
Cerebral White Matter Analysis Using Diffusion 
Imaging 

by 

Lauren Jean O'Donnell 

Submitted to the Harvard-MIT Division of Health Sciences and 
Technology 

in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 

at the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

May 2006 
-A\" ' I 

@ Massachusetts Institute of Technology 2006. All rights rese 

i .. . . . . . .  - 1 . .  LIBRARIES I Author ................................... , ... , .- 
E .*- : ..-*--- 

Harvard-MIT Division of Health S . iences . and Technology 

Certified by. ............ , ......... ,, ............................ 
W. Eric L. Grimson 

Bernard Gordon Professor of Medical Engineering 
Professor nf Cnm nil t . ~ r  Srien re ~ n r l  Engineering, MIT 

Thesis Supervisor 

Certified by. ..................... , .. .,. .. , ............................... 
Carl-Fredrik Westin 

Associate Professor of Radiology, Harvard Medical School 
Thesis Supervisor 

Accepted by ................. ., . , .- ... , .. ...................... 
v ~ v ~ h a  L. Gray, Ph.D. 

Edward Hood Taplin Professor of Medical and lectrical Engineering 
Director, ~arvard-MIT Division of Health Scie ces and Technology 





Cerebral White Matter Analysis Using Diffusion Imaging 

by 

Lauren Jean O'Donnell 

Submitted to the Harvard-MIT Division of Health Sciences and Technology 
on May 26, 2006, in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy 

Abstract 

In this thesis we address the whole-brain tractography segmentation problem. Dif- 
fusion magnetic resonance imaging can be used to create a representation of white 
matter tracts in the brain via a process called tractography. Whole brain tractog- 
raphy outputs thousands of trajectories that each approximate a white matter fiber 
pathway. Our method performs automatic organization, or segrnention, of these tra- 
jectories into anat.ornica1 regions and gives autonlatic region correspondence across 
subjects. Our method enables both the automatic group cornparison of white matter 
anatomy and of its regional tliffusion properties, and the creation of consistent white 
matter visualizations across subjects. 

We learn a model of common white matter structures by analyzing many registered 
tractography dat asets sim~lt~aneously. Each trajectory is represented as a point in 
a high-dimensional spectral embedding space, and common structures are found by 
clustering in this space. By a,nnotating the clusters with anatomical labels, we create 
a model that we call a high-dimensional white ~na t te r  atlas. Our atlas creation 
method discovers structures corresponding to expected white matter anatomy, such 
as the corpus callosum , uncirlate fasciculus, cingulum bundles, arcuate fasciculus, 
etc. We show how to extend the spectral clustering solution, stored in the atlas, 
using the Nystrom method to perform automatic segmentation of tractography from 
novel subjects. This automatic tractography segmentation gives an automatic region 
correspondence across subjects when all subjects are labeled using the atlas. We 
show the resulting automatic region correspondences, demonstrate that our clustering 
method is reproducible, and show that the automatically segmented regions can be 
used for robust measurement of fractional anisotropy. 
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Professor of Computer Science and Engineering, MIT 
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Chapter 1 

Introduction 

The goal of the methods described in this thesis is to automatically find and anatom- 

ically name regions of the white matter of the brain using diffusion MRI. The white 

matter contains pathways known as fiber tracts that connect functional areas of the 

brain. Example fiber tracts are shown in Figure 1-1. Previously it was not pos- 

sible to automatically create patient-specific white matter models similar to these 

anatomical atlas diagrams of fiber tracts. However, methods are now available to 

estimate patient-specific white matter fiber trajectories using diffusion MRI. In this 

thesis we present a method for segmentation of the trajectories estimated from diffu- 

sion MRI by automatically grouping them into anatomical regions and labeling them 

with anatomical names. 

Figure 1-1: Example fiber tracts viewed from the front (coronal) and from the left 
(sagittal). In this thesis we aim to create patient-specific white matter models similar 
to these anatomical atlas diagrams which were modified from Gray's Anatomy [46]. 



The white matter fiber tracts are actually large bundles of axons that interconnect 

the gray matter processing areas both within and across hemispheres. (The brain con- 

sists of two main parts: the white matter, containing axons that transmit information; 

and the gray matter, containing cell bodies of neurons that integrate information.) 

Diffusion MRI allows estimation of the trajectories of the white matter fiber tracts 

via a process called tractography (Figure 1-2), but there has been relatively little 

work in automatic localization of individual anatomical fiber tracts. There are three 

Figure 1-2: Example whole brain tractography viewed from the front and from the 
side. This is the input to our method. For visual differentiation of individual esti- 
mated trajectories, the trajectories have been randomly colored using shades of gray. 

main goals which should be satisfied by an automatic tractography segmentation al- 

gorithm: automatic grouping of like trajectories into regions, region correspondence 

across subjects, and anatomical labeling of regions. Our method is the first to achieve 

these three goals. The method presented in this thesis learns a white matter fiber 

tract model (a tractography "atlas") that we then use to segment and label the fiber 

tracts of a new brain. Our ability to perform automatic, patient-specific definition of 

the white matter fiber tracts has applications in neuroanatomical visualization, neu- 

rosurgical planning, and neuroscientific studies of white matter integrity, structure, 

and variability. 

Because we have access to input tractography data from multiple subjects, we have 

designed our method to learn common white matter structures that are present in the 



data. The structures are found by simultaneous clustering1 of registered (spatially 

aligned) tractography from a group of subjects. Each structure discovered by the 

method is expertly labeled with an anatomical name. We save information about the 

structures and their labels in a new type of anatomical atlas (a "high-dimensional 

atlas") which we describe in this thesis. The information stored in the atlas allows 

automatic segmentation and anatomical labeling of tractography from new subjects. 

A flowchart describing our atlas generation and automatic segmentation methods is 

shown in Figure 1-3. Figure 1-4 displays an example atlas and segmentation result. 

I Atlas Generation I 

F+-, 
&b 4 1 

High-Dimensional Atlas 
with Anatomical Labets 

n 
Automatic Segmentation and Labeling I 

Figure 1-3: Overview of our method. In the first part of the method, an atlas is 
generated. Clustering of tractography from multiple subjects is used to discover 
common white matter structures that are anatomically labeled and stored in a high- 
dimensional atlas. In the second part of the method, tractography from a new subject 
is segmented and anatomically labeled using the atlas. 

Our method can be applied to tractography from any type of dihsion MRI, 

however the tractography data analyzed in this thesis is derived from diffusion tensor 

MRI or DTI. Diffusion MRI measurements describe a 3D water diffusion profile at  

each voxe12 and in voxels with one fiber tract, the direction of fastest diffusion is 

'Clustering is a general name for techniques which automatically group like items, in this case 
similar trajectories. 

2Analogous to a pixel, or picture element, a voxel is a volume element, usually a region about 
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Figu,re 1-4: White matter atlas creation and use for automatic segmentation. Using 
the five brains on the left, we automatically found common regions in the white 
matter: each is shown with a unique color. The information we learned about the 
regions was stored in our atlas. We then applied the information in the atlas to label 
a new brain (right) using the same regions and colors. These brains are viewed from 
the front. 

associated with the fiber tract direction. Often a tensor model is chosen to represent 

the diffusion as Gaussian 131. This means that we assume that the probability of 

diffusion of water molecules can be represented by concentric ellipsoids, where each 

ellipsoid has equal diffusion probability everywhere on its surface. The shape of the 

ellipsoids is significant: a cigar-like ellipsoid is found in strongly oriented white matter 

regions where diffusion is faster along the tracts, and a spherical ellipsoid is found in 

the cerebrospinal fluid where diffusion is the same in all directions. Mathematically 

the ellipsoid is represented as a 3 x 3 symmetric matrix, the diffusion tensor, which 

is proportional to the covariance matrix of the Gaussian distribution. 

Compared to standard MRI data that consists of one number per voxel, diffusion 

tensor MRI is more complicated to analyze, in part because each voxel has a diffu- 

2.5 by 2.5 by 2.5 rnm for diffusion MRI. 



sion tensor measurement containing six unique numbers. The tractography analysis 

method aims to trace the fiber pathways by associating the major eigenvector of the 

tensor (the direction of fastest diffusion) with the orientation of a fiber tract, then 

stepping repeatedly in this direction to estimate the trajectory of the tract. This 

outputs one trajectory, or path, from each start point. The estimated fiber trajecto- 

ries produced by tractography (see Figure 1-2) are the input to our method. Though 

the method of tractography has been studied since the late 19909s, before now it has 

not been possible to achieve an automatic higher-level organization of the trajecto- 

ries into white matter structures with anatomical significance. Interactive "virtual 

dissection" methods exist for selecting trajectories based on anatomical region [24], 

however they require sophisticated three-dimensional neuroanatomical knowledge. It 

is extremely time-consuming to interactively organize all of the possible trajectories 

in a whole brain (well over 10,000 at current image resolutions) though this type of 

manual organization has been used to create a white matter atlas [80]. 

The methods presented in this thesis automatically learn a model of the anatom- 

ical organization of white matter pathways from a population of subjects, using an 

unsupervised spectral clustering method. By simultaneously clustering tractography 

from multiple subjects, our method is able to learn a representation of regions cor- 

responding to expected white matter Rber tract anatomy. In addition we propose a 

method for bilateral clustering of anatamical structures, where corresponding trac- 

tography is automatically matched across hemispheres in the clustering process. 

The anatomical organization learned by the method is represented in a high- 

dimensional embedding space which is created during clustering. We then in t re  

duce expert anatomical knowledge to complement the lower-level cluster information, 

thereby forming what we refer to as a high-dimensional white matter atlas. We 

demonstrate the application of the atlas to automatically segment and anatomically 

label a new subject by embedding its tractography in the high-dimensional embed- 

ding space. Our atlas differs from traditional digital (voxel-based) atlases because 

it represents long-range connections from tractography rather than local voxel-scale 

information. 



Example results of our method are presented in Figures 1-4, 1-5, and 1-6. Figure 

1-4 provides an example of the method where a five-subject tractography dataset is 

used for atlas creation, and a sixth subject is labeled using the atlas. In Figure 1-5 an 

automatic atlas-based tractography segmentation is demonstrated for three different 

subjects. In Figure 1-6, selected deeper white matter structures are displayed in an 

automatically segmented subject . 

Figure 1-5: Automatic tractography segmentation result for three different subjects 
(view from left). Colors indicate regions as follows: navy blue, corpus callosum; 
yellow, corticospinal fibers; purple, arcuate fasciculus/SLF region; orange, uncinate 
fasciculus; green, inferior longitudinal fasciculus; sky blue, middle cerebellar peduncle; 
light pink, superior cerebellar peduncle; hot pink, occipitofrontal fasciculus. 

Figure 1-6: Automatic tractography segmentation result for deeper white matter 
structures (viewed from both left and right sides). Colors indicate regions as follows: 
yellow, corticospinal fibers; sky blue, middle cerebellar peduncle; light pink, superior 
cerebellar peduncle; purple, cingulum bundles; lime green, fornix. The tract matching 
across hemispheres was performed automatically by our method. 



To our knowledge, our work is the first automatic method for whole brain trac- 

tography segmentation, and the first method to employ multiple-subject clustering 

to learn an anatomical model. We produce a quantitative description of white mat- 

ter architecture in the form of a cluster, and a quantitative model of white matter 

architecture in the group. Our work enables statistical white matter analysis us- 

ing tractography. We find corresponding white matter regions across subjects and 

across hemispheres, allowing neuroscientific hypotheses to be tested regarding group 

differences and also questions of symmetry. 

This thesis begins with background chapters on neuroanatomy (Chapter 2)) diffu- 

sion imaging (Chapter 3), and spectral clustering (Chapter 4). The contributions of 

the thesis are then presented in the following chapters. Chapter 5 describes the trac- 

tography clustering method. Chapter 6 demonstrates the creation of the tractography 

atlas and its use for automatic segmentation, as well as quantitative measurement of 

diffusion values in tracts. Chapter 7 then presents a preliminary neurosurgical appli- 

cation of our method, and Chapter 8 discusses parameter settings and reproducibility. 

Finally, we conclude the thesis in Chapter 9. 





Chapter 2 

Background on White Matter 

Anatomy 

We begin with an overview of neuroanatomy, especially white matter fiber tract 

anatomy, to enable the reader t'o understand the white matter segmentation problem 

and the results presented in later chapters. We describe the major white matter fiber 

tracts which are seen using DTI tractography. The information in this chapter is pri- 

marily directed towards readers with a computer science background, however we also 

include references for diffusion imaging neuroscience studies that investigate some of 

the white matter tracts. For more information we recommend (841 for neuroanatomy 

and function, and [50, 80, 1161 for DTI-specific neuroanatomy. 

At the cellular level, neural information processing is handled by neurons, the 

cells which transmit electrochemical signals in the brain. A diagram of an exam- 

ple neuron is shown in Figure 2-1. Two main parts of a neuron have important 

functions: the cell body integrates information from other neurons, while the axon 

transmits information. When a neuron receives input from other neurons, it may 

depolarize (fire), producing an electrical action potential which travels away from the 

neuronal cell body, down the axon, and finally arrives at  synapses with other neu- 

rons. Neurotransmitter is released at the synapses, and if there is sufficient quantity 

of neurotransmitter in a synaptic cleft, the postsynaptic neuron may also fire. The 

conduction velocity of the action potential is increased by a insulating process called 



myelination. Supporting glial cells wrap layers of myelin around the axon, periodically 

leaving open small regions called nodes of Ranvier which allow charged molecules to 

cross the cell membrane as the action potential travels. 

postsynaptic 
neuron 

myelin sheath 

preterminal 
arborization 

synapse 

axon 

Figure 2-1: Illustration of a neuron. Courtesy of James Fallon, Professor of Anatomy 
and Neurobiology at  the University of California, Irvine. 

Myelin is white in color, and the tissue containing the cell bodies is gray in color, 

giving a natural division of the brain into two main parts: the white matter and 

the gray matter. The gray matter primarily contains the cell bodies of neurons 

and their dendrites, while the white matter contains their axons (though there are 

small interneurons that exist entirely in the gray matter also). The gray matter 

is located around the outside of the brain in the highly convoluted cortex (with 

"ridges" called gyri and "valleys" called sulci) and in internal brain structures such 

as the basal ganglia and thalamus. The white matter contains the axonal pathways 

that interconnect the brain: bundles of axons travel together and are called white 

matter fiber tracts. In addition to the white and gray matter regions, there are two 



important fluid systems in the brain: cerebrospinal fluid fills the ventricles and spaces 

(cisternae) around the brain, and a complex vasculature system provides blood flow. 

The brain has two hemispheres, the right and left, whose functions are complimen- 

tary. For example each performs visual processing of one half of the visual field, and 

the left hemisphere produces language while the right handles the emotional content 

or prosody of speech. The brain is further divided into five lobes in each hemisphere, 

the frontal, parietal, temporal, occipital, and limbic lobes (see Figure 2-2). Important 

functions or regions of each lobe are listed in Table 2.1. 

Figure 2-2: Lobes of the cerebral hemispheres. Fkontal is blue, parietal yellow, tem- 
poral green, and occipital red. The limbic lobe is internal and can't be seen (it forms 
a "C" shape that wraps around above and below the corpus callosum.) Image from 
Gray's Anatomy [46]. 

Processing streams in the brain's functional regions are interconnected by white 

matter fiber tracts. The white matter contains three types of fiber tract: commissural, 

association, and projection. A commissure is a crossing site for fibers which connect 

similar areas [84], so commissural tracts connect related regions of the two cerebral 

hemispheres, coordinating their activity. On the other hand, association fibers con- 

nect regions in the same hemisphere. Association fibers come in various sizes: the 

smallest fibers are completely within the cortex, the medium ones are called u-fibers 

or arcuate fibers and connect one gyrus to the next, and the longest association bun- 



Table 2.1: Lobes of the brain and their main functions, from [84]. 

Lobe 
frontal 

parietal 

temporal 

occipital 
limbic 

dles connect different lobes [84]. Finally, projection fibers connect the cortex and 

subcortical structures such as the thalamus, basal ganglia, and spinal cord. The 

connections to and from the cerebellum are also called projection tracts [46]. Fiber 

Functions/Functional Regions 
primary motor, premotor and supplementary motor, Broca's area 
(speech production), and prefrontal cortex (personality, insight, and 
foresight) 
primary somatosensory cortex, language comprehension, spatial 
orientation and perception 
primary auditory cortex, Wernicke's area (language comprehen- 
sion), visual processing, memory 
primary visual cortex, visual association cortex 
emotional responses, drive-related behavior, memory 

tracts may be named according to start and end points (e.g. mammilothalamic tract) 

or may have different names along their course (corona radiata, internal capsule, and 
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enter and leave, similar to entrances and exits on a highway. The preceding details 

complicate the naming of fiber regions which can be calculated from DTI. 

The rest of this chapter describes the major white matter fiber tracts, especially 

those that are relevant to this thesis, i.e. the ones that can be found with DTI trac- 

tography and clustering methods. We begin with commissural tracts, followed by 

association tracts and finally projection tracts. Images of tract location are provided 

along with general descriptions of tract connections. To clarify orientation, each im- 

age is annotated with the letter "A" for anterior and the letter "S" for superior (or 

the letter "L" for left if it is a superior view). 

2.1 Commissural Fibers 

2.1.1 The Corpus Callosum 

The largest fiber bundle in the human brain, the corpus callosum (Figure 2-3) is 

made up of more than 300 million axons [84]. This commissural fiber bundle mainly 



Figure 2-3: Commissural tracts. Left: corpus callosum (superior view) adapted from 
Gray's Anatomy [46]. Color was added to show corpus (pink) and tapetum of corpus 
(yellow). Right: Anterior (red dot) and posterior (blue dot) commissures. Corpus 
callosum (pink) and fornix (not a commissural tract) in green. 

connects cortical areas to matching contralateral cortical areas, though some fibers 

connect related areas (for example primary visual cortex connects to contralateral 

visual association cortex) [84]. The anterior part is called the genu, the posterior 

the splenium, and the part that connects temporal regions is called the tapetum 

[46]. The corpus callosum has been studied using DTI, and changes in tract integrity 

(changes in diffusion anisotropy) have been found for example in Alzheimer's [99], 

schizophrenia 1661, and alcohol dependence [64]. 

The Anterior and Posterior Cornrnissures 

The anterior commissure (Figure 2-3) connects the temporal cortex and also olfactory 

regions [84]. It can be seen with DTI (though not satisfactorily traced [133]). The 

posterior commissure (Figure 2-3) is a smaller structure and lies above the superior 

colliculi. 

2.2 Association Fibers 

Major association pathways are shown in Figures 2-4 and 2-5. The association fibers 

primarily have anterior-posterior trajectories [116]. The structure of association bun- 



- 
Figure 2-4: Illustration of selected association pathways. From Gray's Anatomy [46]. 

dles is like superhighways with entrances and exits, rather than isolated trajectories. 

According to Nolte ([84] page 533), "None of these association bundles should be 

thought of as a discrete, point-to-point pathway from one place to another; rather 

fibers enter and leave each all along its course." An example of axons entering and 

leaving a bundle is shown in the cingulum diagram, Figure 2-6. In this section we 

give an overview of the main association bundles which are visible on DTI and can 

be traced using tractography. 

The Cingulum Bundles and the Fornix 

The cingulum (Figures 2-4 and 2-6) and fornix (Figure 2-3 and 2-7) are prominent 

C-shaped fiber tracts in the limbic lobe. The limbic system handles functions related 

to memory and emotion and its contents include the cingulate and parahippocam- 

pal gyri, the hippocampus, and the amygdala [84]. The cingulum bundle connects 

the cingulate gyrus to other regions in the limbic lobe, especially the hippocampus, 

which is involved in memory formation [84]. The fornix is an output tract from the 

hippocampus, connecting primarily to the mammillary bodies 1841. The fornix and 



Figure 2-5: More association pathways. 1. Short arcuate bundles (u-fibers). 2. 
Superior longitudinal fasciculus (part is known as the arcuate fasciculus). 3. External 
capsule. 4. Inferior occipitofrontal fasciculus. 5. Uncinate fasciculus. 6. Sagittal 
stratum. 7. Inferior longitudinal fasciculus. From Virtual Hospital [128]. 

cingulum are involved in the classic Papez circuit of the limbic system [84]. DTI has 

been used to study these limbic system tracts, and reduced white matter integrity has 

been found in schizophrenia [65] and temporal lobe epilepsy [28]. Using tractography, 

the limbic system's diffusion properties have been characterized in healthy subjects 

~291- 

2.2.2 The Arcuate Fasciculus And Superior Longitudinal Fas- 

ciculi 

The superior longitudinal fasciculus (Figure 2-5) is also known as the arcuate fasci- 

culus. It runs from the frontal lobe, above the insula, to the parietal, occipital, and 

temporal lobes 1841. Classically it connects Broca's and Wernicke's language areas 

(see Table 2.1). DTI studies have reported reduced tract integrity in the region of 

the arcuate fasciculus in schizophrenia [66] and asymmetry of this tract across hemi- 

spheres in normal subjects 1671 (thought to be due to  the localization of language 

production to one hemisphere, usually the left). 



Anatomical region of the cingulum. Axons actually enter and leave. 

Figure 2-6: Axons enter and leave some fiber tracts along their course, as seen in 
this example of the cingulum bundle. Images courtesy of James Fallon, Professor of 
Anatomy and Neurobiology at the University of California, Irvine. 

The Uncinate Fasciculus 

The uncinate fasciculus (Figures 2-4 and 2-5) connects anterior temporal and inferior 

frontal lobes. Changes in diffusion anisotropy in the region of the uncinate fasciculus 

have been reported in schizophrenia [63], and asymmetry of the uncinate fasciculus 

across hemispheres was found in a postmortem dissection study 1481. 

The Inferior Occipit ofront a1 Fasciculus 

The inferior occipitofrontal fasciculus (Figure 2-5) connects occipital and frontal lobes. 

It runs from the frontal lobe, through the temporal lobe (passing below the insula), 

to the occipital lobe 1841. 

The Inferior Longitudinal Fasciculus 

The inferior longitudinal fasciculus (Figures 2-4 and 2-5) connects occipital and tem- 

poral lobes. It is involved in the ventral stream for visual processing, the object 

recognition pathway [25]. Its connections have been investigated using DTI tractog- 

raphy [25]. 



Figure 2-7: The fornix. From Gray's Anatomy [46]. 

2.3 Projection Fibers 

The projection fibers mainly travel along the superior-inferior axis [116]. The main 

projection fibers visible with DTI tractography are those which travel in the corona 

radiatalinternal capsule/cerebral peduncle regions, and those which enter and leave 

the cerebellum. 

2.3.1 Corona Radiat a/Int ernal Capsule/ Cerebral Peduncle 

Region 

A dissection of this region is shown in Figure 2-8, and Figure 2-9 gives an illustration 

of the anatomical names of each part of this region. In many DTI papers these regions 

are referred to collectively as the corona radiata [116] because fiber tracing produces a 

continuous structure. Tracts contained within the corona radiata and internal capsule 

are named by regions they connect such as the cortico-spinal, cortico-t halamic, and 

cortico-pontine fibers, and their function varies depending on the regions connected. 



Figure 2-8: Projection fibers (view from the right). 1. Corona radiata 2. Anterior 
thalamic radiation 3. Internal capsule 4. Anterior commissure 5.  Optic tract 6. 
Cerebral peduncle 7. Longitudinal pontine fibers (corticospinal and corticonuclear 
tracts) 8. Pyramidal tract of medulla oblongata 9. Hilus of olivary nucleus 10. 
Olivary nucleus. From Virtual Hospital [128]. 

Cerebellar peduncles 

The cerebellar peduncles (Figure 2-10) are inflow and outflow projection tracts to 

and from the cerebellum, which is responsible for sensory and motor processing such 

as control of posture and on-the-fly correction of limb motions [84]. The middle 

cerebellar peduncle carries input to the cerebellum from the contralateral side of the 

pons (the synapse point for many neurons from the motor and sensory cortices) [84]. 

The inferior cerebellar peduncle contains cerebellar inputs from the spinal cord and 

brainstem, while the superior cerebellar peduncle mainly contains cerebellar outputs 

which travel to the red nuclei and the thalamus [84]. 

Abbreviations 

Table 2.2 gives anatomical abbreviations that are used elsewhere in the thesis. 
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Figure 2-9: Corona radiata/internal capsule/cerebral peduncle region names (view 
from the left). Courtesy of James Fallon, Professor of Anatomy and Neurobiology at  
the University of California, Irvine. 

2.5 Summary 

In this chapter we have presented a brief overview of white matter neuroanatomy 

which is helpful for understanding the results presented later in the thesis. First 

of all, the brain is divided into gray matter (containing neuronal cell bodies and 

dendrites) and white matter (containing insulated, or myelinated, axons which are 

white)'. The gray matter is responsible for the integration of information and the 

white matter handles the transmission of information. 

The axons in the white matter form many bundles which are called white matter 

fiber tracts. These tracts are divided into three types: commissural (which cross 

hemispheres), association (which connect regions of the same hemisphere), and pro- 

jection (which project to/from the cortex or cerebellum). Major tracts of each of 

the three types have been described in this chapter and shown in images. Later in 

the thesis we present segmentations of tractography that include most of the regions 

lHowever there are also other types of cells in the gray and white matter (in addition to neurons), 
and some neurons are completely in the gray matter (so their axons do not enter the white matter). 



Figure 2-10: Cerebellar peduncles. Color was added to show the three peduncles: 
blue for inferior, green for middle, and purple for superior. The cerebellum is the 
"brain-like" structure on the right side of the image. Adapted from Gray's Anatomy 
[461 

presented in this chapter. 

Neuroscientific studies of the white matter tracts have been performed using dif- 

fusion imaging, and specific examples were given in this chapter. Differences in tract 

integrity have been found in various disease states such as Alzheimer's, schizophrenia. 

and epilepsy. In some tracts such as the uncinate and arcuate fasciculi, asymmetry 

has been demonstrated across hemispheres. The automatic tract segmentation and 

anatomical labeling methods presented in this thesis enable quantitative neuroscience 

studies of disease and symmetry in specific white matter tracts. 



Table 2.2: Anatomical abbreviations 





Chapter 3 

Background on Diffusion Tensor 

Imaging and Analysis 

The power of diffusion MRI lies in the fact that the diffusion of water molecules 

probes tissue structure at very small scales, much smaller than the voxel resolution. 

This allows measurement of the voxel-averaged effects of collisions of water molecules 

with cellular membranes. In tissues which have a fibrous structure, such as white 

matter and muscle, diffusion is anisotropic (varies with direction), and the direction 

of fastest diffusion parallels the fibrous structure. Diffusion MRI is the only method 

that presently allows measurement of white matter fiber orientation in the human 

brain in vivo. 

Diffusion MRI is different from standard structural MR imaging which measures 

quantities related to tissue composition (the T1 and T2 relaxation times depend on 

water and fat content [21]). In diffusion MRI, the quantity measured also relates to the 

three-dimensional organization of the tissue. Consequently, it is not always possible 

to transfer image visualization or analysis methods directly from standard structural 

imaging to diffusion imaging. In this chapter we give background information includ- 

ing an introduction to diffusion imaging and visualization, and a description of the 

current state of the art in diffusion imaging analysis methods. 



3.1 The Diffusion Coefficient 

The macroscopic process of diffusion is described by Fick's first law, derived by Adolf 

Fick in 1855 [126]. It relates a concentration difference to a flux (a flow across a unit 

area), stating that the flux, j, is proportional to the gradient of the concentration, 

Vu. The proportionality constant d is the diffusion coefficient. 

For an anisotropic material, in general the flux vector field does not follow the con- 

centration gradient directly, since the material properties also affect diffusion. Con- 

sequently, the diffusion tensor, D , is introduced to model the material. 

Microscopically, the process of diffusion consists of the random thermal (Brown- 

ian) motion of particles, as observed by Robert Brown in 1827 [125]. The preceding 

macroscopic equations refer to the diffusion of one substance in another (for example 

ink in water), but when there is only one type of molecule, it still experiences random 

motion though there is no concentration gradient. The self-diffusion coefficient is 

defined as the diffusion coefficient of a species in the absence of a chemical potential 

gradient [75]. It is the self-diffusion coefficient of water which is measured in diffusion 

MRI. 

However, the self-diffusion coefficient measured in diffusion MRI is not the true 

self-diffusion coefficient of water (unless the imaged object is pure water), because 

diffusion is restricted by the local structure of the tissue. This is why diffusion imaging 

is useful. The "apparent self-diffusion coefficient" or ADC is a function of the diffusion 

time and the geometry of the local volume, and in addition can be affected by non- 

diffusive processes including tissue perfusion and fluid flow [71]. 
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Figure 3-1: Illustration of anisotropic diffusion. 

3.2 Anisotropic Diffusion in White Matter 

Figure 3- 1 contains a diagram of the effect of fibrous tissues on water diffusion, in the 

ideal case of a fibrous tissue which is uniformly oriented. Faster diffusion is measured 

along the fiber direction. As in this example, when the diffusion coefficient is not the 

same in all directions the diffusion is called anisotropic. The measured macroscopic 

anisotropy is due to microscopic tissue heterogeneity [7]. In the white matter of 

the brain, diffusion anisotropy is primarily caused by cellular membranes, with some 

contribution from myelination and the packing of the axons [9, 103, 941. A model 

of axon packing and diffusion has been used to support the theory that the myelin 

sheath restricts diffusion in the axon, causing the overall mean diffusion coefficient to 

be determined primarily by the water in the extraaxonal compartment [103]. 

The diffusion effects are averaged over a voxel, complicating the biophysical inter- 

pretation of the ADC values. To give an idea of the complexity of the human brain 

and the size/time scales of the diffusion imaging experiment, Table 3.1 lists relevant 

quantities such as the number of neurons in the brain (10") and the distance over 

which water diffuses during an imaging experiment (1-15 pm, a distance similar to 

the diameter of an axon). 

To measure anisotropic diffusion using MRI, magnetic field gradients are employed 

to sensitize the image to diffusion in a particular direction. Due to loss of phase coher- 

ence, the magnetization of the tissue decreases in locations where diffusion takes place 

along that particular direction. This loss of magnetization (signal) creates darker vox- 



I Quantity 
I axon packing density (pyramidal tract) 

I axon diameters in central nervous system 1 0.2 to 20 pm 1 [571 I 

axon packing density (corpus callosum) 
axon diameter (pyramidal tract') 

Measurement 
60,000 - 70, 000/mm2 

I diffusion time in MRI I 30-looms I [69,91 1 

Reference 

1941 
338, 000/mm2 
26 pm 

neuron cell body diameter 
voxel size in diffusion MRI 

[94] 
[941 

I synaptic connections per axon I up to 1,000 1 [57] 

50 pm or more 
2.5 x 2.5 x 2.5 mm 

mean water diffusion distance 
number of neurons in human brain 

Table 3.1: The scale of DTI and the brain: neuron sizes and quantities, and water 

[571 

diffusion times and distances. 

1-15 pm (in 50-100 ms) 
100 billion (1 0") 

els. This means that white matter fiber tracts parallel to the gradient direction will 

appear dark in the diffusion-weighted image. Example diffusion-weighted images are 

shown in Figure 3-2. By repeating the process of diffusion weighting in multiple direc- 

tions, and possibly for various diffusion times and magnetic field gradient strengths, 

at each voxel a three-dimensional diffusion pattern can be estimated and related to 

the shape of the underlying anatomy. 

[69] 
[571 

3.3 Diffusion Tensor MRI 

Diffusion MRI is a generic name referring to any MRI measurement of water diffusion. 

More specific names exist to describe the ways in which diffusion information may be 

reconstructed and represented at each voxel. The simplest representation of the shape 

of diffusion in 3D is a 3x3 symmetric, positive-definite matrix called the diffusion 

tensor, originally proposed for use in diffusion MRI by Peter Basser in 1994 [6, 71. 

When diffusion is represented using this tensor model, the imaging modality is referred 

to as diffusion tensor MRI (DTI or DT-MRI). DTI models the diffusion profile as 



Figure 3-2: Six diffusion-weighted images (the minimum for tensor calculation). In 
diffusion MRI, magnetic field gradients are employed to sensitize the image to diffusion 
in a particular direction. The direction is different for each image, resulting in a 
different pattern of signal loss (dark areas) due to anisotropic diffusion. 

Gaussian1 as described in [7]: 

Here Deff is the effective self-diffusion tensor (the meaning of "effective" is analogous 

to the meaning of "apparent" in the term apparent self-diffusion coefficient), T is the 

diffusion time, x is the final position of the diffusing water molecule, and xo is its 

initial position. For simplicity, from now on we will refer to the effective self-diffusion 

tensor, DeR (T ) ,  as the diffusion tensor, D. 

It  can be seen from (3.3) that the diffusion tensor is proportional to  the covariance 

matrix of water molecule displacements during the diffusion time. Comparing (3.3) 

to the standard equation for a multivariate normal distribution with covariance X, 

lThe equation for a standard multivariate normal distribution (Gaussian) in n dimensions is 



Figure 3-3: Illustration of the tei~sor eigensystem in a region of anisotropic diffusion. 
The ellipse represents diffusion in two dimensions, while three-dimensional diffusion 
would be described by an ellipsoid. 

we obtain 

so the constant of proportionality is two times the diffusion time. The eigenvalues 

( X i )  of the tensor are similarly related to displacements: the mean effective diffusion 

distance in the ith principal direction is \/m [7]. The eigenvalues are the apparent 

diffusion coefficients in the principal directions of diffusion, with units of $ (mil- 

limeters squared per second). The apparent diffusion coefficient (d,) in any direction 

g can be calculated from the tensor model using the formula 

Figure 3-3 is a schematic representation of the diffusion tensor in a region of 

anisotropic diffusion. The major eigenvector of the diffusion tensor points in the prin- 

cipal diffusion direction ("pdd," or direction of the fastest diffusion). In anisotropic 

fibrous tissues the major eigenvector defines the fiber tract axis of the tissue [7], and 

thus the three orthogorial eigenvectors can be thought of as a local fiber coordinate 

system. In three dimensions an ellipsoid can be drawn to represent an isosurface 

of (Gaussian) diffusion probability: the axes of the ellipsoid are aligned with the 

eigenvectors and their lengths are d m  [7]. 

In simplified terms, diffusion imaging works by introducing extra gradient pulses 

whose effect "cancels out" for stationary water molecules, and causes a random phase 



shift for molecules which diffuse. Due to their random phase, signal from diffusing 

molecules is lost, and this decreased signal (Sk) is compared to the original signal 

(So) to calculate the diffusion coefficient or tensor. In DTI, the diffusion tensor field 

is calculated from a set of diffusion-weighted images by solving the Stejskal-Tanner 

equation (3.6) [2]. This equation describes how the signal intensity at  each voxel 

decreases in the presence of diffusion: 

Here So is the image intensity at the voxel (measured with no diffusion-sensitizing 

gradient) and Sk is the intensity measured after the application of the kth diffusion- 

sensitizing gradient. ijk is a unit vector representing the direction of this diffusion- 

sensitizing magnetic field gradient. D is the diffusion tensor, and the product ijrDijk 

represents the diffusion coefficient in direction jk. In addition, b is LeBihan's factor 

describing the pulse sequence, gradient strength, and physical constants. For rect- 

angular gradient pulses the b-factor is defined by b = y262(A - : ) lgl2,  where y is 

the proton gyromagnetic ratio (42 MHzITesla), lgl is the strength of the diffusion 

sensitizing gradient pulses, 6 is the duration of the diffusion gradient pulses, and A 

is the time between diffusion gradient RF pulses [123]. The b-factor is near 0 for the 

image So which is TZweighted, and the b-factor is near 1,000 for the other images 

Sk in DTI. Equation 3.6 can be solved via the least squares method at each voxel. 

In order to calculate the 6 independent numbers in the 3 x 3 symmetric matrix D, 

at least 7 images are needed: 6 diffusion-weighted images from 6 gradient directions 

(giving Sk) plus one baseline image (giving So). For more information on diffusion 

imaging and the tensor calculation process, see for example [6, 1231. 

3.4 Other Diffusion Models 

It is known that the Gaussian model of diffusion employed in DTI cannot represent 

complicated geometry in a voxel such as  crossing or branching tracts. To overcome 



this issue, high angular resolution diffusion (HARD) imaging with multiple tensor 

[113] and q-ball [114] reconstructions has been proposed. High angular resolution 

data uses the fiber orientation distribution function (ODF), a probability density 

function on the unit sphere, to describe diffusion at each voxel [112, 1141. 

The method presented in this thesis does not depend on the type of diffusion imag- 

ing, since its input consists of estimates of white matter fiber paths (tractography). 

Tractography can be produced in multiple ways, using various types of diffusion data. 

In this introduction our focus is diffusion tensor imaging due to the fact that DTI is 

the type of data we have analyzed to date, and because DTI is the current standard 

in research and clinical use. 

3.5 Scalar Invariants of the Diffusion Tensor 

A scalar invariant is a function of the tensor that outputs a scalar which is the same 

regardless of the coordinate frame of the tensor. It is invariant to rotation of the tissue 

in the MRI magnet because it can be expressed as a function of the eigenvalues of 

the tensor, which are invariant to rotation. In this section we will describe commonly 

used scalar invariant quantities, which can be divided into two categories: diffusion 

magnitude measures and anisotropy measures. We will use XI 2 Xz 2 X3 2 0 to refer 

to the eigenvalues of the symmetric, positive-definite diffusion tensor D. 

3.5.1 Measures of Diffusion Magnitude 

The simplest and most clinically useful scalar invariant is the tensor trace. 

The average of the eigenvalues (trace(D)/3) is also used. This average is referred to 

as the mean diffusivity, or MD [70]; the bulk mean diffusivity, or (D) [5]; or the ADC 

map (often output by DTI software). Note that the multiple uses of the term "ADC" 

are confusing because ADC originally meant the apparent diffusion coefficient in a 



particular direction. For example, in early diffusion imaging the parallel and perpen- 

dicular ADC were measured with gradient directions parallel to and perpendicular to 

fibers in a sample [9]. Additionally, in clinical imaging "ADC maps" may be calcu- 

lated with fewer gradients than needed for the tensor. Finally, the trace may also be 

referred to as the "trace ADC" as in [28]. 

The trace and mean diffusivity relate to the total amount of diffusion in a voxel, 

which is related to the amount of water in the extracellular space. The trace is 

clinically useful in early stroke detection because it is sensitive to the initial cellu- 

lar swelling (cytotoxic edema) which restricts diffusion [loo]. The trace is high in 

cerebrospinal fluid, around 9.6 x and relatively constant in normal brain 

parenchyma (white and gray matter), between 1.95 x and 2.2 x 

[94]. For comparison, the self-diffusion coefficient of water at body temperature of 

37°C is 3 x [69], which would give a trace of 9 x ADCs measured 

in ventricles and edema can be higher than in water due to fluid flow or enhanced 

perfusion, respectively [71]. 

3.5.2 Anisotropy Measures 

Tensor anisotropy measures are ratios of the eigenvalues that are used to quantify 

diffusion shape. They are useful for describing the amount of tissue organization 

and for locating voxels likely to contain a single trmt. The following measures are 

normalized and all range from 0 to 1, except for the mode which ranges from -1 to 

+l.  

Linear, planar, and spherical measures 

The most intuitive measures are CL, Cp, and Cs: the linear, planar, and spherical 

shape measures [123, 1241. They describe whether the shape of diffusion is like a cigar 



(linear), pancake (planar), or sphere (spherical). 

In voxels with high planar or spherical measure, the principal eigenvector will not 

always match an underlying fiber tract direction (where tracts cross the eigenvector 

may point to neither one). But if the largest eigenvalue is much larger than the other 

two eigenvalues, the linear measure will be large, giving evidence for the presence of 

a single fiber tract. Note that these measures can be normalized by XI,  by the trace, 

FA and mode 

The fractional anisotropy, or FA [4], is the most widely used anisotropy measure2. Its 

name comes from the fact that it measures the fraction of D which is anisotropic. 

Two possible expressions for FA follow (f is the mean diffusivity). 

While FA basically measures how far the tensor is from a sphere, another measure 

is needed for the other axis, between linear and planar anisotropy. This is given 

by the mode, a recently introduced scalar invariant which is orthogonal to the FA 

measure and relates to the skewness of the eigenvalues [38]. Its definition includes 

2FA is the standard measurement for studies of white matter integrity as demonstrated in Table 
3.3. 



the determinant and Frobenius norm of the anisotropic part of the tensor3. 

(-XI - A2 + 2X3)(2X1 - - X3)(-A1 + 2x2 - X3) 
mode = 

2(X: + X i  + X i  - X1X2 - XlX3 - X2X3)3/2 

3.6 DTI Visualization 

Unlike conventional scalar MRI images, DTI is fundamentally three-dimensional, in 

that the quantity measured at  each voxel is diffusion information in 3D. This poses a 

visualization (and analysis) challenge. In this section we briefly describe visualization 

methods; for a thorough explanation of the anatomy that can be seen with DTI, the 

reader is referred to [50, 80, 1161. 

DTI may be visualized in a slice plane (a section through the data) or in three di- 

mensions, depending on the subset of the data that is presented. Planar visualization 

methods are voxel-based, meaning an image is generated to display information from 

the tensor that is in each voxel in one slice plane. For example, images may be dis- 

played of any anisotropy measure, or of the trace. Another type of image can represent 

the major eigenvector field using a mapping to colors. The color scheme commonly 

used to represent the orientation of the major eigenvector works as follows: blue is 

superior-inferior, red is left-right, and green is anterior-posterior [go]. The brightness 

of the color is controlled by tensor anisotropy (FA). Another voxel-based visualiza- 

tion method uses small three-dimensional objects called glyphs to display information 

from each tensor eigensystem. Example glyphs include "sticks" representing the ori- 

entation of the major eigenvector, ellipsoids related to the diffusion isoprobability 

surfaces [?I, and superquadric tensor glyphs [58]. The dominant method for three- 

dimensional visualization of DTI is tractography, a very commonly employed method 

which estimates the trajectories of major fiber tracts in the white matter [3]. It is 

closely related to an earlier method for visualization of tensor fields known as hyper- 

3Thanks to Gordon Kindlmann for the fully simplified formula expressed as a function of the 
eigenvalues. 



streamlines [34]. Volume rendering strategies for three-dimensional visualization of 

tensor fields have also been proposed [59]. 

Examples of two- and three-dimensional visualization are provided in Figures 3-4 

and 3-5. Figure 3-4 demonstrates voxel-based slice visualization, including simple 

glyphs and an RGB image. Note the glyphs "poke through" the slice plane. Figure 

3-5 is an elaborate three-dimensional tractography visualization which was created by 

a neuroanatomist. These and other DTI images in this document were generated with 

the DTMRI module in 3D Slicer, software written by the author in conjunction with 

the Laboratory for Mathematics in Imaging (LMI) at BWH and Harvard Medical 

School. (Additional matlab code was written by the author and used to perform the 

automatic segmentation of tractography shown elsewhere in this document.) 

Tractography 

This section summarizes current methods for DTI-based estimation of connected re- 

gions in the white matter. The central theme is tracing paths by following probable 

tract orientations, in order to reconstruct an estimate of the underlying white matter 

fiber structure. Many methods have been proposed in the literature for addressing 

this problem, and most produce output which corresponds well to known anatomy 

in regions where the data is not made ambiguous by crossing fibers. In this section 

we summarize existing tractography methods. Table 3.2 lists the methods covered in 

this sect ion. 

First, however, we give a clarification of terminology. A single path from trac- 

tography is often somewhat inaccurately referred to as a "tract" or a "fiber" in the 

literature [3]. Though these names are motivated by anatomy they are incorrect for 

several reasons, which is of concern because the anatomical names may inspire mis- 

placed confidence in novices to DTI. At current voxel resolutions, each path is an 

estimate of (part of) the trajectory of some larger fiber tract (mm diameter), and has 

no direct correspondence to smaller features like individual axons (pm diameter). In 

addition, many paths are needed to fill the volume of a region that could be consid- 



Table 3.2: Tractography methods. 

Method 
st reamline 

FMT 
flow-based 

diffusion sim. 
diffusion sim. 
geodesic path 
optimal path 
probabilistic 

Description 
Follows principal diffusion direction (pdd) 

Surface evolution based on pdd 
Surface evolution based on pdd or ODF 

Connectivity based on arrival time of front 
Steady-state flow field estimated 

Connection is shortest path using D-' metric 
Simulated annealing to find most probable path 
Bayesian approaches with various fiber models 

References 
[3, 30, 79, 1221 

[921 
1231 
PI 
[851 
[851 
[I121 

(12, 16, 411 



Figure 3-4: Voxel-based DTI visualization in 3D Slicer. Note that the color red in- 
dicates right-left orientation, blue is superior-inferior, and green is anterior-posterior. 
The top image contains glyphs representing major eigenvector orientations in the 
region of the corpus callosum (yellow and red) and right lateral ventricle. The cingu- 
lum can be seen in blue, and the posterior limb of the internal capsule in green. The 
bottom images are the average diffusion-weighted image (left), the average diffusion- 
weighted image with the RGB orientation map as a semi-transparent overlay (middle), 
and the zoomed in region from the top image, without the glyphs (right). 



Figure 3-5: Three-dimensional DTI visualization in 3D Slicer. Tractography seed 1& 
cations, colors, and transparencies were manually chosen by a neuroanatomist. Cour- 
tesy of James Fallon, professor of Anatomy and Neurobiology at UCSD. 



ered an estimate of a fiber tract. So basically, the volume occupied by one path (say 

it has some diameter) is smaller than a tract but larger than an axon, and probably 

larger than a fiber. When referring to one path output from tractography, we will 

attempt in this thesis to use the terms "path," "tractographic path," or "trajectory," 

but the more common and descriptive "fiber" will also be used. When referring to 

a collection of paths that have similar trajectories and approximate the course of 

a white matter fiber tract, we will use the word "tract." Now we move on to the 

overview of tractography methods. 

3.7.1 Streamline Tractography 

This is the most common approach and is generally what is meant by the word 

"tractography." Streamline tractography for DTI [3, 30, 79, 1221 has been a topic 

of research for more than half a decade. The first step in performing streamline 

tractography is to associate the major eigenvector with the tangent to a curve (the 

putative fiber path). Then the curve may be estimated by stepping repeatedly in the 

direction of the tangent. An important consideration is that an eigenvector has an 

orientation but not a direction (plus or minus the eigenvector is still an eigenvector) so 

consistency of orientations must be checked on each step. This can be done simply by 

taking the dot product of the current and previous tangent, and switching the sign of 

the current tangent if the dot product was negative. Another important consideration 

is calculation of the tangent at an arbitrary location, which may be done for example 

by interpolating the tensor there (component-wise) and then computing the major 

eigenvector . 
To estimate the path from its tangents, standard numerical solution methods 

for differential equations can be used. These include Euler's method (following the 

tangent for a fixed step size), second order Runge-Kutta (also known as the midpoint 

method, where the tangent is followed for half a step, then a new tangent is calculated 

at the midpoint of the interval and used to take the full step), and fourth order Runge- 

Kutta (where the weighted average of four estimated tangents to the curve is used 

when taking each step) [95]. A fixed step size of one millimeter or less (smaller than a 



voxel) is generally used for DTI data. The application of the Euler and Runge-Kutta 

methods to white matter tractography was explored in [3, 301. Another popular 

method, called FACT, takes only one step per voxel, so the step size varies and 

each voxel's tensor is used directly without interpolation [79]. Some related methods 

attempt to introduce "inertia" when tracking through regions of planar anisotropy. 

These methods modulate the incoming tangent direction by the tensor instead of 

directly using the major eigenvector of the tensor [118, 68, 122, 1231, an approach 

which is related to the power method of computing eigenvectors. A similar method, 

generalized streamline tractography, was created for tracking through ODF (fiber 

orientation distribution function from high angular resolution diffusion data) fields 

and selects the highest peak within 15 degrees of the incoming trajectory [112]. 

The standard tractographic curve estimation approach has one main drawback, 

which is that all decisions are made locally. Thus errors can accumulate and the 

tracing can be confounded by regions of crossing fibers (with high planar or spherical 

indices). This is demonstrated schematically in Figure 3-6. To ameliorate this prob- 

lem, one may restrict fiber tracking to areas of high linear anisotropy (the approach 

taken in this thesis), employ a tensor deflection algorithm (with many parameter 

settings), or design a method that can branch to follow multiple paths. Various 

approaches that attempt to allow branching are covered in the following sections. 

Figure 3-6: The major eigenvector does not point in the direction of a fiber tract in 
the case of crossing fibers. 



3.7.2 Surface Evolution, Diffusion Simulation, and Opt imiza- 

tion Tractography 

Surface evolution, diffusion simulation, and optimization algorithms all attempt to 

allow branching, effectively by following all possible paths out from a start point. 

However it is not always clear how to interpret the results, and perhaps for this 

reason these methods have not yet found widespread use. We differentiate these 

methods from Bayesian approaches which also allow branching, because there is no 

probabilistic model proposed for tract orientation at each voxel; rather the algorithms 

are motivated by physical analogies or optimality of solutions. Some of the methods 

use the major eigenvector only, and some use the full tensor or a fiber orientation 

distribution function (ODF), a probability density function on the unit sphere. In 

general, approaches which use only the major eigenvector have the advantage that the 

solutions generated are far sharper, and consequently look more like what is expected 

anatomically. 

Surface Evolution 

The fast marching tractography (FMT) method evolves a surface using the fast march- 

ing method, where the speed function is dependent on the principal eigenvector field 

[92]. This seems to be the only method in Section 3.7.2 which has been applied to 

group analysis of DTI. Another method evolves a surface in a field of vectors created 

perpendicular to the major eigenvector field, so that the surfaces will tend to enclose 

the tracts [22]. The same group later presented a method for flow-based fiber track- 

ing, which they categorize as an extension of the FMT technique and apply to both 

DTI and ODF data [23]. 

Diffusion Simulation 

An iterative diffusion simulation approach used the full tensor and quantified con- 

nection strengths based on a probabilistic interpretation of the arrival time of the 

diffusion front [8]. Another diffusion simulation approach using the full tensor (by 



the author of this thesis along with Steven Haker and Carl-Fkedrik Westin) placed 

sources (releasing "solute" ) and sinks (absorbing "solute" ) in the tensor field and 

solved for the steady-state concentration of the solute and the flow vector field [85]. 

Optimization 

As an alternative to local approaches (which include basically all other tractography 

methods), these algorithms try to fit a globally optimal path between points. 

In prior work which is not otherwise covered in this thesis, the author (with Steven 

Haker and Carl-Fredrik Westin) investigated a geodesic (shortest) path approach to 

tractography. The connection ("fiber path") between pairs of points was defined as 

the geodesic connecting those points. The inverse of the diffusion tensor was used as 

a metric tensor to calculate distances (so high diffusion was low distance) as described 

in [85]. To restrict paths to the white matter a soft CL mask was used to multiply the 

tensors, encouraging paths in highly anisotropic regions. The paths produced were 

optimal in the geodesic sense, however a path was calculated between any two input 

points even if there was no anatomical connection there, complicating analysis of the 

results. An example distance map, resulting from computing distances from the seed 

point to all other points, is displayed in Figure 3-7. 

Another tractography method used simulated annealing to find the optimal path 

between two points of interest through an ODF field, where path probability was 

quantified using the ODF and curvature at each step [112]. 

3.7.3 Probabilistic Tractography 

Instead of using either only the major eigenvector, or the full tensor, these methods 

place a probability model on the fiber orientation at each voxel. Rather than produc- 

ing one path from each seed point, a distribution of paths is produced by sampling. 

Like the previous methods, these methods allow branching (in the sense that many 

paths are produced so the total output can have a branching structure) and have 

the advantage that their interpretation is more straightforward due to a Bayesian 



Figure 3-7: Isocontours of tensor-based distance map 

framework. In the case of models with one fiber direction, the uncertainty about 

this direction is captured in the width of the distribution about the mean. The most 

successful of these methods, by Behrens et al., was used to segment the thalamus 

based on its cortical connections (the whole thalamus could be segmented because 

probabilistic tractography can extend further into gray matter than streamline trac- 

tography) [I 1, 12, 101. Other probabilistic tractography methods include [16, 42, 411. 

The disadvantage of these methods in comparison with streamline tractography is 

the explosion of tractographic path data to view or analyze. For one seed point, 

streamline tractography outputs a single highly probable path while probabilistic 

tractography can produce an infinite number of paths, though usually on the order 

of 1,000 are generated per seed point, and this can take minutes or hours [41]. 

Tractography Grouping Methods 

If (streamline) tractography is seeded in all voxels in the white matter, from 10,000 to 

100,000 paths may be produced depending on the white matter mask and the voxel 



size. Even when seeding in smaller regions, organization of the paths is necessary if 

the application requires anatomical structures to be isolated from each other. For 

example, Figure 3-5 is an elaborate tractography image created by a neuroanatomist 

using 3D Slicer software. The tractography was organized by hand into anatomical 

regions and given transparency to allow viewing of deeper structures. Automatically 

achieving such organization is one of the goals of this thesis. Manual and automatic 

methods for organizing the results of tractography are described in this section. 

Multiple ROI (Interactive) 

Manual interactive grouping of tractographic paths using multiple selection regions 

of interest (ROIs) [30] (also known as "virtual dissection" [24]) has been performed 

to create a fiber tract atlas [80] and in several clinical studies ([28, 54, 931). In fact, 

Partridge et al. found tractography-based definitions of a pyramidal tract ROI to be 

more reproducible than manual ROI drawing [93]. 

Clustering (Automatic) 

There are three main goals which should be satisfied by an automatic tractography 

segmentation algorithm: automatic grouping of like trajectories, region/cluster corre- 

spondence across subjects, and anatomical labeling of regions/clusters. Our method 

is the first to achieve these three goals. Most related work in automatic clustering 

has focused on the first goal, automatic grouping. Several methods have been pro- 

posed for clustering of tractography. Here we give a brief summary; more details and 

additional related work will be presented in Chapter 5. An early ad-hoc algorithm 

was proposed to subdivide existing tractography into bundles, and was applied to 

paths passing through a small region of the internal capsule [35]. Automated trac- 

tographic path grouping using clustering algorithms has been proposed by Brun et 

al. [18], Gerig et al. (431, O'Donnell et al. [87], and Corouge et al. [33]. Automated 

path grouping via atlas-based labeling of tractography was described by Maddah et 

al. [73] who manually created a tractography atlas and gave a method for transferring 

its labels to a novel subject. The preceding methods all use streamline tractography 



as input, however one method by Johansen-Berg et al. uses probabilistic tractography 

and connectivity matrix reordering to find the boundary between the supplementary 

motor area (SMA) and the presupplementary motor area (preSMA) [51]. 

3.9 DTI Group Analysis Methods 

Here we develop a framework for organizing the many current approaches to group 

analysis of DTI. We then situate the thesis contribution in this milieu. 

Standard structural image analysis is based on comparison of scalar values in 

one of two ways, region of interest-based (ROI-based) or voxel-based morphometry 

(VBM). The first method uses ROIs which are manually or automatically defined (e.g. 

regions in the image such as the thalamus or parts of the cortex), and then compares 

features (volume, average scalar, etc.) within those regions. This requires an a priori 

hypothesis that specific regions are involved in the functionality or pathology which 

is being studied. The second method performs group registration (usually by spatial 

~iormalization, or registration to a template image [110]) and conipares some function 

of the scalar values at  each voxel. All voxels are analyzed simultaneously, and no a 

priori hypothesis is required, however sensitivity could be recluced due to blurring or 

misalignment. 

Diffusion imaging presents a challenge to these established methods. First, the 

quantity at  each voxel is no longer a scalar. To address this, many clinical studies have 

used scalar values such as FA which can be derived from the terisor and have a phys- 

iological interpretation related to white matter integrity. Second, the nature of the 

data itself is different from standard scalar images, in that there is a geometric quan- 

tity (white matter fibers) underlying the discrete samples of diffusion. Some analysis 

methods have attempted to re~onst~ruct this underlying geornetry using tractography. 

Finally, group registration via spatial normalization is more complicated witlh tensor 

data because the tensors must be re-oriented, and because there is no standard tensor 

te~riplate brain in common use, so scalar values are generally registered. 

We propose a division of current DTI analysis into categories based on analysis 



region (ROI, VBM, or tractography) , data analyzed (scalar, vector, tensor, or tract 

anatomy), and group correspondence method employed (spatial normalization, tract 

correspondences, or tract alignment). Many of the methods in these categories are 

novel to DTI. In the rest of this section we describe each category, providing example 

techniques and/or studies in each. Finally in Table 3.3 a large sample of DTI group 

analysis techniques from the current literature is organized using these categories. 

3.9.1 Analysis Region: ROI, VBM, or Tractography 

The analysis region refers to the spatial part of the data which is studied. ROI 

and VBM methods are complimentary: VBM methods may be used in hypothe- 

sis development, followed by ROI-based methods to confirm that VBM results are 

not artifactual. With tensor data, the ROI and VBM approaches function similarly 

standard scalar analysis, but a decision must be made about what data to analyze 

(scalar/vector/tensor) and what data to register (for VBM, generally registration uses 

FA or the T2-weighted image with B=O, though one study used tensors 1621). 

An interesting novel VBM approach called tract-based spatial statistics (TBSS) 

finds a group average FA skeleton, then locally aligns it with maximal FA values in 

the direction perpendicular to the skeleton. These values are associated with the 

skeleton points (voxels) and VBM is performed on the FA values [105]. 

DTI analysis adds a new method for defining ROIs based on tractography (ei- 

ther whole tract ROIs or cross-sectional ROIs within a tract). For delineating ROIs 

based on tractography, current studies have all used the manual interactive selection 

method, though one methods paper by Corouge et al. [33] advocates clustering to 

remove outliers from bundles. 

3.9.2 Data Analyzed: Scalar, Vector, Tensor, or Anatomy 

With DTI there are two new types of data to analyze, tensors and tract anatomy. 

Most studies measure the FA, and some also use the trace of the tensor or the eigen- 

values. It appears that no studies to date have compared the full tensor, however 



some statistical foundation has been laid for analysis of major eigenvector data [102]. 

While most studies have measured FA, interestingly in [35] tohe measurement of ADCs 

parallel to and perpendicular to fiber bundles was demonstrated (presumably the av- 

erage of the two lesser eigenvalues was used for the perpendicular ADC). 

Some novel analyses have focused on anatomical questions, where the data ana- 

lyzed was anatomical connection information from a tractography method [51, 25, 261. 

Catani et . al. have used "virtnal dissection" (multiple R.01 guided) tractography in 

group-averaged DTI data to perform anatomical studies. Their findings support the 

existence of an inferior longitudinal fascicuhis connecting occipital and temporal lobes 

[25] and suggest a novel indirect language pathway lateral to t8he traditioual anatom- 

ical c-shaped arcuate fasciculus [26]. As well as tractograplly in group-averaged DTI 

they demonstrate similar results in single subjects. In addition, as mentioned previ- 

ously, Behrens et al. have used probabilistic tractography to segment. the thalamus 

according to cortical connection regions [ll], and to defi~ie the border between pre- 

SMA and SMA (the latter was then group mapped to inve~t~igate the location of the 

border in multiple subjects) [51]. 

3.9.3 Group Correspondence: Normalization, Tract Corre- 

spondence, or Tract Alignment 

Two new population correspondence ~riethods have been introduced in the literature 

as alternatives to group alignment (spatial normalization). The motivatioil for this is 

twofold. First, the sensitivity to errors in spatial normalization is likely to be increased 

with tensors relative to scalars, due to the fact that the tensor has to be reoriented as 

well as transformed (so errors are possible in position and in local orientation), and 

the fact that spatial smoothing is less appropriate with terlsors (since componentwise 

averaging is appropriate for studies of trace but will decrease FA). Secondly, since t.he 

underlying anatomical unit is a fiber tract, not a voxel, it makes sense to measure 

group differences in regions which comprise tracts. 

The first population correspondence method is correspt~ndence of tract ROIs (i.e. 



obtaining the region of the entire corpus callosum, or the splenium of the corpus 

callosum, or the cingulum, etc., in all subjects). The second correspondence method 

is finer-grained: once tract correspondences are known, a spatial tract alignment may 

be calculated. Current approaches entail finding point correspondences along tracts, 

which so far have been defined relative to a reference point that is chosen to be 

anatomically reasonable for the tract of interest [33, 451. 

Another variant of the tract correspondence is to actually use spatial normaliza- 

tion (calculated from FA or T2 data) to put images derived from tractography into 

a common coordinate system, and to then perform group mapping of the images de- 

rived from tractography. In one study, voxel probability maps were generated from 

tractography in the corpus callosum of ten subjects [132]. Here, the voxel probabil- 

ity was defined as the percentage of subjects having a path from tractography at a 

particular voxel location. Other related methods are listed in Table 3.3. 

3.10 Classification of Thesis Work in Proposed Cat- 

egories 

The work presented in this thesis provides an automatic way to group and label 

(segment) paths from tractography. It fits in the following way into the proposed 

DTI group analysis categories of region analyzed, alignment, and data analyzed. The 

region analyzed can be either tractography ROIs from the automatic segmentation, 

or voxel ROIs defined from the segmented tractography (we demonstrate voxel ROI 

generation for the example of the midsagittal plane of the corpus callosum in Chapter 

6). We employ two types of alignment. Our method for creation of an atlas that mod- 

els the anatomy of a population uses group registration for alignment. However the 

clustering algorithm, which is then applied to the multi-subject paths from tractog- 

raphy, uses additional fiber path similarity information which can be robust to slight 

misalignments. To label additional subjects, each is spatially aligned to the atlas, 

and then the tractography is labeled, giving tract correspondences across subjects 



Table 3.3: Categorization of DTI group analysis studies by method. From top to 
bottom: allatonly studies, VBhl studies, ROI studies, l tractography-based stud- 
ics/methods. Columns from left to right are: Region analyzed (tract, region of in- 
terest, VBM or all voxels) , Alignment ~riethod (normalization, tract correspondence, 
t'ract alignment), Data a~ialyzed (scalars, vectors, tract anat-orny), Analysis (more in- 
forniatiori about the region, quant,ity, or disease studied). Jtef (refcrenccs). Anatoni- 
ical abbreviations arc as in Table 2.2. 
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(the second alignment category we have defined). Finally, the data which has been 

analyzed with our method has so far been limited to scalars. 





Chapter 4 

Background on Spectral Clustering 

Spectral clustering groups data points using a mapping, or embedding, of the points 

that is constructed from the eigenvectors of a data-dependent matrix. In this chap- 

ter we give technical details of the clustering method we employ. To make things 

more concrete, however, we begin with a simple clustering example using paths from 

tractography. 

Tractography Clustering Example 

Figure 4-1 shows example input paths on the left and output clusters on the right. 

The arrow in the center represents the clustering process. 

Input Paths Clustering Process Output Clusters 

Figure 4-1: Tractography clustering example for illustration of spectral clustering. 



One way to think of the input to the clustering process is as a graph, where each 

input path from tractography is a node in the graph, and the nodes are connected 

by edges. For each edge a number, or edge weight, is calculated to describe the 

similarity or affinity of the nodes connected by the edge. The clustering process is 

then a way to isolate groups of nodes in the graph by cutting edges which represent 

low affinities. In order to represent the paths from tractography using a weighted 

graph, we first have to decide how to measure path similarity. Then, once we are 

armed with an affinity function1 that can measure the pairwise similarity between 

any two paths, many clustering algorithms become available for our use. Figure 4-2 

contains a possible weighted graph for the clustering example from Figure 4-1. 

Input Paths Affinity Calculation Weighted Graph 

Figure 4-2: Weighted graph example. Each path (left) can be thought of as a node in 
a graph (right). The edges in the graph are colored according to the affinity between 
the nodes they connect (the highest affinity is colored white). This coloring represents 
the actual affinity values calculated for the input trajectories on the left (using our 
method which is detailed further in Chapter 5). 

The clustering algorithm we employ is called spectral clustering, and it uses only 

these pairwise affinity values (edge weights in the graph) as input. The affinity values 

are placed in a matrix, and spectral clustering analyzes this matrix, finding the most 

important affinity information by calculating the eigenvectors of the matrix. The 

affinity matrix corresponding to the graph in Figure 4-2 is displayed in Figure 4-3. 

Each row and each column corresponds to a path (a node), and each entry in the 

matrix corresponds to an edge. The most important thing about this matrix is that 

'The specific affinity function we use is discussed in Chapter 5. 



the affinity values are high (white) where paths are similar. 

Input Affinity Matrix Embedding Process Embedding Vectors 

Figure 4-3: Example affinity matrix and embedding vectors. Each row of the affinity 
matrix (left) contains information about one input path from Figure 41. So the path 
is represented in this matrix by its affinities to all other paths. High affinities are 
white and low affinities are black. The arrow in the center represents the embedding 
process that uses the eigenvectors of the affinity matrix. On the right the embedding 
vector corresponding to each path is plotted. These embedding vectors give a three- 
dimensional representation of the affinity relationships between the pairs of input 
paths. In this particular example, the cluster information is represented well in three 
dimensions; however when there is a higher number of clusters inherent in the data, 
then more dimensions are needed to separate the clusters. 

I 

I 

The eigenvectors corresponding to the largest eigenvalues of a matrix contain 

"most" of the information about the matrix, so these eigenvectors can be used to 

approximate the matrix. Because the highest eigenvectors of the affinity matrix can 

be used to approximate the matrix, they can also be used to create a more compact 

represent at ion2 of the affinity information that was calculated for each input path 

from tractography. In our example, the input information about one path is 18 affinity 

values, and this information can be represented more compactly with 3 values by using 

the eigenvectors of the affinity matrix. These 3 values form a three-dimensional vector 

representing the path, and once the three-dimensional vectors are calcu 1 ated for all 

paths, they can all be represented in the three-dimensional space shown in Figure 

4 3 .  In spectral clustering, this space is called the embedding space, and the basis 

vectors of the space are (scaled versions of) the eigenvectors of the aflinity matrix. 

2Specific equations for performing spectral embedding are provided later in this chapter. 



The vectors which represent each path in this space are called embedding vectors. In 

Figure 4-3 the embedding vector is displayed for each input path. 

The meaning of the embedding vectors is relatively intuitive: they were created 

using only the affinity information between pairs of paths, so paths with relatively 

similar affinity information must have similar embedding vectors. Paths which have 

similar affinity information tend to be paths which are similar to each other, so this 

means that paths which are similar to each other will have similar embedding vectors. 

Simply put, if paths are alike they should map near each other in the embedding space. 

After performing the embedding, the affinity relationships between paths are rep- 

resented spatially, but another step is still needed to segment clusters in the data. 

This can be done using a standard clustering method in the embedding space. One 

method which is commonly used is called k-means clustering, an iterative method 

that represents each cluster based on the mean ("centroid") of the points in the clus- 

ter, and essentially moves these centroids around until the clusters are all compact (in 

the sense that the total sum of distances from centroids to points in their cluster is 

minimized). Once the clusters have been labeled, the rows and columns of the affinity 

matrix can be reordered according to cluster, to visually inspect the within-cluster 

and between-cluster affinities. The reordering puts the within-cluster affinity infor- 

mation close to the diagonal, forming blocks in the example. The clustering solution 

for the example, using k = 4 clusters, is shown in Figure 4-4. 

The fact that similar paths are embedded near each other can be seen in our 

simple example after clustering has been performed. In Figure 4-5, one can see that 

the red points (embedding vectors) are very close to each other, because those paths 

are very similar in the tractography image in Figure 4-5. On the other hand, the 

cyan dots are more spread out in the embedding space, because those paths are 

relatively further apart and thus less similar (according to our definition of similarity 

which has not been discussed yet and is covered in Chapter 5). One advantage of 

spectral clustering is that it only depends on pairwise affinity values; therefore it can 

find clusters with arbitrary shapes in input space (for example points on concentric 

circles) as long as the affinity values are created such that those clusters map to 



Clustered Embedding Vectors Matrix Reordering Ordered Affinity Matrix 
with Cluster Colors with Rows Labeled (left) 

by Cluster Color 

Figure 4 4 :  Example embedding vectors and affinity matrix, after clustering. The 
clusters (left) are found in embedding space using k-means. Then the matrix can be 
reordered (permuting rows and columns) so that rows and columns are ordered by 
cluster (right). In this example the matrix becomes nearly block diagonal and each 
block represents affinities within a cluster. (Permutation of rows and columns of a 
matrix does not change the eigenvectors of the matrix so the matrix reordering is a 
valid operation.) Each row of the affinity matrix (right) still contains affinities for 
one input path from Figure 4-1. The colorbar to the left of the matrix indicates the 
cluster membership of the embedding vector corresponding to each matrix row. So 
the white square in the upper left (next to the red part of the colorbar) represents 
the high affinity values within the red cluster and the larger white square toward the 
middle of the matrix contains affinities from the green cluster. In the lower right part 
of the matrix, the affinities for the cyan-colored cluster are not as high. 

compact, easily-segmented "blobs" in embedding space. Thus the performance of 

the clustering method is determined by the performance of the affinity measure for 

identifying cluster structure in the data. 

Chapter Overview 

In the rest of this chapter we mainly focus on explaining the embedding process that , 

was represented by the arrow in Figure 4-3. We first give a more precise explanation 

of spectral embedding, followed by background on matrices whose eigenvectors are 

used for spectral embedding. Then we present selected historical and recent spectral 

embedding methods: multidimensional scaling (MDS), Hall's quadratic placement 



Clustered Embedding Vectors Trajectory Coloring Clustered Trajectories 

Figure 4-5: Example embedding vectors and trajectories, after clustering. The colors 
indicate cluster membership. It is clear that similar trajectories (right) map near 
each other when embedded as points (left) in the embedding space. 

algorithm, and the Normalized Cuts spectral clustering method (which we use in 

this thesis to group paths from tractography). We then provide specific details on 

the Nystrom approximation to Normalized Cuts, which we employ to allow spectral 

clustering of large datasets. At the very end of the chapter we return to our simple 

tractography clustering example and summarize it in the context of the Normalized 

Cuts method. 

The formulae in this chapter use boldface to denote vectors and matrices, and 

calligraphic font (such as A) to denote normalized versions of the matrices. The 

eigenvectors themselves are normalized to have length of one and thus have no inher- 

ent size, however for convenience we use the informal terminology and refer to the 

eigenvector associated with the smallest eigenvalue as the "smallest eigenvector" , and 

that associated with the largest eigenvalue as the "largest eigenvector." In general, 

the input data to clustering is referred to as "data points" so for generality we use 

this terminology instead of referring to paths from tractography. In addition, when 

providing embedding examples to illustrate the methods presented in this chapter, 

the input data will be points in two dimensions, rather than tractography. 



4.3 Spectral Embedding 

"Spectral" refers to the use of eigenvectors, and "embedding7' means that the map- 

ping is one-to-one (an injection) [120]. The goal in spectral embedding is to find some 

useful representation of the input data in an embedding space. There are a variety 

of algorithms that create embeddings whose properties satisfy different goals. For 

example in principal components analysis (PCA) the goal is to use the embedding 

to represent the variance in the input with as few dimensions as possible. In mul- 

tidimensional scaling (MDS) the goal is to preserve known distances between input 

points. For spectral clustering the goal is to find an embedding that groups points 

that satisfy some notion of what forms a good cluster. A mathematical formulation 

of the particular application-specific goal (generally in the form of an affinity mea- 

sure) gives rise to a matrix whose eigenvectors can be used to perform embedding. 

The embedding of each input data point is calculated using one of two closely-related 

methods: projection onto the eigenvectors of the input matrix, or direct use of the 

rows of the eigenvector matrix. Each algorithm may also apply some type of scaling 

to produce a final embedding. 

For spectral clustering, the embedding process is usually explained and analyzed 

in terms of a block-diagonal affinity matrix (see for example [119, 821) where each 

cluster has perfect affinity of one to all points in the cluster, and affinity of zero to 

other points. In these analyses, it is shown that the leading eigenvectors "pick out" 

the clusters, as  we have demonstrated in the toy example in Figure 4-6. In the rest of 

this section we give two simple mathematical explanations regarding the relationships 

of the embedding vectors to the original input matrix and to its eigenvectors. In our 

application, properties of the embedding space are of interest, and these explanations 

are helpful in addition to the usual block-diagonal affinity matrix analysis. 

4.3.1 Embedding Vectors and the Input Matrix 

An embedding method takes as input a real symmetric matrix, A, where each row 

of A corresponds to one input data point, and the entries in the row describe its 



Example Points Affinity Matrix Eigenvector Matrix 

\ , 

Embedding 

Figure 4-6: Block diagonal affinity matrix example. Example data points that could 
give rise to this affinity matrix are shown on the left. The matrix has already been 
ordered by cluster to illustrate the block diagonal concept. The colorbars to the left of 
the matrices indicate cluster membership of the point corresponding to each matrix 
row. Inside the affinity matrix, white is affinity of 1 and black represents 0. The 
"largest" three eigenvectors (leftmost columns of the eigenvector matrix) describe 
the cluster structure, and the rest are not useful for clustering. (The number of 
connected components of this graph is related to the number of nonzero eigenvalues, 
and in this case the eigenvalues are [8,5,5,0, . . . ,0]. The eigenvectors corresponding 
to eigenvalues of 0 are not useful for clustering. Note that in a more realistic example 
there may be only one connected component in the graph and the affinity values are 
not all l's, so there are multiple nonzero eigenvalues.) Embedding using the three 
useful eigenvectors produces the coordinates on the right. 

relationship to the other data points. (These relationships may for example be defined 

as affinity values.) Each row of A is then associated with an embedding vector, e, 

which is the result of mapping the original data point into the embedding space. 

Without considering the specific optimization problem used to construct A ,  we look 

at the standard equation for diagonalization of a symmetric matrix: 

The columns of U contain the orthonormal eigenvectors of A, and A is a diagonal 

matrix containing A's real eigenvalues. By interpreting rows of U (and columns of 

UT) as embedding vectors, e, the equation becomes an inner product 



where ei and ej are the embedding vectors3 in rows i and j of the eigenvector matrix 

U. This shows that Aii is the dot product between those embedding vecton, where 

A is the diagonal metric tensor. (A metric tensor has the same distance scaling 

function as the covariance matrix does when it is used in computing Mahalanobis 

distances. The expression for the dot product in a space with a Riemannian metric 

is < XI, x 2  >M= XTMX~ where M is the metric tensor.) The squared lengths of the 

embedding vectors are < ei, ei >A= eTAei which are the values on the diagonal of 

A. 

The matrix A need not be positive definite to perform embedding using kernel 

PCA4, spectral clustering, or multidimensional scaling (101, 14, 761 which means that 

A could contain negative eigenvalues. In practice those negative eigenvalues and 

eigenvectors are generally not used in creating the embedding vectors. When only 

positive eigenvalues are used, the selected subspace of the embedding space has a 

positive definite metric. Further discussion of this issue related to kernel PCA can be 

found in [loll, page 15. 

The discussion in this section supports the intuition that the general purpose of 

spectral embedding is to put similar data points near each other. It further explains 

why the stereotypical block diagonal spectral clustering example produces clusters 

that are separated by 90 degrees (corresponding to dot products of 0) [82], and why 

one embedding method normalizes all embedding vecton to length one (to bring 

points with low angular separation onto a hypersphere and nearer each other for 

easier clustering) 1821. In most methods a subset of the largest eigenvectors is used 

for embedding, giving an approximation of the matrix A, or equivalently an estimate 

of the requested dot products5. In fact, it has been shown that this "truncation of 

3This is one possible way to define the embedding vectors. Other functions of e, generally limited 
to scaling of rows or columns of the U matrix, may be used and some are described later in the 
chapter. Also, some embedding methods employ only the vectors e and others also use A. 

4Kernel methods are algorithms that can be formulated in terms of dot products of the input 
data. For example kernel PCA requires a definition of the dot product between input data points, 
and it is equivalent to performing standard principal component analysis in the higher-dimensional 
space where that dot product holds. The actual mapping into that space does not need to be 
computed, however, because the method only depends on the dot products. 

5However this does not directly apply to methods discussed later in this chapter, which are based 
on the Laplacian of a graph. There the problem is posed as a minimization and the smallest eigen- 



the eigenbasis" moves high-affinity points nearer each other, and low-affinity points 

further apart, enhancing the cluster structure of the data [17]. 

As we discuss later in this chapter, the goal of the various embedding methods 

(PCA, MDS, spectral clustering, etc.) determines both the process for construction 

of A and the equation used to calculate the embedding vectors. 

4.3.2 Embedding Vectors and Eigenvectors of the Input Ma- 

trix 

The relationship between embedding using rows of the eigenvector matrix (done in 

MDS and spectral clustering) and projecting the rows of A onto the eigenvectors 

(done in PCA) can be seen from the following: 

The left hand side of (4.5) is a projection of the rows of A onto a scaled eigenvector 

basis (where each eigenvector is divided by the corresponding eigenvalue), and this 

gives the right hand side, the rows of U. This correspondence between rows of A 

and rows of U explains why in spectral embedding methods, row i of U is used to 

produce the embedding vector ei for data point i, corresponding to row i of A. 

4.4 Matrices Used for Spectral Embedding 

Here we define three types of matrices used for spectral embedding: Gram matrices, 

Laplacians of graphs, and Markov matrices. (Standard PCA uses a covariance matrix 

but that is not be discussed here.) In this section we give background information 

vectors are used, those whichcontribute least to the dot products. Normalization of the Laplscian, 
however, produces an affinity matrix whose largest eigenvectors are used. Also, the optimization 
problem associated with the Laplacian embeds similar points near each other. 



on each type of matrix. Section 4.5 then describes the use of Gram matrices and 

Laplacian matrices in spectral embedding. 

4.4.1 The Gram Matrix 

A Gram matrix is a symmetric, positive definite matrix containing dot products 

between all pairs of some set of vectors. It is positive definite if the kernel used to 

compute the dot products is a Mercer kernel [20]. This type of matrix is used in 

multidimensional scaling (Section 4.5.1). The affinity matrices used in many spectral 

clustering methods can also be seen as Gram matrices (unless they are not positive 

definite). 

4.4.2 The Laplacian Matrix of a Graph 

The Laplacian, L, is a second-difference6 matrix that operates on functions defined 

on the nodes of a graph. In our case, the graph is the representation of the input data 

points to clustering, where each data point is a node of the graph. A function defined 

on the graph gives a function value at  each node. (Note that the eigenvectors of the 

various matrices used in spectral embedding are functions defined on the graph.) 

The Laplacian matrix is not only used in graph theory: it also describes the 

behavior of systems of springs and masses and electrical circuits [107]. Its eigenvectors 

have one physical interpretation as modes of vibration of a system of springs and 

masses. The Laplacian is derived from the incidence matrix IG, a first-difference7 

matrix giving a geometric description of a graph. A graph G = (V, E) consists of a 

set V of vertices and a set E of edges {i, j). For an unweighted graph the incidence 

matrix is defined as 

*1 if {i, j) E E 

0 otherwise 

where each column corresponds to a vertex and each row corresponds to an edge and 

6~ second difference is a discrete version of the second derivative. 
'A first difference is a discrete version of the first derivative. 



sums to 0 (the d11 is arbitrarily chosen, with +1 marking one vertex and -1 the 

other). Then L is defined as 

L = 1 ~ ~ 1 ~ .  (4.7) 

The on-diagonal elements (Lii) equal the total number of edges for vertex i, and the 

off-diagonal elements (Lij) are -1 if there is an edge {i, j}, or 0 otherwise. The 

Laplacian can also be expressed as 

where D is the diagonal degree matrix containing the number of edges for each node, 

and A is the adjacency matrix with Aij = 1 if there is an edge {i, j}, and Aij = 0 

otherwise. To refer to the ith entry on the diagonal of D, Dii, we use di. 

The Laplacian is also defined for weighted graphs, where the edge weights of 1 

are replaced by Eij for each edge. An example of a weighted graph was displayed 

at the beginning of this chapter in Figure 4-2. Component-wise, the Laplacian of a 

weighted graph is: 

Lii = E i # j and {i, j) E E 

0 otherwise . 

For a weighted graph, A,  the adjacency matrix, becomes AU = Eij if there is an 

edge {i, j), and Aij = 0 otherwise. Generally Aii is 0 (no self-looping edges) though 

in current image segmentation applications that consider affinities rather than edges, 

that may not be the case (see discussion in Section 4.6). For weighted graphs, D is 

the diagonal degree matrix containing the sum of edge weights for each node, which 

is equivalent to the row sum of A. A is often called the affinity matrix of a weighted 

graph because it contains edge weights or affinities, not adjacency indicators. An 

example affinity matrix was given in Figure 4-3. 

In graph theory, L is symmetric positive semidefinite. Its smallest eigenvalue is 

0, corresponding to an eigenvector of all ones (because the row sums are 0). Other 



eigenvectors are perpendicular to the vector of ones, thus must have positive and 

negative entries and sum to zero. Many objective functions related to the Laplacian 

have been defined for clustering and embedding, and in the ideal case the positive 

and negative entries of the eigenvectors are used to indicate membership in different 

clusters. Two methods that we cover in this chapter, the Normalized Cuts spectral 

clustering method and Hall's quadratic placement algorithm, as well as others such 

as Laplacian eigenmaps [13], use matrices related to the Laplacian. 

4.4.3 Markov Matrices 

Each entry Mij in a Markov matrix describes the transition probability from state i 

to state j in a Markov chain. M has all positive entries and its columns sum to 1 

[108]. One normalization of the Laplacian 

presented in [77] produces the normalized affinity matrix D-'A which is interpreted 

as a Markov matrix. Unlike Markov matrices presented by Strang in [108], the rows 

(not columns) of this matrix sum to 1. When using this matrix for embedding, 

the embedding is thought of as grouping input data points by the "similarity of 

their transition probabilities to subsets" of the graph [77]. So if part of the graph is 

minimally connected to another part, a random walk in that region has low probability 

of transitioning into the rest of the graph, and this is reflected in the eigenvectors of 

the matrix. 

Spectral Embedding Methods 

Here we discuss a few selected historical and recent embedding methods: multidi- 

mensional scaling [76], Hall's quadratic placement algorithm 1471, and the recent Nor- 



malized Cuts spectral clustering method [104]. Each solves a different optimization 

problem by spectral embedding. 

The optimizations are in the form of the Rayleigh quotient, 9, which is mini- 

mized (maximized) by the eige~ivector corresponding to the smallest (largest) eigen- 

value when L is a symmetric matrix [108]. Similarly, for a symmetric matrix M 

the minimum of vTMv subject to the constraint vTv = 1 is given by the smallest 

eigenvalue of M [107]. The Rayleigh quotient is equal to an eigenvalue when v is an 

eigenvect or: 

Multidimensional Scaling 

Input Points Gram Matrix (A) Output Embedding 

Figure 4-7: MDS example. Rows of the Gram matrix are labeled with the colors 
of the corresponding points. Embedding was performed using the second and third 
largest eigenvectors, scaled as in (4.19). This embedding preserves the known input 
dot products. The colorbar to the left of the matrix indicates the color of the input 
point and embedding vector corresponding to each matrix row. 

Multidimensional scaling (MDS) gives intuition into the meaning of distances in 

the embedding space (see Figure 4-7 for a toy example). Proposed in the early 1950's 

by Torgerson, MDS finds a low-dimensional representation of points whose pairwise 



distances are known, with the specific aim of preserving these distances as well as 

possible [76]. The typical input example is a list of cities with pairwise distances, and 

one needs to estimate a possible 2D city map layout. The input to the algorithm is 

a matrix of pairwise distances between the input vectors and/or a Gram matrix of 

dot products between the input vectors. The conversion formula from dot products 

to distances is 

d:, = (r - ~ ) ~ ( r  - S) = rTr + sTs - 2rTs (4.17) 

where r and s are two vectors and d,, is the distance between them [76]. 

The output of the algorithm is an embedding of the input data points. To perform 

the embedding, the sum of squared differences between input distances (dij) and 

output distances (d:,) 

is minimized by solving an eigenvalue problem [76]. MDS finds the eigenvectors U of 

the matrix of dot products A, and defines the embedding of the points as 

where the rows of Emds are the output embedding [76]. 

This scaling of U finds embedding vectors whose dot products are exactly the 

input dot product values in A, thus distances are preserved since they are sums of 

dot products according to (4.17). The relation of the original embedding vectors e 

in (4.2) to these vectors emd, (rows of E d , )  is e = ~ - ~ / ~ e ~ ~ ~ .  To see that the dot 

products of the eds  vectors are those in A we substitute this into (4.2): 

4.5.2 Hall's r-Dimensional Quadratic Placement Algorithm 

This method explains the optimization problem that lies behind spectral embedding 

using the Laplacian matrix (see Figure 4-8 for a toy embedding example). In 1970, 



Hall proposed a solution to the quadratic placement problem, which is finding a layout 

of n input points which minimizes the weighted sum of squared distances 

where the values a, are "connections" or affinities between input points and the x 

values are one-dimensional coordinates [47]. Note that to minimize this equation, 

points with high affinity will need to be separated by a small distance, i.e. placed 

near each other. When this minimization problem is put in matrix form, it contains 

the Laplacian of the graph. The steps are reproduced from [47], adding (4.26) for 

clarity: 

Here X is a column vector of embedding coordinates (this is for the one-dimensional 

embedding case), the notation ai. is the sum of the ith row of affinity values while a.j 

is the sum of the j th  column, and L is the Laplacian of the graph. Equation 4.25 

follows because A is symmetric, so the row and column sums both equal the degree 

di of the node, and the i # j is because aii is defined as zero (this last was in the 

original paper but is not necessary for the derivation). 

Hall introduces the constraint XTX = 1 and consequently z is minimized when 

X is an eigenvector of L, specifically the one corresponding to the second-smallest 



Input Points Laplacian Matrix (L) Output Embedding 

Figure 4-8: Laplacian embedding example. Rows of L are labeled with the colors of 
-d2 

the corresponding points. A was calculated as e s  (where d was pairwise distance 
and o was 0.3). Embedding was performed using the second and third smallest 
eigenvectors of L. The colorbar to the left of the matrix indicates the color of the 
input point and embedding vector corresponding to each matrix row. 

eigenvalue (as the smallest eigenvalue of 0 gives the trivial solution of a constant 

eigenvector where all points map to the same location). Note that this means that 

the weighted sum of distances, 2, is equal to the eigenvalue, so in this type of spectral 

embedding the eigenvalues have a clear meaning. Hall uses the rows of the Laplacian's 

eigenvector matrix directly to perform embedding, without using the eigenvalues: 

Hall also shows that mappings to higher dimensions can consecutively use the se- 

quence of smallest available eigenvectors, and this satisfies the minimization. 

4.5.3 Normalized Cuts 

Hall's method was for layout of points; the early application of those ideas to graph 

partitioning was due to Fiedler who analyzed the second eigenvector of the Laplacian 

(now called the Fiedler vector) in 1973. Some current spectral clustering methods use 

the second (and higher) eigenvectors of a normalized Laplacian, where the normal- 

ization corresponds to an objective function related to a graph cut. A toy example 

of Normalized Cuts embedding is shown in Figure 4-9. 

The Normalized Cuts objective function for image segmentation using spectral 



Input Points Normalized Affinity (A) Output Embedding 

Figure 4-9: Normalized cuts embedding example. Rows of A are labeled with the 
-d2 

colors of the corresponding points. A was calculated as e s  (where d was pairwise 
distance and (T was 0.3), then A was normalized as in (4.37) to form A. Embedding 
was performed using the second and third largest eigenvectors of A. The colorbar 
to the left of the matrix indicates the color of the input point and embedding vector 
corresponding to each matrix row. 

clustering was introduced by Shi and Malik in 1997. In Normalized Cuts, instead of 

posing the problem as an exact minimization, it is expressed as an NP-hard mini- 

mization of the normalized cut value: 

Ncut(A, B) = 
cut (A, B) cut ( A ,  B) 

assoc(A, V) 
+ 

assoc(B, V) 

where A and B represent the two sets of nodes in a bipartition of the graph (where 

the set of all nodes is V), the cut is defined as the sum of edges which must be cut to 

separate A and B, and assoc(A, V) is defined as the total connection (edge sum) of 

nodes in A to all nodes V in the graph [104]. The rationale behind this formula is to 

improve on straightforward minimization of the cut value ("min cut"), by avoiding 

its bias for separating small sets of less-connected points [104]. 

After much algebra [104], minimization of Ncut is found to be equivalent to min- 

imizat ion of 
yT ( D  - A)Y 

yTDy 
(4.30) 

where y is an indicator vector for partition membership, D and A are the degree 

and affinity matrices defined previously, and (D - A) = L, the Laplacian. When 

the original constraint of y being an indicator vector is relaxed, allowing y to take 



on real values, since 4.30 is in the form of the Rayleigh quotient it is minimized by 

eigenvectors y of 

( D  - A)y = XDy. (4.31) 

So the discrete clustering problem is approximated by a continuous optimization 

problem. The actual function which is exactly minimized by the Normalized Cut 

(from [104]) is then quite similar to the function minimized by Hall (4.21)) with a 

new normalization in the denominator. It is 

subject to EL1 yidi = 0, where yi is a one-dimensional embedding coordinate, aij is 

the affinity value, and di is the degree of node i (sum of row i in A). The normalized 

Laplacian is calculated in [I041 by converting (4.31) to a standard eigensystem using 

the substitution z = D ~ / ~ ~ :  

(D - A ) D - ~ / ~ z  = A D D - ~ / ~ Z  

(D - A ) D - ~ / ~ z  = A D ~ / ~ Z  

D-'l2(D - A ) D - ' / ~ ~  = XZ 

(1 - ~ - 1 / 2 ~ ~ - 1 / 2  ) = Az. 

The normalized affinity matrix 

has the same eigenvectors as the normalized Laplacian, 

because the matrices differ by a change of sign and addition of the identity matrix, 



operations which do not change eigenvectors. The eigenvalues, however, differ: for 

the normalized affinity matrix they are one minus the eigenvalues of the normalized 

Laplacian. 

The eigenvectors z of A are then used for embedding. In the recursive spectral 

bipartitioning method, the second eigenvector is thresholded to calculate a bipartition, 

then this is recursively done for each partition, giving a dendrogram [104]. In this 

thesis we employ multiple eigenvectors to cluster based on the Normalized Cut as in 

[40], similar to the multiple eigenvector embedding for spectral clustering discussed 

in [82] and to the use of multiple eigenvectors proposed by Hall [47]. The embedding 

formula from [40] is (with modified notation): 

where the rows of Enmt are embedding vectors, Ua is the matrix of eigenvectors 

of A, and D-'/~ divides each row of U by the square root of the row sum of the 

corresponding row of A. This computes the same embedding as given by the gener- 

alized eigensystem in (4.31) because each eigenvector z in (4.36) is converted back to 

y in (4.31). The uninformative leading eigenvector is not used for embedding (this 

eigenvector has eigenvalue 1 and is all constant: the minimum cut is no cut at  all). 

In addition, only a subset of the leading eigenvectors is used for embedding: in the 

case of an ideal block diagonal affinity matrix, the number of informative eigenvectors 

equals the number of clusters [82]. This corresponds to using columns 2 through k of 

the matrix U, where k is the number of clusters/eigenvectors. However in practice 

when the clusters are not disconnected in the graph, the number of useful (non-noisy) 

eigenvectors can be significantly less than the desired number of clusters. 

After embedding to put similar data points near each other and to enhance clus- 

ter structure [17], calculating the actual clusters is usually done using the k-means 

algorithm [40, 821. The k-means algorithm is a simple iterative method for finding a 

local minimum of the sum of squared distances to cluster centroids. This objective 



function is 

@(clusters, data) = C 1 C (xj - ~ i ) ~  (xj - ci) J (4.40) 
iEclusters 'Eithcluster 

where the x values are coordinates of the points and ci is the centroid of the ith 

cluster [39]. 

4.6 A Note on the Diagonal of A 

In the traditional graph-theoretic description and in one popular spectral clustering 

paper [82] the definition of A has specifically stated that Aii = 0. However, in 

spectral clustering for image segmentation including the Normalized Cuts method 

[104, 40, 1191, the affinity matrix has Aii = 1. 

The relationship between Aii = 0 (interpreted as no edge connects a vertex to 

itself) and Aii = 1 (interpreted as self-similarity is maximal) is the following. A = 

A+I, and consequently the row sum increments by one: D = D+I. When embedding 

is performed using the Laplacian itself, L = D - A = (D + I )  - (A  + I) = D - A = L, 

so there is no change. However when the Laplacian is normalized, D - ~ / ~ L D - ~ / ~  # 
D - ~ / ~ L D - ' / ~ .  If the diagonal of the affinity matrix A is constant and zero, it will 

be unchanged after normalization, giving constant-length embedding vectors (if the 

metric A is used in length measurement). On the other hand, if the diagonal is 

constant and one, then it will no longer be constant after normalization, corresponding 

to varying length embedding vectors. We are unaware of any analysis of the effect of 

the diagonal of A on clustering results, but we note that if the row sums in D are 

constant, the eigenvectors calculated after normalizing A and (A + I )  will be equal. 



The Nystrom Method for Eigenvector Estima- 

tion 

The idea behind this method is that an approximation to the eigensystem of a large 

matrix can be calculated by using a randomly sampled submatrix. For clustering of 

large datasets this is useful because one doesn't want to (or can't) store a large matrix 

in memory or find its eigenvectors. 

When applied to symmetric matrices, the Nystrom method is equivalent (up to 

scale factors) to projection onto the eigenvector basis as described at the beginning of 

this chapter in (4.5) and as performed in kernel PCA [loll. The connection to kernel 

PCA has been mentioned in two papers that applied the Nystrom method to image 

segmentation [40] and kernel machine speedup [127]. For nonsymmetric matrices, the 

SVD can be approximated by a similar projection [37]. 

In some sense, "Nystrom method'' is just a complicated name for a weighted sum. 

The Nystrom method is so named due to a connection to the Nystrom technique for 

approximating integrals: 
r h  N 

where the weights wj come from some quadrature rule (such as the trapezoidal rule or 

Gaussian quadrature) (961. The connection to eigenvector approximation is demon- 

strated by writing the continuous form of equation (4.5) as an integral: the projection 

of a row of A onto eigenvecton scaled by eigenvalues becomes a projection onto eigen- 

functions [40, 1271. 

4.7.1 Eigenvector Calculation 

Concretely, when applying the Nystrom method, the interpolation weights wj are the 

affinity values for one data point (which are weights on the nodes of the graph of 

A), and the function y(sj) being interpolated is the eigenvector (which is a function 

defined on nodes of the graph of A). The goal is to estimate the eigenvector at a node 

which was not present in the graph of A, based on how similar that node is to nodes 



in A. Following the notation of [40], the entire affinity matrix can be seen as divided 

into 3 parts, A,  B ,  and C (see Figure 4-10). Affinities are calculated from a random 

sample of data points to create the square, symmetric A submatrix. The additional 

data points are then compared to those that were sampled in order to generate the 

B and B~ submatrices. Finally, the C submatrix is the largest of all and does not 

have to be calculated. 

Figure 410: Diagram of the parts of the affinity matrix when using the Nystrom 
method. 

Once A and B have been obtained, the eigenvectors U of A are calculated and 

used to estimate the eigenvectors u of the full matrix using the following formula 

from [40] 

In equation 4.42 the ordering of the rows of u is such that those corresponding 

to rows of A are first, followed by those corresponding to rows from BT. (Note 

U = AUA-' = A~UA- '  has the same form as BTUA-' in equation 4.42, showing 

that the rows of both matrices, A and BT, are projected onto the orthogonal basis 

UA-'. This basis defines the embedding space.) 

4,7.2 Matrix Norrnalizat ion 

The row sums of the entire affinity matrix are needed to perform matrix normalization 

(to create the normalized Laplacian and/or the normalized affinity matrix used in 



Normalized Cuts). From [40], the formula for this estimation is: 

where a, and b, are column vectors containing the row sums of A and B ,  and b, is 

the column sum of B. (Of course here A and B refer to those matrices before the 

normalization operation.) In (4.43) the row sums of the uncalculated matrix, C ,  are 

each estimated as a weighted sum of row sums from the known rows of B. 

4.7.3 Performance 

The Nystrom method performs well if the entire affinity matrix can be approximated 

well using the Nystrom eigenvectors (and eigenvalues). The quality of the approxi- 

mation depends on how well the randomly sampled data points represent the entire 

problem. Fowlkes and Malik performed empirical performance testing by measuring 

the repeatability of the Nystrom eigenvectors versus the number of samples. They 

found that when clustering image pixels, repeatable embeddings were obtained using 

only one percent of the input pixels to form the matrix A [40]. In Chapter 8 we per- 

form similar testing for tractography data. In addition, Fowlkes and Malik compared 

the Nystrom method to the Lanczos sparse eigensolver, which was given a sparsified 

A matrix. They found the Nystrom method to be significantly faster. 

4.8 Clustering Example, Revisited 

We now review the clustering example that was presented at the beginning of the 

chapter, placing it in the context of Normalized Cuts spectral clustering. Figure 4-1 1 

gives an overview of the entire process. 



1. Input Paths 

3. Normalized Affinity (A) 

2. Weighted Graph and Affinity Matrix (A) 

4. Embedding Vectors 5. Clusters 

Figure 4- 11: Clustering example, revisited. Each step is demonstrated for Normalized 
Cuts spectral clustering of the tractography example in the upper left. Beginning 
with input paths (1) from tractography, affinities (2) are computed which can also 
be thought of as graph edge weights (2). Next the affinity matrix is normalized (3) 
and its eigenvectors are used to perform spectral embedding (4). Finally, k-means 
is run in the embedding space, giving output clusters (5). In Chapter 5 we describe 
how the affinity matrix is computed in our trsctography clustering method. This 
adds another intermediate step (pairwise distance computation between tractographic 
paths) between steps (1) and (2). 

Summary 

We began this chapter with a simple tractography clustering example to give a high- 

level overview of spectral clustering and to explain how it relates to the problem 

addressed in this thesis. Then we gave more general background information about 

spectral embedding and matrices that may be employed for spectral embedding. Next 

we described the Normalized Cuts and Nystrom techniques which we employ in thesis 

research. Finally, we returned to the simple tract clustering example to summarize 

the clustering background material and again relate it to the thesis topic. This leads 



us directly to the next chapter which describes our tractography clustering method. 



Chapter 5 

White Matter Fiber Tract 

Clustering 

The raw output of whole-brain tractography contains many thousands of trajectories 

which we refer to as tractographic paths. For the purpose of visualization, it is useful 

to group, or cluster, similar paths in an automatic way so they may be viewed sepa- 

rately from the rest of the data; it is even more useful to augment the clusters with 

anatomical information to allow display of specific white matter structures. For the 

purpose of DTI analysis, it is useful to define regions of interest using tractography, 

in order to measure diffusion properties (for example FA) in subregions of the white 

matter. However, standard clustering solutions provide no correspondence across 

subjects, a property which is needed for group analysis is desired for visualization 

in order to give a similar segmentation and color scheme across all subjects. One 

proposed method does postprocessing on clusters, attempting to match them across 

subjects [134]. In this chapter we describe a method for automatic clustering of trac- 

tography, for tractography matching across subjects, and for tractography matching 

across hemispheres1. 

In order to produce cluster correspondences across subjects, rather than a two- 

step process, we propose integration of the matching and the clustering such that the 

'Some portions of this chapter have been previously published in [87] and a general explanation 
of the clustering method was published in [86]. 
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Figure 5-1: The input to our method (left) is whole-brain tractography. Then spectral 
embedding (center) is performed using the Normalized Cuts method. This produces 
a representation of each path from tractography as a point in the embedding space. 
We can embed a single subject or multiple subjects simultaneously (to find matching 
clusters in all subjects.) Finally, a clustering solution is found in the embedding space, 
and used to give a segmentation of the input tractography (right). The data shown 
in this figure is from the population clustering experiment presented in the Results 
section. The embedding vectors are an actual sample of 500 embedding vectors from 
the whole population, with the first 3 dimensions displayed. The colors of the clusters 
(right) are assigned according to the embedding coordinates, as described later in this 
chapter. In many cases, an anatomical structure will be subdivided into many clusters 
(for example see the corpus callosum in the image at right). By associating anatomical 
labels with the clusters, all of the clusters in one structure may be grouped, either 
for visualization or analysis. 

clustering takes advantage of tractography information from all subjects simultane- 

ously, as in Figure 5-1. Our approach to single- and multiple-subject tractography 

segmentation uses spectral clustering and the Nystrom method. In order to perform 

spectral clustering in all subjects together, we must get their embedding spaces2 to 

match. Matching embedding spaces is non-trivial: if two brains are clustered sep- 

arately, there will be no particular relationship between the two embedding spaces, 

which are defined by the eigenvectors of each brain's affinity matrix. Furthermore, 

when using the Nystrom method, the embedding spaces are defined by the eigen- 

vectors of an affinity matrix from a random sample of paths from each brain: thus 

it is even less likely that a correspondence could be found. However, by clustering 

multiple brains simultaneously (essentially treating them as one brain and putting all 

2The embedding space was explained in Chapter 4; in the embedding space, each path from 
tractography is represented as a point, and similar paths are near each other. 



of the paths from tractography together before performing embedding) they will all 

use the same embedding space. Clustering in this space can then take advantage of 

information from multiple subjects, and the clusters that are found in this space will 

correspond across subjects. By "correspond" we mean that when viewing the clusters 

in separate subjects, cluster number i in each subject comes from cluster number i 

in the multiplebrain embedding space, thus all paths in that cluster are be similar 

to each other, both within and across subjects. Similar to how we "cluster brains to- 

gether," we are also able to "cluster hemispheres together" in order to automatically 

find corresponding clusters across hemispheres. 

We introduce three novel ideas in this chapter: population clustering to find a 

matching tractography segmentation across subjects, automatic matching of tractog- 

raphy across hemispheres, and the introduction of anatomical knowledge in the form 

of a per-cluster label. The labels allow visualization and analysis to take advantage 

of the low-level grouping according to cluster, or a higher-level grouping according to 

anatomical structure. 

In this chapter we first present related work on tractography clustering in section 

5.1, followed by a description of our method in section 5.2. Section 5.2 is organized 

according to the six main steps of the method, which are: (1) tractography, (2) 

generation of pairwise tract distances with optional cross-hemisphere matching, (3) 

conversion of distances to (normalized) affinity values, (4) spectral embedding and 

clustering, (5) coloring of paths according to cluster location in embedding space, and 

(6)  postprocessing (optional) to introduce expert knowledge to anatomically label 

clusters. The description of steps (2) and (3) of the method specifies how we create 

affinity matrices to perform spectral embedding of tractography as depicted in Figure 

5-1. After explaining the method, we demonstrate single-subject and population 

clustering in section 5.3, showing our ability to automatically discover and match 

anatomical structures across hemispheres and across subjects. We demonstrate that 

our method is able to define regions consistent with expected white matter fiber tract 

anatomy. 



5.1 Related Work 

Most related work in segmentation of tractographic paths has employed clustering 

approaches that divide the problem into two parts: the choice of clustering method 

and the decision of how to quantify distance (or similarity) between paths. Two 

general types of clustering methods have been employed in the literature, hierarchical 

clustering [33, 43, 1341, and the spectral clustering approach [18, 52, 87, 861. 

Several distance measures have been proposed in the literature. In one of the 

earliest approaches, Ding et al. calculated the mean distance separating paths using 

pointwise correspondences between path segments [35]. Their method was specific 

to paths which had been seeded in one image slice, but in later approaches more 

general distances have been defined. Early work by Brun et al. performed spectral 

embedding based on distance between path endpoints, then colored paths using their 

embedding coordinates to give a soft visual perception of connectivity [19]. Later 

Brun et al. introduced a 9-D tract shape descriptor, which they defined as the mean 

(3 numbers) and lower triangular part (6 numbers) of the covariance matrix of the 

points on a path (giving 9 numbers in total) [18]. They computed the distance 

between paths as the Euclidean distance between these 4 D  shape descriptor vectors. 

Gerig et al. and Corouge et al. proposed distances that do pointwise comparison of 

tract shapes: they defined three measures related to the Hausdorff distance including 

the mean closest point distance we employ [43, 331. Zhang et al. also employed a 

distance based on average distance between pairs of closest points, where they average 

all distances that pass a threshold for significant separation of paths (1341. A gray 

matter atlas was used to initialize clustering in [131], after which the mean closest 

point and Hausdorff distances were used to group trajectories. In work by Jonasson et 

al. (who used paths through high angular resolution diffusion data) a path similarity 

measure was calculated based on the number of times two paths shared the same 

voxel [52]. There is some convergence in the literature with respect to the choice 

of distance measure, as multiple authors employ some type of mean closest point 

distance [33, 35, 43, 86, 134, 1311 and it was found to be the most effective in a small 



study where the ground truth clusters were known [78]. 

There are several recent (2005) approaches to matching tractographic paths across 

subjects. In work by Zhang et al., a two-step process first performed clustering on 

each subject, then described the clusters with 9-D vectors (the average start point, end 

point, and "middle point" of all paths in a cluster). These feature vectors were then 

used to match clusters across patients (1341. Another two-step method was proposed 

in [61]. In a different approach by Maddtth et al., a fiber tract atlas was manually 

created and used to label multiple subjects, where each new path was labeled as 

belonging to the atlas structure possessing the most similar path [73]. 

5.2 Methods 

The steps in the method are listed in Table 5.1. In the rest of this section we explain 

each step. Investigation into reproducibility of the method and its sensitivity to 

parameter settings is performed in Chapter 8. 

Table 5.1: Steps in our clustering method. 

5.2.1 Step 1: Tractography for Clustering 

Section 
5.2.1 
5.2.2 
5.2.3 
5.2.4 
5.2.5 
5.2.6 

Step 
1 
2 
3 
4 
5 
6 

The first step in our method is to generate the input: whole-brain tractography. We 

use Runge-Kutta order two tractography [95, 31 with a fixed step size of 0.5mm. We 

have three threshold parameters for tractography: Tseed, Tstop, and The first 

Description 
Wholebrain trsctography 
Pairwise trsct distances (optional crw-hemisphere matching) 
Conversion of distances to affinity values; affinity normalization 
Spectral embedding and clustering 
Coloring of paths according to cluster centroid embedding vector 
Introduction of expert knowledge: anatomical cluster labels 



two are anisotropy thresholds based on CL [123, 1241 

The goal of the anisotropy thresholds is to limit tractography to the white matter. 

We seed (initiate) tractography in every voxel in the brain with CL higher than the 

threshold Tsed. Then tractography stops when CL on the path falls below Tst,, indi- 

cating gray matter or planar areas. Example images of CL thresholds are presented 

in Figure 5-2. Finally, we employ a length threshold, rength7 to remove very short 

Figure 5-2: CL thresholds can be used to identify white matter regions for seeding 
tractography. In each image, the region with CL greater than the threshold value 
is shown in yellow. The background image is the average of the diffusion-weighted 
images used to create the tensor. 

paths from the clustering. The thresholds vary by application, generally higher (less 

inclusive) for group clustering where the major tracts are desired, and lower (more 

inclusive) for neurosurgical visualization where one would like to see "everything." 

Useful ranges for the thresholds are listed in Table 5.2. The settings used for experi- 

mental results are specified in section 5.3. 



Table 5.2: Thresholds used in tractography. 

Anisotropy Thresholds for Tractography 

Standard Value 
CLof0.15t00.3 
CL of 0.15 to 0.2 

10 to 50mm 

Threshold 
Tseed 
Tstop 

%ength 

In this section we explain why we have chosen to use CL thresholds for tractography 

for clustering. In almost all published studies [55, 116, 501, a lower limit (threshold) 

on fractional anisotropy 

Description 
starttractographywhereCL>Td 
stop tractography where CL < T,, 

cull paths whose length < 

is used to decide when tractography should halt. This threshold for FA is generally 

in the neighborhood of 0.2, meaning that FA must be greater than or equal to 0.2 

for tractography to continue tracing a fiber trajectory. However, the FA is not a 

particularly good indicator of the presence of a single fiber tract, as it can be relatively 

high in regions of planar anisotropy, which can indicate tract crossings or branchings 

[38]. Tractography that employs an FA threshold also requires a curvature threshold 

in order to avoid such ambiguous areas which may cause sharp turns (see Figures 5-3 

and 5-4). The curvature threshold generally uses the radius of curvature, calculated 

as one over the curvature, where the curvature is the rate of change of the unit tangent 

vectors on the path. The radius of curvature is the radius of the osculating circle at 

a point on the curve (this is the circle that best approximates the curve; it has the 

same tangent and curvature as the curve does locally [121]). Paths with a low radius 

of curvature are turning quickly, thus a threshold on radius of curvature is a lower 

limit. 

For clustering we want to focus on the more reliable regions that may be delin- 

eated using tractography, with the goal of avoiding areas of planar anisotropy where 

tractography may erroneously cross from one structure to another (though avoiding 
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Figure 5-3: One slice through the ROI used to seed tractography in Figure 5-4. 

such areas entirely may not be possible). The linear measure (CL) is a better indica- 

tor than FA of the presence of a single fiber tract. If the linear measure is high, it is 

unlikely that the region is susceptible to eigenvalue ordering problems, and it is more 

likely that the tensor model is reasonable in that region. A plot of FA vs. CL is shown 

in Figure 5-5, as well as images of the areas included with an FA threshold and not a 

CL threshold, and vice versa. The CL threshold, without a curvature constraint, gives 

comparable (and better for our application) performance to an FA threshold with cur- 

vature constraint, with the added benefit of needing only one parameter setting (see 

Figure 5-4). 

Random Sampling of Tractographic Paths 

Depending on the voxel resolution of the scan and the various thresholds, whole-brain 

tractography produces between 10,000 and 100,000 paths per subject. In practice we 

randomly sample from these paths to obtain a practical number, where approximately 

10,000 paths per subject is a reasonable upper limit for visualization (however the 

total number of paths needed for sampling of tensors and measurement of scalar 

invariants is under investigation). All random sampling of paths in this thesis was 

performed without replacement. 
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Figure 5-4: Stopping tractography with CL (bottom) is comparable to using FA 
(top) and a curvature constraint, and specifically avoids areas with planar anisotropy 
because CL is specific to linear anisotropy (cigar-shaped tensors). The two images 
with a CL cutoff are almost identical, demonstrating that when using CL to stop 
tractography, a curvature threshold is less important and often not necessary. 

5.2.2 Step 2: Fiber Trajectory Distance and Matching Across 

Hemispheres 

The second step in the method is the generation of symmetric pairwike tract dis- 

tances. In this section we describe the distance measure we employ as well as our 

method for obtaining cluster correspondences across hemispheres. The assumption 

behind all existing tractography clustering methods is that paths which begin near 

each other, which follow similar trajectories, and which terminate near each other 

should belong to the same anatomical structure. This is the best assumption possible 

without additional information, though since tractography (and axons as well) enter 



f l u  
included with FA, not CL included with CL, not FA ROI 

Figure 5-5: Comparison of FA and CL thresholds of 0.2. Plot of CL VS. FA in a 
region of interest (top). The region of interest (lower left), and voxels included by 
one anisotropy threshold but not the other (lower middle and right, in color over the 
FA image). Red and green voxels correspond to plot colors (top). Many borders 
between tracts ("bad" regions for tractography) are in red, i.e. only included with 
FA. 

and leave some structures (the cingulum for instance, as illustrated in Figure 2-6) 

this assumption is not perfect. 

Distance Measure 

As summarized in section 5.1, various distance measures have been proposed in the 

literature to quantify this assumption [19, 18, 43, 33, 52, 1341. We employ the mean 

closest point distance, 



fiber i 

fiber j 

Figure 5-6: Illustration of computation of mean closest point distance measure be- 
tween two fibers. In this example each path is represented by 10 yellow points. The 
directed closest point distances (from fiber i to j) are represented with black arrows. 

where n is the number of points on path i, and dk is the distance between point k 

on path i and the closest point on path j .  This distance is just the average distance 

between pairs of closest points on the two paths. Note that this is a directed distance 

so dmcpaj # dmcpgi. Figure 5-6 illustrates the computation of this distance measure. 

This distance measure is presently the most successful in the tractography cluster- 

ing literature, as it is currently in use by three separate groups [43,33,86,134] and was 

found to be better than others in an evaluation of dractography clustering methods 

[78]. We have implemented this distance as well as {he distances suggested by Brun 

et al. and while Brun's measures are more rapid to ompute, the mean closest point 7 
performs better on whole-brain clustering problems, in that it produces clusters which 

are qualitatively most similar to the desired anatomical regions. The mean closest 

point measure has also been applied to trajectory clustering in outdoor video [117]. 

Practically, it is not necessary to use all points on each path to compute the measure: 

we currently estimate it using 15 equidistant point along the path, including both 

endpoints. The path lengths range from around 10 In m (20 points) to 150mm (300 

points) so using only 15 points per path significant1 decreases computation time. 

We symmetrize the mean closest point distance taking the minimum of the two 



possible distances dm,,, and dmcpji 

We have also employed the mean of the two distances, and we find that the minimum 

performs qualitatively better when clustering using bilateral matching (Section 5.2.2), 

while the mean is generally better when doing standard clustering. The minimum 

encourages the grouping of shorter paths with longer paths, if they run parallel for 

some distance; this is beneficial for clustering similar anatomy in both hemispheres. 

Similarity Across Hemispheres (Anatomical Matching) 

A modification to the distance computation allows us to consider symmetry across 

hemispheres. When reading brain MRI images, doctors rely on the presence or ab- 

sence of symmetry across hemispheres in order to evaluate whether the scan is nor- 

mal; consequently providing a symmetric clustering or cluster coloring is an impor- 

tant goal3. Cluster correspondence across hemispheres facilitates both visual and 

quantitative comparison of anatomical structures that are present bilaterally. A soft 

correspondence is obtained if cluster colors (based on spectral embedding coordinates 

[19]) can be approximately matched, while a hard correspondence is obtained where 

clusters actually contain paths from both hemispheres. Examples of soft and hard 

correspondences are given in Figures 5 7  and 5-8. 

To achieve these goals, before computing the similarity metric we can reflect one 

side of the brain across the midsagittal plane4, such that paths with similar shapes and 

locations in either hemisphere can cluster together, automatically giving anatomical 

correspondences. This is a new approach in clustering of tractography. We find that 

this method produces better separation of some anatomical structures, for example 

the inferior parts of the cingulum from the inferior parts of the fornix. We believe the 

3Thanks to  Dr. Alexandra Golby for explaining the importance of bilateral symmetry and mo- 
tivating research into automatic cluster correspondences. Chapter 7 further addresses this concept. 

*The midsagittal plane can be defined by AC-PC alignment of the brain images, and translation of 
the AC-PC plane to the origin, so that taking the absolute value of the R (right-left axis) coordinate 
performs reflection across the rnidsagittal plane. 



Figure 5 7 :  Soft visual color correspondences: many clusters in the arcuate fasciculus 
region are colored in shades of purple. An FA image medial to the clusters is shown 
in the background. (Dataset from population 11.) 

improvement in clustering is because reflecting across the midsagittal plane effectively 

doubles the number of prototype brain examples input to the clustering process. 

Note that our clustering method (and atlas creation method described in Chapter 

6) are not dependent upon this reflection approach, however the bilateral matching 

is a useful additional property that we can obtain. Also note that the success of the 

approach would decrease in subjects with midline shift or other asymmetries, though 

a more ,flexible surface-based representation of the midsagittal plane could be utilized. 

In the case of pathology, the soft visual correspondence based on spectral embedding 

colors may still be obtained without hard cluster correspondences. 
1 

Step 3: Conversion to Affinity 

The third step in our method is the conversion of the distance measures to affinity 

measures suitable for spectral clustering. After computation of painvise distances, 

each distance ( d i j )  is converted to an affinity measure (ai j )  via a Gaussian kernel 



Figure 5-8: Hard cluster correspondence: one c-shaped cluster in the arcuate fascicu- 
lus region. An FA image medial to the cluster is shown in the background. 

a method that is frequently employed in the clustering literature [82, 104, 1191. Since 

the distances are symmetrized, this conversion produces a symmetric affinity matrix 

for clustering. The role of cr in (5.5) is to define the scale of the problem by setting the 

distance over which paths can be considered similar. We standardly choose cr based 

on our clustering experience to be 30mm with bilateral matching (and minimum 

symmetrization), and 60mm in standard clustering (with mean symmetrization). For 

smaller clustering problems (not the whole brain), values as low as lOmm can give 

better clusterings. Note that a larger value of o incorporates more information from 

anatomically neighboring structures, which is beneficial for whole-brain clustering. A 

benefit of this affinity measure is that the clustering is insensitive to small registration 

errors and to small anatomical differences (when clustering multiple subjects) due 

to the capture range of the mean closest point distance and the Gaussian kernel. 

Experiments demonstrating that the method is robust to the choice of o are presented 

in Chapter 8. The affinity matrix is normalized by dividing each element by the square 

root of the row and column sum at that location [40]. 



5.2.4 Step 4: Clustering of Tractography: Single and Multi- 

ple Subjects 

The fourth step in the method is spectral embedding and clustering based on the 

pairwise tract affinity values. After calculating (a subset of all) fiber affinities, we 

employ the method of Normalized Cuts with the Nystrom approximation, as described 

in [40] and explained in Chapter 4. In the Nystrom method, instead of computing 

the entire affinity matrix directly, a random sample of paths is selected, and the 

affinity measure is calculated between each path and that sample. Two matrices are 

created: the matrix A contains affinities between paths in the sample, and the matrix 

B contains affinities between other paths and the random sample. For a single brain, 

we find that 1,500 paths are sufficient for the A matrix (see Chapter 8 for this result). 

The matrices are then normalized and spectral embedding of all paths is performed 

using the eigenvectors of the normalized A matrix (using the Nystrom method as 

described in Chapter 4). A user-selected number of clusters is found by running k- 

means in embedding space. Interesting anatomical clusters exist at many size scales 

so choosing the number of clusters is not trivial, however the number must be large 

enough to avoid combining dissimilar paths. Empirically we have found that 100- 

200 clusters is a reasonable number for whole brain tractography clustering, and 

experimental results supporting this are presented in Chapter 8. In general more 

clusters are needed for higher-quality data or if more of the u-fibers (short cortico- 

cortical connections) have been included due to a lower CL and length threshold. In 

addition, we find that approximately 20 eigenvecton are useful for spectral embedding 

(see Chapter 8 for embedding reproducibility experiments motivating this choice). 

The parameter settings are specified along with the results presented in this thesis. 

Simultaneous Clustering of Multiple Subjects 

By simultaneously performing clustering in a group of registered subjects, we find 

population clusters which represent common structures present in tractography, and 

actually correspond to expected locations of well-known white matter anatomy. The 



layout of the affinity matrix for group clustering, for an example five-subject cluster- 

ing problem, is illustrated in Figure 5-9. Note that the A and B matrices contain 

irlformation from all subjects together. We randomly sample an equal number of 

paths from each subject to create A. In the current implementation, the size of the 

A matrix is limited to the eigenvalue problems that can be solved by matlab, so our 

present size limit is approximately 4,000 x 4,000. 

Figure 5-9: Diagram of the parts of the affinity (tract similarity) matrix. This is an 
example for a five-subject clustering problem. The regions within A and B represent 
individual subjects. C is the part of the matrix that does not need to be calculated 
when using the Nystrom method. 

5.2.5 Step 5: Cluster Color Assignment 

The fifth step in the method is the assignment of cluster colors based on cluster 

centroid locations in embedding space. As proposed by Brun et al. [19], we scale the 

chosen embedding coordinates to fit into the interval [O, 11 and use them to determine 

RGB (red, green, and blue values). The first three embedding coordinates are chosen, 

corresponding to the second, third, and fourth largest eigenvalues/eigenvectors5. We 

color each cluster according to the location of its cluster centroid in embedding space. 

An example illustrating the first three dimensions of the embedding, along with the 

colors and example colored clusters, was shown in Figure 5-1. 

5As explained in Chapter 4, the first eigenvector is constant since the row sums of the affinity 
matrix are 1, so this eigenvector is not used for embedding. When embedding using the Laplacian 
instead of a normalized affinity matrix, the eigenvectors corresponding to the smallest eigenvalues 
are used. With either matrix, the desired eigenvectors are the "smoothest" ones. 



5.2.6 Step 6: Expert Labeling 

The sixth and optional step is use of expert information to create a higher-level 

grouping and anatomical labeling. Since the actual anatomical white matter tracts 

come in many sizes and shapes (the corpus callosum is much larger than the uncinate 

fasciculus), we err on the side of oversegmentation of the tractographic paths, with 

the goal of achieving a correct clustering, i.e. separating all paths which are truly 

different. Consequently some of the anatomical structures will be subdivided, which 

in general is a desired property of the method (allowing for example the automatic 

segmentation of subregions of the corpus callosum as described in Chapter 6). 

To group small clusters into larger bundles according to higher-level expert infor- 

mation, each cluster is given an anatomical label. The introduction of a per-cluster 

label allows data interaction and analysis at multiple scales: visualization and me* 

surement of scalar invariants can be performed at the individual cluster level or the 

whole anatomical structure level. We discuss in Chapter 6 how this anatomical label 

information can be applied to a novel subject. 

Cluster labeling is performed as follows. After cluster generation, k clusters have 

been defined in each subject. As explained at the beginning of this chapter, when 

performing group clustering the clusters correspond across subjects. For example this 

means that cluster number 10 represents approximately the same region for every 

subject (because cluster 10 was created as a single cluster in the multiple-subject 

embedding space). Thus providing higher-level anatomical information is reduced 

to the problem of defining labels for each of the k clusters. In the labeling process, 

the tractography clusters are visualized using three dimensional graphics. Single or 

multiple clusters are selected with the mouse and given an anatomical label. New 

labels can be created by the user so the naming is very flexible. Theoretically the 

labeling could be done by inspecting the clustering result for only one subject, but due 

to anatomical or tractography differences, a small number of clusters are generally 

empty in each subject. We find the simplest approach is to label one subject, transfer 

the labels to the next, and work through each subject in this manner, ensuring that 



at the end all clusters have a high-level anatomical description. Due to the fact that 

tractography may cross from one anatomical structure to another, these anatomical 

labels represent the best approximate description of the regions discovered in group 

clustering. 

5.3 Experimental Results 

5.3.1 Anatomical Matching Across Hemispheres 

Data and Parameter Settings 

The dataset was one subject from population I1 (for a description of the populations, 

see Appendix A). The tractography settings were as follows: voxel seeding (initiation 

of tractography) where CL > 0.25, termination of tractography where CL < 0.15, 

and minumum path length of 25mm. 10,000 paths were randomly sampled from 

this tractography dataset and used for clustering. 1,500 paths were sampled to form 

A. Midsagittal reflection was used for distance computation via the mean closest 

point distance measure. Distances were symmetrized with the minimum operation 

and converted to affinities using o of 30mm. 20 eigenvectors were used and k = 120 

clusters were found. 

Results 

Figure 5-10 shows the bilateral matching in an example subject (single-brain clus- 

tering). To generate this visualization, the paths in each cluster were colored based 

on the centroid of that cluster in the embedding space. The figure contains the raw 

whole-brain output with red, green, and blue colors assigned according to the fourth, 

fifth, and sixth embedding coordinates, respectively. (Normally we employ the sec- 

ond through fourth coordinates but in this case with the midsagittal reflection, these 

colors had lower contrast so we explored coloring with other coordinates.) Figure 

5-11 illustrates a subset of the clusters that are more medial and not visible in Figure 

5-10. The selected clusters are from the regions of the cingulum bundles, uncinate 



fasciculi, middle cerebellar peduncle, and part of the internal capsule/corona radiata. 

They demonstrate automatic anatomical correspondence across hemispheres. 

--- - j 
View from Left View from Right 

I 4 
F- : 

Inferior View Superior View 

Figure 5-10: Result of clustering with bilateral affinity measure (the colors demon- 
strate correspondence). This is the whole brain result; see Figure 5 1 1  for selected 
clusters. 

Discussion of Anatomical Matching Results 

The bilateral matching affinity measure introduced in this chapter is dependent on 

the existence of symmetry in the DTI dataset, and this assumption may break down 

in EPI (echoplanar imaging) data which often has susceptibility artifacts in the tem- 

poral lobe. These artifacts are local magnetic field distortions found especially at  



the interface of air and tissue, such as near the sinuses. Since these artifacts may 

affect the DTI data differently on each side of the brain, we find that with EPI 

data, we are more likely to compute unilateral clusters in the temporal region than 

in other regions. However when direct cluster correspondences are not found, the 

colors from spectral embedding are still similar across hemispheres in the temporal 

lobe (for example in the occipitotemporal fasciculus). In addition, any clusters that 

aren't automatically found bilaterally may still be labeled as the same structure when 

anatomical knowledge is introduced, so the method can recover from this error. 

Some outlier paths may be included in our clusters because currently we label 

everything (all paths which are input to the clustering). For example in the bottom 

image in Figure 5-11, it is apparent that a single path is present in the cerebellum 

(seen in the bottom of the image with gold color). This path is an outlier because it 

has clustered with the other gold paths in the middle cerebellar peduncle due to the 

fact that very few paths were generated in the cerebellum, so there was no cerebellar 

cluster. For the purposes of this visualization, removing this path would not be a 

significant improvement. However for some applications such as the measurement 

of diffusion values, removal of outliers such as this path could be helpful. Related 

clustering approaches for vehiclelpedestrian trajectories remove outlier paths a priori 

(before clustering or embedding) based on their (high) distance to nearest neighbors 

[117]; however the a priori removal of some of the data is not appropriate for all 

applications of our method. In addition, we do not compute the pairwise distances 

of all paths, but this type of nearest-neighbor outlier removal approach generally 

requires all pairwise distances. We have instead explored removing outliers as a 

postprocessing step, based on their (high) distance to cluster centroids, and in the 

future, outlier paths could potentially be marked as such using this approach. 



Figure 5-11: Selected clusters demonstrate anatdmical matching across hemispheres 
using bilateral affinity measure (same subject as hown in Figure 5-10). Clusters are 
located in the following regions: the cingulum bu dles (superior and inferior portions) 
in green and purple, part of the cerebral pedunc ! eslinternal capsule/corona radiata 
in purplish brown, part of the uncinate fasciculi in blue, and the middle cerebellar 
peduncle in shades of yellow. These are individdal clusters found by the algorithm 
except for the middle cerebellar peduncle, where several clusters are displayed. 



5.3.2 Population Clustering 

Data and Parameter Settings 

We employed the population clustering method to cluster tractographic paths in a 

population of 5 brains (a subset of population I, described in Appendix A). The trac- 

tography settings were: voxel seeding where FA > 0.3, termination of tractography 

where FA < 0.1 or curvature > 1.1, and minumum path length of 30mm. The mean 

was used for symmetrization of distance values. The total number of tractographic 

paths from all brains was 36,003. We randomly sampled 1000 tract paths from the 

population to form A. We then performed spectral clustering to generate 100 clus- 

ters. These results are from our original population clustering experiment (for more 

details see [87]) before we refined parameter settings, which is why FA and curvature 

were used. Since these scans were acquired with AC-PC alignment (see Appendix A) 

we explored performing clustering without rigid registration. 

Results 

The output population clusters are shown in each subject in Figure 5-12. The cor- 

respondence of the colors directly demonstrates the correspondence in embedding 

space: the first three components of the cluster centroid embedding vectors were 

used to define red, green, and blue. In Figure 5-13 we provide more detailed anatom- 

ical correspondences in the corpus callosum, cingulum, and uncinate regions. These 

regions were selected after anatomical labeling of clusters. The cluster indices aren't 

in themselves significant, but clusters 3, 8, 12, 14, 19, 33, 54, 66, 77, and 81 were found 

to correspond to the corpus callosum, cluster 31 contained both cingulum bundles, 

and clusters 29 and 42 represented the uncinate fasciculi. These anatomical regions 

are displayed in all brains to demonstrate correspondence. 



Figure 5-12: Anterior, right, and superior views of the five brains in the population. 
The colors demonstrate correspondence via spectral embedding. From [87]. 
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Figure 5-13: Anatomical correspondences after expert labeling: selected clusters, 
displayed in all 5 brains. The two leftmost images illustrate the corpus callosum 
clusters, viewed superiorly and from the right. Of the 100 clusters found, 10 were 
manually labeled as belonging to the corpus callosum. The third images from the 
left demonstrate a single cluster containing the cingulum bundles, viewed superiorly. 
Finally, the right most images illustrate the two clusters that contain the left and right 
uncinate fasciculi, viewed anteriorly and from the right. From [87]. 



Discussion of Population Clustering Results 

In Figure 5-12, note that in the fourth brain (from the top), the brain stem is angled 

very differently from the rest of the brains. This brain was misregistered to the 

rest due to the rotation about the left-right axis (head tilt). Since these scans were 

acquired with AC-PC alignment (see Appendix A) we explored performing clustering 

without rigid registration. The robustness of the method is demonstrated by the 

overall success of the correspondence. This demonstrates the capture range of the 

similarity measure in combination with the spectral embedding. Because the affinity 

measure falls off gradually with distance, when paths from several brains have similar 

trajectories which are near each other but not perfectly aligned, the paths are able to 

map near each other in the embedding space. A path in one brain does not have to 

be similar to corresponding paths in all other brains; if it is similar to paths in some 

other brains, and those are similar to paths in the rest of the brains, the long-range 

similarities are automatically discovered by the spectral embedding. This advantage 

of spectral clustering has been demonstrated in a clustering example in [40], where it 

was shown that all input data points on the perimeter of a circle could map to the 

same cluster. 

As seen in the body of the corpus callosum of the first subject in Figure 5-13, 

the output of tractography may vary across subjects when there are differences in 

the DTI data. Some of the DTI data used for this population clustering experiment 

was from schizophrenic subjects, and the first subject had visible differences in major 

eigenvector orientation in several coronal slices in the area where the corpus callosum 

generally begins to curve superiorly. It can be seen that tractography halted here, and 

there are fewer paths in the body of the first subject's corpus callosum than in the 

other subjects (likely because the paths did not pass the length threshold). However, 

the clustering did manage to group the paths in this region with the corpus callosum 

clusters. When applying our method to a population of mixed controls and patients, 

it is important to be aware of possible differences in the DTI data across subjects. 



5.4 Discussion of Fiber Tract Clustering Method 

5.4.1 Choice of Clustering Algorithm 

Our choice of spectral clustering for the application of whole-brain tractography seg- 

mentation was originally motivated by the fact that very large datasets may be clus- 

tered by using the Nystrom approximation, because pairwise affinities do not need to 

be computed for all possible pairs of paths from tractography. The Nystrom approx- 

imation allows us to cluster a larger number of paths per brain than other published 

methods 118, 431 and enables population clustering: we are able to cluster many sub- 

jects at once to learn a representation of their common anatomy. To give an idea of 

the numbers of paths involved, there are about 256 x 256 x 50, or 3 million, voxels in 

a dataset, and seeding (initiation of tractography) in a subset of white matter voxels 

produces upwards of 10,000 paths per subject. With the Nystrom method, we don't 

need to store affinity matrices of over 10,000 by 10,000 in memory nor find their 

eigenvectors directly. 

The other clustering method that has been applied to the tractography cluster- 

ing problem is hierarchical clustering. Agglomerative hierarchical clustering methods 

iteratively join similar items until some threshold is reached. Such methods don't 

require precomputation of large affinity matrices because the affinity values can be 

computed during the clustering operation. However the hierarchical clustering meth- 

ods in a sense make more local decisions than spectral clustering, because in spectral 

clustering many affinity values are used simultaneously to compute an embedding. 

The hierarchical clustering methods lend themselves less well to matching of clusters 

across subjects because they lack the useful embedding space representation. 

An important advantage of our approach is the representation of each path via 

spectral embedding, which allows us (see Chapter 6 )  to learn the locations of popu- 

lation tractography clusters in the embedding space, and to apply this information 

to embed and label novel datasets. The fact that clustering is based only on pairwise 

affinities is also an advantage for the application, because our choice of pairwise tract 

affinity measure is relatively robust to slight misregistrations or anatomical differences 



when clustering. Other attractive properties of spectral clustering are the underlying 

minimization of the Normalized Cut values (giving clusters with high within-cluster 

similarity and low between-cluster similarity) and the inherent noise reduction by 

using only the top eigenvectors. The downside of spectral clustering (and indeed of 

many computer vision methods) is the need to investigate multiple parameter settings. 

However for the application of whole-brain clustering the same clustering parameters 

work reasonably for all subjects, as demonstrated by the similarity of the tractog- 

raphy segmentations we calculate across subjects (shown in the Results sections of 

this and later chapters). Chapter 8 of this thesis addresses parameter settings and 

reproducibility. 

5.4.2 Tractography as Input 

The main issue with the presented method is that it depends on paths from tractog- 

raphy, a process prone to errors due to noise and partial volume effects, with limited 

validity in regions of low tensor anisotropy. The alternative approach of working 

directly in voxel space to cluster or segment tensors by defining a suitable voxel-to- 

voxel similarity measure is possible, however capturing long range connectivity may 

be much more difficult. In addition, when specifically clustering voxels it would be 

difficult to allow more than one tract to share a voxel, unlike our method which al- 

lows any paths to be clustered together, regardless of their relationship to voxels. Our 

method is a reasonable approach to take, despite its reliance on tractography. Al- 

though each individual path from tractography may have errors, when taken globally 

as  an entire dataset and segmented in the same way across subjects, the results are 

strikingly similar across subjects (as seen in this chapter and the next). 

Our method is also general: our method can be applied without any modifications 

to paths produced by another tractography algorithm or paths through data with 

another diffusion model (such as the ODF model described in chapter 3). With 

current DTI data, some white matter tracts such as the anterior commissure are not 

defined well by tractography. Consequently as tractography and diffusion MRI data 

improve in the future, our method can be applied to improved input tractographic 



paths. 

5.4.3 Tractography for ROI  Definition 

The opinion that tractography is useful in defining regions of interest is prevalent in 

the DTI analysis field, as much recent research has focused on such methods. The 

current state of the art uses manual interactive methods (as discussed in Chapter 3) 

to define regions of interest, either by converting trajectories to a voxel representation 

or by sampling tensors along the trajectories. For example, interactive definition of 

a (voxel) region of interest using tractography has been shown to be more robust 

than manual outlining of the same region [93], and several studies including 128, 45, 

54, 561 have employed interactive methods for tractography segmentation and used 

the trajectories for measurement of scalar invariants. Our global population clusters 

are a useful and relatively robust method for defining regions of interest in the white 

matter. Our method allows identification of regions in tractography (see the results 

in this and the next chapters) which are common in an entire population of subjects, 

as opposed to the manual interactive approach which necessitates detailed three- 

dimensional neuroanatomical knowledge and analyzes a single subject at a time. 

5.4.4 Motivation for Atlas Generat ion 

It makes sense to ask how the population clustering method would scale to a large 

population of brains. With limited random sampling of paths from each subject, a 6 4  

bit computer with enough memory to hold the affinity matrices, and the willingness to 

wait for clustering to finish (currently it takes from 45-75 minutes to cluster approx- 

imately 30,000 paths and for a large population that would increase6), large-scale 

population clustering could (and should) be attempted. However, in the standard 

case where one performs a study and may want to add additional subjects as they are 

'Each iteration of k-means computes the squared distance from each of the n points to all k 
centroids, where the distance computation uses a number of operations proportional to the number 
of dimensions, d, of the embedding space. The maximum number of iterations is a constant (a 
parameter of the method in the implementation we are using), so the running time to calculate a 
k-means clustering is O(dnk). 



scanned, or for the case in which one would like to use population cluster information 

to label a novel brain, the ability to cluster a large number of subjects would not solve 

the problem at hand. For these reasons, in the next chapter we propose a method 

that allows us to take advantage of what we have learned from group clustering and 

apply that information for novel subjects. The group clustering is used to define an 

atlas embedding space, and we map tractography from novel subjects into that space 

in order to automatically segment tractography. This extension of our method makes 

it suitable for practical application to any DTI dataset, without needing a powerful 

computer or even performing the slow clustering step. However the true power of the 

method comes from the ability to associate additional anatomical information with 

each cluster, and transfer it automatically to a new subject. This allows consistent 

grouping and visualization across subjects without time-consuming manual interac- 

tion, and it addresses the real problem at hand for users of tractography, namely how 

to find the corpus callosum/uncinate fasciculus/etc. in every subject. 

5.5 Summary 

In this chapter we presented our framework for single- and multiple-subject trac- 

tography clustering, including a method for finding cluster correspondences across 

hemispheres. We demonstrated multi-subject cluster correspondence results from the 

application of the method to a small population of five subjects, and bilateral anatom- 

ical matching results from two subjects, illustrating matching clusters in the arcuate 

fasciculus region and in the cingulum, uncinate, and corticospinal regions. In the 

next chapter these clustering ideas are extended to perform high-dimensional atlas 

creation, enabling automatic segmentation and anatomical labeling of tractography 

from novel subjects. 





Chapter 6 

A White Matter Fiber Tract Atlas 

Our automatic atlas-based white matter tractography segmentation method1 has two 

parts: high-dimensional atlas generation and automatic tractography segmentation. 

The method is illustrated in Figure 6-1. 

High-Dimensional Atlas 
with Anatomical Labels 

a 9b i 

Automatic Segm 

Figure 61 : Overview of our method. In atlas generation, clustering of tractography 
from multiple subjects discovers common white matter structures that are anatom- 
ically labeled and stored in a high-dimensional atlas. The atlas is then used to 
automatically segment and label tractography from a new subject . 

In this chapter we define a framework both for building white matter atlases and 
p--p 

'Some portions of this chapter have been previously published in [88] and [89]. 



for labeling novel brains using such atlases. The atlas generation process automati- 

cally finds white matter structures present in a group of tractography datasets and 

it has a natural extension to allow automatic segmentation of those structures in 

new datasets, as illustrated in Figure 6-2. The atlas is created by learning a pop- 
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Atlas Generation Automatic Segmentation 

Figure 6-2: Example of atlas generation process (left) and automatic segmentation 
(right). Normally we create an atlas by clustering multiple subjects, but to illustrate 
the idea we use the clustering example presented in Chapter 4. Spectral embedding 
of paths from tractography (left) is performed as described in Chapter 5. (These are 
the real embeddings of this data, not cartoons.) The embedding space (the first three 
dimensions are shown here) is then annotated with anatomical informakion using 
expert knowledge. Then embedding can be performed for new paths (right). Each 
new path is represented as a point in the atlas embedding space (we explain how in 
this chapter). The new paths are automatically segmented and labeled according to 
the original clusters. 

ulation clustering in spectral embedding space, then associating expert anatomical 

knowledge with each cluster. The stored cluster information is represented in the 

high-dimensional spectral embedding space described in Chapters 4 and 5. We call 

our high-dimensional representation of white matter structure an atlas, however it 

differs from traditional digital (voxel-based) atlases because it represents long-range 

connections from tractography rather than local voxel-scale information. To auto- 

matically segment a novel brain, we embed its paths in the high-dimensional atlas 

embedding space using the Nystrom method and label the paths by assigning them 

to the nearest cluster centroid. Our work can be applied both to visualization of fiber 

paths (performing automatic organization of the thousands of input trajectories to 



display) and to population studies of white matter. 

In this chapter we first present related work, then we explain the method, showing 

how to embed novel data to take advantage of the existing Normalized Cuts spectral 

clustering solution. Finally, we demonstrate the application of the method to two 

different dat asets. In our initial atlas-building experiment we perform population 

clustering on a five subject dataset, and show that the atlas which is produced can 

generalize to label a sixth subject. The second experiment uses a larger dataset: we 

create an atlas using ten brains (where a random sample of paths is used from each) 

and we use the atlas to segment 10,000 paths each from the ten training subjects and 

from five additional subjects. In the results section we show anatomical regions that 

are learned by the method, its application to corpus callosum subdivision, and FA 

measurement results from the fifteen subjects. 

6.1 Related Work 

This is the first work to use unsupervised tractography clustering to enable atlas 

creation. We are aware of three related tractography segmentation approaches which 

use atlas information, all demonstrated in the past year. Maddah et al. manually cre- 

ated a fiber tract atlas from a single subject and used it to label tractography from 

multiple subjects [73]. Their further work created an atlas using labeled tractography 

from several subjects (results were shown in the corpus callosum) and used an EM 

framework to classify paths from novel subjects (721. Their atlas contained statistical 

models of fiber tracts created from expert labeled tractography, represented as the 

average and standard deviation of paths in fiber bundles, where the paths were repre- 

sented using spline coefficients [72]. Another approach to clustering of tractography 

by Xia et al. incorporated information from a gray matter atlas [131]. 

Related work exists for the general white matter segmentation problem: a rule- 

based parcellation method has been proposed to label regions of standard anatomical 

MRI data [74]. Specifically for parcellation of the midsagittal plane of the corpus 

callosum (one goal which can be achieved with our method), there is a large body of 



selatt?d work including the seven Witelson subdivisions of the midsagit t a1 slice 11291 

which have inspired a rule-based parcellation into seven segments 1741. Subdivision of 

the corpus callosum is of interest because many studies have localized inter-subject 

differences to specific regions of the corpus callosum, for example in callosal atrophy 

with age [97] and in FA changes in Alzheimer's disease [N]. DTI-based approaches 

have mostly aimed to parcellate according to whether corpus callosum tractography 

goes to temporal, occipital, frontal, or parietal regions [49, 109, 311 though one method 

employed a statistical model of tractography based on the Witelson subdivisions 

[72]. Another method parcellated the occipital c~nnect~ions of the corpus callosum 

based on cortical segmentation from fMRI visual field maps [36]. Unlike our method 

which finds clusters in an unsupervised way using only DTI tractography, all of these 

mnethods employ some type of additional knowledge (rule-based subdivision, cortical 

segmentsation or expert tractography). 

In the machine learning literature, using spectral clustering for embeddi~lg novel 

data was proposed by Bengio et al. in 2004 [15]. Bengio et al. describe how to embed 

out-of-sample (non-training) data using the Nystrom method, for various methods 

of spectral embedding including Normalized Cuts and MDS [15], but they do not 

discuss use of clustering results in the embedding space for labeling or segmenting 

the out-of-sample points. In contrast, our approach segme~its novel data using spec- 

tral embedding and the results of an existing clustering solution, and we augment 

the learned cluster model with additional anatomical information specific to our seg- 

mentation problem. Bengio et al. see the pairwise affinity and matrix normalization 

steps together as a data-dependent kernel that is learned from the training data and 

applied to the novel data [15]. Other related work is the Nystrom extension to Nor- 

malized Cuts by Fowlkes et al. [40] on which our approach is based. However Fowlkes 

et al. discuss only eigenvector approxiniation of a matrix where all data is a t  hand, 

not the use of the method for embedding new data. It has also been pointed out that. 

the embedding of new data via the Nystrom method is equivalent up to scale factors 

to the method of projection onto eigenvectors of kernel PCA 11271. In this chapter we 

show specifically how to embed novel data using the franiework for Normalized Cuts 



spectral clustering and matrix normalization of Fowlkes et al. [40], and we show that 

our tractography data can be segmented according to its distance to existing atlas 

cluster centroids. 

6.2 Methods 

Our method includes both high-dimensional atlas generation and segmentation of 

novel subjects using the atlas. In this section we explain these two parts of the method 

and describe the contents of the atlas. In addition we show how the segmentation 

results can be used to measure scalar invariants in corresponding anatomical regions 

in multiple subjects. We also describe how the tractography clusters may be converted 

to voxel ROIs (regions of interest). 

6.2.1 Atlas Generat ion 

The steps in atlas generation are the same as those explained for population clustering 

in Chapter 5, including production of whole-brain tractographic paths for all subjects, 

group clustering, and expert anatomical labeling of clusters. Our high-dimensional 

white matter atlas contains the following: cluster centroids in the spectral embedding 

space, information for embedding a novel subject's paths in this space using the 

Nystrom method, and anatomical labels for each cluster centroid. The full contents 

of the atlas are listed in Table 6.1 and will be further explained in this section and 

the next. 

To motivate why this information is needed in the atlas and to provide background 

information for the next section on labeling novel subjects, we give a brief summary of 

the Nystrom method here. For more details see Chapter 4 of this thesis and [40, 1271. 

The Nystrom method approximates the value of each eigenvector for a new data 

point: 

where u is the matrix of output eigenvectors, U and A contain the eigenvectors and 
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Table 6.1: Contents of the high-dimensional atlas. Information used for affinity com- 
putation is listed first, followed by information used for matrix normalization and 
spectral embedding, and then by information used for classification and labeling. 

Atlas Data 
paths 

Dpamm 

0 

A-'b, 
a,. + b, 

UA-I 
centroids 

labels 
colors 

7 

eigenvalues of A (the n x n matrix of pairwise affinities for a randomly sampled subset 

of n paths out of the total N paths), and the n x (N - n) matrix B holds the affinities 

for the paths to which we want to extend the eigenvector solution. The affinities in B 

are calculated by comparing the n sampled paths to all ot,her ( N  - n)  paths, giving 

an n x ( N  - n)  matrix. The matrices A and B are parts of the whole affinity matrix 

between all pairs of paths as shown in Figure 6-3. 

Figure 6 3 :  Diagram of the parts of the affinity matrix and row sums for atlas con- 
struction. A and B contain affinities for all subjects and C is never computed. The 
row sums of each part of the matrix (those for C are estimated) are shown at right. 

Description 
Random sample of paths used for affinity computation (those 
whose pairwise affinities are in the matrix A). 
Parameters of distance computation (for mean closest point dis- 
tance this is the method for symmetrization: mean or minimum). 
Parameter in conversion of distances to affinities. 
For estimating row sums of affinities which are not computed. 
Row sum of A and B in atlas affinity matrix (equivalent to column 

). sum of 

Basis vectors for embedding space. 
Cluster centroids in atlas embedding space. 
Anatomical information associated with each centroid. 
Colors to use for display of each cluster and anatomical structure. 

- - 
A *, - 



For matrix normalization (needed for Normalized Cuts spectral clustering) the 

row sums of the entire affinity matrix are estimated from the calculated affinities as 

where a, and b, are vectors containing the row sums of A and B, and b, is the 

column sum of B (401. d is a column vector containing the sum for each row. (Note 

that here A and B refer to those matrices before the normalization operation.) 

To map new paths into the atlas embedding space, the necessary information is 

the random sample of input paths used in the affinity calculation, the parameter 

settings for computing distances and affinities, the basis vectors in UA-', the matrix 

A-'b, for estimating the row sums, and the row (also column) sum a, + b,. Table 

6.1 lists the contents of the atlas. 

6.2.2 Atlas-Based Automatic Segment at ion: Extending Spec- 

tral Clustering to New Data 

Our framework provides a natural way to transfer the atlas information to a new 

subject. To apply the atlas to segment a novel subject, each new tractographic 

path is embedded in the same space in which clustering was performed originally. 

Then cluster labels and anatomical information are assigned according to the nearest 

cluster centroid. In this section we describe how the contents of the atlas are used 

for automatic tractography segmentation in four steps: (1) affinity computation, (2) 

matrix normalization, (3) spectral embedding, and (4) classification and labeling. 

Step 1: Affinity Computation 

Figure 6-4 shows the parts of the affinity matrix with a novel subject included. S 

holds affinity values for the new subject. To classify a new path, its distance is first 

measured to each path in the random subset of paths that was chosen during atlas 

creation. The distances are sy~nmetrized using the same method (mean or minimum) 



that was employed in atlas creation. Next, the distances are converted to affinities 

using the same o value as in at,las creation. This produces a new row in the affinity 

matrix for the novel subject (a row of ST in Figure 6-4). See Chapt*er 5 for details on 

distance and affinity computation. 

Figure 6-4: Diagram of the parts of the affinity matrix for extension of spectral 
embedding to new data. S contains affinities for embedding a new subject and D 
is not computed. S is shown as having a large size to eniphasize t'hat we can label 
a large number of paths per subject with this approach, without the overhead of 
actually clustering that many paths using k-means in tlic embedding space. The 
clustering takes around an hour for a moderate sized atlas but the labeling of a new 
subject does not need that tirne-consuming step. 

Step 2: Matrix Normalization 

To perform embedding using the Normalized Cuts framework, the row must be nor- 

malized by division of each element by the square root of the row and column sums at 

that location [40]. The required row sums are estimates of the row sums of [ST D*] 

in Figure 6-4, which can be calculated as 

where sc is the column sum of S. For normalization of each row by column sum we 

employ the column sum from the original matrix, 



Performing the scaling in this way makes sense for two reasons. First, if we 

re-embed a path that we have already seen (whose information was in A or B) it 

will be mapped to the same location in the embedding space, because the matrix 

normalization will be the same. This is why the column sum should not be updated 

with new information from S. Secondly, we would expect that each individual new 

path (row of ST) would not significantly change the column sum (6.4) of the entire 

original affinity matrix, due to the fact that thousands of paths are used in creation 

of the original atlas affinity matrices. Thus the scaling applied to a novel path (row 

of ST) is basically the same as that which would have been applied if it were part of 

the original clustering problem. 

S tep  3: Spectral Embedding 

After normalization of the S matrix, the eigenvectors are estimated using the Nystrom 

method: 

us = sTun-l (6-5) 

and the Normalized Cuts embedding vectors (4.39) are given as the rows of us, each 

divided by the square root of the corresponding row sum from d,,. This is the same 

as the embedding process employed for the B matrix in atlas creation. 

S tep  4: Classification a n d  Labeling 

Finally, automatic segmentation is performed by applying the cluster information 

from the atlas to the new embedding vectors. The new subject's embedding vectors 

are labeled according to the nearest cluster centroid, giving a cluster label for each 

path. In addition, the per-cluster anatomical labels and any additional information 

(for example the color to use for display of the anatomical structure) are transferred 

to the novel subject. 



6.2.3 Quantitative Measurement of Scalar Invariants 

We use the clusters obtained via automatic segmentation as regions of interest for 

quantitation of scalar invariants of the diffusion tensor field (such as FA and trace). 

We sample tensors a t  locations along the paths, then we calculate the invariants. 

Currently our paths are represented as points with 0.5 mm spacing, so a tensor 

is sampled every 0.5mm. Any scalar invariant (CL, FA, mode, trace, eigenvalues, 

etc.) or the tensors themselves can be measured. Since we have automatic cluster 

correspondence, statistics may be dome to compare the invariants in each cluster across 

populations. In this chapter we present, results showing mean values of invariants in 

clusters arid anatomical regions. In t.he future, obtaining point correspondences based 

on alignment of paths from tractography as proposed in 1321 will allow statistical 

analysis of features along white matter t-racts. 

Related work on t ractography- based quantitation of scalar invariants includes re- 

cent work on fiber-tract oriented statistics which uses a Riemannian framework for 

tensor samplinglaveraging [32]. This and related methods attempt to average tensors 

such that the average of two tensors with the same determinant will have that de- 

terminant, rather than a possibly higher determinant as with linear componentwise 

averaging. However, the determinant of the diffusion tensor has not, to our knowl- 

edge, been shown to have any biological utility. The trace of the tensor, on the other 

hand, is the only attribute of the tensor which is in clinical llse (for early stroke detec- 

tion as described in Chapter 3). The trace is known to be nearly constant in all of the 

white and gray matter [94], thus focusing on the trace when interpolating would seem 

to be a logical approach. Linear componentwise interpolation of two tensors with the 

same trace will produce a tensor with that trace. We do not advocate that trilinear 

componentwise interpolation of tensors is the best interpolatio~i method for sampling 

from a tensor field (there clearly are more advanced kernels for interpolation, and it is 

likely that sampling from the original diffusion-weighted images then conlputing the 

tensor is the best approach), however the current focus of our work is not on tensor 

interpolation rnethods. The trilinear interpolation method is available to us and we 



have used it for sampling tensors to produce the measurement results given later in 

this chapter. 

6.2.4 Creation of Voxel ROIs 

Similar to the approach used by Mori et al. to color image slices according to trac- 

tography [SO], we can use our clusters to label voxels. Our current approach is to 

label each voxel with the ID number of the cluster which has the maximum number 

of paths that pass through the voxel. Another possible method is fractional labeling, 

where each voxel would preserve information about the percentage of paths crossing it 

from each cluster. As an alternative to sampling tensors along paths, the voxels of the 

original DTI dataset could be labeled in this way according to cluster or anatomical 

structure, allowing direct use of the original tensors for measurement. In the future 

we would like to investigate both approaches for calculation of scalar invariants, Sam- 

pling and voxel measurement. In the Results section we demonstrate use of clusters 

to create voxel ROIs in the region of the midsagittal plane of the corpus callosum. 

6.3 Experimental Results: Atlas 1 

6.3.1 Methods 

In the first atlas creation experiment, we analyzed DTI data from 6 subjects from 

population I (see Appendix A). Since the datasets were acquired with AC-PC align- 

ment we explored performing atlas creation without an additional group registration 

step. We used tractography from subjects 1-5 for atlas creation then we segmented 

tractography from subject 6 using the automatic atlas-based segmentation process 

described in this chapter. Tkactography was performed in each subject using Runge- 

Kutta order two integration with the following parameters: seeding threshold of CL 

0.35, stopping threshold of CL 0.2, step size 0.5mm, and minimum total length 50mm. 

5,000 paths from each of subjects 1-5 were used in clustering and 5,000 paths were 

labeled from the subject 6. For affinity computation we used the mean closest point 



distance, 0 of 60mm, and mean symmetrization. 1,500 paths were used to create A, 

20 eigenvectors were used for embedding, and 100 clusters were generated. (Chapter 

8 gives results relevant to these parameter choices.) Images were made of t*he whole 

brain clusteri1ig/labelir1g and of selected clusters in all brains. 

6.3.2 Segment at ion Results 

Anatomical regions which were found in atlas clustering are shown in Figure 6-5. All 

200 clusters are show11 in the top rows of images, followed by specific regions in the 

lower images. These images show a~t~omat ic  cluster correspondence across subjects 

as well as generalization of the atlas to label the 6th (novel) subject. 

6.3.3 Discussion 

We have chosen to label novel paths using the nearest centroid, not the nearest* 

embedded point. This allows our atlas to be compact (we only need to store the 

centroids) though it would make sense to investigate the behavior of the labeling 

at the borders between clusters. hi Chapter 8 we give results regarding clustering 

stability vs. number of clusters for a single brain. 

Unlike Atlas 2, Atlas 1 was created without an additional registration step. The 

effect can be seen for exarnple in the cingulunl region, where four clusters were found. 

Note the different-colored cingulurn bundles in the two rightmost brains in Figure 

6-5, which were translated slightly above the rest. 



Figure 6-5: Atlas 1: atlas clusters (left) and a novel subject labeled with the at- 
las (right). The coloring is by the first 3 embedding coordinates. The regions by 
row, starting from the top, are: whole brain (anterior); whole brain (superior); cin- 
gulum bundles, occipitotemporal, occipitofrontal, and uncinate region (from right); 
arcuate fasciculus/SLF and uncinate (from left); and cerebral peduncle/internal c a p  
sule/corona radiata region (from left). Despite the fact that the subjects were slightly 
misregistered (which affected the clustering, producing for instance several colors in 
the cingulum region), the atlas can generalize to label the sixth subject. 
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6.4 Experimental Results: Atlas 2 

6.4.1 Methods 

In the second atlas creation experiment, we analy~ed DTI data from 15 subjects from 

Population I1 (see Appendix A). Group registration of subject fractional anisotropy 

images was performed using the congealing algorithm [I351 to calculate rotation, 

translation, and scaling (no shear terms). This registration was then applied to the 

paths generated via tractography. To form the atlas, we used tractography from 

subjects 1 through 10 for clustering and anatomical labeling. Tractography was per- 

formed in each subject using Runge-Kutta order two integration with the following 

parameters: seeding threshold of CL 0.25, stopping threshold of CL 0.15, step size 

0.5mm, and minimum total length 25mm. We used the midsagittal reflection method 

for distance computation, where the midsagittal plane was defined using the average 

group registered FA image. For affinity computation we used the mean closest point 

distance, a of 30mm, and minimum symmetrization. 

To create the atlas, 3,000 paths were randomly selected from each of the 10 sub- 

jects as input to the clustering, giving 30,000 total paths to cluster. The size of the 

random sample used to create the A matrix was 2,500, 20 eigenvectors were used 

for embedding, and k = 200 clusters were generated. Finally, the 200 atlas clusters 

from each subject were visually inspected and labeled with anatomical names. Due 

to the fact that tractography may cross from one anatomical structure to another, 

these anatomical labels represented the best approximate description of the regions 

discovered in group clustering. 

We then performed automatic segmentation of tractography from all 15 subjects 

using the atlas. We labeled 10,000 paths from each of the 15 (10 used in atlas creation 

plus 5 novel) subjects using the atlas. This 10,000 was a random sample from the 

total tractography for each subject, which contained between 80,000 and 100,000 

paths. (Note that in the 10 training subjects, this random sample was unlikely to 

contain many of the 3,000 paths which were used for clustering during atlas creation, 

so performing segmentation of the 10,000 paths was not the same as re-classifying the 



original data.) 

The 10,000 labeled paths per subject were then used to produce the results shown 

in this chapter. First, images were created to show selected clusters/anatomical re- 

gions of interest for all subjects. Voxel regions of interest (voxel segmentations) were 

also created for each subject's midsagittal plane, using the clusters in the region of 

the corpus callosum to perform corpus callosum parcellation or subdivision. Mea- 

surements of FA and other scalar invariants were then made within clusters and 

anatomical regions for each subject. 

6.4.2 Segment at ion Results 

Ten training subjects and five novel subjects were labeled using the atlas, and Figures 

6-6 through 6-8 display several views of the whole-brain segmentation result from 

all subjects. In each figure, the top two rows contain the training data and the 

bottom row contains the test data (the novel subjects). Note that the labeling is 

consistent across subjects, and that major structures such as the corpus callosum, 

arcuate fasciculus, uncinate fasciculus, etc. are found and labeled by the automatic 

segmentation method. Some clusters are not shown in these images, in particular the 

u-fibers (small tracts near the cortex). 

Figures 6-9 through 6-11 focus on results in specific white matter regions. Figure 

6-9 demonstrates the success of the segmentation in the bilateral uncinate fasciculus 

and arcuate fasciculus regions. Figure 6 1 0  shows the performance of the method 

in the limbic system. There are some challenges to the method in the region of the 

fornix (green) where tractography is more variable (as seen in the figure, trajectories 

may cross to the corpus callosum, anterior thalamic radiation, or traverse part of the 

arcuate and terminate near the fornix). Figure 6-11 displays the individual clusters 

which were found in the cingulum region. This illustrates one of the strengths of the 

atlas representation: in the atlas we are able to store the expert information that 

these clusters represent the same anatomical structure. 
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6.4.3 Automatic Corpus Callosum Subdivision 

The corpus callosum region contained 32 clusters. The clusters were manually grouped 

into 12 regions (to simplify the display of the results) and assigned unique colors. The 

results for all subjects are shown in Figure 6-12, and example midsagittal plane voxel 

segment ations are demonstrated in Figure 6- 13. 

Figure 6-12: Automatic subdivision of corpus callosum in all subjects. Training 
subjects are in the top two rows, followed by test subjects in the bottom row. 

Figure 6-13: Automatic subdivision of corpus callosurn, converted to 2 x 2 x 2 mm 
voxels, in three exa.mple subjects. 

6.4.4 Measurement of Scalar Invariants in the Population 

Figure 6-14 shows the mean FA measured in selected anatomical regions in all sub- 

jects. The FA was measured bilaterally (both hemispheres together). The mean FA 



is relatively similar across subjects (in each structure) yet differs across structures, 

as would be expected from anatomically consistent group measurements. We have 

used bar graphs in order to show the pattern across subjects where some were found 

to have consistently high or low FA relative to other subjects, as seen clearest in the 

corpus callosum and "corona radiatae" graphs. Note that for lack of a better term, 

we have used "corona radiatae" to refer to the large structure including part of the 

cerebral peduncles, internal capsule, and corona radiata proper. 

Corpus Callosum FA Corona Radiatae FA Uncinate Fasciculi FA 

Figure 6-14: Mean FA in three regions for 15 subjects. The bar graph format shows 
the pattern that some subjects have generally higher or lower FA than others. 

Figure 6-15 shows scalar invariants (FA, CL mode, and trace) measured in each 

structure for all 15 subjects. The measurements are displayed as dots and each 

subject's values are connected with a colored line to show the pattern across subjects. 

6.4.5 Discussion 

Overall the correspondence of the structures across subjects is very good. This is 

shown by the images, by the consistency of the FA measurements across subjects and 

within structure, and by further experiments performed in Chapter 8. However in 

some regions the tractography is more variable and may cross between structures, 

as demonstrated in the fornix region in Figure 6-10. Another example is seen in 

Figure 6-1 1 in the cingulum cluster that includes trajectories that take the posterior 

anatomical curve (this is anatomically correct but rarely seen in the tractography, so 

this cluster result is less compact or similar within cluster). These regions present 



0.8c CR UF AF OT de O - ~ C  l c ~  u ' ~  AF OT dB 
Mode Trace 

Figure 6-15: Scalar invariants in all regions for 15 subjects. Colors are per-subject (i-e. 
blue connects the dots from all measurements from one subject, cyan another, etc. 
to show the pattern across subjects). Abbreviations are: CC, corpus callosum; CR, 
corona radiatae; UF, uncinate fasciculi; AF, arcuate fasciculi; OT, occipitotemporal 
fasciculi; and CB, cingulum bundles. The arcuate measurements were made in one 
bilateral cluster containing the traditional C-shaped fibers. 



challenges to the method, and it will be of interest in the future to try to detect 

unusual or crossing paths. 

As regards the group registration step for Atlas 2, we did not use any shearing or 

nonrigid warping because those operations, when applied to the tensor fields, could 

change the trajectories of the paths from tractography. Rather we used translation, 

rotation, and scaling, which keep each trajectory the same shape, and produce the 

same result whether applied to the tensors or the paths (we applied the transforrna- 

tions to the paths). Because our method is relatively robust to slight misregistrations 

(as mentioned in the Discussion section in Chapter 5) due to the capture range of the 

similarity measure, it may not be necessary to use nonrigid registration for tractog- 

raphy atlas creation. 

Our method for corpus callosum subdivision is unlike other methods which are 

rule-based [74] or depend on information from a gray matter segmentation [49, 109, 

311, because our method learns a parcellation in an unsupervised way based on DTI 

tractography data alone. It is not clear at this point whether this is an advantage 

over using more information, however we point out that it allows us to find finer 

subdivisions than methods which have subdivided into 4 or so regions based on cortical 

segmentations. It is also promising that the parcellation can be learned from a group 

of subjects rather than imposed by predefined region or cluster definitions. 

6.5 Summary 

We have shown how to extend a Normalized Cuts spectral clustering solution to label 

new examples using the Nystrom method. Using this technique, we have extended 

our population clustering method to create a high-dimensional white matter fiber 

atlas which we have used to automatically segment tractography from novel subjects. 

We have presented segmentation results both of whole- brain tractography and of 

voxels in the midsagittal plane of the corpus callosum (a new method for corpus 

callosum subdivision). We have also demonstrated that this method can be used 

to measure scalar invariants of the tensor field in automatically defined regions of 



interest that correspond across subjects. Our ability to find corresponding white 

matter regions enables q~antitat~ive neuroscientific studies and investigations into 

white matter anatomy. 



Chapter 7 

Clinical Application: Neurosurgery 

In this chapter we presentthe results of a small investigation applying tract clustering 

to neurosurgical visualization. We believe that this is the first use of whole-brain trac- 

tography and of tract clustering for neurosurgical visualization. We begin the chapter 

with background information on neurosurgery and DTI in tumors, then we discuss 

neurosurgical planning questions that can potentially be addressed with DTI and 

with tractography clustering methods. Finally we present visualization results from 

two surgical cases. In one case, language function was interrupted during surgery, 

and the tract clusters we obtain support the hypothesis that the language interrup- 

tion was due to the proximity of the arcuate fasciculus to the tumor. Whole-brain 

clustering was performed on the two subjects retrospectively (after surgery) in collab- 

oration with Dr. Alexandra Golby (Assistant Professor, Department of Neurosurgery, 

Harvard Medical School). 

7.1 Introduction 

7.1.1 Tumors, Fibers, and Eloquent Regions 

The potential utility of DTI in neurosurgery becomes clearer when one realizes that 

the white matter fibers can't be seen during neurosurgery. Surprisingly, the unfixed 

brain has a consistency not dissimilar to Jello and portions of the brain can actually 



be resected (removed) using suction. Though the fibers can't be seen, a tumor may 

be more apparent): the co~lsistency of a tumor is different and can be more fibrous. 

During surgery, electrical stimulation of the cortex of the brain is used to inter- 

rupt neural function (speaking, counting, movement) in order to assess proximity to 

eloquent regions. The eloquent regions have measurable functions, as opposed to 

"silemt" regions of the brain. The electrical stimulation is done on the cortex, not in 

the white matter, so it does not directly provide information on which white 1natt)er 

regions are functional. 

7.1.2 DTI In Tumors 

The main potential use of DTI in neurosurgery is to evalua,te whether functional white 

matter is present in a tumor. However, DTI doesn't measure function, it measures 

structure, and it is not a simple problem to correlate DTI anisotropy measures and 

principal directions with white mattser functionality. However, by assuming that 

function is preserved in white matter that looks "normal" on DTI, methods have 

been suggested for assessing the integrity of fiber tracts. 

Using DTI color images1 the following categories have been introduced to describe 

white matter tracts in the vicinity of a tumor: displaced, edematous, infiltrated, 

and disrupted [130, 501. Their categorization was perfor~ried in the following way: 

Displaced tracts were said to be those with normal anisotropy but abnormal location 

or orientation. Edematous tracts looked normal (orientation and anisotropy) in the 

DTI color images but had high T2 intensity. Infiltrated tracts were those which had 

reduced anisotropy but could be identified with DTI color images. Finally, disrupted 

tracts were classified as such if they could not be identified on the DTI color images. 

In addition to tbhe clinical application of DTI colorrnaps, various groups have 

employed tractography to visualize the relationship between tumors and white matter 

[83, 11 1, 601. The author of this thesis was involved in one early (2003) investigation of 
p p p p p  

'These "DTI color" or "DTI colormap" images display the orientation of the principal eigenvector 
using red, green, and blue channels. The brightness of the image is ~ont~rolled by tensor anisotropy 
(usually FA). Examples are seen in Figures 3-4. 7-1. and 7-5. 



Table 7.1: Common Tumor Types in Adults (percentages from [I]) 

tractography for surgical planning [ I l l ]  which used the author's DTMRI module for 

DTI visualization in the 3D Slicer program [44]. In one recent paper, intraoperative 

tractography was used to visualize and quantify the shifting of white matter fibers 

(primarily the pyramidal tract but in one case the corpus callosum) that occurs 

during surgery [83]. This study found average shifts of 2.7 mm, with a range from 

-8 to +15mm, where negative and positive numbers indicated movements toward 

and away from the craniotomy opening, respectively. To our knowledge, other than 

in this investigation, whole-brain tractography has not been employed to date for 

neurosurgical visualization or planning. 

Common types of tumors and their characteristics are listed in Table 7.1. Malig- 

nancy in brain tumors is defined not by whether they metastasize, since this does not 

happen with primary brain tumors, but rather by how quickly they grow and by their 

cellular differentiation as measured by pathology (whether the cells look normal or 

have many mitoses, etc.). However tumors in other parts of the body can metastasize 

to the brain. 

Description 
From glial cells, supporting cells for neurons 
This is a broad category with a wide range of malignancy. 
Fkom meninges that cover the brain and spinal cord 
Located in pituitary gland (may secrete hormones) 
Located in pineal gland 
Originates elsewhere in the body 
Primary tumor, or rarely secondary (metastatic) 

Tumor Type 
Glioma 

Meningioma 
Pituitary 
Pineal 
Metastatic 
Lymphoma 

7.1.3 The Neurosurgical DTI Visualization Problem 

% 
50% 

15% 
10% 
1% 

In this section we aim to define the problem of DTI visualization for surgery, focusing 

especially on how to create useful tractography images. (Currently, Dr. Golby's lab 

primarily uses slice-based glyph visualization for presurgical DTL) We have created 

a list of questions relevant to neurosurgery that can potentially be answered with 

DTI or DTI-derived images, shown in Table 7.2. In Table 7.3 possible methods are 



proposed to answer each question. Later in this chapter we apply some of the methods 

to neurosurgical DTI visualization. 

Table 7.2: Neurosurgical planning questions potentially answerable by DTI and trac- 
t ograp h y. 

1 
2 
3 
4 
5 

Are the tracts symmetric across hemispheres? 
Are there tracts in the tumor? Behind the tumor? 
Exactly where is the 3D tractography in relation to the image slices? 
In which direction should the initial incision be made? 
How "true" is the tractography? 

Table 7.3: Proposed methods to address the questions. 

1 
2 

3 
4 
5 

Question 1 is "Are the tracts symmetric across hemispheres'?" This relates to 

the general concept that doctors analyze brain images by comparing the left and 

right sides to look for abnormalities. It is not clear how to do that with three- 

dimensional information from tractography. One potential method, listed in Table 

7.3, is to aid visual comparison of tractography in both he~nispheres by color-coding 

corresponding tracts on the right and left sides. This is not trivial as it depends 

on having either anatomical labels fur the tracts or an algorithm for rnatching them 

across hemispheres which is robust to pathology. (We have discussed an automatic 

solution to this problem that is sllccessful in normal brains, and we have presented 

results in chapters 5 and 6). 

Question 2 is "Are there tracts in the tumor? Behind the tumor?" This is espe- 

cially important, when deciding where to stop resectio~~ if t3he tumor borders a tract 

(mewing the tract is behind the tumor with respect to the resection path). The ques- 

t ion 'LWhat is in front / behind/inside t he tumor?" cannot be easily answered visually, 

Color code matching tractography on right and left. 
Color the part of the tractography that is inside the tumor, if tumor bound- 
aries are known. Otherwise color the tractography according to an MRI 
image which clearly shows the tumor. 
Show the tractography on the 2D images. 
Display the fiber orientation near the cortex for incision planning. 
Provide an estimate of how certain it is that the tract exists using anisotropy 
values or a bootstrap method. 



both due to computer graphics issues and to the fact that the true tumor border may 

not be known. In the 3D Slicer visualization system 1441, it is possible to make a 

surface model of the tumor semi-transparent to see what is inside, but then it is not 

possible to differentiate whether tractography is inside or behind the tumor. Answer 

number 2 in Table 7.3 lists potential methods to address this ambiguity by painting 

information from MRI images onto the tractography trajectories, augmenting the 3D 

view of the trajectories by coloring them where they pass through the tumor. We 

have tested these ideas in a surgical case, and the results are not conclusive but do 

provide more visual information than before (see Figure 7-4). 

Question 3 is "Exactly where is the 3D tractography in relation to the image 

slices?" This question, like the previous one, has to do with the 3D information being 

spatially unclear. When viewing tractography in 3D along with 2D image slices, the 

3D extension of a tractographic path often visually occludes its intersection with the 

2D slice and therefore with the tumor. One approach is to show the paths in the 2D 

slices instead or in addition to the 3D view. Painting voxels according to tractography 

is a method which has been employed by Mori et al. in creation of a voxel atlas [BO] 

and by Conturo et al. in one of the earliest DTI tractography papers [30]. 

The fourth question in Table 7.3 is "In which direction should the initial incision 

be made?" When neurosurgeons make the initial incision, they try to make it parallel 

to white matter fibers in order to cut as few as possible. They do not "scoop" out 

a cavity, but rather cut a line in the surface and then follow that direction inward. 

The orientation of this line 011 the surface is determined by the known anatomical 

orientation of the fibers, however this is not patient-specific and may not be correct in 

all cases. This orientation may vary in neuroanatornical illustrations, as in for example 

the fibers in Meyer's loop around the inferior horn of the lateral ventricles, where an 

incision is made to approach tumors of the ventricles. Images that illustrate which way 

the fibers are going below the surface, for example of the cortex of the brain, would aid 

in planning the orientation of the incision. We have not implemented any method to 

address this question, and it is not straightforward because the DTI fiber orientation 

information is less reliable near the cortex where white matter transitions to gray 



rnatter and anisotropy decreases. However, an appropriate experiment is to paint the 

cortex or another surface such as the lateral ventricle using the standard RGB color 

scheme, based on the orientation of white matter that is somehow "nearest" to each 

location on the surface. 

Question 5 is "How true is the tractography?" This relates to the fact that, 

the fibers displayed using tractography are most assuredly not representations of 

individual axons (with a scale of mic.rons), but rather are paths which follow the 

most probable fiber orientations measured on a scale of millimeters using diffusion 

MRI. Due to noise, partial voluming, or fiber crossing, tractography makes anatomical 

errors, and it is important to a) display only paths that pa5s quality thresholds and b) 

provide a visual quality e~t~imate.  Point a) is addressed by the anisotropy thresholds 

which are used for seeding and st.opping tractography, though for the case of tumor 

visualization one may not wish to apply stringent thresholds which could discard 

or shorten many paths. Rather it may be preferable to address the quality visually 

without making hard decisions to remove many paths: one possibility for b) is to color 

paths based on anisotropy values. A better approach, if more t.han the minirnu~n of 

6 diffusion-weighted images have been acquired, is to use a bootstrap method similar 

to the method proposed for display of uncertainty of tensor fields [53]. 

7.2 Experimental Results 

7.2.1 Methods 

Retrospective visualizations were created for two surgical cases in which tumors had 

been resected by Dr. Golby. Each case had presurgical data including TI- and T2- 

weighted MRI, DTI, and fMRI (functional MRI). 

Creation of tihe visualizations had several steps. We summarize the steps here; 

chapter 5 provides more detail about the method. The first step was wholebrain 

tractography, which was initiated in each voxel (of a region of interest including the 

whole brain) where CL was above .3. Tractography st,opped when CL fell below 



0.15. This relatively low stopping value was chosen with the goal of "not leaving 

out anything" in the tractography. The minimum path length was 40mm. It is not 

possible (on a current PC) to rapidly interactively visualize all of the paths output 

from whole-brain tractography, so a random subset of the paths produced was selected 

for further processing in each subject. We selected 10,000 for case 1 and 8,000 for 

case 2 (because after analyzing case 1, we desired faster interaction speed during the 

final manual cluster labeling and coloring step). Note these numbers of paths are still 

larger than those clustered with other methods in the literature [18, 431. 

The second step in production of the visualizations was an automatic spectral 

clustering of the paths from tractography to produce 120 bundles. We chose 120 

because (as demonstrated in Chapter 8) there are more than 100 clusters inherent 

in single-subject whole-brain tractography data. The fiber affinity measure was the 

mean closest point distance, with symmetrization using the mean value (see Chapter 

5 for more details). 

The clustering step was followed by an interactive manual anatomical labeling of 

clusters, performed with repeated reference to the white matter anatomy described 

in [84, 50, 1161. Finally, in response to feedback from the neurosurgeon, the clusters 

were colored to match bilaterally. The coloring was done manually (according to 

the anatomical labels) as an experiment for these two cases, and this motivated the 

research into automatic cluster correspondence across hemispheres that was presented 

in Chapter 5. 

7.2.2 Case 1 

Patient 1, a 54 year old male, presented with a seizure and word finding difficulty, and 

on MRI had a large left temporal mass. The tumor was resected and the pathologic 

diagnosis was anaplastic oligoastrocytoma, WHO Grade 111. During surgical resection 

in the posterior region, the patient had difficulty with speech; superiorly, electrical 

stimulation interrupted language function. About half of the tumor was resected 

while the rest was left to preserve function. Dr. Golby interpreted the speech arrest 

during surgery as due to the proximity of functional white matter to the resection 



region. The goal of the retrospective visualization, consequently, was to investigate 

whether there was a fiber tract in the tumor. Specifically, the hypothesis was that 

the arcuate fasciculus, the tract connecting speech production areas, was involved in 

the tumor. 

Figure 7-1 shows a standard 2D slice visualization at one axial location for patient 

1. Due to the lack of anisotropy, according to the categorization of [130, 501 the DTI 

colormaps seem to indicate that tracts are infiltrated or disrupted in this level of the 

tumor, or displaced elsewhere. However there are some bright spots in the tumor 

region seen in the FA image, and from this single slice image one can't tell about 

tract presencelabsence in the rest of the tumor. 

T2 MPRAGE FA Orientation Colormap 

Figure 7-1: Slice-based DTI visualization of patient 1. The left two images are MRI 
structural images. The tumor (and surrounding edema) are bright in the T2 image, 
and the tumor is dark in the MPRAGE image. The FA image shows the diffusion 
anisotropy. The orientation colormap displays the direction of the major eigenvector 
of the tensor: red represents left-right orientation, green is anterior-posterior, and blue 
is superior-inferior. Brightness of the colormap is controlled by anisotropy. Decreased 
brightness is seen in the tumor area, indicating abnormal white matter. 

Figure 7-2 displays the raw output of the tractography clustering, where col- 

ors were determined by the clustering algorithm (similar colors appear when tracto- 

graphic paths map near each other in the high-dimensional space in which clustering 

is performed). The anatomical interpretation of this initial clustering is not clear 

when all paths are viewed at the same time as in Figure 7-2. 

To improve the visual anatomical information, the tractography in the left and 

right hemisphere was manually labeled using colors matched by structure, in order to 

facilitate rightlleft comparisons. This labeling was done manually as an experiment 



Figure 7-2: Raw output of whole-brain clustering for patient 1, shown with axial, 
sagittal, and coronal images. Each unique color represents a cluster. 

to see if the colors are useful for surgical planning. Figure 7-3 illustrates a subset of 

the clustered and labeled tracts, with consistent anatomical coloring bilaterally. fMRI 

activations from a language task are rendered in bright yellow. The fMRI task was 

categorizing nouns as living or nonliving, where patient would respond with either 

"living" or "nonliving" for each noun. The larger size of the activations on the right 

side could indicate migration of function to that side. 

Due to the proximity of the tumor to the arcuate fasciculus region, and the speech 

arrest which took place during resection, an attempt was made to clarify if this tract 

was passing through the tumor. Figure 7-4 demonstrates one possible method for 

clarifying whether a tract is in a tumor. The tractographic paths were "painted" 

with the T2 image volume (keeping the same windowflevel as the T2 images) in 

order to transfer its information about tumor boundaries to the tract. In general this 

method can be used with any available images. 



Figure 7-3: Three-dimensional DTI visualization of patient 1, with consistent col- 
oring on both sides to facilitate leftlright hemisphere comparison. Note that the 
tumor has displaced tracts inferiorly in the coronal view. The colors correspond to 
anatomy as follows: dark blue, ventricles; light blue, arcuate fasciculus; orange, in- 
ferior longitudinal fasciculus; dark purple, inferior fronto-occipital fasciculus; green, 
u-fibers (may include some SLF); light purple, uncinate fasciculus; and yellow, fMRI 
language activations. All labeled tracts can't be seen at once, so a subset is displayed. 



Figure 7-4: Spatial relationshi e fasciculus cluster and tumor. The top two 
images show the left arcuate as defined by fiber clustering and labeling, 
colored using the T2 weighte e tumor is bright). In the top right image 
the axial T2 is displayed to son of intensities in the tumor and on the 
tract, while the sagittal T1 is s for background contrast to make the tract more 
visible. The bottom image illus the arcuate fasciculus cluster in bright blue with 
fMRI language activations i igenvector glyphs in the bottom image are 
colored by anisotropy, with 



Discussion 

The original hypothesis that the arcuate fasciculus was involved in the tumor region is 

supported by our tract clustering and visualization method. The problem addressed 

in Figure 7-4, whether the arcuate fasciculus is literally inside the tumor, is difficult 

to answer because the T2 volume could be bright due to edema rather than tumor, 

so the exact tumor boundaries are not known. However we have proposed a method 

that can aid the surgeon's judgement. Once the surgeon makes a decision about 

tumor boundaries in the T2 (or other MRI) image, the T2 intensity information can 

be transferred to the tractography, providing more information about the tract-tumor 

spatial relationship. The bright white areas on the tract in Figure 7-4 indicate that 

it is very near the tumor, and the judgement of the surgeon can now be employed to 

decide about tumor boundaries just as when using the T2 MRI images directly. This 

painting method was considered to be a potentially useful tool by the neurosurgeon. 

In general it is hard to determine where a tract ends in a tumor. It  is possible that 

edematous tissue contains functioning fibers, but that due to edema the anisotropy 

in the region is low, causing the tractography algorithm to stop tracing2. Note that 

in Figure 7-4, in the right image with eigenvector glyphs, there appears to be a r e  

gion of coherent orientation that was not traced by tractography. The termination 

of tractography is possibly due to lower anisotropy caused by edema or tumor infil- 

tration. However the lack of trajectories in this region could be due to our length 

cutoff to remove short paths before clustering. In the future when shorter u-fibers 

(short cortico-cortical connections) are of interest due to their proximity to a tumor, 

lowering the path length threshold will be tested. 

The visualizations that we have created were found by the surgeon to be more 

useful when colored in a corresponding way bilaterally. For example in Figure 7-3 

in the coronal view, the displacement of tracts in an inferior direction can clearly be 

seen in the hemisphere affected by the tumor. 

21n fact, anisotropy has been found to be reduced in the peritumoral area of both gliomas and 
metastatic lesions, but the mean diffusion (ADC) was higher at the border of metastatic lesions, 
apparently due to a higher amount of edema [106]. The anisotropy decrease bordering gliomas was 
partially attributed to infiltration and there was less edema [106]. 



7.2.3 Case 2 

Patient 2 is 28 years old and presented with seizures. On MRI a lesion was seen in the 

right insula, extending into the frontal and temporal lobes. The tumor was classified 

by pathology as a mixed oligoastrocytoma, WHO Grade II /N. 

Figure 7-5 shows the 2D visualization of the patient, while Figure 7-6 demonstrates 

the 3D tractography visualization with the same colors as applied in Case 1. The 

shape of the corona radiata is quite different from left to right, and the uncinate 

fasciculus appears to curve around the tumor. On the right side, fewer paths belonging 

to the inferior occipitofrontal fasciculus (dark purple) were found, indicating lower 

anisotropy in this region. 

T2 MPRAGE FA Eigenvector 1 map 

Figure 7-5: Slice-based DTI visualization of patient 2. 

Discussion 

Using the same settings (and the same voxel size and similar number of slices) nearly 

50,000 paths were initially produced in patient 2 (28 years old), versus close to 20,000 

in patient 1 (54 years old). This difference may be caused by the overall anisotropy 

decrease with age, and shows that anisotropy thresholds for tractography (generally 

held constant in the literature at 0.2 FA) could benefit from further investigation, 

especially in cases of pathology or when comparing different age groups. 

As in patient 1, the bilateral tract coloring allows visual comparison of the two 

hemispheres. The tract clustering indicates that the uncinate fasciculus (light purple 

in Figure 7-6) and the internal capsule (yellow) have been displaced by the tumor. 



Figure 7-6: Three-dimensional DTI visualization of patient 2, with consistent coloring 
on both sides to facilitate leftlright hemisphere comparison. The top left image 
is an inferior view, not superior as used for patient 1. The colors correspond to 
anatomy as follows: light blue, arcuate fasciculus and (on right side) additional fibers 
bordering tumor; orange, inferior longitudinal fasciculus; dark purple, inferior fronto- 
occipital fasciculus; light purple, uncinate fasciculus; yellow, corona radiata. Note 
the differences in the uncinate fasciculus and the corona radiata across hemispheres. 
There is a possible error in tractography in the top left image, where several paths 
(dark purple) traverse part of the corpus callosum and part of the occipitofrontal 
fasciculus. 



7.3 Summary 

We presented an investigation into the application of tractography and tract cluster- 

ing to neurosurgical visualization. First we created a list of neurosurgically relevant 

questions that could potentially be answered by DTI processing and visualization. 

Then we proposed methods to address the questions. Finally, we created retrospec- 

tive visualizations of two surgical cases, applying the clustering method presented 

in this thesis and some of the methods proposed in this chapter. The procedure for 

creating the visualizations included an automatic part: whole-brain tractography and 

tractography clustering; and a manual interactive part: anatomical cluster labeling 

and bilaterally symmetric coloring of clusters/anatomical structures. We further in- 

vestigated how to visually provide information about the presence of a white matter 

tract inside (or near) a tumor, implementing one method for "painting" the tractog- 

raphy with information from an MRI scan which clearly illustrates the tumor. 

The tract clustering experiments presented in this chapter demonstrate the po- 

tential clinical utility of the methods presented in this thesis. The visualizations with 

bilaterally matching colors were found to be more useful by the surgeon than the 

original clusters (and this has motivated research into the automatic bilateral cluster 

matching presented in Chapter 5). The method of painting MRI intensity value in- 

formation onto a tract cluster was also considered by the surgeon to be potentially 

useful in surgical planning. Finally, the clustering supported the hypothesis that the 

arcuate fasciculus was involved in the tumor region in patient 1. The location of the 

arcuate fasciculus cluster near the tumor border was consistent with the speech arrest 

that took place during surgical tumor resection. 





Chapter 8 

Reproducibility and Parameter 

Settings 

In this chapter we investigate two types of reproducibility: reproducibility of the 

embedding, clustering, and automatic segmentation; and reproducibility of the mea- 

surement of scalar invariants. Our choices for some of the parameter settings used for 

spectral clustering have been motivated by this reproducibility analysis. In this chap- 

ter we also show results of experiments investigating the sensitivity of our method 

to changes in parameter settings. All of the parameters of our method are listed 

in Table 8.1. We organize the experiments in this chapter as in the table: first we 

present experiments related to distancelaffinity calculation; then spectral embedding, 

clustering, and atlas generation; and finally measurement of scalar invariants using 

atlas-segmented regions of interest. 

8.1 Distance/Affinity Calculation 

We investigated the effect of the sigma (a) parameter used in conversion from pairwise 

fiber distance to d n i t y .  For relatively local neighborhoods of paths from tractogra- 

phy, the embedding is stable over a range of values of a as shown in Figures 8-1 and 

8-2. 



1 Parameter I Function I 
I Tseed I start tractography where CL > Tsed I 
I TS~OP I stop tractography where CL < Tstop I 

I I Distance measure chosen to compare paths I 

, qength 

0 

cull paths whose length < 
Std. deviation of Gaussian kernel for distance to affinity conversion 

I I also length of embedding vectors (dimension of embedding space) I 

S 
NE 

Method used to symmetrize the distance measure, if needed 
Nu~nber of eigenvectors used to define embedding space; 

I R I Alignment method used before computing tract affinities I 

NA 
k; 

NP 
Ns 

Table 8.1: Parameters of the method. First listed are parameters for tractography, 
then for distancefaffinity calculation, then for spectral embedding and clustering, and 
finally for atlas generation. 

Number of randomly selected paths used to calculate the A matrix 
Number of clusters 
Number of paths per subject used in clustering for atlas creation 
Number of subjects used in atlas creation 

8.2 Spectral Embedding, Clustering and Atlas Gen- 

eration 

In this section we present quantitative results measuring embedding reproducibility 

with singlesubject and atlas data. We also present results measuring reproducibility 

of clustering versus the number of clusters; this gives an idea of the number of clusters 

inherent in the data. In addition we show images demonstrating that atlas labeling 

results from the same subject are similar across scans. Finally, we give quantitative 

results showing that the segmented clusters are very similar if a subject is clustered 

as part of the atlas, or labeled using the atlas. 

The DTI dataset used for the single-subject experiments (on embedding repro- 

ducibility and number of clusters) was from Population 1, and the mean closest point 

distance measure was used with mean symmetrization and a of 60. The atlas dataset 

consisted of the 10 subjects from Population 1 which were used in atlas generation in 

Chapter 6. For the atlas experiments the mean closest point distance measure was 

used with minimum symmetrization and a of 30. 



Example Paths 

Figure 8-1: Effect of varying a on affinity matrix. The ffinity matrices were cal- 
culated from the pairwise fiber distances for the tractography example (upper left). 
Each matrix was created with a different value of a which is shown below the matrix 
along with the range of values in the matrix. The ffinity matrix images have been 
displayed with the lowest value as black and the highest as white. The minimum 
was used to symmetrize the pairwise distances but similar results are obtained when 
the mean is used. This example shows that for a range of values of a, the affinity 
matrices are very similar (up to a scale factor which will be removed during matrix 
normalization). This observation is generally useful because if this small clustering 
example were placed within a larger whole-brain clustering problem, these specific 
(local) pairwise affinity values would not change. 

8.2.1 Reproducibility of Embedding Subspace 

The reproducibility of clustering is directly related to the reproducibility of the embed- 

ding. Considering the embedding problem as a Nystrom eigenvector approximation, 

successive eigenvector approximations can be compared to test if the embedding is 

stable. (The reason all of the eigenvector approximations aren't identical is that they 

are calculated by extending the eigenvector solution computed for a small random 

subset of the data.) If the eigenvectors span a similar subspace, the embedding is 

considered similar (the eigenvector basis can rotate when eigenvalues are similar, so 
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Figure 8-2: Effect of varying a on embedding. For each value of o, an affinity matrix 
(shown in Figure 8-1) and an embedding (images at right) were computed. The 
embedding is relatively stable for values of a above 22mm in this example. The plot 
(left) shows how much the embedding vectors move on average when a changes. To 
create the plot, for each value of o the average distance (from that embedding to the 
previous embedding) was computed between corresponding embedding vectors. This 
average distance and and the standard deviation of the distance were approximately 
zero for a >= 22. The values of a used for clustering in this thesis are within this 
stable range. 

the important thing is that the same subspace is described). 

The normalized Frobenius matrix norm 

where U and V are two matrices containing NE eigenvectors, is high when the NE 

selected eigenvectors span the same subspace [40]. As described in [40], we have 

performed spectral embedding for various sizes of the A matrix, for several random 

selections of A per size, to investigate how large A should be for repeatable embed- 

ding. In addition we performed the experiment using several different numbers of 

eigenvectors (the number of eigenvectors determines the dimensionality of the em- 



bedding space). We averaged the norm over unique pairs of embedding trials. We 

performed this experiment in a single subject and with the atlas dataset. 

In Single Subject 

Figure 8-3 shows the result of the embedding reproducibility experiment in the single 

subject dataset. 10 embeddings were performed for each size of A. For this dataset, 

reproducibility is highest when using approximately 20 eigenvectors, indicating that 

the cluster information is well-represented in 20 dimensions. This has motivated our 

use of 20 eigenvectors for other clustering results presented in this thesis. Repro- 

ducibility for any number of eigenvectors is highest when using 1,500 or more paths 

when creating the A matrix. For this reason, 1,500 is our recommended minimum 

number of paths for creation of A when performing single-subject clustering. 

In Atlas 

Figure 8-4 shows results of the embedding reproducibility experiment when performed 

on an atlas dataset. In this experiment the paths selected for affinity computation 

(random sample used to form A) came from all subjects, and embedding was per- 

formed for all subjects as described in Chapter 6. There were 10 subjects used in 

atlas embedding, with 3,000 trajectories each. Embedding was performed 5 times for 

each size of the A matrix, and the mean and standard deviation of the reproducibility 

value (matrix norm) was computed using all unique pairs of embeddings. 
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Figure 8-3: Embedding reproducibility. Matrix norm (reproducibility of embedding 
subspace) versus the size of the A matrix, for different numbers of eigenvectors (di- 
mensionalities of the embedding subspace). A of size 1500x1500 or greater with 20 
eigenvectors is optimal for this single-subject dataset. 



6 eigenvectors 

Figure 8-4: 
Embedding reproducibility for atlas data. Matrix norm (reproducibility of 

embedding subspace) versus the size of the A matrix. 



8.2.2 Number of Clusters 

The reproducibility of clustering is also related to the number of clusters inherent 

in the data. If too few clusters are used, different partitions may be found, leading 

to low reproducibility. If too many clusters are used, data points which are near 

the border between nearby clusters may be sometimes assigned to one cluster and 

sometimes another. We quantified this clustering variability by testing whether pairs 

of data points (paths from tractography) clustered always in the same cluster, never 

in the same cluster, or sometimes in the same and sometimes in different clusters. 

The frwtion of pairs that sometimes were in the same cluster, and sometimes in 

different clusters, was measured for various numbers of clusters. For each number 

of clusters, we ran clustering 10 times. The fraction of pairs that were not always 

either in the same or different clusters (for all 10 runs) is plotted in Figure 8-5. The 

lowest values in the plot show the best performance (highest consistency across pairs) 

and this would indicate that for this dataset, either using around 75-100 clusters or 

around 250 clusters would give the most repeatable results. In any case, the fraction 

of pairs that are inconsistent is less than 5 percent for any number of clusters greater 

than about 75. 

The quality of the clustering solution can also be measured using the distances 

from embedded points to cluster centroids. A worst-case measure, the maximum sum 

of point-to-centroid distances over all clusters, was measured for various numbers of 

clusters. The result is shown in Figure 8-6. 100 or more clusters give the best result 

according to this measure. 

8.2.3 Segmentat ion Results From Repeat Scans 

Selected clusters from atlas labeling of two scans of subject 11 are shown in Figures 

8-7 and 8-8. 



Fraction of inconsistently clustering pairs 

Number of Clusters 

Figure 8-5: Fraction of pairs of paths that clustered sometimes in the same cluster 
and sometimes in different clusters, for 10 clusterings of a singlesubject dataset. The 
plot indicates that there are more than around 75 clusters in this singlebrain dataset. 

I 

8.2.4 Consistency of Atlas Clustering and Atlas Labeling 

We created two atlases, one using all 10 subjects, and the other using 9 subjects. The 

subject which was left out was then labeled using the second atlas. We compared the 

clustering result (when the subject was part of atlas clustering) to the labeling result 

(when the subject was automatically /segmented using the leave-one-out atlas). To 

quantify clustering consistency, we counted the number of pairs of trajectories that 

were clustered together in both results, that were clustered separately in both results, 

and that were clustered once together and once separately. The percent of pairs that 

was consistent (both in the same or both in different clusters) was 99.38%. 
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Figure 8-6: Maximum cluster centroid distance sum versus number of clusters, indi- 
cating that 100 or more clusters should be used for this singlesubject dataset. 

Stability of Measured Scalar Invariants 

8.3.1 Comparison of FA Values From Repeat Scans 

Using the atlas, we automatically segmented tractography and then measured FA in 

two subjects (10 and 11) who had each been scanned three times. The quantitative 

measurements of FA demonstrate reproducibility and are shown in Figure 8-9. 

Summary 

In this chapter we demonstrated two types of reproducibility: reproducibility of the 

embedding, clustering, and automatic segmentation; and reproducibility of the mea- 

surement of scalar invariants. We showed images from repeat scans, and quantitative 

results regarding cluster stability and FA measurement, indicating that our automatic 

segmentation method is reproducible. In addition we specified all of the parameters 

of our method. The experiments presented here have motivated our use of parameter 

settings for a, the number of eigenvectors, and the number of clusters. 



S11 (repeat scan) 

Figure 8-7: Result of repeat automatic segmentation of novel subject (view from 
left). Selected regions are shown as follows: navy blue, corpus callosum; yellow, cor- 
ticospinal fibers; purple, arcuate fasciculus/SLF region; orange, uncinate fasciculus; 
green, occipitotemporal (inferior longitudinal) fasciculus; sky blue, middle cerebellar 
peduncle; light pink, superior cerebellar peduncle; hot pink, occipitofrontal fasciculus. 

- 

S11 (repeat scan) 

Figure 8-8: Result of repeat automatic segmentation of novel subject (inferior view). 
Subject numbers are below the images. Selected regions are shown a s  follows: navy 
blue, corpus callosum; yellow, corticospinal fibers; purple, arcuate fasciculus/SLF re- 
gion; orange, uncinate fasciculus; green, occipitotemporal (inferior longitudinal) fas- 
ciculus; sky blue, middle cerebellar peduncle; light pink, superior cerebellar peduncle; 
hot pink, occipitofrontal fasciculus. 
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Figure 8-9: Mean FA measurements in regions, from three repeat scans of two subjects 
(10 and 11). Abbreviations are: CC, corpus callosum; CR, corona radiatae; UF, 
uncinate fasciculi; AF, arcuate fasciculi; OT, occipitotemporal fasciculi; and CB, 
cingulum bundles. The arcuate measurements were made in one bilateral cluster 
containing the traditional C-shaped fibers, and did not include additional clusters 
contained in the full arcuate/SLF region shown in Figure 8-7. 



Chapter 9 

Conclusion 

The work presented in this thesis addresses the problem of automatic organization 

and anatomical labeling of the white matter using diffusion tensor MRI tractogra- 

phy. We present an automatic spectral clustering met'hod which finds corresponding 

white matter regions across subjects and performs matching of tractography across 

hemispheres. We then show how to use spectral embedding and clustering to learn 

a fiber tract model which is represented in a high-dimensional embedding space. By 

annotating each cluster in the space with anatomical information, we create a high- 

dimensional tractography atlas. 

We demonstrate that by embedding tractography from novel subjects into the 

atlas space, the atlas can be used for automatic segmentation of tractography. The 

automatic segmentation provides a consistent way to  organize tractography across 

subjects, and the anatomical information allows visualization or analysis of entire 

structures (made up of many clusters) as well as the clusters themselves. We present 

results demonstrating the cluster/anatomical region correspondence across subjects, 

as well as an application of our method to parcellation of the region of the corpus cal- 

losum in the midsagittal plane. Our results indicate that our automatic segmentation 

method repeatably defines regions of interest that enable measurement of diffusion 

values such as FA; the  result,^ are similar across normal subjects and reproducible 

across scans of the same subject. We also demonstrate the use of the single-subject 

clustering method for neurosurgical visualization. 



To our knowlc~dge, this work represents the first autonlat.ic. whole-brain tractogra- 

phy s~grnerltat~ion method, as wcll as the first met,hod for i~l~tomatically finding tract 

correspont1enc~c.s across s ~ l b j ~ c t s ,  and the first ~riethod for autornatically finding tract 

correspont~~nces across llenlispheres. In addition, we show how to ~rrlbed riovel data 

in the spectral clustering fra~riework (Norrnaliz~d Cuts wit.11 the Ny~t~rorn met.hod) of 

Fowlkes and Malik. This is the first application of spectral clustering to the problem 

of learrlirig an ariatonlical rrlodel or atlas. 

Our work enables st,atist ical white rnat t er analysis using tractography. WP find 

corresponding white matter regions across subjects and across hemispheres, allowing 

ncuroscientifit. hypotheses to be tested regarding group diff(1renc.e~ and also questions 

of synrnctry. 



Appendix A 

Data Acquisition 

Population I 

We thank Dr. Martha Shenton's Psychiatry Neuroimaging Laboratory (PNL) at  

Brighanl and Women's Hospital, Harvard Medical School, for this data. MR dif- 

fusion scans were performed with a quadrature head coil on a 1.5 T GE Echospeed 

system (General Electric Medical Systems, Milwaukee, WI) , which permits maximum 

gradient amplitudes of 40 mT/m. Coronal LSDI scans were acquired perpendicular 

to both the AC-PC line and interhemispheric fissure. To increase the precision of 

the acquisition alignment, inst'ead of one 3D localizer, a set of three 2D TI-weighted 

localizers (sagittal, axial oblique alligned to  the anterior commissure- posterior corn- 

missure ( AC-PC) line, and another sagittal oblique aligned to the interhemispheric 

fissure) were acquired. Finally, the last sagittal oblique T1W image served as the 

localizer for the LSDI coronal scans. For each section, six images with high (1000 

s/mrn2) diffusion-weighting along six non-collinear directions [e.g., relative ampli- 

tudes, (Gx, Gy, Gz) = (1,1,0), (0,1,1), (1,0,1), (1,1,0), (0, 1,1)(1,0,1)] and two with 

low (5 s/mm2) diffusion-weighting have been collected. The following scan parameters 

were used: rectangular FOV (field of view) 220 165 mm2; 128 128 scan matrix (256 

256 image matrix); slice thickness 4 mm; interslice distance 1 mm; receiver bandwidth 

T4 kHz; TE (echo time) 64 rns; effective T R  (repetition time) 2592 ms; scan time 60 

s/slice section. A total of 31-35 coronal slices covering the entire brain (depending 



upon brain size) were acqliired. Thr t,otal sc:ari t,irne was 31 - 35 rnin. Henceforth this 

data will be referred to as poplilat'ion I. 

Population I1 

We thank Dr. Susumu hllori of Johns Hopkins Universit,~ for this data, which was 

was acquired as follows. DTI images were acquired us inu t  SENSE head coil on 1.5 

Tesla whole--body MR scanners (Philips Medical Systems, gyroscan NT) equipped 

with explorer gradient's (40 mT/m). For acquisition, an (bight-element arrayed RF 

coil, convertetl to six channel to be c+ompatible with the sixchannel receiver, was 

used. For DTI acquisitio~is, a single-shot spin echo echo 1)lanar sequence (SE E P I )  

was used, with diffusion gra,dients applietl in 30 non-colljnear directions and b = 

700 s/nini2. Five additional reference image with least (liffusion weighting (h = 33 

s/mni2) was also acquired. Fifty to sixty axial slices were ir(.quired to cover the entire 

liemisphere and the cerebellum, parallel to the AC-PC lincl. The field of view, the size 

of the acquisition matrix, arid the slice thickness were 240 x 240 mrn/96x96/2.5 mrn. 

X arid Y resolutions were then zerofilletf to 256x256. 0tht.r imaging parameters were: 

TR 7,000 rns and T E  = 80 ms; and SENSE reduction factor = 2.5. To improve the 

signal to noise ratio, three datasets were acquired, leading to a total acquisition time 

of 12 -15 rrii~ilites. T2 weighted irnages with T E  = 40 a,ticl 100 rris were separately 

acquired with the same EPI acquisition sclierrie to ensure t 1 1 ~  ac:curate co- registration. 

For anat ornical i~riage, hlPRAGE with liiglier resolutio~l ( 1 .25 nirri isotropic) was also 

acquired. Henceforth this data will be referred to as poplilation 11. 
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