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Abstract

This thesis experimentally tests the common assumption that the pressure difference
between the oval and round windows of the inner ear (cochlea) is the only acoustic
stimulus for cochlear response. The cochlear potential, recorded at the round windows
of anesthetized cats, is used as a measure of cochlear response. The sound pressures at
the oval and round windows are individually controlled. A linear model of the response
to the two input pressures estimates a complex common-mode gain C and a complex
difference-mode gain D. The magnitude of the difference-mode gain IDI is found to be at
least 20 dB, and in some cases 40 to 60 dB, greater than ICI; to a first approximation the
pressure difference between the oval and round windows is the effective acoustic stimulus
for the inner ear. This result is relevant both to models of the inner and middle ear and
to clinical approaches to the improvement of hearing in ears with no ossicles.
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Chapter 1

Introduction

1.1 Ossicular versus non-ossicular coupling

The auditory portion of the fluid-filled inner ear (the cochlea) is enclosed by a bony

capsule with two membrane-covered holes that face the middle-ear air space: the oval

and round windows. In a normal ear sound is transmitted from the tympanic membrane

(ear drum) to the oval window of the cochlea by the ossicles (malleus, incus, and stapes)

(Fig. 1-1A). The tympanic membrane and ossicular system act to increase the sound-

pressure level between the ear canal and the cochlea. This increase is generally presumed

to be a result of the large area ratio between the tympanic membrane and the stapes

footplate (Pickles, 1988). The round window acts as an outlet that releases the pressure

transferred to the oval window by the ossicular motion. In pathological human ears with

the ossicles missing hearing sensitivity is greatly reduced but hearing is still possible.

In this case the sound pressure in the ear canal is neither magnified nor transmitted

selectively to the oval window of the cochlea; instead the ear canal sound-pressure wave

acts approximately equally on both the oval and round windows (Fig. l-lB).

9
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Figure 1-1: A: Schematic of a normal human ear. A sound pressure at the tympanic
membrane, PT, is magnified and transmitted to the oval window of the cochlea through
the ossicular system (malleus, incus, and stapes). B: Schematic of a human ear missing
the tympanic membrane, malleus, and incus. PT is not magnified and acts approximately
equally on both the oval and round windows.

Peake et al. (1992) developed a model that predicts hearing levels in both cat and

human when the tympanic membrane, malleus, and incus are missing. They suggest

that an important mechanism for hearing in such pathological cases is direct coupling

of sound to the cochlear windows and that the cochlea responds to the pressure dif-

ference between the oval and round windows. Approximate agreement between model

predictions and hearing levels in pathological ears supports the conclusion "For ears in

which the tympanic membrane-ossicular chain mechanism has been disrupted available

evidence for cat and human is consistent with the hypothesis that the sound-pressure

difference at the cochlear windows is the dominant stimulus mechanism, at least for the

higher frequencies (i.e. above 0.8 kHz)" (Peake et al. p. 258). It is difficult to come to

a conclusion about the Peake et al. model fit to experimental data at lower frequencies

because there are few experimental data. The existing data are discussed in Chapter 1.3.

10
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1.2 The pressure-difference assumption

The pressure difference between the oval and round windows is often assumed to be

the only acoustic stimulus to the cochlea. This assumption is prevalent in both basic

science and clinical explanations of cochlear function. Models of the inner and middle

ear usually assume that the cochlear fluid is incompressible and that the response of

the cochlea is proportional only to the pressure difference between the oval and round

windows (e.g. Zwislocki, 1965; Allen, 1985; Peake et al., 1992). Surgical approaches to

hearing improvement in ears without tympanic membrane, malleus and incus attempt

to maximize the window pressure difference (e.g. Wullstein, 1956; Peake et al., 1992;

Merchant et al., 1995; Rosowski et al., 1995). For example, in the type IV tympanoplasty

procedure the surgeon places a facia or cartilage graft across the middle-ear air space to

act as a shield that isolates the round window from sound pressure in the ear canal; it

is assumed that the graft functions to increase the pressure difference between the oval

and round windows and thus improve hearing. The best surgical results yield hearing

losses of about 20 dB. However, the surgical results are extremely variable; only 50%

of the surgeries yield hearing losses of 30 dB or smaller, and post-surgical hearing losses

of 40 - 50 dB are not uncommon (Wullstein, 1956; Lee and Schuknecht, 1971; Gotay-

Rodriquez and Schuknecht, 1977).

If the cochlea is assumed to be a linear system the pressure-difference assumption

can be expressed as

Cochlear Response = D(Pow- PRW) (1.1)

where D is a complex constant and Pow and PRW are the complex amplitudes of the

sinusoidal sound pressures at the oval and round windows (Fig.1-2). If Equation 1.1 holds

11
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and the cochlear system is also reciprocal then a volume velocity at the oval window,

Uow, produces a volume velocity at the round window, URW, such that Uow = -URW. 1

Acous
shield
betwe
oval
and
round
windo

Figure 1-2: A schematic showing Pow and PRW, the pressures at the oval and round
windows, respectively. Uow and URW refer to the volume velocities at the oval and
round windows. It is commonly assumed that Uow = -URw.

1.3 Experimental results relevant to the pressure-difference

assumption

There is little experimental support for the pressure-difference assumption expressed by

Equation 1.1. In fact, it has been suggested that the cochlea responds even when the

lIf the cochlea is a linear, reciprocal system and if the response for all Pow and PRW is proportional
to (Pow - PRW), then Uow = -URW. Proof: Use a linear two-port network to represent the pressures
and volume velocities at the oval and round windows.

Uow = Y11 Pow + Y12 PRW (1.2)

URW = Y21 Pow + Y22 PRW (1.3)
It is assumed that the response of the system, here the volume velocity, is proportional to the difference
in pressure between the two windows.

Uow = Y11 POW + Y12 PRW = a (POW - PRW) (1.4)

URW = Y21 POW + Y 22 PRW = b (POW - PRw) (1.5)

Equation 1.4 shows that Y11 = -Y12 = a, and Equation 1.5 shows that Y21 = -Y2 2 = b. Reciprocity
requires that Y21 = Y12 which sets a = -b. Since a = -b, Equations 1.4 and 1.5 show that Uow = -URw.

12
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Figure 1-3: Result taken from B:k:sy (1936a; 1960, Fig. 5-10). Mean hearing thresholds
from five cases with unilateral loss of the eardrum, malleus, and incus" (B6ksy, 1960).
Hearing levels indicate hearing thresholds in dB relative to the mean hearing threshold
on the normal side on which an "otological examination had shown that the inner ear
was normal" (Bksy, 1960); a hearing level of 40 dB corresponds to a hearing loss of
40 dB. The results shown here suggest that hearing improves as frequency decreases for
ears missing the tympanic membrane, malleus, and incus.

pressure difference between the oval and round window is zero. Bk6sy (1936a) reported

average hearing levels from five patients with unilateral missing tympanic membranes

and ossicles. He assumed that their cochleas were normal since the patients had normal

hearing on the nonpathological side. Bk6sy concluded that the results shown in Fig. 1-

3 appear to be inconsistent with Equation 1.1 through the following argument. At

low frequencies the wavelength of sound is much greater than the distance between the

oval and round windows (and the dimensions of the middle-ear cavity). Thus, at low

frequencies the spatial variation in pressure between the oval and round windows is

expected to be small and the pressure difference between the oval and round windows

should decrease as frequency decreases. As a result the pressure-difference assumption

expressed by Equation 1.1 predicts that hearing sensitivity in ears with no tympanic

membrane, malleus, and incus should decrease as the frequency lowers. Instead Fig. 1-3

reports an improvement in hearing as frequency (and presumably pressure difference)

13
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decreases.

Based on the results shown in Fig. 1-3 Bk4sy hypothesized that the cochlea may

appear to be compressible due to fluid flow through the endolymphatic and perilymphatic

ducts or compressibility of cochlear blood vessels. Shera and Zweig (1992) developed a

model in which the scala media is assumed to be compressible; they conclude that such

a model matches the Bekesy result shown in Fig. 1-3.

Other evidence has some consistencies with the pressure-difference assumption ex-

pressed by Equation 1.1. Wever, Lawrence and Smith (1948) showed in cat that sound

applied to the cochlea at the round window produces a cochlear-potential magnitude

similar to that produced by the same sound applied to the oval window (the angle of the

cochlear potential was not reported). Wever and Lawrence (1950) applied tonal stim-

uli to the oval and round windows simultaneously and measured the cochlear-potential

response. (The oval-window stimulus was applied at the tympanic membrane through

the ossicular chain while the round-window stimulus was applied through a tube coupled

directly to the round-window membrane.) The stimuli were balanced such that each of

them produced the same cochlear-potential magnitude when applied alone. Wever and

Lawrence (1950, p. 462) described the response when the two stimuli were presented

simultaneously and the angle between them was varied over one cycle: "the cochlear

potentials vary in magnitude according to the phase relation between the sound waves

entering by the two pathways. Under usual conditions a phase relation can always be

found at which this response is just double what it would be for either pathway alone.

This is a maximum value for these stimuli; the response falls off if the phase is altered

in either direction from this setting. As the phase is further altered the response falls

rapidly, and it approaches a value of zero as the phase is changed 180 degrees from the

14



maximum setting". Fig. 1-4 shows the only example of such a measurement that was

published by Wever and Lawrence (1950).
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Figure 1-4: Result taken from Wever and Lawrence (1950). The cochlear-potential
magnitude was measured as the oval and round windows were simultaneously stimulated.
The phase of one of the stimuli was varied. This plot shows the cochlear-potential
magnitude as a function of the phase of the varied stimulus. The value 0 degrees was
arbitrarily chosen and does not mean that the two stimuli had a phase difference of 0
degrees at that point on the axis.

In another set of experiments, stimuli balanced as described above were delivered

directly to the oval and round windows and the angle between the stimuli required for a

minimal magnitude response, ,bMIN, Was plotted as a function of frequency. The result

is shown in Fig. 1-5. At frequencies below 1000 Hz and above 4000 Hz the data in Fig. 1-

5 are clearly inconsistent with Equation 1.1. Even though IPowl and PRwI are not

known, Equation 1.1 requires the difference in angle between Pow and PRW to be zero

when the cochlear-response magnitude is a minimum. The angle differences reported in

Fig. 1-5 range from 0.03 to 0.09 cycles (11 to 34 degrees) for frequencies below 1000 Hz

while at frequencies above 4000 Hz the angle differences range from 0 to 0.5 cycles (0 to

15
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Figure 1-5: Result taken from Wever and Lawrence (1950). The oval and round windows
were stimulated simultaneously and the phase relation between the stimuli was varied
until a minimum cochlear-potential response was obtained. The phase difference between
the oval and round-window stimuli required for this minimal cochlear-potential response,

bMIN, is plotted here as a function of frequency.

180 degrees). At frequencies between 1000 Hz and 4000 Hz the data shown in Fig. 1-5

are consistent with Equation 1.1 because the differences in angle between Pow and PRW

are nearly zero. However, it is impossible to relate directly the data in either Fig. 1-4 or

Fig. 1-5 to Equation 1.1 because IPowl and IPRWI were not measured.

1.4 Common-mode and difference-mode responses

A general linear system description of the cochlear response includes a "common-mode"

term. In the cochlea common-mode mechanisms might include effects of cochlear fluid

or blood vessel compressibility and flow through cochlear ducts. However, compressibil-

ity of cochlear contents need not produce a common-mode response; a symmetrically

compressible cochlea may have no common-mode response.

Common-mode mechanisms can be included in Equation 1.1 by adding a common-

16



mode term to the difference-mode term.

1Cochlear Response = (Pow - PRW) + C(POW + PRW) (1.6). ~'- ~ ~ 
difference-mode response common-mode response

The gain constants D and C are the difference-mode gain and the common-mode gain,

respectively. Equation 1.6 reduces to Equation 1.1 when C = 0.

The aim of this thesis is to determine the relative importance of the difference-mode

and common-mode terms to the cochlear response. The cochlear response to direct

simultaneous stimulation of the oval and round windows is examined in a manner similar

to that of Wever and Lawrence (1950). The cochlear-potential response is measured in

cat ears while the magnitudes and angles of the sound-pressure amplitudes at the oval

and round windows are controlled; these cochlear-potential measurements are used to

estimate the difference-mode gain D and the common-mode gain C. Comparison of D

and C determines the importance of the pressure difference at the two windows relative

to the summation of pressure at the two windows. D and C are compared using the

common-mode rejection ratio (CMRR).

CMRR = 20logiol j (1.7)
_(
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Chapter 2

Experimental methods

2.1 Subjects

Measurements were made on seven cat ears. The first three ears were used to develop

the experimental methodology; the pressure measurements in these animals were not

stable to within less than a few dB over long periods of time. Appendix A contains a

description of the measurements on each cat.

2.2 Stimulus paradigms

Two types of stimuli were used: "single-sided" and "simultaneous". The single-sided

level series are measurements of the cochlear potential, Vcp, made while either the

oval or round window was stimulated with a tone of increasing sound-pressure level.

The simultaneous-stimuli measurements refer to cochlear-potential measurements made

while the oval and round windows were stimulated simultaneously; sound pressures of

nearly equal magnitude (generally within 0.1 dB) were presented to the oval and round

windows (Pow and PRW) while the angle of one of the pressures was varied over one

19
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cycle. Vp was measured as a function of b, the phase difference between the sound

pressures at the two windows. A measurement "set" refers to the set of data points

collected as b varied from 0 to 1 cycle.

2.3 Experimental configuration

Fig. 2-1 shows a schematic of the experimental set-up. The tympanic membrane, malleus,

and incus were surgically removed from a Dial and sodium pentobarbital anesthetized

cat. A petroleum-jelly soaked piece of cotton was inserted into the foramen of the septum

so that the tympanic and bulla air spaces were isolated from each other. A calibrated

probe-tube microphone and sound-source assembly positioned in the ear canal both

delivered and measured the sound pressure in the space around the oval window, Pow.

A similar assembly positioned over a hole made in the bulla wall delivered and measured

the sound pressure in the space around the round window, PRW. The sound sources were

"Beyer dynamic " earphones and the microphones were "Larson Davis 2530" quarter inch

condenser microphones.

2.4 Probe-tube microphone calibration

The experimental measurements required two calibrated microphones. OWmic refers to

the probe-tube microphone which measured the sound pressure in the tympanic cavity

and RWmic refers to the probe-tube microphone which measured the sound pressure

in the bulla cavity. OWmic and RWmic were calibrated separately using a coupler and

reference microphone, REFmic.

A calibration source (Larson Davis) of 114 dB SPL at 250 Hz was coupled to REFmiC

20
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Figure 2-1: A schematic of the experimental set-up of the cat middle-ear. The inset is a
blowup of the petroleum-jelly soaked cotton plug in the foramen of the septum.
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to determine the relationship between sound-pressure level and the voltage output of

REFmic. This measurement combined with a measurement of the frequency response

of REFmic provided the transfer function between sound-pressure level, SPL, and the

reference microphone voltage, VREFmic VFP ic

One at a time, each probe-tube microphone and sound-source assembly was cou-

pled to REFmic for the calibration procedure (Fig. 2-2). To calibrate the oval-window

probe microphone, the transfer function between the voltage measured by the reference

microphone, VREFmic and the voltage into the earphone generated by channel A of the

digital-to-analog converter, VDACOW, was measured: VF-. Next the transfer function
'W, VDACO W

between the voltage measured by the oval-window probe-tube microphone, Vowmic, and

VDACow was measured: VOWMc These transfer functions yield the relation betweenVDACow was measured: VDACOW'

sound-pressure level and the voltage of the oval-window microphone.

SPL VREFmic 1 [VDACow = SPL (2.1)
VREFi. VDACow VOW i VOWmic

The transfer function between SPL was found in the same manner. The round-
VRWmic

window earphone was driven by channel B of the digital-to-analog converter VDACRW.

The two microphones, OWmic and RWmi,, should measure the same sound-pressure

level because they were calibrated with a common reference microphone. The relative

calibration between the oval and round window microphones was checked periodically

during the experiments on Cats #5, #6, and #7. After each calibration a short brass

tube was used to couple the two probe-tube microphone and sound-source assemblies

together; the two probe-tube tips were less than 2 mm apart. A sound common to

both microphones was produced and it was confirmed that the calibrations of the two

22
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To OWmic Amplifier

From

Beyer Dynamic Earphone DACow

Figure 2-2: The Beyer dynamic earphone is coupled to both REFmic and OWmic for the
calibration procedure of the oval-window probe-microphone and sound-source assembly.
Experimental measurements were made with the same assembly, without REFmic. The
part of the assembly to which REFmic coupled here is where the assembly was attached
to the cat. A similar assembly is used to couple REF,mi and RWmic for the calibration
procedure of the round-window probe-microphone and sound-source assembly.

microphones were consistent. The results of this procedure are further discussed in

Chapter 4.

2.5 Animal preparation

Cats weighing between 1.7 and 2.2 kg were anesthetized with Dial (between 1.25 cc and

1.65 cc) and sodium pentobarbital (between 0.83 cc and I cc); the doses depended on the

weight of the animal. Boosters of Dial (10% of the original dose) were given throughout

the experiments, as determined by a toe-pinch response or 20% increase in heart rate.

Most cats received 0.1 cc penicillin to fight infections.

Removal of the ossicles required several steps. First, as much as possible of the

cartilaginous ear canal was surgically removed in order to increase visibility of the middle-

23
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ear air space. Next, an approximately circular hole with a diameter of about 5 mm was

made in the dorsal-lateral-posterior part of the widely exposed bulla in order to provide

visibility of both the round window and the foramen of the bony septum; this hole

was later used to couple the round-window probe-tube microphone and sound-source

assembly to the bulla cavity. Two methods were used to remove the ossicles; both

required a dissecting microscope.

The ossicles of Cats #1, #2, #3, and #4 were removed as follows.

1. The tympanic membrane was removed with a set of small forceps.

2. The manubrium was held with the forceps and gently wiggled until the lateral
process and sometimes other parts of the malleus came loose; the pieces were
removed. This made the incudo-stapedial joint partially visible.

3. The incudo-stapedial joint was disarticulated with the use of a "Schuknecht hook"
(Storz Instrument Co.), and the incus was either removed or left loose in the
tympanic space.

4. The foramen was plugged with petroleum-jelly soaked cotton by placing the cotton
in the foramen with an approach through the ear canal and tympanic cavity. This
approach was difficult due to poor visibility of the foramen through the earcanal.

A different approach was used to remove the ossicles from Cats #5, #6, and #7.

1. The tympanic cavity was visualized through the 5 mm diameter hole in the bulla
wall and the foramen. Either part of Spence's cartilage or the chorda tympani
branch of the facial nerve was immediately in sight through the foramen. This dis-
rupted the view of the incudo-stapedial joint. Any such "soft tissue" obstructions
were moved out of the way by breaking them with the Schuknecht hook.

2. The Schuknecht hook was introduced into the tympanic cavity through the bulla
cavity and the foramen; the incudo-stapedial joint was disarticulated. The visibility
during this procedure varied among cats.

3. The tympanic membrane and other ossicles were removed through the ear canal.

4. The stapes and incus disarticulation was visually confirmed, by looking through
the ear canal.

5. The foramen was plugged with petroleum-jelly soaked cotton through the bulla
cavity approach.

24



After the ossicles were removed, the round-window wire-electrode tip was positioned

near (Cats #1 to #4) or on (Cats #5 to #7) the round-window membrane. The electrode

was advanced through a small hole in the bulla cavity with a micro-manipulator; the

process was visualized through the larger 5mm diameter bulla wall hole with a dissecting

microscope. The wire electrode was glued to the bulla wall to minimize movement and

seal the hole.

2.6 Computer measurements of sound pressure and cochlear

potential

The digital-to-analog converter on a computer generated a two second stimulus tone(s).

The two second amplified microphone-output(s) and cochlear-potential voltage responses

were measured using the computer's analog-to-digital converter that sampled each re-

sponse on a different channel at 12 kHz. Each channel of the analog-to-digital converter

output was divided into 50 segments, and each segment was an integer number of pe-

riods in duration. The segments were averaged and the magnitude and angle of the

fundamental component of the average is reported as the cochlear-potential response.

The averaged microphone voltages were converted into sound-pressure levels using the

previously measured microphone calibrations.

2.7 Cochlear potentials and TTX

The AC cochlear potential is composed of two dominant components: cochlear micro-

phonic (CM) and compound action potential (CAP). CM refers to the response of the

cochlear sensory hair cells and is believed to increase linearly with sound-pressure level

25
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over a large stimulus range (Pickles, 1988). The nonlinear CAP is generated by the

auditory nerve fibers.

The cochlear-potential response is represented as a linear-system response to the two

inputs Pow and PRW (Chapter 3). This model is not consistent with the nonlinear

CAP component in the cochlear response. Tetrodotoxin (TTX) was used to eliminate

the CAP in Cats #6 and #7. TTX pharmacologically blocks action potentials generated

by voltage-gated sodium channels; others have used TTX to block the compound action

potential of the auditory nerve (Kaplan et al. , 1983; Dolan et al. , 1989). Here 1 mg

of TTX (Sigma Chem. Co.) was mixed with 1 ml of artificial perilymph; a 3.13 mM

solution resulted. Eight l of this solution was dropped on the round-window membrane

from where it diffused through the round window-membrane into the cochlea over a

time course of a few hours. The cochlear-potential response to clicks and tone bursts

was measured pre and post TTX administration to confirm that the CAP response was

eliminated; these results are included in Appendix A.

2.8 Definition of noisefloor

Noisefloors are defined as follows for measurements on Cats #5, #6, and #7: M cochlear-

potential measurements were made with no stimulus. The noisefloor is defined as the

mean of these M magnitude measurements plus two standard deviations (all in dB). In

most cases (but not all) M = 11. Such noisefloor measurements were not made during

the experiments on Cats #1, #2, #3, and #4. However, several measurements of Vcp

in response to a 1000 Hz stimulus were made. The mean plus two standard deviations

of the appropriate frequency component of these measurements (M > 11) were used as

estimates of the noisefloor. For these four animals, the noisefloor at 1000 Hz is defined to
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be the same as the noisefloor at 800 Hz. Tables of noisefloor measurements are included

in Appendix A.

2.9 Independent control of oval and round window sound

pressures

The bony septum that divides the cat middle-ear air space provides some natural acous-

tic isolation between the oval and round windows. The petroleum-jelly soaked cotton

plug that was inserted into the foramen of the septum further isolated the sounds at

the two windows. A measurement of the acoustic "crosstalk" between Pow and PRW

from Cat #7 is shown in Fig. 2-3, and measurements from the other cats are included in

Appendix A. Such measurements of sound isolation with the plug in place demonstrated

that the isolation was generally greater than 40 dB between 75 Hz and 1000 Hz. This

amount of isolation allows for control of Pow and PRW through the separate sound

sources. Note that, since Pow and PRW are always measured, acoustic "crosstalk" be-

tween the oval and round window sound-pressure sources is accounted for in the analysis.

2.10 Frequency range

Measurements were made at frequencies between 75 and 1000 Hz. This low frequency

range was chosen because low frequency results from both Bkesy and Wever and

Lawrence (Chapter 1) contradict the pressure-difference assumption (Equation 1.1). It

was not possible to make measurements at frequencies below 75 Hz because the sound

sources did not generate enough pressure to produce measurable cochlear potentials at

these frequencies. The measurements were limited to low frequencies (< 1000 Hz) so
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Figure 2-3: Measurements of acoustic crosstalk between the tympanic and bulla
cavities from Cat #7. LEFT: Measurement of the transfer function between the
oval-window microphone response Vowmic and the oval-window sound-source input
VDACOW, and measurement of the transfer function between the round-window mi-
crophone response VRwmic and the oval-window sound-source input VDACow. The
round-window sound-source was off. RIGHT: Measurement of the transfer function be-
tween the oval-window microphone response VowmiC and the round-window sound-source
input VDACRW, and measurement of the transfer function between the round-window
microphone response VRwmic and the round-window sound-source input VDACRW. The
oval-window sound-source was off.
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that it is reasonable to assume that the pressure at each probe-tube-microphone input

is the same as the pressure at the respective cochlear window a few millimeters away.

At these frequencies the wavelengths are much greater than the distance between the

probe-tube and the window; the shortest wavelengths are more than 30X the largest

cavity dimensions. The validity of this assumption was tested (Chapter 4.2).
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Chapter 3

Methods of estimating common

and difference-mode gains, C and

D

The cochlear potential measured at the round window, Vcp, is modeled as a linear

function of the sound pressures at the oval and round windows, Pow and PRW. A linear

system representation is shown in Fig. 3-1.

Pow 

PRW O-

4-

-0 Vcp

Figure 3-1: A general linear system representation of the cochlear response Vcp to the
pressures Pow and PRW. The system input is describe by acoustic variables, and the
system output is described by electric variables.
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Since Pow and PRW are two independent inputs, the response Vcp must also be

described by two independent terms, as in Equation 1.6:

VCP D(Pow - PRW) + C(POW + PW) . (3.1)
2

difference-mode response common-mode response

The two independent terms of this equation include a "difference-mode" term, the prod-

uct of the difference-mode gain D and the difference-mode input (Pow - PRW), and a

"common-mode" term, the product of the common-mode gain C and the common-mode

input (Pow + PRW).

The simultaneous-stimuli measurements of Vcp, Pow, and PRw (Chapter 2) are used

to estimate the difference and common-mode gains, and C, using two separate fitting

procedures of Equation 3.1 to the measured data (Chapter 3.1 and Chapter 3.2). All

data points such that IVcpI > Noisefloor are weighted equally in the fitting procedures;

data points below the noisefloor are not used.

A model prediction for each data point, VcP, is calculated from the estimates D and

C and the measured Pow and PRW for each measurement set.

_cp = D(Pow - PRW) + C(POW + PRW) (3.2)2

The relative sizes of I and ICI are described by the common-mode rejection-ratio

(CMRR).

D
CMRR = 20logiol -- (3.3)

Correlation coefficients that describe the fit of Vf/ to the measured Vcp are calcu-

lated for each measurement set (Chapter 3.3). Experimental and model parameters axe
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Experimental and Model Parameters
Symbol Description

Pow Complex pressure at the oval window (N/m 2)
PRW Complex pressure at the round window (N/m 2)
VCp Complex voltage at the round window (cochlear potential)
PDIFF = POW - PRW Difference-mode pressure
PSUM = (POW + PRW) Common-mode pressure
Vc P Model prediction of cochlear potential
D Estimate of the difference-mode gain (Volts !M')

Estimate of the common-mode gain (Volts -N-)
CMRR Estimate of the common-mode rejection ratio

Table 3.1: Experimental and model parameters.

summarized in Table 3.1.

3.1 Linear fit to the data

A linear-least-squares fit of Equation 3.1 is made to the data points of each measurement

set in the following manner. The notation in Equation 3.1 is simplified to express the

model as

VIp = DPDIFF + CPSUM (3.4)

where PDIFF = POW-PRW and PSUM = (POW+PRW). Equation 3.4 can be expressed

as

VCpa = D PDIFF, + C PsuM, (3.5)

where the subscript i refers to a specific data point. Each measurement set consists of a

series of N such data points and can be expressed in matrix format as

VcP = Pp3 (3.6)

where
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VCp =

/

/

vCp2

VCPN Ic
VrGP., J ~ ~ /

rPDIFF PSUM1

PDIFF2 PSUM2

PDIFFN PSUMN

(3.7)

(3.8)

(f D A) (3.9)

The estimate of /, ,, that minimizes the expression

N
X2 = I(D-PDIFF +-C PSUM)-VCPij = IP'/-Vcp'I (3.10)

i=l

is found using singular value decomposition (SVD) techniques to solve Equation 3.6 for

p (Press et al. , 1992). This method is used to eliminate undesirable effects of singular or

nearly singular matrices. The NX2 matrix P defined by Equation 3.8 can be expressed

in terms of the product of three new matrices:

P =U. W .VT (3.11)

where U is an NX2 orthogonal matrix (UT U = 1), W is a 2X2 diagonal matrix,

and V is a 2X2 orthogonal matrix (VT V = 1). The that minimizes X2 from

Equation 3.10 can be expressed as

/i _ = =P-Vcp = V [diag( )] U T . Vp (3.12)
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where [diag( )] refers to the diagonal matrix comprised of the reciprocal of each ele-

ment of the diagonal matrix W defined by Equation 3.11. The solution of Equation 3.12

can be equivalently written as

=V = (3.13)

where the subscript (i) refers to the vector which comprises the ith column of U and V

and wi refers to the diagonal element W(i, i) (Press et al., 1992).

3.2 Logarithmic fit to the data

All data points are equally weighted in the linear-least-squares fit described above (Chap-

ter 3.1). However, the measurements of Vcp made while the oval and round windows

were simultaneously stimulated with variations in the relative phases of the stimuli have

a dynamic range of about 40 dB; equal weighting of data points puts an emphasis on

the regions where Vcpl is largest. To increase sensitivity to the points where Vcp is

small, estimates of D and C are found with a least-squares fit to

log(Vcp) = log(D_PDIFF + CPSUM), (3.14)

which requires the minimization of

N 2

x2 = , Ilog(b PDIFF + PSUM)-(CP) -* (3.15)
i=P

Since Equation 3.15 is nonlinear it is not possible to use the method of Chapter 3.1.

Instead, a four dimensional space is searched to find values of D[, ZD, Cj, and C that

minimize X2 .

The search procedure employs the "fmins" function in Matlab (Macintosh version 4.1,

The Mathworks, Inc.) to find a local minimizer of Equation 3.15. The "fmins" function
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uses a "simplex" method (Nash, 1979; Press et al., 1992) to search the four dimensional

space. In this case the "simplex" is a four dimensional geometric shape which must

contain the desired values of IJD, D, C, and LC. The values of D, D, CJ, and ZC

that were found using the least-squares fit of Equation 3.4 are used as an initial guess

to center the simplex. The four dimensional simplex is defined by five vertices which are

determined using the nonzero initial guess; each element of each vertex is between 0.9

and 1.1 times the initial guess. Next, Equation 3.15 is evaluated at each vertex of the

simplex. The vertex that produces the largest value when Equation 3.15 is evaluated

is replaced; it is reflected about the centroid of the other three vertices and through

steps of reflection, expansion, reduction, and contraction (Nash, 1979) the vertex with

a maximum function value (Equation 3.15) is replaced. This process is repeated until

the simplex has shrunk to a size such that the evaluation of Equation 3.15 at all vertices

differs by less than 0.0001. The estimates of IDJ, LD, C, and ZC at this local minimum

of Equation 3.15 are used as the "logarithmic" model fit.

3.3 Correlation coefficients

Two correlation coefficients are computed for each measurement set; PMAG describes the

model fit IfcpI to IVcpl, and pz describes the model fit ZLcp to LVcp. The difference

between the variance of the measured magnitude and angle data,

1 N
MAG N- 1 [Illog(cP - lg(V)cp)112 (3.16)

N -1

2 = N l E VCP-LVCP, (3.17)

and the variance of the mean squared error between the data and model prediction,

N
2 1

aMAG-ERROR= N-2[Iollo(Vcp)1- log(Vcp)I)] (3.18)N - 2 i=l1
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2 1 N

I-ERROR = N-2 i VcP - lVCp]2, (3.19)
i=_

is used to calculate the correlation coefficients

PMAG = M--AG- AG-ERROR (3.20)
oMAG

and
a2 _ a2L b-ERROR

P =-E O (3.21)

In order to compare the two model fits, linear (Chapter 3.1) and logarithmic (Chap-

ter 3.2), the correlation coefficients for both models are based on Equation 3.14; addi-

tionally all data and model fits are plotted on logarithmic scales. Vcp and LVcp refer

to the mean value of the measurement set and N is the total number of data points in

the measurement set. IV'cpl and LVcp, refer to the model prediction at the ith data

point.
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Chapter 4

Pressure measurement errors

Categories of potential errors in the measurements of Pow and PRW include: errors in

the calibration of the microphone systems and pressure variations within the tympanic

and bulla cavities, which make the measured pressures differ from the pressures at the

oval and round windows. This chapter discusses these errors and estimates their sizes.

4.1 Calibration errors

4.1.1 Stability of absolute and relative calibrations

The exact calibration of each microphone is not critical for the experiments presented in

this thesis. However, the relative calibrations of the two microphones used to measure

Pow and PRW must be determined precisely. For example, if a common tone is presented

identically to both microphones it is critical that the calibrated sound-pressure response

be the same in magnitude and angle for both microphones.

Changes in temperature and humidity may affect each absolute microphone calibra-

tion. However, such changes are likely to be correlated between the two microphones
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and probably do not introduce significant errors.

The calibration procedure (discussed in Chapter 2.4) determines the ratio between

the sound pressure at the microphone input and the voltage generated at the microphone

output, i*. The calibration procedure was repeated several times during the experi-

ments on Cats #4, #5 , #6, and #7 and the changes in Pi as a function of time are
Vmic

used as one measure of error that exists in the measurements of Pow and PRW. The

changes in - for all the cats are included in Appendix A. The largest variations in

v-c for Cats #4 to #7 occurred in Cat #7; these variations are presented here as an

example.

Changes in the magnitude and angle of Pmic(initial calibration) as a function of timeinVm,(iinitial calibrationa

are shown in Fig. 4-1 for the measurements made on Cat #7. The maximum change in

calibration during the experiments is used as a "worst-case" estimate of the error that

exists in any given calibration. This estimate is plotted as a function of frequency in

Fig. 4-2. The error estimates are not constant with frequency and they are not the same

for the four cats. The oval-window microphone was consistently more variable than the

round-window microphone. The maximum change in calibration during the experiment

on Cat #7 was nearly 0.8 dB in magnitude at 100 Hz and nearly 0.015 cycles in angle

at 1000 Hz. The maximum calibration changes seen in Fig. 4-1 probably over-estimate

errors in Pow and PRW.

The relative calibration between the oval and round window microphones was fur-

ther checked periodically during the experiments on Cats #5, #6, and #7. After each

calibration a short brass tube was used to couple the two probe-tube microphone and

sound-source assemblies together; the two probe-tube microphone tips were less than

2 mm apart so the inputs to the microphones would be identical. When the calibrated
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A Magnitude
from Original
Calibration (dB)

A Angle
from Original
Calibration (cycles)

1000 Hz
0.005
0.000

-0.005
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300 Hz 0.000

-0.002

20 30 40

20 30 40

20 30 40

100 Hz

0.004
0.002

0.000

20 30 40
Time (hours)

20 30 40

Time (hours)

Figure 4-1: The differences in between the initial calibration and subsequent cal-
ibrations during the experiment on Cat #7. Note expanded vertical scales. The first
measurement of Emr. is used to normalize all succeeding measurements of AuP ; magni-
tudes (in dB) and angles (in cycles) of the ratios are plotted. Time of day = 17 hours is
the time of initial calibration.

Maximum Magnitude
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Maximum Phase
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Figure 4-2: The maximum changes in
iment on Cat #7.

as a function of frequency during the exper-
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microphone outputs differed by more than 0.1 dB in magnitude or 0.002 cycles in phase

the microphones were re-calibrated and any measurements that relied on the faulty cal-

ibration were discarded.

4.1.2 Movement of acoustic assembly

Additional measurements were made in a brass tube to understand better the microphone

variations that occur over time and that occur as a result of coupling and decoupling to

and from the cat head. In the tube, as in the cat head, the response of each microphone

contains two sources of variability: variation in the microphone response and variation in

the sound-source output. The variability in the two microphone responses was quantified

by making repeated measurements in the brass tube assembly. Changes in the source

output should cause correlated changes in the output of both microphones. Changes in

microphone sensitivity could also be correlated if they result from changes in temperature

or absolute pressure.

50 consecutive measurements were made with a 1000 Hz tone stimulus while the

two sound-source and microphone assemblies were coupled together; the time between

the first and 50th measurement was about 5 minutes. The sound pressure measured

by the two microphones and the differences between the two microphone measurements

are shown in Fig. 4-3A and C, respectively. Fig. 4-3A illustrates that the outputs of

both microphones changed with time by about 0.15 dB in magnitude and 0.003 cycles

in angle. The difference between the microphone outputs changed less with time; the

variation was only 0.04 dB in magnitude and 0.0003 cycles in phase (Fig. 4-3C). These

data can be interpreted to show that small changes occur in both sound-source output

and microphone sensitivity over time, and the larger change is apparently in sound-source
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output.

Next, 50 consecutive measurements were made in which the two sound-source and

microphone assemblies were uncoupled from and then recoupled to the brass tube be-

tween each measurement; the time between the first and 50th measurement was about

10 minutes. Such a procedure mimics the uncoupling and recoupling of the sound-source

and microphone assemblies to the cat. The sound pressure measured by the two micro-

phones and the differences between the two microphone measurements for this case are

shown in Fig. 4-3B and C. The uncoupling-recoupling results (Fig. 4-3B) show changes in

microphone output that have a range of about 0.3 dB in magnitude and 0.005 cycles in

angle. The variation in the difference between the microphone outputs is about 0.1 dB

in magnitude and 0.003 cycles in angle (Fig. 4-3C).

The measurements in Fig. 4-3 indicate that the system is less stable when movements

of the sound-source and microphone assemblies are made. The large correlation between

the two microphone outputs clearly demonstrates that most of the observed variation

is the sound-source output. The variations observed in the microphone outputs when

movements of the brass-tube assembly are made are appreciably smaller than the total

calibration variations in the cat ear observed when the system was recalibrated during

the experiments (Fig. 4-1); the changes caused by movement of the system are likely to

be a part of the total calibration changes (Fig. 4-1).
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Figure 4-3: (A) 50 consecutive measurements by both microphones of a common 1000Hz
tone within a tube. Here the system was not touched between measurements. The
time between the first and 50 th measurement was about 5 minutes. (B) 50 consecutive
measurements by both microphones of a common 1000 Hz tone within a tube. Here
the system was decoupled and recoupled between each measurement. The time between
the first and 5 0th measurement was about 10 minutes. (C) The difference between the
measurements shown in (A) and the difference between the measurements shown in (B).
This difference is a measure of the variation of the microphone responses.
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4.2 Spatial variations in pressure in the tympanic and

bulla cavities

Pow and PRW are the measured pressures at the medial end of the ear canal and at the

bulla wall. Differences may exist between these measured pressures and the pressures

at the oval and round windows. To estimate these differences, pressure measurements

were made at different locations in the bulla cavity (of a dead cat). The round-window

sound-source and probe-tube microphone assembly was coupled to the bulla cavity as

shown in Fig. 2-1. A second probe-tube microphone, mounted on a manipulator, was

introduced into the bulla cavity near this assembly. This second probe-tube microphone

was systematically moved across the bulla cavity from the bulla wall toward the round

window, and the responses of both microphones to tonal stimuli were recorded. The

calibration for the moving microphone was defined by assuming that the pressures mea-

sured by both microphones were the same when the moving microphone was positioned

at the bulla wall.

Fig. 4-4 shows the ratio of the two pressure measurements, as a function of distance

from the movable probe tube entrance at the bulla wall, for measurements at 1000 Hz.

The 0 mm position defined the bulla wall position, and the opening of the round window

niche was at the 4.6 mm position. A total of five measurements was made at each

position during three trials; a trial consisted of calibrating the moving microphone by

making a measurement while the probe tube was at the bulla wall and then making

one to three pressure measurements at each location as the probe tube was advanced

systematically toward the round window. These measurements and their averages are

shown in Fig.4-4. The probe moving toward the round window measured slight variations
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in the pressure magnitude relative to the round-window microphone; these variations

were on average less than 0.05 dB different from the pressure magnitude at the bulla

wall. There were also variations in the pressure angle relative to the round-window

microphone output; advancing the moving microphone led to a lag or decrease in angle

relative to the pressure at the bulla wall. On average, the angle at the round window

niche lagged the angle at the bulla wall by about 0.0008 cycles; this lag is only 6% of the

phase lag of 0.013 cycles predicted theoretically for unidirectional uniform plane wave

propagation. 1 The presence of the probe-tube microphone in the bulla cavity had little

or no effect on the pressure magnitude measured by the round-window microphone; while

the measurements shown in Fig. 4-4 were made, the largest magnitude changes in the

pressure at the bulla wall were less than 0.02dB in magnitude. The presence of the probe

tube may have affected the pressure angle measured by the round-window microphone;

the maximum change in these angle measurements was 0.001 cycles. However, such

variations in angle measurement are smaller than the variations that result in movement

of the acoustic system (Fig. 4-3B). The measurements of Fig. 4-4 support the assumption

that there is little spatial variation in the pressure in the bulla cavity; therefore the

pressure measured at the bulla cavity wall is an accurate representation of the pressure

at the round window (Chapter 2.10).

Pressure variations in the bulla cavity at 100 Hz were also measured; these variations

were smaller than those shown in Fig. 4-4 at 1000 Hz. The differences between the

pressure at the round window and the estimated PRW should be largest at 1000 Hz

since the shortest wavelength involved in all experiments is at 1000 Hz. Additionally

'If the speed of sound is 345- and the distance traveled is 4.6 mm then the phase lag for a uniform
plane wave would be o.o46m =0.013 cycles.

1000 sec
- -1
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the differences between the measured pressure and the actual pressure at the oval or

round window should be greatest in the bulla cavity since this cavity is larger than the

tympanic cavity.

IPPROBE / 1PR I PPROBE -PW

0.10- 8 0.0004
o Individual measurements o

o-00 Ag o 0.00.0000

-0.00
o -0.0008 - o Individual measurements

-0.10- Average-0.10
0 1 2 3 4 5 0 1 2 3 4 5

Distance (mm) Distance (mm)

Figure 4-4: The reported pressures are measured as a function of distance from the
bulla wall and are relative to the pressures measured simultaneously at the bulla wall.
A probe tube microphone was advanced from the bulla wall (Distance=0 mm) to the
round window niche (Distance=4.6 mm) .

4.3 Summary of pressure error estimates

Changes in the calibrations of the acoustic systems over the course of an experiment are

the largest errors discussed here (Fig. 4-1). The contribution to these errors caused by

movements of the system are clearly smaller than the total errors (Fig. 4-3). Errors due

to spatial variation in pressure within the cavities are negligible compared to the total

errors.

The total errors observed for the measurements on Cats #1, #2, #3 were much

greater than those observed for the measurements on Cats #4, #5, #6, and #7 (Ap-

pendix A). The measurement system was improved by altering the components of the

sound-source and microphone assemblies to have tighter fits. For this reason the results
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and discussion presented in the body of this thesis emphasize results from Cats #4 to

#7; results from Cats #1 to #3 are similar and can be found in the appendices.
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Chapter 5

Results: Stimulus to one window

5.1 Experimental results

Single-sided cochlear-potential measurements were made as a function of increasing

sound-pressure level while either the oval or round window was stimulated. The pressure

at the unstimulated window was effectively zero because the foramen plug was in place.

Examples of such measurements made on Cat #6 at 100 Hz, 300 Hz, and 1000 Hz are

shown in Fig. 5-1, 5-2, and 5-3. These results are characteristic of results from all other

cats (Appendix B).

The cochlear-potential response is described by its magnitude and angle. A linear

dependence requires:

1. The cochlear-potential magnitude must increase with stimulus level with a slope
of 1 with dB scales.

2. The cochlear-potential angle must be independent of stimulus level.

Nonlinear features can be seen in the pre-TTX measurements shown in Fig. 5-1, 5-2,

and 5-3. The cochlear-potential magnitude does not always increase linearly with a slope

of 1, even at levels well above the noisefloor; Fig. 5-3 provides the clearest example of

49

*r___UIIII__II____I_·-�·�·I�·IYI·IIIUII -



CAT #6
100 Hz

-80

-100

-120

-140

-160

.50

.25

W()

0to

a.0

N

0

-. 25

-.50

40 60 80 100 120

4

0

-41

-. -Pre-TTX
- Post-TTX

i .t

I I i ' I I

40 60 80 100 120

LEVEL (dB SPL)

Figure 5-1: CAT #6:

co

o-i
na.o

a.

.00

.5

zA;

40 60 80 100 120

- - Pre-TTX
Post-TX

. .

't

.
I I I I 1

40 60 80 100 120
LEVEL (dB SPL)

100 Hz. TOP: Magnitude and angle of Vcp as a function of
sound-pressure level both before and after the application of TTX. Either the oval or
round window was stimulated. BOTTOM: Ratio between the oval-window response and
the round-window response from the plots shown at the top.

50

a,
L

m
-

- 0

r0

a-0

I I~

. I i

I I I I



CAT #6
300 Hz

.50

.25

,
0)

a

0

N

0

-.25

-.50
40 60 80 100 120 40 60 80 100 120

c,
a)

a,

-- Pre-TTX 
- Post-TT X

.-- --- = .c)
, . >

A ! i

I- r' , I I - -
0o 60 80 100 120 >

LEVEL (dB SPL)

.55

.5

.45
4

-.Prp-TTX1 - Post-TTX

I 

- i

3;

0

I I I 

60 80 100 120

LEVEL (dB SPL)

CAT #6: 300 Hz. TOP: Magnitude and angle of Vcp as a function of
sound-pressure level both before and after the application of TTX. Either the oval or
round window was stimulated. BOTTOM: Ratio between the oval-window response and
the round-window response from the plots shown at the top.

51

-80

-100

-120

ar

0

0

-140

-160

-&

-a
:o

4

O

.A

4

Figure 5-2:

I .I I



CAT #6
1000 Hz

.25-·*.. OW Pre-TTX
-'- RW Pre-TTX
*-O- OW Post-TTX
-A- RW Post-TTX
---- noisefloor
- slope=1 0

a)
0

a-
0

N

-.25

-.50

-.75

40 60 80 100 120

~I I I I 
I I I 

40 60 80 100 120

.-. Pre-TX 
. Post-TTX

....... ...... . - a
.> 

- I I I, I I 

40 60 80 100 120 >

LEVEL

.5

.45

(dB SPL)

-. -. Prm-TT
- Post-TX

r 

_-------~r, _f__---------

_ I I I I I

40 80
LEVEL (dB SPL)

Figure 5-3: CAT #6: 1000 Hz. TOP: Magnitude and angle of Vcp as a function of
sound-pressure level both before and after the application of TTX. Either the oval or
round window was stimulated. BOTTOM: Ratio between the oval-window response and
the round-window response from the plots shown at the top.

52

-80

-1 00

m
1-

C
>G.

-120

1 40

-160

-

1
o

4

0

-4

120

--
.55bb



this nonlinear feature. At the stimulus levels between 60 and 80 dB SPL the cochlear-

potential magnitude both increases and decreases with increasing stimulus level. The

cochlear-potential angle varies over the entire stimulus range; pre-TTX 100 and 300

Hz measurements (Fig. 5-1 and Fig. 5-2, pre-TTX) have cochlear-potential angles that

increase with stimulus level over much of the stimulus dynamic range. (Many of the

other 100 and 300 Hz measurements included in Appendix B have cochlear-potential

angles that decrease with increasing stimulus level.) The cochlear-potential angle at

1000 Hz (Fig. 5-3) increases with increasing stimulus level except for a sudden quarter-

cycle decrease at a mid-stimulus level. This type of transition is evident in all of the

1000 Hz measurements on the other six animals (Appendix B).

TTX was added to the cochleas of Cat #6 and Cat #7 (Chapter 2.7) to reduce

the nonlinear component of the cochlear-potential response. The effect of TTX on Cat

#6 is shown in Fig. 5-1, 5-2, and 5-3, and the effect of TTX on Cat #7 is shown in

Fig. B-7, B-16, and B-34. TTX had larger effects on the Cat #6 results compared to

the Cat #7 results. The 1000 Hz cochlear-potential magnitude nonlinearity described

above (Fig. 5-3) is essentially eliminated after the application of TTX. TTX also appears

to reduce nonlinearities present in the cochlear-potential magnitude response at 100 and

300 Hz (Fig. 5-1 and 5-2).

The ratio between the response to the oval-window stimulus and the round-window

stimulus is also plotted in Fig.5-1, 5-2, and 5-3 and in the Appendix B figures. In general,

the cochlear-potential response magnitude is nearly independent of the stimulated win-

dow while the angle is nearly 0.5 cycles different for the two windows. The difference in

magnitude (in dB) between the cochlear-potential response to the oval-window stimulus

and the round-window stimulus is often greater at lower stimulus levels than at higher
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stimulus levels; however, the difference rarely exceeds 2 dB and is often less than 1 dB

(Appendix B). The difference in angle between the cochlear-potential response to the

oval-window stimulus and the round-window stimulus is usually 0.5 4 0.05 cycles; the

largest deviations from 0.5 cycles occur most at the lower stimulus levels (Appendix B).

Cochlear-potential magnitude sensitivities from all seven cats are compared in Fig. 5-

4. These results are interpolated from the plots in Appendix B. The top plot shows

the sound pressure required to produce a cochlear-potential magnitude of 10V when

the stimulus is delivered to the oval window, and the middle plot shows the sound

pressure required to produce a cochlear-potential magnitude of 10AuV when the stimulus

is delivered to the round window. The bottom plot is the dB difference between the sound

pressure required with an oval-window stimulus and the sound pressure required with a

round-window stimulus to produce a 10lV cochlear-potential magnitude response; the

difference is never more than 2.5 dB SPL.

Cochlear-potential angle measurements from all seven cats are compared in Fig. 5-5.

These results are also interpolated from the plots in Appendix B. The top plot shows

the cochlear-potential angle, relative to Pow, which corresponds to a cochlear-potential

magnitude of 101V when the stimulus is delivered to the oval window. The middle plot

shows the cochlear-potential angle, relative to PRW, which corresponds to a cochlear-

potential magnitude of 10V when the stimulus is delivered to the round window. The

bottom plot is the difference between the two cochlear-potential angles. The difference

is near 0.5 cycles in most cases and is always 0.5 ± 0.07 cycles.
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5.2 Discussion

If the common-mode gain C is negligibly small in magnitude (pressure-difference as-

sumption), when only the oval window is stimulated

Vcp = D Pow, (5.1)

since PRw 0. Likewise, when only the round window is stimulated the pressure-

difference assumption can be expressed as

Vcp = -D PRW, (5.2)

since Pow O. Equations 5.1 and 5.2 show that the pressure-difference assumption

requires the cochlear-potential magnitude to be independent of the stimulated window

and the cochlear-potential angle to be dependent on the stimulated window such that

the difference between the cochlear-potential angles when the oval and round windows

are stimulated is 0.5 cycles.

Stimulus to oval window: IVcpl = IDI IPowl (5.3)
Stimulus to round window: JVcpI = ID IPRw (5.4)

and

Stimulustooval window: Vcp = LD+ LPow (5.5)
Stimulus to round window: /Vcp = ZD + LPRW + 0.5 cycles (5.6)

Fig. 5-4 and 5-5 show that these requirements of the pressure-difference assumption

are approximated when IVcpt =. 10pV. Fig. 5-4 shows that the ratio between the oval-

window and round-window sound pressures, when Vcpl = 101&V, is never greater than

2.5 dB and this ratio is often ±0.2 dB. Fig. 5-5 shows that the difference in cochlear-

potential angle between the responses obtained from an oval-window and round-window

stimulus is nearly 0.5 cycles.
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Differences between the results shown in Fig. 5-4 and 5-5 and the pressure-difference

assumption can be interpreted as a combination of measurements errors and contribu-

tions of the common-mode response. A general representation of the single-sided stimuli

responses uses Equation 3.1 when the oval and round windows are stimulated, respec-

tively.

Stimulus to oval window: Vp = D Pow + 2C Pow (5.7)

1Stimulus to round window: Vcp = -D PRW + -C PRW (5.8)

Equations 5.7 and 5.8 could be solved simultaneously to give estimates of D and C.

However, the methods of the next chapter are more robust in the estimates of C. The

single-sided measurements presented here do not control for small amounts of acoustic

crosstalk through the foramen plug; instead the unstimulated window pressure is assumed

zero. Additionally, the cochlear-potential measurements are taken at different times, not

simultaneously, and small changes in cochlear sensitivity can occur and cause small

changes in the measured cochlear-potential response.

If ICI << DI we can ignore the common-mode component and estimate D based on

the pressure-difference assumption and the single-sided stimuli measurements discussed

in this chapter.

VCP
Stimulus to oval window): D - P (5.9)

Pow
Vcp

Stimulus to round window: = (5.10)
PRW

Estimates of D as a function of stimulus level are shown in Fig.5-6 for the single-sided

measurements of Fig. 5-1, 5-2, and 5-3. Estimates of D as a function of stimulus level for

all other single-sided measurements are included in Appendix B. These estimates of D

can be used as a measure of the linearity of a single-sided cochlear-potential measurement;

if the cochlear response is linear then both ID1 and ZD are independent of stimulus level.

58



Fig.5-6 shows that the estimates of D are dependent on sound-pressure level; therefore

Vc p is not linear. The variations in D are largest at the lower sound-pressure levels.

The dependence of D on level at 1000 Hz is prominent in both magnitude and angle;

this dependence is much reduced after the application of TTX. The level dependency at

300 Hz is small compared to those at 1000 Hz and 100 Hz and it too is reduced after

the application of TTX. At 100 Hz, nonlinearities in Vcp are present both before and

after the application of TTX; the level dependence of LVcp seems to be reduced after

the application of TTX.

Level dependencies in D shown in Appendix B are not consistent for one frequency

across cats or for one cat at all frequencies. In several cases the estimate of DI varies

by one to two orders of magnitude and the estimate of ZD varies by nearly 0.5 cycles

as a function of sound-pressure level (Fig. B-3, B-4, B-6, B-9, B-10, B-29 and B-33, pre-

TTX). In other cases the estimates of IDI and LD are nearly constant as a function of

sound-pressure level (Fig. B-7, B-18, B-19, B-27, B-31 and B-33, post-TTX).

The difference-mode gain D appears to be level dependent, at least in some cases.

At 1000 Hz the nonlinearities may be a result of the CAP contribution to the cochlear

potential since D becomes nearly independent of level after the application of TTX.

But the source of nonlinearity at 100 Hz is not clear. It could be argued that the TTX

was not as effective for the lower frequencies because the TTX did not permeate the

entire cochlea; neurons with the ability to phase-lock to a 100 Hz tone extend further

toward the apex of the cochlea than neurons with the ability to phase-lock to a 1000 Hz

stimulus. It is possible that the lower frequency stimuli evoked responses from apical

neurons whose CAP's were unaffected by the TTX. It is also possible that the more

apical hair cells have a nonlinear response.
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Fig. 5-7 and 5-8 summarize the estimates of D found from measurements on all seven

cats. The estimate of D is reported for the level at which the interpolated cochlear-

potential magnitude was 10u/V. There are not large differences between the estimates

of D found from the stimulus to the oval window and stimulus to the round window

cases. Inter-frequency variations for one cat are larger than inter-cat variations for one

frequency. In general, IDI increases with frequency and LD decreases with frequency.

This result is further discussed in Chapter 6.
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Chapter 6

Results: Stimuli to both windows

6.1 Experimental results

Simultaneous-stimuli measurement sets were made by stimulating both the oval and

round windows and varying the phase difference b between the two stimuli over one

cycle. All such measurement sets are shown in Appendix C. The discussion in this

chapter emphasizes measurements from Cats #4, #5, #6, and #7 because errors in the

pressure measurements of Pow and PRW were smaller during these later experiments.

Fig. 6-1 and 6-2 show simultaneous-stimuli measurement sets made at 1000 Hz on

Cat #7 with sound-pressure level as a parameter; the data in Fig. 6-1 were taken before

the application of TTX and the data in Fig. 6-2 were taken after the application of TTX.

The cochlear-potential magnitude and angle measurements are plotted as a function of

'b, the phase difference between the oval and round-window sound pressures. The left-

hand plot is the cochlear-potential magnitude, the middle plot is the cochlear-potential

magnitude in the region around ,b 0, and the right-hand plot is the cochlear-potential

angle. Data points where Vcpl > Noisefloor are represented by open circles and data
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Figure 6-1: Simultaneous-stimuli measurement sets and model fits at 1000 Hz on Cat
#7 before the application of TTX.
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Figure 6-2: Simultaneous-stimuli measurement sets and model fits at 1000 Hz on Cat
#7 after the application of TTX.
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points where Vcp < Noise floor are represented by open ovals. Each plot has a label

associated with it to identify the measurement order; for example the label "1000e_7"

refers to the fifth measurement made on Cat #7 at 1000 Hz. The measurement sets

are plotted in order of increasing stimulus level and not chronological order, and the

sound-pressure level printed on the magnitude plot is the measured sound-pressure level

of both IPowl and IPRwl.

Several features of the measurement sets shown in Fig.6-1 and 6-2 are seen in all of the

measurements shown in Appendix C. The cochlear-potential magnitude plots are roughly

symmetric about Ob = 0. A magnitude minimum occurs at an inter-window stimulus

phase difference ObMIN - Ocycles. A magnitude maximum occurs near = 0.Scycles and

is always close to the sum of the two cochlear-potential response magnitudes recorded

when the oval and round windows are individually stimulated. The dynamic range

of a given measurement set, the dB difference between the maximum and minimum

cochlear-potential magnitude, is roughly 40 dB when IPowl z IPRwl. The dynamic

range is sometimes limited by the noisefloor, especially when Powl and IPRwI are at

lower values.

In general, the cochlear-potential angle data points increase with increasing values of

b0 except for a sudden 0.5 cycle shift at p t 0. However, for some of the ears deviations

from this pattern occur, especially at the lower frequencies, as illustrated in Fig. 6-3 with

examples from five of the seven experimental animals. Between 'b = -0.5 and b = 0

the cochlear-potential angle increases with increasing Oi and shifts by about 0.5 cycles at

b = 0. But between pb = 0 and b = 0.5 the cochlear-potential angle does not increase

at the same rate as it increased between b = -0.5 and 0b = 0. In fact, the cochlear-

potential angle remains roughly constant between ,b = 0 and 0b = 0.1 for the examples
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shown in Fig. 6-3. To test if this asymmetry about b = 0 is a result of the order in which

the data points were collected, data points from Cat #5 were collected both in order of

increasing b and in a random order; there was no appreciable difference in the shape

of the curve. The asymmetry could also be a result of nonlinear behavior of the neural

component of the cochlear potential. The example from Cat #7 at 100 Hz in Fig. 6-3

shows that TTX did not affect the asymmetry, but TTX did not have large effects on

the single-sided cochlear potential measurements at 100 Hz on Cat #7 either (Fig. B-7).

The cause or mechanism of the angle asymmetry is not known.

There are not large differences between the pre-TTX measurement sets and the post-

TTX measurement sets on either Cat #6 or Cat #7. The biggest differences occur at

1000 Hz; 1000 Hz pre and post-TTX measurement sets are compared in Fig. 6-4. Differ-

ences between the pre and post-TTX measurement sets were expected to be most obvious

around ~p = 0 because single-sided level series measurements showed that TTX had the

biggest influence on Vcp at the lower stimulus levels or when VcPI < -120 dB re 1V

(Fig. B-33 and B-34). The only pre-TTX simultaneous-stimuli measurement set at 1000

Hz on Cat #7 which includes data points such that IVcp < -120 dB re 1V is shown

in Fig. 6-1 and is labeled "1000b_7". Comparison of this pre-TTX measurement with

the post-TTX measurement set in Fig. 6-2 labeled "1000d_7" shows nearly equivalent

results in the region around ~p = 0, the region where the TTX was expected to have

the biggest effect on the result (Fig. 6-4). Instead, the biggest difference between the

pre and post-TTX measurements is an approximate 5 dB decrease in cochlear-potential

magnitude after the application of TTX; this decrease is most easily seen in regions

where 4p ; 0.5 and in the single-sided measurements of Fig. B-34. Fig. 6-4 also compares

the pre and post-TTX simultaneous-stimuli measurements from Cat 6 at 1000 Hz;
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there are slight differences in the cochlear-potential magnitude and angle around 0b = 0.

These differences could be a result of the TTX, or differences between pre and post-TTX

measurements could also be caused by slight changes or imbalances in IPowl and IPRwl.

6.2 Model fits to the data: Estimation of C and D

We estimate the difference-mode and common-mode gains using the methods described

in Chapter 3. The measured values of Vcp, Pow, and PRW at each and every data point

are used to determine the estimates D and C that produce the least-squares difference

to Equation 3.4 ("linear fit") or Equation 3.14 ("logarithmic fit") for each measurement

set. The model fits to the cochlear-potential data, Vcp, obtained from Equation 3.4 and

Equation 3.14 are included on the plots of the simultaneous-stimuli measurement sets

in Appendix C and Fig. 6-1 and 6-2. There are not large differences between the results

of the two fitting procedures; the discussion here will concentrate on the linear fit of

Equation 3.4.

Many general aspects of the model fits are consistent with the data: the magnitude

maxima from both the fits and the data are nearly the same and both occur at b - 0.5,

the magnitude minimum from both the fits and the cochlear-potential data all occur at

b -_ 0, and the angles of both the models and the cochlear-potential data change rapidly

by about 0.5 cycles at b b 0. Differences between the linear and logarithmic fits are so

small that in most cases the two plots are nearly indistinguishable. The major difference

is illustrated in Fig. 6-1 (measurement "1000a_7") and Fig. 6-2 (measurement "1000f_7").

The largest deviation between the linear model fit and the cochlear-potential data occurs

near = 0 because the magnitude of the cochlear potential is small in this region and

large fractional differences are not weighted strongly in the linear-least-squares fit of
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Equation 3.4. The logarithmic fit does a better job fitting Vcp to the data points near

b = 0 but the fit near p = 0.5 is not as good as the linear model fit.

The linear model predictions of D and C from Equation 3.4 are summarized in Fig.6-

5 for all measurement sets on Cats #4 to #7. The estimates of IDI are more than an

order of magnitude greater than the estimates of C, and the magnitudes of both gains

increase by approximately an order of magnitude as frequency increases from 75 to 1000

Hz. The estimates of IDI have a smaller standard deviation than the estimates of CI

on a logarithmic scale, and the estimates of LD have a much smaller standard deviation

than the estimates of LC.

The common-mode rejection-ratio (CMRR) is calculated for all measurement sets

using Equation 3.3: CRR = 20logo- D . CRR values are shown in Fig. 6-6 and

do not appear to be a function of frequency. The mean values of CMRR range from

27.5 dB (75 Hz) to 34.5 dB (800 Hz). The lowest CIMRR is 18.6 dB at 300 Hz and the

highest CMRR is 53.8 dB at 100 Hz. The variation in CMRR is not surprising since

the standard deviation of C is large and CMiRR is calculated from C.

The correlation coefficients calculated for the model fit to each measurement set using

Equations 3.20 and 3.21 are shown in Fig. 6-7. In general, the magnitude correlation

coefficients are higher than the angle correlation coefficients. With the exception of

the two measurement sets at 75 Hz, the mean magnitude correlation coefficients are

all greater than 0.95, and the mean minus the standard deviation of all magnitude

correlation coefficients is greater than 0.9. The mean angle correlation coefficients are

all greater than 0.85, and the mean minus the standard deviation of all angle correlation

coefficients is greater than 0.7 (with the exception of the two measurement sets at 75

Hz). The angle correlation coefficients are more difficult to describe and less meaningful
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Figure 6-5: Estimate of D and C for each measurement set from Cats #4 to #7. D
estimates are represented by open symbols and C estimates are represented by closed
symbols. Because most of the measurements were at 100, 300, or 1000 Hz the plotted
points tend to overlap. To increase legibility, points for a given cat are shifted right
or left by a small amount, as indicated in the keys. TOP: Magnitudes of D and C.
BOTTOM: Angles of D and C.
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Figure 6-6: Calculation of the common-mode rejection-ratio (CMRR) from the estimates
of D and C for each measurement set from Cats #4 to #7. Because most of the mea-
surements were at 100, 300, or 1000 Hz the plotted points tend to overlap. To increase
legibility, points for a given cat are shifted right or left by a small amount, as indicated
in the keys.
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amount, as indicated in the keys.

76

£0~ ~ 0
AO o

CD

A

200

1.0

0.8

0Q
Q-

0.6

0.4

0

1.0

0.8

Na-

0.6

0.4

0
0

A

200

a
[]

-

r-'

I.

_

II I

m

I--'

I.-

_ .i. ii

- .1 I 11 I V , ., .



than the magnitude correlation coefficients because the angle data is periodic with a

period of 1 cycle and the computed angle correlation coefficients can change when the

angle data takes different values, or is "unwrapped" around different points.

Fig. 6-8 compares the estimates of D found in Chapter 5 to those found here. The

analysis in Chapter 5 assumes C = 0 and D is estimated as a function of level from the

single-sided level-series measurements. The estimates plotted in Fig. 6-8 are the means

computed from Cats #4 to #7 using the results of Fig. 5-7 and 5-8. Pre and post-

TTX measurements for Cat #6 and #7 were made; only pre-TTX measurements are

included in the mean estimates shown in Fig. 6-8 so that the results from these cats don't

dominate the results. Standard deviations are not included because each mean estimate

from Chapter 5 is computed from only one to four data points. The simultaneous-

stimuli measurement points in Fig. 6-8 are the mean values previously shown in Fig. 6-5.

There do not appear to be large differences between the two methods of estimating the

difference-mode gain D.

6.3 Discussion

6.3.1 General model behavior

In the model described by Equation 3.1 Vcp depends on both the magnitudes and angles

of the two complex constants D and C. This section illustrates how the model's behavior

depends on these quantities; the magnitudes and angles of D and C are specifically chosen

and Response defined by Equation 6.1 is computed. The signals "waveA" and "waveB"

are sinusoids of the same frequency and the variable Ob describes the phase difference
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Figure 6-8: Mean estimates of D using single-sided stimuli (Chapter 5) and simultaneous
stimuli (Chapter 6). The single-sided mean values of D are computed from the data
shown in Figures 5-7 and 5-8; only data from Cats #4 to #7 are used, and for Cats #6
and #7 only the pre-TTX single-sided stimuli measurements are used. The simultaneous
stimuli mean values of D were previously shown in Figure 6-5.
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between them.

Response = D(waveA - waveB) + IC(waveA + waveB) (6.1)

Common-mode gain of zero

A simple form of Equation 6.1 is to assume C = 0.

Response = D(waveA - waveB) (6.2)

Equation 6.2 is the pressure-difference assumption of Equation 1.1; three interesting

cases of Equation 6.2 are illustrated in Fig. 6-9.

1. Fig. 6-9A shows the case of IwaveAl = waveBI and D = 1. Responsel goes to
zero at bp = 0 and LResponse shifts from -0.25 cycles at = 0- to -0.75 cycles
at ' = 0+.

2. Fig. 6-9B shows the case of IwaveAl = IwaveBI and D = j. IResponsel goes to
zero at p = 0 and ZResponse shifts from 0 cycles at 4p = 0- to -0.5 cycles at
4p= O+ .

3. Fig. 6-9C shows the case of IwaveAl = 2waveBI and D = 1. Responsel goes to
a nonzero minimum of IResponsel = IwaveA - waveBI at 4' = 0 and LResponse
shifts from -0.25 cycles to 0.25 cycles near 4 = 0, but the phase shift is more
gradual than the cases where IwaveAj = IwaveBI.

To summarize, C = 0 requires Responsel to be a minimum at 4 = 0. This mini-

mum is zero only when IwaveAl = IwaveBI. When IwaveAl = IwaveBI, Response is

undefined at 4b = 0 because Responsel = 0. In general, ID affects IResponsej, and LD

affects LResponse. Differences between the magnitudes of the two input waves, IwaveAl

and IwaveB}, can have big effects on Responsel at values of b near zero; when these

magnitudes are not equal it is impossible for Responsej to reach zero.

To connect these examples to the experiments of this thesis, suppose that Pow =

waveA, PRW = waveB, Vcp = Response, and the common-mode gain is zero. This
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Figure 6-9: Model behavior when C=0 and (A) D=i, IwaveAl = IwaveBI; (B) D=j,

IwaveAI = IwaveBI; (C) D=I, IwaveAI = 21waveBI .
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situation is described by the pressure-difference assumption (Equation 1.1). Under these

conditions Vcpl should be limited by the noisefloor at b = 0 whenever IPowl = IPRwI.

During most of the measurements, attempts were made to keep IPowI = IPRwI, but it

was not uncommon for IPowl to differ from IPRWI by about 0.05 to 0.1 dB SPL (the

resolution of the attenuators which set IPowl and IPRWI was 0.1 dB). If IPowl IPRwI,

the dynamic range of the magnitude response is limited

Maximum Response IVcpl-o=0.5 IPOW + PRWI
Dynamic Range = Minimum Response IVcPI,=O IPow - PRWI (6.3)

The following example illustrates the effect of a small difference between IPowl and

IPRwI on the total dynamic range of the response. Suppose

IPowl = 2 Pa = 100 dB SPL (6.4)

and

IPRwI = 2.01 Pa = 100.05 dB SPL. (6.5)

The maximum response is proportional to the maximum effective input stimulus

I(Pow - PRW)Jp=0.5 = 4.01 Pa ~ 106 dB SPL (6.6)

and the minimum response is proportional to the minimum effective input stimulus

I(Pow - PRw),0=o = -0.01 Pa z 55 dB SPL. (6.7)

The total dynamic range is the ratio of these two values.

Dynamic Range = 51 dB (6.8)

IPowI and IPRwI differ by only 0.05 dB SPL in this example, but the dynamic range

is 51 dB. Most of the measurement sets shown in Appendix C have dynamic ranges

between 40 and 50 dB.

The observed dynamic range is limited not only by our ability to set IPowI = IPRWI,

but also by our ability to measure a response at exactly b = 0. If IPowI = IPRWI but

the measurement made closest to LPo w = LPRW is really LPow = LPRw + 0.01 cycles
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such that ,p = +0.01 cycles, the maximum dynamic range of Vcpl is limited to 26 dB.

Here is an example to illustrate this limitation. Suppose

IPowl = 2 Pa = 100 dB SPL (6.9)

and
IPRWJ = 2 Pa = 100 dB SPL. (6.10)

The maximum response is proportional to the maximum effective input stimulus

I(Pow - PRw)I0=o.5 = 4 Pa - 106 dB SPL (6.11)

and the minimum response is proportional to the minimum effective input stimulus

I(Pow - PRW)I,=O.Ox = 12 - 2e001 'j Pa - 0.13 Pa m 80 dB SPL (6.12)

The total dynamic range is the ratio of these two values.

Dynamic Range = 26 dB (6.13)

In the same way, a measurement made such that ± = +0.001 cycles is the closest

measurement made to 4' = 0 gives a maximum dynamic range of about 55 dB.

It is clear that mismatches in magnitude as small as 0.05 dB in magnitude and

0.001cycles in angle can have severe effects on the minimum Ivcl value that is measured

in a given measurement set, if C = 0.

Non-zero common-mode gain

This section presents examples constructed to examine the behavior of Equation 6.1

when both IDI and ICi are nonzero. Only cases where IDI >> CI are presented because

the experimental results and model predictions shown earlier in this chapter suggest that

IDI >> jCl for the cat cochlear system. The examples here use DI = 1 and ICl = 0.1

which corresponds to CMRR = 20 dB. Smaller values of CJ are not used because as the

difference between IDI and ICI increases (as CMRR increases) it becomes more difficult

to observe visually the effects of C on Response in Equation 6.1. Three interesting cases

are illustrated in Fig. 6-10.
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1. Fig. 6-10A shows that when D and C have the same angle, and ID} >> C,
IResponsej is a minimum at Ob = 0 and LResponse makes a 0.5 cycle transition
near b = 0. The difference between this case and the one shown in Fig.6-9A, where
C = 0, is that at 0b = 0 the minimum in magnitude is limited by the common-
mode component to be C(waveA + waveB) and can never be zero, and the angle
changes more slowly around = 0.

2. Fig. 6-10B shows that when D and C differ in angle by 0.25 cycles the minimum
value of Responsel does not occur at Ob = 0, the 0.5 cycle transition in angle is
not centered at ~b = 0, and the minimum of IResponsel is zero. For this special
case Responsel = 0 at b = 0.016 cycles (see discussion below). Additionally, the
dynamic range of IResponsel is infinite (only 70 dB shows due to finite sampling
resolution), but CMRR is still 20 dB.

3. Fig. 6-10C shows that when D and C have angles that differ by amounts other
than ±j, the minimum value of Responsel does not generally occur at b = 0, the
0.5 cycle transition in angle does not generally occur at b = 0, and the minimum
of Responsel is not generally zero. For this case the minimum value of IResponsej
occurs at b = 0.01 and the minimum of IResponse is 0.07.

To summarize, when IDI >> ICI and LD = LC, IResponsel goes to a minimum at

0b= 0 and this magnitude minimum is determined by {C. When LD and LC are not

equal the magnitude minimum does not occur at -b = 0 and Responsel can have a larger

dynamic range than when D = LC. For the special case of ZD differing from C by

±0.25 cycles there exists a value of b, 0b0, such that Responsel goes to zero. If

Response = 0 = D(waveA - waveB) + C(waveA + waveB) (6.14)

the ratio can be determined as

D 1 1+ waveA 1 14+Xej-6
__- __, (6.15)

C 2 1,, 2 1-XeJ ( °

where eA = Xej'o, X is the ratio between {waveAI and IwaveBi, and 0 is the

phase difference between waveA and waveB when Responsel = 0. When X = 1, as in

Fig. 6-10B, the solution of Equation 6.15 can be approximated as

CD =_ i O -1 (6.16)C jsin(,bo)
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or

1 .C
,bo = sin (j3) (6.17)

Equation 6.17 has solutions only when ZD differs from LC by +0.25cycles; thus Responsej

can go to zero only under this special condition.

6.3.2 Why is it difficult to estimate C?

We have seen that the dynamic ranges of the experimental measurement sets can be

limited by several factors.

1. Small deviations from IPowl = PRw]

2. The inability to make measurements at exactly bMIN

3. Noisefloors

4. Contributions of a common-mode component to the response

It is difficult to separate the effects of these factors from each other and from mea-

surement errors in Pow and PRW.

To better understand the contribution of the difference-mode and common-mode

components to the total cochlear response, as a function of 0b, Equation 3.1 is decom-

posed. If Powl and IPRwl ae exactly equal then D can be found directly when Ob = 0.5

and C can be found directly when 4b = 0.

D VCP 1 C(POW + PRW) VCP VP (6.18)
Pow - PRW 2 POW - PRW POW - PRW 2POW

2 VCP D(POW - PRW) =2 VCP VCP
C POW + PRW Pow + PRW Pow + Pw I=0= Pow I=o (6.19)

Equation 6.18 can yield a robust estimate of D even when pb only approximates 0.5 cycles

VCp
because IlcpI is large and does not change rapidly when 'b = 0.5, and the term POW-PRW

is much larger than the term (PO-W+PRW). However, when ICJ << IDI and there areP-PRW

85

UUII_____·___I__III__I____ I·-I



just slight deviations from Pow = PRW in either magnitude or angle, Equation 6.19

can make large errors in the estimates of C because VcpJ changes rapidly when 'b ~ 0,

and the term 2 +P is on the same order as the term D(POW-PRW) Therefore,Pow+PRW Pow+PR

when ICI << IDi, the common-mode response only dominates Vp when Pow = PRW

and the difference-mode response is much less than the common-mode response. It is

difficult to make the difference-mode component of the response go to zero, or at least

become smaller than the common-mode component of the response, because b is never

exactly zero and IPowl is never exactly equal to IPRwJ. As a result, the estimate of C

is highly dependent on both the resolution of the measurement system and errors in a

single measurement, while the estimate of D is not significantly affected by such factors.

6.3.3 How much is the estimate of C affected by small errors in pressure

measurements?

The discussion in Chapter 4 suggests that errors in the measurements of Pow and PRW

are probably less than 0.5 dB in magnitude and 0.01 cycles in angle; here we examine

the effects of such errors on the estimates D, C, and CbMRR. To examine the effects of

the errors in IPowi, IPRWI, LPow, and LPRw, the measured Vcp and PRW values from

the measurement set labeled "1000f7" shown in Fig. 6-2 are held constant while errors

that range from -0.5 to 0.5 dB in magnitude and -0.01 to 0.01 cycles in angle are added

to the measured value of Pow. New estimates of D, C, and CMRR are computed from

Equation 3.1 for each combination of magnitude and angle error.

Fig. 6-11 shows effects on D and C of small errors in the measurement of Pow. The

errors have little effect on DI or ZD but there are large changes in C and LC. The ratio

between the maximum and minimum values of IDI is nearly 1 (1.07), and the difference
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log 10 ICIlog 10 IDI

-5.36

-5.38

0.01

t6o0
6i

ZC (cycles)
ZD (cycles)

Figure 6-11: Estimates of
nitude and angle of Pow.
and the errors in pressure

D and C made for combinations of small errors in the mag-
The errors in pressure magnitude range from -0.5 to 0.5 dB

angle range from -0.01 to 0.01 cycles.
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i d05

Figure 6-12: Estimates of CMRR made for combinations of small errors in the mag-
nitude and angle of Pow. The errors in pressure magnitude range from -0.5 to 0.5
dB and the errors in pressure angle range from -0.01 to 0.01 cycles. Contour lines for
CMRR = 50,40,30,25 are drawn in the CMRR = 0 plane.
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between the maximum and minimum values of LD is less than 0.01 cycles. However, the

ratio between the maximum and minimum values of C[ is infinite; if the plotted points

had been sampled more densely this would be visible from Fig. 6-11. The angle LC takes

values from -0.5 to 0.5 cycles. Since CMRR is computed directly from D and C, it is

not surprising that CMRR shows the same type of variation as I; at the magnitude

and angle error where [_C[ goes to zero, CMRR goes to infinity (Fig. 6-12).

The procedure illustrated here, introducing errors in the measured values of Powl

and LPow and calculating D, C, and CMRR from each synthesized value of IPowl and

ZPow, was performed on all measurement sets from Cats #4 to #7. A plot of CMiRR

such as the one shown in Fig. 6-12 was formed with ranges of ±0.5 dB in magnitude

and ±0.01 cycles in angle from the original measurement. In most cases a large peak

occurred at some point on the plot (the location varied) while the minimum CIMRR

value was never less than about 20 dB. In a few cases the maximum peak of the mesh

was not contained within 0.5 dB in magnitude and 0.01 cycles in angle from the

original measurement, but part of the peaked area always existed within this range.

The position of the peak in the CMRR vs. Pow error analyses did not stay constant

among measurement sets. In some cases consecutive measurement sets made at the

same frequency and level, and with no movement of the microphone and sound-source

assemblies, predict peaks in the CMRR plots that are in different quadrants. This

suggests that something about the cochlear-potential response changed with time; based

on the result shown in Fig. 4-3 it does not seem possible that the microphone responses

could change by up to 0.2 dB in magnitude and 0.005 cycles in angle in a small amount

of time when the microphone and sound-source assemblies were not touched.

To summarize, small errors in Pow and PRW, and possibly small changes in the
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cochlear-potential sensitivity, can cause large variations in the estimate C and thus

CMRR. The upper-bound of C, or the lower bound of CMRR, remains approximately

constant for the error range examined here; CMRR is rarely less than 20 dB at any

frequency for any combination of magnitude and angle error introduced here. On the

other hand, the lower-bound of C, or the upper bound of CMRR, is more difficult

to define. CMRR has a peak value of infinity (or CI has a minimum value of 0) for

some combination of magnitude and angle error introduced here in almost all of the

measurement sets. These large dependencies of CMRR and C on the precision of the

pressure measurements coupled with a possible change in cochlear sensitivity over time

makes it impossible to determine an upper bound for CMRR other than infinity from

our measurements.

6.3.4 Comparison to Wever and Lawrence

The experimentally measured minimum of Vcpl occurs at a difference in phase between

the oval and round-window sound pressures b = IbMINdat,a- IMINdata is an interesting

quantity because it helps describe D and C. IfC = 0, ,bMINd,t must equal zero, but more

generally bMINv,,d is also equal to zero when LD = LC (Chapter 6.3.1). In some of the

measurements bMINda, occurs when Vcpl is below the noisefloor, and the precise value

of 0bMINdata is not known. However, the minimum magnitude of the model prediction,

Vcp, which occurs at bMINmodeL, is always known. A t-test of the null hypothesis "the

mean value of 0bMINdata and the mean value of kbMINm,de, are the same", shows that there

are not statistically significant differences between these two mean values at 100, 300,

and 1000 Hz (p = 0.01). Additionally, t-tests of the null hypotheses "the mean value

of bMNdta is equal to zero" and "the mean value of 0MINoe,, is equal to zero", show
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that there are not statistically significant differences between the mean value of OMINdat,

and MIlNdata = 0 and the mean value of MINdata and IMINmodel = 0 at 100, 300, and

1000 Hz (p = 0.01). Since the minimum magnitude of the model prediction, Vcp, occurs

at '? = /MINmodel ? MINdt. O, we use OMINnmdel to represent the experimental

VbMINdota results.

0.02

0.01

0

-0.01

-0.02

*

0
o

-- Mean and std (shifted -20 Hz)
A Cat #4 (shifted -10 Hz)
O Cat #5 (shifted 0 Hz)
O Cat #6 (shifted 10 Hz)
O Cat #7 (shifted 20 Hz)

0 200 400 600
Frequency (Hz)

Figure 6-13: ,bMINmodel, the difference in phase between the oval and round-window
pressures at which the minimum magnitude of the model prediction Vfp occurs, for
each measurement set from Cats #4 to #7. To increase legibility, points for a given cat
are shifted right or left by a small amount, as indicated in the keys.

Fig.6-13 plots 1MINmOdel as a function of frequency; ?IMINmodel is within O.02cycles of
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Figure 6-14: Comparison of ObMINdaa from Wever and Lawrence (1950) with the model
prediction ,bMINmodel from the data presented here. There are minor differences in

,MINmodel and OMINdta found in this thesis; see text for details.
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Figure 6-15: Data from measurement "1000c_7" of this thesis shifted such that
4'MINdat = 0.03 cycles in order to correspond to the result of Wever and Lawrence
(1950). The linear fit to this shifted data results in CMiRR = 14dB, a decrease of 21dB
from the result found in this thesis.

05
318

; = 0 for all measurement sets from Cats #4 to #7. Fig.6-14 compares the means values

of bMIN,Ode, found here to the values of IbMINd,a measured by Wever and Lawrence

(1950). The Wever and Lawrence values appear significantly different from ObMINd,ta 0

for frequencies between 100 and 1000 Hz, but the measurements reported in this thesis

suggest that IMINdata and ?bMINmodel occur at k 0.

Differences between the results found in this thesis and those found by Wever and

Lawrence are illustrated as follows. The Ob values from the data of measurement set

"1000c_7", shown in Fig. 6-2, are shifted by 0.03 cycles (the ObMINda,t reported by Wever

and Lawrence, 1950) and the least-squares fit is again applied to the data. This result is

shown in Fig. 6-15; the shifted data is barely distinguishable from the result in Fig. 6-2.

However the shift of only 0.03 cycles in ibMINd,ta has a significant affect on the estimates

of C and CMRR; this shift increases ICI from 1.04 * 10- 7 to 1.12 * 10- 6 and reduces
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CMRR from 35dB to 14dB. Thus the results of Wever and Lawrence suggest much lower

CMRR values than those found here. The nonzero values of OMIN reported by Wever

and Lawrence between 100 and 1000 Hz are suggestive of a significant common-mode

component of the cochlear-potential response.

6.3.5 Comments on the Bekesy result

Audiometric results from B6kesy (1936a; 1960, Fig. 5-10) suggestive of a nonzero common-

mode gain were discussed in Chapter 1.3. Briefly, using ears with no ossicles Bekesy

measured an increase in hearing sensitivity as frequency decreased; it is presumed that

this increased sensitivity was correlated with a decrease in the pressure difference be-

tween the oval and round windows. If this is true, such a result is not consistent with

the experimental results of this thesis. However, several factors can possibly explain the

Bk6sy result.

The threshold measurements performed on the ears with no ossicles do not necessarily

measure the threshold of hearing of the ossicle-less ear. Instead, the thresholds are

determined by the most sensitive sensation to an acoustic stimulus presented to the ear

with a head phone. One possibility is that a tactile sensation had a lower threshold than

the hearing sensation for the subjects tested. Between 5 and 20 Hz the average threshold

measured on these subjects is within one order of magnitude of one measure of tactile

thresholds to intense sound stimuli (B4kesy 1936b; 1960, Fig. 7-48). Another possibility is

that acoustic crosstalk" occurred between the earphone and the contralateral "normal"

ear. It does not appear that potential responses from the normal ear were masked.
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Chapter 7

Summary

Experimental results which directly support the common assumption that the cochlea

responds to the difference in pressure between the oval and round windows were pre-

sented. The cochlear response was represented as two components: the difference-mode

response results from the difference in pressure between the oval and round windows

and the common-mode response results from the summation in the pressures at the oval

and round windows. The common-mode response was difficult to measure because it

was small compared to the total cochlear response. A conservative summary of our

data is that the common-mode gain is at least one order of magnitude smaller than the

difference-mode gain. However, most of our data is also consistent with a common-mode

gain of zero. Thus the ratio between the difference-mode gain and the common-mode

gain, CMRR, is between 20 dB and infinity.

It is not trivial to put a tighter bound on this large CMRR range. To decrease

the current range, the uncertainties in pressure measurements of less than 0.5 dB in

magnitude and 0.01 cycles in angle must be reduced. Also, further study of how the

cochlear-potential response changes with time is needed.
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The importance of the difference-mode response to hearing suggests that procedures

such as the type IV tympanoplasty should improve hearing in ears with no ossicles.

Surgeons should continue attempts to maximize the pressure difference between the oval

and round windows.
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Appendix A

Summary of experimental

animals and calibrations

Appendix A summarizes all experiments used to develop the methodology and to obtain

results for this thesis. Information specific to each cat is briefly discussed. Measurements

of the acoustic isolation between Pow and PRW, as shown in Fig. 2-3, are presented for

each experimental animal. Also, changes in the calibrations of the sound-source and

microphone assemblies, as depicted in Fig. 4-1 and 4-2, are shown for each experiment.

Measurements used to define all noisefloors are displayed in tables. Responses from Cats

#6 and #7 to clicks and tone bursts are shown for both pre and post-TTX measurements.

A.1 Brief description of each experiment

Cat#1: July 14, 1993

Both single-sided and simultaneous-stimuli measurements were made on the left ear.

The sound sources were not re-calibrated during the experiment. At the end of the
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experiment a calibration was performed and the result was significantly different from

the calibration at the beginning of the experiment; the sound-pressure measurements

of magnitude and angle by the oval and round-window microphones are questionable

to within several dB in magnitude and several degrees in angle. At the end of the

experiment the earcanal was found to be full of fluid a few minutes after the removal of

the oval-window sound source and microphone. It is not known how much of this fluid

was in the earcanal and middle-ear space during the experiment or how much of the

fluid seeped into the earcanal from the tissue surrounding the meatus after the removal

of the microphone. Additionally, condensation was present on the diaphragm of the

earcanal microphone. There was no fluid in the bulla cavity and no condensation on

the round-window microphone. The round window looked opaque and vascular; it is

possible that an infection existed. In subsequent experiments the sound systems were

recalibrated several times over the course of the experiment, the middle-ear air spaces

were monitored and the cats were given penicillin to fight infections.

Cat#2: July 27, 1993

Severe bleeding occurred during the first attempt to plug the foramen of the left middle-

ear space. The right ear was surgically prepared and more severe bleeding occurred when

the external carotid was cut. The cat survived and single-sided and simultaneous-stimuli

measurements were made but responses were not repeatable during the simultaneous

stimuli measurements. Additionally muscular activity superimposed on the cochlear-

potential response was observed.
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Cat#3: August 5, 1993

There were no physiologic problems with the cat. Numerous single-sided and simultaneous-

stimuli measurements were made on the left ear. In several cases the pressures at the

two windows were not equal in magnitude; instead the pressures were chosen such that

the resultant single-sided cochlear-potential magnitudes were equal. The system was

re-calibrated several times during the experiment. Variations in calibrations occurred

which were significantly greater than those in the final four experiments.

The stability of the acoustic systems was increased substantially after this experi-

ment. Parts of the couplers between the sound-sources and microphones were modified

to have tighter fits. This alteration allowed the acoustic assemblies to be moved without

large changes in calibration (Chapter 4).

Cat#4: September 22, 1993

There were no physiologic problems with the cat. The acoustic systems were re-calibrated

several times during the experiment and the changes in calibration were much smaller

than previous experiments; these changes were on the order of a few tenths of a dB in

magnitude and a hundredth of a cycle in angle (Fig. A-12 and A-13). Measurements

were made at 75 Hz, 100 Hz, 250 Hz, 500 Hz, 800 Hz, and 1000 Hz. Prior to this

experiment the cochlear-potential electrode was coupled through a 1000 n resistor to

ground. Radiation from the sound sources at maximum input levels did not produce an

electrical artifact that could be recorded by the resistor - electrode system.
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Cat#5: March 21, 1994

There were no physiologic problems with the cat. The acoustic systems were re-calibrated

several times during the experiment and the changes in calibration were less than 0.2

dB in magnitude and less than 0.003 cycles in angle (Fig. A-14 and A-15). After each

calibration a small brass tube was used to couple the two sound-source and microphone

assemblies together. A sound common to both microphones was produced and it was

confirmed that the two microphone calibrations were consistent. This procedure was

repeated after the assemblies were decoupled from the cat. Measurements were made at

100 Hz, 300 Hz, and 1000 Hz on the right ear. The effect of artifactual coupling from

the earphones to the cochlear-potential electrode was not checked. The distance from

the oval window to the position of the probe tube in the earcanal was measured to be

4.9 mm, and the distance from the round window to the position of the probe tube on

the bulla cavity was measured to be 7.6 mm; the difference is 2.7 mm.

Cat#6: August 11, 1994

There were no physiologic problems with the cat. The system was re-calibrated several

times during the experiment and the changes were less than 0.2 dB in magnitude and less

than 0.004 cycles in angle (Fig. A-16 and A-17). The calibrations were checked with the

small brass tube described above. Measurements were made at 100 Hz, 300 Hz, and 1000

Hz on the right ear. TTX was applied to reduce the neural component of the cochlear-

potential response (CAP). A significant electrical artifact from the sound source was

found at the end of the experiment. When the sound sources were plugged with cotton

and then recoupled to the cat the round-window-electrode response increased linearly

with input voltage. The highest levels were comparable to and possibly greater than
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the lowest cochlear-potential measurements made during the experiment; it is likely that

the simultaneous-stimuli cochlear-potential measurements were contaminated by this

electrical artifact when Vcp| was near a minimum.

Cat#7: September 8, 1994

There were no physiologic problems with the cat. The system was re-calibrated several

times during the experiment and the changes were less than 0.8 dB in magnitude and

less than 0.015 cycles in angle (Fig. A-18 and A-19). Measurements were made at 100

Hz, 300 Hz, and 1000 Hz on the right ear. The calibrations were checked with the small

brass tube described above. TTX was applied to eliminate the neural component of the

cochlear-potential response. All cables used in the experiments were shielded and no

electrical artifact was detectable.
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A.2 Acoustic crosstalk for each animal
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Figure A-1: Measurements of acoustic crosstalk between the tympanic and bulla
cavities from Cat #1. LEFT: Measurement of the transfer function between the
oval-window microphone response Vowm,, and the oval-window sound-source input
VDACOW, and measurement of the transfer function between the round-window mi-
crophone response VRWmiC and the oval-window sound-source input VDACow. The
round-window sound-source was off. RIGHT: Measurement of the transfer function be-
tween the oval-window microphone response Vow,ic and the round-window sound-source
input VDACRW, and measurement of the transfer function between the round-window
microphone response VRw,m, and the round-window sound-source input VDACRW. The
oval-window sound-source was off.
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Figure A-2: Measurements of acoustic crosstalk between the tympanic and bulla
cavities from Cat #2. LEFT: Measurement of the transfer function between the
oval-window microphone response VOWmic and the oval-window sound-source input
VDACow, and measurement of the transfer function between the round-window mi-
crophone response VRWmic and the oval-window sound-source input VDACOw. The
round-window sound-source was off. RIGHT: Measurement of the transfer function be-
tween the oval-window microphone response Vow,mI and the round-window sound-source
input VDACRW, and measurement of the transfer function between the round-window
microphone response VRWmC and the round-window sound-source input VDACRw. The
oval-window sound-source was off.
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Figure A-3: Measurements of acoustic crosstalk between the tympanic and bulla
cavities from Cat #3. LEFT: Measurement of the transfer function between the
oval-window microphone response Vow,,c and the oval-window sound-source input

VDACow, and measurement of the transfer function between the round-window mi-
crophone response VRWm,i and the oval-window sound-source input VDACOW. The
round-window sound-source was off. RIGHT: Measurement of the transfer function be-
tween the oval-window microphone response Vowmjc and the round-window sound-source
input VDAC,w, and measurement of the transfer function between the round-window
microphone response VRWmi, and the round-window sound-source input VDACRW. The
oval-window sound-source was off.
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Figure A-4: Measurements of acoustic crosstalk between the tympanic and bulla
cavities from Cat #4. LEFT: Measurement of the transfer function between the
oval-window microphone response VoWmic and the oval-window sound-source input
VDACOW, and measurement of the transfer function between the round-window mi-
crophone response VRWm c and the oval-window sound-source input VDACOW. The
round-window sound-source was off. RIGHT: Measurement of the transfer function be-
tween the oval-window microphone response VOWmic and the round-window sound-source
input VDACRW, and measurement of the transfer function between the round-window
microphone response VRWmic and the round-window sound-source input VDACRw. The
oval-window sound-source was off.
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Figure A-5: Measurements of acoustic crosstalk between the tympanic and bulla
cavities from Cat #5. LEFT: Measurement of the transfer function between the
oval-window microphone response Vowc, and the oval-window sound-source input
VDACOW, and measurement of the transfer function between the round-window mi-
crophone response VRWmi, and the oval-window sound-source input VDACOW. The
round-window sound-source was off. RIGHT: Measurement of the transfer function be-
tween the oval-window microphone response Vowmtc and the round-window sound-source
input VDACRW, and measurement of the transfer function between the round-window
microphone response VRWmic and the round-window sound-source input VDACRW. The
oval-window sound-source was off.
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Figure A-6: Measurements of acoustic crosstalk between the tympanic and bulla
cavities from Cat #6. LEFT: Measurement of the transfer function between the
oval-window microphone response Vow,,ic and the oval-window sound-source input
VDACow, and measurement of the transfer function between the round-window mi-
crophone response VRWmic and the oval-window sound-source input VDACOW. The
round-window sound-source was off. RIGHT: Measurement of the transfer function be-
tween the oval-window microphone response VOWmic and the round-window sound-source
input VDACRW, and measurement of the transfer function between the round-window
microphone response VRWmi, and the round-window sound-source input VDACRW. The
oval-window sound-source was off.
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Figure A-7: Measurements of acoustic crosstalk between the tympanic and bulla
cavities from Cat #7. LEFT: Measurement of the transfer function between the
oval-window microphone response Vowmic and the oval-window sound-source input
VDACow, and measurement of the transfer function between the round-window mi-
crophone response VRwmic and the oval-window sound-source input VDACOW. The
round-window sound-source was off. RIGHT: Measurement of the transfer function be-
tween the oval-window microphone response Vow,,i and the round-window sound-source
input VDACRW, and measurement of the transfer function between the round-window
microphone response VRwmiC and the round-window sound-source input VDACRW. The
oval-window sound-source was off.
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A.3 Changes in microphone calibration
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Figure A-8: The differences in SPL and SPL between the initial calibration and
Vomic VRWmic

subsequent calibrations during the experiment on Cat #2. The first measurement of
SPL ( SPL ) was used to normalize all succeeding measurements of VSPL (VSPL );
O W.mic RW., Vmic Wm

magnitudes (in dB) and angles (in cycles) of the ratios are plotted. Time of day = 10
hours is the time of initial calibration.
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Figure A-9: The maximum changes in SPL and
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during the experiment on Cat #2.
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Figure A-10: The differences in VSPL and SPL between the initial calibration and
subsequent calibrations during the experiment on Cat #3. The first measurement of
vow. ( VR9W ) was used to normalize all succeeding measurements of VoSPL (VRWP);

magnitudes (in dB) and angles (in cycles) of the ratios are plotted. Time of day = 10
hours is the time of initial calibration.
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Figure A-12: The differences in SPL and SPL between the initial calibration andVwFigure A-12: The differencesi VRWc
subsequent calibrations during the experiment on Cat #4. The first measurement of

SPL SPL SPL RPmic
Omi (SRWiPL) was used to normalize all succeeding measurements of VSPL (VSPL );

magnitudes (in dB) and angles (in cycles) of the ratios are plotted. Time of day = 12
hours is the time of initial calibration.
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Figure A-13: The maximum changes in SPL and SPL as a function of frequency
Vow.n VRWmion 

during the experiment on Cat #4.
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Figure A-14: The differences in SPL and SPL between the initial calibration and
Vow.;i VRWmi-

subsequent calibrations during the experiment on Cat #5. The first measurement of
VoPL (SPL ) was used to normalize all succeeding measurements of PL (RP);

magnitudes (in dB) and angles (in cycles) of the ratios are plotted. Time of day = 0
hours is the time of initial calibration.
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Figure A-16: The differences in SPL and SPL between the initial calibration andVow.i VRwmi¢
subsequent calibrations during the experiment on Cat #6. The first measurement of

SPL; (V P ) was used to normalize all succeeding measurements of VSPL V iSPL );

magnitudes (in dB) and angles (in cycles) of the ratios are plotted. Time of day = 18
hours is the time of initial calibration.
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Figure A-18: The differences in VOL and SPL between the initial calibration and

subsequent calibrations during the experiment on Cat #7. The first measurement of
SVP (SPgL;;) was used to normalize all succeeding measurements of owm ;

magnitudes (in dB) and angles (in cycles) of the ratios are plotted. Time of day = 17
hours is the time of initial calibration.
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A.4 Noisefloor calculations
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Table A.1: Measurements used to define the noisefloor of Vcp from Cat #1. The first 15
rows are the specified frequency component of the VcpJ response to a 1000 Hz tone, in
units of dB re 1 volt. These measurements are averaged and used as an estimate of the
noisefloor of Vcp. The noisefloor is defined as the mean plus two standard deviations
(also in dB re 1 volt). For simplicity the numbers have been rounded to the nearest
integer, however, the calculations used more significant digits.
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NOISEFLOOR MEASUREMENTS: CAT #2
100 Hz 200 2 Hz 400 Hz 600 Hz 800 Hz

-115 -118 -128 -129 -135
-120 -132 -141 -146 -141
-115 -124 -130 -133 -135
-117 -124 -133 -132 -139
-120 -128 -137 -131 -136
-118 -125 -128 -138 -137

-122 -131 -148 -136 -158
-130 -138 -145 -136 -143
-125 -135 -140 -137 -145
-112 -119 -125 -132 -130
-123 -125 -141 -146 -138
-113 -135 -142 -141 -139
-124 -130 -131 -139 -141
-121 -131 -133 -141 -137

-117 -128 -130 -140 -138
-130 -149 -150 -148 -141
-114 -124 -130 -131 -133
-131 -130 -134 -137 -143
-113 -121 -126 -132 -132

mean -120 -129 -135 -137 -139

std 6 7 7 6 6
Noisefloor -108 -114 -120 -126 -127

Table A.2: Measurements used to define the noisefloor from Vcp of Cat #2. The first 15
rows are the specified frequency component of the Vcp response to a 1000 Hz tone, in
units of dB re 1 volt. These measurements are averaged and used as an estimate of the
noisefloor of Vcp. The noisefloor is defined as the mean plus two standard deviations
(also in dB re 1 volt). For simplicity the numbers have been rounded to the nearest
integer, however, the calculations used more significant digits.
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NOISEFLOOR MEASUREMENTS: CAT #3

100 Hz 200 Hz 400 Hz 600 Hz 800 Hz
-131 -133 -144 -135 -146
-156 -135 -145 -138 -149
-137 -135 -139 -146 -145
-133 -133 -145 -144 -147
-133 -134 -142 -142 -140
-131 -131 -142 -137 -143
-136 -138 -146 -143 -148
-140 -142 -149 -147 -141
-151 -135 -143 -144 -147
-143 -137 -144 -136 -145
-140 -136 -147 -150 -147
-144 -137 -145 -139 -143
-139 -136 -144 -135 -149
-147 -132 -141 -141 -154
-143 -133 -146 -142 -147

-130 -134 -143 -148 -138
-136 -134 -145 -142 -148
-138 -134 -150 -159 -150

mean -139 -135 -144 -143 -146
std 7 3 3 6 4

Noisefloor -125 -130 -139 -131 -139

Table A.3: Measurements used to define the noisefloor from Vcp of Cat #3. The first 15
rows are the specified frequency component of the Vcp response to a 1000 Hz tone, in
units of dB re 1 volt. These measurements are averaged and used as an estimate of the
noisefloor of Vcp. The noisefloor is defined as the mean plus two standard deviations
(also in dB re 1 volt). For simplicity the numbers have been rounded to the nearest
integer, however, the calculations used more significant digits.
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NOISEFLOOR MEASUREMENTS: CAT #4

75 Hz 100 Hz 250 Hz 500 Hz 800 Hz
-143 -142 -149 -159 -156
-132 -135 -145 -154 -160
-148 -131 -147 -159 -141
-129 -140 -133 -142 -146
-144 -134 -142 -151 -150
-144 -143 -165 -160 -150
-140 -141 -153 -154 -154
-137 -140 -154 -156 -158
-136 -148 -156 -155 -158
-124 -127 -141 -149 -149

-133 -131 -141 -141 -147
-133 -137 -152 -154 -162
-144 -144 -158 -165 -150
-137 -142 -151 -160 -157
-138 -132 -142 -163 -156

-134 -141 -151 -156 -151
-134 -151 -145 -152 -156
-142 -150 -150 -156 -154
-132 -142 -153 -160 -155
-142 -134 -152 -156 -151
-140 -141 -152 -162 -163

-144 -139 -164 -156 -169
mean -138 -139 -150 -155 -154

std 6 6 8 6 6
Noisefloor -126 -127 -135 -143 -141

Table A.4: Measurements used to define the noisefloor from Vcp of Cat #4. The first 22
rows are the specified frequency component of the Vcp response to a 1000 Hz tone, in
units of dB re 1 volt. These measurements are averaged and used as an estimate of the
noisefloor of Vcp. The noisefloor is defined as the mean plus two standard deviations
(also in dB re 1 volt). For simplicity the numbers have been rounded to the nearest
integer, however, the calculations used more significant digits.
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Table A.5: Measurements used to define the noisefloor of Vcp from Cat #5. Either 11 or
6 measurements of Vcp (dB re 1 volt) were made with no stimulus. These measurements
are averaged and used as an estimate of the noisefloor of Vcp. The noisefloor is defined
as the mean plus two standard deviations (also in dB re 1 volt). For simplicity the
numbers have been rounded to the nearest integer, however, the calculations used more
significant digits.

NOISEFLOOR MEASUREMENTS: CAT #6

100 Hz 300 Hz 1000 Hz
-149 -149 -147
-148 -155 -147
-151 -158 -143
-159 -154 -151
-147 -150 -149
-145 -154 -148

-147
-143
-146
-148
-146

mean -150 -153 -147
std 5 3 2

Noisefloor -140 -147 -142

Table A.6: Measurements used to define the noisefloor from Vcp of Cat #6. Either 11 or
6 measurements of Vcp (dB re 1 volt) were made with no stimulus. These measurements
are averaged and used as an estimate of the noisefloor of Vcp. The noisefloor is defined
as the mean plus two standard deviations (also in dB re 1 volt). For simplicity the
numbers have been rounded to the nearest integer, however, the calculations used more
significant digits.
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NOISEFLOOR MEASUREMENTS: CAT #7

100 Hz 300 Hz 1000 Hz
-139 -155 -148
-132 -165 -158
-130 -154 -161
-131 -156 -150
-133 -143 -159
-141 -152 -148
-134 -155 -160
-139 -158 -155
-167 -164 -158
-138 -160 -148

-136 -160 -153
mean -138 -156 -154

std 10 6 5

Noisefloor -118 -144 -144

Table A.7: Measurements used to define the noisefloor from Vcp of Cat #7. 11 mea-
surements of Vcp (dB re 1 volt) were made with no stimulus. These measurements are
averaged and used as an estimate of the noisefloor of Vcp. The noisefloor is defined as
the mean plus two standard deviations (also in dB re 1 volt). For simplicity the numbers
have been rounded to the nearest integer, however, the calculations used more significant
digits.
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A.5 Effects of TTX

TTX was added to the cochleas of Cat #6 and Cat #7 in order to eliminate the nonlinear

CAP component of the cochlear-potential response (Chapter 2.7). Cochlear-potential

measurements were made in response to click and tone-burst stimuli both before and

after the application of TTX.

Pre and post-TTX cochlear-potential responses to click stimuli (approximately 85

dB SPL) are shown in Fig. A-20 and A-21 for Cat #6 and Cat #7, respectively. In both

cases a small cochlear-microphonic response occurs at about 1 ms; the Cat #6 cochlear

microphonic is about 5 V (Fig. A-20), and the Cat #7 cochlear microphonic is about

2jV (Fig.A-21). The cochlear-microphonic component of the cochlear-potential response

is not affected by the TTX. The responses from both cats also have neural components

which occur between about 2 and 4 ms; the peak at about 2 ms is often referred to as

the N1 component. The N1 component from Cat #7 is about 20 ,V larger than the N1

component from Cat #6. The N1 and other neural components of the cochlear-potential

response are eliminated after the application of TTX; this suggests the TTX successfully

blocked at least some of the nonlinear neural response in these animals.

Pre and post-TTX cochlear-potential responses to 100 Hz and 1000 Hz tone-burst

stimuli (approximately 110 dB SPL) are shown in Fig. A-22, A-23, A-24, and A-25. The

Cat #6 cochlear-potential response to a 100 Hz tone burst shows a change after the ap-

plication of TTX; the pre-TTX response looks "noisy" and nonlinear while the post-TTX

response resembles the linear 100 Hz stimulus tone. The pre and post-TTX cochlear-

potential responses to a 100 Hz tone burst from Cat #7 are similar and neither response

looks as nonlinear as the pre-TTX 100 Hz response from Cat #6. The application of

TTX also affected the cochlear-potential response to 1000 Hz tone-burst stimuli. Both
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the Cat #6 and Cat #7 pre-TTX responses show an initial increased response at about

2 ms; this increase is the neural component of the cochlear-potential response and it is

eliminated after the application of TTX. Additionally, the post-TTX 1000 Hz tone-burst

responses are smaller than the pre-TTX ones.

These pre and post-TTX responses suggest that the TTX successfully blocked much

of the neural component of the cochlear-potential response. However, as discussed in

Chapter 5, some of the post-TTX single-sided level-series measurements made at the

lower frequencies exhibited nonlinearities. It is possible that the TTX was not completely

effective at the lowest stimulus frequencies.
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Figure A-20: Cat #6. TOP: Click stimulus at about 85 dB SPL. BOTTOM: Response
to the click stimulus both before and after the application of TTX to the round window
membrane. Measurements made between 3 hours and 18 hours after the application of
TTX did not show large variations.
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Figure A-21: Cat #7. TOP: Click stimulus at about 85 dB SPL. BOTTOM: Response
to the click stimulus both before and after the application of TTX to the round window
membrane. Measurements made between 3 hours and 18 hours after the application of
TTX did not show large variations.
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100 Hz Tone Burst Stimulus
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Figure A-22: Cat #6. TOP: 100 Hz tone-burst stimulus at about 110 dB SPL. BOT-
TOM: Response to 100 Hz tone-burst stimulus before and after application of TTX to
the round window membrane. Measurements made between 3 hours and 18 hours after
the application of TTX did not show large variations.
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Figure A-23: Cat #7. TOP: 100 Hz tone-burst stimulus at about 110 dB SPL. BOT-
TOM: Response to 100 Hz tone-burst stimulus before and after application of TTX to
the round window membrane. Measurements made between 3 hours and 18 hours after
the application of TTX did not show large variations.
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1000 Hz Tone Burst Stimulus
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Figure A-24: Cat #6. TOP: 1000 Hz tone-burst stimulus at about 110 dB SPL. BOT-
TOM: Response to 100 Hz tone-burst stimulus before and after application of TTX to
the round window membrane. Measurements made between 3 hours and 18 hours after
the application of TTX did not show large variations.
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Figure A-25: Cat #7. TOP: 1000 Hz tone-burst stimulus at about 110 dB SPL. BOT-
TOM: Response to 100 Hz tone-burst stimulus before and after application of TTX to
the round window membrane. Measurements made between 3 hours and 18 hours after
the application of TTX did not show large variations.
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Appendix B

Summary of results: Stimulus to

one window

Data from all single-sided level series measurements are contained within this appendix.

There are differences among the experiments (Cats #1 to #7) which are discussed in

Appendix A.

All of the figures in this appendix have the same layout.

* The top left hand plot is the magnitude of the cochlear-potential response as a
function of stimulus sound-pressure level for single-sided stimuli at both the oval
and round windows.

* The top right hand plot is the angle of the cochleax-potential response as a function
of stimulus sound-pressure level for stimuli at both the oval and round windows.

* The middle left hand plot is the dB difference between the cochlear-potential mag-
nitude when the oval window is stimulated and the cochlear-potential magnitude
when the round window is stimulated, as a function of stimulus sound-pressure
level. This difference is the dB difference between the two responses in the top left
hand plot.

* The middle right hand plot is the difference in angle between the cochlear-potential
angle when the oval window is stimulated and the cochlear-potential angle when
the round window is stimulated. This difference is the difference in cycles between
the two responses in the top right hand plot.
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* The lower left hand plot is an estimate of DI where D is obtained from the data
in the top two plots and Equation 1.1: VCP = D(Pow - PRW). Here it is assumed
that C = 0 and the pressure at the unstimulated window is zero.

* The lower right hand plot is an estimate of LD described above.

The figures are arranged first in order of increasing frequency. Within each frequency

the figures are arranged in chronological order of experimental cat. An attempt was made

to keep all axes ranges constant for each group of measurements at a specific frequency.

In a few cases this was not practical. When the phase angle plots have different absolute

ranges the relative range is constant.
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100 Hz Cat #1
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Figure B-1: TOP: Single-sided level-series measurements made on Cat #1 at 100 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that CI << IDI.
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100 Hz Cat #2
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Figure B-2: TOP: Single-sided level-series measurements made on Cat #2 at 100 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that C << ID1.
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100 Hz Cat #3
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Figure B-3: TOP: Single-sided level-series measurements made on Cat #3 at 100 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that ICI << IDI.
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100 Hz Cat #4

-80

00

1.00

.-o--. OW
-&- RW
--- noisefloor .75

co
c)

0
0~
a-0

N

.50

.25

0
I I I

I I I I

60 80 100 120 60 80 100 120

a
n-

0

0
a.0

N60 80 100 120

C30
N

80

Level

100 120

(dB SPL)

.6

.5

.4

F A- -- - - - - - - - --- - -

60

.5

0

60

60

80 100 120

...... ZD: OW
- D: RW

F
I

I I 

_-

-1

1
a
a. 20

1 An-V j

!

a_u

9

ILI

- --------------- ------

2

0

-2

1 0-5

1 0_6

30

0' 7

6

i _;·1 I I I

80 100 120

Level (dB SPQ)

Figure B-4: TOP: Singe-sided level-series measurements made on Cat #4 at 100 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that JCJ << ID1..
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100 Hz Cat #5
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Figure B-5: TOP: Single-sided level-series measurements made on Cat #5 at 100 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that ICi << ID.
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100 Hz Cat #6
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Figure B-6: TOP: Single-sided level-series measurements made on Cat #6 at 100 Hz
before and after the application of TTX. Either the oval or the round window was stim-
ulated. MIDDLE: Ratio of the measurement made while the oval window was stimulated
and the measurement made while the round window was stimulated. BOTTOM: Esti-
mate of D (difference-mode gain) from the single-sided level-series measurements. In this
estimation it is assumed that JIC << ID_.
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100 Hz Cat #7
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Figure B-7: TOP: Single-sided level-series measurements made on Cat #7 at 100 Hz
before and after the application of TTX. Either the oval or the round window was stim-
ulated. MIDDLE: Ratio of the measurement made while the oval window was stimulated
and the measurement made while the round window was stimulated. BOTTOM: Esti-
mate of D (difference-mode gain) from the single-sided level-series measurements. In this
estimation it is assumed that Ct << IDI.
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170 Hz Cat #4
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Figure B-8: TOP: Single-sided level-series measurements made on Cat #4 at 170 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that ICI << IDl.
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200 Hz Cat #1
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Figure B-9: TOP: Single-sided level-series measurements made on Cat #1 at 200 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that C << ID[.
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200 Hz Cat #2
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Figure B-10: TOP: Single-sided level-series measurements made on Cat #2 at 200 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that ICI << IDI.
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200 Hz Cat #3
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Figure B-11: TOP: Single-sided level-series measurements made on Cat #3 at 200 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that jIC << IDJ.

151

-80

1

"o

0 1

00

20

401

m0

-01.o

2

0

-2

1 0-5CO

an

o>
1 06

1 0-7

. I , I

_,

.Z0 m
-

m

m

m

_

-

5-.75. . .I

------------- ----------

60



200 Hz Cat #4
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Figure B-12: TOP: Single-sided level-series measurements made on Cat #4 at 200 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that IC << ID.
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250 Hz Cat #4

.50

(I,
0

.
0(,

N

25

0

.25

Q9
P--Q 6

. "- ..

'''.''-
_ . ' _'

7 of , I 

60 80 100 120

.6
_

0.32
a.0

N
80 100 120

.5

.4

60 80 100

L H___ I I\ 

60

1
120

80 100 120

.o----- IDI: OW
IDI: RW

:-. . .· 0

a
,q80 100 120

Level (dB SPL)

0

.5

60

a, --.- I

.

D: OW
D: RW

I I i

80 100 120

Level (dB SPL)

Figure B-13: TOP: Single-sided level-series measurements made on Cat #4 at 250 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that JIC << IDI.
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300 Hz Cat #5
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Figure B-14: TOP: Single-sided level-series measurements made on Cat #5 at 300 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that CI << IDI.

154

-80

-100
5n

-o
a- -120

-140

2

0

co

a
-

.o-o

0
C,)
(d
CO

0-

40

1 0 5

1 06

1

40

'-=r./O_

_

_

_

_

- ----------------- fll%�_ - -�__ ---

A

-----------------\;r·-

- C r�
r c,_

_.O m

m

0-7 I 3e



-4- OW Pre-TTX
- RW Pre-TTX

.-o-- OW Post-TTX
--- RW Post-TTX
--- noisefloor

a.0

N

40 60 80 100 120

2

0

-2

1 05

1 06

1 0610~

40 60 80 100 120

ar
a.

3

3O

N

- Pre-TTX
--- Post-TTX

40 60 80 100 120

-A- IDi: OW Pre-TrX
-- IDI: RW Pre-T-X
-4o IDI: OW Post-TX
-IDI: RW Post-TTX

_ I I I 

ncoa)0

0
N

.5

.4
40

0

.5

-1

- Pre-TTX
_,, DrsvI. -- - - - rUOt I I A

. ----- --- -_-

I I I

60 80 100 120

- L- ZD: OW Pre-TTX
-- D: RW Pre-TTX
-0- ZD: OW Post-TX
- ZO: RW Post-TTX

! ! i iI-

40 60 80 100 120

Level (dB SPL)

40 60 80 100 120
Level (dB SPL)

Figure B-15: TOP: Single-sided level-series measurements made on Cat #6 at 300 Hz
before and after the application of TTX. Either the oval or the round window was stimu-
lated. MIDDLE: Ratio of the measurement made while the oval window was stimulated
and the measurement made while the round window was stimulated. BOTTOM: Es-
timate of D (difference-mode gain) from the single-sided level-series measurements. In
this estimation it is assumed that ICI << DI.
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300 Hz Cat #7
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Figure B-16: TOP: Single-sided level-series measurements made on Cat #7 at 300 Hz
before and after the application of TTX. Either the oval or the round window was stimu-
lated. MIDDLE: Ratio of the measurement made while the oval window was stimulated
and the measurement made while the round window was stimulated. BOTTOM: Es-
timate of D (difference-mode gain) from the single-sided level-series measurements. In
this estimation it is assumed that ICI << ID1.
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320 Hz Cat #4
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Figure B-17: TOP: Single-sided level-series measurements made on Cat #4 at 320 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that ICj << DI.
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400 Hz Cat #4
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Figure B-18: TOP: Single-sided level-series measurements made on Cat #4 at 400 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that CI << D[.
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500 Hz Cat #4
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Figure B-19: TOP: Single-sided level-series measurements made on Cat #4 at 500 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that CI << IDI.
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600 Hz Cat #1
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Figure B-20: TOP: Single-sided level-series measurements made on Cat #1 at 600 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that JIC << ID.
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600 Hz Cat #2
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Figure B-21: TOP: Single-sided level-series measurements made on Cat #2 at 600 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that ICI << IDI.
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600 Hz Cat #3
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Figure B-22: TOP: Single-sided level-series measurements made on Cat #3 at 600 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that ICI << ID}.
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600 Hz Cat #4
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Figure B-23: TOP: Single-sided level-series measurements made on Cat #4 at 600 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that CI << IDI.
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800 Hz Cat #1
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Figure B-24: TOP: Single-sided level-series measurements made on Cat #1 at 800 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that IC << IDI.
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800 Hz Cat #2
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Figure B-25: TOP: Single-sided level-series measurements made on Cat #2 at 800 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that JCI << ID.
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800 Hz Cat #3
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Figure B-26: TOP: Single-sided level-series measurements made on Cat #3 at 800 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that CI << D1.
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800 Hz Cat #4
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Figure B-27: TOP: Single-sided level-series measurements made on Cat #4 at 800 Hz.
Either the oval or the round window was stimulated. MIDDLE: Ratio of the measurement
made while the oval window was stimulated and the measurement made while the round
window was stimulated. BOTTOM: Estimate of D (difference-mode gain) from the
single-sided level-series measurements. In this estimation it is assumed that KCI << ID1.
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Figure B-28: TOP: Single-sided level-series measurements made on Cat #1 at 1000
Hz. Either the oval or the round window was stimulated. MIDDLE: Ratio of the
measurement made while the oval window was stimulated and the measurement made
while the round window was stimulated. BOTTOM: Estimate of D (difference-mode
gain) from the single-sided level-series measurements. In this estimation it is assumed
that Cj << ID1.
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1000 Hz Cat #2
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Figure B-29: TOP: Single-sided level-series measurements made on Cat #2 at 1000
Hz. Either the oval or the round window was stimulated. MIDDLE: Ratio of the
measurement made while the oval window was stimulated and the measurement made
while the round window was stimulated. BOTTOM: Estimate of D (difference-mode
gain) from the single-sided level-series measurements. In this estimation it is assumed
that IC << IDl.
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1000 Hz Cat #3
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Figure B-30: TOP: Single-sided level-series measurements made on Cat #3 at 1000
Hz. Either the oval or the round window was stimulated. MIDDLE: Ratio of the
measurement made while the oval window was stimulated and the measurement made
while the round window was stimulated. BOTTOM: Estimate of D (difference-mode
gain) from the single-sided level-series measurements. In this estimation it is assumed
that IC_ << DJl.
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Figure B-31: TOP: Single-sided level-series measurements made on Cat #4 at 1000
Hz. Either the oval or the round window was stimulated. MIDDLE: Ratio of the
measurement made while the oval window was stimulated and the measurement made
while the round window was stimulated. BOTTOM: Estimate of D (difference-mode
gain) from the single-sided level-series measurements. In this estimation it is assumed
that ICI << DI.

171

1000 Hz Cat #4

-80

.25

1 00

20

r

a

o
1

0

(o)
a)

p -.25

a0N

-.50
-140

)VU -.75

m

-

o>

0
C

Co

0

25

10

10

10

q , I I I I

J&0--0-00-0 0.1

CLa

-I t

l __
r-

- ----------



1000 Hz Cat #5
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Figure B-32: TOP: Single-sided level-series measurements made on Cat #5 at 1000
Hz. Either the oval or the round window was stimulated. MIDDLE: Ratio of the
measurement made while the oval window was stimulated and the measurement made
while the round window was stimulated. BOTTOM: Estimate of D (difference-mode
gain) from the single-sided level-series measurements. In this estimation it is assumed
that ICK << IDI.
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1000 Hz Cat #6
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Figure B-33: TOP: Single-sided level-series measurements made on Cat #6 at 1000 Hz
before and after the application of TTX. Either the oval or the round window was stimu-
lated. MIDDLE: Ratio of the measurement made while the oval window was stimulated
and the measurement made while the round window was stimulated. BOTTOM: Es-
timate of D (difference-mode gain) from the single-sided level-series measurements. In
this estimation it is assumed that CJ << DI.
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Appendix C

Summary of results: Stimuli to

both windows

Data from all simultaneous-stimuli measurements are contained within this appendix.

There are differences in each of the experiments (Cats #1 to #7) which are further

discussed in Appendix A; in general the results from Cats #1, #2, and #3 are not as

accurate as the results from the later cats.

The figures in this appendix compare the cochlear-potential magnitude and angle

measurements with model predictions. Each measurement set has three graphs associ-

ated with it; a cochlear-potential magnitude plot, a blow-up of the cochlear-potential

magnitude plot around 0 = 0, and a cochlear-potential angle plot. Data points are rep-

resented with open circles and the model fits are drawn with solid (linear fit) and dashed

(logarithmic fit) lines. The description "linear fit" refers to the model fit obtained from

Equation 3.4 and the description "logarithmic fit" refers to the model fit obtained from

Equation 3.14.

The figures in this appendix are organized in order of increasing frequency. Within
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each frequency group the figures are arranged in chronological order of experiment by cat

number. Measurement sets from a given cat at a given frequency are arranged in order

of increasing sound-pressure level. Each measurement set has a label which describes

the measurement frequency, cat number, and measurement order on the particular cat;

for example, measurement set 1000a_5 refers to the first measurement set made on Cat

#5 at 1000 Hz.

There are two tables for each frequency group within this appendix. The tables give

model parameters for all measurement sets for the linear and logarithmic model fits.
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Linear model parameters: 75 Hz
Data set dB SPL CMRR IDI D Icl C PMAG P/ MIN Data f'MIN Model
75a4 124 24.52 1.95e-07 0.181 1.16e-08 -0.090 0.917 0.573 0.0035 0.0097
7b-4 120 30.83 2.04e-07 0.227 5.88e-09 -0.192 0.751 0.739 -0.0136 0.0027

Table C.1: Linear model parameters calculated from 75 Hz data.

Logarithmic model parameters: 75 Hz

Data set dB SPL CMRR | DI ID IC C PMAG PI P MIN Data |MIN Model
75a4 124 22.20 2.72e-07 0.321 2.11e-08 0.036 0.979 0.884 0.0035 0.0125
75b_4 120 28.12 3.04e-07 0.321 1.19e-08 0.462 0.915 0.873 -0.0136 -0.0046

Table C.2: Logarithmic model parameters calculated from 75 Hz data.
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Figure C-1: Simultaneous-stimuli measurement sets and model fits at 75 Hz on Cat #4.
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Linear model parameters:100 Hz
Data set dB SPL CMRR DI LD ICI C PMAG PI MIN Data bMIN Model
100a_4 121 26.96 3.97e.07 0.037 1.78e-08 0.480 0.989 0.766 -0.0047 -0.0024
100b-4 120 32.92 3.97e-07 0.033 8.96e-09 0.371 0.812 0.539 0.0024 -0.0037
100a..5 118 33.24 1.26e-06 -0.030 2.73e-08 -0.097 0.914 0.970 -0.0270 0.0018
100b_5 124 29.25 1.56e-06 -0.094 5.38e-08 0.474 0.960 0.974 -0.0088 0.0055
100c.5 120 21.56 7.29e-07 0.051 6.10e-08 0.271 0.843 0.968 -0.0014 -0.0134
100d-5 125 24.81 8.37e-07 -0.007 4.81e-08 0.347 0.982 0.924 -0.0002 -0.0075
100a_6 121 33.57 1.81e-06 -0.036 3.80e-08 0.421 0.978 0.770 0.0000 -0.0017
100b..6 126 20.06 1.12e-06 -0.077 1.lle-07 0.268 0.841 0.944 0.0038 -0.0133
100c_6 121 32.11 1.86e-06 -0.039 4.62e-08 0.297 0.965 0.915 -0.0004 -0.0033
100d_6 126 33.59 2.02e-06 -0.074 4.22e-08 0.447 0.967 0.980 0.0011 0.0001
100e_6 116 32.23 1.68e-06 -0.010 4.11e-08 0.232 0.972 0.707 -0.0027 -0.0028
100f-6 116 34.66 1.71e-06 -0.011 3.16e-08 -0.123 0.974 0.993 0.0007 0.0017
100g_6 100 34.25 1.56e-06 -0.042 3.03e-08 0.246 0.915 0.839 -0.0114 -0.0032
100h_6 110 32.26 1.81e-06 -0.008 4.41e-08 0.279 0.979 0.941 -0.0058 -0.0038
100i_6 121 47.71 1.85e-06 -0.036 7.60e-09 0.088 0.972 0.985 -0.0009 -0.0009
100a_7 119 30.71 1.01e-06 0.065 2.93e-08 0.206 0.985 0.972 -0.0196 -0.0035
100b_7 127 52.50 1.17e-06 -0.010 2.77e-09 0.271 0.975 0.907 0.0047 -0.0001
100c_7 102 27.60 6.72e-07 0.117 2.80e-08 -0.419 0.970 0.997 0.1580 -0.0018
100d_7 126 33.36 1.19e-06 -0.038 2.55e-08 0.152 0.985 0.905 0.0071 -0.0030
100e7 118 23.24 1.23e-06 0.015 8.47e-08 0.051 0.985 0.954 -0.0110 -0.0113
100_7 108 53.81 1.06e-06 0.118 2.16e-09 0.307 0.998 0.985 -0.0426 -0.0006
100g-7 98 41.34 1.03e-06 0.098 8.83e-09 -0.302 0.991 0.995 0.1341 0.0006

Table C.3: Linear model parameters calculated from 100 Hz data.

Logarithmic model parameters: 100 Hz
Data set dB SPL CMRR JID LD ICI LC PMAG /Z OMIN Data OMIN Model
100a_4 121 4.94 2.67e-07 0.042 1.51e-07 -0.269 0.741 0.298 -0.0047 0.0827
100b_4 120 24.07 5.95e-07 0.037 3.72e-08 0.243 0.867 0.756 0.0024 -0.0094
100a.5 118 20.68 1.18e-06 -0.037 1.09e-07 -0.002 0.948 0.973 -0.0270 -0.0030
100b..5 124 45.06 1.39e-06 -0.090 7.78e-09 0.180 0.972 0.973 -0.0088 -0.0008
100c.5 120 12.23 6.88e-07 0.038 1.68e-07 0.180 0.946 0.972 -0.0014 -0.0303
100d..5 125 14.23 7.34e-07 -0.002 1.43e-07 0.172 0.947 0.967 -0.0002 -0.0275
100a-6 121 21.78 1.00e-06 -0.025 8.18e-08 0.158 0.893 0.720 0.0000 -0.0116
100b-6 126 24.78 9.70e-07 -0.086 5.60e-08 0.292 0.923 0.953 0.0038 -0.0064
100c.6 121 29.59 1.45e-06 -0.042 4.79e-08 0.296 0.974 0.927 -0.0004 -0.0052
100d_6 126 31.89 1.54e-06 -0.073 3.92e-08 0.449 0.980 0.980 0.0011 0.0001
100e_6 116 29.19 1.21e-06 -0.005 4.21e-08 0.210 0.975 0.653 -0.0027 -0.0057
100f-6 116 37.33 1.32e-06 -0.037 1.79e-08 -0.148 0.994 0.996 0.0007 0.0014
100g_6 100 26.87 1.31e-06 -0.049 5.94e-08 0.033 0.966 0.820 -0.0114 -0.0032
100h_6 110 32.19 1.65e-06 -0.007 4.07e-08 0.205 0.979 0.907 -0.0058 -0.0038
100i_6 121 48.34 1.38e-06 -0.044 5.27e-09 0.287 0.980 0.975 -0.0009 -0.0009
100a_7 119 32.14 9.05e-07 0.101 2.24e-08 0.212 0.992 0.983 -0.0196 -0.0025
100b_7 127 52.22 9.62e-07 -0.000 2.36e-09 0.436 0.984 0.923 0.0047 -0.0001
100c_7 102 27.60 6.72e-07 0.117 2.80e-08 .0.440 0.969 0.997 0.1580 -0.0019
100d_7 126 31.27 1.14e-06 -0.040 3.11e-08 0.068 0.990 0.903 0.0071 -0.0030
100e_7 118 27.79 1.12e-06 0.021 4.59e-08 0.058 0.989 0.962 -0.0110 -0.0113
100f_7 108 53.68 1.05e-06 0.117 2.17e-09 0.309 0.998 0.985 -0.0426 -0.0006
100g_7 98 26.93 1.02e-06 0.100 4.61e-08 -0.308 0.991 0.994 0.1341 0.0036

Table C.4: Logarithmic model parameters calculated from 100 Hz data.
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Linear model parameters: 200 Hz

Data set dB SPL CMRR ID D IC ZC PMAG P/ PMIN Data |MIN Model
200a-1 124 8.46 3.49e-07 -0.113 1.32e-07 0.340 1.000 1.000 -0.0218 -0.0177
200b_l 125;122 8.55 3.48e-07 -0.114 1.30e-07 0.337 0.997 0.996 -0.0167 -0.0188

Table C.5: Linear model parameters calculated from 200 Hz data.

Logarithmic model parameters: 200 Hz
Data set dB SPL CMRR IDI D C, /C PMAG P/ PMIN Data PMIN Model
200a_1 124 8.44 3.51e-07 -0.111 1.33e-07 0.341 1.000 1.000 -0.0218 -0.0187
200b-1 125;122 8.50 3.41e-07 -0.115 1.28e-07 0.330 0.985 0.961 -0.0167 -0.0198

Table C.6: Logarithmic model parameters calculated from 200 Hz data.
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Linear model parameters: 250 Hz
Data set | dB SPL CMRR IDI | D C Ic I C I PMAG P/ I MIN Data PMIN Model
250a_4 r 108 30.73 | 2.11e-06 -0.009 1 6.13e-08 1 0.396 1 0.998 | 0.925 1 -0.0092 1 -0.0027

Table C.7: Linear model parameters calculated from 250 Hz data.

Logarithmic model parameters: 250 Hz {

Data set dB SPL CMRR ID I LD IC I LC PMAG PI I MIN Data PMI Model
250a_4 108 39.60 1 2.23e-06 1 -0.005 1 2.33e-08 1 0.415 0.997 1 0.941 -0.0092 -0.0012

Table C.8: Logarithmic model parameters calculated from 250 Hz data.

IVcpl (dB re 1 V) IVcpl (dB re 1 V) /Vcp (cycles)
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Figure C-10: Simultaneous-stimuli measurement set and model fits at 250 Hz on Cat
#4.
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Linear model parameters: 300 Hz
Data set dB SPL CMRR IDI ZD 7 Id LC PMAG P/ 'MIN Data 'PMIN Model
300a.5 100 24.36 6.20e-06 -0.093 3.75e-07 -0.433 0.922 0.769 0.0104 0.0078
300b-5 105 26.18 7.05e-06 -0.132 3.46e-07 0.453 0.950 0.564 0.0000 0.0036
300c_5 110 34.40 6.82e-06 -0.165 1.30e-07 0.248 0.990 0.499 -0.0018 -0.0011
300d5 115 33.89 6.76e-06 -0.181 1.37e-07 0.291 0.890 0.512 -0.0040 -0.0011
300e_5 120 33.51 6.41e-06 -0.153 1.35e-07 0.212 0.936 0.847 -0.0047 -0.0029
300f.5 125 37.08 6.71e-06 -0.175 9.39e-08 0.303 0.959 0.865 -0.0024 -0.0002
300a..6 115 33.11 1.20e-05 -0.236 2.66e-07 0.270 0.980 0.982 0.0014 0.0003
300b..6 125 28.53 7.82e-06 -0.258 2.93e-07 0.177 0.979 0.960 -0.0003 -0.0021
300c_6 116 31.24 1.05e-05 -0.217 2.87e-07 0.336 0.988 0.964 -0.0007 0.0007
300d_6 120 35.58 9.92e-06 -0.231 1.65e-07 0.228 0.976 0.882 -0.0016 -0.0011
300e_6 126 34.83 7.35e-06 -0.237 1.33e-07 0.242 0.988 0.970 -0.0012 -0.0007
300f_6 120 39.62 9.59e-06 -0.224 1.00e-07 0.174 0.993 0.994 -0.0011 -0.0011
300g.6 110 42.89 9.50e-06 -0.202 6.81e-08 0.272 0.989 0.962 -0.0006 -0.0005
300h_6 100 49.11 8.14e-06 -0.209 2.85e-08 -0.029 0.984 0.879 -0.0001 -0.0008
300i_6 90 31.42 7.82e-06 -0.228 2.10e-07 0.228 0.981 0.969 0.0018 -0.0009
300a_7 121 31.78 4.80e-06 -0.221 1.24e-07 0.408 0.976 0.960 0.0015 0.0025
300b_7 101 39.41 4.21e-06 -0.159 4.51e-08 -0.492 0.995 0.990 0.0018 0.0015
300c_7 116 47.32 5.12e-06 -0.214 2.20e-08 0.403 0.985 0.874 0.0011 0.0002
300d_7 121 36.65 5.74e-06 -0.252 8.44e-08 -0.461 0.993 0.989 0.0029 0.0020
300e_7 111 35.27 6.86e-06 -0.228 1.18e-07 -0.431 0.992 0.993 0.0026 0.0021
300f_7 101 18.60 4.94e-06 -0.179 5.80e-07 -0.500 0.902 0.571 0.0046 0.0170
300g_7 90 32.38 3.33e-06 -0.147 8.01e-08 0.421 0.995 0.984 0.0034 0.0020

Table C.9: Linear model parameters calculated from 300 Hz data.

Logarithmic model parameters: 300 Hz
Data set dB SPL CMRR IDI D IcI C | PMAG | PMIN Data | MIN Model
300a..5 100 25.18 6.35e-06 -0.082 3.50e-07 -0.488 0.961 0.785 0.0104 0.0048
300b.5 105 31.12 7.96e-06 -0.108 2.21e-07 0.458 0.946 0.656 0.0000 0.0010
300c_5 110 32.77 6.68e-06 -0.134 1.54e-07 0.156 0.919 0.722 -0.0018 -0.0038
300d.5 115 29.75 5.07e-06 -0.137 1.65e-07 0.082 0.985 0.817 -0.0040 -0.0052
300e_5 120 30.88 5.33e-06 -0.073 1.52e-07 0.253 0.993 0.938 -0.0047 -0.0042
300f_5 125 32.29 5.55e-06 -0.115 1.35e-07 0.315 0.990 0.942 -0.0024 -0.0009
300a_6 115 32.91 9.04e-06 -0.263 2.04e-07 0.263 0.992 0.972 0.0014 0.0000
300b..6 125 32.21 9.41e-06 -0.242 2.31e-07 0.257 0.991 0.994 -0.0003 -0.0003
300c_6 116 31.10 8.46e-06 -0.283 2.36e-07 0.264 0.995 0.920 -0.0007 0.0007
300d_6 120 35.73 8.00e-06 -0.227 1.31e-07 0.161 0.998 0.994 -0.0016 -0.0021
300e_6 126 39.64 7.86e-06 -0.219 8.19e-08 0.173 0.998 0.997 -0.0012 -0.0012
300f_6 120 39.23 8.49e-06 -0.215 9.28e-08 0.140 0.997 0.997 -0.0011 -0.0011
300g_6 110 43.87 6.08e-06 -0.160 3.89e-08 0.133 0.986 0.924 -0.0006 -0.0005
300h_6 100 41.11 7.51e-06 -0.220 6.61e-08 0.011 0.981 0.873 -0.0001 -0.0010
300i-6 90 29.10 7.88e-06 -0.257 2.76e-07 0.229 0.997 0.986 0.0018 -0.0005
300a_7 121 38.06 3.71e-06 -0.153 4.64e-08 0.315 0.980 0.917 0.0015 -0.0004
300b_7 101 39.73 3.66e-06 -0.141 3.78e-08 0.457 0.996 0.989 0.0018 0.0007
300c_7 116 38.87 4.44e-06 -0.183 5.06e-08 0.486 0.995 0.976 0.0011 0.0011
300d_7 121 34.78 5.49e-06 -0.225 1.00e-07 -0.465 0.998 0.994 0.0029 0.0025
300e_7 111 33.90 5.69e-06 -0.206 1.15e-07 -0.397 0.995 0.995 0.0026 0.0031
300f_7 101 22.04 5.86e-06 -0.197 4.64e-07 -0.496 0.923 0.715 0.0046 0.0119
300g_7 90 29.19 3.10e-06 -0.160 1.08e-07 0.240 0.987 0.960 0.0034 -0.0033

Table C.10: Logarithmic model parameters calculated from 300 Hz data.
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Linear model parameters: 400 Hz
Data set dB SPL CMRR IDI D CI C PMAG P/ MIN Data MIN Model
400aJl 110 13.21 1.25e-06 -0.227 2.74e-07 0.342 0.999 1.000 0.0159 0.0150
400b_1 110;108.5 13.49 1.24e-06 -0.231 2.62e-07 0.342 0.999 0.989 0.0155 0.0152
400a_2 114;113 19.37 9.42e-07 -0.018 1.01e-07 -0.493 0.846 0.807 -0.0034 0.0025
400a_3 112 23.15 1.26e-06 -0.189 8.79e-08 -0.472 0.983 0.966 0.0118 0.0109
400b.3 113 28.79 1.13e-06 -0.190 4.11e-08 -0.322 0.991 0.964 0.0042 0.0042
400c.3 115;114 34.58 1.08e-06 -0.195 2.01e-08 -0.338 0.993 0.997 0.0130 0.0027
400d_3 113;114 19.07 1.07e-06 -0.193 1.19e-07 -0.465 0.959 0.915 0.0156 0.0175
400e.3 113;114 23.74 1.08e-06 -0.188 7.00e-08 -0.403 0.970 0.917 0.0085 0.0105
400f_3 114 40.09 1.Ole-06 -0.183 9.95e-09 -0.207 0.971 0.973 0.0029 -0.0001
400g.3 114 33.24 9.88e-07 -0.183 2.15e-08 -0.213 0.992 0.976 0.0019 0.0009

Table C.11: Linear model parameters calculated from 400 Hz data.

| Logarithmic model parameters: 400 Hz
Data set dB SPL CMRR IDI D IC| C PMAG |P/ |MIN Data | MIN Model
400al 110 13.23 1.28e-06 -0.227 2.79e-07 0.343 1.000 1.000 0.0159 0.0150
400bl 110;108.5 13.40 1.28e-06 -0.228 2.73e-07 0.348 0.999 0.997 0.0155 0.0152
400a_2 114;113 25.50 1.28e-06 -0.019 6.77e-08 0.403 0.939 0.848 -0.0034 -0.0035
400a_3 112 23.51 1.32e-06 -0.174 8.80e-08 -0.444 0.990 0.974 0.0118 0.0109
400b_3 113 32.46 1.15e-06 -0.169 2.73e-08 -0.324 0.995 0.983 0.0042 0.0018
400c_3 115;114 32.03 1.11e-06 -0.176 2.78e-08 -0.448 0.995 0.999 0.0130 0.0042
400d_3 113;114 18.61 1.lOe-06 -0.194 1.29e-07 -0.465 0.954 0.925 0.0156 0.0185
400e.3 113;114 23.58 1.lle-06 -0.164 7.35e-08 -0.403 0.993 0.976 0.0085 0.0105
400f.3 114 35.54 1.15e-06 -0.165 1.92e-08 -0.182 0.990 0.980 0.0029 0.0009
400g.3 114 34.08 1.lle-06 -0.166 2.20e-08 -0.174 0.995 0.985 0.0019 -0.0000

Table C.12: Logarithmic model parameters calculated from 400 Hz data.
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Figure C-18: Simultaneous-stimuli measurement sets and model fits at 400 Hz on Cat
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Figure C-21: Simultaneous-stimuli measurement sets and
#3.
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Linear model parameters: 500 Hz I

Data set dB SPL CMRR I DI I D I CI I C I PMAG I I MIN Data MIN Model
500a4 1 97 1 28.82 4.45e-06 1 -0.230 1.61e-07 0.353 0.992 0.958 0.0026 0.0025

Table C.13: Linear model parameters calculated 500 Hz data.

Logarithmic model parameters: 500 Hz i

Data set dB SPL CMRR ID] I D ICI I C I PMAG I P/ I MIN Data IMIN Model
500a_4 | 97 I 29.00 | 4.19e-06 1 -0.187 1.49e-07 1 0.324 1 0.994 | 0.968 0.0026 1 0.0000

Table C.14: Logarithmic model parameters calculated from 500 Hz data.
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Figure C-22: Simultaneous-stimuli measurement set and model fits at 500 Hz on Cat
#4.
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Linear model parameters: 600 Hz
Data set dB SPL CMRR jDI D CI [ C PMAG P gIN Data MIN Model
600a..1 106;105 15.37 2.60e-06 -0.331 4.43e-07 0.336 0.998 1.000 0.0196 0.0237
600b..1 113;112 15.22 2.40e-06 -0.344 4.16e-07 0.328 0.995 0.998 0.0246 0.0245
600c 1 100 14.72 2.67e-06 -0.330 4.91e-07 0.340 0.997 0.973 0.0224 0.0245

Table C.15: Linear model parameters calculated from 600 Hz data.

Logarithmic model parameters: 600 Hz
Data set dB SPL CMRR IDI /D ICI C PMAG P I MIN Data PMIN Model
600a 1 106;105 15.20 2.74e-06 -0.329 4.77e-07 0.340 0.999 1.000 0.0196 0.0237
600bl1 113;112 15.27 2.83e-06 -0.348 4.87e-07 0.325 0.999 0.998 0.0246 0.0245
600c 100 15.11 2.70e-06 -0.324 4.74e-07 0.339 0.999 0.988 0.0224 0.0239

Table C.16: Logarithmic model parameters calculated from 600 Hz data.
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Figure C-23: Simultaneous-stimuli measurement sets and
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Linear model parameters: 800 Hz
Data set dB SPL CMRR IDI LD I /_ C PMAG P O3MIN Data 'MIN Model
800al1 116 16.55 3.25e-06 -0.437 4.84e-07 0.260 0.999 1.000 0.0228 0.0227
800b1 116 16.31 3.19e-06 -0.434 4.88e-07 0.271 0.998 0.999 0.0233 0.0232
800a.3 116 19.82 2.34e-06 -0.354 2.39e-07 0.387 0.968 0.947 0.0164 0.0159
800a_4 103 31.56 7.35e-06 -0.335 1.94e-07 0.446 0.995 0.991 0.0041 0.0041
800b_4 98 37.12 6.76e-06 -0.324 9.42e-08 -0.299 0.992 0.985 0.0006 0.0001

Table C.17: Linear model parameters calculated from 800 Hz data.

Logarithmic model parameters: 800 Hz
Data set dB SPL CMRR IDI D ICI' /C PMAG P IMIN Data 'PMIN Model
800a1 116 16.54 3.40e-06 -0.436 5.06e-07 0.261 1.000 1.000 0.0228 0.0227
800b 116 16.32 3.41e-06 -0.432 5.20e-07 0.272 0.999 0.999 0.0233 0.0232
800a.3 116 19.58 3.19e-06 -0.348 3.35e-07 0.426 0.989 0.988 0.0164 0.0169
800a_4 103 31.74 7.40e-06 -0.330 1.91e-07 0.477 0.996 0.993 0.0041 0.0041
800b_4 98 33.94 5.87e-06 -0.342 1.18e-07 -0.324 0.991 0.992 0.0006 0.0001

Table C.18: Logarithmic model parameters calculated from 800 Hz data.

IVcpl (dB re 1 V) IVcpI (dB re 1 V) ZVcp (cycles)

-80

-100

noisefloor 104 dB SPL
......................................

-120

-140

o Data points
Linear fit

--- Logarithmic fit

O

.- 0 . 5

..... ... . I ...

. . -0.5

-0.02 0 0.02 -0.5 0 0.5

-80

-100

A..........L _ W ~800b_
104 dB SPL

-120

-140

. . . . .
0 0.5 -0

V (cycles)

0.5

0

I 1 I I

.02

-0.5

0 0.02

xV (cycles)

-0.5 0
V (cycles)

Figure C-24: Simultaneous-stimuli measurement sets and model fits at 800 Hz on Cat
#1.
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Figure C-25: Simultaneous-stimuli measurement set and
#3.

model fits at 800 Hz on Cat
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Figure C-26: Simultaneous-stimuli measurement sets and model fits at 800 Hz on Cat
#4.
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I - Linear model parameters: 1000 Hz
Data set dB SPL CMRR -Di ZD Ic, C L PMAG P OMIN Data MIN Model
1000la1 101 17.85 2.84e-06 -0.499 3.64e-07 0.264 0.999 1.000 0.0201 0.0204
10OObl 100 17.77 2.90e-06 0.499 3.75e-07 0.272 0.998 0.999 0.0203 0.0204
1000OOa 101;99 13.36 5.63e-06 -0.383 1.21e-06 0.226 0.974 0.911 0.0018 0.0217
10O0b.2 110;108 12.33 5.71e-06 -0.396 1.38e-06 0.184 0.986 0.988 0.0260 0.0187
10OOc2 111;108 12.43 5.58e-06 -0.395 1.33e-06 0.184 0.971 0.988 0.0260 0.0178
1000a-3 110 16.30 4.51le-06 -0.394 6.90e-07 0.488 0.986 0.994 0.0152 0.0162
1000b3 110 16.42 4.43e-06 -0.395 6.70e-07 0.492 0.983 0.983 0.0139 0.0159
1000c-3 111 20.15 4.13e-06 -0.385 4.06e-07 0.478 0.993 0.976 0.0096 0.0120
1000d-3 111 20.49 4.1le-06 -0.387 3.88e-07 0.493 0.950 0.932 0.0093 0.0094
10OOe.3 111 18.61 4.06e-06 -0.388 4.76e-07 0.316 0.990 0.939 0.0185 0.0170
1OOOf_3 111 16.88 3.90e-06 -0.393 5.59e-07 0.291 0.995 0.941 0.0210 0.0210
0l0g.3 112 21.81 3.73e-06 -0.390 3.03e-07 0.259 0.987 0.978 0.0127 0.0098

1000h3 111 15.68 3.94e-06 -0.372 6.48e-07 -0.157 0.980 0.942 -0.0278 -0.0258
100Oi3 111 46.08 3.89e-06 -0.383 1.93e-08 0.032 0.989 0.987 -0.0016 -0.0006
1000j-3 112 23.64 3.78e-06 -0.390 2.48e-07 0.289 0.965 0.940 0.0078 0.0098
10OOk-3 112 17.37 3.83e-06 -0.397 5.18e-07 0.281 0.998 0.965 0.0198 0.0193
100013 109;113 12.21 3.35e-06 -0.404 8.22e-07 0.272 0.996 0.996 0.0283 0.0353
10OOm_3 113 15.23 3.14e-06 -0.406 5.44e-07 0.281 0.986 0.986 0.0231 0.0252
1000n3 102 14.88 3.64e-06 -0.388 6.56e-07 0.308 0.986 0.981 0.0335 0.0272
lOOO_4 106 31.23 7.96e-06 -0.421 2.19e-07 0.244 1.000 0.996 0.0022 0.0036
lOOOb_4 98 32.97 8.29e-06 -0.406 1.86e-07 0.303 0.998 0.997 0.0029 0.0029
10cOO_4 106 33.64 7.36e-06 -0.426 1.53e-07 0.066 1.000 0.998 0.0002 -0.0007
1OOOd_4 106 28.80 7.43e-06 -0.421 2.70e-07 0.096 0.999 0.996 -0.0013 -0.0015
1000e_4 106 44.01 7.18e-06 -0.421 4.53e-08 0.345 0.999 0.992 0.0023 0.0013
1000f_4 98 44.63 7.42e-06 -0.407 4.35e-08 0.400 0.998 0.993 -0.0010 0.0010
lOOOg_4 106 44.95 6.99e-06 -0.419 3.95e-08 0.196 0.999 0.994 -0.0001 0.0009
1000a.5 103 25.45 1.71e-05 -0.435 9.11e-07 0.394 0.974 0.832 0.0104 0.0071
10OOb5 102.5;102.5 31.81 1..77e-05 -0.427 4.53e-07 0.450 0.965 0.842 0.0104 0.0015
100lOOOc5 103.2;101.9 24.68 1.78e-05 -0.426 1.04e-06 0.347 0.989 0.992 0.0030 0.0089
1OOOd..5 103.7;101.2 29.62 1.76e-05 -0.424 5.80e-07 0.376 0.997 0.999 -0.0050 0.0050
10OOe_5 104.4;100.5 29.43 1.77e-05 -0.425 5.96e-07 0.398 0.999 1.000 0.0025 0.0049
10OOf.5 103.0;102.3 27.07 1.77e-05 -0.425 7.83e-07 0.366 0.988 0.974 0.0043 0.0067
1OOOg5 105 26.83 1.76e-05 -0.428 8.00e-07 0.474 0.928 0.874 0.0067 0.0017
lOOOh..5 110 25.94 1.68e-05 -0.431 8.47e-07 0.430 0.982 0.961 0.0018 0.0066
1000i5 115 25.21 1.71e-05 -0.425 9.37e-07 0.433 0.961 0.964 0.0045 0.0063
1000j..5 100 29.02 1.70e-05 -0.433 6.00e-07 0.298 0.878 0.385 0.0108 0.0060
10OOk.5 95 33.94 1.63e-05 -0.452 3.27e-07 0.335 0.728 0.602 0.0137 0.0033
10001 5 110 25.65 1.17e-05 -0.510 6.11e-07 -0.294 0.939 0.781 -0.0083 -0.0083
10OOm5 105 25.77 1.22e-05 -0.504 6.26e-07 -0.283 0.985 0.628 -0.0099 -0.0089
O1OOn_5 100 23.30 1.21e-05 -0.502 8.31e-07 -0.237 0.958 0.751 -0.0092 -0.0112
10OOp.5 95 29.04 1.24e-05 -0.515 4.38e-07 -0.306 0.953 0.778 0.0006 -0.0056
1000lq5 90 21.86 1.22e-05 -0.535 9.86e-07 -0.205 0.925 0.635 0.0067 -0.0113
1000r..5 115 26.70 9.34e-06 .0.513 4.32e-07 -0.352 0.991 0.996 -0.0085 -0.0087
1000l 5 120 22.65 6.65e-06 -0.513 4.90e-07 -0.453 0.969 0.995 -0.0028 -0.0031
l000a6 104 36.78 1.70e-05 -0.475 2.47e-07 0.227 0.960 0.837 0.0068 0.0022
10OOb_6 114 34.17 1.63e-05 -0.485 3.19e-07 -0.260 0.968 0.859 -0.0025 -0.0035
10OOc..6 104 28.06 1.45e-05 -0.466 5.72e-07 -0.317 0.999 0.999 -0.0024 -0.0077
10OOd-6 113 30.97 1.46e-05 -0.483 4.12e-07 0.007 0.991 0.986 -0.0015 -0.0005
1000e_6 98 37.10 1.39e-05 -0.451 1.94e-07 0.044 1.000 0.999 -0.0010 -0.0015
1000f_6 98 33.82 1.36e-05 -0.456 2.76e-07 -0.144 0.999 0.999 -0.0034 -0.0034
10OOg_6 110 32.45 1.43e-05 -0.477 3.40e-07 -0.157 1.000 0.601 -0.0041 -0.0036
10OOh_6 100 32.33 1.39e-05 -0.458 3.36e-07 -0.267 0.969 0.935 -0.0037 -0.0040
1000i_6 90 33.81 1.40e-05 -0.449 2.85e-07 -0.175 0.999 0.993 -0.0039 -0.0033
1000j_6 80 21.43 1.40e-05 -0.449 1.19e-06 -0.003 0.997 0.999 -0.0236 -0.0041
10OOk_6 120 29.09 1.22e-05 -0.497 4.30e-07 -0.255 0.985 0.991 -0.0049 -0.0058
10OOa_7 119 31.96 1.06e-05 -0.459 2.67e-07 0.129 0.979 0.923 0.0034 0.0024
10OOb_7 99 33.25 1.31e-05 -0.433 2.86e-07 0.318 0.979 0.896 0.0020 0.0030
1000c_7 109 34.67 5.65e-06 -0.431 1.04e-07 0.147 0.996 0.973 0.0005 0.0018
10OOd-7 99 35.04 5.64e-06 -0.393 9.98e-08 0.220 0.997 0.989 0.0001 0.0011
1000e_7 89 35.15 5.81e-06 -0.370 1.02e-07 0.096 1.000 0.998 0.0007 -0.0007
1000f_7 119 37.49 4.24e-06 -0.452 5.66e-08 0.063 0.972 0.850 0.0004 0.0001

Table C.19: Linear model parameters calculated from 1000 Hz data.
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Logarithmic model parameters: 1000 Hz
Data set dB SPL CMRR IDI D ICI C PMAG P MIN Data PMIN Model
1000al. 101 18.02 2.98e,06 -0.499 3.74e-07 0.263 1.000 1.000 0.0201 0.0194
10Ob1 100 18.16 3.06e-06 0.499 3.79e-07 0.271 0.999 1.000 0.0203 0.0192
1000a..2 101;99 16.77 4.54e-06 -0.381 6.58e-07 0.155 0.968 0.889 0.0018 0.0046
1000b..2 110;108 13.01 5.48e-06 -0.381 1.23e-06 0.207 0.996 0.997 0.0260 0.0187
1000c_2 111;108 13.16 5.15e-06 -0.382 1.13e-06 0.209 0.992 0.997 0.0260 0.0188
1000la_3 110 16.53 5.20e-06 -0.385 7.75e-07 -0.488 0.997 0.999 0.0152 0.0143
1000b3 110 16.27 5.04e-06 -0.390 7.73e-07 -0.489 0.998 0.996 0.0139 0.0138
1000c_3 111 20.62 4.70e-06 -0.380 4.38e-07 -0.497 0.998 0.999 0.0096 0.0096
1000d.3 111 20.47 4.49e-06 -0.378 4.25e-07 -0.485 0.998 0.999 0.0093 0.0089
00OOe..3 111 18.32 4.64e-06 -0.377 5.63e-07 0.350 0.997 0.998 0.0185 0.0187
00OOff3 111 17.19 4.37e-06 -0.379 6.04e-07 0.312 0.997 0.995 0.0210 0.0210

1000g_3 112 21.15 4.10e-06 -0.378 3.59e-07 0.275 0.995 0.989 0.0127 0.0117
1000h.3 111 15.46 4.25e-06 -0.353 7.16e-07 -0.128 0.997 0.988 -0.0278 -0.0268
1000i.3 111 43.54 4.42e-06 -0.364 2.94e-08 0.125 0.995 0.994 -0.0016 -0.0006
1000j_3 112 23.45 4.12e-06 -0.360 2.77e-07 0.295 0.997 0.977 0.0078 0.0088
1000k.3 112 17.13 4.07e-06 -0.379 5.66e-07 0.302 0.998 0.980 0.0198 0.0203
10001_3 109;113 12.66 3.45e-06 -0.400 8.03e-07 0.280 0.997 0.997 0.0283 0.0333
1000m-3 113 15.25 3.56e-06 -0.382 6.16e-07 0.298 0.997 0.993 0.0231 0.0252
1000n.3 102 14.07 3.65e-06 -0.373 7.22e-07 0.312 0.996 0.991 0.0335 0.0292
1000a_4 106 32.12 8.11e-06 -0.416 2.01e-07 0.241 1.000 0.998 0.0022 0.0036
1000b_4 98 33.29 8.48e-06 -0.407 1.84e-07 0.280 0.999 0.998 0.0029 0.0029
1000c4 106 33.45 7.55e-06 -0.418 1.61e-07 0.060 1.000 0.999 0.0002 -0.0007
1000d_4 106 28.99 7.49e-06 -0.412 2.66e-07 0.105 0.999 0.999 -0.0013 -0.0015
1000e_4 106 44.22 7.10e-06 -0.408 4.37e-08 0.319 1.000 0.996 0.0023 0.0013
1000f_4 98 45.13 7.21e-06 -0.400 3.99e-08 0.432 0.999 0.994 -0.0010 0.0007
1000g_4 106 47.31 6.90e-06 -0.406 2.97e-08 0.188 1.000 0.996 -0.0001 0.0001
1000a_5 103 26.09 1.54e-05 0.462 7.65e-07 0.208 0.991 0.943 0.0104 0.0084
1000b5 102.5;102.5 33.55 1.48e-05 0.479 3.10e-07 0.478 0.958 0.673 0.0104 -0.0004
1OOOc5 103.2;101.9 26.21 1.75e-05 -0.474 8.57e-07 0.274 0.994 0.992 0.0030 0.0076
1000d_5 103.7;101.2 27.42 1.76e-05 -0.431 7.47e-07 0.335 0.996 1.000 -0.0050 0.0065
1000e.5 104.4;100.5 30.56 1.78e-05 -0.427 5.27e-07 0.366 0.999 1.000 0.0025 0.0049
1000f_5 103.0;102.3 22.88 1.72e-05 -0.461 1.23e-06 0.273 0.978 0.995 0.0043 0.0118
1000g_5 105 27.53 1.36e-05 0.495 5.73e-07 0.267 0.982 0.959 0.0067 0.0066
10OOh.5 110 26.59 1.67e-05 -0.479 7.82e-07 0.364 0.986 0.982 0.0018 0.0066
10005 115 24.69 1.67e-05 -0.458 9.71e-07 0.399 0.948 0.990 0.0045 0.0063
1000j_5 100 23.68 1.46e-05 0.400 9.55e-07 0.100 0.984 0.702 0.0108 0.0098
1000k_5 95 21.44 1.40e-05 0.348 1.19e-06 -0.476 0.584 0.530 0.0137 -0.0123
10001_5 110 25.51 1.38e-05 0.455 7.34e-07 -0.290 0.995 0.979 -0.0083 -0.0081
1OOOm_5 105 23.41 1.37e-05 0.433 9.26e-07 -0.279 0.995 0.957 -0.0099 -0.0109
10OOn5 100 22.14 1.42e-05 0.427 1.lle-06 -0.284 0.993 0.921 -0.0092 -0.0120
10OOpS 95 39.82 1.44e-05 0.368 1.47e-07 0.469 0.949 0.851 0.0006 -0.0012
lO000q5 90 16.83 1.07e-05 0.428 1.54e-06 -0.229 0.942 0.876 0.0067 -0.0196
10OOr-5 115 27.58 1.08e-05 0.479 4.53e-07 -0.345 0.995 0.997 -0.0085 -0.0046
1OOO5 120 24.92 8.60e-06 0.490 4.88e-07 -0.407 0.982 0.999 -0.0028 -0.0031
1000a_6 104 30.34 1.25e-05 -0.491 3.82e-07 0.192 0.983 0.925 0.0068 0.0042
10OOb_6 114 38.00 1.26e-05 -0.472 1.59e-07 -0.184 0.981 0.946 -0.0025 -0.0020
10OOc_6 104 28.91 1.44e-05 -0.451 5.16e-07 -0.292 1.000 0.999 -0.0024 -0.0028
100OOd6 113 34.35 1.44e-05 -0.463 2.75e-07 -0.016 1.000 0.995 -0.0015 -0.0012
10OOe_6 98 36.94 1.35e-05 -0.447 1.91e-07 0.043 1.000 0.999 -0.0010 -0.0015
10OOf.6 98 33.56 1.31e-05 -0.452 2.75e-07 -0.137 1.000 1.000 -0.0034 -0.0034
lO1000g6 110 32.48 1.14e-05 -0.375 2.72e-07 -0.166 0.993 0.985 -0.0041 -0.0041
10OOh_6 100 32.74 1.55e-05 -0.464 3.58e-07 -0.308 0.999 0.999 -0.0037 -0.0032
1000i-6 90 33.40 1.37e-05 -0.451 2.93e-07 -0.182 0.999 0.996 -0.0039 -0.0033
1000j_6 80 20.69 1.34e-05 -0.452 1.24e-06 -0.021 0.998 1.000 -0.0236 -0.0061
10OOk_6 120 30.11 1.32e-05 -0.464 4.13e-07 -0.250 1.000 0.999 -0.0049 -0.0051
1000laJ 119 32.10 1.19e-05 -0.451 2.96e-07 0.211 0.999 0.994 0.0034 0.0033
10OOb_7 99 30.77 9.48e-06 -0.431 2.74e-07 0.278 0.981 0.976 0.0020 0.0040
10OOc_7 109 35.50 5.77e-06 -0.399 9.68e-08 0.128 1.000 0.985 0.0005 0.0002
10OOd_7 99 37.79 5.68e-06 -0.374 7.33e-08 0.187 1.000 0.997 0.0001 0.0010
10OOe_7 89 35.29 5.77e-06 -0.367 9.94e-08 0.090 1.000 0.998 0.0007 -0.0007
1000f_7 119 43.93 5.13e-06 -0.406 3.27e-08 0.378 0.998 0.979 0.0004 0.0001

Table C.20: Logarithmic model parameters calculated from 1000 Hz data.
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Figure C-27: Simultaneous-stimuli measurement sets and model fits at 1000 Hz on Cat
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model fits at 1000 Hz on Cat
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Figure C-32: Simultaneous-stimuli measurement sets and
#3.

model fits at 1000 Hz on Cat
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Figure C-33: Simultaneous-stimuli measurement sets and model fits at 1000 Hz on Cat
#4.
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Figure C-34: Simultaneous-stimuli measurement sets and
#4.

model fits at 1000 Hz on Cat
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Figure C-35: Simultaneous-stimuli measurement sets and model fits at 1000 Hz on
Cat #5. The sum of the magnitudes of IPowi and IPRwl was held constant:
IPowl + IPRWI = 5.3 Pascals.
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Figure C-36: Simultaneous-stimuli measurement sets and model fits at 1000 Hz on
Cat #5. The sum of the magnitudes of IPowI and IPRwI was held constant:
IPowl + IPRwl = 5.3 Pascals.
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Figure C-37:
#5.

Simultaneous-stimuli measurement sets and model fits at 1000 Hz on Cat
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Figure C-38: Simultaneous-stimuli measurement sets and model fits at 1000 Hz on Cat
#5.
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Figure C-45: Pre-TTX simultaneous-stimuli measurement sets and model fits at 1000
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