of consumption growth (see Cochrane, 2001).  The variance of 

consumption growth is around 0.03% annually during our sample, so the price of consumption risk would be 0.15% 
annually if the risk aversion coefficient is 5.  Second, in cross-sectional regressions using 25 size-B/M portfolios, 
Lettau and Ludvigson (2001) estimate that λ equals 0.88% (standard error, 0.77%; see row 1 of their Table 3).  
Finally, the CRSP value weighted index has a consumption beta of 1.9 and an annual excess return of 5.6% during 
our sample, which suggest that λ equals 2.95% annually. 
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approach is convenient because, given an estimate of the MCP, we can simply repeat our earlier tests 

using the MCP in place of the market portfolio. 

Following Breeden et al., we estimate the MCP by regressing quarterly consumption growth on a 

given set of assets.  This regression finds the linear combination of the assets that has the highest correl-

ation with consumption, implying that the slopes are proportional to the MCP portfolio weights.  The key 

difficulty here is to choose the right set of assets for the regression (with only 148 quarterly data points, 

we have to limit the set of assets in some way).  Since the MCP will be mean-variance efficient if the 

consumption CAPM holds, we use the Fama and French (1993) factors –  RM, SMB, and HML –  guided 

by evidence that they do a good job spanning the tangency portfolio.  Limiting the set of assets to a few 

that (nearly) span the tangency portfolio should give the consumption CAPM the best chance of working 

(indeed, if the tangency portfolio was the only asset used in the MCP regression, the consumption CAPM 

would appear to work perfectly). 

Breeden et al. test the unconditional CAPM, so it makes sense that they estimate the MCP using a 

regression with constant slopes.  We use this approach in some tests, but since we are interested in the 

conditional CAPM, we also estimate a dynamic mimicking portfolio allowing the slopes (i.e., portfolio 

weights) to change over time: 

 ct = ao + a1 zt + (ϕm,0 + ϕm,1 zt-1) RM + (ϕs,0 + ϕs,1 zt-1) SMB + (ϕh,0 + ϕh,1 zt-1) HML + et, (18) 

where zt is a state variable (or variables) that captures time-variation in the MCP weights.  The reported 

results use Lettau and Ludvigson’s (2001) consumption-to-wealth ratio, CAY, as the state variable.  

Lettau and Ludvigson find that consumption betas of size and B/M portfolios vary over time with CAY, 

and it seems likely that the MCP weights of SMB and HML will do so as well.  Though not tabulated, we 

find similar results when Tbill rates, the default and term spreads, and aggregate dividend yield are used 

together in place of CAY. 

 Results.  In the first-stage regressions, estimating the MCP, consumption is measured as per capita 

consumption of nondurables and services (see Lettau and Ludvigson, 2001, for a description of the 

consumption and CAY series).  Unconditionally, the three factors are quite weakly correlated with 
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consumption, with a regression R2 of 0.00.  The estimated MCP seems reasonable, however, with weights 

of 0.36, 0.36, and 0.28 on RM, SMB, and HML (standard errors of 0.38 to 0.50), and the MCP has a 

higher Sharpe ratio than the market (0.27 vs. 0.17 quarterly).  In the dynamic regression (18), the Fama-

French factors do a better job explaining consumption growth, with an R2 of 0.15.  The average slope on 

RM is marginally significant (t-statistic of 1.81), and the slopes on both RM and SMB seem to vary over 

time with CAY (t-statistics of –3.11 and 1.95, respectively). 

 Given an estimated MCP, we test the consumption CAPM by substituting the MCP in place of the 

market portfolio in the regressions described in Sections 3 and 4 (the test portfolios remain the same).  

Table 7 reports the unconditional alphas from the full-sample regressions and average conditional alphas 

from the short-window regressions.  Panel A uses the constant-weight mimicking portfolio and Panel B 

uses the dynamic mimicking portfolio. 

Not surprisingly, the unconditional consumption CAPM cannot explain B/M or momentum.  V-G’s 

unconditional alpha is between 0.45% and 0.55% using either the constant-weight or dynamic MCP, and 

always more than two standard errors from zero.  W-L’s alpha is between 0.92% and 1.09%, and also 

statistically significant.  These estimates are close to those for the simple CAPM.  The main difference 

with our earlier CAPM results is that small stocks seem to underperform large stocks in Panel A.  Also, 

alphas on each side of the long-short strategies differ substantially from the simple CAPM estimates, 

lower everywhere in Panel A but higher in Panel B. 

Average conditional alphas are generally similar to unconditional alphas.  For V-G, the conditional 

alphas are somewhat smaller, between 0.32% and 0.42%, but remain more than two standard errors from 

zero. For W-L, the conditional alphas show large variability across the different estimation methods 

(dynamic vs. constant-weight MCP; daily vs. monthly returns), ranging from 0.77% up to 1.71%, but are 

always more than three standard errors from zero (with one exception, which has a t-statistic of 2.44). 

These results provide no evidence that the consumption CAPM, even allowing for time-varying betas, can 

explain the B/M and momentum effects.  Overall, they support our argument that conditioning is unlikely 

to have much impact on asset-pricing tests. 
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 Table 7 
Consumption CAPM: Alphas, 1964 – 2001 

The table reports unconditional alphas and average conditional alphas for the consumption CAPM (% monthly). 
Unconditional alphas are estimated from full-sample regressions using daily, weekly, or monthly returns.  Conditional 
alphas are estimated quarterly using daily returns, semiannually using daily and weekly returns, and annually using 
monthly returns.  The tests are like those in Tables 2 and 5, but a consumption-mimicking portfolio is used in place of the 
market portfolio.  The mimicking portfolio is estimated by regressing quarterly consumption growth on the Fama and 
French factors (RM, SMB, and HML); the slopes can be thought of as portfolio weights that give the combination of RM, 
SMB, and HML with the highest correlation with consumption growth.  We use these weights, together with daily returns 
on the three factors, to construct the mimicking portfolio.  In panel A, the mimicking portfolio has constant weights 
throughout the sample.  In panel B, the weights change dynamically, quarter to quarter, as linear functions of CAY.  The 
size, B/M, and momentum portfolios are formed using all NYSE and Amex stocks on CRSP/Compustat.  Bold denotes 
estimates more than two standard errors from zero. 

  Size  B/M  Momentum 
  Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Constant-weight mimicking portfolio 

Unconditional alphas 

Est. Day -0.39 0.03 -0.42  -0.49 0.05 0.55  -0.90 0.17 1.07
 Wk -0.37 0.05 -0.42 -0.44 0.07 0.51 -0.87 0.22 1.09
 Month -0.33 0.05 -0.39 -0.40 0.10 0.50 -0.83 0.24 1.07
     
Average conditional alphas a 

Est. Qtr -0.31 0.05 -0.36  -0.36 0.02 0.37  -1.23 0.48 1.71
 Semi 1 -0.34 -0.04 -0.30 -0.41 0.01 0.42 -1.02 0.19 1.22
 Semi 2 -0.41 0.10 -0.50 -0.33 0.08 0.41 -0.92 0.35 1.26
 Annual -0.44 0.18 -0.62 -0.27 0.12 0.39 -0.63 0.19 0.82

Std err. Qtr 0.10 0.14 0.16 0.17 0.07 0.16 0.24 0.19 0.27
 Semi 1 0.11 0.14 0.17 0.18 0.07 0.18 0.22 0.19 0.24
 Semi 2 0.12 0.14 0.17 0.19 0.07 0.19 0.21 0.20 0.24
 Annual 0.10 0.16 0.20  0.16 0.08 0.17  0.20 0.21 0.22
      
Panel B: Dynamic mimicking portfolio 

Unconditional alphas 

Est. Day 0.50 0.45 0.05  0.26 0.75 0.49  -0.16 0.81 0.96
 Wk 0.53 0.45 0.08 0.30 0.76 0.46 -0.12 0.83 0.96
 Month 0.59 0.44 0.16 0.33 0.78 0.45 -0.09 0.83 0.92
     
Average conditional alphas a 

Est. Qtr 0.59 0.45 0.13  0.41 0.73 0.32  -0.21 0.98 1.19
 Semi 1 0.53 0.44 0.09 0.37 0.72 0.36 -0.04 0.84 0.88
 Semi 2 0.47 0.27 0.20 0.25 0.59 0.34 -0.22 0.82 1.04
 Annual 0.49 0.29 0.20 0.23 0.61 0.37 -0.19 0.58 0.77

Std err. Qtr 0.33 0.21 0.23 0.30 0.27 0.14 0.38 0.28 0.30
 Semi 1 0.34 0.23 0.24 0.32 0.28 0.15 0.40 0.28 0.29
 Semi 2 0.35 0.21 0.24 0.32 0.28 0.15 0.40 0.27 0.30
 Annual 0.39 0.18 0.29  0.33 0.30 0.16  0.37 0.26 0.31

 
a Quarterly and Semiannual 1 alphas are estimated from daily returns, Semiannual 2 alphas are estimated from weekly 
returns, and Annual alphas are estimated from monthly returns. 
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6. Comparison with other studies 

 Our empirical results, and generally skeptical view of conditioning, stand in stark contrast to the 

conclusions of Jagannathan and Wang (1996), Lettau and Ludvigson (2001), and Petkova and Zhang 

(2003).  They find that conditioning dramatically improves the performance of both the simple and 

consumption CAPMs.  Their studies have been influential, so it might be worthwhile to offer a few obser-

vations on why our conclusions differ. 

 The papers clearly differ from ours in many ways, but a key distinction is that they focus on cross-

sectional regressions instead of the time-series intercept tests that we emphasize.  As such, the papers test 

only the qualitative implications of the conditional CAPM, that the effects of time-varying betas are 

cross-sectionally correlated with expected returns.  They do not fully test the conditional CAPM, which 

imposes additional, important restrictions on the cross-sectional slopes (the restrictions are implicit in our 

intercept-based tests). 

 This point can be seen most easily in the context of the simple CAPM.  A full test is whether 

expected returns are linear in conditional betas, Et-1[Rt] = βt γt, with the slope equal to the market risk 

premium.  However, Jagannathan and Wang (1996), Lettau and Ludvigson (2001), and Petkova and 

Zhang (2003) take expectations and focus, in different ways, on the implied unconditional relation, E[Rt] 

= β γ + cov(βt, γt).  In a cross-sectional regression, the slope on β should equal the unconditional risk 

premium and the slope on cov(βt, γt) should equal one, but the papers instead treat them as free 

parameters.  We think this explains why they find conditioning to be so important; in particular, the esti-

mated slopes on cov(βt, γt) are almost certainly much larger than one.9  If so, their results actually provide 

evidence against the conditional CAPM. 

 We illustrated this point earlier using Petkova and Zhang (2003).  Here we offer an example from 

                                                      
9 The papers don’t estimate the equation E[Rt] = β γ + cov(βt, γt) directly.  Petkova and Zhang come closest, 

replacing cov(βt, γt) by ϕ = cov(βt, γt) / σγ
2.  Jagannathan and Wang show that β and cov(βt, γt) are linearly related to 

βu and cov(Rt, γt) / σγ
2, and use the latter two in the tests.  Lettau and Ludvigson motivate their tests differently, but 

under the assumption that conditional betas are linear in CAY, their regressions use the average consumption beta 
and a variable that is proportional to cov(βt, γt). 
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Lettau and Ludvigson (2001).  If we assume that consumption betas (βt) are linear in CAY and the zero-

beta rate is constant, their Table 3 shows returns regressed on β and δ ≡ cov(βt, CAYt-1) / var(CAY).  In 

this context, the slope on β should be the average consumption-beta risk premium, λ, and the slope on δ 

should equal cov(λt, CAYt-1).  Lettau and Ludvigson find that λ is close to zero, but the slope on δ is 

around 0.06% or 0.07% quarterly depending on the specification.  In principle, we could test whether this 

slope equals cov(λt, CAYt-1), but the statistics reported in the paper are insufficient to do so.  Here we 

simply note that the estimates seem huge, implying that σλ is greater than 3.2% quarterly (if slope = 

cov(λt, CAYt-1) < σλ σcay, re-arraning yields σλ > slope / σcay = 0.0006 / 0.019 = 0.032).  In other words, 

their estimates say that the risk premium is on average close to zero but has enormous volatility (and, 

since λt must be positive, it must also have enormous skewness).  These facts are difficult to reconcile – 

quantitatively – with the consumption CAPM. 

 On a related note, the cross-sectional R2s reported by Jagannathan and Wang (1996) and Lettau and 

Ludvigson (2001) should be interpreted with caution.  Both papers report striking impovements in expla-

natory power when moving from unconditional to conditional tests.  The impact of the studies, in fact, 

seems to come largely from the dramatic increase in R2, nicely illustrated by their figures showing 

predicted returns plotted on actual returns. 

However, we don’t find these R2s very informative, for three related reasons:  (1) As discussed 

above, the papers ignore key restrictions on the cross-sectional slopes; the R2s would likely drop signifi-

cantly if the restrictions were imposed.  (2) Returns on size and B/M portfolios can be traced to three 

common factors (time-series R2s above 90%), and that betas on the factors explain most of the cross-

sectional variation in expected returns.  In this setting, one can show that almost any multi-factor model 

will produce a high cross-sectional R2.  (3) The papers don’t report standard errors or confidence intervals 

for the R2, and simulations show that it is easy to find a high sample R2 even when the population R2 is 

zero.  For example, we simulate the two-pass regressions of Lettau and Ludvigson (2001, Table 3) using 

historical returns and consumption but substituting a randomly generated state variable in place of CAY.  
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In 10,000 simulations, the median R2 is 0.43, and the 5th and 95th percentiles are 0.12 and 0.72, respec-

tively (compared with a reported 0.66).  In short, despite its increasing use, the cross-sectional R2 doesn’t 

seem to be a very meaningful metric.10 

 

7. Conclusion 

The main point of the paper is easily summarized:  the conditional CAPM cannot explain asset-

pricing anomalies like B/M or momentum.  Analytically, if the conditional CAPM holds, deviations from 

the unconditional CAPM depend on the covariances among betas, the market risk premium, and market 

volatility.  We argue that, for plausible parameters, the covariances are simply too small to explain large 

unconditional pricing errors. 

The empirical tests support this view.  We use short-window regressions to directly estimate condi-

tional alphas and betas for size, B/M, and momentum portfolios from 1964 – 2001.  This methodology 

gets around the problem, common to all prior tests, that the econometrician cannot observe investors’ 

information sets.  We find that betas vary considerably over time, with relatively high-frequency changes 

from year to year, but not enough to generate significant unconditional pricing errors.  Indeed, there is 

little evidence that betas covary with the market risk premium in a way that might explain the alphas of 

B/M and momentum portfolios.  Most important, conditional alphas are large and significant, in direct 

violation of the conditional CAPM. 

                                                      
10 Roll and Ross (1994) and Kandel and Stambaugh (1995) reach the same conclusion about the cross-sectional 

R2 in simple CAPM regressions.  They show that the population OLS R2 says very little about the location of the 
market proxy in mean-variance space. 
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