Provably Efficient Adaptive Scheduling For Parallel Jobs

Yuxiong HE!, Wen Jing HSU, Charles E. LEISERSON
1 Nanyang Technological University
2 Massachusetts Institute of Technology

Abstract— Scheduling competing jobs on multiprocessors time. This paper summaries several scheduling algorithms
has always been an important issue for parallel and dis- we developed. For scheduling of individual jobs, our
tributed systems. The challenge is to ensure global, SVStem'algorithms ensure short completion time and small waste,

wide efficiency while offering a level of fairness to user jobs.
Various degrees of successes have been achieved over thf?r scheduling of job sets, they offer provable efficiency in

years. However, few existing schemes address both efficiencyterms of the makespan and mean response time by allotting
and fairness over a wide range of work loads. Moreover, in each job a fair share of processor resources. Moreover, our
order to obtain analytical results, most of them require prior algorithms arenon-clairvoyant [9], [14], [16], [24], i.e.

information about jobs, which may be difficult to obtain in they assume nothing about the release time, the execution

real applications. i d th lleli file of iob
This paper presents two novel adaptive scheduling algo- IMe&, an € parallelism profiie ot Jobs.

rithms — GRAD for centralized scheduling, and WRAD Parallel job scheduling can be implemented using a
for distributed scheduling. Both GRAD and WRAD ensure two-level framework [19]: a kernel-levgbb scheduler
fair allocation under all levels of workload, and they offer which allots processors to jobs, and a user-ldietad
provable efficiency without requiring prior information of gchedulerwhich maps the threads of a given job to the

job’s parallelism. Moreover, they provide effective control . .
over the scheduling overhead and ensure efficient utilization allotted processors. The job schedulers may implement

of processors. To the best of our knowledge, they are the first eitherspace—sharingw_here jobs occupy di_sjoint processor
non-clairvoyant scheduling algorithms that offer such guar- resources, otime-sharing where different jobs may share

antees. We also believe that our new approach of resource the same processor resources at different times. Moreover,

request-allotment protocol deserves further exploration. both the thread scheduler and the job scheduler may
Specifically, both GRAD and WRAD are O(1)- : . .

competitive with respect to mean response time for batched be eltheradaptlve allowing the numper .Of proc_essors

jobs, and O(1)-competitive with respect to makespan for non- allotted to a job to vary while the job is running, or

batched jobs with arbitrary release times. The simulation nonadaptive (called “static” in [12]), where a job runs

results show that, for non-batched jobs, the makespan on a fixed number of processors over its lifetime. Our

produced by GRAD is no more than1.39 times of the optimal schedulers apply two-level structure in the context of
on average and it never exceeds.5 times. For batched jobs, adaptive scheduling.

the mean response time produced bysRAD is no more than .) . . -
2.37 times of the optimal on average, and it never exceeds With adaptive scheduling [4] (called “dynamic
5.5 times. scheduling in [19], [30], [32], [46], [47]), the job scheduler
Index Terms— Adaptive scheduling, Competitive analysis, Car_] changg the number of processo_rs allotted to a job
Data-parallel computing, Greedy scheduling, Instantaneous While the job executes. Thus, new jobs can enter th?
parallelism, Job scheduling, Makespan, Mean response time, System, because the job scheduler can simply recruit
Multiprocessing, Multiprogramming, Parallelism feedback, processors from the already executing jobs and allot them
Parallel. computation, Procegsor allocation, .Span,. Thread tg the new jobs. Without a suitable feedback mechanism,
scheduling, Two-level scheduling, Space sharing, Trim analy- ,\vever. both adaptive and nonadaptive schedulers may
sis, Work, Work-stealing. . . .
waste processor cycles, because a job with low parallelism
. may be allotted more processors than it can productively
. Introduction use. If individual jobs provide propgarallelism feedback

Parallel computers are expensive resource that often mifstthe job scheduler, waste can be reduced. Therefore,
be shared among a large community of users. One mafr régular intervals (called quanta), a thread scheduler
issue of parallel job scheduling is how to efficiently shargStimates the desire and provides it to the job scheduler;
resources of multiprocessors among a number of compit€ iob scheduler allots the processors to the jobs based on
ing jobs, while ensuring each job a required quality of sefl® request. This feedback mechanism is cafiegliest-
vices (see e.g. [6], [7], [9], [11], [14], [16]-[19], [24], [27], _allotment protocol. Since the future parall_ellsm of jobs
[29], [31]-[35], [37], [43], [44]). Efficiency and faimess is generally unknown, the chal_lengg here is to dgvelop a
are two important design goals, where the efficiency [§duest-allotment protocol, which gives an effective way

often quantified in terms of makespan and mean respori@efstimate desire and allocate processors.
Various researchers [13], [14], [22], [32] have used

This research was supported in part by the Singapore-MIT Alliancg,'Ie notion of 'nSta_ntaneous pargllellsm — the number
and NSF Grants ACI-0324974 and CNS-0305606. of processors the job can effectively use at the current

moment, as the parallelism feedback to the job schedulgaod job scheduler can ensure tladit the jobs perform
Although using instantaneous parallelism for parallelismell. To affirm this intuition, we combine the thread sched-
feedback is simple, it is only applicable to the situationslers A-GREEDY and A-STEAL with the job scheduler
where the parallelism of jobs does not change as frRAD, and get two adaptive two-level schedulerGRAD
guent as the rate of processor reallocation. When jokend WRAD correspondingly [24], [25]GRAD, which
parallelism change fast, using instantaneous paralleligmuplesRAD with A-GREEDY, is suitable for centralized
as feedback can cause gross misallocation of processoead schedulingVRAD, which couplesRAD with A-
resources [38]. For example, the parallelism of a job m&§TEAL, is more suitable for scheduling in the distributed
change substantially during a scheduling quantum, altenanner.

nating between parallel and serial phases. The samplingBased on the “equalized allotment” scheme for proces-
of instantaneous parallelism at a scheduling event betwesar allocation, and by using the utilization in the past quan-
guanta may lead the task scheduler to request either tam as feedback, we show that our two-level schedulers are
many or too few processors depending on which phasepiovably efficient. The performance is measured in terms
currently active, whereas the desirable request might beéboth makespan and mean response time. ExfAD
something in between. Consequently, the job may wasiad WRAD achievesO(1)-competitiveness with respect
processor cycles or take too long to complete. to makespan for job sets with arbitrary release times,

For thread scheduling, this paper makes use of tv@d O(1)-competitiveness with respect to mean response
adaptive thread schedulefs GREEDY [1] and A-STeaL time for batched job sets where all jobs are released
[2], [3]' which provide para"e”sm feedbaclA-GREEDY SimUltaneou5|y. Unlike many preViOUS results, which either
is a greedy thread scheduler suitable for centraliz&$sume clairvoyance [11], [26], [27], [31], [34], [37], [44]
scheduling, where each job’s thread scheduler can dispa@hUse instantaneous parallelism [9], [14], our schedulers
all the ready threads to the allotted processors in a centré@move these restrictive assumptions. Moreover, because
ized manner, e.g. the scheduling of data-parallel j@bs. the quantum length can be adjusted to amortize the cost
STEAL is a distributed thread scheduler, where each job® context-switching during processor reallocation, our
executed by decentralized work-stealing [8], [10], [28]. Schedulers provide effective control over the scheduling
GREEDY and A-STEAL were originally presented in our overhead and ensures efficient utilization of processors.
joint work [1]-[3] with Kunal Agrawal from MIT. Both of ~ Our simulation results also suggest tH@aRAD per-
them guarantee not to waste many processor cycles wHxms well in practice'. For job sets with arbitrary release
simultaneously ensuring that the job completes quicklffime, their makespan scheduled ®RAD is no more than
Instead of using instantaneous parallelisA,GReepy 1.39 times of the optimal on average and it never exceeds
and A-STEAL provide parallelism feedback to the jobd.5 times. For batched job sets, their mean response time
scheduler based on a single summary statistic and #@heduled byGRAD is no more thar2.37 times of the
job’s behavior on the previous quantum. Even though th@ptimal on average, and it never exceéds times.
provide parallelism feedback using the past behavior of theThe remainder of this paper is organized as follows.
job and we do not assume that the job’s future parallelisiection 1l describes the job model, scheduling model,
is correlated with its history of parallelism, our analysi@nd objective functions. Section Il describes the thread
shows that they schedule the job well with respect to bosgheduling and job scheduling algorithms GRAD.
waste and completion time. Section IV and Section V analyze the theoretical perfor-

For job scheduling, this paper also introduces dpance and_ present the empiri_cal _resultchRAD respec-

tively. Section VI presents a distributed two-level adaptive

“adaptive” job scheduler RAD, which combines the)) .
space-sharing job scheduling algorithm “dynamic equ§_chedullng algorithnWRAD, and states its performance.

partitioning” [32], [43] (DEQ) with the time-sharing round Section VII discusses the .r(.alatgd work, and Section VIII
robin (RR) algorithm. When the total number of jobs igoncludes the paper by raising issues for future research.

smaller than or equal to the total number of processors, jt . . .
uses DEQ as job scheduler. DEQ allots each job with AL SChedu“ng Model and Object|ve

equal number of processors unless the job requests for IdsgINctions

DEQ was introduced by McCann, Vaswani, and Zahorjan) . . .

[32] based on earlier work on equipartitioning by Tucke ur sche_dulmg problem consists of a collection of inde-
and Gupta [43]. When the total number of jobs is great@€ndent jobs7 = {1, J2,...,J 7/} to be scheduled on
than the total number of processoRAD applies time- 2 collection of P identical processors. In this section, we

sharing round robin algorithm, which also ensures thii'malize the job model, define the scheduling model, and
each job gets an equal slice of scheduling tirRAD present the optimization criteria of makespan and mean

was originally presented in our paper [25]. response time.

Intumvely, if each JOb prowdes gOOd _parallellsm feed- 1The experimental study dMRAD is still in progress, and therefore
back and makes productive use of available processorsyegonly present the simulation results ®BRAD in the paper.

Job Model ule completes the execution of the job, iB(J;) =

We model the execution of a multithreaded jogbas a maxyev; 7(v). The makespanof a given job set7 under
dynamically unfolding directed acyclic graph (dag) sucHe schedulex is the time taken to complete all jobs in
that J; = (V;, E;) whereV; and E; represent the sets ofthe job set7, i.e. Tx(J) = maxj,e 7 Ix(Ji).

Ji's vertices and edges respectively. Each veriex ; ~ Definition 2: The response timeof a job J; under
represents a unit-time instruction. Therk T; (.J;) of the @ schedulex is T (J;) — r(J;), which is the duration

job J; corresponds to the total number of vertices in th@etween its release time(J;) and the completion time
dag, i.eT} (J;) = |V;|. Each edge € E; from vertexu to Tx(J;). Thetotal response timeof a job set7 under a

v represents a dependency between the two vertices. H§gedulex is given byRx (7) = > ;. ¢ 7 (Tx(Ji) = (i)
precedence relationship < v holds if and only if there and themean response timés Rx(J) = Rx(J)/|J|-

exists a path from vertex to v in E;. Thespan T, (J;) The goal of the paper is to show that our scheduler
corresponds to the number of nodes on the longest ch&fimizes the makespan and mean response time, and we
of the precedence dependencies. Télease timer(J;) of ~Use competitive analysis as a tool to evaluate and compare
the job J; is the time at whichJ; becomes first available the scheduling algorithm. The competitive analysis of an
for processing. Each job is handled by a dedicated thre@gline scheduling algorithm is to compare the algorithm
scheduler, which operates in an online manner, oblivio@gainst an optimal clairvoyant algorithm. L&t (7) de-

to the future characteristics of the dynamically unfoldin§ote the makespan of the jobsgtscheduled by an optimal

dag. scheduler, and/(A) denote the schedule produced by an
) algorithm A for the job set7. A deterministic algorithm
Scheduling Model A is said to bec-competitiveif there exists a constarbt

Our scheduling model assumes that time is broken intosach thatl'y(4)(J) < ¢-T*(J)+b holds for the schedule
sequence of equal-sizetheduling quantal, 2, ..., each x(A) of each job set. We will show that our algorithmcis
of length L, where each quantum includes the interval competitive in terms of the makespan, wheris a small
[L-q,L-g+1,...,L(g+1)—1] of time steps. The quantumconstant. Similarly, lefR,(4)(J) and Ry(4)(J) denote
length L is a system configuration parameter chosen to liige total response time and mean response time in terms
long enough to amortize scheduling overheads. of the schedulex(A) produced by an algorithmi. For

The job scheduler and thread schedulers interact as ftle mean response time, we will show that our algorithm
lows. The job scheduler may reallocate processors betwdsralso constant-competitive for any batched jobs.
gquanta. Between quantugi-1 and quantung, the thread .
scheduler of a given joly; determines the job'slesire . GRAD Algonthms

d(Ji,q), which is the number of processor wants GRAD usesA-GREEDY as thread scheduler, arRIAD

for quantumg. Based on the desire of all running jobsgs job scheduler. We present these two algorithms in this
the job scheduler follows its processor-allocation polic¥ection.

to determine theallotment a (J;,q) of the job with the
constraint that (J;, q) < d(J;,q). Once a job is allotted A-GREEDY Thread Schedwer
its processors, the allotment does not change during theGREEDY [1] is an adaptive greedy thread scheduler

quantum. with parallelism feedback. Between quanta, it estimates
A scheduley = (r,7) of a job set7 is defined as its job’s desire, and requests processors from the job
two mappingst : Us,csVi — {1,2,...,00}, and« : scheduler. During the quantum, it schedules the ready

Us,esVi = {1,2,..., P}, which map the vertices of the threads of the job onto the allotted processors greedily
jobs in the job set7 to the set of time steps, and the set of’], [21]. For a job J;, if there are more tham (J;,q)
processors on the machine respectively. A valid mappifigady threadsi-GREEDY schedules any (J;, ¢) of them.
must preserve the precedence relationship of each job. E3herwise, it schedules all of them.

any two verticesu, v € V; of the job J;, if u < v, then A-GREEDY classifies quanta as “satisfied” versus “de-
r(u) < 7(v), i.e. the vertexu must be executed beforePrived” and “efficient” versus “inefficient” A quantum
the vertexv. A valid mapping must also ensure that ong is satisfiedif a(J;,q) = d(J;,¢), in which caseJ;'s
processor can only be assigned to one job at any givguptment is equal to its desire. Otherwise, the quantum
time. For any two vertices andv, both7(u) = 7(v) and 1S deprived The quantuny is efficient if A-GREEDY's

7(u) = 7(v) are true iffu = v. utilization u(J;, ¢) is no less than & fraction of the total
. . allotted processor cycles during the quantum, whiere
Objective Functions named asitilization parameter Typical values fod might

Our scheduler uses makespan and mean response t80-95%. Otherwise, the quantum iefficient.

as the performance measurement, which are defined a&\-GREEDY calculates the desiré(J;, q) of the current

follows. quantumg based on the previous desiéJ;,q — 1) and
Definition 1: The completion time 7y (J;) of a job the three-way classification of quantum— 1 as ineffi-

J; under a schedule is the time at which the sched-cient, efficient and satisfied, and efficient and deprived.

Assign a(J;,q) = d(J;,q) processors to each

A-GREEDY(q, &
(q,0,p) J; € J. UpdateJ = 7—7J', andP = P —

1 ifg=1

2 thend(J;,q) «— 1 > base case 2 eq0 d(Jisq). Go to Step 1.

3 elseifu(J;,q—1) < Léa (J;,q—1) .

4 thend(Ji,q) — d(Jig—1)/p © ineff. IV. GRAD Theoretical Results

5 elseifa(J;,q—1)=d(Ji,q—1) GRAD is a two-level scheduler, whose performance is

6 thend(Ji,q) « pd(Ji,q—1) > eff.+ sat. ysually measured in terms of the global properties such as

7 elsed(Ji,q) —d(Ji,q—1) > eff.+ dep. makespan and mean response time. Intuitively, if each job

8 Report desirel(J;, ¢) to the job scheduler. provides good parallelism feedback and makes productive

9 Receive allotmeni (J;,) from the job scheduler. yse of available processors, a good job scheduler can
10 Greedily schedule oa(.J;,q) processors ensure that all the jobs perform well. Therefore, the

for L time steps. efficiency of GRAD depends on the effectiveness A

GREEDY. Specially, we want individual jobs scheduled
Figure 1: Pseudocode for the adaptive greedy algoritt". py A-GREEDY to have short completion time and small
GREEDY provides parallelism feedback of jobi; 10 a job \yaste |n this section, we first introdude GREEDY's time
scheduler in the form of a desire for processors. Before quantum | ~° .
g, A-GREEDY uses the previous quantum’s desife/;, ¢ — 1), @nd waste bound, then we analyze the performance of
allotmenta (Ji, ¢ — 1), and usage(J;,q — 1) to compute the GRAD in terms of both makespan and mean response

current quantum’s desiré, based on the utilization parameter time.
and the responsiveness parameter _
A-GREEDY’s Time and Waste Bound

The initial desire isd(J;,1) = 1. A-GREEDY uses a A-GREEDY is a thread scheduler responsible for schedul-
responsiveness parameter> 1 to determine how quickly ing individual job J;. In an adaptive setting where the
the scheduler responds to changes in parallelism. Typicalmber of processors allotted to a job can change during
values of p might range between.2 and 2.0. Figure 1 execution, bottl} (J;) /P andT,, (J;) are lower bounds
shows the pseudo-code 8fGREEDY for one quantum. on the running time, whereP(J;) is the mean of the
processor availability for jokJ; during the computation.
RAD Job Scheduler An adversarial job scheduler, however, can prevent any

The job scheduleRAD [25] unifies the space-sharing jobthread scheduler from providing good speedup with re-
scheduling algorithm DEQ [32], [43] with the time-sharingSPect to the mean availability’(.J;) in the worst case.
RR algorithm. When the number of jobs is greater thdror example, if the adversary chooses a huge number of
the number of processor§RAD schedules the jobs in Processors for the job's processor availability just when
batched round robin fashion, which allocates one proces$@e job has little instantaneous parallelism, no adaptive
to each job with an equal share of time. When the numbggheduling algorithm can effectively utilize the available
of jobs is at most the number of processdBRAD uses Processors on that quantum. _
DEQ as job scheduler. DEQ gives each job an equal sharé/Ve introduce a technique callédim analysisto analyze
of spatial allotments unless the job requests for less. the time bound of adaptive thread schedulers under these
When jobs are scheduled in batched round robin fasidversarial conditions. Trim analysis borrows the idea
ion, RAD maintains a queue of jobs. At the beginning off ignoring a few “outliers” from statistics. Arimmed
each quantum, if there are more th&njobs, it popsP Mean for example, is cglculated by discarding a certain
jobs from the top of the queue, and allots one processdfmber of lowest and highest values and then computing
to each of them during the quantum. At the end of th&€ mean of those that remain. For our purposes, it suffices
guantum,RAD pushes theP jobs back to the bottom of t0 trim the availability from just the high side. For a given
the queue if they are incomplete. The new jobs can be p(@lue R, we define theR-high-trimmed mean availability
into the queue once they are released. as the mean availability after ignoring thi¢ steps with

DEQ attempts to give each job a fair share of processof8€ highest availability. A good thread scheduler should
If a job requires less than its fair share, however, DE@/OVIde linear speedup with respect to d@itrimmed
distributes the extra processors to the other jobs. Mop¥ailability, whereR is as small as possible. _
precisely, upon receiving the desirgd(.J;, q)} from the ~ The following theorem shows that, for each job,
thread schedulers of all job% € 7, DEQ executes the A-GREEDY completes the job inO(T: (J;) /P(Ji) +
following processor-allocation algorithm T (Ji)+L1g P) time steps, wheré denotes the)(To. +
1. Setn = |7]. If n = 0, return. Llg P)-trimmed availability. Thus, jolJ; achieves linear
2. If the desire for every jobJ; € J satisfies Speed up with respect tB(.J;) whenTy (i) /Too (Ji) >
d(J;,q) > P/n, assign each jol (J;,q) = P/n P(Ji), that is, when its parallelism dominates the
processors. O(Tw (J;) + L1g P)-trimmed availability. In addition, we
3. Otherwise, lety’ = {J; € J:d(J;,q) < P/n}. prove that the total number of processor cycles wasted

by the job isO(T; (J;)), representing at most a constantvork-conservative property & AD to make a connection
factor overhead. The details of the proof are documentbdtween the total allotment with the total work of the job
in [1]. set. The key observation is theRAD must have allotted all
Theorem 1:Suppose thaA-GREEDY schedules a job processors to jobs whenevéy is deprived. Once we get
Ji with work T3 (J;) and critical-path lengthl', (J;) |D(Jx)|, @ simple summation gives us the desired bound.
on a machine withP processors. Ifp is A-GREEDY'S Ul
responsiveness parameteis its utilization parameter, and Since both the quantum length, and the num-
L is the quantum length, theA-GREEDY completes the ber of processorsP are independent variables with

job in respect to any job set7, and both 7T} (J)/P and
Ty (J;) 2T (J;) maxj,e 7 {Ts (J;) + r(J;)} are lower bounds of*(.7),
T(J;) < 5B L5 TLllog, P+L GRAD is O(1)-competitive with respect to makespan.

N Specially, whens = 0.5 and p approached, the com-
time steps, whereP(J;) is the (2T (J;) /(1 — &) + petitiveness ratiap + 1)/6 + 2/(1 —) approaches its
Llog, P+ L)-trimmed availability. Moreover\-GREEDY minimum value8. Thus, GRAD is (8 + ¢)-competitive
wastes at most with respect to makespan for any constant 0.

(1+p— 8T (J;) /5 Mean Response Time

Mean response time is an important measure for multiuser

environments where we desire as many users as possible

Makespan to get fast response from the system. To introduce the

eI{?Wer bounds of mean response time for batched jobs, we

&eed to introduce two definitions — squashed work area
aggregate span. Consider the jobs in the jolysate

ordered according to their work, i.&; (J1) < T (J2) <

-+ < Ty (J,7/). Thesquashed work areaf J is

processor cycles in the course of the computation.[]

Makespan is the time to complete all jobs in the job s
Given a job set7 and P processors, lower bounds on th
makespan of any job scheduler can be obtained based
release time, work, and span. Recall that for a.jole 7,

the quantitiesr(J;), T1 (J;), and T, (J;) represent the

release time, work, and span ff respectively. LefT™(.7) n ‘
denote the makespan produced by an optimal scheduler ~ swa(J) = (1/P)Y (n—i+)Ty (Ji) .
on a job set7 scheduled orP processors. LeT} () = i=1

>.7.c7 T1(Ji) denote the total work of the job set. TheThe aggregate sparf 7 is
following two inequalities give two lower bounds on the

makespan [9]: Too (J)= > T (i)
JieTJ
(7)) = 5n2§ {r(Ji) + Tee (Ji)} @) whereT, (J;) is the span of jobJ; € 7. The research in

™(J) > Ti(J)/P. (2) [14], [44], [45] establishes two lower bounds for the mean

o _response time:
The following theorem bounds the makespan of a job

set.7 scheduled byGRAD. R*(J) > T (J)/|T] . ©))
Theorem 2:Suppose thaGRAD schedules a job sef R*(7) > swa(J)/|T]|, (4)

on a machine withP processors. It completes the job set — _

in whereR*(7) denotes the mean response timejo§ched-

1T () 9 uled by an optimal clairvoyant scheduler. Both the aggre-
T(7) < p ! + max {1, (J;) +r(J;)} gate spanl, () and the squashed work areaa (.7)

g p 1-0Jie7 are lower bounds for the total response tiRig.7) under

+Llog, P+ 2L an optimal clairvoyant scheduler.

time steps. Theorem 3:Suppose that a job sef is scheduled by
Proof Sketch. Suppose jobJy is the last job completed GRAD on P processors. Le€' = 2 —2/(|7| + 1). The
among the jobs in7. Let S(J,,) denote the set of satisfiedtotal response tim&(.7) of the schedule is at most
steps forJy, and D(J;) denote its set of deprived steps. c <p

The job Ji is scheduled to start its execution at the R(J) = ;rlswa(j)‘F%éToo (J))
beginning of the quantumwhereLq < r(Jx) < L(q+1),
which is the quantum immediately :Elfte)fk’s r(eleas)e. + 07| Llog, P) , ©)
Therefore, we hav@(7) < r(Jx)+L+|S(Jx)|+|D(Jx)|. where swa(J) is the squashed work area ¢f, and

We now bound|S(J)| and |D(J;)|. According to T, () is the aggregate span gf.
[1], we know that the number of satisfied steps is giveRroof Sketch. The proof of the competitiveness of mean
by [S(Jx)| < 2T (Ji) /(1 — d) + Llog, P + L. To response time is more complex than that of makespan.
bound the total number of deprived steps, we use thAde analysis can be divided into two parts. In the first

70

Percentage of Job Setsin the Range
Percentage of Job Setsin the Range

0
1.0-15 1520 2.0-25 25-30 3.0-35 3540 4045 45 1.0-1515-2.020-25 25-3.0 3.0-35 35-4.0 40-45 45-5.0 5.0-55 5.5-
Range of Makespan Ratio Range of Mean Response Time Ratio

Figure 2: Comparing the makespan @RAD with the Figure 3: Comparing the mean response time @RAD
theoretical lower bound for job sets with arbitrary job with the theoretical lower bound for batched job sets.
release time.

part where|7| < P, GRAD always uses DEQ as jobpractice and compar@ RAD to an optimal scheduler. We
scheduler. In this case, we use mathematical inductibaoild a Java-based discrete-time simulator using DESMO-
to show localc-competitiveness argument, which assertd [15]. Our simulator models four major entities —
Inequality (5) is always true at any time stepluring the processors, jobs, thread schedulers, and job schedulers,
execution of the job set. In the second part of the proaihd simulates their interactions in a two-level scheduling
where|7| > P, GRAD uses both RR and DEQ. Sinceenvironment. The simulator operates in discrete time steps,
we consider batched jobs, the number of incomplete jobad we ignore the overheads incurred in the reallocation
decreases monotonically. When the number of incompleté processors.

jobs drops toP, GRAD switches its job scheduler from Our benchmark application is the Fork-Join jobs, which
RR to DEQ. Therefore, we prove the second case basgigbrnate between serial and parallel phases. Fork-Join jobs
on the properties of round robin scheduling and the resuliise naturally in jobs that exhibit “data parallelis”, mean-

of the first case. L) ing those that apply the same computation to a number
Since bothswa (7) /| 7| and T (J) /| 7| are lower of different data points. Many computationally intensive
bounds onR(.7), we obtain the following corollary. applications can be expressed in a data-parallel fashion

Corollary 4: Suppose that a job sef is scheduled by [36]- The repeated fork-join cycle in the job reflects the
GRAD. The mean response tinfe(.7) of the schedule Often iterative nature of these computations. We generate

satisfies jobs with different work, spans, and phase lengths. The

B 9 1 9 __ experiments are conducted on more thH&000 runs of

R(J) = <2 -) <p +) R*(J) jobs sets using many combinations of jobs and different
|71 +1 g 1-9 loads.

+ O(Llog, P) , Figure 2 shows howGRAD performs compared to

where R*(7) denotes the mean response time @f an optimal schedyler with respect to makespan. The
scheduled by an optimal clairvoyant scheduler. [makespan of a job set/ has two lower bounds
. maxy,e7(r(J;)+Tw (J;)) andTy (J) /P. The makespan
Since both the q_uantum length gnd the_ number roduced by an optimal scheduler is at least the larger of
of processorsP are independent variables with respe#l o .
to any job set, Corollary 4 shows thaGRAD is ese two lower bounds. The makespan ratio in Figure 2 is
v NG y : defined as the makespan of a job set schedule@RAD
O(1)-competitive with respect to mean response time f

of. . :

batched jobs. Specifically, whén= 1,2 and approaches JlVlded by the large of the two lower bounds. In Figure 2,
. Lo . . the X-axis represents the ranges of the makespan ratio,
1, GRAD's competitiveness ratio approaches the minj- . . :
mum valuel6. Thus,GRAD is (16 + ¢)-competitive with while the histogram shows the percentage of the job sets

respect to mean response time for anv constant) whose makespan ratio falls into each range. Among more
P P y ' than 10000 runs, 76.19% of them use less thah5 times

: of the theoretical lower boun®9.70% uses less than 2.0
V. GRAD Experlmental Results times, and none uses more than 4.5 times. The average

GRAD’s competitive ratio with respect to makespan anfhakepsan ratio id.39, which suggests that in practice
mean response time, though asymptotically strong, ha$>®AD has a small competitive ratio with respect to the
relatively large constant multiplier. Our experiments wergakespan.

designed to evaluate the constants that would occur inFigure 3 shows the distribution of the mean response

time normalized w.r.t the larger of the two lower boundg “steals” work from another processor chosen at random.
— the squashed work boundva (7) /|7| and the aggre- To the best of our knowledgé\-STEAL is the first work-
gated critical path bound, (7) / |7|- The histogram in stealing thread scheduler that provides provably effective
Figure 3 shows that, among more th&090 runs,94.65% parallelism feedback to a job scheduler. In this section, we
of them use less than 3 times of the theoretical lowériefly review A-STEAL, and presenWRAD's results.
bound, and none of them uses more thafhtimes. The A-STEAL is a decentralized adaptive thread scheduler
average mean response time rati®.i37. with parallelism feedback, and likk-GREEDY, A-STEAL

We now interpret the relation between the theoreticperforms two functions. Between quanta, it estimates its
bounds and experimental results as follows. When- job’s desire and requests processors from the job sched-
2 and 6 = 0.8, from Theorem 2,GRAD is 13.75- uler. A-STEAL applies the same desire-estimation algo-
competitive in the worst case. However, we anticipatéthm as A-GREEDY to calculate its job’s desire. During
that GRAD's makespan ratio would be small in practithe quantum,A-STEAL schedules the ready threads of
cal settings, especially when many jobs have total wotke job onto the allotted processors using an adaptive
much larger than span and the machine is moderately work-stealing algorithm. For a jold;, A-STEAL guaran-
highly loaded. In this case, the term R (7) /P in tees linear speedup with respect@®7., (J;) + Llg P)-
Inequality (3) of Theorem 2 is much larger than the termtimmed availability. In additionA-STEAL wastes at most
max e 7 {T (1) + 7(i)}, which is to say, the term on O(T; (J;)) processor cycles. The precise statement&-of
Ty (J) /P generally dominates the makespan bound. TI®reaL’s time and waste bound are given by the following
proof of Theorem 2 calculates the coefficientlof(.7) /P theorem. Please refer to [2] for its proof.
as the ratio of the total allotment (total work plus total Theorem 5:Suppose thatA-STEAL schedules a job
waste) versus the total work. When the job scheduler j§ with work Ty (J;) and critical-path lengthT,, (.J;)
RAD, which is not a true adversary, our simulation resulisn a machine withP processors. For any > 0, with
indicate that the ratio of the waste versus the total work ggobability at leastl — ¢, A-STEAL completes the job in
only aboutl/10 of the total work. Thus, the coefficient of T (T, 1
T, (J) /P in Inequality (3) is about.1. It explains that T < 1 (i) (1 + aal)

the makespan produced BRAD is less than 2-times of - OP(J) Lo—1-p
the lower bound in average as shown in Figure 2. Too (Ji)
Similar to makepsan, we can relate the theoretical * O(1-9¢ + Llog, P+ Ln(1/e)

mean resposne time bounds with experimental results as ~)
follows. Whenp — 2 and§ — 0.8, from Theorem 3, UMme steps, whereP(J;) is the O(Tw (J;) /(1 — 6) +

GRAD is 27.60-competitive. However, we expect that-108, £ + L1n(1/e))-timmed availability. Moreover, it
GRAD should perform closer to optimal in practice. Ipvastes at most
particular, when the job sef exhibits reasonably large W< (1 +p—0 (1+ p)?)T)
total parallelism, we havewa (7) > T (J), and thus, -) S(L6—1—p)) "7

the term InVO|V|n.gswa () n Theorem 3 dommates theprocessor cycles in the course of the computation.[]
total response time. More importantfiRAD is not an
adversary ofA-GREEDY, as mentioned before, the waste WRAD is O(1)-competitive with respect to both

of a job is only aboutl /10 of the total work in average Makespan and mean response time. The methods used
for over 100, 000 job runs we tested. Based on this wastd0r analyzing WRAD are similar to those folGRAD.

the squashed area bounda (7) in Inequality (5) of However, sinceA-STEAL and WRAD are randomized
Theorem 3 has a coefficient to be around. It explains scheduling algorithms, we show that the makespan (or
that the mean response time produced@RAD is less the expected mean response time) is within a faetor

than3 times of the lower bound as shown in Figure 3. of that incurred in an optimal clairvoyant algorithm in
expectation, not in the worst case. The following theorem

VI. WRAD - Distributed Adaptive presents the makespan, and mean response time bound of

Scheduler WRAD respectlv_elyWRAD is O(l_)-competltlve for both_
makespan and, in the batch setting, mean response time.

WRAD is a distributed two-level adaptive scheduler that Theorem 6:Suppose that a job sef is scheduled by

uses theA-STEAL algorithm [2], [3] as its thread sched-WRAD on a machine withP processors. The expected

uler andRAD as its job scheduler. Whila-GREEDY uses competition of the schedule is given by

a centralized algorithm to schedule tasks on the allotted

processors, our new thread scheduling algorifh8TEAL E[T(7)] = (p +1 + (1+p)°) ()
works in a decentralized fashion, using randomized work- 6 o(Ld =1 = p) P
stealing [4], [8], [20] to schedule the threads on allotted L0 <maXJiEJ {r(Ji) + Two (Ji)}>
processorsA-STEAL is unaware of all available threads at 1-9

a given moment. Whenever a processor runs out of work, + Llog, P +2L

time steps. Moreover, le€ = 2 — 2/(|J| + 1). The provide feedback to dynamic-equipartitioning job sched-
expected response time of the schedule is given by ulers. These studies use different strategies for parallelism
feedback, and all report better system performance with

1 1 2 . . o
ER(J)]=C <p?; + 5 L(é +f)) swa () parallelism feedback than without, but it is not apparent
(L6 —1-p) which strategy is superior.
Lo (Too (J) 171 Llog, p> ’ Some researchers [5], [28], [33] have studied the online
1-9 non-clairvoyant scheduling of serial jobs to minimize the

where swa (7) denotes the squashed work area, arfiéan response time on single or multiple processors.
T (j) denotes the aggregate span.] For jObS with arbitrary release times, Motwani, Phl”lpS,

and Torng [33] show that every deterministic algorithm
Both GRAD and WRAD follow the same resource can achieve competitiveness no better tlsi)s(ml/S), and

request-allotment protocol, which uses jobs’ uti_lization i%n¥ randomized algorithm can achieve competitiveness
the past quantum as feedback, and makes fair proceng better thanQ(log n) for mean response time. Bec-

allotments among jobs. Even though their thread schedu Hetti and Leonardi [5] present a version of the random-

tA'GREEdDﬁ and g—StLEALdapply fairly dlfferetrgmyv:gs ized multilevel feedback algorithm (RMLF) and prove
0 schedu’e ready threads on processors, Hs an O(log nlog(n/P))-competitiveness result against any
andWRAD ensure constant competitiveness with reSpeSBIivious adversary on a machine wifh processors

to makespan, and, in batched setting, mean responsashmoy& Wein and Williamson in [39] study the lower

time. We believe that this new approach of reSOUrGssunds of online nonclairvoyant scheduling of serial jobs
request-allotment protocol can be useful in many other.

; rce management oroblem nd it deserves furt itrh respect to makespan. They show that the competitive
ei?acljgr;teiona agement problems, a eserves UMiio is at least2—1/P) for any preemptive deterministic

online algorithm, and at leag2 — 1/v/P) for any non-
preemptive randomized online algorithm with an oblivious

VIl. Related Work adversary.

: : - fo - Adaptive parallel job scheduling has been studied both
This section discusses related work in job schedulin o .
that minimizes makespan and mean response time. pirically [29], [32], [43] and theoretically [13], [16],

the offline version of the problem, all the jobs’ resourc[en]’ [22], [33]. McCann, Vaswani, and Zahorjan [32]

requirements and release times are known in advanég?dy mtan)f/ S'ﬁerﬁnt]ib s_lt_:r?edullers .a?d devalu?hted tr:_em
In the online clairvoyant version of the problem, th®N @ Set of benchmarks. They aiso introduce the notion

algorithm knows the resource requirements of a job wh&f dynamic equipartitioning (DEQ), which gives each job

it is released, but it must base its decisions only on jo%‘é:r allotment of processors based on the job's request,

that have been released. In this paper, we have studied le allowlngtp;oc;ess?r:s thatt) cagnoth?e [l; sed by 3 ng
online nonclairvoyant version of the problem, where th € reaflocated to other Jobs. brecht, Leng, an u

resource requirements and release times are unknow % prove _that DEQ. .W'th _mstantaneous parallelism as
feedback is2-competitive with respect to the makespan.

the scheduling algorithm. .
. . . ., Later, Deng and Dymond [14] prove that DEQ with
The online nonclairvoyant scheduling of parallel jobs o i
includes the scheduling of a single parallel job multiplénstantaneous parallelism is al$éeompetitive for batched
serial iobs. and multiple varallel obs ' Jobs with respect to the mean response time. Since DEQ
PrioJr WO,I’k on scthuﬁng a sJingIe; parallel job tendonIy addresses the case where there are more processors

: . than active jobs, a scheduling algorithm that uses DEQ as
to focus on nonadaptive scheduling [6], [8], [21], [35] Otob scheduler, can only be applied to the case where the

adaptive scheduling without parallelism feedback [4]. F Ltal number of jobs in the job set is less than or equal to
jobs whose parallelism is unknown in advance and whiciﬁe total number of processors

may change during execution, nonadaptive scheduling is
:<nown to W{;\ste processor cycles [41], because a job Wl{y“l. Conclusions
ow parallelism may be allotted more processors than it
can productively use. Moreover, in a multiprogrammeWe have presented two new adaptive scheduling algo-
environment, nonadaptive scheduling may not allow a nemthms GRAD and WRAD that ensure fair allocation
job to start, because existing jobs may already be usingder all levels of workload, and they offer provable
most of the processors. Although adaptive schedulimgdficiency without requiring prior information of job's
without parallelism feedback allows jobs to enter thparallelism. Moreover, they provide effective control over
system, jobs may still waste processor cycles if they atiee scheduling overhead and ensure efficient utilization of
allotted more processors than they can use. processors. To the best of our knowledgeRAD and
Adaptive thread scheduling with parallelism feedbacWRAD are the first non-clairvoyant scheduling algorithms
has been studied empirically in [38], [40], [42]. Thes¢hat offer such guarantees.
researchers use a job’s history of processor utilization toThe request-allotment framework discussed in this paper

can be applied to application-specific schedulers. Herez]
GRAD combinesRAD with A-GREEDY thread sched-

uler, andWRAD combinesRAD with A-STEAL. Analo-

(23]

gously, one can develop a two-level scheduler by applyingg]
the request-allotment protocol, and application-specific
thread schedulers. Such a two-level scheduler may prov%5
both system-wide performance guarantees such as minimal
makespan and mean response time, and optimization[4$
individual applications.

[27]
References [28]
[1] K. Agrawal, Y. He, W. J. Hsu, and C. E. Leiserson. Adaptive tasg9]

(2]
(3]

(4]

(5]

(6]

[7]

(8]

(9]

(20]

(11]

(12]

[13]

(14]

[15]
[16]

[17]

(18]

[19]

[20]

[21]

scheduling with parallelism feedback. RPoPR pages 100 — 109,
New York City, NY, USA, 2006.

K. Agrawal, Y. He, and C. E. Leiserson. Work stealing with[30]
parallelism feedback. To appear in PPoPP 2007.

K. Agrawal, Y. He, and C. E. Leiserson. An empirical evaluatiorj31]
of work stealing with parallelism feedback. 1I6DCS pages 19 —

29, Lisboa, Portugal, 2006.

N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread schedulinf2]
for multiprogrammed multiprocessors. BPAA pages 119-129,
Puerto Vallarta, Mexico, 1998.

L. Becchetti and S. Leonardi. Nonclairvoyant scheduling to
minimize the total flow time on single and parallel machines[33]
Journal of the ACM51(4):517-539, 2004.

G. E. Blelloch and J. Greiner. A provable time and space efficief84]
implementation of NESL. INCFP, pages 213-225, Philadelphia,
Pennsylvania, 1996.

R. D. Blumofe and C. E. Leiserson. Space-efficient schedulin@5]
of multithreaded computations.SIAM Journal on Computing
27(1):202-229, 1998.

R. D. Blumofe and C. E. Leiserson. Scheduling multithreade[86]
computations by work stealingJournal of the ACM 46(5):720—

748, 1999.

T. Brecht, X. Deng, and N. Gu. Competitive dynamic multiprocesf37]
sor allocation for parallel applications. Parallel and Distributed
Processing pages 448 — 455, San Antonio, TX, 1995.

F. W. Burton and M. R. Sleep. Executing functional programs of88]
a virtual tree of processors. FPCA pages 187-194, Portsmouth,
New Hampshire, 1981. [39]
J. Chen and A. Miranda. A polynomial time approximation scheme
for general multiprocessor job scheduling (extended abstract). In
STOC pages 418-427, New York, NY, USA, 1999. [40]
S.-H. Chiang and M. K. Vernon. Dynamic vs. static quantum-based
parallel processor allocation. ISSPPR pages 200-223, Honolulu, [41]
Hawaii, United States, 1996.

X. Deng and P. Dymond. On multiprocessor system scheduling. In
SPAA pages 82-88, Padua, Italy, 1996. [42]
X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive scheduling
of parallel jobs on multiprocessors. IBODA pages 159-167,
Philadelphia, PA, USA, 1996. [43]
DESMO-J: A framework for discrete-event modelling and simula-
tion. http://asi-www.informatik.uni-hamburg.de/desmoj/.

J. Edmonds. Scheduling in the dark. 8TOC pages 179-188, [44]
Atlanta, Georgia, United States, 1999.

J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng. Non-clairvoyant
multiprocessor scheduling of jobs with changing execution charac-
teristics. Journal of Scheduling6(3):231-250, 2003. [45]
Z. Fang, P. Tang, P.-C. Yew, and C.-Q. Zhu. Dynamic processor
self-scheduling for general parallel nested lodg&E Transactions

on Computers39(7):919-929, 1990. [46]
D. G. Feitelson. Job scheduling in multiprogrammed parallel
systems (extended version). Technical report, IBM Research Report
RC 19790 (87657) 2nd Revision, 1997. [47]
M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation
of the Cilk-5 multithreaded language. ILDI, pages 212-223,
1998.

R. L. Graham. Bounds on multiprocessing anomalieSIAM
Journal on Applied Mathematicpages 17(2):416—429, 1969.

N. Gu. Competitive analysis of dynamic processor allocation
strategies. Master’s thesis, York University, 1995.

R. H. Halstead, Jr. Implementation of Multilisp: Lisp on a
multiprocessor. ILFP, pages 9-17, Austin, Texas, Aug. 1984.

Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient two-level
adaptive scheduling. IdSSPPR Saint-Malo, France, 2006.

Y. He, W. J. Hsu, and C. E. Leiserson. Provably efficient adaptive
scheduling through equalized allotments. Unpublished manuscripts,
2007.

K. Jansen and L. Porkolab. Linear-time approximation schemes
for scheduling malleable parallel tasks. 3SODA pages 490-498,
Philadelphia, PA, USA, 1999.

K. Jansen and H. Zhang. Scheduling malleable tasks with prece-
dence constraints. IBPAA pages 86—95, New York, USA, 2005.
B. Kalyanasundaram and K. R. Pruhs. Minimizing flow time
nonclairvoyantly.Journal of the ACM50(4):551-567, 2003.

S. T. Leutenegger and M. K. Vernon. The performance of multi-
programmed multiprocessor scheduling policiesSIGMETRICS
pages 226-236, Boulder, Colorado, United States, 1990.

S. Lucco. A dynamic scheduling method for irregular parallel
programs. InPLDI, pages 200-211, New York, NY, USA, 1992.
W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable
parallel tasks. INSODA pages 167-176, Philadelphia, PA, USA,
1994.

C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor al-
location policy for multiprogrammed shared-memory multiproces-
sors. ACM Transactions on Computer Systeri4(2):146-178,
1993.

R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling.
In SODA pages 422-431, Austin, Texas, United States, 1993.

G. Mounie, C. Rapine, and D. Trystram. Efficient approximation
algorithms for scheduling malleable tasks. SRAA pages 23-32,
New York, NY, USA, 1999.

G. J. Narlikar and G. E. Blelloch. Space-efficient scheduling of
nested parallelismACM Transactions on Programming Languages
and Systems21(1):138-173, 1999.

L. S. Nyland, J. F. Prins, A. Goldberg, and P. H. Mills. A design
methodology for data-parallel applicationkEE Transactions on
Software Engineering26(4):293-314, 2000.

U. Schwiegelshohn, W. Ludwig, J. L. Wolf, J. Turek, and P. S. Yu.
Smart smart bounds for weighted response time scheduibig
Journal of Computing28(1):237-253, 1998.

S. Sen. Dynamic processor allocation for adaptively parallel jobs.
Master’s thesis, Massachusetts Institute of technology, 2004.

D. B. Shmoys, J. Wein, and D. P. Williamson. Scheduling parallel
machines online. IIFOCS pages 131-140, San Juan, Puerto Rico,
1991.

B. Song. Scheduling adaptively parallel jobs.
Massachusetts Institute of Technology, 1998.
M. S. Squillante. On the benefits and limitations of dynamic
partitioning in parallel computer systems. IPPS pages 219-238,
Oakland, California, United States, 1995.

K. G. Timothy B. Brecht. Using parallel program characteristics
in dynamic processor allocation policiéBerformance Evaluatign
27-28:519-539, 1996.

A. Tucker and A. Gupta. Process control and scheduling issues for
multiprogrammed shared-memory multiprocessorsSQSPR pages
159-166, New York, NY, USA, 1989.

J. Turek, W. Ludwig, J. L. Wolf, L. Fleischer, P. Tiwari, J. Glasgow,
U. Schwiegelshohn, and P. S. Yu. Scheduling parallelizable tasks
to minimize average response time.SRAA pages 200-209, Cape
May, New Jersey, United States, 1994.

J. Turek, U. Schwiegelshohn, J. L. Wolf, and P. S. Yu. Scheduling
parallel tasks to minimize average response timeS@DA pages
112-121, Philadelphia, PA, USA, 1994.

P. Yang, D. Desmet, F. Catthoor, and D. Verkest. Dynamic
scheduling of concurrent tasks with cost performance trade-off. In
CASES pages 103-109, New York, NY, USA, 2000.

J. Zahorjan and C. McCann. Processor scheduling in shared mem-
ory multiprocessors. IIBIGMETRICS pages 214-225, Boulder,
Colorado, United States, 1990.

Master’s thesis,

