Collaborative Data Publishing and Searching System

Beng Chin OOI!, Bei YU!, and Guoliang LI?
1 National University of Singapore
2 Tsinghua University

Abstract— In this paper, we present a folksonomy-based col-
laborative data publishing and searching system. The system
accepts data objects described with user-created metadata, called
data units. The system supports flexible structure on the data
units, and places no restrictions on the vocabulary used. We
devise a generic table model for storing and representing the
data units of various structures. We propose a framework for
managing the data units and providing browsing, searching and
querying services over them. We present our current approaches
and discuss relevant research issues.

Index Terms— folksonomy, tagging, clustering.

I. INTRODUCTION

Digital information publishing and searching becomes in-
creasingly necessary in recent years, due to the popularity
of the Internet services. We have witnessed the growth of
a number of such web services including Google Base [3],
Delicious [1], liveplasma [4], and flickr [2]. While these
systems vary in their particular services provided, they share
the same operation mode — users publish data items such as
URLs, pictures, advertisements, etc. that are associated with
simple descriptions such as tags and attributes created by
them. The system organizes the published data items based
on users’ own descriptions and makes them accessible. For
example, Delicious allows an user to bookmark URLSs in its
server, and requires each URL to have a set of user-provided
tags (a.k.a. keywords). In some sense, the users collaboratively
contribute tags to the system, which are then used to categorize
the URLs to facilitate webpage searching (by browsing or
querying the tags). Such collaborative but unsophisticated way
of organizing information with user-created metadata is coined
as folksonomy (combination of “folk” and “taxonomy”), and
such systems are sometimes called the collaborative tagging
systems [9]. A distinguishing feature of these systems is that
the user plays the dominant role — the collaborative behavior
of the users decides the data semantics and organization of
the systems. Although the lack of controlled vocabulary and
systematic taxonomy of the concepts makes the classification
of the data objects in these systems imprecise and imperfect,
they are convenient to users and easy to deploy, and more
importantly, they can adapt to the dynamic changes of the
Web content.

Besides simple tags, richer and flexible data structure could
be used to describe a published item to provide more powerful
expressiveness to the user. For example, Google Base allows
users to define their own attributes, and to describe their
published objects with variable number of attributes. The
freedom from a strict syntax of the published data items is

very convenient to users. However, it is a challenging task to
organize and classify the data items with variable “schemas”
and topics, in order to make them searchable. In Google Base,
a list of types such as products, recipes, are provided, and users
are encouraged but not restricted to publish their data item to
a specific type. The way Google Base stores and organizes the
data items is unknown, and it takes 15 to 60 minutes to make
a newly published data items searchable in its website.

In this paper, we describe our attempt to build a general
system framework for supporting collaborative publishing and
searching services. The system accepts data objects described
with user-created metadata, stores and classifies them, and
provides various querying and searching interfaces such as
browsing, keyword search, and structured query. The metadata
created by users can be both for their own use (for labeling
their published information to the system) and for the system
to use to organize all the published information. The data unit,
that users use to describe their published information of any
kind, consists of title, a number of fields, and a set of tags.
Basically, a field is an attribute/value pair for characterizing
certain property of an object, e.g., color:yellow for a puppy.
A tag is a word or a phrase the user uses as “keyword” to
characterize the published object. For example, the tags of a
puppy could be animal, dog, etc.. [9] discusses 7 types of tags
an user uses to label URL bookmarks on Delicious website.
Figure 1 shows two example data units that describe different
types of information. To illustrate, the left data item describes
the blog of uzzer. It uses four fields for showing the location,
author, type, and language of the blog. In addition, it has 9
tags that are “keywords” of the blog.

Title China's Internet services market
reached 18 billion in 2005

Title Uzzer's blog

Fields
Homepage: http://uzzer livejournal.com
Author: uzzer
Blog type: art-blog
language: english accepted, russian

Fields
Author: Analysis International
News Source: Analysis International
Publish Date: 02/22/2006

Tags
art, blog, comments, design, fun
livejournal, photos, pictures, uzzer,
web

Tags
China, Internet services,
News and Articles

Fig. 1. Examples of data units.

Within our system framework, we propose a data model for
storing and representing the collection of data units accepted
from users. It includes a single generic table for storing the
data units, and a set of virtual relations as views of the generic
table for representing different topics of the data stored in the

generic table. The user browses and queries over the virtual
views, and the system retrieves results from the generic table.
Our generic table model differs from the universal relation
model [10], [8] proposed and studied earlier in two main
points. First, the universal relation is designed for logical
representation of an application domain in order to free the
user from dealing with specific access paths when issuing
queries, while our generic table is the schema for physically
representation and store of the tuples, which is not visible to
the user. Second, compared with that the universal relation
schema describes a specific application domain, our generic
table model is for comprehensively storing data of all types
of domains.

Our proposed system framework also includes a data units
categorizer that dynamically clusters and assigns incoming
data units into various virtual relations according to their dif-
ferent topics and structures, a multi-function query processor
for dealing with various kinds of queries, a storage manager for
storing and indexing the data units whose volume may grow
quickly depending on the popularity of the system. Figure 2
illustrates the architecture of our system.

| Browsing and Search Interface |

Multi-function Query
Processor

VR5:
restaurants

| Publish Interface |

Data Units Categorizer

VR1:
products

VR2:
recipes

Storage Manager

Generic Table

VR3:
blogs

VR4:
patents

VR6:
travel

— —]

System architecture. (VR is the short for Virtual Relation.)

Fig. 2.

I1. DATA MODEL

The data model in our system is a generic relational table
and a set of virtual relations that are views over the generic
table. Data units published to the system are all physically
stored in the generic table. Different from traditional relational
database design, the schema of the generic table in our system
is designed in an ad-hoc and dynamic way. It contains a set
of fixed attributes and a set of non-fixed attributes. Fixed
attributes are defined by the system, while non-fixed attributes
are dynamically inserted according to the data units published
to the system. That is, its schema is collaboratively decided
by users. The single table model is suitable for storing the
data units in our system because there is no predictable data
dependencies among attributes collaboratively defined by mass
users.

Definition 1 The generic relational table schema is an ex-
pression of the form R(U), where R is the name of the table,
and U is the set of attributes such that U = Ur U Uy and
UrNUy = ¢. Up = {A1, Ag,---, A} is the finite set of

fixed attributes, Ux = {Apm+t1, Am2, - -} is the infinite set
of non-fixed attributes.

The domains of the attributes in U are initially undefined,
and assumed to be infinite and stored as string format. When
the generic table is populated with enough number of tuples,
we can use machine learning approach to learn the patterns
and statistics of the values in order to determine the domains
of attributes.

In our system, the fixed attributes set Up contains: id,
author, title, and tags, where id is system created when a
new data unit is inserted and it is the primary key of the table,
author and title correspond to the person who publishes the
data unit and the title of it, and tags is a textual attribute
for storing all the tags listed in the data unit. When the
system initializes, non-fixed attributes set U is empty. More
and more attributes will be automatically added to it when
data units having new attributes are published to the system
continuously. On the other hand, when obsolete data units are
deleted from the system, some attributes may also be removed
from Uy.

The generic table is the schema for storing data units in
our system, but it cannot be semantically meaningful to users,
because the data units stored in it are very diverse in their
topics. In our system, the user poses queries in terms of a set
of virtual relations, which are defined as views of the generic
table. A virtual relation schema is mapped to Uy and a subset
of the attributes in Uy of the generic table. The set of virtual
relations (R, Ra, - - -, Ry,) defined in the system is called the
virtual schema (or semantic schema) of the generic table.

Definition 2 A virtual relation R'(U) of the generic table
R(Ur,Uy) is defined as a view with a query ¢; over instance
I of R(Up,Uy), denoted as R'(U) — R(Up,Un) = q;.

In the generic table, null values are allowed. The semantics
of the null is treated as inapplicable, and the operations on
null values are the same as in traditional relational model. In
particular, if a tuple has nuil values in all the columns, it is
called null tuple. If the instance I of a relation contains all
null tuples, I is regarded as null, i.e., I = null.

Definition 3 Given two (virtual) relations R(U) and R'(U’),
and supposing V.= U N U’, two tuples v € R(U) and v’ €
R'(U') are equivalent if u(V) = «'(V), w(U — V) = null
and v (U’ — V) = null, denoted as u = v’

When the system adds an attribute to Uy of the generic
table, all tuples of the current instance I are assigned null
values for the new attribute, and they maintain equivalence
with their original forms.

Definition 4 Given an instance I of R(Ur, Uy), an attribute
A € Uy is unnecessary if ma(I) = {t[A]|t € I} = {null}.

Unnecessary attributes may appear in generic table or virtual
relations when obsolete tuples are deleted, and they need be
automatically removed.

The basic operations on the generic table and virtual rela-
tions include selection (o), projection (=), join (><), union (U),

and difference (—), which are the same as in traditional relation
model. Based on the basic operations, we define an augmented
selection operator called reducible selection, denoted as o”.
Given a relation R(U) and its instance I, and supposing
A e U and a € dom(A), o takes as input relation I and
returns the relation: o%,_,(I) = my (04=a(l)), where V. C U
and U — V' is the set of all unnecessary attributes of o 4—,(I).
That is, the resultant relation of reducible selection will have
Nno unnecessary attributes.

Theorem 1 Supposing c is a selection condition on a subset
of columns of relation R(U) whose instance is I, the two
selection operations o.(I) and o/ (I) produce two relations
consisting of equivalent tuples.

In addition to ordinary comparison operators such as =,
<, >, there are also textual-based comparisons in our data
model, since most data units have lots of textual fields, e.g.,
tags attribute. Given a set of keywords K = (k1, ka,-- -, kq),
a relation R(U) and its instance I, and a subset of textual
attributes V' C U, for each tuple ¢ € I, the textual comparison
operator match(t[V], K) returns a score score(t[V],K) €
[0, 1] indicating its relevance to the keywords. The match op-
erator relies on a fulltext index on the keywords of the values
of textual attributes. Given a threshold 7, oaren(v,x)>+ (1)
will return all tuples in I whose scores are matched higher
than 7.

The query @ over the generic table and virtual relations is
constructed by combining the basic operators.

Definition 5 A virtual schema
{R1(U1), R2(U2), -+, R,(Upn)} is complete in terms
of an instance I of the generic table R(Up,Uy) if
I(R1(U1))<t,I (R (Us))<, - - - <, I (R, (Uy)) = I, where <,
denotes outer join, and I(R;(U;))(1 <1 < n) is the instance
of R;(U;) generated by evaluating query ¢;, which is the view
defined for R;(U;), over I.

With complete virtual schema, the content stored in the generic
table can be fully exposed to users.

I1l. SYSTEM FRAMEWORK

As a collaborative publishing and searching system, our
system initializes with an empty generic table AllUnits with
system created attributes, defined as

AllUnits(id, author, title, tags).

As users publish data units to the system, the generic table
is populated with more and more tuples, and consequently it
will have more and more attributes.

When storing a data unit into the generic table, we represent
it as a tuple according to the schema of the generic table. If
there are attributes defined in the data unit that are not in
Un € AllUnits, the system will add those attributes to Uy
during the insertion of the new tuple. For example, if upon
the system initialization, the two data units shown in Figure 1
are published to the system one at a time, the resultant generic
table schema is AllUnits(id, title, author, tags, homepage, blog

type, language) after the first data unit is inserted, and it
becomes AllUnits(id, title, author, tags, homepage, blog type,
language, news source, publish date) after the second one is
inserted. A data unit becomes a tuple in the generic table after
it is stored in the system. In the rest of the paper, we will use
data unit and tuple interchangeably for referring to the tuples
stored in the tables.

The generic table is maintained by the storage manager
component (Figure 2), and it is not visible to the user.
Users access the stored data through the virtual relations
over the generic table, which are built and updated incre-
mentally as new data units are published to the system.
Each virtual relation should represent a semantic category
meaningful to the user. For example, a virtual relation
blog(blog-name, blog_type, homepage) represents a category
of data units describing blogs. Since the domains of published
data units is unrestricted, constructing the virtual relations is
identified as the task of incrementally clustering the incoming
data units into various virtual relations. This task is performed
by the data unit categorizer depicted in Figure 2.

Therefore, our system need perform several actions when
accepting a new data unit. First, the data unit classifier either
assigns the new data unit to an existing virtual relation, or
creates a new virtual relation with the new data unit as the
only tuple. Then, the data unit is passed to the storage manager,
which actually inserts the new data unit into AllUnits, and
updates the mapping between the virtual relation accepting the
new tuple and AllUnits if the new tuple causes changes of
the schema of AllUnits.

We intend to provide in the multi-function query processor
(Figure 2) a broad range of services over the published data
to the user including:

« Virtual Schema browsing: The user can browse the virtual
relation schemas in a manner similar to browsing each
of semantic categories of a large content classification
system, in order to zoom the query to one or more
categories he or she is interested in.

« Keyword search: Given a keyword query, we return a list
of matching data units ranked according to their estimated
relevance to the query.

o Structured querying: We will also provide structured
query interface for user to issue structured query over
one or more virtual relations. The structured query will
be transformed to SQL-like query over the generic table,
and be executed over it.

IV. DATA UNITS CATEGORIZER

The data units categorizer is the most important component
of our system. It constructs and maintains virtual relations
for representing data units published to the system of various
types.

First of all, we need answer a fundamental problem —
what is a qualified virtual relation in our collaborative pub-
lishing and searching system? Although the ultimate answer
is subjective, we devise several objective heuristic metrics
described in the following. First, we test if there is sufficient
dominant attributes in the virtual relation, i.e., the attributes

for which a dominant number of tuples in it have non-null
values. Second, we test if there is dominant tags, i.e., the
tags used by a dominant number of tuples. Third, we check
whether the average similarity value between the attributes of
the virtual relation and the attributes of each tuple in it is
above a predefined threshold.

Our hypothesis is that data units with both similar attributes
and tags are likely to have similar topics and can be queried
together, i.e., over the same relation schema. Therefore, data
units published to the system are assigned to different virtual
relations based on both their structures and their topics, i.e.,
we cluster the data units from two aspects. First, the data
units grouped together should have similar structure — they
are described with roughly similar attributes to be represented
with a uniform relational schema. Second, the data units in a
virtual relation should describe similar topics.

Specifically, we need to discuss several problems, which are
presented in the following sections.

A. Analysis of data unit and virtual relation

In our data model, the schema of a relation is determined
by the attributes of the tuples stored in it (in constrast to
conventional settings where the schema is designed by domain
experts a priori). Therefore, our task is to discover structure
among incoming data units, and form relational schemas for
groups of data units with similar topics.

Representation of features of data units: The features of a
data unit include its attributes and tags. The attributes and tags
of a data unit are both textual, which suggests IR related rep-
resentation of the features. We employ the conventional vector
space model [12] for representing both tags and attributes as
bags of words. Each data unit is associated with two feature
vectors: attributes vector (AV) and tags vector (7'V). The
dimensions of the vectors are the unique attributes and tags of
all the data units already stored in the system. The elements
are set to 1 if the corresponding attributes or tags appear in
the data unit, and 0 otherwise.

Representation of features of virtual relations: From the
aspect of a relation, the features of a virtual relation are its
schema elements — the set of attributes, and the content of its
tuples — the set of tags of its tuples. Similarly, they can also be
represented with the vector space model as two feature vectors
AV and T'V. The elements are possibly related to two factors.
The first is the popularity of the corresponding attributes or
tags. Given a relation R(U) and its instance I, the popularity
of attribute A € U is defined as

_ {t[A] = null|t € T}

popularity(A e U) = e ,

and the popularity of a tag tag € I is

. |{Umatch tags,ta O(I)}l
popularity(tag € I) = |({t9€ I}g|)>

The popularity values of attributes and tags show their impor-
tance within a virtual relation. The second factor is called the
inverse relation frequency (IRF) values for attributes and tags
in a virtual relation. The IRF value is an analog to the IDF
statistics in conventional information retrieval literature. It is

defined as the ratio between the number of virtual relations
having the attribute/tag to the total number of virtual relations
in the system. In our current implementation, we use the
popularity - IRF value to measure the importance of an
attribute/tag in a virtual relation.

Growing vocabularies: Since the data units are being added
continuously, the vocabularies of both tags and attributes grow
over time, and the virtual relations are also changing. This
affects the corpus-level statistics such as IRF — it changes
over time as new data units are added, which may have impact
on term weighting and the clustering task. [6] mentions two
solutions for this problem. The first approach is to use such
statistics from another similar corpus. This is not practical
in our context, since we cannot find an existing corpus that
can be presumed to be similar to the data in our system. The
second approach is to estimate the IRF statistics dynamically
as data units are added to the system continuously. Initially,
the values may not be accurate. However, what we care about
is whether the IRF values can converge quickly as more and
more data units are added to the system. We conducted an
initial experiment on this issue. Figure 3 plots the changes
of IRF statistics of attributes and tags measured with mean
squared error as more data units are added and clustered. It
can be seen from the figure the the attributes IRF statistics
converges more quickly than that of the tags statistics. We
believe this is because its vocabulary volume is larger than
that of the attributes. Currently, we take the second approach
to estimate the IRF statistics.

0.1 L L
0.09 - attribuat% -
0.08 - B
0.07 -
0.06 -
0.05
0.04
0.03
0.02
0.01

Mean squared error of |RF statistics

0
1000 2000 3000 4000 5000 6000 7000 8000 9000100001000
Number of data units added

Fig. 3. Changes of IRF statistics.

Discussion: According to our experimental data®, the dis-
tribution of the attributes and tags exhibits power-law like
distribution, as shown in Figure ?? and Figure ??. More
research need to be done on how to select the proper portion
of vocabularies of tags and attributes as the features of the
vectors. As can be seen from the figures, there is a large
portion of attributes or tags having very small frequency, which
may be trivial and need not be selected as features of a virtual
relation.

In addition, there are problems with the uncontrolled vo-
cabulary of attributes and tags contributed by users, such as

Lour experimental data set contains over 11000 data units that are extracted from the
crawled data from Google Base.

synonyms, ploysemy, superordinate, subordinate relationships,
and “noises” among the attributes or tags. It is a challenging
task to detect the occurrences of these problems and extract
useful features from data units.

10000 T T T
1000 - B

100 - B

frequency

1 1 1
100 1000

attributes
10000 T T T T

[
=
o

10000

1000 | -

frequency
=
8
T
1

10 - B

1 1 1 1
1 10 100 1000

tags

10000 100000

Fig. 4. Distribution of attributes and tags.

B. Similarity measure

We consider two kinds of similarities between data units
and us. The first is the structural similarity, determined by the
similarity between their attributes vectors. The second is the
topic similarity based on the overlapping of their tags vectors.
Considering that the features extracted from a data unit
are textual-based, which is similar to the document vectors
in standard information retrieval model, we apply the cosine
similarity measure widely used in IR to measure the similar-
ities between both a pair of AV vectors and a pair of TV
vectors. That is
AV - AV,

VAV - AVL) - (AV, - AVp)
TV; - TV,

VTV -TVi) - (TVa - TVa)

The similarity between a data unit and a virtual relation,
and between two virtual relations are defined similarly.

sim(AVy, AV,) =

sim(TV,,TVs2) =

C. Clustering method

Since the data units are added to the system incrementally
over the time, our clustering method should also be incre-
mental and adaptive to dynamic changes in increasing data

volume and topics. We consider the incremental clustering
model presented in [7].

Based on our data model, it can be described as the
following. Suppose the data units published to the system are
in a sequence S. A collection of up to % virtual relations is
maintained such that as each new data unit « € S is presented,
either it is assigned to one of the current virtual relations, or
a new virtual relation is created “storing” it as the only tuple,
based on the comparison of the similarities between it and all
the virtual relations. If the result number of virtual relations
exceeds k, two existing virtual relations are merged into one.

With two types of similarity measures between data units,
we use a two-phase incremental clustering method that deploys
the incremental clustering model above at each phase for our
clustering task, i.e., the data units are clustered firstly based
on one similarity measure, and then clustered into finer groups
based on the other similarity measure. Therefore, the first
problem is to decide the order of using the two kinds of
similarity measures.

We observed in Figure ?? and Figure ?? that the attributes
vocabulary has much smaller size than the tags vocabulary,
and in general the same attributes appear more frequently in
different data units than that of the tags. This suggests that we
should cluster data units according to their structural similarity
in the first phase, which may result in fewer clusters that are
large in size. Then we further cluster data units into finer
groups based on their topic similarity in the second phase.
To distinguish the clusters formed in the two phases, we call
the clusters formed at phase 1 as tier 1 virtual relation, and
clusters formed at phase 2 as tier 2 virtual relation. A tier 1
virtual relation consists of a set of tier 2 virtual relations. Tier
2 virtual relations are the final virtual relations browsed by the
user.

Basically, when a new data unit « is added to the system,
the following steps may take place:

1) Extract the feature vector of w.

2) Compare the structural similarity between « and each
of existing tier 1 virtual relations. Choose the virtual
relation that has the maximum similarity value with .

3) If the maximum similarity value exceeds a predefined
threshold, assign the data unit to the virtual relation as
a new tuple.

4) If none of the existing virtual relation has similarity
value greater than a predefined threshold, create a new
virtual relation and assign the new data unit to it as the
only tuple.

5) If the number of virtual relations exceeds a predefined
number, k;, choose two most similar virtual relations
and merge them into a new virtual relation.

When a data unit « is assigned to a tier 1 virtual relation
R/, it is further clustered to a tier 2 virtual relation within R’
in a way similar to the steps described above, but based on
the topic similarity measures.

Several parameters need be adjusted by empirical study.

1) The number of tier 1 virtual relations k; and the number
of tier 2 virtual relations k,.

2) Structural similarity threshold 7. Only when the struc-
ture similarity between a data unit and a virtual relation,

or two virtual relations is higher than 7., the two are
considered as a match.

3) Topic similarity threshold 7. It determines whether the
topic similarity between a data unit and a tier 2 virtual
relation is high enough to assign the data unit to the tier
2 virtual relation.

4) Frequency thresholds f;, and f;. Instead of using all
vocabularies, we consider selecting the attributes or tags
whose frequency is between f; and fr, (f; < fr) as the
features of a data unit.

Discussion: Currently, we assume each data unit is assigned
to only 1 cluster. We may consider allowing a data unit to
be assigned to multiple virtual relations. This will make the
problem more complex. Also, there are issues to be considered
on how to adjust the clusters when obsolete data units are
deleted from the generic table.

In addition, our current approach treats the attributes and
tags independently when categorizing them. It might be useful
to detect the association patterns among attributes and tags in
order to make the clustering process more effective.

V. STORAGE MANAGER

We expect the generic table to contain thousands of at-
tributes, and the tuples in it to be sparse — they have null
values in most of the attributes. This poses challenge to the
physical storage scheme for the generic table. We are still
evaluating various storage strategies, including the interpreted
storage method for relational tuples proposed in [5]. With
interpreted storage, only non-null values are actually stored.
Each tuple is stored as a list of non-null values associated
with their attribute identifiers. To handle dynamism of of data
composites and huge amount of data, we need a method that
is scalable over the number of attributes and data volume.

The storage manager is also in charge of maintaining the
mapping between each virtual relation R; and AllUnits,
which is a query over the instance I of AllUnits, i.e., R; —
AllUnits = ¢%. As data items are assigned to R;, ¢% need be
modified as well.

When the mapping between the attributes of R; to the
attributes of AllUnits is one-to-one, ¢¢ is a simple projection
over a subset of attributes of AllUnits that matched with the
attributes of R;, respectively. There could also be the case that
an attribute of R; is mapped to multiple attributes of AllUnits
when the multiple attributes are detected as synonyms. In this
case, ¢; is a union over multiple projections over different
combinations of the attributes of AllUnits according to the
attribute mappings. At current stage, we only consider simple
one-to-one attribute mappings. We will investigate the issues
with one-to-many mappings at a later time.

V1. BROWSING AND QUERY PROCESSING

Users can look for interesting information by browsing
the schemas of the virtual relations. The virtual relations are
ordered decreasingly according to the number of tuples they
contained for the user to browse.

The query processor supports both simple keyword queries
and structured queries posed over the virtual relations. A key-
word query Q = (k1, ko, -, k,) can be posed to a particular

virtual relation, or to the whole system. A fulltext inverted
index is maintained for associating each of the keywords
with the name of the attribute, the id of the tuple, and the
virtual relation it appears in. A keyword query is processed by
looking up the index and locating the positions of the relevant
tuples in the generic table. Structured queries are processed
by reformulating the queries posed over the virtual relations
to that of the generic table according to the mappings between
them, and executed over it.

VII. CONCLUSION AND FUTURE WORK

We have presented our design and implementation for a
collaborative publishing and searching system. We devise a
data model for representing and storing the data units. We also
present our approach for each system component and discuss
the research challenges.

Currently, our focus in on meaningfully clustering and
effective querying processing on the data units. Our ongoing
work includes designing of efficient indexes on the virtual
relations and data units to facilitate efficient retrieval, and
efficient and adaptive query processing strategies since the less
constraints imposed on the storage increased the complexity
of query processing.

One of the opportunities we see in such generic storage
structure is data sharing over P2P system. We intend to adopt
it onto our BestPeer [11] P2P platform after we have resolved
various technical issues on a centralized server.

REFERENCES

[1] Delicious website. http:http://del.icio.us/.

[2] Flickr website. http://www.flickr.com/.

[3] Google base website. http://base.google.com/.

[4] Liveplasma website. http://www.liveplasma.com/.

[5] J. L. Beckmann, A. Halverson, R. Krishnamurthy, and J. F. Naughton.
Extending RDBMSs to support sparse datasets using an interpreted
attribute storage format. In ICDE, 2006.

[6] J. Callan. Document filtering with inference networks. In SGIR ’96:
Proceedings of the 19th annual international ACM S GIR conference on
Research and development in information retrieval, 1996.

[71 M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental
clustering and dynamic information retrieval. In Symposium on Theory
of Computing, 1997.

[8] R. Fagin, A. O. Mendelzon, and J. D. Ullman. A simplied universal
relation assumption and its properties. ACM Trans. Database Syst.,
7(3), 1982.

[9] S. Golder and B. A. Huberman. The structure of collaborative tagging
systems. Technical report, Information Dynamics Lab, HP Labs, 2005.

[10] D. Maier, J. D. Ullman, and M. Y. Vardi. On the foundations of the
universal relation model. ACM Trans. Database Syst., 9(2), 1984.

[11] W. S. Ng, B. C. Ooi, and K. L. Tan. BestPeer: A self-configurable
peer-to-peer system. In ICDE, 2002. Poster Paper.

[12] G. Salton. Dynamic document processing. Communications of the ACM,
17(7):658-668, 1972.

