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Abstract 

The dynamics of drop formation and pinch-off have been investigated for a series of low 

viscosity elastic fluids possessing similar shear viscosities, but differing substantially in 

elastic properties. On initial approach to the pinch region, the viscoelastic fluids all exhibit 

the same global necking behaviour that is observed for a Newtonian fluid of equivalent shear 

viscosity. For these low viscosity dilute polymer solutions, inertial and capillary forces form 

the dominant balance in this potential flow regime, with the viscous force being negligible. 

The approach to the pinch point, which corresponds to the point of rupture for a Newtonian 

fluid, is extremely rapid in such solutions, with the sudden increase in curvature producing 

very large extension rates at this location. In this region the polymer molecules are 

significantly extended, causing a localised increase in the elastic stresses, which grow to 

balance the capillary pressure. This prevents the necked fluid from breaking off, as would 

occur in the equivalent Newtonian fluid. Alternatively, a cylindrical filament forms in which 

elastic stresses and capillary pressure balance, and the radius decreases exponentially with 

time. A (0+1)-dimensional FENE dumbbell theory incorporating inertial, capillary and elastic 

stresses is able to capture the basic features of the experimental observations. Before the 
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critical ‘pinch time’ pt , an inertial-capillary balance leads to the expected 2/3-power scaling 

of the minimum radius with time, 2 / 3
min ( )pR t t−∼ . However, the diverging deformation rate 

results in large molecular deformations and rapid crossover to an elasto-capillary balance for 

times pt t> . In this region the filament radius decreases exponentially with time 

min 1exp[( ) / ]pR t t λ−∼  where 1λ  is the characteristic time constant of the polymer 

molecules. Measurements of the relaxation times of PEO solutions of varying concentrations 

and molecular weights obtained from high speed imaging of the rate of change of filament 

radius are significantly higher than the relaxation times estimated from Rouse-Zimm theory, 

even though the solutions are within the dilute concentration region as determined using 

intrinsic viscosity measurements. The effective relaxation times exhibit the expected scaling 

with molecular weight but with an additional dependence on the concentration of the polymer 

in solution. This is consistent with the expectation that the polymer molecules are in fact 

highly extended during the approach to the pinch region (i.e. prior to the elasto-capillary 

filament thinning regime) and subsequently as the filament is formed they are further 

extended by filament stretching at a constant rate until full extension of the polymer coil is 

achieved. In this highly-extended state, inter-molecular interactions become significant 

producing relaxation times far above theoretical predictions for dilute polymer solutions 

under equilibrium conditions.  
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I  INTRODUCTION 

The dynamical mechanisms of drop formation and fluid rupture from a nozzle under the 

influence of gravity alone (i.e. dripping regime) or due to the application of external forces 

(i.e. jetting regime) have been studied since the mid 19th century1-3. Numerous researchers 

have since made significant experimental and numerical contributions to the field, providing 

insight into the discrete behaviour of Newtonian fluids on approach to and past the “pinch” 

region during dripping and jetting4-7. In particular, the effects of viscosity7-13 and surface 

tension8, 14 on breakup dynamics, and subsequent formation of drops have been thoroughly 

investigated. Simplified formulations of the Navier-Stokes equations for incompressible flow 

with a free surface have been produced in a number of studies in an effort to understand the 

physical mechanisms governing drop formation15-18. The effects of fluid flow within and 

surrounding19 the forming drop have also been considered. Numerical algorithms permitting 

solutions of the complete Navier-Stokes equations describing drop formation have also 

recently been developed12, 20. The finite element calculations of Wilkes et al.12 were able to 

capture both the gross features of the drop formation, including the limiting length of a drop 

at breakup, and the fine scale features such as secondary threads that form from the main 

thread at certain fluid conditions. Numerical methods can now provide reasonable prediction 

of resultant drop length and time scales for Newtonian fluids with constant material 

properties; i.e. constant density, viscosity, surface tension (see for example Chen et al.21). 

 

Many materials of commercial interest however may exhibit non-Newtonian fluid properties. 

Current interest in this field is in understanding the effects of non-Newtonian fluid properties, 

including shear thinning and elasticity, on liquid bridge breakup and drop formation and 

breakup. A number of recent studies have focused on the use of ‘liquid filament rheometers’ 

or ‘capillary breakup rheometers’ as a means to investigate the dynamics of complex fluids 
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undergoing extensional flows that are driven by the presence of a free-surface22. Liang and 

Mackley23 studied the effects of varying polymer concentration on the time to breakup; and 

the results are consistent with the predictions of a one-dimensional theory for capillary-

thinning of a liquid filament containing a multimode suspension of finitely extensible 

nonlinear elastic (FENE) dumbbells24. However the particular range of concentrations studied 

(which were in the semi-dilute regime) and the molecular polydispersity of the 

polyisobutylene polymer precluded a quantitative comparison of the measurement with 

predictions from polymer kinetic theory. McKinley and Tripathi25 and Anna and McKinley26 

used a series of model monodisperse dilute polymer solutions to show that the relaxation time 

extracted from capillary-thinning experiments exhibits the expected scaling with molecular 

weight. These ideal elastic fluids consist of dilute concentrations of polymer below the 

critical coil overlap concentration (denoted c*) and utilize a viscous oligomeric oil as the 

solvent. Since kinetic theory for dilute polymer solutions predicts that both the polymer 

relaxation time and the polymer contribution to the viscosity scale with the solvent 

viscosity27, the elastic stresses in such fluids are amplified and inertial effects are minimized. 

However it is not possible to relate the results of these studies to measurements of capillary 

thinning and drop pinch-off in lower viscosity fluids for which inertial effects cannot be 

ignored.  

 

Several recent experimental studies of low viscosity elastic solutions in the capillary-thinning 

device, such as those of Stelter et al.28, 29 and Bazilevskii et al.30, have provided much needed 

insight into the dynamics of breakup of thin polymeric filaments. In contrast to the very 

viscous fluids studied by Anna and McKinley26, an initial high rate of filament thinning was 

observed in the lower viscosity solutions and was attributed to a balance between inertial and 

capillary effects, with elastic stress being unimportant in this region30. This is followed by a 
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slower filament thinning region, during which capillary pressure is balanced by fluid elastic 

stresses. In this region, the filament diameter shows an exponential decrease with time, with 

the exponential thinning rate being inversely proportional to the characteristic relaxation time 

of the solutions in agreement with the analysis of Entov and Hinch24. Finally when the 

polymer becomes fully extended and the viscoelastic contribution to the extensional viscosity 

saturates, the exponential rate of filament thinning can no longer be sustained. In this region, 

a linear rate of filament reduction with time is again encountered until breakup occurs. Both 

Stelter et al.29 and Bazilevskii et al.30found that the characteristic relaxation times obtained 

from the exponential rates of filament decrease are dependent on polymer concentration, even 

though the Rouse-Zimm theory predicts that in the dilute region the relaxation time should be 

dependent only on molecular weight, but not on concentration. Moreover, Bazilevskii et al.30 

reported that the relaxation times obtained experimentally from the exponential rate of radius 

reduction for aqueous polymer solutions are generally higher than the expected value, while 

the values for the higher viscosity solutions in glycerol and glycerol-water mixtures (with 

solvent viscosity of the order of 1 Pa.s) are much lower than the expected value, although still 

dependent on concentration. In contrast, Anna and McKinley26 found that the relaxation times 

obtained from the exponential filament thinning rates in a capillary thinning device for their 

constant high viscosity, elastic solutions (of polystyrene in an oligomeric styrene solution of 

viscosity of approximately 23 Pa.s) agreed well (to within experimental error) with the 

longest relaxation times obtained from fitting a Zimm spectrum to small amplitude oscillatory 

shear data. It is worth noting that scaling with concentration was not investigated in this 

study. 

 

As an alternative approach to capillary thinning, Schummer and Tebel31 some time ago 

studied the effects of fluid elasticity on the breakup of liquid jets into drops under forced 
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disturbances. They suggested that by periodically forcing the jet it may be possible to 

quantify the effects of extensional stresses in a necking fluid thread formed between drops. 

However, the need for high speed photography and subsequent image analysis inhibited 

widespread application of the technique until recently. Li and Fontelos32 and Clasen et al.33 

used numerical simulations to study the dynamics of the beads-on-string structure of forced 

liquid jets of an Oldroyd-B fluid. Clasen et al.33 found good agreement of their 1D numerical 

simulation with experimental results for high viscosity viscoelastic fluids. Amarouchene et 

al.34 and Cooper-White et al.35 studied drop formation from a nozzle under gravity of low 

viscosity, elastic fluids, while Mun et al.36, Christanti and Walker37 studied the drop breakup 

under forced jetting. Cooper-White et al.35 and Christanti and Walker37 studied dilute, low 

viscosity polymer solutions of varying molecular weights and found that the relaxation times 

obtained from measurements of the rates of thinning of the primary filament were much 

larger than the Zimm relaxation times calculated from the known concentration and 

molecular weight of the polymer in agreement with Bazilevskii et al.30 Cooper-White et al.35 

also found the final length of the filament at detachment and the time of break-off was 

proportional to the relaxation time of the solutions. Amarouchene et al.34 investigated two 

high molecular weight polymers in aqueous solutions over a range of concentrations and 

found the effective relaxation times obtained from the rates of filament thinning to be 

dependent on the concentrations of the polymer in solution, even in the dilute regime. The 

authors did not give any information on the shear viscosity of their solutions, which were 

most likely to show significant shear-thinning characteristics, due to the differing 

concentrations and polydispersity of the high molecular weight polymers studied. The authors 

also did not provide values of the relaxation time of the solutions expected from molecular 

theory. However, a significant result of the work of Amarouchene et al.34 is the realisation 

that as the drop approaches the Newtonian pinch region (as indicated by a rapid reduction in 
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the minimum drop radius), the fluid exceeds a critical extension rate prior to the formation of 

a viscoelastic filament connecting the droplet to the fluid above. This critical extension rate, 

which can be determined from the rapid change in the slope of the radius-time plot, is much 

higher than the rate of subsequent filament elongation and is the dominant source of polymer 

extension, as also pointed out by Cooper-White et al.35 It is this rapid increase in the 

extension rate immediately prior to the pinch point which causes the stretching of the 

polymer molecules in solution and the large increase in the polymer elastic stress. This elastic 

stress then resists the capillary pressure, inhibiting the primary drop from pinching-off. No 

simple model currently exists to describe this behaviour of low viscosity viscoelastic fluids in 

the drop formation and breakup process.  

 

In this paper we extend our previous work into drop formation dynamics of constant low 

viscosity, elastic fluids by systematically probing the effects of polymer molecular weight 

and concentration down to the ultradilute regimes. Furthermore, we present a simple one- 

dimensional model that captures the dynamics of the pinching process for low viscosity 

elastic solutions in which inertial effects are dominant prior to the emergence of fluid elastic 

stress to balance the capillary pressure. In this study, as in our previous work, we have used 

the same nozzle for all experiments, the liquid flowrate is kept constant, and the shear 

viscosity and equilibrium surface tension are adjusted to be approximately equal and constant 

for all solutions. The variation in the minimum drop radius is measured using high speed 

digital imaging analysis and compared to the predictions obtained from a one-dimensional 

inertio-elastic pinch model. The relaxation times obtained from the rate of filament radius 

reduction are compared to the theoretical values of the longest Zimm relaxation time 

computed from intrinsic viscosity measurements. The mechanics of the drop evolution up to 
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the point of breakup are discussed for solutions with differing levels of elasticity, and the 

physical mechanism that helps inhibit the capillary breakup process is described.   

 

II  EXPERIMENTAL METHOD 

A Test solutions and their preparation 

The low-viscosity elastic fluids tested in this work are dilute solutions of polyethylene oxide 

(PEO) (supplied by Aldrich Chemical Co.), with molecular weights ranging from 3 ×105 to 

5 ×106 g/mol, in glycerol and water mixtures. The commercial PEO samples are known to be 

polydisperse; for example, the PEO of molecular weight 1 ×106 g/mol has been determined 

using size exclusion chromatography technique to have the ratio w n/ 1.8M M ∼ 38, and other 

molecular weight samples are thus expected to have similar polydispersity. In this work, the 

polymer concentrations were varied, while keeping below the coil overlap concentration, c*. 

These solutions were all prepared so that the shear viscosity, which was constant in all cases 

between shear rates of 1 and 100 s-1, was approximately η = 6×10-3 Pa.s and the equilibrium 

surface tension was approximately σ = 60×10-3 N/m at 21°C.  

 

In preparing the solutions, Milli-Q water was first warmed to about 40°C, followed by 

addition of polymer and constant stirring for 2 hours thereafter. The solutions were then 

mixed by gently rolling for another 24 hours before the addition of glycerol, and then rolled 

for a further 24 hours prior to use in the experiments. Most solutions were prepared by this 

method, with the exception of the series of solutions containing PEO of molecular weight 

1×106 g/mol of varying polymer concentrations in a solvent of 45wt% glycerol/55wt% water, 

which were prepared by dilution of the original 0.1 wt% 1×106 g/mol PEO solution to the 

required concentrations.  
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The shear viscosity of the solutions and the solvents was measured using a Carrimed CSL-

100 controlled-stress rheometer (with a conical fixture of 60-mm diameter and 0.04-radian 

cone angle). These properties together with the fluid compositions are provided in Table 1 for 

a series of PEO solutions with varying molecular weight at approximately constant 

dimensionless concentration c/c* ∼ 0.5, and in Table 2 for another series of PEO solutions of 

Mw = 1×106 g/mol with varying concentrations. In addition to the solutions shown in Tables 1 

and 2, other solutions of PEO with molecular weight up to 5×106 g/mol and various 

concentrations were also prepared and used in this study. 

 

The measured shear viscosity of the solutions used in this study ranges between 4.4×10-3 and 

8.1×10-3 Pa.s. However, the elastic properties of the solutions, such as the  storage modulus 

G′, could not be measured even with the most sensitive rheometer available to us 

(Rheometric Scientific ARES). Hence in an attempt to quantify the viscoelasticity of the 

solutions, the extensional viscosity of the various molecular weight PEO solutions, at 

concentration c/c* ∼ 0.5 in a solvent of 50wt% glycerol, was measured using a Rheometric 

RFX opposing-jet rheometer. Results for solutions of similar c/c* are not presented here but 

are shown in Figure 4 of Cooper-White et al.35 for molecular weights up to 1×106 g/mol, 

together with additional results for the 2×106 and 5×106 g/mol solutions. The data indicate 

that the ratio of the apparent extensional viscosity to shear viscosity (i.e. the Trouton ratio, 

0/eTr η η= ) increases with increasing molecular weight of PEO at equivalent apparent 

extension rates. The critical extension rates at which deviation from the value Tr = 3 

(expected for a Newtonian fluid) occurred were found to decrease with increasing polymer 

molecular weight. For solutions with varying concentration, the scaled extensional viscosity 

of the 1×106 g/mol PEO solutions display similar characteristics to those shown for solutions 
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of 3×105 g/mol PEO in water/glycerol given in Crooks et al.39 In this latter case, the Trouton 

ratio also increases with increasing polymer concentration at the same apparent extension 

rate, but the critical extension rate at which deviation from a value of Tr = 3 occurred was the 

same for all concentrations. 

 

B  Image capture and measurement of drop formation dynamics  

The drop formation study was carried out with the fluid exiting from a nozzle of 2.0 mm 

inner diameter and 4.0 mm outer diameter. The fluid was fed from a syringe pump at a rate of 

73.8 ml/min. This is the same rate as that used by Cooper-White et al.35 in their drop 

formation study of similar fluids. Several drops of fluid were allowed to form to ensure a 

constant liquid flowrate prior to the images of the drop being taken for analysis. A sequence 

of images of the drop during its formation, subsequent approach to pinching and elongation 

of the necked fluid into a thin filament connecting the primary drop to the upper reservoir of 

fluid (in the case of polymer solutions with high elasticity) were taken using a high speed 

video camera (Phantom V, Vision Research). The camera can capture up to 1000 frames per 

second at 1024 by 1024 pixels, or capture higher frame rates at lower resolutions. To 

investigate the dynamics of drop formation, the minimum diameter of the fluid thread as it 

exits the nozzle is followed and measured until the final break-off occurs, either in the 

secondary thread between the primary drop and the filament, or in the secondary thread 

between the filament and the remaining fluid attached to the nozzle. The minimum 

measurable diameter is equivalent to between 8 to 12 microns, i.e. 2 to 3 pixels using the 

given experimental configuration. 
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C  Intrinsic viscosity and Zimm relaxation time  

The intrinsic viscosity of the PEO solutions at various molecular weight in an aqueous 

solvent containing 36% glycerol was measured using a capillary viscometer (Schott Grate 

Ubbelohde type no. 53110), with automatic diluter. The data are plotted as a function of 

molecular weight in Figure 1. Also shown in the figure are the results obtained by other 

researchers, both in this laboratory38, 39 and elsewhere37, 40, in water and glycerol/water 

mixtures. The molecular weights of the PEO span a range from 3 6
w8 10 5 10M× ≤ ≤ ×  g/mol. 

All the data agree well with each other within experimental errors, although there are some 

systematic variations with solvent composition. A linear regression analysis has been used to 

obtain a line of best fit to all the data, giving a composite Mark-Houwink-Sakurada (MHS) 

equation for the intrinsic viscosity [ ]η  of the PEO solutions:  

 0.65
w[ ] 0.072Mη =  (1) 

with [ ]η  in units of cm3/g. Also shown for comparison is the line for a narrow molecular-

weight distribution PEO up to 4
w 3 10M = ×  g/mol in water, obtained from the Polymer 

Handbook. The MHS exponent of a ≈ 0.65 obtained in our composite curve is similar to the 

tabulated value from the Polymer Handbook41 of a = 0.67. The Zimm theory for dilute 

solutions of polymer coils in a solvent incorporating hydrodynamic interactions gives the 

scaling 3 1
w[ ] M νη −∼  for long chains. Here v is the exponent characterising the scaling of the 

equilibrium radius of gyration of the chain with molecular weight, i.e. wRg M ν∼ . The 

limiting values of v = 0.5 and v = 0.6 correspond to a theta solvent and a good solvent 

respectively42. The regression of our data gives v = 0.55 indicating that both water and 

mixtures of glycerol and water over the range tested are relatively good solvents for PEO, as 

expected.  
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The critical overlap concentration c* is defined as the concentration at which the polymer 

coils start to overlap with each other. Below c* the solution is considered to be in the dilute 

regime and the viscoelastic properties of the solution are governed by the behavior of a single 

polymer molecule27. In order to determine c* of the PEO solutions studied, we have used the 

classification of Flory for flexible polymer solutions, where 

 * 1/[ ]c η=  (2) 

Alternatively c* can be determined as the concentration at which the product of the number 

density of polymer coils and the volume pervaded by a single coil is equal to unity. The 

volume of the coil has to be calculated from the radius of gyration, which can be estimated 

from the known properties of PEO, such as the characteristic ratio C∞  and the excluded 

volume exponent v. These values are consistent to within 20% of the values calculated from 

Equation (2). Finally, Graessley43 introduced a somewhat modified definition of 

* 0.77 /[ ]c η= , resulting in the critical overlap concentration of the solutions being lower than 

those obtained above by a further factor of 23%. In the remainder of this paper, the overlap 

concentrations of the PEO solutions reported are those calculated from Equation (2), using 

the intrinsic viscosities determined from Equation (1).   

 

For a polymer chain in a good solvent, the longest relaxation time in the Zimm theory can be 

approximated by: 

 w

A B

[ ]1
(3 )

s
Z

M
N k T
η η

λ
ζ ν

≅    (3) 

 where ηs is the solvent viscosity, NA the Avogadro’s number, kB the Boltzmann constant and 

T the temperature. The precise value of the numerical front factor in Equation (3) must be 

determined from a detailed eigenvalue calculation44. In the limit of dominant hydrodynamic 
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interactions this value is 1/(2.369) 0.422= . For other values of the solvent quality the front 

factor can be approximated by 1/ (3 )ζ ν  whereζ(3ν) = 1 i3ν

i =1

∞

∑ . For v = 0.55 the front factor 

is thus 1/ (1.65) 0.463ζ � . Using this equation together with the values of intrinsic viscosity, 

the longest Zimm relaxation time can be calculated from the polymer molecular weight and 

solvent viscosity (noting that the intrinsic viscosity is assumed to be a function only of the 

molecular weight for dilute solutions). The values of Zλ  for a series of PEO solutions of 

varying molecular weight at fixed dimensionless concentration / * 0.5c c ∼  in a solvent of 

36wt% glycerol are given in Table 1, and the values for a series of PEO solutions of Mw = 

1×106 g/mol over a range of polymer concentrations in a solvent of 45wt% glycerol are given 

in Table 2. 

 

Finite concentration effects are also expected to further modify Equation (3). A simple mean 

field approach would suggest that as a first approximation the effective viscosity of the 

solvent is replaced by the shear viscosity η  of the solution. This is also consistent with 

writing the viscosity of the dilute solutions as a Taylor series of the form  

 2{1 [ ] ( )}s c O cη η η= + +    (4) 

and evaluating the intrinsic viscosity using the expression determined from the data in Figure 

1. From Table 1, variations of up to 75% may thus be anticipated for the high concentration 

solutions with the deviation decreasing at lower concentrations. The systematic deviations of 

the relaxation time that we determined from the experiments in section 4 are beyond those 

obtained by combining equations (3) and (4). 
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The relaxation times for these dilute aqueous solutions span the range 

5 35 10 s 7 10 sZλ− −× ≤ ≤ × . Although these values are small, viscoelastic effects may still be 

important due to the large deformation rates that occur close to drop pinch-off, as we show 

below.  

 

D  Dynamic surface tension  

The dynamic surface tension (DST) data for the PEO solutions with varying molecular 

weights are given in Cooper-White et al.35 and Crooks et al.39 The data show differences at 

short time, with the higher molecular weight PEO taking longer time to approach equilibrium 

than the more mobile polymers35, 39. However, the various PEO solutions attained the same 

equilibrium value of σ �  62×10-3 N/m. As the drop formation and subsequent breakup 

process occurs within time scale of 0.1 s or less, it is this “dynamic” surface tension of the 

solutions which is expected to be the relevant driving factor in this capillary thinning process.  

 

The dynamic surface tension also varies with polymer concentration. Data for the solutions of 

1×106 g/mol PEO at various concentrations, measured using a Maximum Bubble Pressure 

Tensiometer (Kruss BP2), are shown in Figure 2. The results indicate that the DST value is 

lower the higher the polymer concentration, with the solutions of lower bulk concentrations 

taking longer times to attain equilibrium surface tension. Also shown in the figure (by hollow 

symbols) are the variations in the DST for three solutions of varying concentrations (of the 

same molecular weight PEO) and with 0.4wt% 2-butanol added. The data show that with the 

addition of 2-butanol, the surface tension is lowered to near the equilibrium value at very 

short times. The addition of small quantities of 2-butanol has also been used by others39, 45 to 

reduce the surface tension of various PEO solutions at short time. It will be shown later that 

the variation in the dynamic surface tension at short times (of the order of 10×10-3 N/m) is 
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insufficient to account for the difference in the drop breakup dynamics observed. This is 

demonstrated by the similar filament thinning behaviour observed for the solutions with and 

without 2-butanol added (cf. Figure 9 below).   

 

III  A MODEL FOR INERTIO-ELASTIC PINCHING 

 

Recent experiments in low-viscosity dilute polymer solutions exiting a nozzle and 

undergoing breakup under the effect of gravity35 have shown that similar dynamical 

phenomena are observed in a continuous jet undergoing breakup36, and under forced 

disturbances of a known wavelength37. The resulting dynamics are always found to vary 

strongly with the molecular weight of the dissolved macromolecules, and differ significantly 

from those observed in a Newtonian fluid. In this section we present a simple one-

dimensional model that captures the general features of the dynamics of the drop breakup 

from a nozzle for a viscoelastic fluid. 

 

In Figure 3 we show a sequence of images of the drop formation process for two 

representative cases; a Newtonian glycerol-water mixture and a viscoelastic solution of 0.1 

wt% PEO (Mw = 1×106 g/mol), with the solutions having an identical shear viscosity 

(η = 6×10-3 Pa.s) and similar equilibrium surface tensions of σ = 70×10-3 N/m and 

σ = 62×10-3 N/m respectively. The initial stages of the pinching process are very similar for 

both fluids. However as the necked region connecting the primary drop to the nozzle forms, it 

is clear that elastic effects lead to systematic differences in the dynamics of breakup, resulting 

in the classic ‘bead-on-a-string’ morphology. We note that in a previous study35 it was found 

that two Newtonian fluids, a glycerol-water mixture and a solution containing PEO of Mw = 

8×103 g/mol (with an estimated Zimm relaxation time of the order of 1×10-7 s), whose surface 
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tension values also differed from each other by approximately 8×10-3 N/m, exhibited no 

significant difference in the drop breakup dynamics. Hence it can be concluded that the small 

difference in surface tension of 8×10-3 N/m is insufficient to impart the observed difference in 

the drop breakup dynamics shown in Figure 3. 

 

In Figure 3, the times indicated are the shifted time (t − tp) in milliseconds, relative to the 

critical pinch-off time tp. Note that the critical pinch-off time tp of the elastic solutions given 

here is equivalent to the difference between the detachment time and the lag time (td − tl) 

defined in Cooper-White et al.35 and is obtained during post-processing of the images by 

horizontally shifting the curves of the minimum radius of the necking fluid drop Rmin(t) along 

the time axis until they coincide with the Newtonian fluid curve (see Figures 7(a) and 9 

below for examples). For ( ) 0pt t− < , elastic effects are relatively unimportant; however 

for ( ) 0pt t− > , the elastic stress is the dominant term resisting pinch-off, and the necked fluid 

is formed into a long thin thread connecting the primary drop to the upper reservoir of fluid 

which remains attached to the exit nozzle. For the viscoelastic solution, this initial necking 

process is identical to the Newtonian fluid until approximately 1 or 2 ms before the critical 

pinch time tp.  

 

It is also clear from the images shown in Figure 3 that as the critical pinch time tp is 

approached, this viscoelastic fluid filament becomes increasingly long and slender. As a first 

approximation, it is therefore appropriate to develop a simple one-dimensional model of the 

time-varying extensional flow that arises when the fluid drop exits the nozzle, approaches the 

pinch region, and thereafter forms the thin filament of fluid connecting the primary drop to 

the upper reservoir of fluid. Dimensional analysis suggests that the important dimensionless 
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groups characterizing this necking process are the Ohnesorge number 0 0Oh Rη ρ σ=  and 

the intrinsic Deborah number 3
0 0ZDe Rλ ρ σ= , formed from the ratio of the viscoelastic 

relaxation time and the characteristic Rayleigh breakup time. The values of Oh and 0De  for 

the PEO solutions are also given in Tables 1 and 2, where we have used the outer radius of 

the nozzle ( 0R =2 mm) as the characteristic length scale since the pendant drop wets the 

annular rim, and ρ  and σ  are the density and surface tension of the fluid respectively. For 

the low viscosity polymer solutions used in this work and in other recent experiments34, 35, 37, 

we may have 0 ~ (1)De O  (depending on the molecular weight of the dissolved polymer) but 

also Oh << 1 such that viscous effects of the suspending solvent are always negligible during 

both the early and late stages of the pinch-off process. We are therefore interested here in the 

seldom-explored limit of potential flows of elastic liquids or inviscid elastic flow. Funada and 

Joseph46 have recently studied the linear stability of viscoelastic jets when the flow field is 

approximated by a potential function (corresponding to inviscid flow).  They show that the 

results are very close to those obtained by exact computation using the Navier-Stokes 

equation and the potential flow analysis has the additional benefit of being simple enough to 

enable analytic progress to be made.   

 

Entov and Hinch24 carried out an analysis for the capillary-induced necking of highly viscous 

polymeric fluids (corresponding to Oh >> 1) using the FENE-P dumbbell model. As the 

filament radius decreased, the balance of forces evolved from a visco-capillary balance 

(corresponding to a linear decrease of the radius with time that scales with the capillary 

velocity 0~capv σ η ) to an elasto-capillary balance in which the capillary pressure driving 

the necking process is resisted by the elastic stress in the highly elongated dumbbells. In this 

intermediate regime, the theory and experiments on highly viscous ideal elastic polymer 
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solutions22, 26 show that the radius of the slender filament decreases exponentially with time 

until the finite extensibility of the molecules becomes important. In this final region, the 

extensional viscosity ( )Eη ε�  is high, due to the highly stretched molecules, and almost 

constant; the necking then becomes linear in time once more but with a characteristic velocity  

  v ~ σ ηE . 

 

Recent experimental studies in dilute polymer solutions with Oh << 1 have shown that 

following the formation of a slender thread of the type shown in Figure 3 for the 0.1wt% PEO 

solution, there is an analogous crossover to an exponential rate of necking29, 30, 34, 37. 

Measurements of the necking rate have been used to extract estimates of the relaxation time 

for the polymer chains. The initial necking however is not linear in time due to the low 

viscosity of the fluids and instead appears to be inertially-dominated. Here we seek a simple 

model that is capable of capturing the essential features of this cross-over from inertio-

capillary necking to an elasto-capillary balance.  

 

We consider an axially-uniform cylindrical thread of fluid under the action of capillary, 

inertial and elastic stresses.  Following the notation of Eggers47 we refer to this as a (0+1) 

dimensional (spatial + temporal) approximation, or more compactly a ‘zero-dimensional 

model’. Such a description cannot be expected to provide quantitative agreement with 

experiments or full numerical simulations because it neglects axial variations in the structure 

of the thread. In particular, for inviscid irrotational flows it has been shown that the 

simplified one-dimensional Euler equations exhibit a singularity before the point of breakup 

is reached48.  Numerical simulations 49, 50 show that in fact the free-surface of the droplet 

close to the singularity overturns.   
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The analysis below may thus be considered a simplified or ‘toy’ model that captures the key 

features of the dynamical process and the cross-over from an inertio-capillary balance to an 

elasto-capillary balance. Such a description has not been presented to date. It is also worth 

noting that there now exists substantial evidence for both viscous Newtonian fluids26 and 

viscoelastic fluids with Oh >>124, 26, 28 that such a simplified model description provides the 

correct scaling of the evolution in the radial profile with time. In the case of a viscous 

Newtonian fluid (Oh >> 1, De0 = 0), the value of the prefactor can be obtained from the 

similarity solution of Papageorgiou17. Recent numerical simulations51 of the formation of a 

beads-on-a-string structure for low viscosity viscoelastic fluids (Oh ~ O(1), De ~ 0(1))  

suggest that a (0+1)-dimensional force balance also results in the correct exponential decay in 

the filament radius for this class of fluids and incurs a maximum error in the prefactor of 2−1/3  

≈ 0.793. Such a (0+1)-dimensional approximation thus seems to be a worthwhile place to 

start.  

 

The general form of the force balance for slender viscoelastic threads has been discussed and 

derived elsewhere52. An axial force balance coupled with a radial force balance to eliminate 

the unknown pressure in the thread results in an equation of the general form  

 21
2 2

( ) 2 ( )( ) ~ 3 ( )
( ) ( )( ) s p

F t R tR t t
R t R tR t
σρ η τ

π
 −

− − − ∆ 
 

��  (5) 

 

The time-evolving polymeric stress difference in the filament is denoted generically by 

( )p tτ∆  = [ ( ) ( )]p p zz prrt tτ τ τ∆ = −  and F(t) is the unknown tensile force in the column. The 

local (time-varying) radial rate of necking is ( ) 2 ( ) ( )t R t R tε = − �� . 

 



 20

In the present (0+1) model of the pinch-off process, the necking filament is connected to the 

primary drop (which is accelerating under the action of a gravitational body force) and to the 

remaining fluid held in the reservoir attached to the upper nozzle. These upper and lower 

regions are in a quasi-static balance between capillarity and gravity and are connected by an 

axially-uniform cylindrical filament.  Following McKinley & Tripathi25 we assume that as a 

result the appropriate boundary conditions on the unknown tensile force F(t) is that 

( ) 2 ( )F t R tπσ→ . The upper and lower fluid reservoirs essentially serve to relieve the no-slip 

boundary condition on the radial velocity of the fluid column and promote a uniaxial 

extensional flow. A more complete (1+1)-dimensional analysis such as that described by 

Wagner et al.48 is needed to determine the unknown tension in the thread arising from 

boundary conditions in the far field (i.e. far away from the pinching neck region); however 

such a description is not possible in this simple axially-uniform approximation. The recent 

numerical simulations of Fontelos & Li51 show that the tensile force in a low-viscosity 

viscoelastic filament evolving into a beads-on-a-string morphology is in fact ( ) 3 ( )F t R tσ≈ . 

The (0+1)-dimensional approximation above is thus quite reasonable, and will only result in 

modest errors in the prefactor of the final result.  

 

Dimensional analysis shows that viscous stresses in the test fluids utilized in the present 

study are negligible (Oh << 1) are negligible; equation (5) then simplifies to the following 

expression 

 21
2 ( ) ~ ( )

( ) pR t t
R t
σρ τ− ∆�  (6) 

Equation (6) can be expressed in non-dimensional form by scaling stresses with a 

characteristic capillary pressure, the radius with R0  and time with the Rayleigh time scale 

3
0*t Rρ σ=   . This results in the following expression 
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0

1~
( )

ph
h R

τ
σ
∆

−  (7) 

where 
~

0( ) ( )h t R t R=  is the dimensionless thickness of the filament.  

 

In the case of a Newtonian fluid the extra stress pτ∆  is zero, and breakup results from a 

balance between the capillary driving force which is resisted by the fluid inertia. The 

solutions to Equation (7) are then of the form 2 / 3( ) ~ ( )ph t t t−� � � where pt�  is the dimensionless 

Newtonian pinch time at which the filament breaks into two discrete drops. This form of self-

similar solution to the equations of motion for an inviscid fluid (Oh << 1) evolving under the 

action of surface tension was first discussed by Keller & Miksis53 and analyzed in greater 

detail by Ting & Keller54 and Day et al.49. 

 

Recent finite element numerical simulations of the drop pinch-off problem for low viscosity 

fluids show that this 2/3-power scaling in the minimum radius of the neck is robust and 

applies over several orders of magnitude in 
~

( )h t even when other global effects such as over-

turning invalidate the slender body assumption 21.  Although the precise details of the drop 

shapes formed at breakup require a fully non-linear theory incorporating viscous effects close 

to breakup47 or a detailed computational study (see for example 21), experiments with 

Newtonian fluids and weakly elastic polymer solutions have shown that the time to breakup 

can be quite accurately obtained from the growth of the primary disturbance 36, 55.  The front 

factor obtained from full numerical simulations is approximately 0.7 (cf. Figure 3 in Chen et 

al. 21), and this value is also found to agree well with an experimental value of 0.8 obtained 

from our present experiments, as well as other recent experiments with aqueous polymer 
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solutions35, 48.  When elastic stresses are absent, equation (7) is therefore expected to have a 

solution of the functional form (in dimensional variables) 

 ( )
1/ 3

2 /3
3

0 0

( )( ) 0.8mid
p

R th t t t
R R

σ
ρ

 
= ≈ −  

 
 (8) 

We use this result to convert the approximate expression in equation (7) to an equality and 

now consider the more complex situation that arises when there are polymer additives in the 

fluid, which result in an additional elastic stresses.  

 

The linear stability of a viscoelastic fluid thread subject to capillary-driven perturbations has 

been considered in detail for a range of constitutive models56-58. In each case, the initial mode 

of disturbance is found to be essentially unchanged from the Newtonian analog, since the 

polymer chains are initially unstretched and contribute little stress at short times. This is also 

in accord with our experimental observations shown in Figs. 2(a) and (b) which show that the 

initial necking process remains unchanged upon the addition of polymer. We thus combine 

equation (6) with an appropriate constitutive model. Here we select the single-mode FENE-P 

dumbbell for simplicity, and the equations for the zz- and rr- components of the second 

moment of the dimensionless configuration tensor A   for the dumbbells become  

 
[ ]
[ ]

1 1

1 1

2 ( ) 1

( ) 1
zz zz

rr rr

A f tr A

A f tr A

ε λ λ

ε λ λ

= − +

= − − +

A

A

� �
� �

 (9) 

where λ1  is the relaxation of the fluid, ( ) 2 ( )t R t Rε = − ��  is the stretching rate and 

[ ]( ) 1 1 ( 2 ) 3rr Kf tr Azz A N= − +A  is the nonlinear spring connector with NK the number of 

Kuhn steps. The polymeric contribution to the total stress is given by  

 [ ]( )p B zz rrnk T f tr A Aτ∆ = −A  (10) 
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The number density of chains (n=cNA/Mw) and number of Kuhn steps (NK) are functions of 

molecular parameters such as the concentration, molecular weight and chemical structure of 

the chain. The number of Kuhn steps is calculated according to27: 2 0.5 1
K ( / )ModN F C να −

∞= , 

where α  is the number of chemical bonds per chain. For polyethylene oxide with a repeat 

unit of [−CH2CH2O−], we have w 03 /M Mα = , with M0 being the molecular weight of the 

monomer unit). The parameter F is the geometric factor ( 1( ( 2)F sin tan−= )) and ModC∞  is 

the modified characteristic ratio ( 2 2 1( / )ModC C F C ν −
∞ ∞ ∞= ), modified to account for the 

non-theta condition of the system. A calculation of the coil expansion factor for PEO gives 

ModC∞ = 4.01.   

 

A multi-spring model such as the FENE-PM chain could also be considered; however 

previous studies with highly viscous fluids ( 1Oh >> ) show that the self-governing nature of 

the elasto-capillary necking process results in a relatively low stretching rate corresponding to 

1~ 2 (3 )ε λ�  and the stresses associated with all higher modes relax away24.  

 

Equations (6) plus (9) and (10) thus make a suitable initial value problem for exploring the 

crossover between inertio-capillary necking at short times and formation of a cylindrical 

thread at long times. We recognize of course that such a simplified set of equations cannot 

capture axial variations along the thread, which would lead to the formation of beads on the 

cylindrical filament (such as thus observed at very long times in Figure 3(b)). This ‘toy’ 

model is thus most suited to experiments with dilute solutions of high molecular solutes 

which lead to highly elastic fluids (De >>1) with low background viscosity (Oh << 1).  

Wagner et al.48 have also recently presented experiments and numerical simulations for 

pinching viscoelastic threads using a full 1 dimensional model that establishes the conditions 
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under which a bead does, or does not, form by comparing the growth rate of the most 

unstable Rayleigh mode on the cylinder with the necking rate of the filament.  

 

The equation set is integrated using standard methods for stiff sets of differential equations. 

Typical results for the evolution in the capillary pressure, polymer stress and polymer stretch 

are shown in Figure 4. Also shown is the dimensionless local rate of stretching which may 

properly be termed a Weissenberg number 1 ( )Wi tλ ε= �  in order to differentiate it from the 

intrinsic Deborah number, De0. Initially the polymer molecules are unstretched and the 

capillary pressure is balanced by inertial acceleration in the fluid column. However close to 

the Newtonian pinch time tp determined above, the stretch rate becomes very large in the 

rapidly necking column and the polymer stretch grows rapidly in the thin filament. At the 

‘pinch’, the elastic stresses grow large enough to resist the diverging capillary pressure. This 

reduces the rate of necking and the dominant terms in Equation (6) shift to an elasto-capillary 

balance with negligible inertial effects. This region is identical to that described by Entov & 

Hinch24 for viscous polymer solutions (i.e. Oh >> 1). The finite extensibility of the molecules 

is not yet important and the balance between elastic stresses and capillary pressure results in 

an exponential decrease in the filament radius, with a time constant corresponding to three 

times the longest relaxation time of the fluid,  

 
1

( )
exp

3
p

p
t t

R R
λ

− 
= − 

 
 (11) 

 Here Rp is the radius of the thread at the pinch time tp and 1λ  is the characteristic time 

constant of the elasto-capillary necking process. 

 

The exponential decay in time has been observed in viscous polymer solutions corresponding 

to 1Oh >> 26 and also in low viscosity solutions (Oh << 1)34, 35, 37. It is worth noting that in 
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this exponential necking regime, the flow in the thread is a homogeneous uniaxial elongation 

with a constant extension rate 

 
1

2 2
3

dR
R dt

ε
λ

= − =�  (12) 

corresponding to a Weissenberg number 1 2 3Wi λ ε= =� . This has also been demonstrated by 

full numerical simulations of the (1+1)-dimensional governing equations for a slender 

viscoelastic filament51.  

 

Very close to the final breakup event at tb  the finite extensibility of the molecules becomes 

important. The nonlinear FENE terms in Equations (9) and (10) have been included in the 

(0+1) dimensional simulations presented here; however, for the large values of NK 

appropriate to the high molecular weight PEO molecules used in the present experiments, the 

effects of finite extensibility only become significant for 2
0( ) 10midR t R −≤ . The radius will 

start to decrease linearly in time in this region and rapidly falls below the resolution of the 

imaging system.  Very recent numerical simulations of jet break-up using the Giesekus and 

FENE-P models and incorporating inertia show the same cross-over at very small length 

scales from the exponential thinning to an ultimately linear decrease in the radius with time51. 

 

 

IV  RESULTS  

A  Comparison with model simulations 

In Figure 5(a) we have plotted the evolution of the drop breakup process as it approaches the 

pinch time, for the Newtonian glycerol-water mixture and solutions of PEO at various 

molecular weights. All the solutions behave identically in this flow regime and follow the 

potential flow scaling law of 2 / 3
minR τ∝ , where ( )pt tτ = −� �  is the dimensionless time from 
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the pinch event, in agreement with previous results.34, 35, 51, 59 Also shown in the figure is the 

prediction using the (0+1)-dimension Newtonian pinch model, with the prefactor of 0.8, 

incorporating the measured values for fluid density of 1080 kg/m3 and surface tension of 

63×10-3 N/m [Equation (8)]. It is obvious that the model prediction does indeed show 

reasonable agreement with the experimental results, albeit with a slight shift of the time scale. 

The same plot is also shown in Figure 5(b) for the 0.05wt% PEO solution (Mw = 2×106 

g/mol), with the additional predictions of the inertio-elastic pinch model. Both the Newtonian 

pinch model and the inertio-elastic model with the Zimm relaxation time show excellent 

agreement with experimental Newtonian fluid results as the pinch-time is approached, i.e. 

( ) 0pt t− → .  

 

However, the deviation between the one-dimensional necking model and the experimental 

measurements at earlier times is not surprising. During the initial stages of droplet separation, 

the images in Figure 3 show that the filament is not long and slender but in fact of O(1) 

aspect ratio and must be described by a full 1-dimensional or two-dimensional model (see for 

example 59). In addition the initial pendant drop that forms below the nozzle is initially held 

in place by a quasi-static balance between gravity and surface tension. For a hemispherical 

drop of radius R0 to remain attached we require  

 
2

3 02
0 03 2  ,  or equivalently, 1

3
gRR g R ρπ ρ πσ
σ

≤ ≤  

which is true for the present experiments.  However as the mass of fluid in the pendant drop 

is slowly increased by the syringe pump, the quasi-static balance cannot be maintained. The 

beginning of the pinch-off process is thus driven by gravity, and the fluid that forms the pinch 

region is also stretched axially by the free-falling motion of the pendant drop to which it is 

attached. These dynamics are not captured in the (0+1)-dimensional theory discussed above 
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and require a more detailed computational analysis59, however the magnitude and duration of 

the effects can be estimated. The images in Figure 3 show that the volume of the primary 

drop is much larger than the volume of fluid contained in the thread and thus remains 

essentially constant in time. If the drop volume corresponds to a sphere with centroid located 

at an initial axial position L0 ≈ R0  at the onset of the pinching process, then the axial 

contribution to the stretch rate is, at most, of magnitude 2
0( ) ( ) ( 0.5 )z L t L t gt R gtε ≈ = +�� , if 

we ignore any viscous stress in the thread resisting the gravitational acceleration of the drop. 

The maximum axial (gravitational) stretching rate ( ,max 02z g Rε =� ) thus occurs at a time of 

1 02 20t R g= ≈  ms for the present geometry. However, the resulting Weissenberg number 

characterizing the magnitude of the molecular stretching induced by this axial acceleration is 

,max 02 1z z z g Rλ ε λ= <<�  and consequently the effects of an ‘elastic pre-strain’ in the 

molecules and corresponding non-zero contribution to the initial viscoelastic stress in the 

drop pinch-off problem are negligible. Molecular stretching only becomes important very 

close to the pinch region. This is further confirmed experimentally by digital image analysis 

of the location of the centroid (zc) of the pinching drop with time (not presented here). This 

analysis shows that the axial displacement of the drop varies according to ( ) 24.5 0.5cz t= ±  

so that there is no retardation in the initial drop acceleration resulting from viscoelasticity.  

Beyond the point t1 (corresponding to the point of maximum axial stretching) the (0+1)-

dimensional solution presented here should be increasingly accurate59: the axial stretching 

contribution decays and the radial necking rate increases (as seen in Figure 3 when the pinch-

off region is approached i.e. (t − t p ) → 0). 

 

The model also correctly predicts the formation of an elastic filament beyond the pinch 

region due to the elastic stress of the polymer solution resisting further extension. However, 
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the rate of filament thinning computed in the simulation 2 /R Rε = − ��  is much faster than that 

found experimentally. This rate is dictated in the computation by the Zimm relaxation time 

Zλ  of the fluid which is much lower than the effective time constant obtained from the 

experimental rate of filament radius reduction. Also shown in Figure 5(b) is the model 

prediction using the effective relaxation time effλ obtained experimentally (see Table 1), 

instead of the Zimm time. This increase in the relaxation time causes a larger elastic stress in 

the fluid opposing the capillary pressure and hence an increase in the neck radius as the fluid 

approaches the pinch region. The predicted radius is much higher than the experimental 

values, although the rate of radius reduction of the filament formed beyond the pinch is the 

same as the experimental value, as expected. Therefore it may not be unreasonable to expect 

that the relaxation time of the fluid as it approaches the pinch has a value somewhere between 

the Zimm relaxation time and the much larger value ( effλ ) found later in the filament 

thinning process.  

 

We have demonstrated that the simple (0+1)-dimensional theory can capture the salient 

features of the breakup process including the initial inertial-capillary pinching and the 

formation of a stabilized elastic thread, we now proceed to compare the evolution of the 

breakup process for filaments of dilute polymer solutions with different molecular weights 

and concentrations of PEO.   

 

B  Effects of polymer molecular weight  

 

In Figure 6, we show a sequence of images of the filament formed after the pinch region, i.e., 

( ) 0pt t− ≥ , for solutions of PEO at various molecular weight and c/c* ~ 0.5. For PEO 
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solutions of medium molecular weight between 5 6
w3 10 1 10M× ≤ ≤ ×  g/mol, a small 

secondary droplet is always formed between two cylindrical filaments joining the primary 

drop and the reservoir fluid. This satellite drop exists for most of the filament life-time and 

observations show similar phenomena for the entire concentration range tested. The rate of 

reduction in the radius of these two filaments, one joining the primary and secondary droplets 

and the other joining the secondary drop and reservoir fluid, is found to be very similar and 

the values reported herein are for the lower filament. The two highest molecular weight 

solutions of Mw = 2×106 and 5×106 g/mol (at c/c* ~ 0.5) show no clear secondary drop and a 

single, axially-uniform cylindrical filament was formed after the pinch region.  

 

The presence or absence of a secondary drop in the filament beyond the pinch region of a 

viscoelastic fluid exiting a nozzle is dependent on the relative magnitudes of the elastic stress 

and capillary pressure. Elastic stresses resist the necking process, while capillary pressure 

strives to reduce the filament radius towards breakup. Such a complex interplay can be seen 

in the solutions of PEO with Mw = 2×106 g/mol. As the concentration of PEO decreases (from 

c/c* ~ 0.5), there exists a transition concentration (at c ∼ 0.002wt% or c/c* ~ 0.02) at which 

the elastic stress is no longer large enough to balance the capillary pressure and a secondary 

drop forms via surface recoil between the reservoir fluid and the primary drop, in the same 

manner as observed for the lower molecular weight PEO solutions. However, for the 

solutions of PEO at Mw = 2×106 g/mol and c > 0.002wt%, a smooth cylindrical column was 

observed. This morphological difference is thus both concentration and molecular weight 

dependent. For high molecular weight and high concentration solutions, the filament does 

become unstable near the final breakup of the drop, and several small beads connected by yet 

thinner filaments or threads develop. This ultimate instability and the phenomenon of surface 
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recoil has been predicted by Chang et al.57 to be iterative in nature and has been discussed in 

detail in Cooper-White et al.35.  

 

It can be seen from Figure 6 that the filaments exist for longer time and are of increasing 

length as the molecular weight of the PEO increases, at approximately the same c/c*. The 

time evolution of the minimum drop radius up to the pinch region ( )pt t≤  and of the filament 

formed after the pinch is shown in Figure 7(a) for PEO solutions with different molecular 

weights, at fixed concentration c/c* ~ 0.5. By shifting the time axis of the viscoelastic fluid 

curves to the Newtonian curve, it is apparent that all the curves coincide with each other and 

with the Newtonian fluid curve from time 40 ( ) 2pt t≥ − ≥  ms. That is, the initial formation 

of liquid drop under gravity is identical for all PEO solutions, of differing relaxation times 

but similar shear viscosity (see Table 1) and surface tension. This similarity exists up to 

within 2 to 3 ms of the pinch time and is consistent with our theoretical analysis of the 

inertio-elastic capillary thinning (see Figure 5(b)): at short times, i.e. pt t<< , the inertial and 

capillary stresses balance each other, while the elastic stress is negligible and does not 

contribute to the evolution of the drop necking process. Hence all fluids behave identically in 

this flow regime irrespective of their viscoelastic properties, as shown in Figure 5(a). 

 

A careful study of the minimum radius of various PEO solutions in Figure 7(a) shows that 

just prior to the pinch time, i.e. at 2 ( ) 3pt t≤ − ≤  ms, there is a slight increase in the 

dimensionless minimum radius of the PEO solutions compared to the Newtonian fluid, which 

is particularly noticeable for PEO solutions at Mw = 2×106 and 5×106 g/mol. This observation 

is consistent with the simulation results of the inertio-elastic analysis shown in Figure 7(b) for 

three PEO solutions, using the effective relaxation time effλ  obtained from the experimental 
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rate of filament radius reduction. The elastic contribution of the polymer only manifests itself 

at high extension rates as the fluid undergoes rapid necking very close to the pinch region. In 

this rapidly necking region the macromolecules undergo rapid stretching and the fluid 

experiences a large increase in elastic stress. This is indicated by the rapid rise in the local 

Weissenberg number, ( )Wi tλε= � , as pt t→  that is shown in Figure 4. The predicted increase 

in the local Weissenberg number as the inertio-elastic pinch time is approached is an order of 

magnitude larger than the value at the commencement of the drop formation process, 

increasing up to a critical value of 1crit critWi λε= >�  at pt t= . It is this critical extension rate 

which is instrumental in causing the initial, significant stretching of the polymer molecules, 

and the resultant large increase in the elastic stress. The supercritical extension rates attained 

as the pinch time is approached was also noted by Amarouchene et al.34 for their experiments 

with high molecular weight PEO in water, at what they termed the “transition” point. In this 

region the dynamics of drop formation changes from a self-similar potential flow with a 

power-law relationship to an exponential thinning of the filament radius.  

 

After the pinch region, i.e. at time ( ) 0pt t− > , the filament radius decreases exponentially 

with time, in agreement with the analysis of the elasto-capillary thinning process. From 

Figure 7(a) it is apparent that the rate of filament radius reduction is dependent on the 

molecular weight of the PEO in solutions. The extension rates of the filament forming the 

neck can be determined in the same manner as utilized in the capillary-thinning and filament-

stretching experiments, i.e. 

 min 0( / )2 2 dln R RdR
R dt dt

ε = − = −�  (13) 
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The filament extension rates observed in the various PEO solutions are given in Table 1; the 

values are found to decrease with increasing molecular weight of PEO in solutions. From the 

elasto-capillary thinning theory, the local Weissenberg number of the extending filament is 

eff 2 / 3Wi λ ε= =� , and the effective relaxation time of the PEO chains in the extended state 

effλ  can thus be determined. The values of effλ  for the PEO solutions (shown also in Table 1) 

are seen to increase with molecular weight. This is also in qualitative agreement with 

extensional viscosity measurements obtained from the opposing-jet instrument (see Section 

2). It can be seen from Table 1 that the value of effλ  for each solution is also significantly 

higher than the longest Zimm relaxation time calculated from Equation (3), using the intrinsic 

viscosity values determined from the Mark-Houwink-Sakurada equation (see Figure 1). This 

deviation is in accord with the findings of Christanti and Walker37 for similar PEO solutions 

undergoing jet breakup under forced disturbances. In Christanti and Walker37, analysis of the 

video images showed that the relaxation times determined from the rate of jet radius 

reduction were a factor of two higher than the Zimm values, although these authors suggested 

that such differences were more a result of experimental error than a matter of physical 

significance. It should also be noted here that the Zimm relaxation times quoted by Christanti 

and Walker37 were calculated based on a numerical front factor of 0.95 and were higher than 

they would have been if calculated using the front factor of 0.463 determined for PEO in a 

good solvent with solvent quality index of 0.55, as used here.  

 

From Equation (3) it is clear that the longest relaxation time is expected to vary with the 

viscosity of the suspending solvent and the molecular weight of the polymer chains. In Figure 

8 we show the values of effλ  obtained for PEO solutions of varying molecular weight scaled 

with solvent viscosity and plotted as a function of polymer molecular weight. Also shown are 

the scaling of the longest Zimm relaxation times of these solutions and the data of Christanti 
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and Walker37. The data show the expected scaling with molecular weight, however the values 

of the relaxation time determined from the rate of filament or jet radial reduction are 

approximately an order of magnitude higher than expected from Zimm theory. This enhanced 

relaxation time arises because macromolecules in an extended state will start to interact with 

one another, even though they are in the dilute concentration regime under equilibrium 

conditions where no molecular interaction is expected. Moreover, as the polymer molecules 

are extended and interact with one another, it is to be expected that the extent of the 

interactions will depend on the concentration in solution, as polymer-polymer interactions 

will be more prevalent the higher the concentration. Hence it is of interest to examine further 

the effect of polymer concentration on the effective relaxation time obtained from filament 

extension during the drop breakup process.  

 

C  Effects of polymer concentration 

 

To examine the effect of polymer concentration on the effective relaxation time, we have 

investigated a series of PEO solutions of 6
w 1 10M = ×  g/mol of varying concentrations from 

0.01 / * 0.5c c≤ ≤  in a solvent of 45wt% glycerol/55wt% water. The solution viscosity and 

composition of these solutions are given in Table 2. The shear viscosities of the solutions 

vary between 38.2 10−×  and 34.7 10−×  Pa.s and the equilibrium surface tension for all the 

solutions is approximately 357 10−×  N/m, while the dynamic surface tension has been found 

to vary weakly with concentration of PEO in the solutions (see Figure 2). The evolution of 

the minimum radius during the approach to the pinch time and during the formation of 

subsequent filament is shown in Figure 9 as a function of the shifted time. It is clear that for 

these solutions with varying PEO concentration, the initial evolution of the drop radius as it 

approaches the inertio-elastic pinch is similar to the Newtonian fluid until within 1 to 2 ms of 
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the pinch time, as found for the solutions with varying PEO molecular weight. After the 

pinch region all PEO solutions show an enhanced resistance to pinch-off and form a thin 

filament which exists for various lengths of time, from 1 to 2 ms for the lowest concentration 

of 0.002wt% PEO (c/c* = 0.012) to over 40 ms for the highest concentration of 0.1 wt% (c/c* 

= 0.62).  

 

A close inspection of Figure 9 indicates that there is an anomalous behaviour with the 

solutions of 0.01wt% PEO and lower; the radius of the rapidly shrinking neck appears to 

reduce faster than the analogous Newtonian fluid very close to the pinch region, i.e., 

1 ( ) 2pt t≤ − ≤  ms. This is in contrast to the wider neck arising from the presence of the 

elastic stress that was observed for the series of PEO solutions with varying molecular weight 

and also for the solutions of 1×106 g/mol PEO at higher concentrations. This more rapid 

reduction in the neck radius on approach to the pinch region could be due either to the 

slightly lower shear viscosity of these solutions (due to the lower polymer concentrations in 

the same solvent), or to the somewhat higher dynamic surface tension at short times on the 

order of tens of milliseconds.  

 

It is also apparent from Figure 9 that after the inertia-elastic pinch, the rate of filament radius 

reduction is a function of polymer concentration. The measured extension rates of the 

filament and the effective relaxation times obtained from these extension rates are given in 

Table 2. These relaxation times are found to be a strong function of polymer concentration 

even in the dilute region. This variation in the effective relaxation time has also been noted in 

other studies of low viscosity polymer solutions undergoing similar drop breakup34, as well as 

in the capillary thinning device29, 30. However, as shown in Figure 2, there is a significant 

difference in the surface tension of the PEO solutions of differing concentrations up to 
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210σ −∆ = ±  N/m at intermediate surface age of between 102 and 104 ms. In order to ascertain 

that the variation in the rates of filament thinning found for the different PEO solutions are 

not due to this difference in dynamic surface tension, we have also carried out drop formation 

experiments using PEO solutions in the same glycerol-water mixture, but with 0.4wt% 2-

butanol added. The addition of 2-butanol has the effect of decreasing the DST at short times 

of the solutions to the same value as the equilibrium value (see Figure 2), while maintaining 

the shear viscosity of the solutions. For example, the surface tension for the 0.02wt% PEO is 

reduced from 68×10-3 N/m to 60×10-3 N/m at the minimum measurable surface age of 10 ms.  

 

These solutions with the added 2-butanol show almost identical filament formation 

characteristics with the PEO solutions without the added 2-butanol (see Figure 9). Therefore 

it may be deduced that differences in the dynamic surface tension of the PEO solutions are 

not the cause of the observed differences in the evolution of the filament after the inertio-

elastic pinch. Although slight differences in the actual rates determined from the filament 

thinning process were noted between the solutions with and without 2-butanol (see Table 2), 

these differences are well within the experimental errors in the determination of the rate of 

filament thinning. 

 

Before proceeding further with the discussion of the effective relaxation times, it is worth 

considering the errors involved in the determination of these relaxation times. It can be 

assumed that most of the errors involved in the determination of the relaxation times arise 

from the determination of the filament thinning rate. These errors can be estimated as 

follows: Using the maximum magnification available with the present image capturing 

technique the root mean square error in determining the filament radius (or diameter) can be 

estimated to be initially 5±  to 10%±   (that is, 2±  pixels from an image spanning 20 to 40 
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pixels depending on the solution) at the start of the filament thinning process immediately 

after the pinch, and 20%±  (or 2±  out of 10 pixels) just prior to break-off or at the point 

below which further measurements are deemed too inaccurate, i.e. when Rmin/R0 = O(0.02). 

The rate of necking is the slope of the semi-log plot of the radius against time and the 

maximum error in the rate is then the square root of the sum of square of the two errors 

involved in determining the radius, giving a total of 23%±  error. The actual variation 

obtained from several repeated measurements of the rate of radius reduction, using either the 

same solution or two separately prepared solutions, showed a similar error of approximately 

20%±  in several cases. Hence this value is used as an estimate of the errors in the 

determination of the effective relaxation times. Smaller errors could be obtained if the 

magnification during the image capturing of the drop breakup process is increased from that 

used in the present experiments, at the detriment of losing visual information on the overall 

pinch-off process. 

 

We can now proceed to investigate the effects of polymer concentration on the effective 

relaxation time obtained from the rate of necking.  The effective relaxation times scaled with 

solvent viscosity for solutions of PEO with molecular weight of Mw = 1×106, 2×106 and 

5×106 g/mol are shown in Figure 10. All of the solutions show an increase in the effective 

relaxation time with polymer concentration, showing a power law relationship with an 

exponent of approximately 0.65 regardless of the molecular weight tested. This is lower than 

the power law exponent (~ 0.8) found by Amarouchene et al.34 and Bazilevskii et al.30 on 

other solutions of PEO. Stelter et al.29 also reported the relaxation times of PEO solutions 

determined from radius reduction in a self-thinning capillary breakup experiment to be 

dependent on the PEO concentration, although no value of the exponent was given. 
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The results for the PEO solutions shown in Figure 10 and Table 2 indicate that the effective 

relaxation times obtained from filament thinning are up to 10 times the longest Zimm 

relaxation time at the highest PEO concentration investigated, i.e., at / * 0.5c c ∼ . A plot of 

the effective relaxation time, scaled with the longest Zimm relaxation time ( eff / Zλ λ ), as a 

function of polymer concentration relative to the overlap concentration ( / *c c ) is shown in 

Figure 11 for all of the PEO solutions studied. Also shown are the error bars of 20%±  for the 

data of PEO at Mw = 1×106, 2×106 and 5×106 g/mol. It should also be noted that the standard 

errors in the determination of the effective relaxation time for the very dilute solutions are 

probably somewhat larger than those shown, due to the extremely fast rate of filament 

shrinkage which occurred within a time scale of the order of 2 to 3 ms. But despite the 

relatively large errors involved, the increase in the ratio eff / Zλ λ  is statically significant and 

the ratio increases from the expected value of unity for / * 0.01c c <  to values above 10 as 

polymer concentration increases. 

 

V  DISCUSSION  

 

We have now seen that polymer chain interactions in the stretched state can affect the 

solution relaxation time, which is manifested as an increase in the effective relaxation times 

over the theoretical Zimm values determined from the equilibrium, coiled-state. It is then of 

further interest to ask if these chain-chain interaction effects are dependent on the absolute 

concentration or if there is a universal dependence of the interactions on the reduced 

concentration / *c c  as mooted by Harrison et al.60 The results for PEO solutions shown in 

Figure 10 and Tables 1 and 2 indicate that the effective relaxation times obtained from the 

rate of filament thinning are up to 10 times the longest Zimm relaxation time at the highest 

PEO concentration of c/c* ~ 0.5. In Figure 11 the effective relaxation times scaled with the 
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Zimm times ( eff / Zλ λ ) are plotted as a function of the reduced concentration ( / *c c ). The 

results of all the solutions studied in this work all fall on this master curve with the exception 

of the solution of 3×105 g/mol PEO (Note that the data for the 3×105 g/mol PEO have been 

obtained with two separately prepared solutions at the same concentration, with the two 

giving the same filament stretching rate and effective relaxation time. Hence the noted 

deviation is most likely due to the large errors involved in the determination of the effective 

relaxation time of this low molecular weight PEO with very short life time of the filament of 

the order of 5 to 6 ms). By plotting the ratio of the effective relaxation time to the Zimm time, 

we have effectively scaled the measured relaxation times with both the solvent viscosity and 

polymer molecular weight and, as a result, the data for PEO of all molecular weights fall on 

the same master curve, with eff / Zλ λ  approaching unity as / * 0.01c c → . Thus, the 

dimensionless effective relaxation time appears to be a universal function of the extent of 

polymer-polymer interactions regardless of the absolute concentration, as expected, at least 

for this polymer. It would be interesting to check if this universality applies to other 

polymers, either linear or branched, or with varying solvent effect. A linear regression of all 

the data up to / *c c = 0.5 (with the exception of the results for the PEO solutions at Mw = 

3×105 g/mol) gives a line of best fit with a power-law exponent of 0.65. We have also 

included the results of Amarouchene et al.34 and Christanti and Walker37 for low viscosity 

PEO solutions in the figure (using values of Zλ  and *c  estimated in the same manner as for 

our solutions). Note that these results overlay our line of best fit over the range of / *c c  

investigated, although Amarouchene et al.34 have suggested that the power-law exponent is 

closer to 0.8.  

 

Under quiescent conditions, all of the PEO solutions studied in the present work are in the 

dilute regime with / * 1c c < . However, when undergoing extension in the necked filament, 
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the solutions appear to exhibit semi-dilute solution behaviour arising from chain-chain 

interactions with a concentration-dependent relaxation time scale. As the macromolecules in 

solutions are unravelled from the equilibrium coiled configuration on approach to the pinch 

region (and also subsequently during filament stretching), they will increasingly feel the 

presence of the surrounding molecules. These interactions will be enhanced as the 

concentration increases. In the stretched state, the transition from dilute to semi-dilute 

concentration regimes will occur at a much lower value than indicated by the value of  c* 

determined in the quiescent state, by using the intrinsic viscosity values of Figure 1, for 

example. It is only in the so-called “ultradilute” region60 where absence of chain-chain 

interaction of polymer in the stretched state may truly exist. Harrison et al.60 found, using 

birefringence measurements for flow through a two-roll mill, that chain-chain interactions 

inhibit polystyrene molecules from attaining full extension in their solution at / * 0.1c c ∼ , in 

contrast to that found for a true ultradilute concentration of / * 0.01c c ∼ . The results obtained 

in the present study indicate that the solutions are approaching the true dilute region even in 

the stretched state as / * 0.01c c ∼ , in agreement with the measurements of Harrison et al.60 

However, due to limits in temporal and spatial resolution it may not be possible to use these 

drop breakup experiments to determine the concentration limit below which no polymer 

concentration effects exist even in the stretched state. None of the earlier studies29, 30, 34 were 

able to arrive at concentrations of PEO low enough to yield a concentration-independent 

relaxation time. This may be attributed to a lack of spatial and temporal resolution for the 

solutions at very low polymer concentration, or to an insufficiently large polymeric 

contribution to the total fluid stress which prevents a clear crossover from an inertio-capillary 

to elasto-capillary balance.     
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Also shown in Figure 11 is the simplest possible correction to the Zimm result (Equation (3)) 

obtained by replacing the solvent viscosity by the zero-shear-rate viscosity 

{ }0 1 [ ]........s cη η η= + . It is obvious that the factor (1 / *)c c+  suggested from such a mean 

field approximation is not sufficient to capture the significant variation observed 

experimentally. Another possible correction is to recognize that the longest time constant will 

vary with the drag on the elongated polymer coils as they deform. We can estimate this 

change in the drag by using the ratio of the drag on a straight rod to that on a Gaussian coil; 

i.e. max

0

6.28
5.11 ln( )

rod

coil

L
R L d

ζ ζ
ζ ζ

= = 27, where L is the length of the fully extended chain, d is the 

diameter (∼ 4.9 Ǻ) and R is the equilibrium root-mean-square end-to-end separation of the 

chain. This ratio max 0ζ ζ  depends on the molecular weight as it affects the values of both L 

( kN a= ) and R ( kN aν= ) used in the calculation, but the variation is not significant for the 

range of molecular weights from 1×106 to 5×106 g/mol. From Figure 11 the rod/coil drag 

scaling 1
*

rod

coil

c
c

ζ
ζ

 
+ 

 
 for a typical PEO of Mw = 2×106 g/mol is shown and it is obvious that 

the effect of changing the drag on a single polymer chain from coil to rod configuration alone 

is also insufficient to account for the chain-chain interaction effects. At present it is still 

unclear how to develop a molecular theory that accounts for the chain-chain intermolecular 

interactions. However one can argue that the principal change is an increase in the number of 

frictional events acting on a partially unravelled chain due to neighbouring chains. The 

polymer contribution to the viscosity should thus scale no longer with the number density of 

chains per unit volume ( w/A BcN k T Mν = ), but with the number of (possibly overlapping) 

chain segments ( wcM ) per unit volume. The data available in the present study and other 

recent studies is certainly consistent with an effective relaxation time that scales as 
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3 1( / ) ( / *)Z c c νλ λ −∼ . However, further theoretical work is required to ascertain the 

appropriate scaling law for interchain dilute solutions undergoing extensional flows. 

 

VI  CONCLUSIONS 

 

We have investigated the drop formation dynamics of a series of low viscosity elastic fluids, 

which were controlled to have very similar shear viscosity and surface tensions but differ 

substantially in viscoelastic properties. For these low viscosity fluids, viscous and elastic 

stresses are irrelevant prior to the rapid formation of the pinch region, during which the 

dynamics are controlled by an inertial-capillary balance. The rapid decrease in the radius on 

approach to break-off produces large increases in the extension rate at this location. We have 

demonstrated that even at very dilute concentrations, the polymer molecules can be highly 

extended during the approach to the pinch region without viscous effects being important. As 

a result of this significant molecular extension, the elastic stress grows to match the capillary 

pressure, preventing the neck from breaking off, in contrast to the corresponding Newtonian 

fluid. This stabilization of the pinch region results in two cylindrical filaments which develop 

either side of a secondary drop between the nozzle and the primary drop. Alternatively the 

pinch region may form a single cylindrical filament without any secondary drop, depending 

on polymer molecular weight and concentration. Regardless of the specific morphology, an 

elastic-capillary balance holds in these cylindrical filaments and the radius decreases 

exponentially with time. A simple zero-dimensional model captures this transition and shows 

that the local Weissenberg number is ( ) 2 / 3Wi tλε= � �  subsequent to the pinching event is 

valid during the filament stretching event. The effective relaxation times obtained from this 

expression are up to an order of magnitude higher than the estimated Zimm relaxation times 

for all PEO solutions studied and only approach the Zimm relaxation time when / * 0.01c c ≤ . 
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In this exponential stretching regime, inter-molecular interactions result in relaxation times 

far above equilibrium predictions. A universal scaling with reduced concentration / *c c  is 

observed over a wide range of concentrations and molecular weights. This effective 

relaxation time in extension is shown in Figure 11 and can be described by a relationship of 

the form  

 
0.65

weff [ ] 1000.463
*Z A B

sM c
N k T c

λ η η
λ

 =  
 

 for 0.01 ≤ c c * ≤1 (14) 

where [ ]η  and *c  both vary with molecular weight according to Equations (1) and (2), 

respectively. 
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Mw 

(g/mol) 

c 

(wt%) 

[η] 

(ml/g) 

c/c* ηs 

(Pa.s) 

η 

(Pa.s) 

λZ 

(s) 

λeff 

(s) 

λeff/λZ 

 

Oh De0 

3×105 0.20 2.61×102 0.56 0.0034 0.0057 5.1×10-5 1.4×10-3 26.89 1.56×10-2 4.29×10-3

6×105 0.17 4.10×102 0.75 0.0034 0.0059 1.6×10-4 1.9×10-3 11.64 1.61×10-2 1.35×10-2

1×106 0.10 5.72×102 0.62 0.0034 0.0058 3.7×10-4 4.7×10-3 12.79 1.58×10-2 3.13×10-2

2×106 0.05 8.97×102 0.48 0.0034 0.0050 1.2×10-3 1.4×10-2 12.13 1.37×10-2 9.83×10-2

5×106 0.03 1.63×103 0.53 0.0034 0.0051 5.3×10-3 3.5×10-2 6.74 1.39×10-2 4.46×10-1 

 

Table 1  Composition and other properties of polyethylene oxide (PEO) solutions at various 

molecular weights. 
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Mw 

(g/mol) 

c 

(wt%) 

[η] 

(ml/g) 

c/c* ηs 

(Pa.s) 

η 

(Pa.s) 

λZ 

(s) 

λeff 

(s) 

λeff/λZ 

 

Oh De0 

1×106 0.10 5.72×102 0.63 0.0047 0.0082 5.1×10-4 7.1×10-3 13.88 2.26×10-2 4.22×10-2

1×106 0.05 5.72×102 0.31 0.0047 0.0063 5.1×10-4 4.3×10-3 8.37 1.73×10-2 4.22×10-2 

1×106 0.02 5.72×102 0.13 0.0047 0.0055 5.1×10-4 3.1×10-3 6.16 1.51×10-2 4.22×10-2 

1×106 0.01 5.72×102 0.06 0.0047 0.0050 5.1×10-4 1.6×10-3 3.06 1.38×10-2 4.22×10-2 

1×106 0.005 5.72×102 0.03 0.0047 0.0048 5.1×10-4 8.6×10-4 1.68 1.32×10-2 4.22×10-2 

1×106 0.002 5.72×102 0.01 0.0047 0.0047 5.1×10-4 5.5×10-4 1.08 1.29×10-2 4.22×10-2 

 

Table 2  Composition and other properties of polyethylene oxide (PEO) solutions of 

6
w 1 10M = ×  g/mol at various concentrations.  
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of PEO at c/c* ∼ 0.5, comparing with the Zimm longest relaxation times, including data 

by Christanti and Walker 37. 

9. Dimensionless radius (Rmin/R0) versus shifted time ( )pt t−  for PEO solutions of Mw = 

1×106 g/mol at various concentrations. 
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10. Scaled effective relaxation time ( eff / sλ η ) against concentration (c) for PEO solutions 

of Mw = 1×106, 2×106 and 5×106 g/mol (Lines are drawn as guide only). 

11. Scaled effective relaxation time ( eff / Zλ λ ) against dimensionless concentration ( / *c c ) 

for all PEO solutions, showing line of best fit and lines for scaling with 1
*

c
c

 + 
 

 and 

1
*

rod

coil

c
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