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Abstract— In this work, we propose a radical approach for
exploring the space of all possible protein structures. We present
techniques to explore the clash-free conformation space, which
comprises all protein structures whose atoms are not in self-
collision. Unlike energy based methods, this approach allows
efficient exploration and remains general – the benefits of
characterization of the space apply to all proteins. We hypothesize
that this conformation space branches into many small funnels
as we sample compact conformations. We develop a compact
representation the conformation space, and give experimental
results that support our hypothesis. Potential applications of our
method include protein folding as well as observing structural
relationships between proteins.

Index Terms— Protein structure, protein conformation space,
protein folding

I. INTRODUCTION

It is well known that protein structure determines protein
function. Consequently, predicting protein structure from se-
quence, or protein folding is an important problem in biology.
Although much progress has been done in recent years (e.g.,
homology [1] and ab-initio [2] techniques), this problem
remains mostly open.

Traditional approaches treat this problem as a search for
the lowest energy structure, or conformation, of a protein in
the space of all possible structures, or conformation space.
The energy of a protein structure is made up of many terms,
and depends on the chemistry of the protein. As a result,
the energy distribution of the space is different for different
proteins, and the energy function has a large number of local
minima, making it difficult to navigate.

In this work, we propose a radically different approach,
which is based on two main ideas.

First, we define the clash-free subset of the conformation
space of a protein structure we call it the free space to
be the space of all structures in which no two atoms are
colliding. The free space only takes into account the van der
Waals energy terms. We treat it as the feasible space within
which the protein can move. In contrast, we regard the other
energy terms (like the electrostatic ones) as being responsible
for steering the molecule toward its native conformation inside
the free space. We hypothesize that the free space is a tree-
shaped space consisting of many branching funnels. Around
denatured conformations, the free space is open. As the protein
folds and becomes compact the trajectories of motion lie in
narrower funnels. The funnels end as collisions among atoms
eventually prevent the protein cannot get more compact. The
native conformation lies near such a dead-end.

The generic conformation space consists of many such
trajectories and narrow funnels; we believe that the rest of the
proteins energy guides the proteins folding toward the unique
native state of a protein.

Secondly, we further hypothesize that the overall geometric
structure of the tree-shaped free space is almost independent
of the protein itself, in particular its amino-acid sequence
(although the final fold to which the protein is eventually
steered strongly depends on this sequence). So, we consider a
generic protein-like chain modeled as a chain of beads and our
goal is to compute a generic representation of the free space
of this generic protein.

We build this representation as a tree of bifurcations. We
define a fold as a group of similar conformations (usually lying
in the same narrow funnel) and a bifurcation as a conformation
at which the free space splits into separate funnels or folds.
The bifurcation tree is rooted at the open, or denatured (least
compact) structure of the protein chain. The leaves of this tree
are the compact folds which may contain the unique native
structure of a specific protein.

To construct the bifurcation graph, we first build a connected
graph, or a roadmap of conformations in the free space of
the generic chain of beads. This is done by performing a
large number of random walks in free space and sampling
conformations along those walks. Next, we determine folds
and bifurcations by connecting the sampled conformations by
simple clash-free paths.

Once the bifurcation tree has been constructed, it can be
used in a number of ways. One example is to evaluate
the energy function gradient of a specific protein at each
bifurcation in the tree and determine how it steers the protein
toward its native conformation. Another interesting application
is to compare the folds recorded in the PDB [3] to the folds
in the tree. If we think of the distance between two PDB folds
as the number of bifurcations in the tree that separate them,
then it would be interesting to determine how the PDB folds
are distributed in the bifurcation tree and whether they form
clusters.

After a brief survey of related work, we present preliminary
techniques to build a bifurcation tree for a generic chain of
beads. We then show some preliminary computational results.
Our results show that the conformation space indeed branches
into narrow trajectories as we sample compact structures, thus
confirming the fundamental hypothesis of the conformation
space structure.



II. RELATED WORK

The well-known protein folding problem [4] is a search for
the native structure in the conformation space of a protein; the
native structure is believed to correspond to the lowest-energy
structure in the space [5]. Since the entire space of protein
structures is believed to be nearly impossible to enumerate,
the most accurate current methods typically use energy-based
minimization from a set of candidate structures obtained from
homologs, or sequentially similar proteins [6]. The distribution
of the energy function over the space of protein structures is
hard to navigate [7], and hence the success of folding depends
on finding good candidate or template structures which are
close to the native state.

Most protein folding approaches consider the overall energy
landscape while minimizing to a low-energy structure, and
use classical optimization approaches such as Monte Carlo
search [8]. Previous work on protein folding includes generic
representations, particularly in lattice models [9]. However,
usually only information implicit in the generic model is used
to predict native structures. Our two-stage strategy intends to
build upon such work to allow full energy evaluations to be
used while navigating a generic space of protein structures.

Previously, graphs similar to probabilistic roadmaps [10]
have been used to represent conformation space to study
folding kinetics [11], [12], search for good folding trajectories
[13] and compute large amplitude protein motions [14].

III. STRUCTURE OF GEOMETRIC CONFORMATION SPACE

Proteins are amino acid chains connected by peptide bonds.
It is known that peptide bonds are planar and do not allow
rotational freedom. The ability of a protein chain to fold
into different shapes is largely conferred by the two rotatable
backbone bonds of the α-carbon atom in each residue. The
torsional angles of these bonds are commonly referred to as
the φ and ψ angles: a protein with n residues has 2n variable
torsion angles. Thus, the conformation space of a protein has
2n dimensions, and each point in the space is a particular
protein structure.

A. Conformation graph

We intend to characterize the clash-free, or geometric con-
formation space of the protein, which is the subset of the
conformation space that consists of structures whose atoms
are not in self-collision.

We do this using a set of sampled conformations in the
clash-free space, and a connectivity information of the sampled
conformations. This can be well-represented using a graph,
whose vertices correspond to sampled conformations and
edges correspond to connected conformations. Proteins are
very compact structures, and since we would like to use the
conformation space to explore aspects of protein structure, we
direct the edges of the graph based on compactness.

The graph consists of the set of sampled conformations
Ci. A directed edge Cx → Cy indicates that a collision free
straight-line path exists between Cx and Cy and that Cy is
more compact than Cx. This results in a directed acyclic graph.

The leaves of the graph represent the most compact confor-
mations, therefore the graph encodes folding paths from less
compact to more compact conformations. Since connectivity
encodes straight line paths, the lack of an edge between two
conformations indicates the presence of an obstacle, i.e. self-
colliding conformations (see Fig. 1(a)).

B. Folds and bifurcations

Consider two protein conformations C1 and C2 that are of a
similar compactness. Intuitively, the likelihood that a straight-
line collision-free path exists between C1 and C2 is higher
if the conformations are less compact, and two extremely
compact conformations are unlikely to be able to easily switch
in a straightforward manner.

We hypothesize that the geometric conformation space
branches into small regions (or folds) as we sample increas-
ingly compact structures. Each fold is disconnected from other
regions of compact structures by “obstacles”, or self-colliding
conformations, which means that to move from one region of
compact structures to another, a protein must first “unfold”,
or become less compact. From a graphical point of view, this
means that a path between conformations in different folds
involves an unfolding move to a common ancestor, and then
folding moves to the other fold. The common ancestor is a
node that splits the space into two or more folds, and we refer
to such nodes as bifurcations.

Folds represent a number of similar conformations, and
hence they can form a higher level representation of compact
structures of the protein chain. They may be represented as
a bifurcation graph, with nodes as bifurcations with edges
representing connectivity from one fold to another. As with
the conformation graph, edge directions indicate the relative
compactness of the conformations in the fold (see Fig. 1(b)).

We are then interested in extracting the bifurcation graph
from the conformation graph. We can do this by detecting
bifurcations from the conformation graph. Bifurcation points
are detected by examining the reachability sets of nodes and
their children (see Section IV).

C. Applications

An obvious application of the bifurcation graph is searching
for the native state of a protein. The folding graph represents
the geometric space of clash-free structures. We start from
the root (denatured) conformation and recursively move to the
child node that gives us the maximum decrease in objective
energy of the protein. It is possible to move along a single
trajectory, or multiple “reasonable” trajectories which keep the
energy low. This will result in one or more compact folds being
reached at the leaves, from where we can use finer-grained
energy minimization to search for the native structure.

Another application is the examination of the relationship
between different proteins. Since a single bifurcation graph
can represent any similarly sized protein, we can examine the
relationship between two proteins by identifying the folds that
best match their native structures. One metric of distance is
the number of unfolding moves a structure must make in order
to be able to find a folding path into an alternative structure.
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Fig. 1. (a) A representational view geometric conformation space of a protein
chain. Conformations toward the center are open and get more compact toward
the circumference. The native state of the protein is shown as a green dot.
Opaque, black areas represent obstacles, or areas where the protein chain is
in self-collision. (b) Shaded areas are strongly connected conformations or
folds. A bifurcation, as indicated, is a node or region where the conformation
space splits into distinct folds.

Procedure RANDOM WALK(Cinit, Nmax, Smax,∆)
Input: Cinit, the initial conformation (d.o.f. n)
Input: Nmax, maximum no. of conformations
Input: Smax, no. of tries at each sampling step
Input: ∆, upper perturbation limit per angle
Output: Crand, vector of conformations along a random

walk
Ct ← Cinit1

for count = 1 to Nmax do2

L← rand(1, n)3

Cn ← GENERATE SAMPLES(Ct,∆, L, Smax)4

Cncf
← COLLISION FREE CONFS(Cn)5

if Cncf
= nil then break6

Ct ← MOST COMPACT(Cncf
)7

Crand[count]← Ct8

end9

return Crand10

IV. BIFURCATION GRAPH

A. Sampling

To construct the conformation graph, we use biased random
walks, starting from an open conformation. Each random walk
consists of sampling nearby conformations and accepting those
that are collision free, and bias the choice toward compact
samples. Procedure RANDOM WALK illustrates the method.
We perform several random walks to obtain a representative
sample of the space.

B. Connectivity and bifurcations

Once samples have been generated, we connect the graph
by checking for collision-free straight-line paths between
conformations. To avoid the O(n2) cost of connecting all pairs,
we can check paths between neighbouring conformations only
using a nearest neighbour approach. The edge directions corre-
spond to the relative compactness between two conformations.

Once we have a connected graph, we need to locate
the bifurcation points. The main characteristic of bifurcation

Fig. 2. A bifurcation node

points is that they split the conformation space into folds, i.e.
regions that are not directly connected to each other. Define
the reachability of a node X to be the set of leaves LX

that can be reached by travelling from the node X toward
increasingly compact conformations. A bifurcation point, then,
is a node that has two children X1 and X2 with non-
intersecting reachability sets LX1 and LX2 (see Fig. 2).

Since our sampling may be denser than necessary, it is
possible to have a parent of a bifurcation X , Y that is also
a parent of X1 and X2 in which case it, too becomes a
bifurcation point. However, no extra information is gained
by this since the same folds are identified in both cases. To
avoid this, we discard redundant edges (from the perspective
of reachability) from our conformation graph. For example, if
we have X → Y → Z and X → Z, the latter edge can be
discarded without any loss of the reachability set LX . This
means that the nodes identified as bifurcations are close to the
new folds, a property that can be useful to identify distinct
folds.

V. RESULTS

(a) (b)

Fig. 3. The conformation space graph near less compact protein structures



Fig. 4. The conformation space graph near a protein’s native structure

Preliminary results support our hypothesis of the structure
of the geometric conformation space of a protein chain.

First, we started from a completely open protein confor-
mation (corresponding to a long chain) and performed five
random walks of 10,000 steps each to sample the space. We
used a “synthetic” protein for this experiment, which had 32
residues with the standard bond lengths and angles. We then
connected the conformation graph and discarded redundant
edges as described in the previous section. We obtained a deep
graph that was linear near the initial conformation (see Fig.
3(a)), and tended to have a significant number of branches as
the conformations became more compact (see Fig. 3(b)).

Since we have discarded redundant edges, any branch in this
reduced graph indicates that the children are not connected to
each other and may have different reachability sets, and each
branching node is therefore, potentially a bifurcation.

This result supports the hypothesis that as we sample
compact conformations, the conformation space tends to bi-
furcate and divide itself into differing folds. However, the
most compact structures of the conformations obtained using
this experiment were not as compact as protein structures
usually are. To investigate the nature of the conformation
space, we sampled conformations near the native structure of
a small protein (PDB: 1WHZ). This was done by unfolding
the structure of 1WHZ for a small number of steps and using
the conformation obtained as the starting conformation for the
random walk sampling.

The resultant graph was very wide and heavily branched. A
portion of it is shown in Fig. 4. This lends further support to
our hypothesis. Since we are starting from an already compact
structure, the conformation graph is not very deep. However,
highly compact structures can easily branch out into distinct
folds which are not directly connected. An analogy of knotting
can be drawn here - because of the compact structures of most
knots, one has to untie (unfold) a particular knot before tying
a string into another type of knot.

VI. DISCUSSION

The central idea of our method is to compactly represent
the conformation space of proteins. Until now, the primary
roadblocks to such an approach were the immensity and

high dimensionality of the space, and the expensive energy
computations involved in mapping it.

Our new approach addresses these issues by characterizing
the clash-free conformation space, which discards protein-
specific energy information. We also exploit the fact that the
folding process involves increasingly compact structures, and
concentrate on characterizing the compact structures in the
space. To further reduce the representation of the space, we
group similar structures into a single fold, and identify these
folds using bifurcations.

By focusing on compactness and connectivity, our method
produces not only a compact representation of samples in
the conformation space, but also a compact representation of
a large number of folding trajectories or pathways for any
protein of a given size.

Our future work will concentrate on ensuring adequate
coverage of the clash-free conformation space using better
sampling techniques. In addition, biasing the sampling using
common torsional angles could be an interesting experiment.
As we have shown, the number of bifurcations, and hence our
representation grows larger as we sampling more and more
compact conformations. It will be useful to investigate what is
the optimal compactness at which we need to stop sampling in
order to get useful structures while keeping the folding graph
compact.

Our approach is different from traditional approaches be-
cause it constructs a generic representation of the conformation
space which applies to all proteins of a given size. One
possible application is the protein structure prediction by
exploring the space using protein energy functions to steer
the folding trajectory of a particular protein toward its native
structure.

Until now, evolutionary relationships between proteins have
been based on sequence identity or basic structural parameters
such as RMSD and so on. Since our representation of confor-
mation space independent of protein sequence, it may be a
useful tool to compare different protein structures. Observing
the relative positions of two proteins in a folding graph that
encodes folding pathways can potentially offer insights into
structural relationships.
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