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Hydrocarbon Oxidation in the Exhaust Port and Runner
of a Spark Ignition Engine

by Kristine Drobot

Submitted to the Department of Mechanical Engineering in partial fulfillment of the
requirements for the Degree of Master of Science in Mechanical Engineering

ABSTRACT

An exhaust gas quenching experiment was conducted to study the evolution of
HC emissions and the extent of HC oxidation in the exhaust port and runner of a spark
ignition engine. Fuel composition and engine parameter effects were of particular interest.
The fuel set consisted of gasoline, several alkanes (methane, ethane, propane, n-butane,
iso-octane), an alkene (ethene) and an aromatic (toluene); all fuel composition experiments
were completed at a light load condition. The engine parameter set included engine speed,
load, spark timing, equivalence ratio and coolant temperature; experiments involved
mostly single parameter variations about a light load condition.

The cylinder-exit HC emissions varied significantly over the set of fuels tested.
There was no significant fuel dependency in the percentage of HC oxidation in the exhaust
port/runner system, which ranged from 35 to 45%. A substantial portion of the oxidation
occurred in the exhaust port. Speciated HC emissions identified unburned fuel as the
major cylinder-exit species. The unburned fuel contribution ranged from 80 to 95% for
methane, ethene and toluene and from 40 to 70% for the non-methane alkane fuels.
Changes in the species distributions for the non-methane alkane fuels were observed in
both the port and runner. Alkenes, the most reactive species in the formation of
photochemical smog, were the dominant non-fuel species. Hence, the benefit of HC
oxidation was accompanied by an increase in photochemical reactivity.

Independent increases in engine speed and load produced decreases in the
percentage of HC oxidation in the exhaust port/runner system. Higher temperatures due
to spark retard increased HC oxidation from approximately 38% at MBT to approximately
53% at 12 degrees retard. Fuel lean conditions yielded higher oxidation levels (42%) than
did fuel rich conditions (27%) due to the 02 availability. There was negligible change in
oxidation level over the coolant temperature range tested.

Thesis Advisor: Wai K. Cheng
Associate Professor, Department of Mechanical Engineering
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Chapter 1

Introduction

1.1 Motivation

Increasing concern for the environment has lead to stricter government regulation [1] of

hydrocarbon (HC) emissions from passenger vehicles. The 1995 California Ultra Low

Emissions Vehicle (ULEV) standard of 0.04 gm/mile is already ten times lower than the

1980 HC emissions standard of 0.39 gm/mile. In the past regulations and standards have

been based solely on the total non-methane organic gas (NMOG) coming from the vehicle

as determined by the Federal Testing Procedure. Speciated HC emissions are of

increasing importance because the State of California will soon regulate HC emissions

based on their reactivity in forming photochemical smog in the atmosphere [2].

The challenge of lowering HC emissions has fueled significant research efforts,

especially in understanding the sources of unburned HC. A recent study indicated that the

main HC formation mechanisms in a warmed-up engine were crevices, oil layer

absorption/desorption, deposit layer adsorption/desorption and liquid fuel effects; their
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estimated contributions to the total engine-out HC emissions were 38%, 16%, 16% and

20%, respectively [3]. As a result of these mechanisms, roughly 8.3% of the fuel that

entered the cylinder would escape primary combustion [3]. Should the unburned HC

enter the bulk gas early enough, they would be oxidized in-cylinder during expansion and

exhaust. Still a large fraction of what leaves the cylinder is unburned HC [4].

With a HC conversion efficiency of approximately 90%, the modem catalyst is

critical in the HC removal process. However, during engine warm-up when the HC

emissions are especially high [5], the catalyst is still cold and ineffective. At this time the

exhaust port and runner oxidation processes become the major HC removal process

outside the cylinder. Therefore, tracking the total HC emissions as well as quantifying the

extent of the HC oxidation in the exhaust port/runner are of considerable interest.

1.2 Background

Back in 1981 Mendillo and Heywood [6] determined the fraction of unburned HC reduced

in the exhaust port of a spark ignition engine. They accomplished this by injecting quench

gas (CO2) into the exhaust system to lower the exhaust gas temperature and freeze or

quench the HC oxidation reactions. Quench gas was introduced into the exhaust port

through either a hollowed out sodium valve stem or an adjustable probe that traversed the

exhaust port. The experiment was completed on a gasoline-fueled CFR engine over a

range of different operating conditions. Mendillo found that oxidation was dominated by

variations in exhaust gas temperature, port residence time and 02 concentration.

Oxidation levels ranges from 2-37% in the exhaust port over the range of operating

conditions tested.

This present is similar to that of reference [6], but with important differences: (i)

the engine used had a modem exhaust port geometry which is typical of current
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production, and (ii) exhaust speciation was carried out. Thus this study updates,

complements and expands on the data of reference [6].

1.3 Objective

At present the knowledge of HC oxidation in the exhaust port and runner of a spark

ignition engine is incomplete. This experiment aimed at contributing the following:

1. Investigating the effects of engine parameters and fuel composition on HC

oxidation;

2. Quantifying the extent of HC oxidation in the exhaust port and runner; and

3. Studying the evolution of total HC emissions and individual HC species

through the exhaust system.

1.4 Approach

Like Mendillo, a quenching experiment was conducted, whereby quench gas was injected

into the exhaust system to freeze the HC oxidation reactions. Once the HC emissions

were corrected for dilution due to the injection of quench gas, the pre-oxidation HC

emissions were compared to the post-oxidation HC measured under normal (i.e. no

quenching) exhaust conditions. Speciated HC emissions were also measured.
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Chapter 2

Experimental Apparatus

2.1 Engine and Data Acquisition

The engine used in this experiment was a single-cylinder, 4-stroke engine which comprised

a developmental two-valve, Ford Escort head atop a Waukeshau base. The intake and

exhaust port geometries were representative of modem two-valve engine designs. A

summary of the engine specifications is listed in Table 2.2-1. The engine was coupled to a

DC motor dynamometer with a 50 hp absorbing rating.

Both the spark timing and fuel injection were controlled by an electronic control

unit, known as the EFI-III, which received a reference pulse every TDC compression.

Liquid fuels were injected directly into the intake port, while the gaseous fuels were

introduced in the intake manifold approximately 1.8 meters from the valve.

Air delivery to the intake system employed a critical air orifice system. Its flow

was calculated by the data acquisition system from the given pre-orifice pressure, orifice

size and air temperature.
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An NTK air/fuel (A/F) meter used both an exhaust gas oxygen (EGO) sensor

and the fuel's hydrogen-to-carbon ratio to determine the intake A/F ratio.

The engine was water cooled. Although coolant flow to the head and block was

supplied from the same line, coolant flow within the head and block was separate.

Type K thermocouples measured all intake, exhaust, coolant and air temperatures.

The exhaust gas temperature, in particular, was a time-averaged measurement made at the

port exit approximately 7 centimeters from the valve seat using a shielded thermocouple.

Cylinder and port pressures were monitored using Kistler 6123A and 4045 pressure

transducers, respectively.

A manometer measured the exhaust back pressure, which could be adjusted

manually. Adjustment was necessary to maintain normal back pressure of 1 inch Hg over

atmospheric during the injection of quench gas into the exhaust system. Otherwise, the

exhaust gas flow dynamics would have been severely disrupted.

All operating condition and emissions data were collected using a Masscomp data

acquisition system. Each data point was averaged over a sample of 100 cycles.

2.2 Quench Gas Injection System

The quench gas injection system was designed to introduce a timed and directed jet of

quench gas into the exhaust system. Rapid cooling of the exhaust gas HC oxidation

reactions resulted.

2.2.1 Quench Gas Selection

The ideal quench gas was one that had a high heat capacity and was stable under the

thermal and chemical environments associated with exhaust. Relative to a low heat

capacity quench gas, a high heat capacity gas would reduce the mass flow needed for
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adequate quenching. This would help avoid excessive cooling of the exhaust valve and

substantial changes in exhaust back pressure. Availability and low cost, in addition to

satisfying the previous requirements, made carbon dioxide (CO2) the ideal quench gas.

Commercial grade (99.8% pure), bone dry CO 2 was sufficient for this experiment.

2.2.2 Quench Gas Injection Control

The quench gas injection system illustrated in Figure 2.2-1 was designed to pulse jets of

quench gas in phase with the exhaust valve open period when cooling was needed most.

Controlled injection helped to minimize quench gas backflow during overlap which could

affect in-cylinder processes such as HC oxidation.

The injection control process, indicated in Figure 2.2-1, was as follows: a magnetic

proximity pick-up (a) generated a TTL pulse once every 7200 CA for the EFI-III. The

EFI-III recognized the pulse as TDC compression and sent this information (b) to a

computer. At the computer a value referred to as a preset was input and sent to the EFI-

III (c). This preset was the crank angle (relative to TDC compression) when the 2-way,

normally closed solenoid valve should be triggered to open. A summary of the solenoid

valve specifications is listed in Table 2.2-1. Selection of the preset, which was based on

the solenoid valve response time, exhaust valve timing and engine speed, is covered in

detail in Section 3.1. The EFI-Il then triggered (d) the pulse generator. When triggered,

the pulse generator sent (e) the manually-inputted pulse width to both the oscilloscope for

viewing and the controller for triggering. The pulse width indicated how long the solenoid

valve was to remain open. The controller amplified the pulse width to a 24 volt DC signal

and sent it (f) to the solenoid valve. Following the response time delay, the solenoid valve

opened and remained open for the duration of the set pulse width. While the solenoid

valve was open, quench gas continued to flow from the supply bottle (g) at the

predetermined, regulated delivery pressure to fill the supply line. To warm the quench gas

and prevent the solenoid valve from freezing up, the supply line was wrapped with heat
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tape (h) maintained at 200°F. When the quench gas flowed through the open solenoid

valve and past the pressure transducer (Micro Switch #242PC250G) (i), the transducer

returned its signal (j) to the controller. The latter enabled the pressure transducer signal to

be viewed on an oscilloscope (k) such that the quench gas delivery pressure could be set.

Once past the pressure transducer, the quench gas entered into one of two injectors (1).

The quench gas injectors were responsible for directing the flow of quench gas into

the exhaust system. The injector arrangement is illustrated in Figure 2.2-2. Pictured from

left to right are: (1) an injector that placed quench gas directly behind the exhaust valve;

(2) an injector that directed jets of quench gas at the port exit; (3) a flange that housed a

thermocouple radiation shield; and (4) a flange mated to an exhaust manifold equipped

with a thermocouple. The exhaust gas flowed through the port cross-section-shaped

passages in the direction indicated. Injector (1) was the combination of one stainless steel

304 (SS304) flange and seven welded and drawn SS304 tubes (0.043" OD and 0.0375"

ID). The injector, shown again in Figure 2.2-3, was bolted up against the head such that

the tubes extended into and laid along the bottom of the exhaust port. During injection,

pressurized quench gas would flow into the channel and out the tubes as jets. The

location of the jets put quench gas directly behind the exhaust valve, establishing a quench

plane at the cylinder exit. A quench plane was where the quench gas interacted with the

exhaust gas to freeze the oxidation reactions. Though the tubes laid along the bottom of

the port, their orientation did not permit quench gas flow directly into the combustion

chamber. The wrap-around configuration of the tubes and the location of the jets

promoted penetration of the quench gas jets into the cross-flowing exhaust gas. This

insured adequate mixing and rapid cooling of the exhaust gas. Injector (2) was a SS304

flange with seven, vertically-oriented holes. It was placed directly behind and up against

injector (1) as shown in Figure 2.2-3. During injection, pressurized quench gas would fill

the channel and flow out the tubes to establish a quench plane at the port exit. Because

both injectors were imbedded in the flanges, the head required no structural modification
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but merely simple additions to existing hardware. As a result of this approach, installation

and removal were simplified.

2.3 Emissions Analyzers

Both the overall and speciated HC emissions were measured in this experiment. In

addition, the normal exhaust gas were used to quantify the extent of HC oxidation and to

quantify the mass flow rate of quench gas from which a dilution correction factor was

derived. Details related to the use of emissions measurements for these purposes are

covered in Section 3.4. All samples were drawn from a large exhaust gas mixing tank at

the runner exit by a heated sample line. Measurements were recorded once steady-state

levels were reached and represent bulk, pre-catalyst emissions concentrations.

The normal exhaust measurements were obtained from the HORIBA emissions

bench which housed devices that measured the following exhaust gas emissions: carbon

monoxide (CO), carbon dioxide (CO2), oxygen (2), oxides of nitrogen (NOx) and

hydrocarbons (HC). The CO2, NOx and HC emissions were of particular interest. The

CO2 emissions were measured by a non-dispersive infra-red detector (NDIR). The NOX

were measured by chemi-luminescence. A heated flame ionization detector (HFID)

measured the total HC emissions. Emissions bench measurement error was estimated at

+1% under normal exhaust conditions and +2% once corrected for dilution due to quench

gas injection.

A gas chromatograph (GC) speciated the HC compounds (up to C,) found in the

exhaust gas. GC measurement error was estimated at ±5% for all measurements and an

absolute detectability error of +0.1% for minor species that contributed less than 1% of

the total HCs.
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TABLE 2.1-1 Summary of Engine Specifications

Model Ford Escort head atop a Waukeshau base

Type Single-cylinder, 4-stroke engine; 2-valve

developmental head with directed intake flow for swirl

Bore 82.0 mm

Stroke 88.0 mm

Displacement 464.7 cc

Compression Ratio 9:1

Valve Timing

Exhaust Valve Open 590 BBDC

Exhaust Valve Close 170 ATDC

Intake Valve Open 150 BTDC

Intake Valve Close 610 ABDC

PULSE GENERATOR EFI-m1

FIGURE 2.2-1 Quench gas injection system.
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TABLE 2.2-1 Summary of Solenoid Valve Specifications

Manufacturer KIP Incorporated

Part Number UL241114-0110-24VDC

Valve Type 2-way normally closed

Port Type 1/8" NPTF

Orifice Diameter 3/32 "

Cv Factor 0.175

Maximum Operating Pressure Differential 250 psi

Response Time 10 msec

FIGURE 2.2-2 Quench gas injectors pictured with existing exhaust hardware; (1)
establishes the cylinder exit quench plane; (2) establishes the port exit quench

plane; (3) supports the thermocouple radiation shield; (4) houses the
thermocouple.
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(b)

FIGURE 2.2-3 Orientation of the quench gas injectors (a) relative to the head and

(b) within the exhaust port.
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Chapter 3

Experimental Procedure

3.1 Test Matrices

Two experimental matrices were developed to investigate fuel composition and engine

parameter effects on the evolution of HC emissions and the extent of HC oxidation. Both

matrices were centered about the baseline engine operating condition listed in Table 3.1-1.

This operating condition is representative of the street cruise condition in the 23-cycle

Federal Testing Procedure for vehicle emissions except for the fuel equivalence ratio (D.

The value of 4 is set at 0.9 because the HC emissions level is not sensitive to 4 at this

value.

3.1.1 Fuel Composition Matrix

The set of fuels listed in Table 3.1-2 were tested to study the fuel composition effect on

HC emissions and oxidation. Included in the set were a number of alkanes (methane,

ethane, propane, n-butane, iso-octane), an alkene (ethene), an aromatic (toluene) and a full
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blend gasoline. Within this set was the potential to compare gaseous to liquid, unsaturated

to saturated and low to high molecular weight fuels. Appendix A indicates the fuels with

total and speciated HC emissions available at the cylinder and port exits.

3.1.2 Engine Parameter Matrix

Hydrocarbon oxidation is controlled by the exhaust gas temperature, 02 concentration,

mass flow rate and port residence time [7]. The engine parameters that govern these

exhaust conditions were used to define the engine parameter matrix. The parameters

included: engine speed, engine load, spark timing, equivalence ratio and coolant

temperature. Each parameter was swept individually about the baseline condition at the

levels indicated in Table 3.1-3. A limited set of data was taken where multiple parameters

were varied simultaneously.

A complete matrix was run for gasoline, though its baseline equivalence ratio was

stoichiometric (=l1.0) rather than lean (=0.9). Stoichiometric operation, which is a

more realistic operating condition, was required for validation of a port HC oxidation

model. This matrix was only partially completed for propane and iso-octane. A listing of

the fuels with total HC emissions data available for each complete or partial single

parameter sweep appears in Appendix A.

3.2 Quench Gas Injection Parameters

As implied in Section 2.2.2, many signals were needed to generate a properly timed

injection. Among these signals were the pulse width, preset and delivery pressure, which

controlled the length of injection, the start of injection and the injection pressure,

respectively. Selection and optimization of these quench gas injection parameters was
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critical as it directly affected whether quenching was adequate and quench gas back flow

during overlap was minimized.

3.2.1 Optimization of Injection Parameters

Quench gas injection was needed for the duration of the exhaust process only. Ideally, the

normally-closed solenoid valve, which governed whether or not there was quench gas

flow, would open for the 256 crank angle degrees (CA) exhaust valve open period.

There was, however, a substantial valve-overlap period (32 °CA, see also Figure 3.2-1(a))

during which the flow in the exhaust system was in the reverse direction. Because

injection during overlap would draw and trap unwanted quench gas into the cylinder and

disrupt the next combustion process, the length of injection (set by the pulse width but

governed by the solenoid valve) was reduced to 224 °CA. Inputting this to the pulse

generator required converting from °CA to milliseconds (msec). At the baseline engine

speed of 1500 rpm, 25 msec was the optimal length of injection.

The signal shown in Figure 3.2-1(b) indicates both the length and start of injection

for the baseline operating condition. The signal that triggered the solenoid valve to open

was not set to trigger at EVO for a number of reasons. First, a 10 msec response delay

from the solenoid valve automatically advanced the signal so that quench gas would begin

flowing at EVO. Even when the solenoid valve opened, it took time for the quench gas to

reach its maximum flow rate, as the pressure trace in Figure 3.2-1(c) indicates.

Furthermore, time was required for the injection system downstream of the solenoid valve

to purge itself of quench gas even though the volume downstream was minimized. This

was critical in minimizing the back flow of quench gas during overlap. Lastly, a cloud of

quench gas behind the exhaust valve before EVO would yield more effective quenching,

especially during blowdown. The effect of the start of quench gas injection (relative to

EVO) on the exhaust gas temperature and the normalized cylinder exit emissions were

considered when determining how advanced the start of injection should be given the
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optimized length of injection. Results can be found in Figures 3.2-2(a)-(c). While the

time-averaged exhaust gas temperature measured during injection did not vary

significantly over the range tested, it did indicate increasing temperatures at the extremes.

This meant that the start of injection could not be too advanced or too close to EVO

otherwise the tail end of the exhaust or blowdown would escape adequate quenching.

When normalized by the runner exit emissions, the cylinder exit emissions generated the

trends found in Figure 3.2-2(b) and (c). For the NO., the ideal timing was the

normalization ratio closest to unity; where the NOX values during injection were highest

meant that the in-cylinder temperatures were high indicating that the back flow of quench

gas into the cylinder was minimized. In this case both extremes were acceptable. The HC

results, on the other hand, indicated that the advanced start of injection timings quenched

most adequately; this was concluded from the increase in the normalization ratio as the

timing was advanced. Near EVO the ratio and quenching adequacy, in turn, deteriorated

dramatically. Altogether the results indicated that advanced start of injection timing

quenched more effectively, but that it can not so advanced that the tail end of the exhaust

process escapes quenching. At the baseline condition, the ideal timing was determined to

be 211 °CA before EVO.

The optimization of the length and start of injection did not in themselves

guarantee that sufficient quench gas mass flow rates would be delivered. Optimal delivery

pressure was obtained when the cylinder exit HC emissions leveled off. Accompanied by

increases in exhaust mass flow rates, load increases required higher delivery pressures to

effectively cool the exhaust gas.

3.2.2 Injection Integrity Checks

Having optimized the injection parameters, the quench gas flow rate was checked for

sufficient quenching at the cylinder exit plane. As shown in Figure 3.2-3, the cylinder exit

HC emissions were measured as a function of quench gas flow rate at both 1500 and 2500
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rpm. As the rate of quench gas flow increased from zero, the corrected HC emissions also

increased because the quenching effectiveness increased. Eventually, all HC oxidation was

quenched and the HC emissions plateaued. Both rates were in the plateau region but not

excessively so in order to limit the effects of quench gas backflow. The optimum rates at

1500 and 2500 rpm were 1.25 and 1.44 times the engine mass flow rate, respectively.

To determine the effect of excess CO2 in-cylinder due to injection, CO2 was added

in increasing amounts to the intake charge only. The air flow, fuel flow and spark timing

were fixed at the baseline condition. Up to 4% of the intake charge mass was added CO2.

The effect on IMEP was negligible. The NOx emissions, shown in Figure 3.2-4, dropped

dramatically with the increasing presence of CO2 because of the sensitivity of NOx

formation to the burned gas temperature. The HC emissions remain virtually unchanged.

During quench gas injection at the baseline engine condition, the corrected NOx decreased

to 0.58 of the NOx under normal exhaust conditions. According to Figure 3.2-4,

approximately 0.57% of the inlet charge mass was quench gas that was drawn back into

the cylinder. This additional amount of CO2 had little effect on the HC emissions

indicating that the backflow of quench gas into the cylinder would not effect the cylinder

exit HC measurements.

3.3 Operating Procedure

The standard operating procedure used throughout the experiment is outlined here and in

Figure 3.3-1. It is assumed that the emissions bench has been calibrated. Having selected

a fuel and a set of engine conditions, the engine was warmed-up and left running at the

desired engine speed. Having measured the friction, the brake mean effective pressure

(BMEP) was set such that the single-cylinder's indicated mean effective pressure (IMEP)

matched that of a multi-cylinder. While the engine stabilized, the quench gas injection
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system was prepared. The quench gas supply line was attached to the appropriate injector

(either (1) or (2) according to Figure 2.2-2); the heating tape was turned on and set to 200

°F; and the quench gas injection parameters (length of injection, start of injection and

delivery pressure) for the given engine operating condition were inputted manually. The

injection system was run briefly to monitor and fine-tune the injection parameter settings.

The engine was allowed to reach steady-state at the desired engine speed, load,

equivalence ratio and coolant temperature. MBT spark timing was set automatically. If

retarded data was desired, then only the spark timing was adjusted at this time;

accompanying changes in equivalence ratio and load were left unchanged. When

prompted, the Masscomp data acquisition system collected all of the temperature,

pressure, engine condition and emissions data. Gas chromatograph measurements would

be taken at this time.

Without adjusting any of the engine conditions, the quench gas injection system

was turned on. The addition of quench gas to the exhaust system required that the

exhaust back pressure be adjusted to maintain 1A inch Hg over atmospheric. Data

collection proceeded once the exhaust gas temperature and emissions levels stabilized. A

GC sample would be taken at this time.

Once the data was taken, dilution air was added to the exhaust runner in addition

to the quench gas being injected. As before, only the exhaust back pressure was adjusted

to maintain ¼i inch Hg over atmospheric. Data was collected once the emissions levels

reached steady-state. This same procedure was repeated with the quench gas injection

system shut off but with the dilution air continuing to flow.

Data collection under these four exhaust conditions constituted the procedure

followed during the experiment and required for data analysis.
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3.4 Data Analysis

The injection of quench gas into the exhaust system diluted the HC emissions. Retrieval

of the undiluted emissions was necessary before any analysis could be made.

3.4.1 Correction of HC Emissions Due to Quench Gas Injection

Direct emissions measurements were used to quantify the mass flow rate of quench gas

injected into the exhaust system. The operating procedure outlined in Figure 3.3-1 also

indicates the relevant measurements made at each step. Under normal exhaust conditions,

the HC and CO2 concentrations were significant. During quench gas injection, the critical

measurement was the diluted, total HC concentration. The next two steps, which had

quench gas plus air and air only as the respective exhaust gas diluents, were used only to

quantify the mass flow rate of quench gas injected at step two. The CO2 concentrations

were significant under both of these exhaust conditions. Had the CO2 emissions analyzer

been equipped to accommodate concentrations as large as 60% by volume, the quench gas

mass flow rate could have been quantified directly from the CO2 measurements made at

steps one and two. Because the emissions range was not large enough, steps three and

four were added; air added in step three diluted the CO2 emissions to keep them on scale

so they could be read off the analyzer; step four was added to quantify the mass flow rate

of dilution air.

Given the measurements from each of these four steps, the basic approach to

evaluating the quench gas mass flow rate was as follows: the change in CO2 concentration

from steps three to four quantified the air mass flow rate. Given the air mass flow rate,

the CO2 concentration at step three could then be corrected for air dilution. When this

adjusted CO2 was used in conjunction with the CO2 concentration measured at step one,

the quench gas mass flow rate could then be calculated. The total HC concentration

measured at step two was then corrected for quench gas dilution. By examining the
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change in 02 concentration from steps one to two, the quench gas mass flow rate was

verified. However, this verification was valid only under lean engine conditions, while the

four step procedure extended to all equivalence ratios.

The correction factor resulting from the CO2 measurements made at steps one,

three and four was the following:

(XHC)Quench,wet = 1-(CO)Qunch,wet qn. 3.4- 1
(XHC)Corrected,wet 1-(XCO 2 )Exhaust,wet

where (XHC)Quench,wet and (Xco2 )Quench,wet are the quench gas diluted HC and CO2 mole

fractions, (XHC)Correctedwet is the HC mole fraction corrected for quench gas dilution,

(XCO 2 ) Exhaust,wet is the CO2 mole fraction under normal exhaust conditions. The subscript

"wet" denotes engine-out concentrations from which the water vapor has not been

removed. Note that the wet CO2 values in the above expression are calculated from the

"dry" CO2 measurements in which the water vapor has been removed. A detailed

development of the correction factor, which includes a correction for water vapor

extraction, is outlined in Appendix B. Equation 3.4-1 could be used to correct all quench

gas diluted emissions measured and not just the HC emissions. The correction factor was

applicable at all equivalence ratios because it was based on relative CO2 concentrations.

3.4.2 Data Analysis Approach

Having corrected the HC emissions for dilution due to quench gas injection, the emissions

data available for analysis are illustrated in Figure 3.4-1. HC1, HC 2 and HCO represent the

cylinder exit, port exit and pre-catalyst runner exit HC emissions, respectively. They were

obtained by injecting of quench gas just behind the exhaust valve, by injecting of quench

gas at the port exit and running under normal engine exhaust conditions, respectively.
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HC1 , HC2 and HCo can refer to either the total HC emissions or an individual HC species

from the speciated data.

Data analysis involved looking at the total or speciated HC emissions at the points

in Figure 3.4-1 and the HC oxidation levels between the above points along the exhaust

system. To evaluate the extent of HC oxidation, the following expressions were defined:

AfHc (overall) =(HC1 -HCo) (Eqn 3.4-2)
HC1

AfHC(port)= (HC1 -HC 2 ) (Eqn. 3.4-3)
HC1

where AfHc(overall) and AfHc(port) represent the fractions of overall and port HC

oxidation, respectively. Note that the overall fraction could not be broken down into port

and runner fractions unless data was taken using the port exit injector.

3.5 Consistency of HFID and GC Measurements

of HC Emissions

Both the HFID and GC were used to measure the total HC emissions. When measured

under the same engine operating condition, the results from the two techniques were

reliable if and only if the results were comparable. When the total HC emissions and

overall fraction reduced were plotted for each technique, the results indicated that the

HFID and GC measurements were within 5-10% of one another for all the fuels tested.
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TABLE 3.1-1 Baseline Engine Operating Condition

EnginSeed IMEP i SparkTiming D Coolant Temperature

1500 RPM 3.8 bar MBT 0.9 88 C

TABLE 3.1-2 Fuels Tested at the Baseline Operating Condition

Fuel I Formula (Phase) Molecular Structure

Methane CH4 (g)

Ethane C 2H6 (g)

Propane CH 8 () Alkane

n-Butane C 4H10 (g)

Iso-octane C 8 H1 8 (1)

Ethene C 2H4 (g) Alkene

Toluene C7Hg (1) Aromatic

Gasoline (RON=91) CH2.02n (1) Complex

TABLE 3.1-3 Engine Parameters Swept About the Baseline Condition

Engine Speed (RPM) I IMEP (bar) Spark Timing I >D I Coolant Temperature ("C)

830 2.9 6 deg. retard from MBT 0.9 27

1000 3.2 12 deg. retard from MBT 1.0 60

2000 4.5 1.1 74

2500 5.5

6.05 

6.5
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FIGURE 3.2-1 Optimization of the quench gas injection timing for the baseline
operating condition. Optimization requires knowing the (a) exhaust gas mass flow
rate and valve timing, (b) signal from the controller, which indicates both the
length and start of injection, and (c) pressure trace downstream of the solenoid,
which indicates the approximate delivery of quench gas to the exhaust system.
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FIGURE 3.3-1 Experimental procedure used to obtain measurements necessary for
correcting the emissions for dilution due to quench gas injection before analysis.
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HC 1 HC2 HCo

FIGURE 3.4-1 Physical representation of where data is available following correction
of the HC emissions for dilution due to quench gas injection; HC1, HC2 and HCo
represent the cylinder, port and runner exit HC emissions, respectively.
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Chapter 4

Fuel Effects at Fixed Operating Condition

4.1 Total HC Emissions

The total HC emissions (in ppm C1) emitted at the baseline operating condition for the

fuels listed in the fuel composition matrix (Table 3.1-2) are shown in Figure 4.1-1.

Cylinder exit (a), port exit (b) and pre-catalyst runner exit (c) HC emissions are indicated

for the fuels. Port exit (b) HC emissions are absent for ethane, n-butane and ethene as

injector (2) data was never obtained. As a result, only the overall fraction of HC reduced,

AfHc(overall), could be determined. The emissions indices for the fuels (Figure 4.1-2)

emphasize the difference in in-cylinder effects on the gaseous and liquid fuels. For the

same inducted mass of fuel, the gaseous fuels generate lower unburned HC mass (0.015 to

0.05) than the liquid fuels (0.17 to 0.22).

The cylinder exit HC emissions range from 460 ppm C1 for ethene to 3400 ppm C1

for toluene. With the exception of methane, the HC emissions from the alkane fuels

increase as with increasing molecular weight. When grouped according to phase, the
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liquid fuels (gasoline, iso-octane and toluene) have significantly higher HC emissions than

the gaseous fuels. These observations in themselves do not explain the large differences in

total cylinder exit HC emissions between the fuels. Possible explanations include

differences in HC oxidation rates, oil layer mechanism, and molecular diffusivity of the

HC. Ranking the fuels according to the time for 50% of the total HC reactions to occur

yields C2H6 < C3H8 n- C4Ho < i- C8sH1 8 < C7H 8 < CH4 [8]. Fuels such as ethane and ethene,

which have the lowest total HC emissions, are highly reactive compared with stable fuel

species like methane and toluene. Despite their relatively slow oxidation rates, methane

and toluene cylinder-exit HC emissions (1150 and 3400 ppm Cl, respectively) are

dramatically different. By themselves, oxidation rates do not resolve the emissions

differences between the fuels.

The oil layer absorption/desorption mechanism contributes to nearly 20% of the

total engine-out HC emissions [3]. This effect is insignificant for fuels below C6 because

they are not very soluble in the lubricant [9]. This applies to methane, ethane, ethene

propane and n-butane. Aromatics are more soluble than alkanes and alkenes with the

same carbon number [10]. Less fuel is stored in the lubricant during compression and

combustion for the lower solubility HC fuels than for the higher solubility fuels. As a

result, they are desorbed or released earlier in the cycle. This allows more time for in-

cylinder oxidation when the bulk gas temperature is higher and the reaction rates are faster

[11]. The oil layer mechanism partially accounts for the emissions difference between the

gaseous (C,-C 5) fuels and the liquid fuels.

Diffusivity of the fuel molecules is yet another contributor. In relation to the

crevice and oil layer HC formation mechanisms, the lower molecular weight fuels will

diffuse out of the boundary layer faster. This gives them more time to mix and react with

the bulk gases, resulting in increased levels of in-cylinder oxidation and lower HC

emissions at the cylinder exit [4].
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Continuing through the exhaust system, the gas leaving the port (b) experiences a

substantial drop in total HC emissions. Despite the runner's length (1.8 m), the drop in

HC emissions at the runner exit (c) is minimal.

The fraction of HC reduced for the different fuels at the same baseline operating

condition is shown in Figure 4.1-2. For ethane, n-butane and ethene port exit HC

emissions were not measured and, as a result, the port/runner oxidation could not be

separated; for these fuels the only value indicated is the overall port/runner fraction

reduced. As for the remaining fuels, their port and runner fractions were separated.

Consider first the overall fraction of HC reduced, which are the maximum values indicated

for each fuel. Oxidation levels for all fuels fall within 40±5%. This indicates that exhaust

port/runner HC oxidation is fuel independent despite the large HC emissions differences

seen earlier. This result suggests that HC oxidation in the exhaust port/runner is "mixing

dominated" as opposed to mixing controlled due to the port and runner results. Results

clearly indicate that a majority of the HCs are reduced in the port (30-35%), while a small

fraction is reduced in the runner (5-10%). The residence times in the port and runner at

the baseline condition are estimated at 5 and 144 msec, respectively. Stratification of the

HC emissions entering the port [5] and similar fractions reduced for the fuels tested

suggest that oxidation within the port is mixing controlled. Although the runner is quite

long and there is adequate time for mixing and oxidation to occur, the low exhaust gas

temperatures imply that runner oxidation is chemistry controlled. The overall oxidation

then becomes a "mixing dominated" process.
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Chapter 5

Speciated Results

5.1 Fuel and Non-fuel Species

The HC emitted at the baseline operating condition by the different fuels were speciated.

This enabled the HC emissions from the pure component fuels to be separated into fuel

and non-fuel species. Cylinder exit (a), port exit (when available) (b) and pre-catalyst

runner exit (c) results appear in Figure 5.1-1. Unburned fuel is the major cylinder-out

species in every case. There is a substantial drop in the fuel species concentration at the

port exit. The non-fuel species concentrations, however, do not change significantly from

cylinder exit to port exit to reflect the substantial HC oxidation. It is plausible that the

oxidation of the non-fuel species may have been replenished by the partial oxidation and

decomposition of the fuel species. Fuel species concentrations also decrease in the runner

though at much lower levels.

Despite the large overall decrease in fuel species concentration from the cylinder

exit to the runner exit, Figure 5.1-2 shows that the fuel species contribution to the total
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HC emissions (given as a percent of the total) remains significant. Methane, ethene and

toluene distinctively have the highest unburned fuel contributions. The cylinder exit fuel

contribution for methane and ethene are 94% and 93%, respectively. While the

contribution remains constant at 95% and 94% for methane at the port and runner exits,

respectively, it drops slightly to 90% for ethene at the runner exit. For toluene, however,

there is a small but significant decrease in the contribution of fuel to the total HC

emissions. Decreasing from 89% to 85% and then to 82% at the cylinder, port and runner

exits, respectively, indicates ongoing oxidation. The unburned fuel contribution for the

remaining non-methane alkane fuels (ethane, propane, n-butane and iso-octane) is all-

around lower and undergoes dramatic changes compared to methane, ethene and toluene.

At the cylinder exit, the fuel contributions range from 61-69% and decrease by 15-18% of

the total HC emissions at the runner exit. In effect, the unburned fuel contribution remains

independent of carbon number for the non-methane alkane fuels. For propane and iso-

octane, the contributions at the cylinder, port and runner exits are 62%, 55% and 47% and

62%, 56% and 45%, respectively. The decrease across the runner in particular is

indicative of significant reaction within the runner even at the baseline condition.

5.2 Species Distribution

The decrease in the percentage contribution of unburned fuel to the total HC emissions is

coupled with an increase in the percentage contribution of the intermediate combustion

products. HC species distributions are pictured in Figures 5.2-1 and 5.2-2 for the fuels

tested at the baseline operating condition. Distributions are represented at the cylinder

exit (a), port exit (when available) (b) and runner exit (c).

The small amount of non-fuel species present for methane are C products of

recombination. As for ethene, methane and ethyne are the dominant products. As
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toluene's overall fuel contribution decreases from 89% to 82%, it is accompanied by an

overall increase from 2.3% to 3.2% for ethyne, 1.2% to 4.6% for methacrolein and 3.5%

to 5.2% for benzene, respectively. Although these contributions are small compared to

toluene's, their formation is evidence that reaction continues throughout the port/runner

system.

Species distributions for the non-methane alkane fuels can be found in Figure

5.2-2. These fuels have the most significant changes in non-fuel species contribution and

species distribution. For example, for ethane the overall fuel contribution decreases from

69% to 54% while the fraction of ethene increases from 27% to 41%. Consider propane,

whose dominant intermediate species include ethene and propene. As the fuel species

contribution decreases in the cylinder, port and runner exit (62%, 55% and 47%,

respectively), ethene contributes 18%, 23% and 29%, respectively, while propene

contributes 10%, 13% and 15%. N-Butane's dominant intermediates are also ethene and

propene; their contributions to the total HC emissions at the cylinder and runner exits are

identical to propane's ethene and propene contributions. Propene and iso-butene

contribute the most to iso-octane's intermediates. As the fuel species contribution

decreases in the cylinder, port and runner exit (62%, 56% and 45%, respectively), propene

contributes 6%, 7.3% and 9.3%, respectively, while iso-butene contributes 16%, 19% and

24%, respectively.

Monitoring changes in species distribution across the port and runner is critical

because there exists the potential to generate species that are highly reactive in forming

atmospheric photochemical smog. Alkenes and aldehydes have a much higher smog

forming potential than do alkanes. From the species distributions, combined ozone

reactivity factors [2] were calculated for the cylinder, port and runner exit HC emissions

using the maximum incremental reactivity values proposed by the California Air Resources

Board (CARB) in 1992 [12]. Results appear in Figure 5.2-3. Ethene has the highest

reactivity because it has the highest percentage contribution of alkenes in the exhaust.
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Ethene and toluene reactivities remain constant throughout the exhaust system because the

significant unburned fuel contribution remains fairly constant throughout the port/runner

with negligible formation of reactive species.

The reactivities of the non-methane alkane fuels increase with increasing carbon

number. A summary of the overall reactivity formation factors appears in Table 5.2-1. It

indicates that the increase in combined ozone reactivity from the cylinder exit to the

runner exit is effectively the same despite the reactivity differences between the fuels.

Propane and iso-octane results indicate significant reactivity increases on both the port and

runner. Cylinder, port and runner exit combined ozone reactivities for propane and iso-

octane are 2.69, 3.21 and 3.82 g 0 3/g NMOG and 3.33, 3.81 and 4.67 g 03/g NMOG,

respectively. The reactivities increase in the port and runner by factors of 1.19 and 1.23

for propane and 1.14 and 1.26 for iso-octane. Though only 5-10% of the overall

reduction in total HC emissions occurs in the exhaust runner, the runner factors indicate

that a significant amount of species conversion is taking place in the runner. A majority of

the conversions within the port and runner are from the alkanes to the light alkenes, which

account for the significant increase in ozone reactivity. For propane, the percentage of

alkane contribution (which includes the unburned fuel contribution) decreases from 67%

at the cylinder exit to 61% at the port exit and 52% at the runner exit. This is

accompanied by an increase in alkene contribution from 29% at the cylinder exit to 36% at

the port exit and 44% at the runner exit. Similar results are observed for iso-octane.
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TABLE 5.2-1 Summary of the Overall Reactivity Formation Factors

NMOG Reduction MIR Index Change in MIR Index Reduction in MIR
Fuels (%) (g03 NMOG) (by factor of) of exhaust

port runner overall cylinder port runner port runner overall port runner overall
exit exit exit

Ethane 35.0 2.087 3.078 1.475 4.2
Propane 32.1 7.7 39.8 2.688 3.205 3.822 1.192 1.229 1.422 19.0 -4.7 14.4
n-Butane 44.3 3.287 4.476 1.362 24.1
Iso-octane 42.6 1.3 43.9 3.331 3.805 4.670 1.142 1.260 1.402 34.4 -13.1 21.4

Ethene 42.0 7.054 6.918 0.981 43.2
Toluene 42.6 0.0 42.6 2.662 2.703 2.719 1.015 1.006 1.021 41.7 -0.4 41.4
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Chapter 6

Dependence of Exhaust Oxidation to
Operating Condition with Different Fuels

To investigate the effect of engine parameters on the extent of HC oxidation in the

exhaust port/runner system, several single parameter sweeps were made about the baseline

operating condition. The parameters of interest included engine speed, load (IMEP),

spark timing, equivalence ratio and coolant temperature. A complete data set was run for

gasoline (where stoichiometry was used for the baseline equivalence ratio instead of 0.9)

and partial sets were run for propane and iso-octane. Because the sweeps were repeated

using different fuels, the joint dependence of exhaust system oxidation to operating

condition and fuel type was also considered. A small set of experiments in which

parameters were varied jointly were also completed to investigate the interactions between

engine parameters and their effect on HC oxidation As hydrocarbon oxidation is thought

to be governed by the exhaust gas temperature, 02 concentration, mass flow rate and port

residence time [7], the results will be analyzed in this light.
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6.1 Engine Speed

Engine speed was varied from 1000 to 2500 rpm while maintaining the baseline load,

spark timing, (4 and coolant temperature settings. The effect of engine speed on exhaust

gas temperature and 02 concentration are shown in Figures 6.1-1(a) and (b), respectively.

With the same load at higher speeds the significance of any heat transfer effect is greatly

reduced due to the higher overall mass flow rate and the lack of time. Therefore, as

engine speed increases, the exhaust gas temperature increases.

The gasoline results were obtained at stoichiometric condition, while iso-octane

and propane results were under lean conditions. This explains why gasoline has a lower

02 concentration and a higher exhaust temperature. As engine speed increases, the 02

concentration decreases somewhat.

The effect of engine speed on the cylinder exit HC emissions and the overall

fraction reduced are shown in Figures 6.1-1(c) and (d), respectively. For gasoline, as the

engine speed increases, the cylinder-exit HC emissions drop from 3300 ppm C1 at 1000

rpm to 1400 ppm C1 at 2500 rpm partly due to the increased bulk gas temperature during

expansion and partly due to a reduced oil layer absorption/desorption mechanism because

of higher liner temperatures [13]. The overall fraction reduced drops from 0.43 at 1000

rpm to 0.35 at 2000 rpm and then significantly to 0.21 (approximately) at 2500 rpm. The

scatter at 2500 rpm is due to repeated runs after cleaning of the combustion chamber by

running many high speed, high load cases before acquiring the data. Iso-octane and

propane cylinder-exit HC emissions (Figure 6.1-1(c)) also decrease in concentration with

increasing engine speed. The cylinder-exit HC emissions for both fuels are reduced

approximately by a factor of 0.5, independent of rpm. The HC reduction for these fuels

are different than those for gasoline. Part of the difference lies in the fact that iso-octane

and propane were run lean.
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6.2 Load

Load (IMEP) was varied from 2.8 to 6.5 bar while maintaining the baseline engine speed,

spark timing, and coolant temperature settings. The effect of load on exhaust gas

temperature and O2 concentration are shown in Figures 6.2-l(a) and (b), respectively. As

load increases, the exhaust gas temperature increases modestly, and the 02 concentration

remains virtually unchanged for the different fuels. Recall that gasoline was run at

stoichiometric but iso-octane and propane were lean.

The effect of load on the cylinder exit HC emissions and the overall fraction

reduced are shown in Figures 6.2-1(c) and (d), respectively. As the load increases from

2.8 bar to 6.5 bar IMEP, the cylinder-exit HC emissions decrease from 3000 ppm to about

2200 ppm C1. As Figure 6.2-l(d) indicates, gasoline HC oxidation is about 0.42 at 3 bar

and reduces to 0.10 at 6.5 bar. The iso-octane cylinder-exit HC emissions follow the same

trend as the gasoline data. Compared to gasoline, iso-octane HC oxidation remains

significant (38%) even at high load (5.4 bar).

6.3 Spark Timing

Spark timing was retarded 6 and 12 degrees from MBT while maintaining the baseline

engine speed, load, rD and coolant temperature settings. The effect of spark timing on

exhaust gas temperature and 02 concentration are shown in Figures 6.3-1(a) and (b),

respectively. As the spark timing is retarded, the exhaust gas temperature increases

modestly, while the 02 concentration remains virtually unchanged for the different fuels.

The effect of spark timing on the cylinder exit HC emissions and overall fraction

reduced are shown in Figures 6.3-1(c) and (d), respectively. Going from MBT to 12

degrees retarded, gasoline's cylinder exit HC emissions diminish from 2600 ppm C to
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2100 ppm C1. The overall fraction reduced increases from 0.37 to 0.48, respectively. Iso-

octane and propane cylinder-exit HC emissions also decrease with spark retard. However,

the oxidation results differ between the fuels. Iso-octane HC oxidation is almost

independent of retarded spark timing at a value of 45%. Propane oxidation at MBT is

comparable to gasoline at 37% but rises to 56% at 12 degrees retarded. The differences

between the fuels cannot be explained by the 02 availability and exhaust temperature

increase alone; the differences may be chemistry related.

6.4 Equivalence Ratio

Equivalence ratio was varied from 0.9 to 1.1 while maintaining the baseline engine speed,

load, spark timing and coolant temperature settings. The effect of equivalence ratio on

exhaust gas temperature and 02 concentration are shown in Figures 6.4-1(a) and (b),

respectively. The exhaust gas temperature is hottest around stoichiometric and decreases

when the mixture gets lean or rich. As the charge is enriched, the 02 concentration

decreases dramatically. At equivalence ratios of 0.9 and 1.0 there is substantial O2

available for oxidation.

The effect of equivalence ratio on the cylinder exit HC emissions and the overall

fraction reduced are shown in Figures 6.4-1(c) and (d), respectively. At 4=0.9, gasoline

and iso-octane emissions begin to increase due to incomplete combustion. At richer

mixtures the increase is even more pronounced due to the lack of 02 and high

temperatures for post-combustion burn up. Propane HC emissions are insensitive at lean

conditions but respond as the other fuels do at rich conditions. Gasoline HC oxidation

decreases from 42% at 4=0.9 to 37% at 4=1.0 and 33% at (c=l.1. Despite the increase

in HC emissions at rich conditions, the decrease in HC oxidation going from lean to

stoichiometric is limited by the available 02 despite to increasing exhaust gas
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temperatures. The level of oxidation continues to drop as the charge is enriched due to

both the lack of 02 and decrease in exhaust temperature. From these results it is believed

that 02 concentration plays a significant role in governing HC oxidation levels. Propane's

oxidation results are similar to gasoline's but remain consistently lower. Iso-octane's

oxidation, on the other hand, appears to plateau around 4=1.1 for reasons yet unknown.

6.5 Coolant Temperature

Coolant temperature was varied from 27 to 88 °C while maintaining the baseline engine

speed, load, spark timing and 4 settings. The effect of coolant temperature on exhaust

gas temperature and 02 concentration are shown in Figures 6.5-l(a) and (b), respectively.

The change in exhaust gas temperature is almost negligible. The 02 concentration is

independent of the coolant temperature increase.

The effect of coolant temperature on gasoline's cylinder exit HC emissions and the

overall fraction reduced are shown in Figures 6.5-1(c) and (d), respectively. The cylinder-

exit HC emissions decreased by a factor of 0.78, falling from 3350 ppm at 27 °C to 2600

ppm at 88 °C. As the coolant temperature increases, the cylinder wall temperature

increases, which decreases the oil layer effect and thereby, reduces the cylinder exit HC

emissions. The HC oxidation remains at 38% regardless of coolant temperature. That the

level of HC oxidation does not change indicates that the coolant temperature affects the

in-cylinder process rather than the exhaust process.
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6.6 Joint Variations of Parameters

A small set of experiments in which parameters were varied jointly were completed to

investigate the interactions between engine parameters and their effect on HC emissions

and HC oxidation.

Figures 6.6-1(a)-(d) present iso-octane results for a multi-parameter sweep of

speed and spark timing. Load, equivalence ratio and coolant temperature were fixed at

the baseline conditions. The multi-parameter effect on exhaust gas temperature and 02

concentration are shown in Figures 6.6-1(a) and (b), respectively. As spark timing is

retarded, the exhaust gas temperature increases modestly for both 1500 and 2500 rpm. In

turn the 02 concentration decreases for 1500 rpm while remaining constant for 2500 rpm.

The difference is due to the variation in load settings. The effect of the multi-parameter

sweep on iso-octane's cylinder exit HC emissions and its overall fraction reduced are

shown in Figures 6.6-1(c) and (d), respectively. As the spark timing is retarded the

cylinder exit HC emissions decrease due to the increase in bulk gas temperatures; this

increase also accounts for the emissions difference between the two engine speeds. The

overall fraction reduced for 1500 rpm remains virtually constant at 43%. However, the

results for 2500 rpm increase from 37% at MBT to 63% at 12 degrees retard.

Figures 6.6-2(a)-(d) present propane results for a multi-parameter sweep of

equivalence ratio and spark timing. Load and coolant temperature were fixed at the

baseline conditions, while engine speed was fixed at 2500 rpm. The multi-parameter

effect on exhaust gas temperature and 02 concentration are shown in Figures 6.6-2(a) and

(b), respectively. As spark timing is retarded, the exhaust gas temperature increases to

710 C from its initially high temperature of 665 C at MBT timing. The initially high

temperature is a result of operating at 2500 rpm. The temperature difference between

=0.9 and 4=1.1 is negligible. As expected there is 02 in the exhaust at (D=0.9 but none

at ~=1.1. 02 concentration remains constant over retarded timing. The effect of the
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multi-parameter sweep on propane's cylinder exit HC emissions and its overall fraction

reduced are shown in Figures 6.6-2(c) and (d), respectively. At I=1.1 the HC emissions

decrease by a factor of 0.73; at 0=0.9 they are reduced by a factor of 0.58. Despite the

sizable decrease in cylinder exit HC emissions at O=1.1, the exhaust port/runner oxidation

mechanisms appear to have shut off. This behavior is consistent over the range of

retarded spark timing. In this case the lack of time and 02 amidst the temperature increase

blocks HC oxidation. On the other hand, oxidation under lean conditions increases

significantly (40-70%) at 12 degrees retard. Available 02 and high exhaust gas

temperature boost oxidation at high speed.

Figure 6.6-3 presents iso-octane results for a quench plane sweep at 2500 rpm, 4.0

bar IMEP, 12 degrees retard, 0=0.9 and T,ooat=88 °C. The cylinder, port and runner exit

HC emissions are 1320, 1012 and 467 ppm C,, respectively. This corresponds to port,

runner and overall HC oxidation levels of 23%, 42% and 65%, respectively. Clearly high

levels of HC oxidation can be achieved at a high speed, retarded and lean operating

condition. Compared to the 5-10% runner oxidation levels achieved at the baseline

operating condition, it is evident that 02 availability along with dramatic increases in

exhaust gas temperature can offset the reduction in port residence time. The result is

enhanced runner oxidation.
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Chapter 7

Conclusions

An exhaust gas quenching experiment was conducted to study the evolution of HC

emissions and the extent of HC oxidation in the exhaust port and runner of a spark ignition

engine. Fuel composition and engine parameter effects were of particular interest.

The major conclusions drawn from testing a set of fuels at a light load operating

were as follows:

1. There was substantial reduction in total HC emissions between the cylinder

and the port exit; the reduction is much less in the runner.

2. Differences in cylinder exit HC emissions between the fuels could be

explained by differences in HC oxidation rates, oil layer mechanism and

molecular diffusivity of the HC.

3. HC oxidation levels in the exhaust port/runner system fell within 40±5%

for all the fuels, indicating that HC oxidation was approximately fuel

independent at this condition. A majority of the oxidation occurred within

the exhaust port.
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4. Unburned fuel was the major cylinder exit species. Non-fuel species

concentrations did not change significantly from cylinder exit to port exit to

reflect the significant level of HC oxidation.

5. Species distributions in both the port and runner changed substantially

despite the low levels of runner HC oxidation.

6. HC oxidation of the non-methane alkane fuels was accompanied by an

increase in species that are highly reactive in the formation of

photochemcial smog.

The major conclusions drawn from several single and multi-parameter sweeps

made about a baseline operating condition were as follows:

1. As engine speed increased at constant load, the cylinder-exit HC emissions

decreased due to the increase in bulk gas temperature during expansion and

a reduced oil layer absorption/desorption mechanism due to a higher liner

temperature.

2. HC emissions decreased with increasing load due to a increase in the bulk

gas temperature and reduced oil layer contribution.

3. At retarded timing, the increased bulk gas temperature during expansion

and exhaust as well as the decreased crevice volume and oil film

contributions governed the cylinder-exit HC emissions and the HC

oxidation.

4. Despite the increase in exhaust gas temperature, HC oxidation decreased

going from lean to stoichiometric due to a lack of available 02. Oxidation

levels continued to drop as the charge was enriched due to both the lack of

02 and the decrease in exhaust temperature.
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5. As coolant temperature increased, the cylinder exit HC emissions were

reduced. HC oxidation did not change indicating that a significant fraction

of oxidation may occur in-cylinder.

6. The combination of high speed, retarded spark timing and lean operating

condition yielded high levels of HC oxidation.
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Appendix B

Formulation of the HC Emissions Correction Factor

As described in Section 3.3, emissions measurements were made under a number of

different exhaust conditions and were as follows: (1) normal, (2) quench gas injected, (3)

quench gas injected and air diluted, and (4) air diluted. Definitions for all exhaust mole

species eeither coming from the engine or added to the exhaust are indicated in Figure

B.1-1. The significant measurements made under these ehxaust conditions were:

(1)

(2)

(3)

(4)

(Xco 2 )Exhaust,dry a

(XHC) Exhart,wet

(XHC )Quencih,wet

(XC02 )(Dilution+Quench)dry 

(XC0 2 )Dilution,dry -

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(NAir)Dilution- D

PORT + RUNNER

(NCO2 )Exhaust,wet C

(NH20 )Exhaust,wet H

(NOthers)Exhaust,wet N

(NHC)Exhaust,wet HC = small

(NCO2 )Quench Q

FIGURE B.1-1 Definitions for the species exiting the engine and the species added to the exhaust.
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With the exception of the HC measurements (B.2 and B.3), all measurements were dry.

For consistency, water's contribution was added. It was defined as

(XH20)Exhau-t (B.6)

and calculated using [14]

(H20) = O5 (C02+(CO)
(CO)/[K(CO 2 )]+ 1

where y is the H/C ratio of the fuel, K equals 3.5 and the CO and CO2 mole fractions were

measured under normal exhaust conditions. When equations B.1, 4, 5 and 6 were

rewritten using the definitions in Figure B. 1-1 and then normalized by C (where the lower

case symbols represent the normalized values), they became

C 1
(Xco2 )E,,x.ut,dry C + N 1+ (B.7)

C+Q - l+q -- [
(Xco2 )(Dilution+Quench),dry = C+N + Q + D 1 + n + q + d (B.8)

C 1(xco2)Diludon,dry - C +- (B.9)C+N+D l+n+d

(xH Ho)Exa=t H - (B. 10)(H20)ExlusV C+N+H 1+n+h

where the HC contribution was neglected because its contribution was small compared to

the others. This system of four equations with known values a, 13, y and ~ was solved for

the unknowns yielding

n =1 -1 (B.11)

q _-- (B.12)

d 1 1 (B.13)

h= 1, (B.14)
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Recall that the goal in developing an emissions correction factor was to translate

(XHC)Quench,wet (B.3) to (XHC)Corrected,wet ,the equivalent HC concentration under normal

exhaust conditions. Ratioing the two and rewriting it in terms of the definitions in Figure

B. 1-1 resulted in

(XHC)Quenchwet H C+N+H +Q)
(XHC)Exhaust,wet H C +N + H)

Simplifying and normalizing by C gave

(XHC)Quench,wet (1 +n+h)= (B.15)
(XHC)Exhaust,we ( +n+h +q)

with n, q and h defined as before. Substituting equations B.11, 12 and 14 into B.15, the

equation became

(XHC)Quench,wet 1-(Xo2)Quenh,wet (B. 16)
(XHC)Corrected,wet 1 (Xco 2 ) E x ha us t ,we t

where (XHC)Corrected,wet was the variable to be solved. Although equation B.16 was

developed for the HC emissions, it was a general equation that could be used to correct

any exhaust species that was diluted due quench gas injection.
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