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Abstract

This paper studies the optimal investment strategy of an investor who can access
not only the bond and the stock markets, but also the derivatives market. We consider
the investment situation where, in addition to the usual diffusive price shocks, the
stock market experiences sudden price jumps and stochastic volatility. The dynamic
portfolio problem involving derivatives is solved in closed-form. Our results show that
derivatives are important in providing access to the risk and return tradeoffs associ-
ated with the volatility and jump risks. Moreover, as a vehicle to the volatility risk,
derivatives are used by non-myopic investors to exploit the time-varying opportunity
set; and as a vehicle to the jump risk, derivatives are used by investors to dis-entangle
their simultaneous exposure to the diffusive and jump risks in the stock market. In
addition, derivatives investing also affects investors’ stock position because of the in-
teraction between the two markets. Finally, calibrating our model to the S&P 500
index and options markets, we find sizable portfolio improvement for taking advantage
of derivatives.
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1 Introduction

“Derivatives trading is now the world’s biggest business, with an estimated daily turnover of
over US$2.5 trillion and an annual growth rate of around 14%.”1 Despite increasing usage
and growing interest, little is known about the optimal trading strategies with derivatives
as part of an investment portfolio. Indeed, academic studies on dynamic asset allocation
typically exclude derivatives from the investment portfolios. In a complete market setting,
such an exclusion can very well be justified by the fact that derivative securities are redundant
[e.g., Black and Scholes (1973) and Cox and Ross (1976)]. When the completeness of the
market breaks down — either because of infrequent trading or by the presence of additional
sources of uncertainty — it then becomes suboptimal to exclude derivatives.2

Building on this economic intuition, this paper goes one step further by asking: What are
the optimal dynamic strategies for an investor who can control not just the holdings in the
aggregate stock market and a riskless bond, but also derivatives? How much can he benefit
from including derivatives?

In this paper, we address these questions by focusing on two specific aspects of market
incompleteness that have been well documented in the empirical literature for the aggregate
stock market: one arises from stochastic volatility, and the other from jumps.3 Specifically,
we adopt an empirically realistic model for the aggregate stock market that incorporates
three types of risk factors: diffusive price shocks, price jumps, and volatility risks. Taking
this market condition as given, we solve the dynamic asset allocation problem [Merton (1971)]
of a power-utility investor whose investment opportunity includes not only the usual riskless
bond and risky stock, but also derivatives on the stock.

The one important aspect of the derivative securities considered in this paper is their
non-linear dependence on the risky stock. By itself, the risky stock can only provide a
“package deal” of risk exposures: one unit each to the diffusive and jump risks and none
to the volatility risk. With the help of derivatives, however, this “package deal” can be
broken down into its three individual components. For example, an at-the-money option,
being highly sensitive to market volatility, provides a positive exposure to the volatility risk;
a deep out-of-the-money put option, being much more sensitive to negative jump risks than
diffusive risks, serves to dis-entangle the jump risk from the diffusive risk. From this example,
we can see that it is the non-linear nature of derivatives that serves to complete the market

1From Building the Global Market: A 4000 Year History of Derivatives by Edward J. Swan.
2Among others, the spanning role of derivatives has been studied extensively by Ross (1976), Breeden

and Litzenberger (1978), Arditti and John (1980), and Green and Jarrow (1987) in static settings, and, more
recently, by Bakshi and Madan (2000) in a dynamic setting. In a buy-and-hold environment, Haugh and Lo
(2001) use derivatives to mimic the dynamic trading strategy of the underlying stock. Using historical stock
data, Merton, Scholes, and Gladstein (1978, 1982) investigate the return characteristics of various option
strategies. Carr, Jin, and Madan (2001) consider the optimal portfolio problem in a pure-jump setting by
including as many options as the jump states. In an information context, Brennan and Cao (1996) analyze
the role of derivatives in improving trading opportunities. Ahn, Boudoukh, Richardson, and Whitelaw (1999)
considers the role of options in a portfolio Value-at-Risk setting.

3Both empirical facts have been the object of numerous studies. Among others, Jorion (1989) documented
the importance of jumps in the aggregate stock returns. Recent studies documenting the importance of both
stochastic volatility and jumps include Andersen, Benzoni, and Lund (2001), Bates (2000), and Bakshi, Cao,
and Chen (1997).

2



with respect to the additional risk factors. Although one can think of derivatives in their
most general terms, not all financial contracts can provide such a service. For example, bond
derivatives or long-term bonds can only provide access to the risk of the short rate, which is
a constant in our setting. Given our focus on the aggregate stock market, individual stocks
are unlikely candidates, and their linear nature makes it even more unlikely.

The market incompleteness that makes derivatives valuable in our setting also makes the
pricing of such derivatives not unique. In particular, using the risk and return information
contained in the underlying risky stock, we are unable to assign the market price of the
volatility risk or the relative pricing of the diffusive and jump risks. In other words, when
we introduce derivatives to complete the market, say one at-the-money and one out-of-the-
money put options, we need to make additional assumptions on the volatility-risk and jump-
risk premia implicit in such derivatives. Once such assumptions are made and the derivatives
are introduced, the market is complete. Alternatively, we can start with a pricing kernel that
supports the risk and return tradeoffs implied by these derivatives and the risky stock. These
two approaches are clearly equivalent, and the key element that is important for our analysis
is how each of the three risk factors is priced.

To be able to address, for realistic market conditions, the optimal derivative strategies
and the quantitative improvement for including derivatives, it is important that we adopt
a pricing kernel — or equivalently, a specification for the risk premia in derivatives — that
accommodates the empirically documented risk and return tradeoffs implied by options on
the aggregate market. Using joint time-series data on the risky stock (the S&P 500 index)
and European-style options (the S&P 500 index options), recent studies have documented
the importance of the risk premia implicit options, particularly those associated with the
volatility and jump risks [Chernov and Ghysels (2000), Pan (2002), Benzoni (1998), and
Bakshi and Kapadia (2001)]. Consistent with these findings, Coval and Shumway (2001)
report the expected option returns that cannot be explained by the risk and return tradeoff
associated with the usual diffusive price shock. Collectively, these empirical studies suggest
that the volatility risk and jump risk are indeed priced in options on the aggregate stock
market. For this reason, we adopt in this paper a parametric pricing kernel that is capable
of separately pricing all three risk factors.

It should be noted that by exogenously introducing a pricing kernel, our analysis is of a
partial-equilibrium nature. In fact, this is very much the spirit of the asset allocation prob-
lem: a small investor takes the prices (both risks and returns) as given and finds for himself
the optimal trading strategy. By the same token, as we later quantify the improvement for
including derivatives, we are addressing the improvement in certainty equivalent wealth for
this very investor, not the welfare improvement of the society as a whole.4

The dynamic asset allocation problem is solved in closed form. Intuitively, this problem
can be viewed as being solved in three steps. Given the market completeness with respect to
the riskless bond, the risky stock, and the two non-redundant derivative securities, we obtain
the investor’s optimal wealth dynamics. We then find the optimal exposures to the three risk
factors to support this optimal wealth dynamics. Finally, we find the optimal positions on
the risky stock and the two derivative securities to achieve the optimal exposures on the risk

4The latter requires an equilibrium treatment. See, for example, the literature on financial innovation
[Allen and Gale (1994)].
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factors. Closely connected to this last step is the role of derivative securities in completing the
market. As discussed earlier, not all financial contracts are capable of achieving this goal,
and this statement is formally made in our paper as a non-redundancy condition on the
chosen derivatives. Closely connected to the second step is our assumptions on how each of
the risk factor is priced. In fact, they are the main economic driving force behind the optimal
exposures to the risk factors. As discussed earlier, our specification of the market prices of
risks is chosen mainly to accommodate the empirical evidence, particularly that from the
option market. As will be shown in two illustrative examples, the optimal derivative strategy
and the quantitative improvement for including derivatives change significantly as we change
the market prices of such risk factors.

Our first illustrative example is on the role of derivatives as a vehicle to volatility risk.
In this setting, the demand for derivatives arises from the need to access the volatility risk.
As a result, the optimal portfolio weight on the derivative security depends explicitly on
how sensitive the chosen derivative is to the stock volatility. Our result also shows that
there are two economically different sources from which the need to access the volatility
risk arises. Acting myopically, the investor participates in the derivatives market simply to
take advantage of the risk and return tradeoff provided by the volatility risk. For example,
if the volatility risk is not priced at all, he would find no “myopic” incentive to take on
derivative positions. On the other hand, a negatively priced volatility risk induces him to
sell volatility by writing options. Acting non-myopically, the investor holds derivatives to
further exploit the time-varying nature of his investment opportunity, which, in our setting,
is driven exclusively by the stochastic volatility. As the volatility becomes more persistent,
this non-myopic demand for derivatives becomes more prominent, and it also changes sharply
around the investment horizon that is close to the half life of the volatility.

To assess the portfolio improvement for participating in the derivatives market, we com-
pare the certainty equivalent wealth of two utility-maximizing investors with and without
access to the derivatives market. To further quantify the gain from taking advantage of
derivatives, we calibrate the parameters of the stochastic volatility model to those reported
by empirical studies on the S&P 500 index and option markets. Our results show that the
improvement for including derivatives is driven mostly by the risk and return tradeoff associ-
ated with the additional volatility risk. At normal market conditions and with a conservative
estimate of the volatility-risk premium, the improvement in certainty equivalent wealth for
an investor with relative risk aversion of three is about 14% per year, which becomes higher
when the market becomes more volatile.

Our second illustrative example is on the role of derivatives as a vehicle to dis-entangle
the jump risk from the diffusive risk. In this setting, the relative attractiveness between
the jump risk and diffusive risk is the economic driving force behind our result. If the
jump risk is compensated in such a way that the investor finds it to be as attractive as the
diffusive risk, then there is no need to dis-entangle the two risk factors. Hence, zero demand
for derivatives. Empirically, however, it is generally not true that the two risk factors are
rewarded equally. In fact, the empirical evidence from the option market suggests that, for
investors with reasonable range of risk aversion, the jump risk is compensated more than the
diffusive risk. A recent paper by Bates (2001) addresses this issue in an equilibrium setting
by considering an investor with an additional aversion to market crashes.
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Apart from the quantitative difference, the jump risk differs from the diffusive risk in
an important, qualitative way. Specifically, in the presence of large, negative jumps, the
investor is reluctant to hold too much of the jump risk regardless of how much premium
is assigned to it. Intuitively, this is because in contrast to the diffusive risks, which can
be controlled via continuous trading, the sudden, high-impact nature of jump risks takes
away the investor’s ability to continuously trade his way out of a leveraged position to avoid
negative wealth. As a result, without access to derivatives, the investor avoids taking a too
leveraged position on the risky stock [Liu, Longstaff, and Pan (2002)]. The same investor is
nevertheless freer to make choices when the worst-case scenarios associated with the jump
risk can be taken care of by trading derivatives. In our quantitative example, this is reflected
by the optimal trading strategy of taking a larger position on the risky stock and buying
deep out-of-the-money put options to hedge out the negative jump risk.

The rest of the paper is organized as follows. Section 2 describes the investment en-
vironment including the risky stock and the derivative securities. Section 3 formalizes the
investment problem and provides the explicit solutions. Section 4 provides an extensive ex-
ample on the role of derivatives in the presence of volatility risk, while Section 5 focuses on
jump risks. Section 6 concludes the paper. Technical details are provided in the appendices.

2 The Model

2.1 The Stock Price Dynamics

The fundamental securities in this economy are a riskless bond that pays a constant rate of
interest r, and a risky stock that represents the aggregate equity market. To capture the
empirical features that are important in the time-series data on the aggregate stock market,
we assume the following dynamics for the price process S of the risky stock,

dSt =
(
r + ηVt + µ

(
λ− λQ

)
Vt
)
St dt+

√
V t St dBt + µSt− (dNt − λVtdt) (1)

dVt = κ(v̄ − Vt) dt+ σ
√
V t

(
ρ dBt +

√
1 − ρ2 dZt

)
, (2)

where B and Z are standard Brownian motions, and N is a pure-jump process. All three
random shocks B, Z, and N are assumed to be independent.

This model incorporates, in addition to the usual diffusive price shock B, two risk factors
that are important in characterizing the aggregate stock market: stochastic volatility and
price jumps. Specifically, the instantaneous variance process V is a stochastic process with
long-run mean v̄ > 0, mean-reversion rate κ > 0, and volatility coefficient σ ≥ 0. This
formulation of stochastic volatility, due to Heston (1993), allows the diffusive price shock
B to enter the volatility dynamics via the constant coefficient ρ ∈ (−1, 1), introducing
correlations between the price and volatility shocks — a feature that is important in the
data.

The random arrival of jump events is dictated by the pure-jump process N with stochastic
arrival intensity {λVt : t ≥ 0} for constant λ ≥ 0. Intuitively, the conditional probability
at time t of another jump before t + ∆t is, for some small ∆t, approximately λVt∆t. This
formulation, due to Bates (2000), has the intuitive interpretation that jumps are more likely
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to occur during volatile markets. Following Cox and Ross (1976), we adopt deterministic
jump amplitudes. That is, conditional on a jump arrival, the stock price jumps by a constant
multiple of µ > −1, with the limiting case of −1 representing the situation of total ruin.
As it becomes clear later, this specification of deterministic jump amplitude simplifies our
analysis in the sense that only one additional derivative security is needed to complete the
market with respect to the jump component.5 This formulation, though simple, is capable of
capturing the sudden and high-impact nature of jumps that cannot be produced by diffusions.

Finally, η and λQ are constant coefficients capturing the two components of the equity
premium: one for the diffusive risk B, the other for the jump risk N . More detailed dis-
cussions on these two parameters will be provided in the next section as we introduce the
pricing kernel for this economy.

2.2 The Derivative Securities and the Pricing Kernel

In addition to investing in the risky stock and the riskless bond, the investor is also given the
chance to include derivatives in his portfolio. Clearly, the relevant derivative securities are
those that serve to expand the dimension of risk and return tradeoffs for the investor. More
specifically for our setting, such derivatives are those that provide differential exposures to
the three fundamental risk factors in the economy.

For concreteness, we consider the class of derivatives whose time-t price Ot depends on
the underlying stock price St and the stock volatility Vt through Ot = g (St, Vt), for some
function g. Although more complicated derivatives can be adopted in our setting, this class
of derivatives provides the cleanest intuition possible. Letting τ be its time to expiration,
this particular derivative is defined by its payoff structure at the time of expiration. For
example, a derivative with a linear payoff structure g (Sτ , Vτ ) = Sτ is clearly the stock itself,
and it must be that g (St, Vt) = St at any time t < τ . On the other hand, for some strike
price K > 0, a derivative with the non-linear payoff structure g(Sτ , Vτ) = (Sτ −K)+ is a
European-style call option, while that with g(Sτ , Vτ ) = (K − Sτ )

+ is a European-style put
option. Unlike our earlier example for the linear contract, the pricing relation g (St, Vt) at
t < τ is not uniquely defined in these two cases by using the information contained in the
risky stock only. In other words, by including multiple sources of risks in a non-trivial way,
the market is incomplete with respect to the risky stock and riskless bond.

Clearly, the market can be completed once we introduce enough non-redundant deriva-
tives O

(i)
t = g(i) (St, Vt) for i = 1, 2, . . . , N . Alternatively, we can introduce a specific pricing

kernel to price all of the risk factors in this economy, and consequently, any derivative securi-
ties. These two approaches are indeed equivalent. That is, the particular specification of the
N derivatives that complete the market is linked uniquely to a pricing kernel {πt, 0 ≤ t ≤ T}
such that,

O
(i)
t =

1

πt
Et
[
πτig

(i) (Sτi , Vτi)
]
, (3)

for any t ≤ τi, where τi is the time to expiration for the i-th derivative security.

5More generally, one could introduce random jumps with multiple outcomes and use multiple derivatives
to help complete the market.
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In this paper, we choose the latter approach and start with the following parametric
pricing kernel:

dπt = −πt
(
r dt+ η

√
Vt dBt + ξ

√
Vt dZt

)
+

(
λQ

λ
− 1

)
πt− (dNt − λVt dt) , (4)

where π0 = 1 and the constant coefficients η, ξ, and λQ/λ respectively control the premiums
for the diffusive price risk B, the additional volatility risk Z, and the jump risk N . Consistent
with this pricing kernel is the following parametric specification of the price dynamics for
the i-th derivative security:

dO
(i)
t = r O

(i)
t dt+

(
g(i)
s St + σρ g(i)

v

) (
η Vt dt+

√
Vt dBt

)
+ σ
√

1 − ρ2 g(i)
v

(
ξ Vt dt+

√
Vt dZt

)

+ ∆g(i)

((
λ− λQ

)
Vt dt+ dNt − λVt dt

)
, (5)

where g
(i)
s and g

(i)
v measure the sensitivity of the i-th derivative price to infinitesimal changes

in the stock price and volatility, respectively, and where ∆g(i) measures the change in deriva-
tive price for each jump in the underlying stock price. Specifically,

g(i)
s =

∂g(i)(s, v)

∂s

∣∣∣∣
(St,Vt)

; g(i)
v =

∂g(i)(s, v)

∂v

∣∣∣∣
(St,Vt)

; ∆g(i) = g(i) ((1 + µ)St, Vt) − g(i) (St, Vt) .

(6)
A derivative with non-zero gs provides exposure to the diffusive price shock B, one with

non-zero gv provides exposure to the additional volatility risk Z, and one with non-zero
∆g provides exposure to the jump risk N . To complete the market with respect to these
three risk factors, one needs at least three securities. For example, one can start with the
risky stock, which provides simultaneous exposure to the diffusive price shock B and the
jump risk N : gs = ∆g/∆S = 1. To separate his exposure to the jump risk from that to
the diffusive price shock, the investor can add out-of-the-money put options to his portfolio,
which provides more exposure to the jump risk than the diffusive risk: |∆g/∆S| >> |gs|.
Finally, to get himself exposed to the additional volatility risk Z, he can add at-the-money
options, which provides gv > 0.

In essence, the role of the derivative securities here is to provide separate exposures to
the fundamental risk factors. It is important to point out that not all financial contracts
can achieve such a goal. For example, bond derivatives are infeasible because they can
only provide exposure to the constant riskfree rate. Other individual stocks are generally
infeasible because our risky stock represents the aggregate equity market, which is a linear
combination of the individual stocks.6

In addition to providing exposures to the risk factors, the derivatives also pick up the
associated returns. This risk and return tradeoff is controlled by the specific parametric
form of the pricing kernel π, or equivalently, by the particular price dynamic specified for

6Of course, one can think of the extreme case where one group of individual stocks contribute exclusively
to the diffusive risk or the jump risk at the aggregate level, but not both. It is even more unlikely that an
individual stock that is linear in nature could provide exposure to the volatility risk at the aggregate level.
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the derivatives. To be more specific, from either (4) or (5), we can see that the constant
η controls the premium for the diffusive price risk B, the constant ξ controls that for the
additional volatility risk Z, and the constant ratio λQ/λ controls that for the jump risk.7

Apart from analytical tractability,8 this specific parametric form has the advantage of
having three parameters η, ξ, and λQ/λ to separately price the three risk factors in the
economy. This flexibility is in fact supported empirically. Using joint time-series data on the
risky stock (the S&P 500 index) and European-style options (the S&P 500 index options),
recent studies have documented the importance of the risk premia implicit options, particu-
larly those associated with the volatility and jump risks [Chernov and Ghysels (2000), Pan
(2002), Benzoni (1998), and Bakshi and Kapadia (2001)]. Consistent with these findings,
Coval and Shumway (2001) report the expected option returns that cannot be explained by
the risk and return tradeoff associated with the usual diffusive price shock B. Collectively,
these empirical studies on the options market suggest that the additional risk factors, such
as the volatility risk and jump risk, are indeed priced in the option market. Given our focus
on the optimal investment decision associated with derivatives, it is all the more important
for us to choose a parametric form that accommodates the empirically documented risk and
return tradeoff associated with options on the aggregate market.

Although our approach in this paper is partial equilibrium in nature, our choice of pricing
kernel can also be related to those derived from equilibrium studies. For the special case
of constant volatility, our specific pricing kernel can be mapped to the equilibrium result of
Naik and Lee (1990). Letting γ be the relative risk-aversion coefficient of the representative
agent, the coefficient for the diffusive-risk premium is η = γ, and the coefficient for the jump-
risk premium is λQ/λ = (1 + µ)−γ. In the presence of adverse jump risk (µ < 0), he fears
that jumps are more likely to occur (λQ > λ), consequently requiring a positive premium
for holding the jump risk. It is important to notice that the market prices of both risk
factors are controlled by one parameter: the risk-aversion coefficient γ of the representative
agent. The empirical evidence from the option market, however, seems to suggest that the
jump risk is priced quite differently from the diffusive risk. To accommodate this difference,
a recent paper by Bates (2001) introduces a representative agent with an additional crash
aversion coefficient Y . Mapping his equilibrium result to our parametric pricing kernel, we
have η = γ, and λQ/λ = (1 + µ)−γ exp(Y ). The usual risk aversion coefficient γ contributes
to the market price of the diffusive risk, while the crash aversion contributes an additional
layer to the market price of the jump risk.

In this respect, we can think of our parametric approach to the pricing kernel as a
reduced-form approach. For the purpose of understanding the economic sources of the risk
and return, a structural approach such as Naik and Lee (1990) and Bates (2001) is required.
For the purpose of obtaining the optimal derivative strategies with given market conditions,
however, such a reduced-form approach is in fact sufficient and has been adopted in the asset
allocation literature. Finally, to verify that the parametric pricing kernel π is indeed a valid
pricing kernel, which rules out arbitrage opportunities involving the riskless bond, the risky

7It should be noted that λQ ≥ 0, and λQ = 0 if and only if λ = 0.
8For a European-style option with maturity τi and strike price Ki, we have g(i) = c (St, Vt ; Ki, τi), where

the explicit functional form of c can be derived via transform analysis. For this specific case, the original
solution is given by Bates (2000). See also Heston (1993) and Duffie, Pan, and Singleton (2000).
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stock, and any derivative securities, one can apply Ito’s lemma and show that πt exp(−rt),
πtSt, and πtO

(i)
t are local martingales.9

3 The Investment Problem and the Solution

The investor starts with a positive wealth W0. Given the opportunity to invest in the riskless
asset, the risky stock and the derivative securities, he chooses, at each time t, 0 ≤ t ≤ T ,
to invest a fraction φt of his wealth in the stock St, and fractions ψ

(1)
t and ψ

(2)
t in the two

derivative securities O
(1)
t and O

(2)
t , respectively. The investment objective is to maximize the

expected utility of his terminal wealth WT ,

max
φt, ψt, 0≤t≤T

E

(
W 1−γ
T

1 − γ

)
, (7)

where γ > 0 is the relative risk-aversion coefficient of the investor, and where the wealth
process satisfies the self-financing condition

dWt = rWt dt+ θBt Wt

(
η Vt dt+

√
Vt dBt

)
+ θZt Wt

(
ξ Vt dt+

√
Vt dZt

)
+ θNt−Wt− µ

((
λ− λQ

)
Vt dt+ dNt − λVt dt

)
, (8)

where θBt , θZt , and θNt are defined, for given portfolio weights φt and ψt on the stock and the
derivatives, by

θBt = φt +
2∑
i=1

ψ
(i)
t

(
g

(i)
s St

O
(i)
t

+ σρ
g

(i)
v

O
(i)
t

)
; θZt = σ

√
1 − ρ2

2∑
i=1

ψ
(i)
t

g
(i)
v

O
(i)
t

;

θNt = φt +
2∑
i=1

ψ
(i)
t

∆g(i)

µO
(i)
t

.

(9)

Effectively, by taking positions φt and ψt on the risky assets, the investor invests θB on the
diffusive price shock B, θZ on the additional volatility risk Z, and θN on the jump risk N .
For example, a portfolio position φt on the risky stock provides equal exposures to both the
diffusive and jump risks in stock prices. Similarly, a portfolio position ψt on the derivative
security provides exposure to the volatility risk Z via a non-zero gv, exposure to the diffusive
price shock B via a non-zero gs, and exposure to the jump risk via a non-zero ∆g.

Except for adding derivative securities in the investor’s opportunity set, the investment
problem in (7) and (8) is the standard Merton (1971) problem. Before solving for this
problem, we should point out that the maturities of the chosen derivatives do not have to
match the investment horizon T . For example, it might be hard for an investor with a
10-year investment horizon to find an option with a matching maturity. He may choose to
invest in options with much shorter time to expiration, say LEAPS, which typically expires

9See, for example, Appendix B.2 of Pan (2000).
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in one or two years, and switch or roll over to other derivatives in the future. For the purpose
of choosing the optimal portfolio weights at time t, what matters is his choice of derivative
securities Ot at that time, not his future choice of derivatives. This is true as long as, at
each point in time in the future, there exist non-redundant derivative securities to complete
the market.

We now proceed to solve the investment problem in (7) using the stochastic control
approach. Alternatively, our problem can be solved using the Martingale approach of Cox
and Huang (1989). Indeed, to further deliver the intuition behind our solution, we will come
back and interpret the solution from the angle of the Martingale approach. Following Merton
(1971), we define the indirect utility function by

J(t, w, v) = max
{φs, ψs, t≤s≤T}

E

(
W 1−γ
T

1 − γ

∣∣∣∣Wt = w, Vt = v

)
, (10)

which, by the principle of optimal stochastic control, satisfies the following Hamilton-Jacobi-
Bellman (HJB) equation

max
φt , ψt

{
Jt +WtJW

(
rt + θBηVt + θZt ξVt − θNµλQVt

)
+

1

2
W 2
t JWWVt

((
θB
)2

+
(
θZ
)2)

+ λVt ∆J + κ (v̄ − Vt)JV +
1

2
σ2VtJV V + σVtWtJWV

(
ρ θB +

√
1 − ρ2 θZt

)}
= 0 ,

(11)

where ∆J = J(t,Wt(1 + θNµ), Vt) − J(t,Wt, Vt) denotes the jump in the indirect utility
function J for given jumps in the stock price, and where Jt, JW , and JV denote the derivatives
of J(t,W, V ) with respect to t, W and V respectively, and similar notations for higher
derivatives.

To solve the HJB equation, we notice that it depends explicitly on the portfolio weights
θB, θZ , and θN , which, as defined in (9), are linear transformations of the portfolio weights
φ and ψ on the risky assets. Taking advantage of this structure, we first solve the optimal
positions on the risk factors B, Z, and N , and then transform them back via the linear
relation (9) to the optimal positions on the risky assets. This transformation is feasible as
long as the chosen derivatives are non-redundant in the following sense.

Definition: At any time t, the derivative securities O
(1)
t and O

(2)
t are non-redundant if

Dt 6= 0 where Dt =

(
∆g(1)

µO
(1)
t

− g
(1)
s St

O
(1)
t

)
g

(2)
v

O
(2)
t

−
(

∆g(2)

µO
(2)
t

− g
(2)
s St

O
(2)
t

)
g

(1)
v

O
(1)
t

(12)

Effectively, the non-redundancy condition in (12) guarantees market completeness with
respect to the chosen derivative securities, the risky stock, and the riskless bond. Without
access to derivatives, linear positions on the risky stock provide equal exposures to the
diffusive and jump risks, and none to the volatility risk. To complete the market with
respect to the volatility risk, we need to bring in a risky asset that is sensitive to changes
in volatility: gv 6= 0. To complete the market with respect to the jump risk, we need a
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risky asset with different sensitivities to the infinitesimal and large changes in stock prices:
gsSt/Ot 6= ∆g/µOt. Moreover, (12) also ensures that the two chosen derivative securities are
not identical in covering the two risk factors.

Proposition 1 Assume that there are non-redundant derivatives available for trade at any
time t < T . Then, for given wealth Wt and volatility Vt, the solution to the HJB equation is
given by

J (t,Wt, Vt) =
W 1−γ
t

1 − γ
exp (γ h (T − t) + γ H (T − t) Vt) , (13)

where h(·) and H(·) are time-dependent coefficients that are independent of the state vari-
ables. That is, for any 0 ≤ τ ≤ T ,

h (τ) =
2κv̄

σ2
ln

(
2 k2 exp ((k1 + k2) τ/2)

2k2 + (k1 + k2) (exp (k2 τ) − 1)

)
+

1 − γ

γ
r τ

H (τ) =
exp (k2 τ) − 1

2k2 + (k1 + k2) (exp (k2 τ) − 1)
δ

(14)

where

δ =
1 − γ

γ2

(
η2 + ξ2

)
+ 2λQ

[(
λ

λQ

)1/γ

+
1

γ

(
1 − λ

λQ

)
− 1

]

k1 = κ− 1 − γ

γ

(
ηρ+ ξ

√
1 − ρ2

)
σ ; k2 =

√
k2

1 − δ σ2

The optimal portfolio weights on the risk factors B, Z, and N are given by

θ∗Bt =
η

γ
+ σρH (T − t) ; θ∗Zt =

ξ

γ
+ σ
√

1 − ρ2H (T − t) ; θ∗Nt =
1

µ

((
λ

λQ

)1/γ

− 1

)
.

(15)
Transforming the θ∗’s to the optimal portfolio weights on the risky assets, φ∗

t for the stock
and ψ∗

t for derivatives, we have

φ∗
t = θ∗Bt −

2∑
i=1

ψ
∗ (i)
t

(
g

(i)
s St

O
(i)
t

+ σρ
g

(i)
v

O
(i)
t

)

ψ∗ (1) =
1

Dt

[
g

(2)
v

O
(2)
t

(
θ∗Nt − θ∗Bt − θ∗Zt ρ√

1 − ρ2

)
−
(

∆g(2)

µO
(2)
t

− g
(2)
s St

O
(2)
t

)
θ∗Zt

σ
√

1 − ρ2

]

ψ∗ (2) =
1

Dt

[(
∆g(1)

µO
(1)
t

− g
(1)
s St

O
(1)
t

)
θ∗Zt

σ
√

1 − ρ2
− g

(1)
v

O
(1)
t

(
θ∗Nt − θ∗Bt − θ∗Zt ρ√

1 − ρ2

)]
.

(16)

Proof: See Appendix.

To further deliver the intuition behind the result in Proposition 1, we can examine our
result from the angle of the Martingale approach. Given that the market is complete after
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introducing the derivative securities (or equivalently the pricing kernel π), the terminal
wealth W ∗

T associated with the optimal portfolio strategy can be solved directly from,

max
WT

E0

(
W 1−γ
T

1 − γ

)
subject to E0 (πTWT ) = W0 . (17)

Solving this constrained optimization problem explicitly, and using the fact that, at any time
t < T , W ∗

t = E (πTW
∗
T ) /πt, we can show that the optimal wealth dynamics {W ∗

t , 0 ≤ t ≤ T}
indeed follows that specified in (8), with θB, θZ and θN replaced by the optimal solution
given by (15) in Proposition 1.

From this perspective, our results can be interpreted as three steps. First, solve for
the optimal wealth dynamics. Second, find the optimal exposures θ∗B, θ∗Z , and θ∗N to the
fundamental risk factors to support this optimal wealth dynamics. Finally, find the optimal
positions φ∗, ψ∗(1), and ψ∗(2) on the risky stock and the two derivative securities to achieve
the optimal exposures on the risk factors. Clearly, the mapping in this last step is only
feasible when the market is indeed incomplete with respect to the three securities S, O(1)

and O(2). That is, when the non-redundancy condition (12) is satisfied.
To further illustrate our results, we consider two examples in the next two sections, one

on volatility risks and the other on jump risks.

4 Example I: Derivatives and Volatility Risk

This section focuses on the role of derivative securities as a vehicle to stochastic volatility.
For this, we specialize in an economy with volatility risk but no jump risk. Specifically, we
turn off the jump component in (1) and (2) by letting µ = 0 and λ = λQ = 0.

In such a setting, only one derivative security with non-zero sensitivity to volatility risk is
needed to help complete the market. Denoting this derivative security by Ot, we can readily
use the result of Proposition 1 to derive the optimal portfolio weights:

φ∗
t =

η

γ
− ξρ

γ
√

1 − ρ2
− ψ∗

t

gs St
Ot

(18)

ψ ∗
t =

(
ξ

γσ
√

1 − ρ2
+H (T − t)

)
Ot

gv
, (19)

where φ∗
t and ψ∗

t denote the optimal positions on the risky stock and the derivative security,
respectively, and where H is as defined in (14) with the simplifying restriction of no jumps.

4.1 The Demand for Derivatives

The optimal derivative position ψ∗ in (19) is inversely proportional to gv/Ot, which measures
the volatility exposure for each dollar invested in the derivative security. Intuitively, the
demand for derivatives arises in this setting from the need to access the volatility risk. The
more “volatility exposure per dollar” a derivative security provides, the more effective it is as
a vehicle to the volatility risk. Hence a smaller portion of the investor’s wealth needs to be
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invested in this derivative security. By contrast, financial contracts with lower sensitivities to
the aggregate market volatility are less effective for the same purpose. Of course, the extreme
case will be those linear securities (e.g. individual stocks) that provide zero exposure to the
volatility risk.

The demand for derivatives — or the need for volatility exposures — arises for two eco-
nomically different reasons. First, a myopic investor finds the derivative security attractive
because, as a vehicle to the volatility risk, it could potentially expand his dimension of risk
and return tradeoffs. This myopic demand for derivatives is reflected in the first term of ψ∗

t .
For example, a negatively priced volatility risk (ξ < 0) makes short positions on volatility
attractive, inducing investors to sell derivatives with positive “volatility exposure per dol-
lar.” Similarly, a positive volatility-risk premium (ξ > 0) induces opposite trading strategies.
Moreover, the less risk-averse investor is more aggressive in taking advantage of the risk and
return tradeoff through investing in derivatives.

Second, for an investor who acts non-myopically, there is a benefit in derivative invest-
ments even when the myopic demand diminishes with a zero volatility risk-premium (ξ = 0).
This non-myopic demand for derivatives is reflected in the second term of ψ∗

t . Without any
loss of generality, let’s consider an option whose volatility exposure is positive (gv > 0).
In our setting, the Sharpe ratio of the option return is driven exclusively by the stochastic
volatility. In fact, it is proportional to the volatility. This implies that a higher realized
option return at one instant is associated with a higher Sharpe ratio (better risk-return
tradeoff) for the next-instant option return. In other words, a good outcome is more likely
to be followed by another good outcome. By the same token, a bad outcome in the option
return predicts a sequence of less attractive future risk-return tradeoffs. An investor with
relative risk aversion γ > 1 is particularly averse to sequences of negative outcomes because
his utility is unbounded from below. On the other hand, an investor with γ < 1 benefits from
sequences of positive outcomes because his utility is unbounded from above. As a result,
they act quite differently in response to this temporal uncertainty. The one with γ > 1 takes
a short position on volatility so as to hedge against the temporal uncertainty, while the one
with γ < 1 takes a long position on volatility so as to speculate on the temporal uncertainty.
Indeed, it is easy to verify that H(T − t), which is the driving force of this nonmyopic term,
is strictly positive for investors with γ < 1, and strictly negative for investor with γ > 1,
and zero for the log-utility investor.10

4.2 The Demand for Stock

Given that the volatility risk exposure is taken care of by the derivative holding, the “net”
demand for stock should simply be linked to the risk and return tradeoff associated with
the price risk. Focusing on the first term of φ∗

t in (18), this is indeed true. Specifically, it is
proportional to the attractiveness of the stock and inversely proportional to the investor’s
risk aversion.

The interaction between the derivative security and its underlying stock, however, com-

10One way to show this is by taking advantage of the ordinary differential equation (A.1) for H(·) with the
additional constraints of no jumps. Given the initial condition H(0) = 0, it is easy to see that the driving
force for the sign of H is the constant term which has the same sign as 1 − γ.
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plicates the optimal demand for stocks. For example, by holding a call option, one effectively
invests a fraction gs — typically referred to as the “delta” of the option — on the underlying
stock. The last term in φ∗ is there to correct this “delta” effect. In addition, there is also a
“correlation” effect that originates from the negative correlation between the volatility and
price shocks (typically referred to as the leverage effect [Black (1976)]). Specifically, a short
position on the volatility automatically involves long positions on the price shock, and equiv-
alently the underlying stock. The second term in φ∗ is there to correct this “correlation”
effect.

4.3 Empirical Properties of the Optimal Strategies

To examine the empirical properties of our results, we fix a set of base-case parameters for
our current model, using the results from the existing empirical studies.11 Specifically, for the
one-factor volatility risk, we set its long-run mean at v̄ = (0.13)2, its rate of mean-reversion
at κ = 5, and its volatility coefficient at σ = 0.25. The correlation between the price and
volatility risks is set at ρ = −0.40.

Important for our analysis is how the risk factors are priced. Given the well established
empirical property of the equity risk premium, calibrating the market price of the Brownian
shocks B is straightforward. Specifically, setting η = 4 and coupling it with the base-case
value of v̄ = (0.13)2 for the long-run mean of volatility, we have an average equity risk
premium of 6.76% per year.

The properties of the market price of the volatility risk, however, are not as well estab-
lished. In part because that volatility is not a directly tradeable asset, there is less consensus
on reasonable values for market prices of volatility risk. Empirically, however, there is strong
support that volatility risk is indeed priced. For example, using the joint time-series data on
the S&P 500 index and options, Chernov and Ghysels (2000), Pan (2002), Benzoni (1998),
and Bakshi and Kapadia (2001) report that volatility risks are negatively priced. That is,
short positions on volatility are compensated with a positive premium. Similarly, Coval
and Shumway (2001) report large negative returns generated by positions that are long on
volatility.

Given that the volatility risk at the aggregate level is generally related to the economic
activity [Officer (1973); Schwert (1989)], it is quite plausible that it is priced. At an intuitive
level, the negative volatility risk premium could be supported by the fact that the aggregate
market volatility is typically high during recessions. A short position on volatility, which
loses value when volatility becomes high during recessions, is therefore relatively more risky
than a long position on volatility, requiring an additional risk premium.

Instead of calibrating the volatility-risk premium coefficient ξ to the existing empirical
results, however, we will allow this coefficient to vary in our analysis so as to get a better

11The empirical properties of the Heston (1993) model have been extensively examined using either the
time-series data on the S&P 500 index alone [Andersen, Benzoni, and Lund (2001); Eraker, Johannes, and
Polson (2000)], or the joint time-series data on the S&P 500 index and options [Chernov and Ghysels (2000);
Pan (2002)]. Because of different sample periods and/or empirical approaches in these studies, the exact
model estimates may differ from one paper to another. Our chosen model parameters are in the generally
agreed region, with the exception of those reported by Chernov and Ghysels (2000).
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understanding of how different levels and signs of the volatility risk premium could affect
the optimal investment decision.

Using this set of base-case parameters, particularly the risk-and-return tradeoff implied
by the data, we now proceed to provide some quantitative examples of optimal investments
in the markets of S&P 500 index and options. To make the intuition as clean as possible,
we focus on “delta-neutral” securities. Specifically, we consider the following “delta-neutral”
straddle:

Ot = g (St, Vt ; K, τ) = c (St, Vt ; K, τ) + p (St, Vt ; K, τ) , (20)

where c and p are pricing formulas for call and put options with the same strike price K
and time to expiration τ . The explicit formulation of c and p is provided in Appendix B.1.
For given stock price St, market volatility Vt, and time to expiration τ , the strike price K
is selected so that the call option has a delta of 0.5, and, by put/call parity, the put option
has a delta of −0.5, making the straddle delta neutral.12

Fixing the riskfree rate at 5%, and picking a delta-neutral straddle with 0.1 year to
expiration, Figure 1 provides optimal portfolio weights under different scenarios. The top-
right panel examines the optimal portfolio allocation with varying volatility-risk premia.
Qualitatively, this result is similar to our analysis in Section 4.1. Quantitatively, however, this
result indicates that the demand for derivatives is driven mainly by the myopic component.
In particular, when the volatility-risk premium is set to zero (ξ = 0), the non-myopic demand
for straddles is only 2% of the total wealth for an investor with relative risk aversion γ = 3
and investment horizon T = 5 years. In contrast, as we set ξ = −6, which is a conservative
estimate for the volatility-risk premium, the optimal portfolio weight in the delta-neutral
straddle increases to 54% for the same investor.

The quantitative effect of the non-myopic component can be best seen by varying the
investment horizon (bottom left panel), or the volatility persistence (bottom right panel).
Consider an investor with γ = 3, who would like to hedge against temporal uncertainty by
taking short positions on volatility. The bottom left panel shows that as we increase his
investment horizon, this intertemporal hedging demand increases. And, quite intuitively,
the change is most noticeable around the region close to the half life of the volatility risk.
Similarly, the bottom right panel shows that as we decrease the persistent level of the volatil-
ity by increasing the mean-reversion rate κ, there is less benefit in taking advantage of the
intertemporal persistence. Hence a reduction in the intertemporal hedging demand.

As the market becomes more volatile, the cost of straddle (Ot) increases, but the volatility
sensitivity (gv) of such straddles decreases. Effectively the delta-neutral straddles provide
less “volatility exposure per dollar” as the market volatility increases. To achieve the optimal
volatility exposure, more needs to be invested in the straddle. Hence the increase in |ψ∗| with
the market volatility

√
V . As the volatility of the volatility increases, the risk and return

tradeoff on the volatility risk becomes less attractive. Hence the decrease in magnitude
of the straddle position with increasing “vol of vol” σ. Finally, the optimal strategy with

12Although “delta-neutral” positions can be constructed in numerous ways, we choose the “delta-neutral”
straddle mainly because it is made of call and put options which are typically very close to the money.
In particular, we intentionally avoid deep out-of-the-money options in our quantitative examples because
they are most subject to concerns of option liquidity and jump risks, two important issues that are not
accommodated formally in this section.
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Figure 1: The optimal portfolio weights. The y-axes are the optimal weight ψ∗ on the
“delta-neutral” straddle (solid line), φ∗ on the risky stock (dashed line), and 1 − ψ∗ − φ∗

on the riskfree bank account (dashed-dot line). The base-case parameters are as described
in Section 2, and the volatility-risk premium coefficient is fixed at ξ = −6. The base-case
investor is the one with risk aversion γ = 3 and investment horizon T = 5 years. The riskfree
rate is fixed at r = 5%, and the base-case market volatility is fixed at

√
V = 15%.
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varying risk aversion γ is as expected: less risk-averse investors are more aggressive in their
investment strategies.

4.4 Portfolio Improvement

Consider an investor with an initial wealth of W0 and an investment horizon of T years. If
he takes advantage of the derivatives market, his optimal expected utility is as provided in
Proposition 1 (with the simplifying restriction of no jumps). For a given market volatility
of V0, his certainty equivalent wealth W ∗ is13

W ∗ = W0 exp

(
γ

1 − γ

[
h (T ) +H (T ) V0

])
, (21)

where, again, the time-varying coefficients h and H are as defined in (14) with the simpli-
fying constraint of no jumps. Alternatively, this investor might choose not to participate in
the derivatives market. Let W no-op be the certainty equivalent wealth of such an investor
who chooses not to invest in options. To quantify the portfolio improvement for including
derivatives, we adopt the following measure14

RW =
lnW ∗ − lnW no-op

T
. (22)

Effectively, RW measures the portfolio improvement in terms of the annualized, continuously
compounded return in certainty equivalent wealth. The following Proposition summarizes
the results.

Proposition 2 For a power-utility investor with risk aversion coefficient γ > 0 and in-
vestment horizon T , the improvement for including derivatives is

RW =
γ

1 − γ

(
h(T ) − hno-op(T )

T
+
H(T ) −H no-op(T )

T
V0

)
, (23)

where V0 is the initial market volatility, and hno-op and H no-op are defined in (B.6). For an
investor with γ 6= 1, the portfolio improvement for including derivatives is strictly positive.
For an investor with log utility, the improvement is strictly positive if ξ 6= 0, and zero
otherwise.

Proof: See Appendix B.

The improvement for including derivatives is closely linked to the demand for derivatives.
For a myopic investor with log-utility, the demand for derivatives arises from the need to
exploit the risk and return tradeoff provided by the volatility risk. When the volatility-risk

13It should be noted that the optimal expected utility is independent of the specific derivative contract
chosen by the investor. This is quite intuitive, because, in our setting, the market is complete in the presence
of the derivative security.

14The indirect utility of the “no-option” investor can be derived using the results from Liu (1998). For
the completeness of the paper, it is provided in Appendix B.
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Figure 2: Portfolio improvement for including derivatives. The y-axes are the improvement
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premium is set to zero (ξ = 0), there is no myopic demand for derivatives. Consequently,
the is no benefit for including derivatives. There are, however, still non-myopic demands for
derivatives. Hence the portfolio improvement for a nonmyopic investor is strictly positive
regardless of the value of ξ.

To provide a quantitative assessment of the portfolio improvement, we again use the base-
case parameters described in Section 4.3. The results are summarized in Figure 2. Focusing
first on the top-right panel, we see that the portfolio improvement is very sensitive to how
the volatility risk is priced. At normal market condition with a conservative estimate15 of
the volatility-risk premium ξ = −6, our results show that the portfolio improvement for
including derivatives is about 14.2% per year in certainty equivalent wealth for an investor
with risk aversion γ = 3. As the investor becomes less risk averse and more aggressive
in taking advantage of the derivatives market, the improvement for including derivatives
becomes even higher (top left panel).

We can further evaluate the relative importance of the myopic and nonmyopic components
of portfolio improvement by setting ξ = 0. The portfolio improvement from non-myopic
trading of derivatives is as low as 0.02% per year. This is consistent with our earlier result:
the demand for derivatives is driven mostly by the myopic component. The non-myopic
component of the portfolio improvement is further examined in the bottom panels of Figure 2
as we vary the investment horizon and the persistence of volatility. Quite intuitively, as the
investment horizon T increases, or, as the volatility shock becomes more persistent, the
benefit of the derivative security as a hedge against temporal uncertainty becomes more
pronounced. Hence there is an increase in portfolio improvement. Finally, from the middle
two panels, we can also see that when the market volatility

√
V increases, or when the

volatility of volatility increases, there is more to be gained from investing in the derivatives
market.

5 Example II: Derivatives and Jumps

In this section, we examine the role of derivative securities in the presence of jump risks.
For this, we specialize in an economy with jump risk but no volatility risk. That is, setting
V0 = v̄ and σ = 0, we have Vt = v̄ at any time t.

The risky stock is now affected by two types of risk factors: the diffusive price shock with
constant volatility

√
v̄, and the pure jump with Poison arrival λv̄ and deterministic jump size

µ. In the absence of either risk factor, derivative securities are redundant since the market
can be completed by dynamic trading of the stock and bond [Black and Scholes (1973) and
Cox and Ross (1976)]. In their simultaneous presence, however, one more derivative is needed
to complete the market. Applying the result of Proposition 1, the optimal portfolio weights

15For example, Coval and Shumway (2001) report that zero-beta at-the-money straddle positions produce
average losses of approximately 3% per week. This number roughly corresponds to ξ = −12. Using volatility-
risk premium to explain the premium implicit in option prices, Pan (2002) reports a total volatility-risk
premium that translates to ξ = −23. This level of volatility-risk premium, however, could be overstated due
to the absence of jump and jump-risk premium in the model. In fact, after introducing jumps and estimating
jump-risk premium simultaneously with volatility-risk premium, Pan (2002) reports a volatility-risk premium
that translates to ξ = −10.
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φ on the risky stock and ψ on the derivative are,

φ∗
t =

η

γ
− ψ∗

t

gsSt
Ot

(24)

ψ∗
t =

(
∆g

µOt
− gsSt

Ot

)−1
(

1

µ

[(
λ

λQ

)1/γ

− 1

]
− η

γ

)
. (25)

5.1 The Demand for Derivatives

Evident in our solution is the role of derivative securities in separating the jump risk from
the diffusive price risk. Specifically, the optimal demand ψ∗ for the derivative security is
inversely proportional to its ability to dis-entangle the two — the more effective it is in
providing the separate exposure, the less is needed to be invested in this derivative security.
Deep out-of-the-money put options are examples of derivatives with high sensitivities to large
price drops but low sensitivities to small price movements. In contrast, if a financial contract
is sensitive to infinitesimal price movements in the same way as to large price movements:

∂g

∂S
=

∆g

∆S
,

then it is not effective at all in dis-entangling the two risk factors. Linear financial contracts
including the risky stocks are such examples.

Economically, the ultimate driving force for holding derivatives is the risk and return
tradeoff involved, which brings us to the second term in the optimal derivative position ψ∗.
A derivative might be able to dis-entangle the two risk factors, but the need for such a dis-
entanglement diminishes if the investor finds the two risk factors equally attractive. Recall
that the premia for the two risk factors are controlled, respectively, by λQ/λ and η. Suppose
that the relative value of the two coefficients is set so that

λQ

λ
=

(
1 + µ

η

γ

)−γ
. (26)

From (25), we can see that, under such a constraint, the optimal derivative position ψ∗ is zero
for an investor with risk-aversion coefficient γ. In other words, viewing the two risk factors
as equally attractive, his desire to dis-entangle the two risk factors diminishes, therefore, so
does his demand ψ∗ for the derivative security.

Empirically, however, it is generally not true that the two risk factors are rewarded
equally. Specifically, the empirical evidence from the option market suggests that, for a
reasonable range of risk aversion γ, the coefficient λQ/λ is much higher that that implied by
(26). If that is the case, then derivatives — with their ability to dis-entangle the two risk
factors — can be used by the investor to load more on the jump risk. If the opposite case
is true, say the jump risk is not being compensated at all, then derivatives can be used by
the investor to carve out his exposure to the jump risk. Later in Section 5.3, we allow the
coefficient λQ/λ for the jump-risk premium to vary, and examine the impact on the optimal
derivative position.
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Finally, to further emphasize the important role played by derivatives in dis-entangling
the two risk factors, let’s focus again on the “equally attractive” condition (26). One im-
portant observation is that, for given diffusive-risk premium, one cannot always find the
appropriate jump-risk premium to make the jump risk equally attractive. In particular, for
(26) to hold, it must be that 1+µη/γ > 0, which can be easily violated when η/γ > 1 and µ
is negative and large. This reflects the qualitative difference between the two risk factors: in
the presence of large, negative jumps, the investor is reluctant to hold too much of the jump
risk regardless of how much premium (λQ/λ) is assigned to it. This is because in contrast to
the diffusive risks, which can be controlled via continuous trading, the sudden, high-impact
nature of jump risks takes away the investor’s ability to continuously trade his way out of a
leveraged position to avoid negative wealth. As a result, the investor needs to prepare for
the worst-case scenario associated with the jump risk so that his wealth stays positive when
jump arrives.

5.2 The Demand for Stock

To understand how having access to derivatives might change the investor’s demand φ∗ for
the risky stock, let’s compare our solution for φ∗ with that for an investor with no access to
the derivatives market [Liu, Longstaff, and Pan (2002)]:

φ∗no−op
t =

η

γ
+
λµ

γ

[(
1 + µφ∗no−op

t

)−γ − λQ

λ

]
, (27)

where φ∗no−op is the optimal portfolio weight on the risky stock.
By taking a position on the risky stock, an investor is exposed to both the diffusive

and jump risks. Without access to derivatives, his optimal stock position is generally a
compromise between the two risk factors. This tension is evident in the non-linear equation
(27) that gives rise to the optimal stock positions φ∗no−op. For example, when the diffusive
risk becomes more attractive with increasing η, an investor with risk aversion γ would like
to increase his position on the diffusive risk via η/γ. But the second term in (27) pulls
him back, because, at the same time, he is also increasing his exposure to the jump risk. If
the jump-risk premium λQ/λ fails to catch up with the diffusive-risk premium, then tension
arises. It is only when the investor finds the two risk factors equally attractive in the sense
of (26) does this tension go away.

In general, however, the “equally attractive” condition (26) does not hold empirically
or theoretically. As mentioned earlier, for some large and negative jumps, no amount of
jump-risk premium λQ/λ can make up for the jump risk. This qualitative difference between
the two risk factors also manifests itself in the endogenously determined bound on φ∗no−op.
Specifically, (27) implies that 1 + µφ∗no−op > 0. In other words, in the presence of adverse
jump risks (µ < 0), the investor cannot afford to take a too leveraged position on the risky
stock. The intuition behind this result is the same that makes the “equally attractive”
condition impossible to hold for large, negative jumps. That is, when being blindsided by
things that he couldn’t control, the investor adopts investment strategies that prepare for
the worst-case scenarios.
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The investor is nevertheless freer to make choices when the worst-case scenarios can be
taken care of by trading derivatives. Indeed, for an investor with access to derivatives, the
result in (24) indicates that the optimal position on the risky stock is free of the tension
between the two risk factors. Specifically, the first term of φ∗ is to take advantage of the risk
and return tradeoff associated with the diffusive risk, while the second term is to correct for
the “delta” exposure introduced by the derivative security.

5.3 A Quantitative Analysis on Optimal Strategies

For the quantitative analysis, we set the riskfree rate at r = 5% and consider three jump
cases: 1) µ = −10% jumps once every 10 years; 2) µ = −25% jumps once every 50 years;
and 3) µ = −50% jumps once every 200 years. Clearly, these jump cases are designed to
capture the infrequent, high-impact nature of large events. For each jump case, we adjust
the diffusive component of the market volatility

√
v̄ so that the total market volatility is

always fixed at 15% a year.
For each jump case, we consider a wide range of jump-risk premia λQ/λ, starting from the

one with zero jump-risk premium: λQ/λ = 1. For each fixed level of the jump-risk premium,
we always adjust the coefficient η for the diffusive-risk premium so that the total equity risk
premium is fixed at 8% a year.

Table 1: Optimal Strategies with/without Options

Jump µ = −10% µ = −25% µ = −50%
Cases every 10 yrs every 50 yrs every 200 yrs

stock stock & put stock stock & put stock stock & put
γ λQ/λ only φ∗ ψ∗ only φ∗ ψ∗ only φ∗ ψ∗

1 6.74 9.34 4.33% 4.00 8.52 2.28% 2.00 8.38 1.85%
0.5 2 6.74 6.25 −0.67% 4.00 7.59 1.40% 2.00 7.94 1.54%

5 6.74 1.95 −5.63% 4.00 5.88 0.85% 2.00 7.10 1.53%
1 1.17 1.56 0.72% 1.12 1.42 0.38% 0.99 1.40 0.31%

3 2 1.17 0.82 −0.66% 1.12 1.22 0.12% 0.99 1.31 0.21%
5 1.17 −0.44 −3.38% 1.12 0.85 −0.34% 0.99 1.13 0.09%
1 0.70 0.93 0.43% 0.68 0.85 0.23% 0.62 0.84 0.18%

5 2 0.70 0.48 −0.43% 0.68 0.73 0.06% 0.62 0.78 0.13%
5 0.70 −0.35 −2.28% 0.68 0.50 −0.25% 0.62 0.67 0.04%
1 0.35 0.47 0.22% 0.34 0.43 0.11% 0.32 0.42 0.09%

10 2 0.35 0.23 −0.23% 0.34 0.36 0.03% 0.32 0.39 0.06%
5 0.35 −0.21 −1.24% 0.34 0.24 −0.15% 0.32 0.33 0.01%

The quantitative analysis is summarized in Table 1. We choose one-month 5% out-of-
the-money (OTM) European-style put options as the derivative security for the investor
to include in his portfolio. Known to be highly sensitive to large negative jumps in stock
prices, such OTM put options are among the most effective exchange-traded derivatives for
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the purpose of dis-entangling the jump risk from the diffusive risk. For an investor with
varying degrees of risk aversion γ, Table 1 reports his optimal portfolio weights φ∗ and ψ∗ on
the risky stock and the OTM put option, respectively. For comparison, the optimal portfolio
weights for the case of no derivatives (stock only) are also reported.

To put the results in perspective, recall that for all cases considered in Table 1, the total
market volatility is always fixed at 15% a year, and the total equity risk premium is always
fixed at 8% a year. If there were no jump risks, then options would be redundant and this
investor’s optimal stock weight would be 0.08/0.152/γ. This translates to an optimal stock
position of 7.11, 1.19, 0.71, and 0.36, respectively, for an investor with γ = 0.5, 3, 5, and 10.

The introduction of the jump component in Table 1 affects the optimal stock positions
in important ways. As discussed earlier, the stock-only investor becomes relatively more
cautious in the presence of the jump risk.16 More importantly, because the stock-only investor
has no ability to separate his jump exposure from his diffusive exposure, his position is
indifferent to how the jump risk is rewarded relative to the diffusive risk: all that matters is
the total equity premium, which is fixed at 8% a year.

This, however, is no longer true for the investor who can trade both the risky stock and
the put options. In particular, his position depends sensitively on how the jump risk is
rewarded. If it is not being compensated (λQ/λ = 1), the investor views the exposure to
the jump risk as a nuisance. He sees the risky stock simply as an opportunity to achieve
his optimal exposure to the diffusive risk. By investing in the risky stock, however, he also
exposes himself to the negative jump risk. To carve out this very exposure, he buys put
options. In this sense, the put options are playing their traditional hedging role against
negative jump risk.

As we increase λQ/λ in Table 1, the jump-risk premium increases. At some point, there
is a switch between the relative attractiveness of the jump and diffusive risks. This is indeed
the outcome for some of the cases in Table 1. That is, instead of buying puts, the investor
starts writing put options (ψ∗ < 0) to earn the high premium associated with the jump
risk. At the same time, his holding of the risky stock decreases along with the decreasing
attractiveness of the diffusive risk.17

Finally, it is interesting to notice that, for some of the cases in Table 1, this switch in
relative attractiveness never happens, regardless of the magnitude of λQ/λ. For example,
we see that the put option continues to play its hedging role for the last jump case for the
investor with γ = 0.5. Using our earlier discussion on the “equally attractive” condition
(26), this implies that the jump magnitude in this case is so large that 1 + µη/γ < 0 for the
given level of η and γ.

16In particular, in the presence of the −25% and −50% jumps, the endogenously determined portfolio
bound kicks in. Specifically, the associated portfolio weights are determined by imposing the constraint that
1 + µφ ≥ 0.

17It should be noted that part of the reason for this reduction in stock holding is to correct for the “delta”
exposure introduced by writing the put. See the last paragraph in Section 5.2.
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5.4 Portfolio Improvement

In this section, we compare the certainty equivalent wealth of an investor with access to the
derivative market with that of a stock-only investor. Suppose that, at time 0, the investor
starts with an initial wealth of W0 and has an investment horizon of T years. With access
to derivatives, his certainty equivalent wealth is18

W∗ = W0 exp

(
r T +

[
γ

2

(
η

γ

)2

+
γ

1 − γ
λQ

((
λ

λQ

)1/γ

+
1

γ

(
1 − λ

λQ

)
− 1

)]
v̄ T

)
. (28)

Without access to derivatives, his certainty equivalent wealth is

W∗no−op = W0 exp

(
r T +

[(
η − λQµ

)
φ∗ − γ

2
φ∗2 +

λ

1 − γ

(
(1 + φ∗µ)1−γ − 1

)]
v̄ T

)
, (29)

where φ∗, solved from (27), is the optimal stock position of the stock-only investor [Liu,
Longstaff, and Pan (2002)].

Clearly, the investor with access to the derivative security cannot do worse than the
stock-only investor. Hence W∗ ≥ W∗no−op. The equality holds if the “equally attractive”
condition (26) holds, that is, when the investor has no incentive to dis-entangle his exposures
to the two risk factors.

Table 2: Portfolio Improvement for Including Derivatives

Jump µ = −10% µ = −25% µ = −50%
Cases every 10 yrs every 50 yrs every 200 yrs

γ λQ/λ RW(%) RW (%) RW(%)
1 2.11 8.62 16.74

0.5 2 0.13 5.97 15.14
5 11.78 1.84 11.28
1 0.26 0.43 0.71

3 2 0.28 0.06 0.46
5 7.68 0.46 0.09
1 0.15 0.24 0.37

5 2 0.19 0.02 0.22
5 5.12 0.36 0.02
1 0.08 0.12 0.17

10 2 0.10 0.01 0.09
5 2.77 0.22 0.003

A quantitative analysis of the portfolio improvement for including derivatives is summa-
rized in Table 2. Adopting the notation developed in Section 4.4, we use RW to measure

18The indirect utility for this special case can be solved in a couple of ways. One is by a straightforward
derivation similar to that leading to Proposition 1 with the simplifying condition that Vt ≡ v̄. Alternatively,
one can take advantage of our existing solution, particularly the ordinary differential equations (A.1) for h
and H , and take the limit to the case of constant volatility.
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the improvement in terms of the annualized, continuously compounded return in certainty
equivalent wealth. The result of Table 2 can be best understood by comparing the related
optimal strategies in Table 1. When derivatives are used to hedge the exposure to the jump
risk, the more aggressive investor benefits more from having access to derivatives. This
is because, in the absence of jump risks, the more aggressive investor typically would like
to take larger stock positions. The presence of jump risks restricts them from taking too
leveraged positions. With the help of derivatives, however, he is again freer to choose his
optimal exposure to the diffusive risk. For the same reason, the improvement for including
derivatives decreases when the jump-risk premium increases and the diffusive-risk premium
decreases. For example, in the presence of the last jump case, the investor with γ = 0.5 buys
put options to hedge out his jump-risk exposure. His improvement in certainty equivalent
wealth is 16.74% a year when the jump risk is not compensated. When λQ/λ increases to 5,
his improvement in certainty equivalent wealth decreases to 11.28%.

This, however, is not the case when the relative attractiveness of the two risk factors
switches, and the investor starts to use derivatives as a way to obtain positive exposure to
the jump risk. For example, in the presence of the first jump case, the investor with γ = 3
starts writing put options when λQ/λ increases to 2. His improvement in certainty equivalent
wealth is 0.28% a year. When λQ/λ increases to 5, however, he writes more put options,
and his improvement in certainty equivalent wealth increases to 7.68% a year.

6 Conclusion

In this paper, we studied the optimal investment strategy of an investor who can access
not only the bond and the stock markets, but also the derivatives market. Our results
demonstrate the importance of including derivative securities as an integrated part of the
optimal portfolio decision. The analytical nature of our solutions also helps establish direct
links between the demand for derivatives and their economic sources.

As a vehicle to the additional risk factors such as stochastic volatility and price jumps
in the stock market, derivative securities play an important role in expanding the investor’s
dimension of risk and return tradeoffs. In addition, by providing access to the volatility risk,
derivatives are used by non-myopic investors to take advantage of the time-varying nature
of their opportunity set. Similarly, by providing access to the jump risk, derivatives are used
by investors to dis-entangle their simultaneous exposure to the diffusive and jump risks in
the stock market.

Although our analysis focuses on volatility and jump risks, our intuition can be readily
extended to other risk factors that are not accessible through linear positions on stocks. The
risk factor that gives rise to stochastic predictor is such an example. If, in fact, there are
derivatives providing access to such additional risk factors, then demands for the related
derivatives will arise from the need to take advantage of the associated risk and return
tradeoff, as well as the time-varying investment opportunity provided by such risk factors.

By focusing on the investment opportunity provided by derivative securities, this paper
also raised an important question that has yet to be fully examined: What are the reason-
able values for the market price of such additional risk factors? While empirically there is
strong support indicating that these risk factors are indeed priced in the aggregate market,
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our theoretical understanding of this subject is still limited. In particular, while it is easy to
include such risk factors in the pricing kernel (as we did in this paper), it remains an open
question as to why they are in the pricing kernel,19 and what types of restrictions are asso-
ciated with their presence.20 The importance of these questions naturally arises as we start
to treat derivatives as an integrated part of the optimal portfolio decision. Answers to such
questions, however, lie outside of the partial-equilibrium approach adopted in this paper and
need equilibrium treatment. For example, in an equilibrium setting with an investor with
crash aversion, Bates (2001) shows that the jump risk can in fact be priced differently from
the diffusive risk.

19For example, in the setting of Campbell and Cochrane (1999), the time-varying risk aversion of an
investor gives rise to stochastic volatility, which in turn finds its position in the pricing kernel.

20See, for example, Cochrane and Saá-Requejo (2000) and Bernardo and Ledoit (2000) for constraints on
the pricing kernel via some intuitive criteria, and their impact on the market prices of the risk factors that
affect derivatives pricing.
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Appendices

A A Proof of Proposition 1

The proof is a standard application of the stochastic control method. Suppose that the
indirect utility function J exists, and is of the conjectured form in (13). Then the first order
condition of the HJB Equation (11) implies that the optimal portfolio weights φ∗ and ψ∗ are
indeed as given by (18) and (19), respectively.

Substituting (13), (18), and (19) into the HJB equation (11), one can show that the
conjectured form (13) for the indirect utility function J indeed satisfies the HJB equation
(11) if the following ordinary differential equations are satisfied

dh(t)

dt
=κv̄ H(t) +

1 − γ

γ
r,

dH(t)

dt
=

(
−κ +

1 − γ

γ

(
ηρ+ ξ

√
1 − ρ2

)
σ

)
H(t) +

σ2

2
H(t)2 +

1 − γ

2γ2

(
η2 + ξ2

)

+ λQ

[(
λ

λQ

)1/γ

+
1

γ

(
1 − λ

λQ

)
− 1

] (A.1)

Using the solutions provided in (14) for H and h, it is a straightforward calculation to verify
that this is indeed true.

B Appendix to Section 4

B.1 Option Pricing

Option pricing for the stochastic-volatility model adopted in this paper is well established
by Heston (1993). Using the notation established in Section 2, and letting κ∗ = κ −
σ
(
ρ η +

√
1 − ρ ξ

)
and v̄∗ = κv̄/κ∗ be the risk-neutral mean reversion rate and long-run

mean, respectively, the time-t prices of European-style call and put options with time τ to
expiration and striking at K are

Ct = c (St, Vt ; K, τ) ; Pt = p (St, Vt ; K, τ) , (B.2)

where St is the spot price and Vt is the market volatility at time t, and where

c (S, V ; K, τ) = S P1 − e−r τK P2 ,

and, by put/call parity, the put pricing formula is

p (S, V ; K, τ) = e−r τK (1 − P2) − S (1 − P1) .

Very much like the case of Black and Scholes (1973), P1 measures the probability of the
call option expiring in the money, while P2 is the adjusted probability of the same event.
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Specifically,

P1 =
1

2
− 1

π

∫ ∞

0

du

u
Im

(
eA(1−iu)+B(1−iu) V eiu(lnK−lnS+rτ)

)

P2 =
1

2
− 1

π

∫ ∞

0

du

u
Im

(
eA(−iu)+B(−iu) V eiu(lnK−lnS+rτ)

) (B.3)

where Im(·) denotes the imaginary component of a complex number, and where, for any
y ∈ C,

B(y) = − a (1 − exp(−qt))
2q − (q + b) (1 − exp(−qt))

A(y) = − κ∗v̄∗

σ2

(
(q + b) τ + 2 ln

[
1 − q + b

2q

(
1 − e−qτ

)]) (B.4)

where b = σρy − κ∗, a = y(1 − y) − 2λQ (exp(y)(1 + µ) − 1 − yµ) and q =
√
b2 + aσ2.

Connecting to the notation Ot = g(St, Vt) adopted in Section 2, we can see that for a call
option, g is simply c, while for a straddle, g(St, Vt) = c (St, Vt ; K, τ) + p (St, Vt ; K, τ).

B.2 The Indirect Utility of a No-Option Investor

A “no-option” investor solves the same investment problem as that in (7) and (8) with
the additional constraint that βt ≡ 0. This problem is solved extensively in Liu (1998).
For completeness of the paper, the following summarizes the results that are useful for our
analysis of portfolio improvement in Section 4.4.

At any time t, the indirect utility of a “no-option” investor with a T -year investment
horizon is

Jno-op (Wt, Vt, t) =
W 1−γ
t

1 − γ
exp (γ hno-op (T − t) + γ Hno-op (T − t) Vt) , (B.5)

where hno-op(·) and Hno-op(·) are time-dependent coefficients that are independent of the
state variables:

hno-op (t) =
2κv̄

σ2 (ρ2 + γ(1 − ρ2))
ln

(
2k2 exp ((k1 + k2) t/2)

2k2 + (k1 + k2) (exp(k2 t) − 1)

)
+

1 − γ

γ
r t

Hno-op (t) =
exp(k2 t) − 1

2k2 + (k1 + k2) (exp(k2 t) − 1)

1 − γ

γ2
η2

(B.6)

where

k1 = κ− 1 − γ

γ
ησρ ; k2 =

√
k2

1 −
1 − γ

γ2
η2σ2 (ρ2 + (1 − ρ2)γ) . (B.7)

The certainty equivalent wealth of such a “no-option” investor with initial wealth W0 then
becomes

W no-op = W0 exp

(
γ

1 − γ

[
h no-op (T ) +H no-op (T ) V0

])
. (B.8)
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B.3 Proof of Proposition 2

The indirect utility of an investor with access to derivatives is given in Proposition 1, while
that of an investor without access to derivatives is provided in Section B.2. It is then
straightforward to verify that the portfolio improvement RW is indeed of the form (23).
To show that the improvement is strictly positive for investors with γ 6= 1, let DH(t) =
H(t) −H no-op(t), and one can show that

DH(t) =
1 − γ

2
exp(−y(t))

∫ T

t

exp(−y(s))
(
ξ

γ
−
√

1 − ρ2σH no-op(s)

)2

ds ,

where

y(t) =

∫ T

t

[
κ+

1 − γ

γ

(
ηρ+ ξ

√
1 − ρ2σ

)
+
σ2

2

(
H(s) +H no-op(s)

)]
ds

is finite for any t ≤ T . Consequently, DH(T )/(1 − γ) is strictly positive. Moreover, it is
straightforward to show that

Dh(t)

1 − γ
=
h(t) − h no-op(t)

1 − γ
= κv̄

∫ t

0

DH(s)

1 − γ
ds . (B.9)

As a result, Dh(T )/(1 − γ) is also strictly positive, making W ∗ >W no-op for any γ 6= 1.
For the log-utility case, the intertemporal hedging demand is zero. That is, H(t) = 0

and H no-op(t) = 0 for any t. One can show that

lim
γ→1

H no-op(t)

1 − γ
=

1 − exp(−κt)
2κ

η2 ; lim
γ→1

H(t)

1 − γ
=

1 − exp(−κt)
2κ

(
η2 + ξ2

)
Moreover, (B.9) also holds for the case of γ = 1, making W ∗ > W no-op when ξ 6= 0, and
W ∗ = W no-op when ξ = 0.
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