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Abstract

Robots can be programmed to perform different tasks, however, often the difficulty of the
programming process limits more widespread use of robotic technology and discourages
short term applications. To facilitate the use of robotics an intuitive method of
programming is developed, Programming by Human Demonstration. The programmer
demonstrates how the task is performed using a teaching gripper that measures the
human's forces and positions. A robot program is generated from the demonstration data
without using a model of the task geometry.

A direct approach to generating a robot program would be to simply duplicate the
demonstrated trajectory. However, direct duplication may not succeed if there is variation
in the environment. Furthermore, the human trajectory may contain unnecessary motion
that would result in an unsatisfactory robot trajectory. To identify a manipulation
strategy, multiple demonstrations of the task are performed and comparisons between
demonstrations are used to distinguish between human adaptation and inconsistency.
Human inconsistency is not interpreted as noise that should be eliminated from the
analysis, but provides information about the accuracy requirements of the task for both
position and force trajectories. Adaptation is identified by human motion that corresponds
to detectable variations in the environment, and is incorporated into the robot program.
The analysis is applied to obstacle avoidance and simple assembly tasks consisting of 3D
translation. A robot program is generated that can successfully perform the task provided
that variations in the environment are not larger than that encountered during the
demonstrations. A robot compliance controller is specified that will adapt to workpiece
misalignment, and limit robot errors to the accuracy requirements defined by the
demonstrator's inconsistency. In addition, the task is segmented into subtasks, and
subtask termination conditions are identified that enable the robot to switch from one
subtask to the next. Robot success is guaranteed by ensuring that the position accuracy is
as high enough to avoid obstacles and reach the desired target position, the direction of
robot force maintains the desired contact with the workpiece surfaces, and the magnitude
of the robot force is less than the maximum demonstrated force to avoid damage to the
parts.

Thesis Supervisor: Professor Harry West
Title: Associate Professor of Mechanical Engineering
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CHAPTER 1

Introduction

Robots can be programmed to perform different tasks, however, often the
difficulty of the programming process limits more widespread use of robotic
technology and discourages short term applications. Most current robot
applications are in industrial settings, where large batch size justifies a
significant programming effort. However an easier method of robot
programming will facilitate the introduction of robotics into new areas such
as: agile manufacturing, biotechnology research, and the office and service
environments.

As more difficult tasks are automated, robots are required to adapt to
variations in the environment. One approach to adapt to the environment has
been to incorporate force sensors into robotic systems, and to control both
the force and position of the robot. However, programming a robot to utilize
force information requires even more sophisticated programming methods.
Often the factor limiting automation is the ability to generate a program
rather than the physical capabilities of the robot.

A person can often figure out how to perform a task much more easily than
the efforts required to program a robot to perform the same task.
Accordingly, human manual ability has been utilized to assist in robot
programming. For example, in walk through programming, the programmer
grasps the robot's end effector and physically moves the robot through the
desired trajectory. The robot records the motion and then plays it back
during task execution. This method is often applied to spray painting robots,
yet is limited to use with robots that can be physically moved by a person.
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Most robots, however, have gear reductions which prevent the robot to be
backdriven, 1.e. moved by an external force. With these robot's a popular
method of programming is to use a teach pendent control box. Buttons on
the teach pendent move the robot in different directions, and the robot
trajectory can be recorded and then played back. A limitation with both the
teach pendent approach and walk through programming, is that the robot can
only play back the specified trajectory. The programming process does not
provide the robot with the ability to adapt to the environment. Furthermore,
any unnecessary motion imparted during the teaching process is repeated
each time the robot executes the task.

Another approach to robot programming, is off-line model based
programming. Here a computer program generates the robot trajectory from
a model of the task geometry. With this approach variations in the
environment can be considered in the programming process, and an
adaptation strategy incorporated into the robot program. Model based
methods have been successfully applied to specific tasks, yet an algorithm is
not currently available for general tasks. A primary limitation of model
based programming is the analytical difficulty associated with generating the
robot program. Another factor that limits short term applications is the
necessity of generating a computer model of the task. In addition, fine tuning
of the robot program is often required to account for discrepancies and
simplifications in the task model.

The objective of this thesis is to develop an easier method to program robots
that includes the ability to adapt to the environment using force and position
SENSOrs.

1.1. Programming by Human Demonstration

Programming by Human Demonstration (PHD) is an intuitive method of
robot programming. The programmer demonstrates how the task is
performed using a teaching gripper that measures the human's forces and
positions, and the data gathered from the human is used to generate the robot
program, as shown in Figure 1.1.

12
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Figure 1.1: Programming by Human Demonstration
The human demonstrates the task with the teaching gripper, and the data is used to
generate the robot program. The position sensor records the 6D position and orientation,
the force sensor measures the 6D forces and torques, and the pressure sensor detects
when the gripper is opened and closed.

A direct approach to generating a robot program would be to simply
duplicate the demonstrated trajectory. However, direct duplication will not
always succeed if there is variation in the environment. Furthermore, the
human trajectory may contain unnecessary motion that would result in an
unsatisfactory robot trajectory.

To identify a robust manipulation strategy, multiple demonstrations of the
task are performed. Comparisons between demonstrations are used to
identify a strategy for adapting to the environment, as well as identifying
unnecessary motion that need not be incorporated into the robot program.

The potential advantages of the PHD approach is that it incorporates the ease
of the walk through programming, with the ability to adapt to the
environment possible in model based programming. Furthermore, a
geometric model of the task is not required, and the use of demonstration
data should allow the program to be executed without fine tuning. PHD
research can also provide insight into how humans perform tasks, and be
used to improve performance of telerobotic systems where human control is
combined with robotic operation.

1.2. Scope of Thesis

The category of tasks addressed in the thesis are pick and place tasks, and
simple assembly operations. Pick and place tasks consist of moving a part to
a desired location while avoiding obstacles in the way. The objective of an
assembly task is typically to place a part in a desired location relative to
another part. Both pick and place tasks, and assembly tasks are simplified by
considering only tasks which require part translation, but no rotation. The

13



simplified assembly operations are referred to as contact tasks, and an
example is shown in Figure 1.2.

starting
region

part

[€ bt al) e 1Ld ANK [ i l 11d1)S]1d 1)

The objective of the contact task is to place a part in a desired location
relative to the workpiece. The part is shaped as a sphere so that part rotation
does not effect task performance, and the workpiece is shaped as a
polyhedral, i.e. its surfaces are flat. Misalignments in the workpiece position
and orientation occur between demonstrations, that corresponding to
variations that may occur on an assembly line. Thus the trajectory of the part
consists of only translation, yet the workpiece may experience arbitrary
misalignment including both rotation and translation. Successful
implementation of a contact task requires that the part be placed in the
desired position with sufficient accuracy, and that excessive contact forces
do not damage the parts.

As the demonstrator performs a contact task, they modify their force and
position trajectories to adapt to workpiece misalignment. The human may
perform this level of adaptation subconsciously; however, this type of
adaptation is explicitly required when programming a robot to perform a
contact task. An objective of the thesis is to specify a robot program for
which task success can be guaranteed, as long as workpiece misalignment is
not larger than that encountered during the demonstrations.

1.3. Fundamental Assumptions

To generate a successful robot program using the PHD approach, it is
necessary to capture how the human adapts to variations in the environment.

14



Accordingly, the programmer demonstrates the task a number of times,
while small variations in workpiece location are introduced between the
demonstrations. For ideal ease of programming, no restrictions would be
made on how the demonstrator performs the task. However, to ensure that
the demonstration data will be sufficient to generate a successful robot
program the following two fundamental assumptions are made. A complete

list of the assumptions used in the analysis is provided in Section 3.1.2 in
Chapter 3.

» The demonstrator is restricted to using only sensory information that is
measured by the teaching gripper. Otherwise, components of the human's
adaptation strategy may not be captured by the demonstration data. Since
the teaching gripper measures only position and force, the use of vision is
prevented when demonstrating the task!. Of course the demonstrator can
familiarize themselves with the task with their eyes open, and use the
opportunity to develop a strategy that allows them to perform the task
with their eyes closed. We wish to identify a similar strategy so that it
may be implemented with a robot that uses only position and force
SEnsors.

* The demonstrator uses the same manipulation strategy in all
demonstrations. In the case of obstacle avoidance this means avoiding
obstacles by passing them on the same side. In the case of contact tasks,
this means that each demonstration is performed with the same sequence
of contact states, i.e. the part contacts the same surfaces of the workpiece
in the same order in each demonstration.

The category of tasks addressed in this thesis, along with the assumptions
used, prevent immediate application of this research to many practical tasks.
Indeed, most assembly operations do not involve spherical parts and
therefore would require the analysis to incorporate part rotation as well as
translation. Nevertheless an objective of this research is to lay a foundation
which can be extended to a wider category of tasks. It is therefore desirable
that the assumptions used in this thesis do not preclude implementation of

1 Due to the inconvenience of demonstrating a task with one's eyes closed, the use of
vision is allowed when it is not used to adapt to variations in the environment. One such
case is where adaptation only occurs during the fine motion part of the task, and thus the
use of vision is allowed during gross motion.
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useful tasks, once the translation restriction is removed. Indeed, the
assumption that precludes the use of vision is not a major limitation, as
indicated by the fact that human's can perform many operations with their
eyes closed. Furthermore, many useful tasks can be performed with a

constant sequence of contact states, as shown by the examples in Appendix
L

1.4. Background

A review of robot programming methods is provided by Lozano-Pérez
[1983]. Model based methods have been used to specify obstacle free robot
trajectories, and to generate robot programs that use sensory information to
adapt to the environment.

Due to the analytical difficulties of model based programming, approaches
have been generated that use of human manipulation to assist in robot
programming. Dessen and Balchen [1988] and Harima and West [1992] use
demonstration data to play back position trajectories. These approaches
effectively extend the advantage of walk through programming to robots that
are not backdriveable, but do not incorporate adaptation into the robot
program.

Other approaches have measured both human position and force. Hirzinger
and Heindl [1983] incorporate both position and force information, yet use
human input primarily to fine tune a robot program developed using
knowledge of the task geometry. Kosuge, Fukuda, and Asada [1991] use
human skill acquisition to identify robot controller parameters, yet also rely
on a task model to interpret the demonstration data and generate the robot
program.

Asada and Izumi [1987] use human demonstration data exclusively to
identify both a robot trajectory and a hybrid force/position controller to
perform contact tasks. A difficulty addressed by Asada and Izumi is that a
single measurement of force and motion directions is not sufficient to
identify the directions of admissible motion and force, which is required by a
hybrid controller. Thus, to implement the controller it is assumed that the
constraint surfaces are perpendicular to each other and that each contact state
transition can only add a constraint, which limits possible workpiece
geometries. In addition, while hybrid control compensates for workpiece
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translation by eliminating position errors in the force controlled directions,
the effect of orientation misalignment of the workpiece is not explicitly
addressed. Asada and Izumi [1987] originate the objective of generating
both a robot trajectory and controller exclusively from demonstration data.
The analysis in this thesis incorporates this objective and extends the
analysis by allowing workpiece geometries with arbitrary surface
orientations, and by allowing the number of constraints to increase or
decrease at each contact state transition. In addition, here the analysis
explicitly evaluates the effect of misalignment in workpiece translation and
orientation, and quantifies robot performance in terms of position and force
errors.

Liu and Asada [1992] use human demonstrations to automate a deburring
operation. Both human position and force are measured, and the data is used
to specify robot controller parameters that adapt to variations in burr size. It
is recognized that human actions that do not correspond to detected changes
in the environment present a problem in identifying an adaptation strategy.
Liu and Asada present a method that distinguishes between human variation
that is consistent with measured variations in the environment, and
inconsistent variations which are attributed to adapting to sensory
information that is not measured. The inconsistent human variations are
removed from the analysis, and the robot strategy is based solely on the
consistent data. This thesis presents an alternative approach for interpreting
human demonstration data. Here all of the sensory information that the
demonstrator uses is measured, and both human inconsistency and
adaptation is used to specify the robot controller. The presence of human
inconsistency is used advantageously to provide information regarding the
task accuracy requirements.

Another approach of acquiring human demonstration data is through a vision
system [Kuniyoshi, Inaba, and Inoue 1992; Ikeuchi, Kawade, and Suehiro
1993]. A limitation of this approach is that forces used by the human are not
measured, which may contain a significant component of the manipulation
strategy especially during the fine motion where parts contact each other.
Accordingly, Ikeuchi et al. implement fine motion control by supplementing
the demonstration data with model based knowledge.
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The contribution of this thesis in relation to previous research is that both a
robot trajectory and controller are generated exclusively from demonstration
data, for the general case of a polyhedral workpiece and 3D translation. The
demonstrator is restricted to using only sensory information that is
measured; thereby ensuring that the demonstration data contains sufficient
information to adapt to the environment. Accordingly, robot success can be
guaranteed despite variations in the environment.

1.5. Overview of Thesis

An overview of the thesis is presented in this section by summarizing
Chapters 2 through 5, and each of the following subsections corresponds to a
chapter. First the analysis of pick and place tasks is presented in Chapter 2.
In these tasks, there is no adaptation to the environment. However,
unnecessary human motion is present in the demonstrations, and a method is
presented to use human inconsistency to an advantage and improve the robot
trajectory.

To implement contact tasks it is necessary to adapt to the environment. The
PHD approach used to analyze contact tasks, segments the overall task into a
sequence of subtasks. Chapter 3 presents a method of implementing
individual subtasks, by extending the methods used in Chapter 2 for
unconstrained motion to the case of constrained motion. Chapter 4 presents a
method to segment the task into subtasks. Finally, Chapter 5 presents the
method the robot uses to switch from one subtask to the next.
15.1. Obstacle Avoidance For Unconstrained Motion

The goal of a pick and place task is to move a part from a starting location to
a target location without making contact with obstacles in the environment,
as shown in Figure 1.3. The lack of contact between the part and the
environment precludes any adaptation to the environment using force
sensing. For pick and place tasks it is assumed that the obstacles remain
stationary, and that the part is held without slip by a gripper. The objective
of the analysiS is to guarantee obstacle avoidance for both the part and the
gripper, yet interference between the manipulator arm and the environment
is not considered.

Obstacle avoidance is a well studied and often difficult problem in robotics
[Latombe, 1991; and Lozano-Pérez, Jones, Mazer , and O'Donnell, 1992].
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Typically a model of the environment is used and the robot trajectory is
generated off-line. The number of potential trajectories can be very large,
and selecting an appropriate robot path may require a computational
expensive search. For tasks requiring low clearance between the robot and
the obstacles, the level of detail necessary in the model increases along with
the computational cost.

PHD addresses the difficulties encountered in off-line methods by utilizing
the human's familiarity with manipulation and letting the demonstrator
identify an obstacle free path. Here there are no variations in the
environment, and direct duplication of the trajectory will be successful.
However, in practice it is inefficient to exactly duplicate the human
trajectory. Human motion often contains motion that is unnecessary to
achieve the task, including vibrations and "wiggles." Exact duplication of the
human trajectory would result in unnecessary robot motion.

One method to improve the robot trajectory is to smooth a demonstrated
trajectory, yet by approximating the human motion obstacle avoidance
cannot be guaranteed. Another method is presented by Ogata and Takahashi
[1993], which supplements the demonstrated motion with a model of the
obstacle locations. However, this method does not satisfy the objective of
PHD which is to generate the robot program exclusively from the
demonstration data.

The method presented in this thesis is to perform multiple demonstrations of
the same task, to capture a range of obstacle free human motion, as shown in
Figure 1.3. If all the demonstrations pass each obstacle on the same side,
then the region between the demonstrations is obstacle free. A robot
trajectory that stays within this region is guaranteed to be obstacle free.
Using the multiple demonstration method, a trade off is not necessary
between ensuring obstacle avoidance and efficient robot motion.
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The human demonstrates the task multiple times, and the region between the
demonstrations defines an obstacle free region, without the use of a model indicating
obstacle locations. A robot trajectory within this region is guaranteed to be obstacle free
Since the environment is the same in all demonstrations, i.e. obstacle
locations do not change, variations between demonstrations are unnecessary
for task success and are thus interpreted as human inconsistency. Here
inconsistency is not interpreted as noise that should be eliminated from the
analysis, but provides information regarding the task requirements. The
amount of human variation indicates the desired accuracy of the task, as
shown by the wide and narrow regions in Figure 1.3. Motion that is
necessary to achieve the task is present in all the demonstrations, such as the
curved motion between the two obstacles in Figure 1.3, and is incorporated
into the robot program. Human inconsistency identifies an obstacle free
region between the demonstrations. Motion that does not effect task
performance corresponds to variation within the obstacle free region, and

need not be included in the robot trajectory.

In Chapter 2, a method is presented to identify the boundaries of the obstacle
free region for 2D translation. In addition, an algorithm is presented that
generates the shortest path robot trajectory within the obstacle free region,
which is shorter than any of the demonstrations. This approach is extended
to case of 3D translation, and an obstacle free robot trajectory is synthesized,
although for 3D translation the trajectory is not the shortest path. The
algorithm incorporates an optional buffer between the robot trajectory and
the boundary of the obstacle free region, to allow for robot position errors.
The buffer can guarantee obstacle avoidance even if there are errors in the
robot position, as long as the buffer is larger than the maximum robot error.
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The region of obstacle free motion defined from human inconsistency,
identifies conditions sufficient to guarantee robot success. It is not necessary
that the robot remain in the region bounded by the demonstrated trajectories.
Indeed, if one had a model of the obstacle locations one could identify
alternate obstacle free paths to the target that are outside the demonstrated
region. However, the PHD approach uses only information from the
demonstration data, and therefore identifies conditions sufficient to
guarantee robot success.

The obstacle free region identified from human inconsistency provides a
number of advantages: obstacle avoidance can be guaranteed without
knowledge of the obstacle locations, a buffer can used to avoid obstacles in
the presence of robot error, unnecessary vibrations can be removed from the
robot motion, the human does not feel pressured to perform the 'perfect’
demonstration, and robot performance can be higher than any of the
demonstrations in terms of the distance traveled.
1.5.2. Constrained Motion and Adaptation To Workpiece Misalignment

In a contact task, the motion of the part becomes constrained by the
workpiece surfaces. It is necessary for the manipulator (human or robot) to
adapt to the environment. Otherwise, any misalignment of the workpiece
could result in improper assembly and excessive contact forces that could
damage the parts. The workpiece surfaces in contact with the part define the
contact state, and to simplify the analysis each contact state is considered
separately. In Chapter 3, a robot controller is specified for motion within a
single contact state that can adapt to workpiece misalignment. To avoid
excessive contact forces, a robot compliance controller is used, in which the
robot reacts with the environment like a spring. If the robot stiffness is too
high excessive contact forces could occur, yet if the stiffness is to low
excessive position errors could occur due to disturbances from workpiece
misalignment and friction. The analysis uses the demonstration data to
identify a range of robot compliance appropriate for the contact state.

The approach presented for obstacle avoidance, which uses human
inconsistency to identify a range of acceptable motion, is extended in
Chapter 3 to constrained motion. Human inconsistency is used to define a
range of acceptable constrained motion, force magnitudes, and force
directions.
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For the case of 3D translation there exists two possible configurations for
constrained motion, as shown in Figure 1.4: a single direction of constraint
and two directions of constraint. When the part is constrained in three
directions, no translation is possible.

a. Single direction of constraint b. Two directions of constraint

Fi 1.4: Two Possible Constrai nfigurations for 3D Translation

When a part is constrained with a single constraint surface, there remains
two direction of admissible motion tangential to the surface. Accordingly,
the position trajectory on the constraint surface may vary between the
demonstrations as shown in Figure 1.5. Here obstacles on the surface include
any geometric location that would result in an undesirable change in the
contact state. In Figure 1.5 the demonstrated trajectories circumvent a "hole"
obstacle to avoid dropping off the surface. The demonstrated trajectories
define a region of obstacle free motion on the workpiece surface similar to
the one identified for unconstrained motion. However, here the obstacle free
region is relative to the workpiece surface, whose location varies between
demonstrations.

contact state
target

demonstrated trajectories
relative to the workpiece

I : jec
The demonstrations define an obstacle free region relative to the workpiece surface.

If the sphere traced its path along the workpiece, then the obstacle free
region would be drawn on the workpiece as it is in Figure 1.5. However, the
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human motion is measured by the teaching gripper in an absolute coordinate
system, and the actual workpiece location is not known since it varies
between demonstrations. Accordingly, a method is presented in Chapter 3 to
identify an obstacle free region relative to the workpiece surface.

In a contact state with two constraints there exists only a single degree of
freedom in the direction of motion, as shown in Figure 1.4. Accordingly the
direction of motion is completely defined by the workpiece. Since there is no
error in the direction of motion, obstacle avoidance is not an issue. However,
to successfully implement motion with two constraints it is necessary to
maintain contact with both surfaces. Here there are two degrees of freedom
in direction on the constraint force. As long as the force remains in the
region of acceptable force directions, as shown in Figure 1.6, the desired
contact state will be maintained.

workpiece
demonstrated / \ region of acceptable
directions of force force directions

Figure 1.6: Cross Section of Two Constraint Configuration

The demonstrated forces identify a region of acceptable force directions that ensure
contact with both surfaces is maintained
As the demonstrator performs motion constrained by two surfaces, the
direction of force can vary with motion along the surfaces and between
demonstrations, as indicated by the force vectors in Figure 1.6. Nevertheless,
the human successfully maintains contact with both surfaces for the range of
applied forces, and thus human variation in force direction is not necessary
for task performance and corresponds to human inconsistency. In Chapter 3,
a region of acceptable force directions is identified from the demonstration
data, and a robot controller is specified that maintains the constraint force to
be within this region. A range of acceptable force magnitudes is also
identified, and the maximum robot force is limited to be less than or equal to
the maximum demonstrated force.

Variations between demonstrated trajectories in contact tasks do not all
correspond to human inconsistency; rather some variation corresponds to
adaptation to workpiece misalignment. While the human is adapting, their
motion also contains some unnecessary motion. Accordingly,
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demonstrations of contact tasks contain both human adaptation and
inconsistency. To implement PHD and generate a robot program, human
adaptation is distinguished from inconsistency. Identifying human adaptation
enables us to develop a robot controller that can also adapt to the
environment. Furthermore, identifying human inconsistency provides
information regarding the accuracy requirements for the task, as in the case
of obstacle avoidance.

In the case of 3D translation, human adaptation and inconsistency can occur
in the same contact state. An example is presented in Figure 1.7, where
trajectories from two demonstrations are shown. If the demonstrator was
"perfectly consistent", then only adaptation would occur as shown in Figure
1.7a and the shape of the two trajectories would be the same. With a
"perfectly consistent” demonstrator the only modification between
trajectories would correspond to misalignment in workpiece orientation to
enable the trajectories to maintain contact the surface. In actuality
inconsistency occurs together with adaptation, as shown in Figure 1.7b, and
the shape of the trajectory varies in directions other than necessary to
maintain contact.

same shape trajectories

a. Only Adaptation b. Adaptation and Inconsistency
Fi 1.7: 3D ion I
Trajectories from two demonstrations are shown, where the dashed lines correspond to
the misaligned workpiece. If the demonstrator was "perfectly consistent", then only
adaptation would occur as shown in ‘a'. In actuality both adaptation and inconsistency
occur as show in'b'. -

In Chapter 3 a method is presented to distinguish between human adaptation
and inconsistency. It is not possible to directly measure human intent.
However, the demonstrator can only adapt to workpiece misalignment that

they can detect. Accordingly, the extent of workpiece misalignment that is
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detectable from force and position information is identified. Human motion
that geometrically corresponds to detectable workpiece misalignment is
interpreted as human adaptation; the remaining human variation is
interpreted as inconsistency. For motion within a single contact state,
adaptation is necessary to maintain contact with the workpiece surfaces, and
is implemented by modifying the part trajectory in response to surface
orientation misalignments.

The analysis of human adaptation and inconsistency is combined to specify a
robot compliance controller for each contact state. The robot performance is
quantifies in terms of position and force errors, caused by workpiece
misalignment and friction. The robot controller is specified so that it can
adapt as well as the human, while its position and force trajectories remain
within the region of acceptable motion and force identified from human
inconsistency. The complete robot controller, including both trajectory and
compliance, is specified from the demonstration data without using a
geometric model of the task.
1.5.3. Segmentation of Task Into Subtasks

Segmenting a task into a sequence of subtasks allows the task to divided into
simpler components, and each subtask can then be implemented with a
simpler controller. Since a model of the task is not available in PHD, it is
necessary to identify the subtasks from the demonstration trajectories.
Segmenting the demonstration data into meaningful subtasks is an essential
component of the analysis. The preceding method of identifying human
inconsistency and adaptation is based on comparing demonstrations at
corresponding contact states. If the segmentation algorithm does not segment
each demonstration at corresponding points, then the comparisons between
the demonstrations are invalid.

The criterion for valid segmentation, is that a robot controller can be
specified that can perform each subtask. The analysis in Chapter 3 identifies
a robot controller for a section of motion in which the part is constrained by
the same workpiece surfaces, i.e. motion within a single contact state.
Accordingly, a natural approach is to segment the task at each contact state
transition. A segmentation algorithm is presented in Chapter 4 which
identifies contact state transitions when possible.
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A difficulty with the contact state segmentation approach is that not all
contact state transitions can be detected from the demonstration data.
However, it is shown in Chapter 4 that undetectable contact state transitions
do not need to be detected. Any segment of motion in which the sensory
measurements provide no new information from the environment can be
implemented as a single subtask. In most cases, information regarding
workpiece location can be detected upon contact with a new workpiece
surface. However, in all undetectable contact state transitions, no new
information can be acquired by contact with the second contact state.
Accordingly, the robot controller identified for a single contact state will be
able to perform the motion for both contact states, when the transition is
undetectable.

Other research approaches have been used to segmented human
demonstration data. These methods have relied upon assumptions of how the
human performs the task; for example that the demonstrator pauses between
subtasks. However, the demonstrator may pause at different points in the
task for no apparent reason, and thus segmenting at each pause will not yield
consistent results. An advantage of the segmentation algorithm presented in
Chapter 4 is that it does not rely on when the human pauses or on a model of
the internal method the human uses to control their motion. Instead subtasks
are defined at points where new information can be acquired from the force
and position measurements.
1.54. Subtask Termination Conditions

Subtask termination conditions are sensor measurements that indicate to the
robot when to switch from one subtask to the next, and are an important
component of the adaptation strategy. In model based robot programming, it
is necessary to predict the appropriate termination conditions. However, with
the PHD approach the sensor signals are directly available. Accordingly,
sensor measurements that indicate completion of a subtask can be extracted
from the demonstration data. In Chapter 5 a method is presented for
identifying the termination conditions, by correlating the completion of
subtasks with sensor measurements.

For example, consider the contact state transition shown in Figure 1.8. When
the part moves from contact with a single surface to motion constrained by
both surfaces, an increase in the force in the negative 'x' direction occurs.
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This change in force occurs in all demonstrations, and therefore can be
identified as a subtask termination condition. The robot uses this signal to
detect the change in contact, and begin motion in the 'y' direction.

contact state transition

Figure 1.8: Contact State T ition

The robot trajectory for a new subtask is generated relative to the completion
point of the prior subtask, which is identified by the termination condition.
In this fashion, the robot adapts to workpiece translation misalignment.
Translation of a workpiece surface changes the position at which a contact
state transition occurs, and by detecting this change the robot trajectory is
modified accordingly. However, workpiece orientation misalignment is not
detected from the position of the part at the beginning of a subtask.
Accordingly, the robot compliance controller identified in Chapter 3, is used
to adapt to orientation misalignments.

There are two types of subtask termination conditions. The first type
corresponds to a detected change in contact state, and the second type
corresponds to reaching a desired target position within a contact state. In
Chapter 5, potential termination conditions of the first type are defined in
terms of changes in the direction of motion or force. For a potential
termination condition to be a valid termination condition, its value should
reach a threshold level at the completion of the subtask, but not beforehand.
To evaluate potential termination conditions, a delectability criterion is
identified, and the termination condition with the highest delectability is
selected. If none of the termination conditions of the first type are valid, then
the termination condition is of the second type. In this case, the desired
target position within the contact state is defined from the average position
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from all the demonstrations. Both types of termination condition are present
in the example shown in Section 1.6.

An additional issue associated with identifying termination conditions from
human demonstration data, is that the potential exists for confusion between
cause and effect. In the contact state transition shown in Figure 1.8, the
proper termination condition corresponds to an increase of the force in the 'x'
direction as the part contacts a new surface. After the demonstrator detects
the transition, they begin to move along the next contact state, and thus
generate both motion and force (to overcome friction) in the 'y' direction.
The force in the 'x' direction is the proper termination condition, which
causes the demonstrator to switch to the next subtask. On the other hand, the
force and motion in the 'y’ direction correspond to the beginning of motion in
the following subtask, and are the effect of the demonstrator switching
subtasks. Sensor measurements that correspond to both cause and effect
occur within a short period of time at the completion of a subtask, and it is
necessary to ensure that the termination conditions used by the robot
corresponds to the cause of the transition.

The approach presented in Chapter S to ensure proper causality, is to identify
the point in time when the demonstrator changes their action to begin the
next subtask. The proper termination condition will always occur prior to the
change in human action. A period of time is defined as the termination
region, which begins just prior to the completion of a subtask and ends at the
time at which the human changes their action in response to subtask
completion. Figure 1.9 shows the force in the 'x' and 'y’ direction, at a
contact state transition corresponding to the one shown in Figure 1.8. The
change in fx occurs within the termination region and thus can be identified
as a valid termination condition. However, the change of fy, which
corresponds to the beginning of motion in the following subtask, occurs
outside of the termination region, and thus will not be identified as a
termination condition.
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Figure 1.9: Termination Conditions
1.6. Experimental Application

An example contact task, shown in Figure 1.10, is used to illustrate the
analysis in Chapters 3, 4, and 5. In each of these chapters, experimental
results corresponding to the analysis are presented.

=t
[\ .

1.4 1.6 1.8

The contact state sequence the demonstrator used to implement the task, is
shown by the numbered contact state transitions in Figure 1.10. This
sequence of contact states allows the demonstrator to successfully
implement the task with their eyes closed, despite significant workpiece
misalignment. The demonstrator can reach the target position, as long as
workpiece misalignment does not cause the demonstrator to miss the initial
contact state, and the orientation misalignment is not excessive.

The example task contains a number of features useful for illustrating the
analysis. Previous research in using human demonstrations for contact tasks
[Asada and Izumi 1987], restricted workpiece geometry to contain
perpendicular surfaces, and allowed only contact state transitions that would
increase the number of constraints. In the example shown, a workpiece
surface is not perpendicular to the other ones, and as the task progresses the
number of constraints increases and decreases.

In addition successful robot implementation requires specific levels of
position and force accuracy. In the fifth contact state, the position accuracy
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must be high enough to avoid the triangular holes on the constraint surface.
In the third contact state, the part is constrained by two surfaces with an
obtuse angle between them, which requires a higher level of accuracy in
force direction that in the case of perpendicular constraint surfaces.

Another aspect of the example is that it contains both types of termination
conditions. Contact states from one to three are of the first type, where the
completion of the subtask is detected by contacting a new surface. However,
the fourth termination condition is of the second type. Through familiarity
with the workpiece, the demonstrator knows that to continue in the fourth
subtask too long will result in the part falling into the triangular hole in the
surface. Accordingly, the subtask is completed when the motion has
progressed a specified distance within the contact state.

i 10: W i in the Experiment:
1.7. Summary

The method of Programming by Human Demonstration provides an
alternative to traditional programming methods. The advantage of PHD is its
easy of use. Issues that are difficult in model based programming methods
such as obstacle avoidance and selecting an appropriate contact state
sequence, are solved intuitively by the human. In addition, a model of the
task geometry is not required. :

One of the contributions of this thesis is that a new approach is presented for
interpreting human data. Inconsistent human motion and forces are not
treated as an undesirable phenomena, but are used to an advantage. Robot
accuracy requirements are identified from the range of human inconsistency.
The advantageous use of human inconsistency has the additional benefit that
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it further increases the ease of programming, since the demonstrator does not
have to worry if the quality of their demonstration is not perfect.

Another contribution is that human demonstrations are used to generate
robot programs that can adapt to variations in the environment. The strategy
that the human uses to adapt to the environment cannot be directly
measured. However, the demonstrator can only adapt to workpiece
misalignment that they can detect. Accordingly, the extent of workpiece
misalignment that is detectable from force and position information is
quantified, and human action that corresponds to this information is
identified as human adaptation. Robot compliance controllers are specified
that adapt to orientation misalignments within a contact state, and thereby
maintain contact with the workpiece surfaces. Subtask termination
conditions are identified that detect contact state transitions, and enable the
robot to adapt to translation misalignment of the workpiece.

The following chapters present the details of the analysis, which are applied
to different components of the task. However, the three following guidelines
are present throughout the analysis:

e Variation between human demonstrations that does not correspond to
detectable variation in the environment, is interpreted as human
inconsistency. In a section of the task with a high level of human
inconsistency, high robot accuracy is not required.

* Components of the demonstrations that are consistently present in all
demonstrations, are interpreted as significant for task success, and are
incorporated into the robot program.

* Adaptation can only occur in response to detectable variation in the
environment.

The objective of the analysis in the following chapters is to identify a
complete robot program, including the details necessary for force and
position control. Accordingly, a robot program including trajectory,
compliance, and termination conditions are generated from demonstration
data. The robot program can successfully perform the task as long as
variations in the environment are not larger than those encountered during
the demonstrations.
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CHAPTER 2

Unconstrained Motion
And

Obstacle Avoidance

2.1. Introduction

This chapter addresses pick and place tasks in which a part is moved from a
starting position to a target position without contacting other objects in the
environment, as shown in Figure 2.2. Objects in the environment are referred
to as obstacles, and the motion is referred to as unconstrained since there is
no contact with the environment that would restrict the motion. In this
chapter it is assumed that the obstacle location remains fixed, and thus no
adaptation to the environment is necessary. Regardless, the lack of contact
between the part and the environment precludes any adaptation to the
environment using force sensing.

Obstacle avoidance is a well studied and often difficult problem in robotics
[Latombe, 1991; and Lozano-Pérez, Jones, Mazer , and O'Donnell, 1992].
When a model of the environment is used, the robot trajectory is generated
off-line. The number of potential trajectories can be very large, and selecting
an appropriate robot path may require a computational expensive search. For
tasks requiring low clearance between the robot and the obstacles, the level
of detail necessary in the model increases along with the computational cost.

The PHD approach addresses the obstacle avoidance problem by letting the
human identify an obstacle free path, and then generating the robot trajectory
from the demonstration data. The demonstration identifies an obstacle free
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path for the part and the gripper, yet does not specify a trajectory for the
robot arm. Analysis of interference between the robot arm and the
environment depends on the robot configuration. However, as indicated by
Lozano-Pérez et. al. [1992], most potential interference occurs with the part
and gripper which by necessity are close to the other parts in the task.
Accordingly, this thesis does not consider obstacle avoidance for the robot
arm.

The most direct approach to generating a robot trajectory is to duplicate the
demonstrated trajectory. As long as there are no variations in the
environment, direct duplication of the trajectory will be successful.
However, in practice it is inefficient to duplicate the human trajectory
exactly. Human motion often contains motion that is unnecessary to achieve
the task, including vibrations and "wiggles." Exact duplication of the human
trajectory would result in unnecessary and robot motion.

One approach to improve the robot trajectory, is to approximate the
demonstrated trajectory. Indeed the first approach investigated in this
research was a piecewise linear approximation, of which an example is
shown in Figure 2.1. Appendix II presents the details of this method which
relies on a statistical hypothesis test to determine when to begin a new
straight line segment. However, regardless of the approximation method
used, there is a tradeoff between robot performance and the level of
approximation. For example a given trajectory can be duplicated to a high
level of accuracy with a large number of piecewise linear segments, yet the
human "wiggles" will also be duplicated. If the approximation is less
accurate, then one runs the risk of the robot trajectory hitting an obstacle.
The only information available from a single demonstration is that the given
trajectory is obstacle free. Therefore with any level of approximation, it is
not possible to guarantee that the robot trajectory will be obstacle free.
Furthermore, for different task and different demonstrators, the desirable
level of approximation will vary. Accordingly, the approximation method is
not satisfactory.
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trajectory

Figure 2.1. Piecewise Linear Approximation

Approximating the demonstrated trajectory can remove unnecessary motion, yet could
also cause the robot to hit an obstacle.
An alternative method of generating robot trajectories from human
demonstration data is presented by Ogata and Takahashi [1993]. Here a
model of the environment is used, and the workspace is segmented into
convex obstacle free regions. The human demonstration is used to identify a
sequence of regions from which the robot trajectory is generated. Since our
objective is to generate the robot program exclusively from the
demonstration data, such model based methods in which the obstacle
location is known are not appropriate.
2.1.1. Multiple Demonstrations Approach

The method proposed in this chapter is to perform multiple demonstrations
of the same task to capture a range of obstacle free human motion. An
example of an obstacle avoidance task is shown in Figure 2.2. If all the
demonstrations pass each obstacle on the same side, then the region between
the demonstrations is obstacle free. A robot trajectory that stays within this
region is guaranteed to be obstacle free. Using the multiple demonstration
method, a trade off is not necessary between ensuring obstacle avoidance
and efficient robot motion.
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The human demonstrates the task multiple times, and the region between the
demonstrations defines an obstacle free region, without the use of a model indicating
obstacle locations. A robot trajectory within this region is guaranteed to be obstacle free
Since the environment is the same in all demonstrations, i.e. obstacle
locations do not change, variations between demonstrations are interpreted
as human inconsistency and correspond to unnecessary motion. Here
inconsistency is not interpreted as noise that should be eliminated from the
analysis, but provides information regarding the task requirements. The
amount of human variation indicates the desired accuracy of the task, as
shown by the wide and narrow regions in Figure 2.2. Motion that is
necessary to achieve that task is present in all the demonstrations, such as the
curved motion between the two obstacles in Figure 2.2, and is incorporated
into the robot program. Human inconsistency identifies an obstacle free
region between the demonstrations. Motion that does not effect task
performance corresponds to variation within the obstacle free region, and

need not be included in the robot trajectory.

The example shown in Figure 2.2 is referred to as a simple case, and it is
straightforward to identify an obstacle free robot trajectory. A coordinate
system is defined with the "x" axis passing through the initial and target
positions. This example is simple since all the trajectories are a function of
the "x" axis, and the location on the "y" axis defines whether a point is above
or below an obstacle. The demonstrator is requested to perform the task a
number of times, while avoiding the obstacles in a consistent fashion,
meaning they should always pass above or always pass below each obstacle.
The demonstrated trajectory is given by yi(x), where the subscript "i"

indicates the demonstration number. For each point along the "x" axis, the
maximum and minimum of the human trajectory identify an obstacle free
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range. A robot trajectory, yf(x), is guaranteed to avoid obstacles as long as it
stays within this range, which is indicated by:

in{y;(0} < y00) < max{y;(x)} @.1)

A specific robot trajectory is not specified at this point. Instead the analysis
is extended to include more general motion, and then a robot path is defined.
It should be noted that no attempt is made to transfer the velocity profile of
the demonstrator to the robot, since obstacle avoidance does not rely on a
specific velocity of motion.

2.1.2. General Translation Overview

The example in Figure 2.2 is simple both because the demonstrated
trajectories are a function of 'x', and because the motion is restricted to a
plane. The general case of translation includes 3D motion, and looping in the
trajectory prevents the trajectory from being a function of 'x' (in any
coordinate system) as shown in Figure 2.3. The approach for identifying an
obstacle free robot trajectory is extended to general translation in two stages.

In the following section general 2D translation is addressed. The field of
topology is used to define the boundaries of the obstacle free region, since
the boundaries cannot simply be defined by maximum and minimum values
along the 'y' axis, as in Equation 2.1. In addition, the requirement that the
demonstrator pass an obstacle on the same side in each demonstration,
requires clarification. In general 2D translation, passing on the same side
cannot be defined as simply above or below an obstacle. Once, the obstacle
free region has been defined, a robot trajectory is selected that is the shortest
path from the starting position to the target within the obstacle free region.

The analysis of 3D translation is presented in Appendix III. In 3D the
boundary of a region is defined by a 2D surface, and thus cannot be
composed of segments of 1D demonstrated trajectories. Accordingly, an
alternative method is presented in which an obstacle free robot trajectory is
identified without specifying the boundaries of the obstacle free region. The
resulting robot trajectory is satisfactory but not necessarily the shortest.

2.2. 2D Translation

From the demonstrator's point of view the general case of 2D translation is
very similar to the simple case shown in Figure 2.2. It is not difficult for a
person to understand what is meant by passing an obstacle on the same side
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even in the general case examples shown in Figures 2.3 and 2.6. However,
from a mathematical point of view, a more rigorously definition is required.
Accordingly, this section presents a topological definition of the obstacle
free region, and a set of criteria for passing an obstacle on the same side.
Five assumptions are presented regarding the demonstrated trajectories and
how they avoid the obstacles. In the following chapters, referring to passing
an obstacle on the same side in each demonstration, implies that the
assumptions presented in this section are met.
2.2.1. Jordan Curve Theorem

Our objective is to define the interior of an obstacle free region from a
sequence of demonstrated trajectories. The fields of topology address the
definition of interior and exterior of a region with the Jordan curve theorem
[Munkres 1975]. The theorem and subsequent lemmas can be stated as
follows:

Theorem 1: A Jordan curve is a simple closed curve in R2 (a curve
homeomorphic to the unit circle). The Jordan curve divides the space R2 into
two components, an interior and an exterior, and is the common boundary
between them.

Definition 1: An arc is a space homeomorphic to the unit interval [0, 1], and
thus cannot intersect itself.

Lemma 1: A Jordan curve can be defined by the union of two arcs that have
precisely two points in common.

Lemma 2: A line switches from exterior to interior and vice versa every time
it intersects the Jordan curve, provided that at the points of intersection, the
line is not tangent to the Jordan curve or at a vertex of the curve.
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Segments from two demonstrated trajectories compose the Jordan curve, Jj;,, and define

the region R;;,. The test line shows that obstacle O is on the exterior R;;,,. Both

trajectories x; and x; have an odd number of intersections with side A of the test line
indicating the same strategy of avoiding obstacle O.
An example of a region defined by a Jordan curve is shown in Figure 2.3,
where the arcs X; and x; are segments of two demonstrated trajectories. For
two trajectories to compose a Jordan curve, they must start and end at the
same location. Furthermore, for a trajectory to be a valid arc it cannot
intersect itself. To satisfy these conditions a number of assumptions are
made.

Assumptions:
1. Each demonstrations is performed successfully by moving a part from

the starting region to the target region while avoiding contact with
obstacles.

2. The demonstrated trajectory is sampled fast enough so that linear
interpolations between sample points are obstacle free. Thus a
continuous trajectory is generated for the ith demonstration, x;(s), and is
a function of the distance traveled, "s."

3. To define a common starting and target position, straight line segments
are appended to both ends of each trajectory from the average starting
and ending positions. It is assumed that these added segments are also
obstacle free. This assumption is always satisfied if the demonstrations
begin and end in convex obstacle free regions.
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For a segment of demonstrated trajectory to be an arc it cannot intersect
itself. One would not expect a demonstrated trajectory to frequently intersect
itself, since it would be inefficient for the human to return to a previous
position in an obstacle avoidance task. Nevertheless, if looping does occur,
the trajectory is modified by removing the loop. The modified trajectory,
x'(s), does not intersect itself and is given by:
X'(s") = x,(s) - {x;(a<s<b) V x,(s=a) = x,(s=b), a<b} (2.2)

A pair of trajectories, X'; and x'j, can be combined to define a Jordan curve or
a series of Jordan curves. The trajectories always intersect at the start and
target positions, and additional intersections generate additional Jordan
curves. The intersection locations are designated by the series Sim and Sjim,
where Xi(Sim)=X;(Sjim) and m=1,2,... M. The series siym is ordered according to
the increasing magnitude of "s" in the i® trajectory.

Assumption 4: The intersections between and two trajectories "i" and "j"
are in the same sequence. Specifically, one trajectory does not intersect
another trajectory at a location prior to a previous intersection, which can
be stated by:
X'i(5<Siim) # Xj(s>8jm)  form=1,2, .. M (2.3)
Accordingly, the segments from trajectories x'; and X'; between intersections
"m" and "m+1" designate two unique arcs which are combined to define the
Jordan curve, Jjim:
Jiim = X{(Sin<5<Simer) Y X{Sim<S<Sjms1) (2.4)
The region interior to the Jordan curve Jjjm is designated by Rijim.
22.2. Passing an Obstacle on the Same Side
To ensure that the interior region of Ry;n, is obstacle free, it is necessary that
the demonstrator uses the same strategy of avoiding obstacles in all the
demonstrations. In the example shown in Figure 2.2 where y=f(x), a
consistent strategy is defined as always passing above or always passing
below an obstacle. For the general case of 2D translation, a corresponding
definition is required, which is developed with the use of a test line.

For each obstacle a test line can be constructed, as shown in Figure 2.3, to
determine if any point on the obstacle is inside the region defined by the
Jordan curve. The test line is a straight line of infinite length that passes
through any point on the obstacle in question and is selected so that it does
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not intersect the Jordan curve at a vertex at a tangent. The test line is divided
into sides A and B from a point on the obstacle, depicted by the cross mark
in Figure 2.3. The number of times a trajectory x'i(s) intersects side A and
side B of the test line is designated by Ta; and Tp;. A consistent strategy of
avoiding obstacles is defined by assumption 5.

Assumption 5: If the value of Ta; is odd for one demonstration then it is
odd for all demonstrations, and if it is even for one demonstration then it is
even for all demonstrations. Similarly for side B and Tg;.

The proof that the interior of Rijjim is obstacle free follows from lemma 2. At
an infinite distance from the obstacle, side A of the test line is on the exterior
of Rjjim. As the test line approaches the obstacle and intersects the Jordan
curve, it switches to the interior of Rjjm, and then back to the exterior on the
next intersection. If the obstacle is on the exterior of Rjjm, then there will be
an even number of intersections between the Jordan curve and side A of the
test line. The number of intersection between Ji;i, and side A of the test line
is designated by Ta;; and is the sum of the intersections Ta; and Ta;. As
shown in the following equation, the value of Ta;; will always be even as
long as assumption S is valid.

even + even

Any point on the obstacle that is also on the test line is guaranteed to be on
the exterior of the Rjjm. It can also be shown that all other points on the same
continuous obstacle are also exterior to Rjjm. Given that point 1 on the
obstacle is known to be exterior to Rjjm, we assume that point 2 on the
obstacle is interior to Rijjim, and then show that this violates previous
assumptions. In a continuous obstacle, points 1 and 2 can be connected with
a line that stays within the obstacle, which is designated by the line Oj».
Since the line Oy starts on the exterior and ends on the interior of Rjjm, it
will intersect the Jordan curve Jijim indicating that at the point of intersection
Jiym is in the obstacle. However, according to assumptions 2 and 3, the
trajectories that compose Jijm are obstacle free. Thus, line O;2 cannot exist
and point 2 along with all other points on the obstacle are exterior to Rjjim.

odd + odd
Ty =Ty + Ty = or =even 2.5)

The test line is an analytical tool used to prove that the region Rjjiy is
obstacle free. However, in practice the demonstrator is not required to
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evaluate their trajectories relative to test lines or be familiar with the details
of the preceding proof. Assumption § is indeed quite similar to the intuitive
assumption used for the simple case shown in Figure 2.2, of always passing
above or always passing below a given obstacle. Typically it is sufficient to
request of the demonstrator to "to use the same strategy of avoiding
obstacles in all demonstrations" These instructions are intuitive, and in our
experience the resulting demonstrations do not violate any of the
assumptions.
2.23. Constructing the Obstacle Free Region

The preceding proof shows that any individual Jordan curve defined from
segments of demonstration trajectories has an obstacle free interior. To show
that the union of all Jordan curves generated from two demonstrations are
also obstacle free, a final assumption is required.

Assumption 6: Once a trajectory forms a Jordan curve by intersecting with -
another trajectory, it does not re-enter the region of that Jordan curve.
Specifically,

X{(8>8) "Ry =D (2.6)

The proof that the region defined by a single Jordan curve is obstacle free is
based on the fact that the test line switches from interior to exterior at every
intersection with the curve. If the regions from two Jordan curves overlap,
then an intersection with a test line may occur that simply switches from the
interior of one Jordan curve to the interior of the other one. However,
assumption 6 eliminates this possibility. Thus the sequence of regions Rjjim
for m=1,2,...M are guaranteed to be obstacle free using the same argument
presented for an individual region.

The obstacle free regions identified from one pair of demonstrations can be
determined by finding the intersections between the trajectories. Combining
the obstacle free regions from all possible pair combinations result in the
obstacle free region, Rr. The procedure used to define the boundaries of Rg
is presented in the following steps with references to figure 2.4.
Implementation requires finding the intersection points between trajectories,
which is implemented using the sweep line algorithm [Latombe 1991].
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demo 1

Figure 2.4: Identifying an Obstacle Free Region
The first two demonstrations define the initial region Rg. Additional demonstrations
extend the boundaries with the segments that are exterior to Rg as shown by the solid
segments of demonstration 3.
* Average the beginning and ending position of each trajectory to find the
starting and target positions. Append segments to each trajectory so they
all start and end at common positions.

e Find the intersections within the individual trajectories and remove the
loops as explained in equation 2 to define the modified trajectories x';.

e Use the first two demonstration trajectories, x'; and x', to define initial
boundaries of the obstacle free region, Rg;. The boundaries of the region
can be divided into a right and left side, which begin at the starting point
and end at the target point. The interior of Rp; is on the right of the left
boundary and vice versa. If x'; starts off as the right side, then at the first
intersection between the trajectories x'; switches to the right and x';
switches to the left. A single test line is used to identify the right and left
boundaries at one location. The complete right and left sides are defined
by switching between the trajectories at every subsequent and preceding
intersections. .

e An additional demonstration can extend the boundaries of the obstacle
free region with segments that are external to Rg;, as shown in figure 2.4.
The intersections between the new trajectory and the right and left
boundaries of Rr; are found. The new trajectory switches between interior
and exterior of Ry; at every intersection with the boundaries. The new
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trajectory starts on the interior of Rgy; if its first segment of the trajectory
is on the interior of the vertex at the starting position. Thus, by keeping
track of the intersections and the starting direction of the new trajectory,
the segments that are exterior to Rg; can be found. These segments define
new boundaries of the obstacle free region. The region Ry is redefined to
incorporate the new obstacle free region.

* Repeat the previous step for all the trajectories. Define the final region
RF; as the obstacle free region Rf.
224. Shortest robot path

To generate a robot program it is necessary to determine a path within the
obstacle free region identified by the demonstrated trajectories, from the
starting position to the target. A number of methods have been developed to
generate trajectories given a model indicating obstacle location. A
comprehensive review of these methods is presented by Latombe [1991].
The objective of some methods is to identify the shortest path, while others
identify the shortest time trajectory by incorporating robot dynamics, or
maximize the clearance between the robot and the obstacles. In this section a
method is presented to generate the shortest path, which has been
specifically adapted for use with PHD. However, the advantage of the
approach presented in this paper is that the demonstrations define a range of
obstacle free trajectories. Determining the shortest path represents a single
use of this region. Depending on one's application one may choose to apply
other methods for selecting a path within the obstacle free region.

The obstacle free region generated from the demonstrations is a polygon,
since the trajectories are generated from linear interpolation of sampled data
points. The problem of identifying a shortest path for 2D translation with
polygonal obstacles has been solved using the Visibility Graph method
[Latombe 1991]. This method can also be applied to our case by simply
designating the exterior of the obstacle free polygon as a virtual polygonal
obstacle.

The Visibility Graph method is based on the fact that the shortest path must
also be locally the shortest. Accordingly, at any location at which the
curvature of the shortest path is not zero, an obstacle must exist on the
concave side of the curved trajectory. Otherwise, a locally shorter path could



be generated with a straight line segment. A result of this reasoning is that
for polygonal obstacles the shortest path is a piecewise linear path, and the
edges in the path all occur at vertices on the obstacles. Since there are a
finite number of vertices on a set of polygonal obstacles it is possible to
search all combinations to identify the shortest path.

An alternate method for identifying the shortest robot path is presented here
that avoids the need for an exhaustive search. This method takes advantage
of the fact that the obstacle free region is a single polygon in which both the
starting and target points are vertices of the polygon. The procedure for
finding the shortest path is presented and then the proof is provided that the
resulting path is indeed the shortest.

The following steps present the algorithm for determining the shortest path
within the polygon region Rg, and an example is shown in Figure 2.5.

1. Define the start and target positions, Pstart and Prarget, as the average of
the demonstration starting and ending positions. Set the beginning
position of the current segment, Ppeg, t0 Pstart. Divide the polygon border
into two at the starting and target points, defining a right and left side.

2. Guess an initial direction of a straight line that departs the starting point.

3. Evaluate the proposed straight line segment, and find which side of the
boundary it intersects first (for example the right side in Figure 2.5).

4. Propose a new line, by either incrementing or decrementing the slope of
the previous line in the direction towards the opposite side found in step
3. Evaluate this line and continue modifying the slope until a line is found
that is limited by the side opposite that of step 3. Eventually both "right"
and "left" lines are found.

5. Select a new line between the right and left by dividing the angle between
them. Evaluate this line, and replace the previous "right" or "left" line
according to the side of the new line.

6. Repeat the previous step until both the right and left lines converge,
which is indicated when the angle between them is less than a desired
accuracy threshold. A robot path segment is defined in the direction of
convergence with a length of the shorter of the right and left lines.
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7. Define a new beginning point, ppeg, at the end of the previous robot
segment. Repeat the above steps to find the next robot segment, starting
at step 2. The shortest path is completed when the target can be reached
with an obstacle free straight line from the starting point of the previous
segment.

direction of the first
segment

target

Figure 2.5: Shortest Robot Trajectory
The direction of each segment of the shortest path is selected so that if it was extended
within the obstacle free region, Rg, it would intersect both the right and left side. All other
directions are not locally the shortest.

The proof that the preceding procedure identifies the shortest valid robot
path is based on the fact that the shortest path must at all points also be
locally the shortest. Consider a potential first segment that intersects the
boundary of the obstacle free region, RF, on the right side, represented by
line A in Figure 2.5. Region R, is defined by line A and a section of the
right boundary of RF. Since the target is outside R, a path to the target that
includes line A must exit region Ro. However, a line from region R4 to the
target will intersect line B. Between this intersection point and the starting
position the shortest line is along line B, and thus line A is not locally the
shortest. In general, for any line whose interior segment intercepts only the
right or left side, there will exist another line that is locally shorter.

The procedure for converging on a line that intersects both the right and left
side identifies the only direction that is not excluded from being the shortest
path. The length of the shortest path segment is selected so that it ends at
whatever side of the polygon it intersects first, since once the path intersects
the boundary of the polygon it is a potential edge point on the shortest path.
Accordingly, a new line segment is started at that point and the procedure to
identify the direction of the shortest path is repeated.



2.2.5. Buffer Between Robot and Obstacles

An alternative to identifying the shortest path in the obstacle free region, is
to identify a path that contains a buffer between the robot and boundary of
the obstacle free region. The buffer ensures obstacle avoidance, even in the
presence of robot error, as long as the robot error is less than the buffer. Of
course the buffer cannot be wider than the narrowest part of the obstacle free
region.

One method to implement a buffer would be to move the right and left
boundaries toward each other; thereby defining a smaller obstacle free
region. The shortest robot path could then be defined within the smaller
obstacle free region. A more convenient method for implementing a buffer is
presented in Appendix HI.

With either method, the width of the obstacle free region reduces to zero at
the start and target points. However, these points were defined from an
average of demonstration trajectories. Therefore, a robot error is permissible
at the start and end of the trajectory as long as it does not exceed the
variation at the beginning and end of the demonstrations.

2.3. Experimental Results

An example planar translational task was performed, which consisted of
moving a sphere between obstacles as shown in Figure 2.6. The task was
demonstrated using the teaching interface shown in Figure 1.1, for a total of
ten demonstrations. The demonstrator was asked to perform the task in a
consistent fashion by passing all obstacles on the same side, yet not to worry
about unnecessary motion. The demonstrator performs the task with their
eyes open, since no adaptation to the environment is possible. The part was
grasped continually throughout the task.

Details of the design of the teaching gripper is presented by Pinkney[1993].
To ensure that both the part and the robot gripper avoided obstacles, the
teaching gripper was designed with the same shape gripping surfaces and
approximately the same overall shape as the robot gripper. The position of
the teaching gripper was measured with an ultrasonic sensor developed by
the Logitech Corporation, which allows relatively unencumbered human
motion. The sensor has three stationary speakers which transmit to three
receivers mounted on the teaching gripper. Through triangulation the
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position and orientation of the gripper are measured. The accuracy of the
sensor claimed by the manufacture is 2% of the distance between the
transmitter and the receivers, which for the example task consisted of +2mm.
A coordinate system transformation was performed from the position sensor
to the center of the sphere, using the sensor orientation information. Each
demonstration trajectory, xj(s) is defined in terms of motion at the sphere
center.
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Figure 2.6 : 2D Experimental Results

The range of human inconsistency is used to improve robot performance by generating a
robot trajectory is shorter than any of the demonstrations and that has a buffer with the
obstacles.

The technique for finding the shortest path presented in the previous section
was used with a buffer of 2.5mm. The average distance of the human
demonstrations was 547mm and the minimum was 507mm. The robot
trajectory, shown in Figure 2.6, has a distance of 449mm. Thus, the robot
travel distance was reduced by almost 20% relative to the average
demonstration and by over 10% from the shortest demonstration.
Furthermore, the robot trajectory does not contain the unnecessary motion or

"wiggles" present in the human motion.

The task was implement by a Mitsubishi Movemaster robot, shown in Figure
2.7, without contacting the obstacles. The robot has five degrees of freedom,
and is controlled by specifying a sequence of end effector positions in the
robot coordinate system. To perform the coordinate system transformation
between the robot and the teaching gripper, an additional position receiver
was mounted on the robot gripper. An automatic calibration procedure was
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i 2.7: Mitsubishi Movemaster Robot and sonic Position Sensor
An ultrasonic receiver measures the position (translation and orientation) of the teaching
gripper and robot gripper. The position of the robot gripper is also measured by sensors at
the robot joints. The redundant position measurement allows automatic calibration
between the robot and ultrasonic sensor coordinate system. (This figure has been
provided by Cheng-Jung Chiu.)
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developed by Cheng-Jung Chiu [1994] which moved the robot through a
series of positions defined in the robot coordinate system, and measured the
same positions in the coordinate system of the ultrasonic position sensor.
The robot trajectory shown in Figure 2.6, was specified by defining the
position at the beginning and end of each straight line segment. The robot
controller generated the trajectory of each straight line segment by passing
thorough the beginning, and ending points, as well as two intermediate
points. The repeatability of the robot according to the manufacture is
+0.1mm.

2.3.1. Discussion

The presence of inconsistent human variation is used to improve robot
performance. The robot trajectory in Figure 2.6 is shorter than any of the
demonstrated trajectories and does not contain unnecessary motion Or
"wiggles" present in the human motion. As more demonstrations are
performed, the size of the region identified as obstacle free increases, and the
length of the robot path is decreased. Additional demonstrations correspond
to an increase in information about the region of allowable motion. After a
certain number of demonstrations have been performed, most additional
demonstrations will remain inside the previously defined obstacle free
region and not contribute new information about the task.

A limitation of the proposed method is that it does not consider interference
between the robot arm and the environment. However, during our
experiments we did not encounter any collisions or near collisions between
the robot arm and the environment. Our experience concurs with the
conclusions presented by Lozano-Pérez et al. [1992], which indicated that
most potential collisions and analytical difficulties occur in close proximity
to the part being manipulated and the gripper.

2.4. Conclusion

In this chapter pick and place tasks are addressed which do not require
adaptation to the environment. A method is presented that generates a robot
trajectory from observation of multiple human demonstrations. The robot
trajectory is guaranteed to avoid obstacles, yet does not contain undesirable
components of the human demonstrations such as "wiggles" or vibrations.
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Since there is no variation in the environment, all human variation between
demonstrations is interpreted as inconsistency. However, human
inconsistency is not necessarily undesirable, and need not be eliminated
from the analysis, but provides information regarding the task requirements.
Human inconsistency is used to identify a region of acceptable robot motion.
Components of motion that are present in all demonstrations results in a
section where the obstacle free region is narrow, and thereby transfer that
motion to the robot. However, a wide section of the obstacle free region
indicates that human accuracy is not high, and therefore the robot accuracy
does not need to be high in that section.

The region of obstacle free motion defined from human inconsistency,
identifies conditions sufficient to guarantee robot success. It is not necessary
that the robot remain in the region bounded by the demonstrated trajectories.
Indeed, if one had a model of the obstacle locations one could identify
alternate obstacle free paths to the target that are outside the demonstrated
region. However, the PHD approach uses only information from the
demonstration data, and therefore identifies conditions sufficient to
guarantee robot success.

The obstacle free region identified from human inconsistency provides a
number of advantages: obstacle avoidance can be guaranteed without
knowledge of the obstacle locations, a buffer can used to avoid obstacles in
the presence of robot error, unnecessary vibrations can be removed from the
robot motion, the human does not feel pressured to perform the ‘perfect’
demonstration, and robot performance can be higher than any of the
demonstrations in terms of the distance traveled.
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CHAPTER 3

Constrained Motion
And

Adaptation To Workpiece Misalignment

3.1. Introduction

The goal of an assembly task is to place a part in a desired location relative
to another part. Assembly usually consists of moving one part until it
contacts the other part, and then continuing the motion while maintaining
contact between the parts. For example when assembling a lid onto a box,
the 1id is brought into contact with the top of the box, and then aligned and
pressed into place while contact with the box is maintained. The motion
until contact is referred to as unconstrained motion, and moving a part
while it is in contact with an object in the environment is referred to a
constrained motion. In the previous chapter unconstrained motion was
analyzed, and an obstacle free trajectory was identified. To complete the
analysis, this chapter applies PHD to constrained motion. In constrained
motion it is necessary for the manipulator (human or robot) to adapt to the
environment. Otherwise, any misalignment of the parts could result in
improper assembly and excessive contact forces that could damage the
parts. In this chapter human demonstrations are used to identify a robot
controller for constrained motion that can adapt to variations in the
environment.
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In the analysis of unconstrained motion, presented in Chapter 2, human
inconsistency is used to identify a range of acceptable motion. This
approach is extended in this chapter to the case of constrained motion. To
successfully implement an assembly task it is not necessary to specify an
exact position and force trajectory, rather the demonstrations identify a
range of acceptable positions, magnitudes of force, and directions force.

In the analysis of unconstrained motion there was no variation in the
environment, and thus all the human variation corresponded to
inconsistency. However, in the constrained case human motion contains
both adaptation and inconsistency. Accordingly, a method is presented in
this chapter to distinguish between human adaptation and inconsistency.
Human adaptation is used to identify necessary robot adaptation, and human
inconsistency identifies the robot accuracy required for position and force.

The analysis in this thesis is applied to 3D translation. To eliminate the
effect of rotation it is assumed that the part being moved is a sphere. The
objective of the task is to place the sphere in a desired location relative to
the workpiece. It is further assumed that the surfaces of the workpiece are
flat, i.e. the workpiece is a polyhedral. These tasks are referred to as
contact tasks, and represent simplified assembly. An example contact task is
shown in Figure 3.1. The workpiece remains stationary during the task, yet
each time the task is performed its location (translation and orientation)
may vary, corresponding to part misalignment on an assembly line.
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To generate a successful robot program using the PHD approach, it is
necessary to capture how the human adapts to variations in the
environment. Accordingly, the programmer demonstrates the task a
number of times, while small variations in workpiece location are
introduced between the demonstrations. The demonstrator is restricted to
using only sensory information that is also available to the robot. In this
thesis the emphasis is on the use of position and force information, and the
robot is not equipped with a vision system. Accordingly, the demonstrator
closes their eyes during the demonstration!. This approach ensures that the
sensory information available to the robot is sufficient to adapt to the
environment and perform the task successfully.

To facilitate the analysis, each task is segmented into a sequence of
subtasks. The method for segmenting the demonstration trajectory into a
sequence of subtasks, is presented in Chapter 4. In most cases each subtask
corresponds to a single contact state, where a contact state is defined by the
surfaces of the workpiece in contact with the sphere. However in certain
circumstance a contact state transition cannot be detected from the
demonstration data, and a subtask consists of two contact state. However, it
is shown in Chapter 4 that for such cases, the robot controller can be
specified as if the motion was within a single contact state. This chapter
addresses motion in a single contact state, and thus for the analysis of this
chapter it is assumed that each subtask consists of a single contact state.

As indicated in the introductory chapter, the scope of this thesis is limited
to tasks which can be demonstrated by moving the part through the same
sequence of contact states each time the task is repeated. Therefore, the
robot can execute the task if a robot controller is specified that can
implemented each contact state, and if the robot can switch from one
contact state to the next. Chapter 5 identifies subtask termination conditions
that allow the robot to detect completion of motion in one contact state and
switches to the next.

1 Due to the inconvenience of demonstrating a task with one's eyes closed, the use of
vision is allowed when it is not used to adapt to variations in the environment. One such
case is where adaptation only occurs during the fine motion part of the task, and thus the
use of vision is allowed during gross motion.
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The objective of this chapter is to identify a robot controller that can
perform motion within a single contact state, as long as workpiece
misalignment is not larger than that encountered during the
demonstrations. To avoid excessive contact forces, a robot compliance
controller is used, in which the robot reacts with the environment like a
spring. If the robot stiffness is too high excessive contact forces could
occur, yet if the stiffness is to low excessive position errors could occur
due to disturbances from workpiece misalignment and friction. The
analysis identifies a range of robot compliance appropriate for the task, for
which the robot errors do not exceed the range of acceptable position and
force errors identified from human inconsistency.
3.1.1. Problem Definition

In this chapter human demonstration data is used to determine a robot
controller, including both trajectory and compliance, that successfully
performs motion within a given contact state, as long as workpiece
misalignment is not larger than during the demonstration. Successful
implementation of a complete contact task requires that the part be placed
in a desired location relative to the workpiece, without generating excessive
contact forces that may damage the parts. To implement motion within a
single contact state, the requirements are defined more specifically as the
following conditions.

* Reach the target position of the current contact state, while avoiding
obstacles on the constraint surface.

e Maintain contact with the same constraint surfaces throughout the
motion.

e Avoid damage to the parts by limiting the robot contact forces to less
than the maximum demonstrated human contact force.

The target position for a single contact state is the position where the part
moves to the next contact state. A robot controller that can successfully
implement motion within each contact state as well as switch between
contact states, will be able to implement the same sequence of contact states
as the human, and thus complete the task.

For the case of 3D translation there exists two possible configurations for
constrained motion, as shown in Figure 3.2: a single direction of constraint
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and two directions of constraint. When the part is constrained in three
directions, no translation is possible.

a. Single direction of constraint b. Two directions of constraint

Figure 3.2: Two Possibl nstraint Configurations for 3D Translation

The nature of constrained motion was formalized by Mason [1981]. When a
part is constrained with a single constraint surface, there remains two
direction of admissible motion tangential to the surface. In this
configuration the constraint force (the component that does not include
friction) is normal to the surface and its direction is completely defined by
the constraint. Accordingly, the position trajectory on the constraint
surface may vary between the demonstrations as shown in Figure 3.3. Here
obstacles on the surface include any geometric location that would result in
an undesirable change in the contact state. In Figure 3.3 the demonstrated
trajectories circumvent a "hole" obstacle to avoid dropping off the surface.
The demonstrated trajectories define a region of obstacle free motion on
the workpiece surface similar to the one identified in Chapter 2 for
unconstrained motion. However, here the obstacle free region is relative to
the workpiece surface, whose location varies between demonstrations.

contact state
target

demonstrated trajectories
relative to the workpiece

The demonstrations define an obstacle free region relative to the workpiece surface.
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If the sphere traced its path along the workpiece, then the obstacle free
region would be drawn on the workpiece as it is in Figure 3.3. However,
the human motion is measured by the teaching gripper in an absolute
coordinate system. The measured human motion contains both adaptation
necessary to maintain contact with the surface, and unnecessary human
motion which defines the width of the obstacle free region. The analysis in
this chapter distinguishes between human adaptation to workpiece
misalignment and unnecessary motion. The results are used to identify an
obstacle free region relative to the workpiece surface, and the range of
workpiece misalignment.

In a contact state with two constraints there exists only a single degree of
freedom in the direction of motion, as shown in Figure 3.2. Accordingly
the direction of motion is completely defined by the workpiece; there is no
error in the direction of motion and thus obstacle avoidance is not an issue.
However, to successfully implement motion with two constraints it is
necessary to maintain contact with both surfaces. Here there are two
degrees of freedom in direction on the constraint force. As long as the
force remains in the region of acceptable force directions, as shown in
Figure 3.4, the desired contact state will be maintained.

workpiece
demonstrated / \ region of acceptable
directions of force force directions
4: Cros n of Tw i nfi ion
The demonstrated forces identify a region of acceptable force du'ectlons that ensure contact
with both surfaces is maintained

Unnecessary human variation in force direction is used to identify a region
of acceptable force directions, by extending the method presented in
Chapter 2 for utilizing human inconsistency in position. As the
demonstrator performs motion constrained by two surfaces, the direction
of force can vary with motion along the surfaces and between
demonstrations, as indicated by the force vectors in Figure 3.4.
Nevertheless, the human successfully maintains contact with both surfaces
for the range of applied forces, and thus human variation in force direction
does not effect task performance. Accordingly, the human variation and
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identifies the region of acceptable forces shown in Figure 3.4. In this
chapter, a region of acceptable force directions is identified, and a robot
controller is specified that maintains the constraint force to be within this
region.

The layout of this chapter combines different components of analysis which
are integrated together to specify an appropriate robot controller. The first
is presented in Section 3.2 where a method is presented to distinguish
between human adaptation and inconsistency. A simplified 2D example of
the analysis is presented in Section 3.3. The approach is then applied to 3D
in Section 3.4, where ranges of acceptable motion and force are defined
from human inconsistency, and the range of necessary robot adaptation is
identified from the human adaptation. In Section 3.5 a robot controller is
specified that can adapt to the workpiece misalignments, without exceeding
the range of acceptable motion and force. The controller is specified in
terms of robot compliance and trajectory. It is shown that the robot will
succeed regardless of whether there are one or two constraints surfaces,
and thus a model of the workpiece geometry is not required in the analysis.
In Section 3.6 experimental results are presented, and the analysis is
summarized in Section 3.7.
3.1.2. Assumptions

The assumptions used in the analysis are consolidated here for purposes of
completeness. The first four assumptions are in regards to the task, and the
remaining assumptions refer to how the human demonstrates the task.

Jask

1. The task objective is to place a part on the target region of a
workpiece, without damaging the parts with excessive forces.
Required motion of the part consists of translation, but not rotation.

2. The workpiece is a rigid polyhedral and is stationary throughout the
task.

3. The part is a rigid sphere and is held by the gripper without slip.

4. Random misalignments in the workpiece position and orientation
occur between demonstrations.
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Human Demonstrations

et

10.

The demonstrator performs the task successfully using only position
and force information. The demonstrator is successful throughout the
range of workpiece misalignment. Accordingly, the success does not
rely on coincidental (i.e. lucky) motion that happens to corresponds to
workpiece misalignment. Rather the demonstrator adapts to the
environment by using sensory information.

The demonstrator uses the same manipulation strategy each time the
task is performed. Specifically, in each demonstration the
demonstrator:

*  Avoids obstacles by passing them on the same side.
o  Uses the same sequence of contact states.

While performing motion within a contact state, the demonstrator does -
not use information acquired during previous contact states?

The demonstration is performed quasi-staticaly and thus dynamic
forces can be neglected.

Only geometric features of the workpiece are used to adapt to
misalignments, and not variations in surface roughness.

The teaching device sensors are accurate enough to detect the
geometric features that the human uses.

3.1.3. Background

It is recognized that to perform assembly operations reliably it is necessary
to adapt to part misalignment. A number of model based methods have
been implemented which utilize a detailed model of the part geometry as
well as knowledge of the range of variation in part location. A common
approach is to specify the robot's impedance, so that the manipulator reacts
with the environment as spring or a damper. Whitney [1982] presents a
compliance controller for the task of inserting a peg into a hole. Whitney

2 1t is not possible to restrict the human from using previously acquired information.
Nevertheless, in model based robot programming significant adaptation to the environment
can be implemented using only information from the current contact state, as is illustrated
by Lozano-Pérez, Mason, and Taylor [1984]. Here we assume that the human uses a
similar adaptation technique.
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[1977], Lozano-Pérez, Mason, and Taylor [1984], and Schimmels and
Peshkin [1992] present methods of using damping control for assembly
operations. A limiting factor in the use of model based methods is their
analytical difficulty and the lack of an algorithm that can be applied to
arbitrary part geometry. An additional difficult with model based methods
is that inaccuracies in the model often require fine tuning of the robot
program.

Due to the difficulties of model based methods, the use of human
demonstration data has been recognized as an alternative. Asada and Izumi
[1987] use human demonstration data exclusively to identify both a robot
trajectory and a hybrid force/position controller to perform 3D contact
tasks. A difficulty addressed by Asada and Izumi is that a single
measurement of force and motion directions is not sufficient to identify the
directions of admissible motion and force, which is required by a hybrid
controller. Thus, to implement the controller it is assumed that the
constraint surfaces are perpendicular to each other and that each contact
state transition can only add a constraint, which limits possible workpiece
geometries. Asada and Izumi [1987] originate the objective of generating
both a robot trajectory and controller exclusively from demonstration data.
The analysis in this chapter incorporates this objective and extends the
analysis by allowing workpiece geometries with arbitrary surface
orientations, and by allowing the number of constraints can increase or
decrease at each contact state transition throughout the task. In addition,
here the analysis explicitly evaluates the effect of misalignment in
workpiece orientation, which was not done in the previous analysis.

Another method of using human demonstration data is through observation
with a vision system [Kuniyoshi, Inaba, and Inoue 1992; Ikeuchi, Kawade,
and Suehiro 1993]. A limitation of this approach is that forces used by the
human are not measured, which may contain a significant component of the
manipulation strategy especially during constrained motion. Accordingly,
Ikeuchi et al. implement detailed constrained motion by supplementing the
demonstration data with model based knowledge. In contrast, the approach
presented here uses only the demonstration data to specify all aspects of the
robot program, including the details of the force and position control.
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Liu and Asada [1992] use human demonstration data for the task of
automating a grinding task for the purposes of deburring. They present a
method of identifying how the human adapts to the environment and
transfer these skills to the robot. In their approach, inconsistent human
motion is identified and removed from the analysis. An alternative
approach of interpreting human motion is presented here, whereby human
inconsistency is not interpreted as noise that should be eliminated from the
analysis, but provides information regarding the position and force
accuracy requirements for the task.

One of the difficulties of interpreting human demonstration data is that the
internal model of how the human controls their motion is not known. Some
research approaches have made assumptions regarding the method of
human control, yet these methods have lead to unreliable results when the
demonstrated actions do not coincide with the model. Takahashi, Ogata,
and Moto [1993] present a method for segmenting a task into subtasks by
identifying when the human slows down, yet the demonstrator does not
consistently slow down at the same locations in all demonstrations. Delson
and West [1992] present a method that assumes that the demonstrator uses
compliance control and performs each demonstration using the same
compliance and reference trajectory, yet this method did not provide
reliable results. To address this difficulty, the approach presented here does
not rely on a model of how the human implements the position and force
control of their arm. Instead, the demonstration data is used to identify
sufficient conditions for task success, and then a robot controller is
specified that can achieve these conditions.

3.2. Distinguishing Between Adaptation and Inconsistency

In the obstacle avoidance analysis in Chapter 2, the demonstrator repeats
the same task with no variation in the environment. In that case, variation
between demonstrations is unnecessary for task performance and is
interpreted as human inconsistency. However, when a demonstrator
performs contact tasks they adapt to workpiece misalignment, which is
essential for task success. While the human is adapting, their motion also
contains some unnecessary motion. Accordingly, demonstrations of contact
tasks contain both human adaptation and inconsistency. To implement PHD
and generate a robot program, human adaptation is distinguished from
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inconsistency. Identifying human adaptation enables us to develop a robot
controller that can also adapt to the environment. Furthermore, identifying
human inconsistency provides information regarding the accuracy
requirements for the task, as in the case of obstacle avoidance. To
distinguish between human adaptation and inconsistency, the following
theorem is presented:

Theorem I

The demonstrator varies their position and force trajectories each
time the task is performed. Human variations that are geometrically
equivalent to detectable workpiece misalignment, are interpreted as
adaptation to the environment. All other variations are unnecessary
for task success, and are interpreted as human inconsistency.

The justification for this theorem is based on causality. The human can
only adapt to variations in the environment that they detect through their
sensory channels. For an arbitrary task it may be quite difficult to
determine how the human uses sensory information. However, for the case
of assembly or a contact task, the adaptation strategy can be defined in
specific geometric terms. The task objective is to place the part in a desired
position relative to the workpiece. Accordingly, we assume that a
"perfectly consistent" demonstrator would attempt to generate the same
trajectory relative to the workpiece in all demonstrations. Whenever, a
"perfectly consistent” demonstrator detects workpiece misalignment, they
modify the part trajectory to geometrically correspond to the detected
workpiece position. In actuality the demonstrated motion contains both
"perfectly consistent” adaptation and unnecessary motion. The above
theorem distinguishes between the two by correlating adaptation to
detectable workpiece misalignment.

Adaptation is based on detectable workpiece misalignment, which is not
equivalent to actual misalignment. Accordingly, the first step in the analysis
is to extract from the sensor measurements the information which indicates
the workpiece position. For example, as the part is moved across a
workpiece surface certain directions of workpiece orientation can be
identified while other directions cannot be discerned. Indeed, no
information is available prior to contact with the workpiece. In Section 3.4

63



which addresses 3D translation, the directions of detectable and
undetectable directions of motion are presented. The demonstrator cannot
adapt to misalignments that are undetectable, nevertheless they consistently
succeed at performing the task. Accordingly, it is not necessary for the
robot to adapt to these undetectable misalignments either.

To illustrate how the theorem is applied, a simplified example is presented
in the following section by limiting the analysis to 2D translation.
Adaptation is distinguished from inconsistency, and the results are used to
specify sufficient conditions for robot success. This approach is then
extended to the 3D case in Section 3.4.

3.3. 2D Translation

An example of a contact task consisting of 2D translation is shown in
Figure 3.6a. The first part of the task consists of moving the part in
unconstrained motion until it contacts a constraint surface, while avoiding
the obstacle. The second part of the task consists of constrained motion
along a workpiece surface. 2D translation is significantly simpler than 3D
translation, since once motion is constrained there remains only one degree
of freedom. Thus the directions of motion force are completely defined by
the constraint surface. As will be shown, this attribute is used in this
example to simplify the distinction between adaptation and inconsistency.
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The task objective is to move the round part to the target in tllxcc workpiece comner using only
position and force information. Variations between demonstrated trajectories are interpreted
as due to human inconsistency during unconstrained motion, and due to workpiece
misalignment during constrained motion.

The trajectories from multiple demonstrations are illustrated in Figure
3.6b; the constraint force without friction is depicted by the force vectors
and the dotted outlines indicate the workpiece misalignment. During the
unconstrained portion of the task, the demonstrator has no information
regarding workpiece misalignment. Nevertheless, the demonstrator is able
to avoid the obstacle by providing a sufficient margin from the nominal
obstacle location. The demonstrated trajectories during unconstrained
motion define an obstacle free region similar to the region defined with
stationary obstacles, in Chapter 2. As long as the workpiece misalignment
is not larger than during the demonstrations, obstacle avoidance can be
guaranteed with a robot trajectory that remains within the region bounded

by the demonstrated trajectories.

Variations between demonstrations in sections of unconstrained motion are
attributed to human inconsistency. During unconstrained motion no
information regarding workpiece location is available, and thus there is no
reason for the human to vary their motion from one demonstration to the
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next. Indeed the causal relationship between sensory information and
intentional adaptation indicates that it is impossible for these variations to
correspond to adaptation to the environment. Accordingly, these variations
are unnecessary for task success, and the region bounded by demonstrated
trajectories represents a range of acceptable robot motion. As in Chapter 2,
human inconsistency can be used to remove unnecessary robot motion and
provide a buffer from the obstacles in case of robot error.

In one respect, obstacle avoidance differs in this case from the case of
stationary obstacles presented in Chapter 2. Here the obstacle location
varies with the workpiece, yet the demonstrations which define the obstacle
free region are measured relative to a fixed coordinate system.
Guaranteeing that the region bounded by the demonstrations is obstacle
free, relies on assumption 5, which indicates that the demonstrator is
successful in all demonstrations. One could imagine a single demonstration -
where an obstacle is avoided only through luck. For example a
demonstration that passed through the nominal location of the obstacle
could succeed if during that specific demonstration workpiece
misalignment coincidentally moved the obstacle away from that location in
an appropriate direction. A region define from such a 'lucky' trajectory
would not always be obstacle free. However, such a demonstrator would
eventually hit an obstacle when their luck runs out in one of the
demonstrations. On the other hand, the trajectories from a demonstrator
that is consistently successful, will lie outside of the region in which the
obstacle could occur even when there is misalignment. The fact that the
demonstrator can repeatedly avoid the obstacle indicates that the obstacle
misalignments are small enough so that no adaptation to their position is
required, and that the region bounded by the demonstrations is obstacle
free. In conclusion, the demonstrator cannot adapt to undetectable
misalignment, yet if the demonstrations are consistently successful then a
robot does not need to adapt to these undetectable misalignments either.

In the second section of the task in Figure 3.6, the part is constrained by
the workpiece. Here the direction of motion is defined by the constraint
surface, and thus variation between demonstrations are due to workpiece
misalignment. These variations are treated differently than the variations in
unconstrained motion that are due to human inconsistency. By measuring
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the range of variation in direction of constrained motion, it is possible to
identify the range of workpiece misalignment. The fact that the
demonstrator maintains contact with the surface, indicates that the human
adapts to the environment by modifying their trajectory in a direction
geometrically equivalent to the workpiece misalignment. The human may
perform this level of adaptation subconsciously, however this type of
adaptation is explicitly required when programming a robot to perform a

contact task. A successful robot controller is required to adapt to the range
of workpiece misalignment, which is identified from the human adaptation,

by maintaining contact with the constraint surface and avoiding excessive
contact forces.

In 2D translation, distinguishing between adaptation and inconsistency is
simple. During unconstrained motion all variations between demonstrations
correspond to inconsistency, while during constrained motion all variations
correspond to workpiece misalignment. A robot program for the example
task of Figure 3.6 can be specified as the following:

1. Move from the starting position to the constraint surface while
staying in the obstacle free region defined by the unconstrained
sections of demonstrated trajectories.

2. Detect when contact with the constraint surface occurs.

3. Slide along the constraint surface to the left. Maintain contact
with the surface and avoid excessive contact forces, despite
workpiece orientation misalignment.

The first step can be implemented using techniques presented in Chapter 2;
a robot trajectory is generated within the obstacle free region and
implemented with position control. Implementing the second step requires
detection of subtask termination conditions, which is addressed in Chapter
5. The third step, however, is the subject of this chapter, and requires
specifying a robot controller for constrained motion that can adapt to
workpiece misalignment.

The human can implement constrained motion in a number of ways that
range from maintaining a constant force to controlling the impedance of
their arm. In our approach we do not attempt to duplicate the internal
control method the human uses for constrained motion, rather we seek a
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robot controller whose performance is sufficient for the task requirements.
The type of robot controller which is selected is a compliance controller,
where the manipulator is programmed to respond as a linear spring. The
details of compliance controller performance are presented in Section 3.5.
However, for the purposes of completing the 2D example, a brief analysis
is presented here.

Compliance control enables a robot to maintain contact with a surface
without creating excessive contact forces. Figure 3.7 illustrates the use of
compliance control to slide along a surface. The equilibrium position of the
spring, referred to as the reference position, is located in a position that
preloads the spring and generates a contact force. The reference trajectory
is programmed to be parallel to the nominal surface location, as shown in
Figure 3.7a.

K % }manipulator
¥ I / =

1
Yref
L A A AR
\_/ E \_7
reference trajectory
Nominal Configurati b, Misaliened surf

Figur : 2D Compliance Control.

When the surface is in the nominal configuration, the contact force is equal
to its nominal value, f%, and is given by:

ff=k Yref (3.1)
where k is the manipulator's stiffness and yrer is the position of the

reference trajectory relative to the nominal surface location as shown in
Figure 3.7a.

Workpiece misalignment causes the surface orientation to vary by the angle
¢ as shown in Figure 3.7b. The compliance of the manipulator is used to
adapt to the environment, and thus there is no need to modify the reference
trajectory. When ¢ is positive, the contact force increases due to

68



compression of the spring. The change in the spring compression is dsing,
where 'd' is the distance traveled, and the increase in contact force is
kdsind. To prevent damage to the parts the maximum allowable contact
force, fnax, is set is to the maximum force measured during the
demonstrations. Excessive contact forces are avoided as long as:

f*+kdsing < fpax (3.2)

In the case where ¢ is negative, the surface moves away from the
manipulator. To maintain contact with the surfaces, the reference
trajectory is required to remain beneath the surface, which is satisfied as
long as:

|dsind| <y, (3.3)

If the robot stiffness is properly selected it is possible to satisfy both of the
above inequalities. When the nominal force is then selected to be fmax/2,
both of the inequalities result in the same condition for k, given by:

f

max 34
2dsin¢ 34
The above analysis provides an upper bound on the robot stiffness. In
Section 3.5 the 3D case is analyzed, and the result provides both upper and
lower limits for robot stiffness. In addition, the effect of friction is
considered.

k <

A summary of the analysis is shown in the flow chart in Figure 3.8. As
indicated, distinguishing between adaptation and inconsistency allows us to
program the robot to adapt to the environment, and to identify a range of
acceptable motion.
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Figure 3.8: Flow ¢
3.4. 3D Translation
In the case of 3D translation, human adaptation and inconsistency can occur
in the same contact state. An example is presented in Figure 3.9, where
trajectories from two demonstrations are shown. If the demonstrator was
"perfectly consistent", then only adaptation would occur as shown in Figure
3.9a and the shape of the two trajectories would be the same. With a
"perfectly consistent" demonstrator the only modification between
trajectories would correspond to misalignment in workpiece orientation to
enable the trajectories to maintain contact the surface. In actuality
inconsistency occurs together with adaptation, as shown in Figure 3.9b, and
the shape of the trajectory varies in directions other than necessary to
maintain contact.
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same shape trajectories

a. Only Adaptation b. Adaptation and Inconsistency

Figure 3.9: 3D Adaptation and Inconsistency
Trajectories from two demonstrations are shown, where the dashed lines correspond to the
misaligned workpiece. If the demonstrator was "perfectly consistent", then only adaptation
would occur as shown in ‘a'. In actuality both adaptation and inconsistency occur as show
in 'b.

In this section adaptation is distinguished from inconsistency for 3D
translation, for motion within a single contact state. The analysis is applied
to both possible constraint configurations, shown in Figure 3.2. First the
directions of detectable workpiece misalignment are identified for each
constraint configuration. Then the ranges of workpiece misalignment and
acceptable motion are identified.

3.4.1. Detectable and Undetectable Misalignments

The demonstrated force and position trajectories are designated by x(t) and
f(t), and have three components corresponding to the x, y, z directions in a
fixed Cartesian coordinate system. The demonstration is repeated N times,
and when necessary to indicate the specific demonstration the subscript 'i'
is used. The analysis in this chapter applies to motion within a single
contact state, and thus the specific contact state is not designated, with the
understanding that the analysis is repeated for each contact state in the task
sequence.

The force information used in the analysis is the force component due to
contact between the part and the workpiece. Accordingly, the force
measurements from the teaching gripper are transformed to a global
coordinate system and the gravitational forces are removed prior to their
use in the analysis. In addition, the dynamic forces can be neglected since
the motion is quasi-static. The force sensor orientation varies with the
gripper motion, yet the position sensor provides the force sensor's
orientation with which the force measurements are transformed to a global
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coordinate system. The gravitational load of the teaching gripper is then
subtracted from the measured force, and the vector f(t) indicates the force
due to contact with the environment. The contact force, f, consists of a
constraint force, fc, which is normal to the surface, and a frictional force,
fr, that is tangential to the surface. The friction is modeled as Coulomb
friction with an isotropic coefficient of friction, and thus the friction force
is opposite the direction of motion [Peshkin and Sanderson 1989]. The
direction of motion is evaluated by taking the time derivative of the
position trajectory, which is indicated by the normalized velocity vector
¥(t). The friction force is the component of f that is aligned with ¥(t),
which is calculated by projecting ¥(t) onto f(t) using the transpose of one
of the vectors and matrix multiplication. Accordingly, the vector of
friction forces can be evaluated when the velocity is greater than zero, and
is given by the following equation, where the superscript 'T" indicates the
transpose of a vector.

£® = [fO]VO)¥©  for [v®] >0 3.5)
The forces f; and fr are orthogonal complements, and the constraint force
is calculated by subtracting friction component, which is given by:
£@t) = ft) - £t) for |v(t)| >0 (3.6)

The magnitude of the friction components is the product of the coefficient
of friction, i, with the normal force, f.. Accordingly, | can be estimated
by:

_ 8ol
146]

The position and force trajectories are a function of time, but can also be
represented as a function of the distance traveled, 's’. Since the
demonstrations are performed quasi-staticaly, the magnitude of the velocity
is not critical for task success. In addition, when the velocity is zero the
friction force cannot be distinguished from the constraint force using
Equation 3.6, yet both f; and fr can be defined for all values of 's'.
Accordingly, for the remainder of analysis in this chapter the demonstrated
trajectories are represented by x(s), fc(s), and fi(s) .

u(t) for |v(t)] >0 3.7
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The ability to detect workpiece misalignment, depends on how the
constraint effects the motion and force. The nature of constrained motion
was formalized by Mason [1981]. Admissible directions of constraint force
are normal to the surface, and admissible directions of motion are
tangential to the surface. In the case of a single constraint surface (Figure
3.2a), there exist two directions of admissible motion and one directions of
admissible force. When there are two constraint surfaces (Figure 3.2b),
there exist one direction of admissible motion and two directions of
admissible force.

Figure 3.10 displays the directions of workpiece orientation that can be
detected during motion constrained in one and two directions. In the single
constraint configuration, the direction normal to the surface can be
detected through measurement of the normalized constraint force vector,
f . However, rotation of the surface about the axis of f. cannot be detected,
since it does not vary either the measured force or position. Accordingly,
orientation misalignment due to rotation about the 'x' and 'z’ in Figure
3.10a can be detected, but rotations about the 'y' axis are undetectable. In
two constraint configuration, the direction of motion can be detected
through measurement of ¥(t), which corresponds to workpiece rotations
about the 'y' and 'z' axes in Figure 3.10b, yet rotation about the 'x' axis
does not change either force or position and cannot be detected.

Of course if the rotation about the 'x' in the two constraint configuration
was large enough, contact with one of the surfaces could be lost, and
additional misalignment could be detected. However, it is assumed that the
same sequence of contact states be used in all demonstrations (assumption
6), which precludes intermittent loss or gain of contact (either
unintentionally or as a result of probing). Accordingly, motion
corresponding to a single contact state is demonstrated without loss of
contact with the desired constraint surfaces.

73



a. one constraint b. two constraints

Figure 3.10: Detectable Workpiece Misalignment
Detectable directions of workpiece rotation are shown by arrows in each coordinate system.
This analysis assumes that once the demonstrator is within a contact state,
the only misalignments they can detect are those indicated by f and ¢ as
shown in Figure 3.10. To ensure that this assumption is not violated, we
have assumed that the demonstrator does not use information acquired
from previous contact states (assumption 7), and assumption 9 indicates that
anisotropic surface roughness or variation in surface roughness either do
not exist or are not used by the demonstrator to detect misalignment.
3.4.2. Identifying the Constraint Configuration

The PHD approach does not use a geometric model of the workpiece, and
thus it is not explicitly known whether a constraint is applied in one or two
directions (Figure 3.2). Identifying transitions from one constraint surface
to the next is a subject onto itself, which is presented in Chapter 4. For the
purposes of the analysis in this chapter it is assumed that the set of
demonstration data, x(s) and f(s), belongs to motion in which the surfaces
in contact with the part do not change. In this section, the number of
constraints is identified from the demonstration data when possible.

Due to the nature of constrained motion, if fc (s) is constant while ¥(s)
varies, then the motion occurs in a single constraint configuration.
Conversely, if ¥(s) is constant while f (s) varies, then there are two
constraints. Regardless of the constraint configuration, at least one of the
directions, 9(s) or £ (s), will theoretically remain constant. In actuality,
noise in the sensor measurements creates some variations in all of the data.

To determine whether f,(s) can be considered conmstant in the ith
demonstration, the average direction is calculated from all the points
measured within the ith demonstration which is designated as f,;. The
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difference in direction between a point in the trajectory fc,i (s) and f, ; 1s
given by:
B, = arccos(f, of) for k=12,..K; (3.8)

where 'k’ is the index indicating the point sampled, and K; is the number of
points sampled in the ith demonstration. If the mean value of P is less than
a threshold level, then variations in the direction of force are attributed to
noise and f'c (s) is considered constant. The threshold level is determined
experimentally, from measurements over a known single constraint
surface.

It would be possible to evaluate whether ¥(s) can be considered constant
using a similar approach as with £, (s). However, ¥(s) is estimated by taking
the derivative of the position trajectory, which magnifies the level of noise
in ¥(s). To reduce sensitivity to noise, the position trajectory is evaluated
directly to determine whether it lies on a straight line. A least squares fit to
a straight line is performed, and the slope of the line is given by v,. To
determine whether ¥(s) can be considered constant, the cumulative error
between the straight line and the sampled data is compared to a threshold
level identified from the noise in the position measurement, which is
presented in Appendix I. The noise is assumed Gaussian and the threshold

level is given by o>[K +2 /2K, where 0, is the standard deviation of the
noise in the position data.

If within each demonstration ?c (s) is considered constant and V(s) varies,
then it is established that there is a single constraint surface. If the reverse
is true and ¥(s) is considered constant in each demonstration and fc (s)
varies, then it is established that there are two constraint surfaces.

There exists, however, a third alternative in which both ¥(s) and £ (s) are
considered constant. There is nothing that prevents a demonstrator from
moving in a straight line on a single constraint surface or keeping the
direction of force constant while constrained in two directions. If this is
done in all the demonstrations, it is impossible to identify the constraint
configuration. Under these circumstances the analysis is performed first
assuming there is a single constraint and then repeated assuming that there
are two constraints. In Section 3.5.2.3 it is shown that for this case a robot
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controller can be specified that can implement the motion regardless of the
constraint configuration. Accordingly, restrictions placed on the geometry
of the contact task by Asada and Izumi [1987] to allow identification of the
number of constraints, are not necessary in this method of analysis.

3.4.3. Nominal Surface Orientation

The nominal orientation of a constraint surface is the expected orientation
of that surface, and occurs when there is no workpiece misalignment. Since
the workpiece misalignments are random (assumption 4), the nominal
orientation is calculated by averaging the detected directions of surface
orientation from all the demonstrations.

In a single constraint configuration, the surface normal is indicated by f,;,
where the subscript 'i' designates the ith demonstration. The nominal
direction of the constraint force, f, is calculate by averaging over the N

demonstrations and is given by:

= —————i‘ ks 3.9)

X1,

A coordinate system is defined with the 'y axis aligned with £ as shown in
Figure 3.11.

In the two constraint configuration, the direction of motion is indicated by
v,, where the subscript 'i' designates the ith demonstration. The nominal
direction of motion, ¥, is calculate by averaging over the N
demonstrations and is given by:

Pl
|i§1 v‘l

A coordinate system is defined with the 'x' axis aligned with §" as shown in
Figure 3.12.
3.4.4. Single Constraint Configuration

(3.10)

Performing motion constrained in a single direction requires reaching the
target while avoiding obstacles and excessive forces. The demonstrator
maintains contact with the surface, thereby adapting to orientation
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misalignment and eliminating position errors normal to the surface. In
addition, the demonstrator avoids obstacles through familiarity with the
workpiece geometry. These aspects of the manipulation strategy are
quantified in this section, so that they may be transferred to the robot
program.

In the ith demonstration, misalignment is detected when the direction
differs from the nominal direction, f{. A fixed coordinate system is
defined that is aligned with the nominal surface orientation; the 'y' axis is
aligned with f, while the 'x™ and 'z™ axes are selected to lie on the plane
normal to f. In addition a relative coordinate system that corresponds to
the detected workpiece orientation of the ith demonstration is given by, X;,
f.. and z;. Figure 3.11 shows the misalignment between these two
coordinate systems, which is represented by a rotation about the vector F;
by the angle ¢;.

. r; z
Figure 3.11: Detectable Misali f a Single Constraint

The detected misalignment corresponds to the rigid body rotation that
would cause f to rotate to the direction of ;. Rotation about the axis f;
cannot be detected, and for the purposes of interpreting human motion it is
assumed that no rotation occurs in the undetected direction. Accordingly,
the orientation of F, is given by the cross product between £ and f, 5

F,=f xt, (3.11)
and the angle of misalignment is the arc cosine of the dot product:
¢ = arccos(f; o £, (3.12)

The ¥, vector is defined in the nominal coordinate system and lies in the
'xz' plane; its components can be written as:
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—sin{ot)
= O

(3.13)
cos(o)

where, the value of o is given by the arc tangent of the 'x' and 'z’

components of T,.

A rigid body rotation can be expresses by a 3x3 rotation matrix whose
columns are the unit vectors in the x, y, and z directions of a coordinate
system attached to the rigid body. The rotation matrix for a rotation about
an arbitrary vector is presented by Crandall et al [1985]. Here the rotation
is about the vector ¥, whose 'y’ component is zero, and the rotation matrix
indicating workpiece misalignment, Ry, is given by:

cd + (1 -cd) s’o. —sd co —(1-cd) so. co

R,,= s co cd sO sou (3.14)
—~(1-ch)sa co —s so cd + (1-co) c’a

where 's' and 'c' are abbreviations for sine and cosine.

Successful implementation of the motion along the surface requires that
obstacles be avoided. The demonstrated trajectories trace 2D paths on the
workpiece surface, and human inconsistency defines a region of acceptable
robot motion, as shown in Figure 3.3. As indicated by theorem I, human
inconsistency is identified from variations between demonstrations that do
not correspond to detectable workpiece misalignment. Accordingly, each
demonstration is transformed to the coordinate system aligned with the
surface, thus removing variations due to workpiece misalignment.

Transforming each demonstration to a coordinate system aligned with the
workpiece surface allows the shapes of the 2D trajectories to be compared
to one another. It is likely that all the trajectories do not start at the same
position on the surface. However, variations in the starting position cannot
be detected by the demonstrator, since the demonstrator does not utilize
information from prior contact states (assumption 7) and translation
misalignment of the workpiece cannot be detected in the directions of
admissible motion. Accordingly, it is assumed that all demonstrations begin
at the same location on the surface which is designated as the origin.
Orientation misalignment that can be detected is indicated by the matrix
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Ryp. The trajectory relative the detectable surface location is designated by
x;(s) and the coordinate system transformation is given by:

x(s)

x(s)=| 0 |=Ry, [x(s)-xs=0)] (3.15)

zi(s)
The 'y’ component of xi(s) is equal to zero because the motion is
constrained on the 'xz' plane aligned with the surface. For each -
demonstration a 2D trajectory is defined on 'xz' plane. These trajectories
are combined using the methods presented in Chapter 2 to define a region
of acceptable motion on the constraint surface. For consistent notation in
this chapter the region of acceptable motion is designated by X, which
corresponds to the same region designated by Rg in Chapter 2. As in the
case of 2D motion, the region X excludes all possible obstacle locations
even when undetected workpiece misalignments occur.

The above analysis identifies conditions sufficient to guarantee robot
success for motion constrained by a single surface. The magnitude of the
workpiece misalignment is given by ¢; in the direction of ¥,. The
demonstrator adapts to this misalignment by maintaining contact with the
surface, and a successful robot controller is required to also maintain
contact with surface and avoid excessive forces for the maximum value of
¢ encountered during the demonstrations. In addition the target can be
reached while avoiding obstacles, by specifying a robot trajectory that stays
with the region of acceptable motion, X, defined from human
inconsistency. A robot controller that can satisfy these sufficient conditions
is presented in Section 3.5.
3.4.5. Two Constraint Configuration

A duality exists between the single constraint and the two constraint
configurations. With a single constraint the direction of force is defined by
the workpiece yet there remain two directions of admissible motion, while
with two constraints the direction of motion is defined and there exists two
directions of admissible force. In the two constraint configuration, position
accuracy is assured as long as contact is maintained with both constraint
surfaces. Accordingly, the robot performance requirements are indicated
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in terms of directions and magnitudes of applied force. The following
analysis parallels the single constraint analysis.

Workpiece misalignment for the ith demonstration is detected when the
direction, ¥,, differs from the nominal direction, 9. Here the fixed
coordinate system is defined with the 'x' axis aligned with 9", and a
relative coordinate system is aligned with the detected workpiece location
as shown in Figure 3.12.

Figure 3.12: Detectable misali for nstrai i ion
The detected misalignment is again given by a rotation about the vector F,,
but here the vector lies in the 'yz' plane, and is given by:

F,=9xy (3.16)
and the angle of misalignment is given by:
¢, = arccos(V" @ ¥)) (3.17)
The components of the F¥; vector can be written as:
0
F, =| sin(0)) (3.18)
cos(ot)

The detected workpiece orientation is represented by the matrix Ryp. Here
the 'x' component of ¥, is zero and thus Ry, is given by:
cd -sé col s so
R,,=|sdco co+(1-ch)s’ax (1-ch)soca (3.19)
-spso (1-chp)soca cd+(1-ch) co
In the two constraint configuration successful implementation of motion
requires maintaining contact with both constraint surfaces. Each surface
provides a unilateral constraint, meaning that it is possible to push against
the surface but attempting to pull in the direction of the constraint will
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result in a loss of contact. There exists a range of force directions that will
maintain contact with both surfaces, and as with obstacle avoidance human
inconsistency identifies a range of acceptable robot trajectory. Variations
between demonstrations in the direction of force are unnecessary to achieve
the task and are thus interpreted as human inconsistency. The acceptable
region of force direction is defined by the acute angle between the
directions of force from different demonstrations, thereby ensuring that a

positive component of force is applied to both surfaces, as shown in Figure
3.13. |

%)

/’ 0i(s)

A
?: 0:(s) £(s) s

Figure :R f Acceptable For irecti F
As with the single constraint configuration, to compare different
demonstrations the human trajectory is transformed to the coordinate

system aligned with the detected workpiece orientation. Accordingly, the
force vector in the detected workpiece coordinate system, f(s), is given by:

0
£(s) = [£6s)| = R £.i(5) (3.20)
f,(s)
and the direction of force is:
0.(s) = arc tan(—f’(—sl (3.21)
' £,(s)

The demonstrated direction of force is plotted versus the distance traveled
as shown in Figure 3.13. The acceptable range of force directions is
defined by the region enclosed by the demonstration trajectories and is
designated by Fa. Thus a range of acceptable force directions is identified
without using a geometric model of the workpiece that indicates the angle
between the two constraint surfaces. As in the single constraint
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configuration, it is assumed that the demonstrator has no a priori
knowledge of workpiece misalignment, and thus the beginning position of
all the demonstrations are assumed to coincide. Furthermore, the region Fa
indicates acceptable force directions even when undetected workpiece
misalignments occur. In specific, the demonstrator succeeds at maintaining
the desired contact despite the undetected rotation of the workpiece about
the direction of motion. Consistent human success precludes undetectable
rotations larger than the angle between the constraint surfaces, just as
consistent obstacle avoidance by the demonstrator indicates that excessive
workpiece misalignment does not occur.

As long as the contact state remains constant, the region of acceptable force
directions does not change as the part moves within the contact state. Thus,
one could argue that the region Fa should have a constant width as the
distance 's' increases, defined by the maximum and minimum 0 from all
the demonstrations. However, it will be shown in Chapter 4 that when there
is an undetectable contact state transition, it is necessary for the robot to
stay within the boundary of Fp defined as a function of 's'. Accordingly,
F, is defined as a function of 's' for all contact states, which corresponds to
the definition of X5 where the width of the region can vary throughout the
contact state.

The conditions sufficient to guarantee robot success in the two constraint
configuration have been identified. The range of workpiece misalignment
is given by ¢; and F;. A successful robot controller is required to adapt to
this detectable misalignment and modify their trajectory accordingly.
Furthermore, to ensure that contact is maintained with the desired
constraint surfaces, the robot force direction is specified to remain in the
region F defined from human inconsistency. A range in the magnitude of
the force is specified by requiring that the robot force be less than the
maximum human force. '

3.5. Robot Compliance Controller

In the previous sections demonstration data was used to identify
performance requirements sufficient to guarantee success for constrained
motion. In this section a robot controller is specified to achieve these
conditions. The method of compliance control is used, where the robot
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gripper interacts with the environment as a linear spring. By selecting an
appropriate robot compliance workpiece misalignment does not cause
excessive forces and position errors.

In Section 3.5.1 the performance of a compliance controller for 3D
translation is presented. The performance is evaluated in terms of position
and force errors that occur as a result of workpiece misalignment. In
Section 3.5.2 the results of demonstration data analysis are integrated with
the results from the robot compliance controller analysis. The control
parameters including robot compliance and reference trajectory are
specified so that accuracy requirements specified by the human
demonstrations are met by the robot.

A compliance controller can be implemented either actively or passively.
An active controller adjusts the manipulator's joint torques to generate the
desired actions at the end effector. The advantage of active control is that
the robot compliance can be modified during a task. A passive controller is
implemented by placing physical springs between the gripper and the
manipulator arm. The advantage of passive control is its simplicity and that
it can be easily applied to a standard position controlled robot, typical of
the type used in industry. However, it is not possible to modify the stiffness
of a passive compliance device during a task. In the analysis presented here
a range of acceptable robot compliance is identified for each contact state.
By identifying a range of compliance as opposed to a specific value, it
increases the possibility that a given passive compliant device will be
acceptable for all the contact states in the task.
3.5.1. Compliance Controller Performance

Hogan [1988] demonstrated that a compliant controller is stable when the
manipulator is in contact with a passive environment, which is the typical
case for assembly operations. It was further shown by Whitney [1982] that
by selecting an appropriate robot compliance, the robot could adapt to
workpiece misalignment. Whitney identified a range of robot compliance
that could implement the task of inserting a peg into a hole, and the range
of hole misalignment for which insertion will occur. Schimmels and
Peshkin [1992] presented a method of specifying a robot control law in
which the robot is programmed to model a damper. Both the work by
Whitney, and Schimmels and Peshkin, identified a single robot controller
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which could implement motion consisting of a sequence of contact states.
They also considered tasks which required both part translation and
rotation. However, they assumed that the orientation misalignment of the
workpiece was infinitesimal, and thus did not change the direction of
contact forces.

The analysis presented here is simpler in some respects from the previously
mention approaches, since the robot controller performance is evaluated
for motion within a single contact state and the tasks analyzed require only
part translation and no rotation. However, this analysis extends aspects of
the previous approaches since the effect of orientation misalignment in the
workpiece is evaluated, whereas the work by Whitney, and Schimmels and
Peshkin assumed that the workpiece orientation misalignments are
infinitesimal. Xiao [1991] does address finite orientation misalignments
when the evaluating the performance of damping control. However, Xiao -
only considers force errors caused by orientation misalignment, and
neglects position errors which is an essential performance criteria for
assembly operations. The analysis presented here is for use with the PHD
approach, however the results are also valid for modeling compliance
control in model based programming methods. Indeed the results presented
in this section are independent of the analysis of human demonstrations.

Compliance control is specified such that the force exerted by the robot, f',
is given by:
f = K(x, — X (3.22)

where X' is the robot gripper position, X is the reference position, and K
is a positive definite stiffness matrix. The analysis is restricted to
translational motion, and thus the force and position vectors are 3x1 and
the stiffness matrix is 3x3. Programming a compliance controller involves
specifying the stiffness matrix, K, and a reference trajectory Xrer(s);
reaction with-the environment specifies the robot's force and position. For
example in unconstrained motion the robot trajectory is equal to the
reference trajectory. We assume that the robot motion is quasi-static and
dynamic forces can be neglected.
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The complete robot program is implemented by moving the robot in a
sequence of guarded moves between contact states. When contact with a
new workpiece surface is detected, the reference trajectory is generated for
motion within the new contact state. Since the reference trajectories are
defined relative to a starting point on the constraint surface, workpiece
translation misalignment normal to the surface does not effect robot
performance. Thus, adaptation to workpiece translation misalignment
occurs by detecting changes in the contact state. However, workpiece
orientation cannot be detected at the initial contact with the surface.
Accordingly, the reference trajectory is generated as if the workpiece was
in the nominal orientation, and the robot compliance is used to adapt to
orientation misalignment.

The desired robot position trajectory when the workpiece is in the nominal
orientation is given by x"(s), and the desired force trajectory without
friction is given by f7 (s). The coefficient of friction can vary for each
workpiece, and therefore friction is treated as a disturbance. The
compliance controller reference trajectory is calculated by substituting the
nominal trajectories for the robot trajectories in Equation 3.22. Thus,
when the robot is in the nominal location the desired trajectories will be
achieved. The reference trajectory is given by:

Xeef = K1 f* + x© (3.23)
The coordinate system in which the robot performance is evaluated is
aligned with the nominal surface orientation. Thus in a single constraint
configuration the 'y’ axis is normal to the surface, and in the two constraint
configuration the 'x' axis is aligned with the direction of motion. The robot
stiffness matrix is selected so that its eigenvectors are aligned with the
coordinate system of the nominal surface and is given by:
k, 0 0
K=|0k, 0 (3.24)
0 0k,

The details of the compliance controller analysis are presented in Appendix
III, and just the results of this analysis are presented in Sections 3.5.1.1 and
3.5.1.2. The results are simplified to facilitate selection of a robot
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compliance, by assuming a small angle of misalignment in workpiece
orientation and selecting the components of K such that ky, ky, and k; are
within the same order of magnitude. Small angle analysis is applicable to
many assembly environments and still incorporates variations in the
direction of motion and force (analysis that assumes infinitesimal
orientation misalignment assumes no change in force and motion directions
and thus would predict no robot errors for this analysis). For small angles
of misalignment, rotations about the different axes can be evaluated
independently and then combined in a linear fashion.

The evaluation of robot performance is done by comparing the desired
robot motion to the actual robot motion, at a point on the trajectory
corresponding to x"(s) andf; (s). The distance of x"(s) from the initial
location is given by d, and the magnitude of the nominal force is given by
f". The rotation misalignments of the workpiece are given by ¢x, ¢y.and ¢,
corresponding to rotations about the different axes.

The results of the robot performance analysis for a single constraint are
shown in Figure 3.14. The desired robot performance is to trace the shape
of the nominal trajectory onto the surface of the workpiece despite
misalignments. The maximum robot error occurs when the part is farthest
from the starting position, which is where the error is evaluated. The x’
axis is aligned with the vector from the starting position to the point of
evaluation. As shown in Figure 3.14 workpiece rotation ¢ results in
position errors in the 'z' direction, and rotation ¢, results in position
errors in the 'x' direction. Friction is evaluated using a worst case basis.
Accordingly, a friction component only appears in the 'x' direction,
because fricxtion actually reduces position errors in the 'z' direction as
shown in Appendix III. Orientation misalignments about the 'y' axis does
not change the constraint directions nor effect robot performance, and thus
is not shown the Figure 3.14.
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nominal orientation ¢x misalignment ¢, misalignment
L

fl‘
Z = ?T"(-z—’
11 =|f; cost] T=f +k, ¢,d
Figure 3.14: Compliance Controller Performance with a Single Constraint

The dashed lines show the nominal workpiece orientation and the desired robot position,
while the solid lines show the actual orientation and position.

3512 TwoC int Confieurat
The results of the robot performance analysis for two constraints are
shown in Figure 3.15. In the two constraint configuration the desired robot
performance is to maintain contact with both constraints, since the position
accuracy is determined by the workpiece. Here the 'x' axis is aligned with
the nominal direction of motion. As shown in Figure 3.15 orientation
misalignments ¢y and ¢, change the robot force, while misalignment ¢y
does not change the constraint directions nor effect robot performance.
Misalignments do modify the robot position in terms of the distance
traveled, but not in the direction of motion. Since reaching the target is
detected by the robot with a subtask termination condition, errors in the
distance traveled do not effect robot performance and thus are not shown
in Figure 3.14.

The nominal robot force is in the 'y' direction, yet misalignments in ¢y
generate a force in the 'z' direction. As f] increases relative to t; , the
direction of force changes. If the changes in direction of force is large
enough loss of contact with one of the constraints will occur.
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nominal orientation ¢ misalignment ¢, misalignment

The dashed lines show the nominal workpiece orientation and robot position, while the
solid lines show the actual orientation and position.

3.5.2. Selection of Compliance

In this section the parameters of the robot controller consisting of a
reference trajectory, Xr.r, and compliance, K, are selected. The reference
trajectory is specified in terms of the nominal position and force
trajectories, x"(s) and f°(s), as indicated by Equation 3.23. Here the
analysis of human motion is combined with the robot analysis. Specifically,
the range of acceptable motion and forces identified from the
demonstration data are used to specify the accuracy requirements of the
robot. In addition the range of workpiece misalignment identified from the
demonstrations is used in specifying robot compliance. The analysis is
applied first to the single constraint configuration and then the two
constraint configuration.
3.52.1.  Sinele C int Confieurati

In the single constraint configuration, robot position errors occur, as
shown in Figure 3.14. Nevertheless, the motion can be implemented
successfully, since human inconsistency identifies a range of acceptable
motion, Xa. As long as the robot error does not result in the trajectory
leaving X4, then obstacle avoidance can be guaranteed. Accordingly, a
buffer with the boundary of X, is used when generating the nominal robot
trajectory, xn(s), as shown in Figure 3.16. The width of the buffer is
designated by 'b' and identifies the accuracy requirement for the robot.
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The value of 'b' is set to a default value, and if a trajectory to the target
region cannot be generated because the minimum width of the region XA is
less than the default 'b’, then a lower value of 'b' is selected through an
iterative process until an acceptable value is found.

A non zero buffer value can be defined throughout X, except near the
starting location. The method used to define X4 in Equation 3.15 places the
starting point from all the demonstrations at the same location on the
constraint surface, leaving no room for a buffer. In actuality variation
occurs in the demonstrated starting location, however these variations are
undetectable once contact has been established and it is assumed that sensor
information from prior to the contact is not used. Accordingly, the zero
width of X4 at the starting location does not indicate perfect accuracy by
the demonstrator nor require perfect accuracy from the robot. Therefore,
for the initial segment of the robot trajectory, up to a distance designated
by dsart, the buffer requirement is not imposed. A convenient method for
selecting the value of dgay is to set it equal to the average distance between
starting locations of the overall task when motion is unconstrained.

nominal robot
trajectory = x1(s)

. . Nomi . . .
The buger between the nominal robot trajectory and the boundaries of X identifies the

robot position accuracy requirement

In the single constraint configuration, robot position errors occur in the 'x'
and 'z' directions and are a function of kyx and k;, as shown in Figure 3.14.
To select an appropriate value for robot stiffness, the values of kx and k,
are set equal to each other and their value is designated by ky,. A worst
case analysis in terms of robot performance is done, and the maximum
workpiece misalignment, ¢, from all the demonstrations is given by @max.
Without friction, ¢ contributes equally to error in the 'x' and 'z’
directions, since ky=k,. Since friction increases the error caused by ¢, the
maximum error with friction occurs when ¢pnax occurs in the direction of
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¢.. The maximum friction coefficient, p, is estimated from the
demonstration data using Equation 3.7. In addition, the position error is a
function of the robot force in the 'y' direction, f;, which will be limited to
a maximum value of fmay. Accordingly, the worst case robot error is:

¢ _ Goufon | Phow

X, =
. kxz kXZ

To guarantee obstacle avoidance, the position accuracy requirement is
applied conservatively by requiring that the position error in any direction
be less than the buffer. Accordingly, the robot stiffness value for kyz is
selected so that x. is less than or equal to 'b". The compliance level is
selected by setting x;, (as defined by the right hand side of Equation 3.25)
to be less than or equal to 'b', and then solving for ky,. The result is the
following inequality:

(3.25)

Fnes (G + 1)

b
Thus to limit the robot's position errors a minimum stiffness in the 'x' and
'z' directions is required. As can be seen from Equations in Figure 3.14
increasing either kg or k, independently reduces the position error.
Accordingly, kx can differ from k, as long as they are both above the
threshold level for k,, shown in Equation 3.26. Furthermore, as the
amount of human inconsistency in the demonstrations increases, larger
buffer values ' can be incorporated into the region X, and thus
permitting a larger range for ky and k,. The analysis shows that if the
human demonstrates low accuracy motion, then the robot accuracy can also
be low and a low stiffness is sufficient.

k, > (3.26)

In addition to avoiding obstacles, task success requires that contact be
maintained with the surface without generating excessive forces. In the
single constraint configuration, the force analysis is similar to the 2D case.
When ¢, is positive, the contact force increases due to compression of the
spring in the 'y’ direction, while misalignment ¢x only decreases the force.
To prevent damage to the parts the maximum allowable constraint force,
fmax, 18 set is to the maximum force measured during the demonstrations.
The worst case is considered by setting ¢, to dmax, and excessive contact
forces are avoided as long as:
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f* + kpd < £ (3.27)

To maintain contact with the surfaces the contact force is required to
remain positive. Rotation ¢, causes force changes that are a function of
cosdx which cannot result in a negative force for small angles of
misalignment. However, when ¢, is negative the surface moves away from
the reference trajectory and the condition to guarantee that contact is
maintained is given by: :
0 < '~k yOpaxd (3.28)

The nominal robot force magnitude, ", is selected to be fynax/2, and its
direction is identified from the demonstration data which is given by fc“ . By
substituting fi,,x/2 for f* in inequalities 3.27 and 3.28, a limit for the robot
compliance ky is calculated:
f

< —max 3.29
T .
Here the threshold identifies a maximum stiffness in the 'y' direction.
Increases in workpiece misalignment and the distance 'd’ lower the
maximum acceptable robot stiffness.

k

The analysis has identified the parameters for a compliance controller for a
motion constrained in a single direction, directly from the demonstration
data. The stiffness matrix has been defined by ranges of acceptable values
for ks, ky, and k,. In addition nominal robot trajectories x"(s) and f%(s)
have been identified, which can be substituted into Equation 3.23 to
identify the robot reference trajectory.

22 Tw nstraint Confi ion

In the two constraint configuration, robot position errors do not occur.
However to ensure this position accuracy it is necessary to maintain contact
with both surfaces, which requires maintaining the appropriate force
direction. To guarantee robot success it is also necessary to avoid excessive
contact forces.

Workpiece misalignment can result in errors in the magnitude and
direction of force as shown in Figure 3.15. However, as in the single
constraint configuration, human inconsistency has identified an acceptable
range of robot error, Fa, as shown in Figure 3.17. The nominal robot
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force direction, f'(s) is generated within the region F4, just as x(s) is
generated within Xa. A buffer in the direction of force, 0y, exists as shown
in Figure 3.17. Thus, as long as the error in the direction of the robot
force does not exceed the angle Oy, it is guaranteed that contact will be
maintained with both surfaces.

demonstrated region
of acceptable force
directions, Fa

Fi .17: An Allowable Error in Directi rce is Giv

The equations in Figure 3.15 show that misalignment ¢y results in a force
in the 'z' direction of the magnitude k,¢yd. In addition misalignment ¢,
changes the magnitude of the force in the nominal direction (aligned with
the 'y' axis) by ky¢.d. To select an appropriate value for robot stiffness,
the values of kyand k, are set equal to each other and their value is
designated by ky,. The maximum workpiece misalignment from all
demonstrations is given by, ¢max, and its components in the 'y' and 'z’
directions contribute equally to changes in fy and f;, since ky=Kk;.
Accordingly, the maximum change in robot force due to workpiece
misalignment is given by:
Af = Ky; Omax d (3.30)

For a worst case analysis it is assumed that Af can occur in an arbitrary
orientation in the 'yz' plane. The total robot force is given by combining
the nominal force, f*, with Af, and the vector sum is depicted graphically
in Figure 3.18. The possible robot force vectors can be drawn from the
origin to any point on the circumference of the circle with radius Af. The
boundary of the region of acceptable force directions is shown by the lines
offset by the buffer angle, 0y, from the nominal force. In addition the
boundary on force magnitude is shown by the arc of radius fiax.
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igure 3.18: hical depiction of the boundaries on the acc e
irections and magnitudes of robot force.

The circle with the largest radius, Af, that can fit within the acceptable
force boundaries, identifies the widest range of acceptable values for ky,.
Such a circle is shown in Figure 3.18, where its circumference touches the
boundaries defined by both 0, and fy,,. The trigonometric relationship is
defined by the equations: sin(0p) = Af/f", and Af + f* = fi;,x. These two
equations are solved for the unknowns Af and ", and the results are given
by:

f . 5in (6,)

A = [T+ sin(0,) (3.31)
and
. (3.32)
1 + sin(0y)

The robot stiffness that will prevent the change in force from exceeding Af
is given by substituting Equation 3.30 into Equation 3.31 with the result:
f .. sin(0,)
k,, < o b 3.33
7 Ouxd (1 + sin(6,)) (3-33)
Here an upper limit is placed on the values of ky and k,. Higher stiffness
levels could result in unacceptable errors in robot force direction and
magnitude. As can be seen from the equations in Figure 3.15 decreasing
either ky or k; independently reduces the change in robot force.
Accordingly, ky can differ from k, as long as they are both beneath the
threshold level for ky; shown in Equation 3.33.

The analysis has identified the compliance controller parameters for
motion constrained in two directions, directly from the demonstration data.
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The stiffness matrix has been defined by ranges of acceptable values for ky
and k; in Equation 3.33, and the value of kx is not restricted in this
configuration. In addition the direction of the nominal force, f*, is selected
to be in the middle of the region Fa, and its magnitude is given by
Equation 3.32. The nominal position trajectory, x"(s), is a straight line in
the direction ¥" which was identified from the demonstration data. Thus,
the values for x"(s) and f"(s) have been identified, and can be substituted
into Equation 3.23 to identify the robot reference trajectory.
3523 Constraint Confisuration Ambieui

As indicated in Section 3.4.2, if each demonstration consists of straight line
motion with a force applied in a constant direction, i.e. ¥(s) and £.(s) are
constant, then it is not possible to determine whether the motion is
constrained in one or two directions. Under these circumstances, the
sufficient conditions for robot success are calculated for both constraint
configurations.

Variations between demonstrations in the direction of motion and force is
calculated by both Equations 3.12 and 3.17, which provide values for
rotations about all three axes, ¢x, ¢y, and ¢,. The interpretation of
variation between demonstrations depends on which configuration one is
considering, as shown in Figure 3.20. If one assumes that there is a single
constraint, then variation ¢ corresponds to workpiece misalignment, and
variation ¢y corresponds to human inconsistency. The reverse is true if one
assumes there are two constraints. Figure 3.19 shows the alternate
interpretations for a rotation ¢y in the demonstration data.

Misaligned

Human
e —— .G_Linoonsistency

¢Y Nominal trajectory

Nominal workpiece orientation

a. One constraint b. Two constraints




In each configuration, human inconsistency defines a region of acceptable
motion or force. With a single constraint the straight trajectories fan out
from the starting point to generate a wedge shaped obstacle free region, as
shown in Figure 3.19. The acceptable robot position error increases with
the distance traveled, and the buffer value is equal to '¢y max d'. In the two
constraint configuration, the buffer in the direction of force is given by the
maximum rotation about the 'x' axis, ¢x max- The equations in Figure 3.20
show the buffer magnitudes and the robot errors due to workpiece
misalignment for both configurations.

Configuration Interpretation of ¢y Interpretation of ¢y
One constraint workpiece misalignment human inconsistency

" ¢x,maxf)r' b= ¢y’max d

zerr =
k, '

Two constraints human inconsistency workpiece misalignment

Ob = Ox,max ff =k, ¢ym d

Figure 3.20: Interpretation of demonstration data when 9(s) and £, (s) are
constant.

To identify a robot compliance controller to perform the straight line
motion, the robot errors due to workpiece misalignment are compared to
the buffer size. For a single constraint configuration, the robot position
error is required to be less than the buffer to ensure obstacle avoidance. In
straight line motion, errors in the 'x' direction are aligned with the
direction of motion and do not cause the robot trajectory to move outside
the obstacle free region. Accordingly, only the position error in the 'z’
direction is compared to the buffer size, which are shown in Figure 3.20.
The worst case position error could occurs if f is equal to fnax, and the
condition to ensure obstacle avoidance results in the following lower limit
for k;.

k, 2 LR

Oy max d
In the two constraint configuration, an upper limit on k, is required to
prevent the error in force direction from exceeding 6,. The maximum

((3.34)
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error in force direction is caused by workpiece misalignment, ¢y max. For
straight line motion, the limit on robot compliance k, that prevents
excessive errors in force direction is given by substituting into Equation

3.33: ¢x,max for the buffer angle and ¢y max for dmax, and applying the
small angle approximation.

k, < LESLITY (3.35)
Oy mex d
The force error in the 'y’ direction caused by workpiece misalignment ¢,
is the same in both configurations (Figures 3.14 and 3.15). The analysis for
the two constraint configuration identifies a condition for ky that is equal to
k,, for the worst case misalignment about the 'y’ and 'z' axis (Equation
3.33). If ¢z max is less than Oy max, then Equation 3.35 is equivalent to
Equation 3.33, and ky can be set equal to k,. However, if there is a larger
rotation about the 'z' axis, a lower stiffness for ky is selected to prevent the -
contact force from exceeding fmax.

Although the interpretation of ¢x and ¢y depends on the constraint
configuration, their effect on the limits of k;, shown in Equations 3.34 and
3.35, is the same. A large value of (x indicates that a large robot position
error in the 'z’ direction can occur if there is a single constraint, or that
there is wide range of acceptable force directions for the two constraint
configuration. In both configurations, a large ¢x corresponds to increasing
the value of k;. In a similar fashion a large value of ¢y indicates that a
large position buffer is available if there is a single constraint, or that there
can be a large robot force error in the 'z' direction. In both constraint
configurations a large ¢y corresponds to decreasing the value of k;.

The upper and lower limits shown in Equations 3.34 and 3.35 are equal to
each other, and the value of k; can be set equal to these limits to satisfy
both constraint configurations. However here k; is a function of the
distance traveled. Theoretically one could use active compliance control to
modify the compliance along the trajectory. However, a more practical
solution can be implemented with a two stage approach.

In the first stage the robot position error requirement can be relaxed, since
as indicated in Section in 3.5.2.1 all the demonstrations do not start at the

96



same location for the single constraint configuration. The initial allowable
error is set equal to the buffer value after motion of a distance dsiay from
the starting position. For motion up to dgar the following stiffness satisfies
the force requirement for the two constraint configuration shown in
Equation 3.35, and prevents position errors greater than the initial
allowable error for the single constraint configuration.

- ¢x,maxfmax '
k, = —————q’y’m a for 0<d<d,, (3.36) )
Once the robot has moved a measurable distance (less than dguar) the
directions of ¥(s) and £ (s) can be calculated. The detected directions of
motion replace the nominal directions, and are used to update the
compliance controller reference trajectory. Thus during the second stage of
motion, adaptation is performed by explicitly using sensor measurements to
adjust to workpiece misalignment.

The analysis presented in this chapter identifies robot performance
requirements which can guarantee success, but does not ensure that a single
compliance controller can be found to satisfy these requirements. When
using passive compliance control, only a single compliance is available for
the complete sequence of contact states in the task. Accordingly, it may be
advantageous to use the two stage approach even if the number of
constraints are known. This approach allows for a larger range of robot
compliance, and makes it more likely that a single passive complaint device
can be used for the complete sequence of contact states in the task.

3.6. Experimental Results

The example task used in the experiments was introduced in Chapter 1, and
is shown in Figure 3.21. The task is performed with a sequence of six
contact states. The demonstrator familiarized themselves with the task with
their eyes open, and practiced with their eyes closed. After the practice, ten
demonstrations were performed with the demonstrator blindfolded. The
demonstrator was requested to perform the motion with the same sequence
of contact state, but otherwise was not told how the data would be analyzed,
to prevent intentional force or motion aimed at assisting the analysis.
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Misalignments in workpiece position and orientation were introduced
between demonstrations. The demonstrator knew that misalignments would
occur, but since their eyes remained closed they were not aware of the
extent of the misalignment. The sequence of contact states used, allowed the
demonstrator to successfully implement the task, despite significant
workpiece misalignment. The demonstrator could reach the target position,
as long as workpiece misalignment does not cause the demonstrator to miss
the initial contact state, and the orientation misalignment is not excessive.
The maximum translation misalignments were 20mm in the 'x' direction,
40mm in the 'y' direction, and 8mm in the 'z' direction. The maximum
orientation misalignment was 1° about the 'x' axis, 1° about the 'y' axis,
and 6° about the 'z’ axis.

The teaching gripper is the same one used for the obstacle avoidance task
presented in Chapter 2. In this application measurements from the six axis
force/torque sensor (manufactured by Zebra Robotics Inc.) were used. The
position and force were both sampled at a frequency of 37 Hz. The
spherical part was held continually without slip throughout the
demonstration.

As in Chapter 2, the position of the sphere center is calculated to give the
position trajectories, Xj(t). The force measurements at the force sensor are
the same as at the sphere center. However, it is necessary to remove the
gravitational load. The orientation measurement from the position sensor
identifies the gripper orientation relative to the gravitational field where
the weight of the gripper is subtracted, to provide the force trajectory f(t).
The position and force trajectories from one of the demonstrations are
shown in Figure 3.21. The force vectors are plotted at every third sample
point, where the length of the vector corresponds to the magnitude and the
maximum force is 16 Newtons. The force f(t) includes a friction
component, and as can be seen by the component of force in the direction
of motion in Figure 3.21.
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The friction component is identified and subtracted from f, using
Equations 3.5 and 3.6, to provide the constraint force f.(t). The normalized
constraint force vectors, fc (t), are plotted in Figure 3.22, which shows that
f.(t) is normal to the constraint surfaces. The length of the vectors in the
Figure do not reflect the magnitude of f;, but the normalized components
of £ . The maximum constraint force from all the demonstrations is 12
Newtons, and is used as the maximum allowable robot constraint force;
thereby ensuring that the total robot force will not exceed the total
demonstrated force (as long as the coefficient of friction is not larger than
the maximum coefficient of friction in the demonstrations). The maximum
coefficient of friction is identified using Equation 3.7 and is equal to 0.66.

Each demonstration trajectory is segmented into subtasks using an approach
to be presented in Chapter 4. In this task, each subtask corresponds to a
single contact state. The analysis presented in this chapter is applied by
comparing demonstrations for each contact state. Motion from the fifth
contact state is shown in Figure 3.23.

Without using the model, the constraint configuration for the fifth contact
state is identified as a single direction of constraint, since f, is constant and
¥ varies. Accordingly, task success requires that the robot trajectory
remain within the obstacle free region bounded by the demonstrations.
Workpiece misalignment is identified using Equation 3.11. The maximum
detected orientation misalignment is 1.5°, which corresponds to the
misalignments about the 'x’ and 'y' axes (misalignment about the 'z' axis is
undetectable in this contact state). Each demonstration is transferred to a
coordinate system relative to the detectable surface location using Equation
3.15. The trajectories relative to the surface, xi(s), are plotted in Figure
3.23 in the plane of x' and z'.
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Figure 3.23: Position Trajectories in the Fifth Contact State

Motion within the fifth contact state is shown in the inset diagram of the workpiece. The
dotted lines are the demonstrated trajectories relative to the detectable surface location, and
the solid line is the robot trajectory generated with a buffer of 10mm.

The trajectories x(s) defined a region of acceptable motion, and a robot
trajectory is generated within that region using the methods presented in
Chapter 2. The robot trajectory is generated with a 10mm buffer with the
boundary of the obstacle free region. The value of dgtart is set equal to
15mm, which was the average variation in the task starting position. As
indicated in Chapter 5, the end of the robot trajectory is not specified as the
average ending position; instead the robot motion continues until the next
contact state is reached. Accordingly, once the robot trajectory passes the
end of the shortest demonstration, the direction of motion is kept constant

throughout the remainder of the region of acceptable motion.

A minimum compliance in the 'x' and 'z' directions is specified by
Equation 3.26, which limits the robot position error to less than the buffer
value. The calculation results in:
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Ky, = 0.8 Nom (3.37)

A maximum compliance in the 'y’ direction is specified by Equation 3.29,
to prevent the contact force from exceeding the maximum demonstrated
constraint force. The calculation depends on the maximum distance from
the from the contact state starting position, which is 189mm. The result is:

K, < 1.2 Y (3.38)

Thus robot compliance limits and a nominal robot trajectory have been
identified for the fifth contact state. This process is repeated for each
contact state in the task.

3.7. Summary

In this chapter demonstration data is used to specify a robot controller that
can adapt to workpiece misalignments. The analysis is applied to 3D
translation for motion within a single contact state, and evaluates the effect
of orientation misalignment in the workpiece. Robot position accuracy is
specified to avoid obstacles, and force accuracy is specified to maintain
contact the constraint surfaces and avoid damage to the parts. Robot success
is guaranteed as long as workpiece misalignment is not larger than that
encountered during the demonstrations. This adaptation at the level of
force and position trajectories may be performed subconsciously by the
human. Nevertheless it is essential to explicitly specify such adaptation
when programming a robot, and the PHD approach presents an automatic
method for specifying these robot performance requirements.

The PHD approach presented in Chapter 2 for unconstrained motion, that
uses human inconsistency to identify an obstacle free region, is extended in
this chapter to the case of constrained motion. If the demonstrator
consistently performs aspects of the task with similar position and force
trajectories, then these components of the trajectories are transferred to the
robot program. However, when the human demonstrates a wide range in
motion or force, it is an indication that high robot accuracy is not
necessary in these regions. In the single constraint configuration, the
position trajectories identify an obstacle free region on the constraint
surface. In the two constraint configuration, the demonstrated directions of
force identify a range of acceptable force direction for which contact with

103



both surfaces is maintained. Finally, in both constraint configurations, the
magnitude of the demonstrated force identifies a range of forces for which
damage to the parts can be avoided.

While the human is performing the task their motion includes both
adaptation and inconsistency, and to distinguish between them a theorem is
presented. Adaptation occurs in response to detectable variation in the
environment, and aspects of the motion and force trajectory that correlate
to detectable workpiece misalignment are interpreted as adaptation. The
demonstrations and tasks are structured such that it is possible to quantify
all the sensory information used to adapt to the environment. Specifically,
the demonstration is restricted to using position and force information
measured by the teaching gripper, and adaptation consists of modifying the
trajectory to correlate with workpiece misalignment. The human adapts to
the environment by modifying their trajectory to maintain contact with the
constraint surfaces and this adaptation is incorporated into the robot
performance requirements. In addition, within each contact state
configuration, their exists a direction of orientation misalignment that is
undetectable. However it is not necessary for the robot to adapt to these
undetectable misalignments, since the human consistently succeeds without
the ability to adapt to these misalignments either.

The method used to specify a robot controller does not attempt to duplicate
the internal control method the human uses. Rather the demonstrated
trajectories identify conditions sufficient to guarantee robot success. In this
analysis a robot compliance controller is selected. The performance of
compliance control is quantified in terms of position and force errors due
to workpiece orientation misalignment. The results of the compliance
controller analysis are combined with the analysis of the demonstration
data, to identify a robot controller directly from the demonstrations. A
range of acceptable robot compliances are identified, which prevent
excessively high stiffness that would result in unacceptable force errors and
excessively low stiffness that would result in unacceptable position errors

The PHD method does not utilize a geometric model of the task, but instead
relies on the demonstration data. Accordingly, the constraint configuration
is not explicitly provided, and in certain circumstances it is not possible to
determine if motion is constrained in one or two directions. It is shown that
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the methods used in the analysis provide for conditions that can guarantee
robot success, without explicit knowledge on the number of constraints.
Accordingly, this approach extends previous research which limited the

task geometry so that it would be possible to explicitly identify the number
of constraints.
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CHAPTER 4

Segmentation of Task Into Subtasks

4.1. Introduction

Segmenting a task into a sequence of subtasks allows the task to divided into
simpler components, and each subtask can then be implemented with a
simpler controller. Accordingly, it is advantageous in both model based
programming and PHD to define subtasks. In model based methods,
segmentation can be done using part geometry and the task objective.
However, in the PHD approach the segmentation is done using only the
demonstration data.

In this Chapter, an algorithm is presented that segments each demonstrated
trajectory into a sequence of subtasks. The subtask definition corresponds to
the robot controllers defined in Chapter 3, where each robot controller is
specified for motion within a single contact state. Accordingly, the algorithm
segments the demonstrated trajectory at each contact state transition that is
detected. However, some of the contact state transition cannot be detected
from the demonstrations data. For these cases it is shown that the robot
controllers defined in Chapter 3 for a single contact state, can also perform
motion consisting of two contact state if the transition between them is
undetectable. Finally, a method is presented to ensure corresponding
segmentation of the different demonstrated trajectories.

It should be noted, that the analysis used to segment a task into subtasks is
different from the analysis used to identify subtasks termination conditions,
which allow the robot to switch from one subtask to the next and is
addressed in Chapter 5.
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4.1.1 Background

Segmenting a task into subtasks is useful in both model based programming
and PHD. For model based programming, Lozano-Pérez, Mason, and Taylor
[1984] segment a task into sections based upon how much of the task a robot
controller can perform with a predefined trajectory and gain matrix. They
specify a robot controller, programmed to react as a linear damper, and
identify the length of motion that the controller can perform, which can
include motion that covers multiple contact states. Whitney [1982], and
Schimmels and Peshkin [1992] also present robot controllers that can
achieve motion that contain multiple contact states.

An alternative model based segmentation approach is presented by Asada
and Hirai [1989], and Desai and Volz [1989]. Here the task is segmented at
each contact state transition. This method is well suited for implementing
hybrid force/position control, where the direction of admissible motion and
force vary at each contact state.

The method presented in this Chapter combines components from both of
the above approaches used in model based programming. The task is
segmented into subtasks at contact state transitions, where these transitions
can be detected from the demonstration data, which corresponds to the
approach of Asada and Hirai [1989], and Desai and Volz, [1989]. In the case
of undetectable transitions, it is shown that the robot controller can perform
the motion for both contact states. Thus ensuring that each subtask can be
implemented by the robot controller, as with the approach of Lozano-Pérez
et al [1984].

Research in robot programming methods that are based on human
demonstrations, has also addressed the subject of segmenting a task into
subtasks. Ikeuchi, Kawade, and Suehiro [1993], define a new subtask when
they detect that a part has moved, yet do not address the details of how the
human moves the part while adapting to the environment, which is the
subject of this thesis. Asada and Izumi [1987] define a new segment at right
angles in the position trajectory, yet this approach is limited to workpieces
where all the surfaces are at right angles to each other.

Other approaches are based on assumptions of how the human performs the
task. Kuniyoshi, Inaba, and Inoue [1992] segment the task when they "detect
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a qualitative change of the hand movement," such as exceeding a threshold
velocity or change in direction. A similar approach is implemented by
Takahashi, Ogata, and Moto [1993], yet the results are not satisfactory in all
demonstrations, and difficulty in selecting appropriate threshold levels is
reported. Indeed, the demonstrator may pause at different points in the task
for no apparent reason, and thus segmenting at each pause will not yield
consistent results.

Another approach that is based on a model of how the human controls their
motion, is presented by Delson and West [1992]. In that approach it is
assumed that the demonstrators performs each subtask with a constant
compliance and a straight line reference trajectory, yet the demonstrations
were not all segmented at corresponding points in the task.

A more satisfactory segmentation approach is presented in this Chapter, that
does not rely on when the human pauses or-on the internal method the
human uses to control their arm impedance.

4.2. Segmentation Algorithm

The category of tasks addressed in this chapter is the same as in Chapter 3.
The task objective is to place a spherical part in a desired location relative to
a polyhedral workpiece, and the assumptions outlined in Section 3.1.2.
apply. The part is held continually by the gripper throughout the task.
Accordingly, any opening or closing of the gripper indicates the beginning
and end of the task. (The gripper status is detected from pressure sensors as
shown in Figure 1.1).

A single task consists of sections of unconstrained motion, addressed in
Chapter 2, and constrained motion, addressed in Chapter 3. Identifying when
the part becomes constrained is straightforward. When the force magnitude
exceeds the level of noise in the measurement, it indicates that contact has
been established. A more challenging analysis is to segment sections of
constrained motion into appropriate subtasks, which is the focus of this
Chapter.

The criterion for valid segmentation, is that a robot controller can be
specified that can perform each subtask. The analysis in Chapter 3 identifies
a robot controller for a section of motion in which the part is constrained by
the same workpiece surfaces, i.e. motion within a single contact state.
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Accordingly, a natural approach is to segment the task at each contact state
transition. However, a difficulty with this approach is that not all the changes
in contact state can be detected from the demonstration data. A segmentation
algorithm is presented in Section 4.2.1 which identifies contact state
transitions when possible. In Section 4.2.2 it is shown that undetectable
contact state transitions do not need to be detected, and that the robot
controller identified for a single contact state will be able to perform the
motion for both contact states.
4.2.1 Identifying Contact State Transitions

In 3D translation, motion is possible in only three contact configurations:
unconstrained motion where the contact force is zero, a single of direction of
constraint where the direction of constraint force, f , is constant, and two
directions of constraint where the direction of motion, ¥, is constant.
Starting at the beginning of a demonstration, the first subtask is identified as
the longest segment in which either f‘c or ¥ is constant (including f, equal to
zero). This process will identify most contact state transitions, and is
repeated until the complete demonstration is segmented into a sequence of
subtasks.

To determine if the constraint force is constant it is necessary to evaluate f,
when the velocity is equal to zero as well as when the part is moving. It is
possible (and indeed likely) that the part will stop when it contacts a new
constraint surface. However, the part can also stop in the middle of a contact
state. Accordingly, it is necessary to distinguish between the two scenarios
in which the part stops, shown in Figure 4.1, in order to detect all changes in
£

In Figure 4.1a, no change in the contact state occurs but the demonstrator
stops. As shown, motion does not occur as long as the applied force, f, is
inside the friction cone, which is known as the sticking condition. The
demonstrator may have stopped simply to pause or because of a local
increase in the friction coefficient which results in a stop and go motion
referred to a sticktion. If the friction and constraint forces could be
calculated at this point, it would shown that the direction f, is still normal to
the surface of the subtask, indicating that motion is within the same contact
state. However, the friction force cannot be calculated by projecting f onto

110



the direction of motion, as in Equation 3.5, since ¥ is not defined when the
part stops.

friction cone
Y = arctan(})

Figure 4.1: Two Scenarios in Which the Motion

In Figure 4.1b, motion stops when the part contacts a new constraint surface.
Upon contact with the new surface the directions of admissible constraint
force change. Accordingly, the direction of f can be outside of the previously
define friction cone, without motion occurring. Here the direction of f, does
change, and a successful segmentation algorithm should be able to detect
this change and indicate a new contact state. Distinguishing between the
sticking condition and a new contact is possible by evaluating whether the
applied force is within the friction cone. Indeed the demonstrator is only able
to detect if they are in scenario ‘a’ or 'b' by applying a force at the edge or
outside of the friction cone, and observing whether motion occurs.

The friction force, constraint force, and coefficient of friction are calculated
for the case where the velocity is greater than zero, with the Equations 3.5,
3.6, and 3.7 presented in Chapter 3. The segmentation algorithm proceeds by
evaluating ¥ and £ when the velocity is greater than zero. If the velocity
becomes zero and f, has been constant up to that point in the subtask, then it
is necessary to determine if the stopping indicates a sticking condition or a
new contact state. A test is performed to determine if one is in the sticking
condition by evaluating the hypothetical forces that would occur under the
sticking conditions. The hypothetical sticking constraint force, f¢ sick, iS
calculated by projecting the total force onto the direction of the constraint
force previously identified from motion up to that point in the subtask,
designated by f‘cmv . The projection is given by the following equation where
the superscript T" designates the transpose.

foa® = ([fOT ) By for [V(D] =0 4.1)
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where f'cmv is the direction of constraint force up to that point in the subtask.
The hypothetical friction force, fick , is given by subtracting f; gk from f:
f i =f@®) - f (O for |[v(t)] =0 4.2)

The contact force is within the friction cone and corresponds to the sticking
condition if:

f ..t
llfﬂc_'%;_: < Uy for [V(®)] =0 (4.3)
¢,stick

where Py is the maximum coefficient measured during the demonstrations.
When Equation 4.3 is satisfied, then the direction of . has not changed and
motion is within the same contact state.

The segmentation algorithm is performed for each demonstration and
identifies regions in which either £ or ¥ are constant. The beginning time
for each subtask is t,, and the procedure is performed by evaluating f and ¥
while incrementing the time. Figure 4.2 depicts the segmentation algorithm,
where tepq is the time at the end of the demonstration.

FOR t=0tot,,

{
IF {¥(t) =const. for te [t, t} OR

{(?c(t) = const. for | v{[t,, t))| > 0) AND (:ff“—‘ig-} < M for | v(t,, )] = 0)}

THEN
Motion is within a single contact state
Therefore, continue incrementing 't

ELSE
Define a new subtask begining at 't’

END

}
CONTINUE THE LOOP

Figure 4.2: Segmentation Algorithm
The methods used to identify whether f. or ¥ are constant are the same
methods used in Section 3.4.2. Variation in the direction of f, is compared to
a noise threshold level, and variation in ¥ is evaluated by comparing the
position trajectory to a least squares straight line. In addition, the condition,
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lvi=0 in the above algorithm is based on a comparison to a threshold noise
level and not absolute zero.

The necessity of considering the case when the velocity is equal to zero is
depicted in the example shown in Figure 4.3. Here the demonstrator moves
along a single constraint surface, momentarily contacts an additional
constraint, and then continues along the original constraint surface. The
demonstrator uses the momentary contact to identify a position on the
surface, and changes their direction of motion after the contact. If the
segmentation analysis did not evaluate f. when the velocity was zero, then
both sections of motion on the surface would have been considered a single
subtask (since £, is the same during both parts of the motion).

However, to successfully implement the motion in Figure 4.3, two subtasks
are required using the robot controllers of the type defined in Chapter 3.
Each controller can only adapt to orientation misalignment, and not change
motion direction in response to contact with a new surface, as is require by
the task. The momentary contact and resulting turning point in the trajectory
can occur at a different point in the trajectory depending on workpiece
misalignment. If both segments of motion were evaluated as a single
subtask, then variation between demonstrations in the position of the turning
point would be interpreted as inconsistency, while in actuality these
variations correspond to adaptation to the environment. The segmentation
algorithm successfully identifies the momentary contact as a change in
contact state, and valid comparisons between demonstration trajectories are
possible for both segments of motion.

segment 2 momentary contact

segment 1

Figure 4.3: Momen Contact B en Two Seegments of Moti
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The algorithm presented in this section segments the demonstration data into
subtasks consisting of a single contact states, except for certain cases which
are addressed in the following section. In addition random pauses by the
demonstrator during the task do not effect the segmentation results. When
each contact state is successfully identified, the segmentation algorithm can
be directly integrated with robot controller analysis of Chapter 3, where each
robot controller is specified for motion within a single contact state.
4.2.2 Undetectable Contact State Transitions

In both model based robot programming and PHD, the criterion for
appropriate subtask definition is the ability of the robot controller for each
subtask to successfully complete the subtask. Segmentation is coupled to
adaptation to environment. Indeed, if there was no variation in the
environment a complete task could be implemented as a single subtask,
where the robot controller consisted of a fixed pre-programmed trajectory.
Segmenting a task into subtasks simplifies the adaptation process, since the
robot controller for each subtask is required to adapt only to workpiece
misalignments encountered within the subtask.

In the PHD approach, it is necessary to transfer to the robot program the
demonstrator's adaptation to the environment. The adaptation strategy the
human uses cannot be directly measured, however all adaptation is derived
from detected variations in the environment. Whenever, an aspect of
workpiece misalignment is detectable, it is possible that the demonstrator
uses that information to adapt. On the other hand, a segment of motion in
which no additional information is acquired, can be implemented with a
fixed trajectory defined from prior information. Such a segment of motion
could be implemented as a single subtask even with the simplest 'fixed
trajectory’ robot controller. If the robot controller has some adaptation
capability, then additional motion could be incorporate into the subtask.

In 3D contact tasks, information regarding workpiece misalignment is
acquired through contact with the workpiece surfaces. Initial contact with a
surface provides information regarding translation misalignment of that
surface, and sliding over a surface provides orientation information as shown
in Figure 3.10. However, no additional information is acquired from motion
within a contact state, after the initial contact and a small amount of sliding
motion sufficient to identify orientation misalignment.
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The robot controllers defined in Chapter 3 can achieve motion within a
single contact state, because they adapt to orientation misalignment which is
the only information acquired within a contact state!. These same controllers
can achieve any motion, as long as no additional adaptation is required
beyond the adaptation to orientation misalignment detect during the initial
sliding motion. Accordingly, the compliant controller identified in Chapter 3
can achieve motion consisting of two contact states, as long as no additional
information is acquired in the second contact state. In the following two
sections it is shown that when undetected contact state transitions occur, no
additional information is acquired during the second contact state, and how a
single robot controller achieves motion for both contact states.
1221 Transition From T One C .

In 3D constrained motion there are two constraint configurations, and
therefore four possible types of contact state transitions between them.
Undetected contact state transitions can occur in all four types of transitions,
when either £ or ¥ which is constant in one contact state does not change as
the part moves to the next contact state. The most likely of these to occur is
in the transition from a two constraint configuration to a single constraint,
and is shown in Figure 4.4b. Here, in all the demonstrations the direction of
motion remains in a straight line even as the part moves to the single
constraint contact state. Accordingly, the segmentation algorithm detects a
constant ¢, and does not segment the motion at the contact state transition.

The demonstrator is able to continue moving in a straight line, because they
are familiar with the workpiece and anticipate the transition. During the
initial segment of motion with two constraints, the direction of force is
applied so that contact is maintained with both surfaces. If the change in
constraint was unanticipated, then a non zero force component in the 'z’
direction, as shown in Figure 4.4, would be applied at the point of transition,
and would result in a deviation from the straight line motion. Of course the
demonstrator could detect the change in motion and correct their trajectory
with only a small change in ¥. However it is assumed (assumption 10) that
the teaching gripper sensors are accurate enough to detect the geometric

1 The two stage approach presented in Section 3.5.2.3 changes the robot controller after as small amount of
motion in which the orientation information is measured. Here two controllers are used for each contact
state, and the task is segmented at each point where information is acquired. Accordingly, the second stage
robot controller has no adaptation requirements and is implemented with a fixed trajectory.
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features that the human uses, and thus if the transition was unanticipated it
would be detected in the measurement of ¥.

T —
Schange 8
a. Single contact state b. Undetected transiton
Figure 4.4; Region of irections For Tw es of

Straicht Li .
Both cases in figures 'a' and 'b' are segnl;lentel:ll inlt\cl)[a sinIglle subtask since the direction of
motion is constant, however the shapes of the regions F are different.

The demonstrator is able to anticipate the change in the constraint surface
(with their eyes closed), just as the demonstrator is able to avoid obstacles
through familiarity with the obstacle locations. In Figure 4.4 the
demonstrated force trajectories are shown as a function of the distance
traveled, where the direction of force, 0, is defined in Equation 3.21. The
range of acceptable force directions, F, is defined by the region bounded by
the demonstrated trajectories. In the configuration with a single contact state,
Figure 4.4a, the region F, is relatively wide and consistent throughout the
motion. However, in the configuration where a contact state transition
occurs, Figure 4.4b, the region Fa becomes narrow just prior to the change
in contact states and the direction of force in all the demonstrations is

applied in the 'y' direction in anticipation of the upcoming single constraint.

In order for the robot to maintain the same position accuracy as the human,
the robot controller should be able to achieve straight line motion despite the
change in the constraint. The procedure for specifying a robot controller
presented in Chapter 3, is applied here without modification. The nominal
trajectory of the robot force is selected to lie within the region Fa. For the
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motion in Figure 4.4a, a constant direction of robot force could be selected.
However, when an undetected change in contact state occurs, as shown in
Figure 4.4b, selecting a robot force trajectory within F5 automatically
generates the desired force trajectory that 'anticipates' the contact state
transition and results in straight line robot motion. Here the shape of Fa
defines the robot force trajectory, just as the shape of X defines the position
trajectory in obstacle avoidance.

Undetected contact states transitions do not occur frequently, because they.
required accurate human motion and also preclude certain workpiece
misalignments. For example, the demonstrator can perform the motion in
Figure 4.4a, only if there is no workpiece orientation misalignment about the
'x' axis. Rotation misalignment about the direction of motion is undetectable
in the first contact state, yet detectable in the second contact state. If such
misalignment occurred, then the force applied by the demonstrator at the
transition would not be normal to the constraint surface, and deviation from
straight line motion would occur. Therefore, the ability of the demonstrator
to continue in a straight line indicates that there is no rotation misalignment
of the workpiece about the direction of motion. In general an undetected
contact state transition cannot occur if there is workpiece misalignment in
directions that are undetectable in the first contact state yet detectable in the
second contact state.

In addition, assumption 7 precludes using information detected in the first
contact state for motion in the second contact state. Thus, workpiece
rotations about the 'y’ axis in Figure 4.4a will violate assumption 7, since
straight line motion will require that the direction of motion in the second
contact state is defined by the constraints in the first contact state. Indeed, a
compliance controller specified for a two constraint configuration will -
deviate from straight line motion if workpiece rotation occurs about the 'y’
axis2. The remaining direction in which a misalignment is permissible is one
that is detectable in both contact states, such as workpiece rotation about the
'z’ axis in Figure 4.4.

2 Assumption 7 could be relaxed for undetected contact state transitions, as long as the two stage robot
controller, presented in Section 3.5.2.3, is used. The two stage controller incorporates all the information
from initial motion in the first contact state into the reference trajectory for the reminder of the subtask.
Thus, in the example in Figure 4.4b, the robot could achieve straight line motion even if workpiece
rotations occurred about the 'y’ axis.
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In PHD the workpiece geometry is not known, and thus the presence of a
region F shaped like in one in Figure 4.4b does not necessarily mean that
there is a change in contact state. However, as with the previous analysis in
Chapter 2 and 3, components of the motion and force trajectories that are
consistently demonstrated are transferred to the robot program, which is
sufficient to achieve robot success.

This Section shows that an undetected contact state transition does not need
to be detected, and the method used to specify a robot controller presented in
Chapter 3 can be implemented as if the motion was within a single contact
state. Even if undetected contact state transitions do not occur often, the
analysis is significant because it illustrates the consistency of the analytical
approach. In Chapter 3, the specification of the robot controllers is based on
the approach that it is only necessary to adapt to workpiece misalignment
that can be detected. This same approach is applied in this section to
segmentation, where it is shown that it is necessary to define a new subtask
only when new workpiece misalignment is detectable. The continuity in the
analytical approach also extends to the use of human inconsistency. In this
section the analogy between the regions X and Fj is extended; variation in
the width of F4 as a function of the distance traveled, indicates task accuracy
requirements as does variation in the width of Xa.
422 i I

There are three other types of undetectable contact state transitions, besides
the one presented in Section 4.2.2.1. These other types of transitions are
unlikely to occur in actual demonstrations, however are included here for
completeness. In all undetected transitions, no information is acquired
during the transition, and both contact states can be implemented as a single
subtask.

Figure 4.5 shows the case of an undetected transition between a pair of
contact states that both have two directions of constraint. As shown in the
cross section, the direction of force is always aligned with the 'y' axis.
Accordingly, the segmentation algorithm would detect a constant f, and both
contact states would be treated as a single subtask. However, it is unlikely
that the demonstrator would be able to keep the direction of force constant
while performing both segments of motion (with their eyes closed). The
human would have to anticipate exactly where the first contact state ends,
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and make the correct change in direction of motion without using force
feedback. It is more likely that the demonstrator would detect the end of the
first contact state by a change in the direction of force when the part contacts
the new surfaces. The demonstrator would only be able to anticipate the
change in contact state if the distance traveled in the first contact state is the
same in all demonstrations (and the human had perfect position accuracy).
Under these circumstance, the region of acceptable motion would be defined
by trajectories that lie on top of each other, and would uniquely define a
robot position trajectory that followed the desired motion for both contact
states.
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a. Isometric view a. Cross section
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Another undetected contact state transition is shown in Figure 4.6. Here the
transition is between two contact states with a single direction of constraint,
yet the direction of motion remains constant. As in the previous example, it
is unlikely that the demonstrator could accomplish this motion in a straight
line, since it would require very high position accuracy and a change in the
direction of force at exactly the right point. Nevertheless, if the demonstrator
does perform both segments with a straight line, the regions of acceptable
force will define a robot trajectory that can also perform the straight line
motion.
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Figure 4.6: etected Transition Between Contact States With a Single
irection nstrai

The final type of undetected contact state transition, occurs with motion
from a single constraint to two constraints, which is the reverse of what is
shown in Figure 4.4b. Here perfect position accuracy is required to align the
direction of motion in the single constraint with that in the two constraint
configuration. The region of acceptable force will be the same as shown in
Figure 4.4b, but reversed. As in the other cases of undetectable transitions,
the demonstrations define an appropriate robot force and position trajectory.
All cases of unlikely undetectable transitions, require the human to predict
changes in the contact state with perfect position accuracy, and therefore
allow almost no workpiece misalignment.

4.3. Ensuring Corresponding Segmentation Between Demonstrations

The PHD approach in Chapters 2 and 3 relies on comparisons between
multiple demonstrations. Each subtask is compared to the corresponding
subtasks from other demonstrations. If the segmentation algorithm is not
consistent, then it is not possible to perform meaningful comparisons.
Accordingly, it is necessary to ensure corresponding segmentation between
demonstrations.

The category of tasks addressed in this thesis are ones which are
demonstrated with the same sequence of contact states in each demonstration
(assumption 6). Accordingly, when all the contact state transitions are
detected, ensuring corresponding segmentation is straightforward. Each
demonstration has the same number of subtasks with a one to one
correspondence between contact states.
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Segmentation is also straightforward when undetected contact state
transitions occur, as long as the transition is consistently undetectable in all
demonstrations. Here each demonstration has the same number of subtasks,
where the subtasks with undetected transitions have the same two contact
states in all demonstrations.

However, it is possible that a contact state transition is detectable in one
demonstration but not in another, as shown in Figure 4.7. After applying the
segmentation algorithm presented in Section 4.2.1 (referred to as preliminary
segmentation), the motion shown in Figure 4.7a is identified as a single
subtask with a constant ¥, and the motion in Figure 4.7b is segmented into
two subtasks. Here not all demonstrations have the same number of
subtasks. A method is presented in this section to identify this circumstance,
and a secondary segmentation algorithm is presented to ensure
corresponding subtasks between demonstrations.

Preliminary
Segmentation

Segmentation
a. undetectable transition b. detectable transition
igure 4.7: Prelimi mentation Be Inconsisten

When a contact state transition is detected in one demonstration, it is
possible to use that information to detect the corresponding transition that is
undetectable in another demonstration. The secondary segmentation
considers only the undetected transition which is possible under realistic
circumstance as presented in Section 4.2.2.1, and is the straight line motion
between two constraints and a single constraint. In the second contact state
of the undetected transition, both fc and ¥ are constant, as shown in Figure
4.7a. Accordingly, once it is established that an undetected transition has
occurred, the transition point is identified by searching backwards from the
end of the overall section where ¥ is constant for the segment of constant fc.
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To implement the secondary segmentation it is necessary to identify where
undetected transitions occur in only some of the demonstrations. The first
step is to identify detectable transitions that could be demonstrated in an
undetectable fashion, such as shown in Figure 4.7b. In the detectable
transition, the position trajectories remains on a single plane of motion for
both contact states (otherwise it would not be possible to perform this
transition with straight line motion). The contact state that follows is referred
to as the third contact state, and will have either one or two constraint
directions. If the third contact state is a single constraint, then the motion
will be in a new plane of motion, since two planes that intersect cannot have
the same orientation.

If a demonstration has an undetected transition, as in Figure 4.7a, then the
preliminary segmentation switches directly from motion with a constant ¥ to
the third contact state of the detectable transition, since all demonstrations
are performed with the same sequence of contact states. Accordingly,
demonstrations with undetected transitions are identified by finding where
the preliminary segmentation skips a contact state. The skip will occur
between a segment of motion with a constant ¥, to a segment corresponding
to the third contact state. If the third contact state has two constraints, then
the switch will be to motion with a constant (but different) ¥. If the third
contact state has a single constraint, then the switch will be to motion with a
constant £, and the plane of the motion will change.

The secondary segmentation algorithm is implemented after the preliminary
segmentation is performed on all the demonstrations, and is shown by the
following steps:

1. Find all detectable contact state transitions corresponding to Figure 4.7b,
by identifying transitions that satisfy both of the following criteria.

o Identify all pairs of contact states where a segment of constant ¥ is
followed by a segment of constant f.

o If motion in both contact states lie in the same plane of motion,
then that pair of contact states could be performed with straight
line motion by an undetectable contact state. A least squares
approximation is used to determine if motion lies on a single plane,
using the method shown in Appendix II.
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2. Find demonstrations where the contact state transition is not detected by
the preliminary segmentation and skips to the third contact state. A
segment of motion that potentially contains two contact states, is any
segment with a constant v that appears in the subtask sequence at the

position corresponding to the first contact state in the detectable
demonstrations.

» If this segment with a constant ¥ is followed by another segment
with a constant ¥ then an undetected transition occurs, since the.
second contact state with a constant £ is skipped.

 If this segment with a constant ¥ is followed by a segment with a
constant £, yet the motion is not in the same plane, then an
undetected transition occurs. The change in the plane of motion
indicates that the segmentation could not correspond to the
detected segmentation in Figure 4.7b.

3. Re-segment each segment with an undetected transition into two contact
states. Search from the end of the segment for the longest region in which

~

f. is constant, as shown in Figure 4.7a.

In most cases all the contact state transitions are detectable and step 3 is not
necessary.

4.4. Experimental Results

The segmentation algorithm is applied to the example task described in
Chapter 3. During the constrained motion, each demonstration was
performed with the same sequence of contact states, which is a prerequisite
for the segmentation analysis. However, in the transition between
unconstrained motion to constrained motion, in some of the demonstrations
a bounce was detected. The part gained contact, then loss contact
momentarily, and then regained contact. The bounce was not perceived from
visual observation of the demonstration, but was present in the data.

Since the bounce occurred only in some of the demonstrations, the sequence
of contact state transition was not totally consistent throughout the
demonstrations. However, since the bounce is not an important component
of the manipulation strategy, it was eliminated from the analysis. Any
number of transitions between unconstrained motion and constrained
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motion, that occurred within a short period of time, were treated as a single
contact state transition. The threshold period between transitions for
eliminating the bounce time, was 0.3 seconds.

To visualize the scope of the segmentation analysis, the position trajectories
from all ten demonstrations are shown in Figure 4.8. The variation between
the demonstrations is due to both human inconsistency and adaptation to
workpiece misalignment. One can observe in Figure 4.8 qualitative changes
in motion in each trajectory that correspond to different contact states in the
task. To perform a meaningful comparison between demonstrations,
segmentation is necessary.
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The primary segmentation algorithm presented in Section 4.2.1 was applied
to each demonstration. In the analysis three parameters are used that
correspond to the noise level in the sensor measurements. The threshold
level beneath which lv(t)l is considered zero is Smm/s. Variation in the
direction £, is calculated using Equation 3.8, and is indicated by a mean
value of B. The threshold level for B, beneath which £, is considered
constant is 5°. Variation in ¥ is calculated by performing a least squares fit
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of a straight line on the position trajectory, as presented in Appendix II. The
standard deviation of the noise in the position trajectory is set equal to
1.0mm.

The segmentation of one demonstration trajectory is shown in Figure 4.9. At
each point where the segmentation algorithm identified a new subtask, the
position trajectory switches between a solid line and a dotted line.
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All ten demonstrations were successfully segmented into six subtasks. The
results of the segmentation analysis are shown in Figure 4.10. Column two
indicates which of the directions £, or ¥ was found to be constant. Column
three shows the number of constraints that can be identified from the data. In
the third subtask, both the force and motion direction were constant in all
demonstration, and therefore the number of constraints cannot be determined
from the data. In this contact state the demonstrator had no need to avoid
obstacles and covered only a short distance of motion, which is why the
trajectories were in straight lines even though there is a single constraint.
Thus, for the third subtask, the robot controller is defined using the analysis
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presented in Section 3.5.2.3, which addresses the case of constraint
ambiguity. Column 4 shows the nominal detectable surface orientation,
which is identified by averaging either directions of f. or ¢, as indicated by
Equations 3.9 and 3.10.

Subtask Constant Constraints Nominal direction
1 f 0 [ = [0]
) ? Lon 2 = [0.00 -.60 —80]
c and ¥ ¢ = [0.00 +80 —60]
3 9 2 v =[1.00 -03 .02]
4 v 2 o =[03 .99 .08]
3 f 1 =01 -03 -1.00]
6 v 2 ¢ =[1.00-.03 ~01]
Fi 4.10; ntation 1

To ensure corresponding segmentation, the secondary segmentation
algorithm was applied. In step 1, the only two subtasks in which a constant
¥ is followed by a constant f. are subtasks 4 and 5. Step 2 indicated that in
each demonstration the trajectories of both subtasks lie on the same plane.
Accordingly, there was no need for additional segmentation to ensure
corresponding segmentation.

45. Summary

In this chapter a method is presented to segment the task into a sequence of
subtasks. The segmentation is consistent with the specification of the robot
controller, presented in Chapter 3, and thus each subtask can be
implemented by the corresponding robot controller. The segmentation
approach is straightforward in that a new subtask is defined wherever a
contact state transition is identified.

In a contact state with a single constraint, the direction of constraint force,
fc , is constant, and the direction of motion ¥ is constant when there are two
constraints. Accordingly, the preliminary segmentation algorithm searches
for sections of motion with either a constant f, or 9. To implement this
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algorithm it is necessary to identify changes in f. at all points in the
trajectory, including points where the velocity is zero. The characteristics of
the friction component of the measured force, requires that a separate test be
performed to identify changes in ?c when the velocity is zero.

The preliminary segmentation algorithm does not identify all contact state
transitions. However, it is shown that these transitions do not need to be
detected, as long as they are undetected in all demonstrations. Under these
circumstances, the robot controller defined for a single contact state will
achieve the motion for both contact states. To account for the case where a
transitions is detected in some demonstrations but not others, a secondary
segmentation algorithm is applied. This algorithm uses a detected transition
in one demonstrations to identify a previously undetectable transitions in
other demonstrations. Accordingly, all demonstration are segmented into the
same number of subtasks, which have corresponding contact states.

The overall segmentation process requires a number of algorithms and
consideration of special cases. However, there is a consistent underlying
approach throughout these procedures, which is based on information
acquired from the environment. The segmentation algorithm defines new
subtasks at points where new information is acquired. The compliant
controllers defined in Chapter 3, can adapt to certain directions of orientation
misalignment, but any other information results in a new subtask. It is shown
that whenever a contact state transition is undetectable, no new information
is acquired, which is why these transitions do not need to be detected.

Other methods of segmentation have been presented which rely on a model
of how the human performs the task, such as identifying changes in the
demonstrator's velocity. However, these methods breakdown when human
motion is not consistent with the model. Thus, the information based
approach is more reliable, and does not require the human motion to
conform to a specific model.
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CHAPTER 5

Subtask Termination Conditions

5.1. Introduction

Subtask termination conditions are sensor measurements that indicate to the
robot that motion within a subtask has been completed, and that the robot
should switch to the next subtask. Accordingly, termination conditions
provide an important component of the ability of the robot to adapt to the
environment.

Each demonstration is performed with the same sequence of contact states.
In Chapter 3, a robot compliance controller is specified that can implement
motion and reach the target position within each contact state. Accordingly,
robot success can be guaranteed as long as the robot can switch between one
contact state to the next. The subtask termination conditions provide the
robot with this ability.

In model based robot programming, it is necessary to predict sensor signals
that correspond to the termination conditions. However, with the PHD
approach the sensor signals are directly available. Accordingly, sensor
measurements that indicate completion of a subtask can be extracted from
the demonstration data. In Section 5.2 a method is presented for identifying
the termination conditions, by correlating the completion of subtasks with
Sensor measurements.

The analysis used to segment a task into subtasks in Chapter 4, is different
from the analysis used to identify termination conditions. In specific, when
segmenting a task, all of the data from a demonstration can be used.
However, the robot must be able to identify a termination condition during
real time implementation of the task, and therefore can only use sensory
information that has been measured up to the point of subtask completion. A

129



valid termination condition can not be based on a sensory signal that occurs
after the demonstrator detects completion of the subtask and switches to the
beginning of the next subtask. A method is presented in Section 5.3, to
ensure that such causality inconsistencies are avoided.

5.1.1. Background

It has been recognized that identifying changes in contact states during an
assembly process is useful for adapting to part misalignment. A method of
guarded moves is presented by Will and Grossman [1975], in which velocity
and force sensors are used to determine when contact has been established
with a surface.

Asada and Hirai [1989], and Desai and Volz, [1989] use a model of the task

geometry to detect a change in the contact state of polyhedral parts, from

quasi-static force and position measurements. McCarragher and Asada

[1993] use sensor measurements that incorporate part dynamics to identify .
contact state transitions. These approaches allow for the task be

implemented in a variety of contact state sequences, which is more difficult

than the case of a constant sequence of contact states addressed by this

thesis. However these methods are model based, and therefore cannot be

applied to PHD.

Hannaford and Lee [1989] identify subtask transitions in human
demonstration data, by using a probabilistic model of these transitions in the
form of a hidden Markov model. The probabilistic approach increases
robustness in the presence of noise, especially when the demonstrator skips a
subtask. However, a model of the task and expected termination conditions
are used, which is not available in the PHD method.

In model based approaches it is necessary to synthesize what the sensor
measurements will be for each contact state. With PHD, synthesis is not
required since the sensor signals are measured directly. However, it is
necessary to correlate the appropriate signals with the completion of the
subtask.

5.2. Identifying Termination Conditions

Completion of motion within a subtask occurs when the part reaches the
target of that subtask. Sensor measurements that indicate completion of a
subtask occur in all the demonstrations at the end of the subtask, and thus
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correlation between sensor measurements and subtask completion can be
used to identify the subtask termination conditions.

The demonstrator can detect completion of a subtask in two fashions. The
first type of termination condition relies on acquiring new information from
the environment; for example by contacting a new workpiece surface. The
second type is through familiarity with the task, such as knowing the
appropriate distance to travel within the subtask. For each subtask, a search
is performed to identify a termination condition of the first type. If no new
information is acquired at subtask completion, then by default the
termination condition is of the second type.

The contact task used in the experiments is shown in Figure 5.1. The
sequence of contact state transitions is numbered from one to six. Contact
states from one to three are of the first type, where the completion of the
subtask is detected by contacting a new surface. However, the fourth
termination condition is of the second type. Through familiarity with the
workpiece, the demonstrator knows that to continue in the fourth subtask too
long will result in the part falling into the triangular hole in the surface.
Accordingly, the subtask is completed when the motion has progressed a
specified distance within the contact state.

Figure 5.1; Workpiece Used in th riment
The first type of termination condition corresponds to new information from
the environment, and is due to a change in contact state, since while the part
remains in the same contact state no additional information is acquired.
Sensor measurements that can indicate a change in contact state are
designated as potential termination conditions. As the robot performs the
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task, the normalized velocity, ¥, and the normalized force, f, are continually
monitored. Prior to normalizing the measured force the gravitational load of
the robot gripper is subtracted, but f still includes frictional forces. Potential
termination conditions are components of ¥ and f that are aligned with the
coordinate system of the current subtask.

In motion constrained in a single direction, £ is normal to the surface and ¥
lies on the plane tangential to the surface. Accordingly, a change in contact
state could be indicated by a component of f that is in the plane of motion
and exceeds the threshold corresponding to the friction component. Another
potential termination condition is a component of ¥ that is normal to the
plane of motion.

In motion constrained in two directions, ¥ is constant and £, lies in a plane
normal to the direction of motion. Accordingly, potential termination
conditions includes a component of ¥V normal to the direction of straight line
motion, and a component of f in the direction of motion that exceeds a
friction threshold.

For a potential termination condition to be a valid termination condition its
value should reach a threshold level at the completion of the subtask, but not
beforehand. The demonstrator cannot respond to a termination condition
instantaneously. Rather there is a period of time, defined as the termination
region, between the sensor measurement that indicates subtask completion
and the response of the human. The method used to calculate the termination
region is presented in Section 5.3.

Each potential termination condition is designated as a function of time,
C(t). Figure 5.2 shows the trajectory of a potential termination condition for
the third subtask of the task shown in Figure 5.1. Here, C(t) is the
component of f in the direction of motion. The maximum value of C within
the termination region is given by, Ci max, the maximum value within the
remainder of the subtask is given by, Cg max, and the range of C is given by
Crange. The function C(t) can only indicate subtask completion if Cyp,max is
greater than Cg max in all demonstrations. Accordingly, the following
delectability criterion is defined, which is greater than zero only if under
worst case conditions, C(t) indicates subtask completion.

132



i - C
detectability = PN Cunn] — MX{Cyp (5.1)
ma'x[crange]
where the minimum and maximum operations are performed between all
demonstrations.

Each potential termination condition with a delectability value greater than
zero is valid. If there exists more than one valid termination condition, the
robot uses the one with the highest delectability. The termination condition
the robot uses to detect subtask completion is when the value of C(t) exceeds
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Figure 5.2: T ination Condition

If none of the potential termination conditions are valid, then the termination
condition is of the second type. In this case, the demonstrator decides to
complete the subtask without detecting a change in contact state. Instead the
termination condition corresponds to when the part enters a target region.
The shapes of the demonstrated trajectories are compared to each other
relative to the detected workpiece surfaces, using the transformation shown
in Equation 3.15. (If the motion is constrained in two directions, then the
straight line trajectories are simply laid on top of each other). Variation in
the position as subtask completion identifies the target region, and the
average ending position identifies the target position. The robot detects
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subtask completion when the part enters the target region, which is how a
task of unconstrained motion is completed.

5.3. Ensuring Proper Causality

In model based robot programming, reaction from the environment can be
clearly distinguished from a programmed robot action. However, when
interpreting human demonstration data for PHD, the potential exists for
confusion between cause and effect. For example, Figure 5.3 shows the third
contact state transition of the task portrayed in Figure 5.1. Here, the proper
termination condition corresponds to an increase of the force in the 'x'
direction as the part contacts a new surface. After the demonstrator detects
the transition, they begin to move along the next contact state, and thus
generate both motion and force (to overcome friction) in the 'y' direction.
The force in the 'x' direction is the proper termination condition, which
causes the demonstrator to switch to the next subtask. On the other hand, the
force and motion in the 'y’ direction correspond to the beginning of motion in
the following subtask, and is the effect of the subtask transition.

Sensor measurements that correspond to both cause and effect occur within a
short period of time at the completion of a subtask. Accordingly, the
algorithm presented in Section 5.2 could mistakenly identify as a termination
condition, a sensor measurement that corresponds to the beginning of motion
in the next subtask. If the robot program was based on an inappropriate
termination condition, then the robot would not detect subtask completion.
For example, if the robot waited for motion to occur in the 'y’ direction to
detect the completion of the subtask in Figure 5.3, then that sensor
measurement would never occur.
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The method used to ensure proper causality, is to identify the point in time
when the demonstrator changes their action and begins the next subtask. The
proper termination condition will always occur prior to the change in action.
The algorithm to segment the task into subtasks, presented in Chapter 4,
identifies the part position where a contact state transition occurs, but not an
accurate time of transition.

To identify a change in human action, a model of human manipulation is
used. Up till this point in the analysis, attempts have been made to avoid
relying on a model of the internal control method that the human uses, which
may not be valid throughout the task. Here a human model is used only for
the short period of time during which a termination condition is detected.

The model used for human motion is compliance control. Hogan [1984]
presented biomechanic experiments that indicate that human motion, for
relatively slow motion, can be interpreted in terms of compliance control.
The model is similar to robot compliance control, but provides the
relationship between human force £(t) and position x(t), which is given by:

£ = K(x.(t) - x(t)) (5.2)
This model is applied for a small distance of motion at the end of a subtask.
For this small distance it is assumed that the reference trajectory follows a
straight line at a constant speed. The use of a straight line reference
trajectory corresponds to experimental results by Russell [1990] that indicate
that individual segments of constrained human motion can be interpreted as
compliant motion with a straight line reference trajectory. In the section of
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motion prior to a change in contact state, the demonstrator proceeds
anticipating a gain or loss of contact at any point, but not knowing exactly
where that will occur. Accordingly, it is assumed that the human reference
trajectory proceeds at a constant speed, which is given by:

Xedt) = Vet + X0 (5.3)

The objective of using the human model is to identify the point at which the
demonstrator detects subtask completion and changes their action. Constant
human action is identified during a period where the human motion and
force can be accurately modeled in terms of compliance control with a
constant Kand v .

A period of time defined as the termination region, begins just prior to the
completion of a subtask, and ends at the time at which the human responds
to the completion. The segmentation algorithm in Chapter 4 identifies a
position, x(sg), at which a subtask is completed. The beginning of the |
termination region is selected as the time a which the part is a small distance,
ddys, prior to x(sg) in the demonstrated trajectory. The end of the termination
region is calculated by identifying the time during which the model of
human motion, with a constant K and ¥, remains valid. A least squares
method is used to fit the model to the data in a fashion similar to identifying
a region of straight line motion. The details of the analysis are shown in
Appendix V.

An example of a termination region is shown in Figure 5.4. The forces in the
'x" and 'y' directions, fy and fy, are plotted as a function of time. The
termination region begins prior to contact with the new surface. Contact with
the surface can be seen in the plot at the time where the force fx begining to
increase. A reference trajectory is calculated using the values of K and ¢
identified from the least squares fit. The termination region identifies where
the valid termination condition, fx, occurs, but stops prior to the increase in
the force fy or motion in the 'y’ direction. Thus, use of the termination region
prevents causality errors in identifying the termination region.

136



e - =

termination
region

force (Newtons)
N~

I

|

l

|
12 14 16 1.8

time (seconds)
4: Terminati ion

It should be noted that when the subtask termination condition is of the
second type, the demonstrator does not rely on a change in contact state to
indicate subtask completion. Here too it is necessary to identify an
appropriate termination region; otherwise initial motion from the following
contact state could be misinterpreted as a valid termination condition. In the
case of a type two termination condition, the model of human motion is not
completely accurate. The speed of the demonstrator's reference trajectory
will drop rather than remain constant, as the part approaches the desired
position. Nevertheless, the model provides appropriate results for identifying
a valid termination condition. The inaccuracy in the model, results in a
shorter period in which the model matches the human motion. The shorter
termination region prevents sensory measurements from the following
subtask to be considered as potential termination conditions. Moreover, a
shorter termination region does not effect the accuracy of the valid
termination conditions, which in this case is the average position at subtask
completion.

The method presented in this Section identifies when the human changes
their action. This approach is based on a model of human motion over a
short distance of motion. The analysis, enables the algorithm for identifying
termination conditions, presented in Section 5.2, to be implemented without
causality errors. As in previous analysis in this thesis, an underlying theme is
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that human adaptation to the environment occurs in response on detectable
variations in the environment. The causality criterion ensures that the
detected variations must occur prior to motion that is interpreted as
adaptation.

5.4. Summary

Identifying subtask termination conditions enables the robot to switch
between subtasks. Sensory information that indicates subtask completion
occurs at the end of each subtask, and such sensory signals are identified
from the delectability criterion defined in Section 5.2. However, it is also
necessary to ensure that a termination condition is not selected as a sensor
signal that corresponds to subtask completion only because it is a result of
motion in the following subtask. Proper causality is ensured, in Section 5.3,
by identifying the time at which the human changes their action.
Accordingly, the termination condition is selected to correspond to a sensory
signal that occurs prior to the human switching to the next subtask.
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CHAPTER 6

Conclusion

A method has been presented to implement PHD for pick and place, and
contact tasks. The robot program generated from the demonstration data is
not a simple duplication of human motion. Rather, the robot has the ability
to adapt to the environment. In addition, unnecessary human motion is
removed from the robot trajectory.

A complete robot program is generated form the demonstration data,
including trajectory, compliance, and subtask termination conditions.
Throughout the analysis, no used is made of a geometric model task
geometry, which further simplifies programming and prevents difficulties
that could be caused by model inaccuracies. To ensure that all the
information necessary to adapt to the environment is contained in the
demonstration data, the demonstrator is restricted to using only the sensory
information measured by the teaching gripper, i.e. force and position, to
perform the task. By using this information a robot program is generated that
can successfully perform the task as long as variations in the environment
are not larger than those encountered during the demonstrations.

A summary of the different components of the analysis used to specify a
robot controller for a contact task is presented in the flow chart in Figure 6.1.
The chart shows how both human inconsistency and adaptation are
integrated together to specify the robot performance requirements.
Workpiece misalignment results a disturbance in the robot motion, and
human inconsistency provides for an allowable margin of error. Thus, the
method presented in Chapter 3 specifies robot compliance to adapt to
workpiece misalignment while staying within the regions of acceptable
motion and force.
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Figure 6.1: Flow Chart f i obot Pr. for ntact Task

The use of human inconsistency is a consistent theme throughout the thesis.
In Chapter 2, human inconsistency is used to identify an obstacle free region
for pick and place tasks. A buffer between the robot and regions boundaries
ensures obstacle avoidance, even in the presence of robot errors. This
approach is extended in Chapter 3 to include regions of acceptable force
direction and force magnitude.

Another theme is the use of information from the environment to adapt to
workpiece misalignment. Robot adaptation is performed by switching
between subtasks, and through use of a compliance controller within each
subtask. Segmenting the task into subtasks, shown in the second block of the
flow chart, relies on changes in information from the environment. Indeed,
any section in which no new information is acquired from the environment
can be performed as a single subtask. The subtask termination conditions are

140



identified by changes in sensory information that correspond to subtask
completion. Finally, the robot compliance controller for motion within a
single subtask, is specified to adapt to workpiece orientation misalignment
that is detectable from the sensory information.

Future Research

The methods presented in this thesis can be extended to include a larger
scope of tasks. Regardless of the task, human inconsistency is an indicator of .
task accuracy requirements, and human adaptation occurs in response to
detected variations in the environment.

To apply PHD to a larger range of tasks, one of the most useful extensions of
the approach would be consider tasks that include part rotation as well as
translation. An additional extension would be to allow the human to use
information accumulated from multiple contact states, which as indicated in
Chapter 3, is assumed not to occur. Removing the restriction that the
sequence of contact state is constant, would also increase the scope of
application. However, as indicated in Appendix I, this limitation does not
preclude numerous useful tasks.
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The scope of this thesis is limited in apphcatmn to s1mp1e assembly tasks
referred to as contact tasks. The task is performed with only part translation,
but no rotation. In addition, it is assumed that the demonstrator performs the
task with the same sequence of contact states in each demonstration.

To extend this research to more useful assembly tasks it is necessary to
extend the analysis to include part rotation. However, many useful tasks can
still be performed with the same sequence of contact states, even in the
presence of workpiece misalignment. Villarreal and Asada [1991] present
the example task of assembling a lid onto a box. As shown in Figure Al 1,
this task can be performed with a sequence of three contact states: the lid is
moved into contact with the side of the box, the lid slides up the side, and
finally the lid is rotated into place. Even with significant misalignment in
box location and orientation, this strategy will succeed.

=

Figure AL 1: Assembly of Lid Onto Box

Another example task which has been frequently addressed in robotics, is the
task of inserting a peg into a hole, as shown in Figure AL2. There are two
approaches for performing this task. The approach shown in Figure Al 2a, is
to align the peg with the nominal hole orientation and attempt a direct
insertion. If there exists misalignment in the hole location, the peg could
contact either side of the hole, and thus the contact state sequence will vary
between demonstrations. Whitney [1982] presents a robot compliance
controller that can successfully implement this task for a range of
misalignments, regardless of which side of the hole the peg contacts first.

An alternative approach for performing the peg in hole task is presented by
Inoue [1974], and is shown in Figure AL2b. Here the peg is purposely tilted
in one direction so that the initial contact between the peg and the hole will
always occur at the same side. Thus, the task can be performed with the
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sequence of contact states for a significant range of workpiece misalignment.
In addition, this approach does not require chamfers on the hole or peg.

inally alisned with hol | fully tilted

Certain tasks may always result in a variety of contact state sequences, and
as workpiece misalignment increases inevitability the contact state sequence
could vary with almost any task. However, there exist a wide range of useful
tasks, which can be performed with the same sequence of contact states.
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ix Il ise Linear roximation

A trajectory can be approximated with a sequence of straight line segments,
through piecewise linear approximation. Piecewise linear approximation was
initially applied in the PHD research, to approximate a demonstrated
position trajectory. However, this same method can be used when
segmenting a task into subtasks. In the segmentation process it is necessary
to evaluate whether a segment of motion has a constant direction of motion
and thus lies on a straight line. The approach presented here applies a
statistical hypothesis test to evaluate whether deviation from a straight line is
likely due to noise in the sensor measurement, or actual change in trajectory.
The approach is presented in terms of approximating a demonstrated
trajectory, but can be directly applied to the segmentation algorithm.

The algorithm is applied to the initial points in the trajectory, by performing
a least squares fit to a straight line. The number of points approximated by a
single straight line is increased until an error criterion is violated. With such
an approach there is a tradeoff between the number of linear segments and
the level of accuracy. A high level of accuracy in duplicating the trajectory
can be achieved, yet at the expense of a large number of segments. Thus, to
implement this algorithm a criterion is established to determine when to end
one straight line segment and begin the next.

Methods have been developed to approximate measured data by piecewise
linear segments [Abdelmalek 1990 and Dunham 1986]. However these
methods are primarily applied to pattern recognition and are used with vision
systems. This analysis specifically addresses human position trajectories. In
the case of task segmentation, each segment of motion constrained in two
directions, is actually in a straight line and the deviations from the straight
line are due to sensor noise. This model is used to determine when a segment
of motion can be considered to be in a straight line.

A direct approach for evaluating when to end a segment is to compare the
least squares error to a constant threshold, as done by Abdelmalek [1990].
However, with this method, the longer the trajectory continues the more the
total error will increase, and eventually the comulative error of any measured
trajectory will exceed the constant threshold. Thus, a long subtask consisting
of straight motion, will be mistakenly divided into multiple segments. A
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simple approach would be to divide the cumulative error by the number of
points in the trajectory. However, the analysis presented here shows that this
approach is not statistically valid. The appropriate criterion is determined by
a hypothesis test at a given confidence level, which evaluates whether the
data in a segment corresponds to the model of straight line motion with the
addition of random noise. The resulting threshold criterion is presented in
Equations AII.13 and AIl.14, depending on whether the noise is Gaussian or
uniform.

The human position trajectory is given by the vector xh(t), and the steps to
the algorithm are shown below.

Step 1: Select a starting point, Xpeg, for the current straight line segment. For
the first segment set the starting point equal to the initial human point
xh(0). Otherwise set Xbeg to the end of the previous straight line segment.

Step 2: Select a segment of the demonstration data to be approximated by a
straight line. The trajectory xh is sampled with a period of T, and the
segment to be evaluated, X, is the discrete series given by:

Xi= Xh (lT + tbeg) i= 1,2,3 ..N (AHI)

The beginning time, tpeg, is the starting point of the segment. For the first
segment tpeg 18 set to zero, otherwise tpeg is set to correspond to the last
point of the previous segment. The number of points in the segment is
given by N. When beginning a segment N is set to three; the lowest
number of points for which a straight line approximation is necessary. In
step 5 the approximation is evaluated, and if it is valid, then N is
increased by one.

Step 3: Utilize the gripper status information. Wherever the demonstrator
opens or closes the gripper, it indicates an important and necessary point
in the task. Accordingly, whenever, the gripper opens or closes, a new
straight line segment is started, regardless of straight line approximation
technique. Return to step 1.

Step 4. Perform a straight line fit on the data x using the least squares
method, in which the straight line is restricted to passing through Xpeg.
Select the coordinate of x with the largest variation as an independent
parameter. For the purposes of illustration, it is assumed that for the
current segment x is the independent parameter. For a two dimensional
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line in the Xy plane, the equation for a straight line starting at the point
(Xbeg:Ybeg) is given by (y-Ybeg)=(X-Xpeg)my, where my is the slope of the
line. The least squares method is used to find the slope of the line that
best fits the data x. The problem is formulated into the form of the linear
equation b=Am as follows.

(Y1~ Ybeg) (X1 = Xbeg)
b= (2 _:ybeg) A (x2 —:Xbeg) m =[m,)] (ALL2)

(YN —.Ybeg) (xN " xbeg)

The solution to m that minimizes the error Ib-AmI2 is given by
m=(ATA)-1ATb [Strang 1986 Sec. 1.4]. The solution reduces to.

o igl (XiXbeg)Yi—Ybeg)

= (AIL3)
> (XiXbeg)”
The value of the error reduces to:
2 [‘E (xi‘*begXYx_Ybeg)]z
Cy= .g (Vo) —= — (AIL4)
a 2 frteg)

An efficient way to calculate the above two equations is to store the
results of the summations. When an additional point is added to x, only
the contribution due to the new point needs to be calculated.

This method of straight line approximation can be directly extended to
trajectories with a dimension higher than two. The minimization of error
in the one coordinate is independent of minimization of error in other
coordinates. Accordingly, the slope in each dependent coordinate is
calculated separately. For a three dimensional trajectory, the slope in the
z direction is calculated by replacing the y coordinates with the z
coordinates in the above equations. The straight line error, eg), is the sum
of the error squared in each dependent coordinate, and for the three
dimensional case is:

€= ey + €z (AH.S)
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Step 5. Evaluate whether the least squares straight line calculated in the
previous step results in an acceptable level of approximation, or whether
it is necessary to begin a new straight line segment. A statistical test is
performed to identify if the approximation is within a specified
confidence level.

It is assumed that the human motion can be modeled as piecewise linear
with the addition of random noise. While this assumption cannot be
guaranteed, it has proven useful for a variety of tasks. The statistical
analysis is presented for the case of a two dimensional trajectory where x
is the independent variable and y is the dependent variable. Higher
dimensions are addressed at the end of this step. For a segment of motion
in which the human is in a linear segment, the measured trajectory is
given by:
nj + (¥i - Ybeg) = (Xi - Xbeg) My (AIL6)

where n;j is noise contributing to the ith measurement. Within a segment
consisting of a single subtask the only error is due to the noise and the
error for the current segment of motion, e, is given by:

N
W (ATLY)
i=1

It is assumed that the noise values are random and independent from each
other. Thus, as the value of N increases the Central Limit Theorem
applies [Drake 1967] and the distribution of e can be approximated by a
Gaussian distribution. When the segment of motion, X, corresponds to a
single section of straight line human motion (eq. AIL6), the error
distribution is Gaussian, and is larger otherwise. Accordingly, a
hypothesis test can be performed, at a desired significance level, to
determine if a straight line approximation of a segment should be
accepted or rejected. A threshold level for the error, €threshold, iS
determined for which a straight line approximation should be accepted as
long as e is less than ethreshold. Selecting a significance level of 95%,
€threshold is given by:
€threshold = E(€) +2 O (ALL8)
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where E(e) and o, are the expected value and standard deviation of the
error, €. To evaluate the above equation it is necessary to determine the
values of E(e) and oe.

The value of e is equal to a summation (eq. AIL.7) of independent
variables, and thus its expected value and standard deviation are given
by:

Ee)=NE@m® and o2=N (an)2 (AIL9)

The expected value of any variable squared is given by [Drake 1967
(Section 2.6)]:

E(n?) = 62 + [Em)]’ (AIL10)

It is assumed that the noise is unbiased, and thus E(n)=0. Incorporating
E(n) into the above equation and combining it with the equation AIL9,
results in:

E(e) =N (o)’ (AIL11)

An expression for o,: is found by substituting n with n2 in equation
AIIL10, resulting in:

(6.2 =Ea*) - [E@)f (AIL12)

The value of 6, depends on the distribution of the noise. A common
assumption is that the noise has a Gaussian distribution with a standard
deviation, Op, centered about zero. To solve equation AIL.12, the
expected value of n4 is calculated by using the equation describing the
Gaussian distribution and taking its fourth moment. The value of o is
calculated to be:

0,2= /2| (cn]z for Gaussian noise (AIL13)

An alternate assumption is that the noise has a uniform distribution
centered about zero with a width of 2a. For this case the value of ¢, is
calculated to be:

Op2= 232/JZ_5- for uniform noise (AIL14)
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The error threshold level, for the case of a Gaussian distribution, can be
calculated by substituting equations AIl.11 and AII.13 into equations
AIlLS8 and AIL9.

€ hreshold = cﬁ [N +24/2N | for Gaussian noise (AIL15)

The same approach is used for the uniform distribution, using equation
AllL.14 instead of AIIL.13. The standard deviation for a uniform
distribution is, op2=a2/3, and the threshold level is given by:

2
€ threshold = % [N+2 V4N/5 ] for uniform noise (AIL16)

If for the current segment, the error is less than ethreshold, then accept the
segment, add a new point to the segment and return to step 2. Otherwise,
define the previous point as the end of a straight line segment. Using the
last value of the independent parameter identify the endpoint of the
straight line segment, which becomes the beginning point of the next
segment., and return to step 1 to begin a new segment. The algorithm is
completed when the last point in the demonstrated trajectory is reached.

The decision criterion whether to start a new straight line segment or not
has been is directly related to the noise level in the system. As new
points are added to the segment being evaluated, the magnitude of N and
ethreshold change to reflect the change in the statistical distribution of e.

The above analysis was presented for the case of a two dimensional
trajectory. For a three dimensional trajectory the least squares error is
given in terms of the error in the two independent direction, which here is
taken to be the y and z directions. Assuming that the noise in each axes
has the same statistical distribution, a single variable, n, can be used to
represent the noise, and the error is given by:

(AIL17)

The only difference between the above equation and equation AIL7 is
that the summation is over 2N variables instead of N. Accordingly, the
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only modification necessary in calculating the error threshold in
equations AIlL15 and AIL 16 is to replace N with 2N.

Example

A pick and place task was demonstrated on the Twin Arm robot at the
Daikin facilities, and is shown on the video tape. Figure AIl.1 shows the
piecewise linear approximation of the demonstrated trajectory, along the y
and z axes. The sampled points are indicated by the "x" marks, and the
approximation is shown in a solid line. Text indicates the start and stop
points, and word "grip" indicates locations where the gripper was open or
closed.

100

z(mm) 70

ed ram Daikin Twin Arm t for a pick 1 k.

For the trajectory shown in Figure AIL1, it was assumed that the noise was
Gaussian with a standard deviation of 1.0 mm. A 95% confidence test was
used to determine when a new segment should be started (eq. AIL15). In
addition, whenever the gripper opened or closed, a new straight line segment
was started exactly at the point where the gripper is open or closed, which
was implemented by turning on the fixed_edge_exact flag in the source
code.
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A ix 1 i r

The method presented in Chapter 2 generates obstacle free robot trajectories
for pick and place tasks. The region between the demonstrations was shown
to correspond to human inconsistency, and a robot trajectory is guaranteed to
be obstacle free as long as it remains within that region. However, the
algorithm presented in Chapter 2 can only be applied to 2D translation. The
Chapter 2 method identifies the boundaries of the obstacle free region, and
then synthesizes the shortest robot path within this region. However, this
method can not be directly extended to 3D. This appendix presents an
alternate method which is first applied to 2D motion and then extended to
3D. This method synthesizes an obstacle free robot trajectory without
identifying the boundaries of the obstacle free region. In addition the
algorithm incorporates an optional buffer between the robot trajectory and
the boundary of the obstacle free region, to allow for robot position errors.
The shortest path within a 2D region is synthesized and the same method is
extended to 3D, resulting in satisfactory 3D robot trajectories that are not
necessarily the shortest.

2D Motion

The dimension of both a trajectory and a boundary of a 2D region are of
order one. Thus, the boundary of the 2D obstacle free region is composed of
segments of demonstrated trajectories. However, in 3D the boundary of a
region becomes a two dimensional surface, and the boundary of a region
cannot be composed of segments of individual trajectories. Thus, the original
method used to analyze 2D cannot be directly extended to 3D.

An alternate 2D approach which can be extended to 3D is outlined here. This
method evaluates whether a proposed robot trajectory is within the obstacle
free region, without defining the boundaries of that region. A valid robot
trajectory stays within the obstacle free region, and at each point along the
trajectory there exists a demonstrated trajectory on the right and left side.
Figure AIIL.1 shows a straight line segment of a proposed robot trajectory.
The proposed trajectory remains within the obstacle free region up until the
point Xyalid, after which there are no demonstrated trajectories on the right
side. Thus by finding where the demonstrated trajectories intersect the
proposed trajectory and keeping track of which side they are on, it is
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possible to evaluate whether a proposed trajectory is in the obstacle free

region. The original method was based on identifying intersections between

demonstrations, whereas in this method the intersections are found between

individual demonstrations and the proposed trajectory. It is not necessary to

define Jordan curves in this method, although the intersections between the

proposed and demonstrated trajectories generate Jordan curves on either side
of the proposed trajectory.

T B s
Vo 4 —— —
target
y
demonstrated trajectories
start .
Right Side proposed robot trajectory
igure AIIL 1: Evaluation of sed Robot Traj

The segment of proposed robot trajectory is within the obstacle free region up until Xyajig,

after which there is no longer a demonstration on the right side.
A modification to the approach outlined above incorporates a buffer between
the robot trajectory and the boundary of the obstacle free region, which
increases the distance between the robot and the obstacles. The buffer is
implemented by requiring that a demonstration be the width of the buffer
away from the proposed trajectory before it can be designated as being on
the right or left side. The details of the method follow.

A coordinates system is defined that is aligned with the proposed robot
trajectory, as shown in Figure AIIL 1. Each human trajectory is transformed
to this coordinate system and represented by, hi(s), where the subscript "i"
indicates the demonstration number, "s" is the distance traveled, and each
point in the trajectory has an "x" and "y" value. The side of the
demonstration is a function of "s" and is given by:

1 y=2+buffer (Leftside)

side(h,(s)) ={ 2 y<-buffer (Rightside) (AIIL1)
0 Otherwise (Inbuffer)
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For each demonstration the sets Rj and L; are found which are the regions
where the demonstrations is on the right and left of the proposed trajectory.
The locations where hi(s) intersect the proposed trajectory are found when
side(hj(s)) changes value and x>0, and are designated by s;j, where
j=1,2,. . .,J. (To simplify notation the subscript "i" is not used with the
variable s; with the understanding that the values are recalculated for each
demonstration). The actual values of sj are found through linear interpolation
between the sampled data points. The region where the demonstrations are
on the right, between intersections 1 and J is given by:

J-1
R, =jL=)1 [X(s;), x(s;,,)] for side(hys)+€) =2 (AllL2)

where € is a small number used to detect the side following intersection "j".
The region on the left is given by:

L, =Q[x(sj), x(s;,,)] for side(h(s)+€) =1 (AIIL3)

If the side prior to x(s;) is not in the buffer, then the region [0, x((s,)] is
appended to either R; or L;j according to the side of x(s;). In the same
fashion, if the side after to x(sy) is not in the buffer, then the region
[x((s;), +oo) and is appended to either R; or L; according to the side of x(sy).

The length of the proposed trajectory which remains inside the obstacle free
region is determined by taking the union of Rj and L; for all N
demonstrations and then finding the maximum value of Xyalid which satisfies
the following condition.

N
[0, Xid € UR, and [0, xud € UL, (AIIL4)

Figure AIIL.1 shows a single segment of the proposed robot trajectory
beginning at the starting location. However, a complete robot trajectory is
synthesized from a sequence of straight line segments using a method
described in the following section. In this process, it becomes necessary to
evaluate segments that are continuations of previous segments. The same
analytical technique is applied as in the case of the first segment, yet the
proposed straight line segment begins at the end of the previous segment.
The coordinate system used in the analysis is always aligned with the current
segment of proposed robot trajectory and the origin is at the beginning of
that segment.
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Synthesizing a 2D Robot Trajectory

Now that a method has been formulated to evaluate whether a proposed
trajectory is within the obstacle free region, it is necessary to synthesize an
appropriate robot trajectory. Human inconsistency provides a range of
acceptable motion, and selecting the appropriate trajectory depends on one's
application. The method presented here determines the shortest 2D robot
path from the start to target positions when the buffer is set to zero. With a
non zero buffer the robot distance is no longer minimized, yet the distance
between the robot and the obstacles is increased. Alternate performance
criteria include maximizing the distance between the robot trajectory and the
obstacles, or finding the minimum time trajectory by incorporating robot
dynamics. Regardless of the criterion used, the range of human
inconsistency allows one to improve robot performance above that of
duplicating individual demonstrations.

The method used to select the shortest path presented in Chpater 2, is applied
here with small modifications since the the boundaries of the region are not
availaible.

1. Define the start and target positions, Pstart and Prarget, as the average of
the demonstration starting and ending positions. Set the beginning
position of the current segment, Pbeg, tO Pstart.

2. Guess an initial direction of a straight line that departs the starting point.

3. Evaluate the proposed straight line segment. Find the length, xyalid, and
the side where lack of demonstrations limits the length of the line (for
example the right side in Figure AIIl.1).

4. Propose a new line, by either incrementing or decrementing the slope of
the previous line in the direction towards the opposite side found in step
3. Evaluate this line and continue modifying the slope until a line is found
that is limited by the side opposite that of step 3. Eventually both "right"
and "left" lines are found.

5. Select a new line between the right and left by dividing the angle between
them. Evaluate this line, and replace the previous "right” or "left" line
according to the side of the new line.
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6. Repeat the previous step until both the right and left lines converge,
which is indicated when the angle between them is less than a desired
accuracy threshold. A robot path segment is defined in the direction of
convergence with a length of the shorter of the right and left lines.

7. Define a new beginning point, poeg, at the end of the previous robot
segment. Repeat the above steps to find the next robot segment, starting
at step 2. The shortest path is completed when the target can be reached
with an obstacle free straight line from the starting point of the previous
segment.

The procedure for converging on a line that intersects both the right and left
side identifies the only direction that is not excluded from being the shortest
path. After the first intersection between the selected line and the boundary,
a new direction for the shortest path is possible. Thus, a new segment of the
robot path is started and the convergence procedure is repeated. To
implement this method one need only determine what side of the boundary a
proposed line intersects, which is given by the side limited first by the lack
of demonstrations (Figure AIIL.1). Thus, the shortest path within the obstacle
free region is generated without specifying the boundaries of the region.

3D Motion

Obstacle avoidance in 3D is in general more difficult than in 2D, and
methods that work in 2D cannot always be extended to 3D [Latombe 1991].
In this section the 2D motion analysis is extended to 3D with appropriate
modifications.

In 2D a proposed robot trajectory has a right and left side, and as long as
demonstrated trajectories are present in both sides the proposed trajectory is
obstacle free [Figure AIIL1]. This approach can be extended to 3D by
defining a coordinate system with the "x" axis aligned with a segment of the
proposed robot trajectory, as shown in Figure AIIL.2. However, in 3D there
exist four quadrants in which demonstrated trajectories exist.
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trajectory leaves
quadrant I

Figure AIIL.2: Coordinate System for 3D Motion

The proposed robot trajectory is aligned with the "x" axis. As long as there is a
demonstration in each quadrant, the robot trajectory is within the obstacle free region.
A proposed trajectory is obstacle free if there exist at least one
demonstration in all of its quadrants from start to the target. Figure AIIL3
shows a cross section of demonstrated trajectories and the obstacle free
region they define. The cross section of the total obstacle free region is
defined by enclosing the demonstrated trajectories with straight line
interpolations between the demonstrations. As in the 2D case it is assumed
that the human uses the same obstacle avoidance strategy in all
demonstrations, thus ensuring that the region between demonstrated
trajectories is obstacle free. In 3D a specific requirement is that the cross
section of an obstacle does not intersect any of the straight lines between the

demonstrations at the same cross section.

The advantage of the quadrant method is that it simplifies the analysis, since
boundaries of the 3D region do not need to be calculated. However, as a
trade off, only a subset of the possible obstacle free region is identified as
valid robot trajectories, as shown in Figure AIIL3.

Obstadle cross section
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The quadrant method identifies a subset of the total obstacle free region defined by the
demonstrations.
To determine the length, xvalid, of a proposed robot trajectory that is within
the obstacle free region, the same steps are followed as in the 2D analysis.
However, Equation AIII.1 is replaced by:
1 y<-buffer & z 2 +buffer
2 y 2 +buffer & z 2 +buffer
side (h,(s)) ={ 3 y = +buffer & z < -buffer (AIILS)
4 y<-buffer & z < -buffer
0 Otherwise

In Equations AIIL.2, AIIL.3, and AIIl.4 references to the right and left sides
are replaced by the quadrants I, II, III, and IV. The overall approach for
evaluating a single segment of proposed robot trajectory does not change
between 2D and 3D.

Synthesizing a 3D Robot Trajectory

Selecting an appropriate 3D trajectory is done by following the same steps
used in the 2D algorithm, yet the steps that converge on the desired robot
trajectory require modification. Moreover, the resulting robot trajectory is
not guaranteed to be the shortest as in the case with 2D motion.

As in the 2D case, the desired robot trajectory is identified by converging on
a line that intersects the boundary of the obstacle free region on two sides,
where a small change in slope will change the side of the boundary that is
intersected. In the 3D case the quadrant method of evaluating trajectories
identifies four possible sides by which a proposed line can exit the obstacle
free region. An example is shown in Figure AIIL.2 where the length of the
proposed trajectory is limited when no demonstrations remain in quadrant I,
and is interpreted as intersecting the boundary on side 1. In 3D a range of
line directions exists where a small change in slope will the change the side
of the boundary intersected. Thus, the convergence process does not result in
a unique line direction that is the shortest robot path, but does identify a
satisfactory trajectory that incorporates a buffer and removes much of the
unnecessary human motion.

Converging on a desired line is performed by stepping diagonally into the
interior of the region. Thus, if the first guess results in a line that exits the
region on the side of quadrant I, then the slope of the line is stepped towards
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quadrant III, and if a line exits on quadrant II, the slope of the line is stepped
towards quadrant IV, and so on. Each step is recorded and when the
proposed line is has already been tried, the step size is reduced by half. This
process is repeated until the step size is less than the desired accuracy
threshold. The result converges to a line direction that intersects two
boundaries, yet the solution is not unique and thus depends on the initial
guess.
Experimental Results for 3D

An example 3D translational task of moving a sphere around a single
obstacle was performed. Figure AIIl.4 shows the demonstrated trajectories
in dotted lines, and the synthesized robot trajectory in bold. A total of fifteen
demonstrations were performed with a sample frequency of 20Hz. The
average distance of the human demonstrations was 528mm and the
minimum was 490mm. A robot trajectory was synthesized using a buffer of
2.0mm, and with a distance of 479mm. '

Here the robot path is almost 10% shorter than the average demonstrations,
and 2% shorter than the minimum trajectory. The decrease in the robot travel
distance is less in the 3D case than the 2D case, which may be partially due
to the amount of variation in the demonstrations. In addition, the 3D analysis
robot path is not the shortest possible because the effective obstacle free
region is reduced by using the quadrant approach, and the convergence
method used does not identify the shortest path within this reduced obstacle
free region. Overall, the approach presented in this article generates
satisfactory robot trajectories using a simple algorithm. Similar tradeoffs
between robot performance and complexity of the analysis are common in
model based obstacle avoidance analysis [Latombe 1991].

The robot trajectory is improved over any single demonstrated trajectory
both by the buffer which increases distance from the obstacles and by the
removal of unnecessary human motion. The front view in Figure AIIL.4
shows how the robot trajectory remains close to the inside curve of the
demonstrated trajectories, and avoids unnecessary motion. In order to
maintain a demonstrated trajectory in each quadrant, however, the distance
cannot be minimized in all 2D projections, as shown in the top and side
Views.
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If there are too few demonstrations, the quadrant approach can reduced the
effective cross section of the obstacle free region to single point or line.
Under these circumstance, the convergence of an obstacle free robot
trajectory becomes numerically impractical. This problem is solved by
increasing the number of demonstrations, which provides additional
information regarding the obstacle free region and the task accuracy
requirements.
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Figure AII1.4: 3D Experimental Results
The demonstrations are dotted lines, and the robot trajectory is a solid line.

Summary

An alternate algorithm is presented for generating obstacle free rbot
trajectories within the obstacle free region defined from human
inconsistency. For the case of 2D translation the algorithm generates a robot

163



trajectory that is the shortest path within the identified obstacle free region.
For 3D translation a robot trajectory is generated that also avoids obstacles,
yet is not necessarily the shortest path within the region. Experimentally
robot paths are generated for both 2D and 3D tasks that are shorter than any
of the demonstrations, and do not contain the "wiggles" present in some
demonstrations.

The range of human inconsistency can also be used to incorporate a buffer
between the robot and the obstacles. The buffer can guarantee obstacle .
avoidance even if there are errors in the robot position controller, as long as
the buffer is larger than the maximum robot error.
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Appendix |V: Compliance Controller Performance

When performing assembly tasks it is necessary to avoid excessive forces
that may damage the parts. Specifying the robot arm impedance is an
effective method of limiting contact forces. Otherwise, even a small
workpiece misalignment could result in large contact forces, if the
manipulator is infinitely stiff. The approach selected is to control the robot
arm so that it reacts with the environment as a linear spring, which is
referred to as compliance control. Compliance control is specified such that
the force exerted by the robot, 7, is given by:

f = K(x, — xY) (AIV.1)

where x" is the robot gripper position, X is the reference position, and K
is a positive definite stiffness matrix. If the robot stiffness is too high, then
workpiece misalignment could result in excessive contact forces. However,
if the robot stiffness is too low than excessive position errors could occur.

Hogan [1988] demonstrated that a compliant controller is stable when the
manipulator is in contact with a passive environment, which is the typical
case for assembly operations. It was further shown by Whitney [1982] that
by selecting an appropriate robot compliance, the robot could adapt to
workpiece misalignment for the peg in hole task. Schimmels and Peshkin
[1992] presented a method of specifying a robot control law in which the
robot is programmed to model a damper. Both the work by Whitney, and
Schimmels and Peshkin, identified a robot controller which could
implement motion consisting of a sequence of contact states. They also
considered tasks which required both part translation and rotation.
However, they assumed that the orientation misalignment of the workpiece
was infinitesimal, and thus did not change the direction of contact forces.

The analysis presented here is applied to motion within a single contact
state of a contact task, in which the part motion consists of only translation.
The analysis here, however, does consider the effect of workpiece
orientation misalignment, and addresses all possible constraint
configurations in a contact task. Furthermore, robot performance is
evaluated in terms of position and force errors. Xiao [1991] does address
finite orientation misalignments when the evaluating the performance of
damping control. However, Xiao only considers force errors caused by
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orientation misalignment, and neglects position errors which is an essential
performance criteria for assembly operations. The analysis presented here
is for use with the PHD approach, however the results are also valid for
modeling compliance control in model based programming methods.

Problem Definition

Robot performance is evaluated in term of position and force errors due to
orientation misalignment of the workpiece, for motion within a single
contact state. The overall robot controller detects contact with a surface
using a subtask termination condition. The reference trajectory for motion
within the contact sate is then specified from the point of contact. However,
the reference trajectory is specified assuming that the workpiece is in the
nominal orientation. In this appendix the actual robot and forces are
calculated when there is misalignment in workpiece orientation. The
analysis is performed first assuming that there is no friction, and the effect
of friction is considered. It is assumed that the robot motion is quasi-static
and dynamic forces can be neglected.

The desired robot position trajectory when the workpiece is in the nominal
orientation is given by x"(s), and the desired force trajectory without
friction is given by £ (s). The coefficient of friction can vary for each
workpiece, and therefore friction is treated as a disturbance. The
compliance controller reference trajectory is calculated by substituting the
nominal trajectories for the robot trajectories in Equation AIV.1. Thus,
when the robot is in the nominal location the desired trajectories will be
achieved. The reference trajectory is given by:
Xref = K1 + xP (AIV.2)

The desired robot trajectory is to maintain the same relative motion
between the part and the workpiece that occurs when the workpiece is in
the nominal position. In the case where the orientation of the workpiece is
rotated, the desired force and position trajectories are calculated by
rotating the nominal trajectories. The rotation of the workpiece is specified
by a 3x3 rotation matrix R, which is nonsingular. The robot position is
measured in a coordinate system with its origin at point where initial
contact with the surface occurs. Accordingly, the transformation from a
nominal position to a desired position is a pure rotation. The superscript
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"c‘ii" designates the desired trajectories, and the desired position trajectory,
X , is given by:

x3(s) = R x"(s) (AIV.3)
and the desired constraint force, fg, is given by:
£5) = R £5(5) (AIV.4)

The robot performance is quantified by comparing the actual robot
positions and forces to the desired values.

Constrained Motion

In the assembly process when there is contact between the part and the
workpiece, the motion of the part is constrained and the directions of
admissible motions and admissible forces are restricted. The nature of
constraints were formalized by Mason [1981], and the geometric
constraints can be expressed in terms of an admissible motion matrix Ap,
and admissible force matrix, Af. The directions of admissible motion are
tangent to the constraining surface. The admissible force is the component
of the contact force that is not due to friction, and its possible directions
are normal to the constraining surfaces. The columns of Ap and Af form a
basis for the vector spaces of admissible motion and admissible forces, and
are selected to be orthonormal. The direction of admissible force at the
constraint is normal to the direction of motion and produces no work,
which is represented by:

(AT Ay =10) (AIV.5)

There are two possible constraint configuration for 3D translation, which
are shown in Figure AIV.1. The number of constraints are designated by

X
a. Single direction of constraint b. Two directions of constraint

Fi AIV.1: Two Possibl nstrain igurations for 3D Translation
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In the nominal configuration the admissible motion and force matrices are
designated by the superscript "n". In the single constraint configuration
(figure AIV.1a) the admissible motion and force matrices are:

10
A2=00
01

0
Al= [(1)] for m=1 (AIV.6)

In the two constraint configuration (figure AIV.1b) the admissible motion
~ and force matrices are:

1 00
A;=[o] A';=[1 o] for m=2 (AIV.7)
0 01

The constrained motion and force can be defined in terms of admissible
motion and force variables, ap and as. The nominal position trajectory is:

1
x"=A"and"= [0] d (AIV.8)
0

where ay is the unit vector of nominal admissible motion variables, and dn
is the nominal distance from the origin.

The nominal constraint force, fg, is given by:
0
f: = A} a}‘f“:[(l)lf“ (AIV.9)

where as is the unit vector of nominal admissible force variables, and £ is
the nominal force magnitude. In the nominal single constraint
configuration the unit vector admissible motion and force variables are:

a;=[(1)] ar=[1] for m=1 (AIV.10)

In the nominal two constraint configuration the admissible unit vector
motion and force variables are:

an=[1] a}‘=[(1)] for m=2 (AIV.11)

-Performance With Zero Friction

When there is no friction, then the force exerted by the environment onto
the robot lies normal to the constraint surfaces, and thus is in the
admissible force space. As long as motion remains in the same contact state
and the friction force is zero, then energy in the system is conserved. In a
conservative system the robot position is independent of the trajectory
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history [Crandall et al 1985]. Therefore, the robot position can be
calculated as a function of the nominal distance from the origin, 'dn’,
without regard to the shape of the trajectory xn(s).

The rotation of the workpiece varies the directions of admissible motlon
and force. The admissible motion matrix encountered by the robot, Ap, is
given by rotating the columns of the nominal admissible motion matrix.

Ap R A (AIV.12)

The admissible force matrix encountered by the robot, A;, is given by
rotating the columns of the nominal admissible force matrix.

Af=R At (AIV.13)

It is assumed that the contact points on the part do not change throughout
the task, and that the workpiece surface is flat (i.e. polyhedral shaped).
Thus for translational motion the admissible motion and force spaces
remain constant throughout the task.

The robot position trajectory is defined in terms of the admissible motion

vector, aI,, and the distance from the origin, d, by:
r r r

x' =Apapd (AIV.14)

The rob?t constraint force is defined in terms of the admissible force
vector, as, and the magnitude of the force , £, by:

f,=Afasf (AIV.15)

The robot controller is specified by the compliance controller (eq. AIV.1)
and the reference trajectory (eq. AIV.2). The resulting motion is calculated
by imposing the constraint that the actual motion lie in the admissible
motion space (eq. AIV.14), and that the force lie in the admissible force
space (eq. AIV.15). At this point of the analysis it is assumed that there is
no friction, and the affect of friction is incorporated in the following
section. Thus substituting equations AIV.8, AIV.9, AIV.2, AIV.14, and
AIV.135, into equation AIV.1 results in:

Alaif-Alarf"=K[A}a)d"- A} a) d] (AIV.16)
The left hand side of equation AIV.16 is the difference between the actual

force and the nominal force, and the right side is the difference between
the actual position and the nominal position multiplied by the stiffness
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matrix K. The robot motion is defined in terms of the admissible motion
variables, a;, and the distance from the origin, dr, which are calculated by
premultiplying equation AIV.16 by (Ap)T. The product (Ap)TAf is equal
to zero (eq. AIV.5). The direction of the constraining surface is given in
terms of R by substituting in equations AIV.12 and AIV.13, to give:

aid=(A"R'KRAY AR (F+Kx)]  (AIV.17)
The robot contact force is defined in terms of the admissible force
variables, az, and the force magnitude f , and is calculated in a similar

manner, Equation AIV.16 is premultiplied by (Af)TK-! and the null term
(Af)TAp is removed, resulting in:

aif =(ATR'K'RA)[ATRT(K'f+x7)]  (AIV.18)
The matrices that are inverted in equations AIV.17 and AIV.18 are indeed

nonsingular, since the matrix K is positive definite, and R, Ap, and Af are
of full column rank [Strang 1986, sec. 1.4].

Thus, the robot position and forces in the presence of workpiece
orientation misalignment have been identified. The robot trajectories can
be calculated for an arbitrary R and K. The robot position is given by
incorporating the result of equation AIV.17 into equation AIV.14. The
robot force is given by incorporating the result of equation AIV.18 into
equation AIV.15.

The performance of the robot can be calculated for an arbitrary stiffness
matrix, yet for the purposes of controller design it is possible to restrict
ourselves to a stiffness matrix that will simplify the analysis. The robot
stiffness matrix is selected such that its axes are aligned with the nominal
coordinate system, and K is given by:

k, 00

K={0k, 0 (AIV.19)

0 0k,
In addition, for small angles of workpiece misalignment, it is possible to
consider the effect of rotations about the x, y, and z axes independently.

Rotation matrices about the three axes are presented by Crandall et al
[1985], and are designated by Rx, Ry, and R;.
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The robot force and position trajectories are presented in Figures AIV.2
and AIV.3 for the case of small angles of misalignments and for a stiffness
matrix aligned with the nominal coordinate system.

In the single constraint configuration the 'x' axis is aligned with the vector
from the origin to the nominal part position. Rotation about the x axis
results in a position error in the 'z’ direction, and an error in the force
magnitude; rotation about the y axis does not change the robots position or
force; and rotation about the z axis results in a position error in the 'x'
direction and an error in the force magnitude.

In the two constraint configuration the 'y’ axis is aligned with the nominal
force direction. Since there is only one direction of admissible motion, no
errors in the direction of motion occur, and errors in the distance traveled
do not effect performance. Accordingly, position errors do not occur when
the part is constrained in two directions. Rotation about the 'x' axis does
not change the robot position or force; rotations about the 'y' axis results in
an error in the force magnitude and direction; and rotation about the 'z’
axis results in an error in the force magnitude.

In Chapter 3, Section 3.4.1, directions of detectable workpiece
misalignment are identified. In the single constraint configuration, rotation
about the 'y' is undetectable, and in the two constraint configuration
rotation about the 'x' axis is undetectable. In both of these undetectable
directions, the robot forces and positions did not vary in response to
workpiece misalignment. Indeed any such variation would be impossible,
since it would indicate that the compliance controller 'detected’ these
misalignments.

In Section 3.5.1, the robot performance equations are further simplified by
requiring that the components of the stiffness matrix, kx, ky, and k; are all
within the same order of magnitude. Under these circumstances and using
the small angle approximation, the following approximation for an
expression in Figure AIV.2 can be made:

k,sin’d + kcos’d = k, (AIV.20)

Similar approximation in Figures AIV.2 and AIV.3 are possible, which is
how the results in Figures 3.14 and 3.15 are generated.
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Affect of Friction on Robot Performance

When friction is present, the system is no longer conservative, and the
robot position depends on the trajectory history. Since the trajectory
history depends on the desired robot trajectory it can be arbitrary.
Accordingly, a simplified robot trajectory is evaluated, and the results are
the applied to other trajectories with a worst case analysis. It is assumed
that the desired robot trajectory is straight line motion from the origin.
The trajectory can be generated by monotonically increasing dn in
Equation AIV.8.

The first section of the friction analysis identifies the sticking condition and
determines under what conditions friction will prevent the desired sliding
between the part and the workpiece. The second section determines the
effect of friction on the direction of motion when motion does occur.

To simplify notation, the superscript "r" is dropped in reference to robot
motion, in the friction analysis section. The total force applied by the
robot, f, in the case of quasi-static motion is given by:

f=f +f (AIV.21)

where f; is the constraint force normal to the workpiece surface, and ff is
the friction component and is tangential to the surface. It is assumed that
the friction can be modeled as Coulomb friction with an isotropic
coefficient of friction, . Accordingly, the maximum magnitude of the
friction force, ffmax, is:

ff,max = b N (AIV.22)

where N is the magnitude of the normal force.
Avoiding Sticking

Sticking has been identified as a potential problem in assembly
[Lozano-Pérez et al. 1984, Whitney 1982, and Ohwovoriole 1980], and it
occurs when the friction force is greater than or equal to the force in the
direction of possible motion. The direction of the friction force is
tangential to the constraint surface and lies in an admissible motion
direction. Accordingly, ff can be defined in terms of the admissible motion
matrix, and the unit vector ay which defines the direction of the friction
force. For the purposes of analyzing sticking it is assumed that the
coefficient of friction is equal to the sticking value, p*, which is just large
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enough to create sticking. Accordingly, the friction force is equal to the
maximum friction force and is given by:
fe=p*fApay forivi=0 (AIV.23)

where f is the magnitude of the constraint force (eq. AIV.15). The
compliance control equation including friction is given by incorporating
eq. AIV.21 into eq. AIV.1.

fo + fr= K (Xref - X) (AIV.24)

In the case of sticking, the robot position does not move from the origin,
and x is equal to the null vector. Equation AIV.24 is expanded by
incorporating the reference trajectory (eq. AIV.2), and by expressing f¢
and fr in terms of admissible force and motion matrices (eq. AIV.15 and
AIV.23) to give:

Afasf+p*fApay=fo+Kx' (AIV.25)

The magnitude of the constraint force, f, is calculated by multiplying
equation AIV.25 by (Af)T. The product (Af)TAp is equal to zero (eq.
AIV.5), and the product (Af)TAs is equal to the identity matrix because
columns of Arare orthonormal vectors. The vector as has unit length, and
thus f is given by:
f=1@ApTHh + ApTK x"| (AIV.26)

The coefficient of friction for sticking, u*, is calculated by multiplying
equation AIV.25 by (Ap)T. The product (Ap)TAt is equal to zero, and the
product (Ap)TAp is equal to the identity matrix. The vector ap has unit
length, and thus the coefficient u* in terms of f is given by:

=%|( AN +(A)Kx| (AIV.27)

Incorporating values for xM (eq. AIV.8), fg (eq. AIV.9), and K (eq.
AIV.19) and combining the previous two equations results in the following
‘expression for u*.

u = f"(A) j+d°k, (Ap)

(A) j+d"k, (A)'1
where 1 and j are unit vectors along the x and y axis respectively. In the

above equation, the first component in both the numerator and
denominator remains constant while the second component varies with dn

(AIV.28)
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which increase monotonically as the reference trajectory advances. In the
case of sticking, the part remains stationary as dn increases. The coefficient
of friction necessary to keep the part stationary, u*, is calculated by taking
the limit as dn approaches infinity.

e ek (AT [(A)'T
im p* = —_——— | = —
A R Tw i B [TV

When the workpiece is in the nominal configuration (eq. AIV.8 and
AIV.9), the numerator of AIV.29 is equal to one, and the denominator is
equal to zero, resulting in an infinite value of | necessary to maintain
sticking. Thus for a finite p, sticking will not occur in the nominal
configuration. Figure ATV.4 shows the nominal configuration, the friction
cone, and how the reference trajectory advances to eventually generate a
force large enough to start motion.

(AIV.29)

The amount of variation in workpiece orientation that can occur without
resulting in sticking is calculated be identifying the angle of workpiece
rotation which would result in a sticking coefficient of friction, pu*, that is
equal to the actual coefficient of friction, pt. In the case of a single direction
of constraint, Af, is a column vector (eq. AIV.6) and the denominator of
eq. AIV.29 is the dot product between two unit vectors that can be
expressed in terms of the cosine of the angle between the vectors, B.

| (AT | = cos(B) (AIV.30)

In the nominal configuration B is equal to ®/2, and thus when the
workpiece is rotated by an angle ¢ in a direction that changes the angle
between the vectors, the result of eq. AIV.30 is equal to cos(/2-¢), as long
as ¢ is less than &. Rotations of the workpiece in directions that do not
change 3, do not contribute to sticking. The numerator and denominator of
eq. AIV.29 are the projection of the unit vector i into the subspace Ap and
its orthogonal complement Af, which decomposes the vector into two
orthogonal components [Strang 1986 sec. 2.2]. The two components are at
right angles to each other, and their magnitude can be combined using
Pythagoras' theorem to give the total magnitude of the original unit vector:

(A T =1-I(a ) 5P

=1 -cos?(B) = sin® (B) (AIV.31)
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friction cone
o = arctan(jl)
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reference tmjeb

Workpiece rotated . .
Nominal Configuration without sticking Sticking condition

Figure AIV.4 : Sticking occurs only if the workpiece misalignment is
greater than &t/2-¢t, otherwise the reference trajectory escapes the
friction cone.

The angle of workpiece rotation at which sticking occurs, ¢stick, is given
by setting u* equal to p, and by substituting equations AIV.30 and AIV.31
into equation AIV.29, to give:

Ouiee = 5 — arctan () (AIV.32)

The sticking angle calculated for the configuration with a single direction
of constraint is the same as for the configuration with two directions of
constraint. The change in the analysis is that the numerator is the dot
product of i and Af, which is equal to cos(¢), and the denominator is equal
to sin(d).

Figure AIV.4 shows how sticking can occur. The angle of the friction cone
is equal to arctan(p), and thus the workpiece can be rotated 90 degrees
minus the angle of the friction cone (eq. AIV.32), before sticking will
occur. Coefficients of friction are given in Marks' handbook table 3.2.1
[Avallone and Baumeister 1987], and the highest value of W is for cast iron
against cast iron, which has a static coefficient of friction 1.1, which
corresponds to a friction cone of 48° and a sticking angle of 42°. Thus the
analysis of a straight line task using a compliant controller indicates that
sticking will not occur for small or moderate angles of variation in
workpiece orientation.
Affect of Friction on the Direction of Motion

The preceding analysis established that friction will not result in sticking,
yet it is also necessary to determine whether friction will contribute to
position errors in robot motion. The robot position trajectories are
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calculated for the case where friction is present and sticking does not
occur. In the case of quasi-static motion with an isotropic coefficient of
friction, the direction of the friction force is opposite the direction of
motion and is equal to its maximum value [Peshkin and Sanderson 1989].
Accordingly, the friction force is given in terms of the admissible motion
variables, ap, and the dynamic coefficient of friction, p.

fr=-pifcl Ap ap forlvi> 0 (AIV.33)

The compliant control equation (AIV.24) is expanded as in the analysis of
sticking while keeping the robot motion term (eq. AIV.14), and using the
friction force during motion (eq. AIV.33).

Afasf-pifdApap=fo+K[x -Apapd] (AIV.34)

The admissible motion variables, ap, can be calculated as a function of the
distance from the origin, d, and the magnitude of the contact force, If¢! by
multiplying equation AIV.34 by (Ap)T.

ap=[(Ap)TK Apd-pifcl 1] [(ApT(E; + K xm)](AIV.35)

The robot position trajectory with friction, Xwfr, is given in terms of the
admissible motion variable ap (eq. AIV.35), and the admissible motion
matrix (eq. AIV.14). The position, Xwfr, can be expressed in terms of dn
by realizing that the magnitude of xwfr is equal to d. The position
trajectories for both constraint configurations corresponding to different
workpiece orientations is shown in Figure AIV.5. When possible the result
is expressed in terms of the position trajectory which occurs when no
friction is present, designated by Xnofr.
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Friction does not change the direction of motion in five out of the six cases
shown in Figure AIV.S, as indicated where xwfr is equal to Xpofr multiplied
by a scalar. In these five cases the scalar is less than unity, indicating that
friction causes the robot position to be closer to the origin. However, in the
single constraint configuration with rotation about the x' axis, the
direction of motion changes. The magnitude of the position error normal
to the desired direction of motion is given by:
" sin ¢
k,sin’ ¢ +k,cos? ¢ + ”}
(AIV.36)

The magnitude of the position error with friction (eq. AIV.36) is similar to
the expression for the position error without friction (Figure AIV.2, row
1), with the addition of the term (pifcl/d) in the denominator. This term is
always positive, and thus the position error with friction is always less than
the error without friction, as shown in figure AIV.6. Accordingly, friction
does not increase robot motion error normal to the direction of motion.

X for m=1 and ¢=¢,

errnorm ~
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The amount of position error in the direction of motion is the same in all
cases in Figure AIV.S, if one assumes a small angle of workpiece
misalignment. The position error parallel to the direction of motion due to
friction is:

(AIV.37)

xcrr.pmﬂel = k

X

If the desired trajectory is actually straight line motion, then one can
neglect errors parallel to the direction of motion, since the robot will
eventually reach the desired location, and therefore does not effect robot
performance. However, for a general trajectory, a worst case analysis is
performed and the position error due to friction is given by Xerr paraltel,
which for small angles of misalignment is given in eq. AIV.37.

The overall effect of friction is that it creates a position error in the
direction of motion, but actually limits the position error normal to the
direction of motion.

Summary

The analysis in this appendix quantifies compliance controller performance
for the case of 3D translation. The results are simplified in their
application in Chapter 3. Nevertheless, the complete analysis provides the
verification of the simpler results, and can be used in actual applications
where the small angle approximation or the simplification of K do not

apply.
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Appendix V: Termination Region Estimation

In Section 5.3 of Chapter 5, the termination region is identified by a section
of the demonstration data that conforms to a model of the human motion. It
is assumed that the human arm reacts as a compliant controller, and the
human force f(t) is related to the human position, x(t) by the following
equation.

f(t) = K(x.t)—x(t) (AV.])

where K is a positive definite stiffness matrix. In addition, it is assumed that
the reference trajectory is in the form of a straight line motion with constant
speed, which is represented by:

X {t) = Vet + Xog (AV.2)

The model of motion within the termination region is given by substituting
Equation AV.2 into Equation AV.1, to give:

ft) = Kx(t) + K9t - Kx (AV.3)

The piecewise linear approximation algorithm presented in Appendix II,
illustrates a method of defining a region of position trajectory that conforms
to a straight line model. A least squares approximation of the data is
performed, and the error between the model and the data is compared to a
threshold. This same approach can be applied to identify the termination
region.

A least squares approximation can be implemented if the data is presented in
the form of the Ay=b, where y is the vectors of unknowns, A is a known
matrix, and b is a known vector [Strang 1986]. In Equation AV.3, the
knowns are f(t), x(t), and 't' which are measured by the teaching gripper, and
the unknowns are K, ¥V, and Xrfo. To implement a least squares
approximation it is necessary to transform Equation AV.3 into the form of
the linear equation Ay=b.

To get an intuitive understanding of the human model, it is useful to take the
time derivative of both sides of Equation AV.3 to give:

f) = Kx(t) + K¥, (AV.4)
where the overscript dot indicates time derivative. If the part is moving with

a constant velocity and then hits a constraint and stops, the force will
continue to increase in proportion to K. However, in practice taking the time
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derivative of the force and the position would increase the effect of noise in
the system, and therefore Equation AV.4 is not useful for analytical
purposes. Accordingly, the least squares approach is applied directly onto
Equation AV.3 and where the time derivative is not used.

Another aspect of the analysis is that the matrix K is positive definite, and
therefore symmetric. The least square approximation, should therefore
maintain the symmetry of K.

The least square approach is applied by rewriting Equation AV.3 in the form
of Ay=b. This approach is first applied to the two dimensional case. In 2D,
the components of the symmetric matrix K are given by:

_ [k AV.S
K = [ ok (AV.5)
The quotient K ¢ ; is defined by the unknown variables:
K9, = [ﬁ (AV.6)
v

The quotient K x,, is defined by the unknown variables:
d
Kx, o = [ d"] (AV.7)
y

The least squares solution identifies the unknown variables that minimize the
error between the data and the linear model. The matrices A and b contain
the sampled data. For a given segment being evaluated the number of sample
points is given by 'J' and the subscript 'j' indicates the sample number.
Equation AV.3 is rewritten in terms of Ay=b, in the following equation.

fu t 01 0—=x,-y, 0{fc,]
£y 0 ¢t 01 0-—x-ylfc,
£ 2t 01 0 —x,-y, O |{|d,
~|f2]=] 0 2t 0 1 0 —x,-y,]{4, (AV.8)
: R S S A | ) .
f, J 01 0 —=x,-y; 0 ||k,
Lf%2 LO Jt 01 0 —x;-y, bk”.

where fx and fy are components of f, and x and y are components of x. The
corresponding equation for the 3D case is given by:
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:
R - (o
fal |t 0010 0=x-y,-z00 0]|c,
£ 0t 001 0 0-=x;0-y,-2 0]lc,
fua 00t O0O0T10 0-x 0-y,-z||d
f2] 220 01 0 0 =x,-y,—2 0 0 0|4,
_fy.z_02t00100—x20—y2—z20 d,
£2] 10 0200 0 1 0 0 —x, 0 -y,-2||ku

3 B I T T T T A A A N (TN '),
£, Jt 001 0 0 —=x,-y;-zz0 0 0|k,
£,/ |00 o010 0-x0-y-2o0]|k,
£, 0 0JOO0O1O0 0-x 0-y;—z l;,.,

The least squares solution is given by: y=(ATAy1ATb. One could use the
results to identify a human compliance, but to do this accurately one should
ensure that the column rank of A is full. However, to identify a termination
region, it is only necessary to identify the error between the data and the best
linear fit. The same method presented in Appendix II is used; the least
squares approximation is applied iterativly as one increases the number of
points in the sample period, and a region where the model applies is
identified as the termination region.
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