
Latency Reduct ion Techniques
in Chip Multiprocessor Cache Systems

by

Michael Zhang

Bachelor of Science in Electrical Engineering and Computer Science
Massachusetts Institute of Technology, May 1999

Master of Engineering in Electrical Engineering and Computer Science
Massachusetts Institute of Technology, May 1999

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2006 .!
j i p , ; '*(Â ^

@ Massachusetts 1nstituTe of ~echnolo~~?006. All rights reserved.

, -
Author+ . b% L'

Department of and Computer Science
January 20, 2006

................................... Certified by : .- +. * Â¥= ww p :
Krste AsanoviC

Associate Professor
Thesis Supervisor

Accepted by.a:-K. .. .++. 7Ã‘ywJfi9-S uv...................
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTTTUTt
OF TECHNOLOGY

LIBRARIES

Latency Reduct ion Techniques

in Chip Multiprocessor Cache Systems

by

Michael Zhang

Submitted to the Department of Electrical Engineering and Computer Science
on January 20, 2006, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Single-chip multiprocessors (CMPs) solve several bottlenecks facing chip designers today.
Compared to traditional superscalars, CMPs deliver higher performance at lower power for
t hread-parallel workloads.

In this thesis, we consider tiled CMPs, a class of CMPs where each tile contains a slice
of the total on-chip L2 cache storage, and tiles are connected by an on-chip network. Two
basic schemes are currently used to manage L2 slices. First, each slice can be used as a
private L2 for the tile. Private L2 caches provide the lowest hit latency but reduce the
total effective cache capacity because each tile creates a local copy of any block it touches.
Second, all slices are aggregated to form a single large L2 shared by all tiles. A shared L2
cache increases the effective cache capacity for shared data, but incurs longer hit latencies
when L2 data is on a remote tile. In practice, either private or shared works better for a
given workload.

We present two new policies, victim replication and victim migration, both of which
combine the advantages of private and shared designs. They are variants of the shared
scheme which attempt to keep copies of local Ll cache victims within the local L2 cache
slice. Hits to these replicated copies reduce the effective latency of the shared L2 cache,
while retaining the benefits of a higher effective capacity for shared data. We evaluate
the various schemes using full-system simulation of single- t hreaded, multi- t hreaded, and
multi-programmed workloads running on an eight-processor tiled CMP. We show that both
techniques achieve significant performance improvement over baseline private and shared
schemes for these workloads.

Thesis Supervisor: Krste Asanovie
Title: Associate Professor

Acknowledgments

I am extremely fortunate to have Professor Krste Asanovik as my Ph.D. adviser. His wealth

of knowledge, sheer brilliance, and dedication to his students are far beyond any graduate

student could ever ask for. This thesis would not have been possible without his constant

help, support, and encouragement. Thank you for mentoring me all these years, Krste.

I want to thank my thesis readers, Professor Srini Devadas and Professor Larry Rudolph,

for all their feedback on this thesis. I also want to thank Professor Anant Agarwal, Professor

Charles Leiserson, and Professor Arvind for all their advice.

Fundings for my graduate work came from DARPA HPCA/PERCS project W0133890,

CMI project 093-P-IRFT, NSF CAREER Award CCR-0093354, DARPA Award F30602-

00-2-0562, and donations from Intel Corporation and Infineon Technologies.

Many thanks to members of the SCALE group, Elizabeth Basha, Chris Batten, Jae Lee,

Rose Liu, and Emmett Witchel. Special thanks to all my co-authors, Ronny Krashinsky,

Seongmoo Heo, Albert Ma, Luis Villa, Ken Barr, and Heidi Pan. I learned a lot from you

guys. Special thanks to my former and current officemates, Mark Hampton, Jessica Tseng,

Seongmoo Heo, and Steve Gerding. It's been a pleasure.

Many thanks to all the good friends I made in school, Mark Hampton, Daihyun Lim,

Ed Suh, Charlie O'Donnell, Ian Bratt, and Jason Kim.

To the original gang of Team Five (and its various later forms that I shall not name),

Mike Gordon, Sam Larsen, Mark Stephenson, Ronny Krashinsky, and Steve Gerding. I
want to thank you for all the awesome times that we had together. You made the past

seven years that much more enjoyable for me. I also thank you for the many heated yet fun

debates on just about every topic a rational person could care for and then some.

To Min Shao and Claire Chen, whom I vented on consistently during my thesis writing

days. Thank you for all you patience, advice, and hospitality, especially in the last few

months of my Ph.D.

To Mary McDavitt, whom I bother on a daily basis but has always managed to put up

with me. Thank you for all your help and the many Redsox vs. Yankees discussions.

To Heidi Pan, you are the source of my happiness and I am grateful I met you.

To my Mom Xiaonan and my Dad Jiawei, without you, I wouldn't be where I am today.

Your unconditional love for me is beyond any words can describe. Thank you.

Contents

1 Introduction
. 1.1 Why CMPs? Why Now?

. 1.2 Software Implications

. 1.3 Hardware Implications
. 1.4 CMP Design Trends

. 1.5 Non-Uniform Access Latency
. 1.6 Thesis Focus: CMP Data Access Latency

. 1.6.1 Thesis Problem Statement
. 1.7 Thesis Outline

. 1.8 Glossary

2 Multiprocessing Background
. 2.1 Multi-Chip Multiprocessor Systems

. 2.1.1 Multiprocessor Memory Hierarchy Layout
. 2.1.2 Message Passing

. 2.1.3 Distributed Shared Memory
. 2.2 CMP Systems versus DSM Systems

. 2.3 Cache Coherence Protocols

. 2.3.1 Bus-based Protocols
. 2.3.2 Directory-Based Protocols

. 2.4 Latency Reduction Techniques for DSM
. 2.4.1 Prefetching

. 2.4.2 Multi-threading
. 2.4.3 NUMA with Remote Cache

. 2.4.4 Cache-Only Memory Architectures
. 2.4.5 Summary

3 Memory Hierarchy Architecture and Implementation
. 3.1 Tiled Single-C hip Multiprocessors

. 3.2 Basic Assumptions
. 3.3 Private Design

. 3.3.1 Duplicated-Tag Directory Implementation
. 3.4 Shared Design

. 3.5 Cache Coherence
3.6 Summary .

4 CMP Latency Reduction Techniques
. 4.1 Hybrid Designs

. 4.2 Overall Design Approach
4.2.1 Improving the Bottomlines .

. 4.2.2 Design Criteria
. 4.3 Victim Replication
. 4.3.1 Mechanisms

. 4.3.2 Management Policies
. 4.3.3 Implementation Overhead

. 4.4 Victim Migration
. 4.4.1 Mechanisms

. 4.4.2 Management Policies
. 4.4.3 Implement at ion Overhead

. 4.5 Related Work

5 Experimental Methodology
. 5.1 Simulation Infrastructure

. 5.1.1 Simulator Setup
. 5.1.2 Interfacing Bochs to Detailed Cache Simulator

. 5.1.3 Simulation Parameters
. 5.2 Workloads

. 5.2.1 Single-Threaded Workloads

. 5.2.2 Mult i-Threaded Workloads
. 5.2.3 Multi-Programmed Workloads

. 5.3 Fast forwarding Multiprocessor Simulation
. 5.3.1 System Variability

6 Experimental Results
. 6.1 Multi-Threaded Workloads
. 6.1.1 Performance Analysis

. 6.1.2 Victim Replication versus Victim Migration
. 6.1.3 Other Configurations

. 6.1.4 Adaptive Replication Policy
. 6.2 Single-Threaded Workloads
. 6.2.1 Performance Analysis

. 6.2.2 Three-Level Caching
. 6.3 Multi-Programmed Workloads
. 6.3.1 Performance Analysis

. 6.4 Reducing VM Tag Array Area Overhead
. 6.5 Area Comparison of Designs
. 6.6 Coherence Traffic Reduction

. 6.7 Summary

7 Conclusions and Future Work
. 7.1 Thesis Summary and Contributions

7.2 Simulation Infrastructure Limitations .
. 7.3 Future Work

. 7.3.1 Using Hierarchy

. 7.3.2 Leveraging Software 104
. 7.3.3 Future CMP Topology 108

A Cache Coherence Protocol Implementation 109
. A . 1 Coherence States 109

. A.l . l Memory Block States 109

. A.1.2 Ll Cache Block States 110

. A.1.3 L2 Cache Block States 110
. A.2 Coherence Messages 110

. A.3 Coherence Actions 113
. A.3.1 Examples 113

List of Figures

1-1 (a) Intel's products have closely followed Moore's Law. Clock frequencies have in-
creased over 100X and on-chip transistor counts have increased over 10,000X in the
last 25 years. (b) Intel processor technology road map for the next ten years. The
number of processor cores is expected to reach into the hundreds by early next decade. 20

1-2 Each block represents an optimally sized cache slice for power consumption and
access latency. (a) Uniform cache access (UCA) used by most current cache designs.
(b) The non-uniform cache access (NUCA) anticipated in the future cache designs. 24

1-3 The two baseline L2 cache designs. (a) The private design evenly partitions all of the
on-chip L2 cache capacity such that each processor is assigned its closest partition
as its private L2 cache. (b) The shared design aggregates all the L2 cache capacity
to form a single L2 cache shared by all the cores. 26

2-1 Distribution schemes for multi-chip multiprocessors. (a) Physically centralized mem-
ory: Used in smaller systems where the centralized memory can be shared by all
nodes and provide a reasonable latency and bandwidth. (b) Physically distributed
shared memory system: Used in larger systems; memory is physically (evenly) dis-
tributed to reduce fetch latency and improve memory bandwidth. For case (a) and
(b), a coherence protocol is required to keep cached data coherent. (c) Physically dis-
tributed message passing system: Each memory module is private to its co-located
processor. Software generates explicit messages to transport shared data among
different nodes. 30

2-2 Current CMPs resemble tightly-integrated versions of a multi-chip multiprocessor
system of the 1980s. Processor cores are tightly coupled with the L l caches, and
connected by a centralized high-bandwidth, on-chip communication network to large

. outer-level caches. 33

2-3 Illustration of a snoopy bus-based protocol. When a coherence transaction message
is placed on the bus, all of the caches and DRAM modules snoop the message, but
only the relevant parties take the appropriate actions. 34

2-4 Illustration of a directory-based protocol. When a cache miss initiates a coherence
transaction, the request message is sent to its home node (generally determined
statically by the requesting address). The home node holds the directory entry with
all of the relevant sharing information of the requested block. 35

2-5 Illustration of hierarchical and flat COMAS. 38

Tiled CMPs are a subset of CMPs where each tile contains a processor with Ll
caches, a slice of the L2 cache, and a connection to the on-chip network. This
structure resembles shrunken versions of a conventional mesh-connected multi-chip
multiprocessor system. A 2D mesh routing network is used to connect all the tiles
in the system. Cache coherence is maintained through a scalable directory-based

. protocol.
The access path of the non-blocking two-level cache hierarchy used in this thesis.
Each cache miss, writeback request, or explicit drop request is kept in a miss buffer
to allow future accesses to proceed. Misses to the same address are merged into a
single entry in the miss buffer when appropriate. Future misses to different addresses

. are not blocked as long as there is an available entry in the miss buffer.
A two-dimensional mesh router with two physical channels per direction and two
virtual channels per physical channel.
In a private design, each processor core treats its local L2 slice as a private L2 cache.
Shared data must be copied to the private L2 caches of all the sharers. Thus, data
coherence must be maintained among all L2 caches.
(a) A naive implementation that places the directory in off-chip DRAM can suffer
significant performance degradation as each coherence transaction involves at least
one off-chip access, even if the actual data is on chip. (b) Using a directory cache
can significantly reduce the access latencies to the directory entries stored in off-chip

. DRAM by keeping the directories of the most recently used blocks.
Example of using duplicated L2 cache tags to implement an cache coherence direc-
tory. Each L2 tag is duplicated and stored at its home node, determined statically
by address. Directory information is deduced from the collection of the L2 tags. .

. Examples of the duplicated-tag directory for the private design.
In a shared L2 design, all of the on-chip L2 slices are aggregated to form a single
large logical L2 cache. Each Ll cache miss must travel to the home node of requested

. . . block to access the data. Data coherence is maintained for all the L l sharers.

The trade-offs between two conflicting goals in designing a hybrid on-chip cache
. architecture: off-chip miss rate and on-chip fetch latency.

Illustration of the hybrid design approach. Three different types of blocks can be
present in a hybrid design: private blocks, global shared blocks, and replicated

. sharedblocks.
Victim replication is a simple hybrid design that combines the large capacity of the
shared design with the low hit latency of private design. Victim replication is based
on the shared design, but in addition tries to capture evictions from the local L l
cache in the local L2 slice, such as the L2 copy of block i captured by Tile 2. Each
retained victim is a local L2 replica of a block that already exists in the L2 of the

. remote home tile.
The tag width in victim replication is wider than the shared design by lg(N) bits,
where N is the number of tiles in the system. The extra bits are used to distinguish
the actual home tile of the address.
Victim migration is based on victim replication but more flexible. By using the VM
tag array, victim migration removes the unnecessary duplication of data at the home
tile, freeing up space to hold more replicas or other global blocks. If a hit is found in
the VM tag array, the request is satisfied through three-way cache-to-cache transfers
using reply-forwarding.

A-1 Implementing a perfect directory for all cached data on-chip removes the need to
have directories in the off-chip DRAM. The on-chip directory cache is guaranteed
to have all the necessary sharing information of any cached block. 110

A-2 Examples of reply-forwarding used in the coherence protocol. Figure (a) shows the
action sequence of an exclusively held block in response to a shared read request.
Figure (b) shows the action sequence of a shared block in response to a exclusive
request. Figure (c) shows the action sequence of a shared block in response to a
shared request. 114

List of Tables

Comparisons of several leading industry CMPs. These CMPs show the trends of
higher processor core counts, increased outer-level cache capacities, and moderate
clock frequencies.

Cache management policies for victim replication. Blocks are chosen in descending
order according to their priority and blocks with the same priorities are chosen at

. random.

Cache management policies for victim migration. Blocks are chosen in descending
order according to their priority and blocks with the same priorities are chosen at
random.

Simulation parameters. The numbers for each configuration represent the cache sizes
and cycle times. For example, 8K+8K/256K/ l6FO4 indicates 8KB L l instruction
cache, 8KB L l data cache, 256KB L2 cache, with a 16 F04-delay cycle time. . . .
Single-threaded workloads in this thesis are taken from the SpecINT2000
benchmark suite [CorOO].
Multi-threaded workloads include the NAS parallel scientific benchmark suite,
two system workloads, and one A1 application [GroOl, BBB-I-941.
Multi-programmed workloads are created by mixing single-threaded bench-
marks. Eight benchmarks are randomly chosen for each multi-programmed
workload.

Average access latency reduction of multi-threaded workloads achieved by victim
replication and victim migration over the shared and private baseline designs. The
five numbers for each workload indicate the percentage reduction of VR to shared,
VR to private, VM to shared, VM to private, and VM to VR.
Average access latency reduction of single-threaded workloads achieved by victim
replication and victim migration over the shared and private baseline designs. The
five numbers for each workload indicate the percentage reduction of VR to shared,
VR to private, VM to shared, VM to private, and VM to VR.
Average access latency reduction of multi-programmed workloads achieved by victim
replication and victim migration over the shared and private baseline designs. The
five numbers for each workload indicate the percentage reduction of VR to shared,
VR to private, VM to shared, VM to private, and VM to VR.
Cache area overhead of different designs.
Average latency reduction achieved by victim replication and victim migration over
the baseline private and shared designs for all three different classes of applications.

A.1 Coherent states of the L l cache blocks include four stable MESI states and one
transient state. I l l

A.2 Coherent states of the L2 cache blocks include four stable MESI states and two
transient states. I l l

A.3 The types of coherence messages used in this protocol. The first two letters of the
prefix signifies whether the message is from the sharing cache to the home tile (ch),
home tile to the sharing cache (he), or cache-to-cache transfers (cc). The third
letter of the prefix indicates whether the message is a request message (q) or a reply

. message (p). Messages that end in D carry a payload. 112
A.4 L l cache controller actions to processor requests and incoming coherence

messages. A (') indicates that one of the multiple states listed will be entered
depending on the original request (shared or exclusive). A asterisk (*) means

. that the state is only entered upon described conditions. 115
. A.5 L2 cache controller actions to Ll requests and DRAM replies. 116

Chapter 1

Introduction

Over the past two decades, VLSI technology advances have closely followed Moore's Law.

From the mid 1980's, microprocessor clock frequencies have increased by over 100X and

on-chip capacities have increased by over 10,OOOX, as shown in Figure 1-1 (a). These two

technological improvements have led to a period of rapid performance growth for general-

purpose microprocessor systems. During this time, highly sophisticated microprocessors

such as the Intel Pentium4 [HSU+01] and Alpha 21264 [Kes99] have been built, featuring

clock frequencies reaching several gigahertz, deep pipelines, large caches, and numerous

performance-enhancing microarchitectural features.

Despite the success of wide superscalars, we are in the midst of a drastic architectural

design paradigm shift. The ten-year industry outlook in Figure 1-1 (b) shows that the design

focus has shifted to single-chip multiprocessors, which place multiple replicated uniprocessor

cores onto the same die, instead of more aggressive optimizations of uniprocessors [Kre04a,

KST04, KMAC03, CR05, KA005, Raz05, Cav051. Table 1.1 summarizes the main features

of some current CMPs.

This thesis investigates various design alternatives to improve the performance and

reduce the power consumption of the on-chip cache system in these CMP architectures.

Compared to previous uniprocessor cache systems, CMP caches have two distinct features

that present new challenges. First, the size of the on-chip cache will continue to grow,

creating the phenomenon of non-uniform access latency (NUCA). A NUCA architecture

allows various parts of the cache to be accessed with different latencies, depending on the

physical location. Therefore, a strategic (distance-aware) physical placement of cached data

can significantly improve performance. Second, the on-chip cache system must be able to

provide low access latencies to multiple on-chip cores simultaneously.

The main contributions of this thesis are two innovative CMP cache management poli-

cies: victim replication and victim migrution. These two techniques achieve significant

reductions on cache fetch latency and communication power over the baseline private and

shared designs. They are simple to implement and provide robust performance over a wide

range of applications.

MOORE'S LAW

Many-core Era
Massively Parallel

Multi-core Era
Scalar and

Hyper- Threading - Increasing
Hardware
Threads
Per Socket

2003 2005 2007 2009 201 1 2013
Source: www. intel. codtechnology/silicodpower/multicore. htm

Figure 1-1: (a) Intel's products have closely followed Moore's Law. Clock frequencies have increased
over 100X and on-chip transistor counts have increased over 10,OOOX in the last 25 years. (b) Intel
processor technology road map for the next ten years. The number of processor cores is expected to
reach into the hundreds by early next decade.

Table 1.1: Comparisons of several leading industry CMPs. These CMPs show the trends of higher
processor core counts, increased outer-level cache capacities, and moderate clock frequencies.

1.1 Why CMPs? Why Now?

Year

Ready or not, we are living in the dawn of single-chip multiprocessors (CMP). The continued

performance improvement brought by technological advances, however, has slowed down

dramatically in the past four to five years. This slowdown can be attributed to three key

factors.

Inter-
connect

First, more complex microarchitectural designs can only bring marginal performance

gain at the expense of significantly higher design efforts and longer design cycles. The

traditional channels to improving performance by widening the issue widths and using

better speculation mechanisms are fundamentally limited by the amount of instruction-

level parallelism (ILP) inherent in the workloads. These methods have already reached

diminishing returns.

Cores
(Hardware
Threads

per Core)
Server Processors

Second, higher clock frequencies can no longer be directly translated into better per-

formance because global wire delay does not scale with the silicon feature size. For each

subsequent technology generation, less on-chip area can be reached within one clock cycle,

leading to longer cross-chip latencies [HMHOl, AHKBOO]. Thus, even though individual

chip components continue to become faster, the communication latency among different

components cannot, limiting the performance of the overall system.

L2 Cache
Configuration

size/assoc/
latency

Tech. (nm)/
Transistor #/
Freq. (GHz)

Third, power consumption has become a key design constraint that limits achievable

processor performance. In traditional desktop and server systems, power usages exceeding

the hundred-watt range require exotic cooling systems. Elevated power density causes

transistor reliability and stability problems, and higher die temperature leads to leakier and

slower transistors. In the mobile computing arena, power dissipation is directly correlated

to battery life, thus to the usability of the mobile device itself. The increasing power usage

is the primary factor that finally forced chip designers to deviate, at least temporarily, from

evolving traditional superscalar uniprocessors [Kre04a].

L2 Cache
Sharing
Pattern

Bus
Bus
Bus
Bus

IBM Power5
AMD Opteron
Intel Montecito

Sun Niagara

2(2)
2(1)
2(2)
8(4)

2003
2004
2005
2005

Embedded Processors

l.9MB/lO/ 13
1MB/16/12
24MB/12/14
3MB/8/N.A.

130/276M/1.9
901233Ml2.2
90/1.7B/1.8

90/N.A./N.A.

Shared
Private
Private
Shared

90/N.A./1.5
90/N.A./0.6
90/N.A. /1.2

8(4)
16(1)
4(1)

RMI XLR
Cavium Octeon

SiByte BCM14xx

2005
2005
2005

Ring
Bus
N. A.

2MB/8/N.A.
lMB/N.A./N.A.
1MBlN.A. 1N.A.

Shared
Shared
Shared

1.2 Software Implications

Traditional superscalars and VLIWs exploit instruction-level parallelism (ILP), relying on

speculative execution to gain performance. Because the instruction-level parallelism that

exists in sequential programs is limited, even the most elaborate systems today can only

achieve a marginal performance gain with better prediction and speculation mechanisms.

CMPs exploit a much coarser form of parallelism at the thread level, which we refer to

as thread-level parallelism (TLP). For applications with significant TLP, CMPs can de-

liver higher throughput and consume less energy per operation than a wider-issue super-

scalar [ONH^96]. Several important classes of applications have abundant thread-level

parallelism and can take advantage of CMPs.

1. Server Workloads: Large transaction-based server workloads, such as web or database

servers, are inherently thread-parallel because each transaction is an independent task.

Today, server workloads are executed on large multi-chip multiprocessor systems to

obtain high throughput. CMPs will work very well for these workloads.

Parallel Scientific Workloads: Classic algorithms, such as Fourier transform or LU de-

composition, are the centerpieces of many critical scientific workloads. Large compute-

intensive programs, such as weather forecasting, demand extremely high performance

that uniprocessors are unable to deliver. Because of their importance, they are well

studied and heavily parallelized at the thread level to take advantage of large multi-

chip systems. These scientific workloads will work even better on CMPs because they

have tighter integration that reduces communication latencies among different cores

and memory.

3. Multi-Programmed Workloads: Most commercial modern operating systems support

multitasking and can run a large number of different programs in parallel. In fact,

desktop machines today run hundreds of programs concurrently using time-sharing.

Thus, we anticipate multi-programmed workloads to be the most common ones for

a desktop processor. Multi-programmed workloads are naturally thread-parallel as

different programs rarely share data, thus fully utilizing the features of a CMP.

1.3 Hardware Implications

From a hardware point of view, CMPs address three key bottlenecks of unicore processors:

(1) power budget; (2) global wire delay; and (3) design complexity.

1. Power Budget: CMPs achieve high performance by running different threads in par-

allel, putting less pressure on individual thread performance. Thus, CMPs can use

relatively less aggressive cores and scale back clock frequency. This approach sacri-

fices some single-thread performance, but allows many power-inefficient features to be

removed from the processor, thereby dramatically reducing energy per operat ion.

2. Global Wire Delay: The physical structure of a CMP naturally constricts the major-

ity of the data movement to be localized within each processor core. Global wires

in a CMP will mainly be responsible for transporting shared data between different

threads. While increasing global wire delay will remain a problem, such global com-

munication happens much less frequently compared to, for example, accesses to the

register file in a wide superscalar. In addition, this abstraction gives more control

over the wire delay problem to the software. For example, the operating system can

place multiple threads that have a high degree of data sharing in adjacent cores to

minimize the cost of global communication.

3. Design Complexity: The CMP approach dramatically reduces design complexity by

allowing the chip makers to reuse previous core designs with minor modifications to

suit future products. The focus of the redesign effort is the interconnection network re-

sponsible for communication among cores, caches, physical memory, and 110 devices.

Thus CMPs can have a much shorter design cycle and time to market compared to

superscalars.

1.4 CMP Design Trends

There are two trends in future CMP designs. First, CMPs will have more cores. For

example, the Niagara [KA005] and the XLR [Raz05] chips have 8 cores and the Cavium

Octeon CN38xx chip [Cav05] has 16 cores. Each core is likely to be relatively simple,

especially in the embedded chip space. Second, CMPs will have more total cache capacity.

For example, the newest Intel Montecito chip, based on the Itanium, has two cores, each

with its own 12MB L3 cache, forming a total on-chip capacity of over 24MB [CROEi].

1.5 Non-Uniform Access Latency

Most current cache designs divide large caches into small slices to reduce both access latency

and energy consumption. The cache access latency is primarily dominated by the access

time of each individual cache slice, thus the access latencies to various slices are fixed. We

refer to this type of cache as a uniform cache access (VCA) cache, as shown in Figure 1-2 (a).

In the larger caches anticipated in future CMPs, wire delay will cause cross-chip commu-

nications to reach tens of cycles [HMHOl, AHKBOO]. Cache fetch latencies will be dominated

by the wire delay to reach each individual cache slice rather than the time spent accessing

the slice itself. The access latencies to various slices will become significantly different de-

pending on their locations with respect to the load/store unit of the processor. UCA design

(a) UCA has Short cross-chip latency.
Data array access time dominates
overall cache access time

(b) NUCA has Long cross-chip
latency. Wire delay dominates
overall cache access time

Figure 1-2: Each block represents an optimally sized cache slice for power consumption and access
latency. (a) Uniform cache access (UCA) used by most current cache designs. (b) The non-uniform
cache access (NUCA) anticipated in the future cache designs.

is no longer suitable for these wire-dominated caches because using the worst-case latency

will result in unacceptable hit times. Thus, we must allow different slices of the cache to

be accessed at their fastest possible latencies. The resulting cache design is what we refer

to as a non-uniform cache access (NUCA) cache [KBK02] as illustrated in Figure 1-2(b).

A NUCA architecture can be either static or dynamic. A static NUCA (S-NUCA)

simply relaxes a UCA design and allows different cache slices to be accessed with different

latencies. In this case, each cache block is statically mapped to a specific bank.

The more flexible dynamic NUCA (D-NUCA) cache exposes the physical location of
each cache block to the designer, allowing more optimal placement than the statically

address-mapped approach of S-NUCA. An intelligent placement maps data to physical cache

locations such that the working set of the workload stays in the cache slices physically closest

to the core. Such a placement minimizes the cross-chip communication latency incurred by

cache accesses. However, the process of locating a cache block in a D-NUCA can cost

significantly more time and energy than in a S-NUCA.

1.6 Thesis Focus: CMP Data Access Latency

1.6.1 Thesis Problem Statement

For any computer system, its overall performance is often directly correlated to the per-

formance of its memory hierarchy. In future CMPs, off-chip misses will remain expensive,

but increases in clock frequency, together with worsening global wire delays, will also in-

crease latencies for cross-chip communication. Effective use of on-chip caches must therefore

consider both the cost of off-chip misses and the cost of cross-chip communications. Two

baseline outer-level cache designs, private and shared, illustrate the trade-offs between these

two components of effective data access latency. For simplicity, we assume in the rest of

the thesis that the second-level cache (L2) is the outer-most level of on-chip cache. A pri-

vate design evenly partitions all of the on-chip L2 cache slices such that each processor is

assigned its closest partition as its private L2 cache. The shared design aggregates all the

L2 cache slices to form a single L2 cache shared by all the cores.

The private design has a low L2 hit latency, as the private L2 cache is physically co-

located with the processor core and has a much smaller area than a shared cache. This

layout provides good performance if the working set fits within the local L2 slice. The

disadvantage of the private L2 design is that effective on-chip cache capacity is reduced for

shared data, as each core must retain its own copy of any shared data block. The shared

design reduces the off-chip miss rate for large shared working sets because only a single

on-chip L2 cache copy is required for any shared data. However, large shared L2 caches

have a worse access latency than a small private L2 cache.

With multiple cores, this placement task becomes particularly challenging because many

cores may contend for the same shared data simultaneously. The optimal placement of the

shared data may not be close to any of the requesting cores, thus making them unable to

provide fast access time to most of the sharers.

In this thesis, we will investigate various cache management policies of cache hierarchies

in CMPs. We study the private and shared cache designs described above and explore novel

cache management schemes with optimal trade-offs between the off-chip miss rate and the

cross-chip latency to achieve lower data access latencies for future CMPs.

1.7 Thesis Outline

Even though CMPs are a relatively new architectural design target, they are closely related

to earlier multi-chip multiprocessor systems. Chapter 2 provides the necessary background

for these earlier systems, and draws parallels between distributed shared memory systems

(DSMs) and CMPs. Cache coherence protocols are briefly introduced. We also discuss

various pertinent latency- hiding techniques used in DSM systems.

Chapter 3 describes our take on future CMPs trends, which we believe will naturally

1.2$ L2$
Data Tag

I

(a) Private design for L2 caches

s
Mernoi ,
Channel

(b) Shared design for L2 caches

Private L2 caches
backing up the L l
cache on the local tile

Figure 1-3: The two baseline L2 cache designs. (a) The private design evenly partitions all of the
on-chip L2 cache capacity such that each processor is assigned its closest partition as its private L2
cache. (b) The shared design aggregates all the L2 cache capacity to form a single L2 cache shared
by all the cores.

evolve toward arrays of replicated tiles connected over a switched network. We call this

architecture a tiled CMP and use it as the basis for the thesis. We then present the imple-

mentation of the private design and the shared design on a tiled CMP, and discuss various

design issues and overhead.

Chapter 4 describes two novel approaches, victim replication [ZA05b] and victim migra-

tion [ZA05a], which combine the advantage of private and shared designs to reduce both

the off-chip miss rate and the cross-chip access latency. We present the implementation of

these two techniques as well as associated cache replacement policies to manage these two

architectures.

Chapter 5 describes the experimental methodology used in this thesis. We describe the

processor and cache simulator used, as well as their integration. The workloads chosen to

evaluate the designs are presented. The effects of fastforwarding and system variability are

also discussed. The experimental results are presented in Chapter 6. They show that the

latency reduction techniques proposed by our research are robust, performing well for a

wide range of workloads.

Chapter 7 summarizes this thesis and highlights our contributions. In addition, we

point out some of the limitations this thesis had in evaluating the effectiveness of the cache

designs, ending with a discussion of designing cache and memory systems for the massive

CMPs anticipated in the future. Finally, in Appendix A, we give an overview of the cache

coherence protocol used in this thesis.

1.8 Glossary

To facilitate the discussion in the rest of this thesis, we use the following abbreviated terms

to describe the various architectures or systems presented in this thesis.

Unicore Architecture: A microprocessor architecture with only one core on chip. Most

existing microprocessors belong to this category.

Uniprocessors: Synonymous with unicore architecture.

Multicore Architecture: A microprocessor with a moderate number (more than one)

of cores. All of today's CMP architectures belong to this category.

Manycore Architecture: A microprocessor architecture with a large number of cores

on-chip. We anticipate seeing these architectures in the future.

CMP: Single-chip multiprocessors. Synonymous to multicore or manycore architec-

tures. In this thesis we only consider symmetric CMPs, i-e., all cores are functionally

identical.

Multi-chip Multiprocessor systems: A system that consists of multiple uniprocessors.

Earlier multiprocessor systems all belong to this category.

7. Multi-chip CMP systems: A system that consists of multiple CMPs, such as the AMD

Opteron system.

8. Wide Superscalars: We collectively call advanced unicore microprocessors with wide

issue width, deep pipeline and sophisticated microarchitectural features "wide super-

scalars" . Examples include the Intel Pent ium 4 and the Alpha 2 1264.

a a a
Cache Cache Cache Cache

I
f

I I I

Interconnection Network
<

Â
J

-

DRAM

(a) Physically Centralized Memory

(b) Physically Distributed Shared Memory

Cache

Â¥

1 Interconnection Network 1
(c) Physically Distributed Message Passing

Figure 2-1: Distribution schemes for multi-chip multiprocessors. (a) Physically centralized memory-
Used in smaller systems where the centralized memory can be shared by all nodes and provide a
reasonable latency and bandwidth. (b) Physically distributed shared memory system: Used in larger
systems; memory is physically (evenly) distributed to reduce fetch latency and improve memory
bandwidth. For case (a) and (b), a coherence protocol is required to keep cached data coherent.
(c) Physically distributed message passing system: Each memory module is private to its co-located
processor. Software generates explicit messages to transport shared data among different nodes.

not scale with the processor count. In these large multi-chip systems, physical memory is

typically distributed across the system, with a portion of the memory co-located with each

processor. A communication protocol is used to manage the exchange of shared data be-

tween different processors. This approach is illustrated in Figure 2- 1 (b) and Figure 2- 1 (c) .
Traditionally, designers have taken two approaches to implementing a physically distributed

memory system: message passing and distributed shared memory, described below.

2.1.2 Message Passing

From a hardware standpoint, a message passing system is equivalent to a multi-computer

system with many independent computers tightly integrated through a high-bandwidth

interconnect. Each node in the system has its own processor, local cache, and associated

memory module. Each memory module is private to the local node and has its own address

space that cannot be seen by any remote nodes. In order to share data in a message passing

system, the operating system must provide a set of user-level communication primitives

or protocols with send and receive commands. Software must explicitly specify the data

communication among the various processors. Because software handles the complexity of

data sharing in a message-passing system, the underlying hardware becomes straightforward

to build.

The memory-fetch latency in a message passing system is short because the memory is

local to the processor. However, since each send or receive message is handled in software,

the inter-node communication latency is very high. Therefore, message passing systems

work very well for workloads that have little data sharing among threads, because they

require minimal amounts of communication among various nodes. Some early message-

passing systems include the Intel Paragon XP/S [Cor91a] and the CM-5 [Cor91b] from

Thinking Machines. Common message-passing systems today are generally cluster systems

often with custom high-performance interconnect, such as the IBM SP2 clusters.

2.1.3 Distributed Shared Memory

An alternative to message passing is the distributed shared memory (DSM) approach. In

a DSM system, all of the physically distributed memory modules are combined to form a

logically unified address space shared by all nodes. A data block is stored in the memory

module of its home node, which is usually statically determined by its address. Data sharing

among different processors is implicit as each processor simply issues loads and stores to

the unique address of the shared data. Compared to message passing, the shared memory

model removes the need for programmers to explicitly direct the shared data movement in

the system. In addition, multi-threaded programs written for sequential machines can be

easily ported over to a DSM machine.

Traditionally, DSM systems are often referred to as non-uniform memory access (NUMA)

machines, because the latency of a memory access is dependent on the relative locations

of the requesting processor and the memory module hosting the requested data. If they

happen to be on the same node, then we refer to the access as a local access. On the other

hand, if they are located on different nodes, we refer to the access as a global access or a

remote access. Global accesses generally take much longer and the exact latency depends

on a number of other factors such as the network latencies and congestion.

Because memory is shared by all nodes in a DSM and each node may choose to cache

shared data locally, care must be taken to ensure that all nodes have a consistent view

of the memory content. Specifically, each load to a memory location must see the value

committed by the last store to the same location. This property is referred to as cache

coherence [CF78]. In the presence of caches, this property can be easily violated because

each processor can store a locally cached copy of the data that may be newer than the

copy stored in memory. DSM systems typically use hardware protocols to ensure cache

coherence, giving the programmer a simple and coherent view of memory from all threads.

Cache coherence is a well-studied field, and we briefly review basic protocols in Section 2.3.

Some early DSM machines include the SGI Challenge [GW94], the Gray T3D [Inc93], and

the KSR-1 [Bur921 from Kendall Square Research.

2.2 CMP Systems versus DSM Systems

The first CMPs closely resemble a tight integration of earlier multi-chip multiprocessor

systems. Figure 2-2 shows a generic physical layout of an eight-node CMP. A centralized

on-chip network ties together eight cores with their small private Lls and a large shared

outer-level (L2) cache. This type of layout, which we refer to as the "dance-hall" layout, is

quite common among current commercial CMPs, such as the Niagara processor from Sun

Microsystems [KA005] and the XLR processor from Raza Electronics [RazOB].

The main difference between an earlier DSM system and a modern CMP system lies in

the communication network. Communication delay between two nodes in a generic DSM

system can take hundreds of cycles because messages travel through an inter-chip network.

Off-chip operations generally are clocked at a fraction of the chip frequency, and are limited

by on-chip pin bandwidth. In a CMP, however, communication between processor cores

travels through an on-chip network, which can deliver much higher bandwidth at lower

latencies, significantly lowering the cost of int er-node communication compared to DSMs.

2.3 Cache Coherence Protocols

Cache coherence makes sure all of the processors in shared-memory systems have consistent

views of the memory, a necessary and important component for program correctness and

performance. A coherence mechanism typically has two components: (1) storage holding

data sharing information; and (2) a set of protocols that maintains data coherence using

r

Intra-chip Network

Figure 2-2: Current CMPs resemble tightly-integrated versions of a multi-chip multiprocessor sys-
tem of the 1980s. Processor cores are tightly coupled with the L l caches, and connected by a
centralized high-bandwidth, on-chip communication network to large outer-level caches.

the sharing information. Therefore, when a processor accesses a data block, the protocol

performs two essential tasks. First, it determines the location and the status of all the

cached copies of the requested block. Second, it updates the status and/or data of these

copies accordingly.

The status of the cached copies of any block is usually kept by attaching state to each

cache data block. The simplest cache coherence protocol categorizes a cache block into one

of three states: (1) the invalid (or I) state, means that the cache block is not holding valid

data; (2) the shared (or S) state, means that the block is shared by one or more processor

caches in the system. Shared blocks can only be read from, but not written to, and the value

held in the block is identical to the copy held in memory; and (3) the modified (or M) state,

means that the block is uniquely held. We call this node the owner of the block, and it has

the right to modify. Because the owner may hold newer data than memory, it must write

any evicted cache blocks back to memory. This protocol is commonly referred to as the

three-state MSI protocol. More sophisticated protocols employ additional states to reduce

coherence traffic as well as fetch latency. Two popular protocols are MESI [PP86, AB861

and MOESI [SS86].

Figure 2-3: Illustration of a snoopy bus-based protocol. When a coherence transaction message is
placed on the bus, all of the caches and DRAM modules snoop the message, but only the relevant
parties take the appropriate actions.

2.3.1 Bus-based Protocols

Now that we know how to succinctly store coherence information, we must be able to

retrieve it and take appropriate action. The bus-based approach, a simple technique first

proposed by James Goodman in 1983 [Goo83], uses a snoopy bus shared by all the nodes

in the system. Each node has a cache controller and a memory controller that monitors,

or snoops, the transactions on the bus. The relevant parties involved in a transaction take

appropriate action, as shown in Figure 2-3. This protocol is simple to implement and can be

applied to all multi-chip systems that use a shared bus to connect the nodes in the system.

During a cache load miss, the requesting cache places a load request onto the bus. All

caches and memory modules snoop the request to determine whether they should take any

action. If the requested block is held in a shared state by the memory module at the

home node, the data is placed onto the bus and snooped by the requestor, completing the

transaction. If data is held in a modified state, the owner cache downgrades to a shared

state and places the modified data onto the bus, which is snooped by both the requestor

and the home node, completing the transaction. Store miss works similarly, except that all

the cached copies of the requested block must be invalidated and written back if dirty.

2.3.2 Directory-Based Protocols

While elegant and simple to implement, the applicability of bus-based protocols is limited

by the system's ability to provide a fast shared bus. Since the sharing information is kept

at each cache and memory module in a decentralized fashion, all nodes must snoop every

Requestor Owner

Scalable
Znterconnec

(3) Intervention reply
I

(2) Intervention request

. . Home .
Node

Presence vector
(full-map)

Figure 2-4: Illustration of a directory-based protocol. When a cache miss initiates a coherence
transaction, the request message is sent to its home node (generally determined statically by the
requesting address). The home node holds the directory entry with all of the relevant sharing
information of the requested block.

bus transaction, even when only a small percentage of the nodes in the system are involved

in a particular coherence transaction. Thus, the effectiveness of the coherence protocol

is dictated by the bandwidth and latency of the bus broadcast operation. As the node

count scales up, the broadcast operation will no longer be able to reach all nodes within a

reasonable time.

Directory-based protocols are designed to combat the bandwidth limitation of the bus-

based protocol, by breaking an expensive broadcast into a sequence of point-to-point mes-

sages that only involve the relevant parties in any transaction. Therefore, the protocol no

longer requires all nodes to share a common bus and snoop the transaction, but rather

calls for an interconnection network that can efficiently transport messages among different

nodes. In order to quickly identify the relevant parties in the transaction, the directory-

based approach logically centralizes sharing information into a directory, as shown in Fig-

ure 2-4. The directory is usually co-located with the data block in memory, with one

directory entry corresponding to one memory block. Each directory entry keeps two pieces

of essential information about the block, its state, and the presence vector. Together they

track the block's current sharers and their read and write privileges. The simplest presence

vector uses one bit for each node in the system, which is commonly referred to as a full-map

vector.

Figure 2-4 shows an example of how the directory works. A load request initiated by the

requestor is sent to the home node. Each address is mapped to a home node statically, and

the home node has the directory with the state and the presence vector of the requested

address. In this example, the block is exclusively held by an owner node, thus the home node

sends an intervention message to the owner and requests a cache-to-cache transfer. The

owner honors that request by sending the most up- to-date data to the requestor, completing

the transact ion.

In the directory-based approach, only the relevant nodes participate in any coherence

transaction, dramatically reducing the on-chip coherence traffic. It can also use fast point-

to-point networks in place of a slower monolithic shared bus.

Managing Directory Size

One challenge in designing a directory-based cache coherence protocol is the directory size

management in systems with high node counts because the area overhead caused by a

full-map directory (one bit per node) can be prohibitively expensive.

The limited directory protocol was proposed by [ASHH88], in which each directory entry

only holds up to a fixed number of sharers. When the actual number of sharers exceeds

the maximum, current sharers are evicted in favor of new sharers. This technique is based

on the observation that on average, only a small fraction of the overall nodes are involved

in any coherence transaction. The limited directory scheme can be extended to allow the

software to emulate a full-map directory protocol [CKA9 1, AC J+99].

A chained directory protocol uses a linked list to track all of the sharers [Gus92, JLGS901.

Each sharer points to the next node that has a cached copy of the data, with the directory

entry keeping the head of the list. Such an approach does not incur software emulation

overhead, but has poor invalidation latency because the entire linked list is traversed linearly.

The coarse vectors approach [AGGDOl, LL97, MH941 uses each bit in the presence vector

to point to a set of nodes instead of a single node, even though not all nodes in the set are

necessarily sharers. Compared to the full-map approach, coarse vectors have less precision

and can generate false sharing traffic, but can have much smaller directory size. Readers can

find extensive summaries of various cache coherence schemes in [Stego, CSG97, SBD+97].

2.4 Latency Reduction Techniques for DSM

The performance of DSM systems depends heavily on the memory access latency of the un-

derlying hardware. In this sect ion, we study various latency reduct ion techniques previously

proposed for DSMs, including prefetching, multi-threading, remote caching, and cache-only

memory architectures (COMA).

2.4.1 Prefetching

Prefetching is a mechanism that loads data into the cache or local memory before it is

actually used, anticipating that it will be used in the near future [CKP91, MG91, BC91,

Lee871. When applied to a DSM, proper prefetching could avoid the long stalls created by

fetching data from far-away memory modules. Software prefetching mechanisms [CKP91,

MG911 are directed by the compiler, using static analysis to strategically embed explicit non-

blocking prefetch instructions in the code sequence. To be effective, the prefetch instructions

must precede far ahead of the data fetch, improving the chance that the data will be in the

cache when it is needed. Simple hardware prefetching [Smi82] sequentially fetches the next

cache block according to address. More sophisticated hardware mechanisms try to detect

simple address patterns, such as constant strides, and prefetch accordingly [BC9 1 , Lee871.

Since hardware prefetching guesses which data will be used, increased remote traffic could

become a concern.

Multi-threading [ALKKgO, LGH941 hides long memory access latency by switching among

multiple hardware threads active on each processor. Its success hinges on two important

factors. First, the underlying hardware must support low-overhead multi-threading capa-

bilities with a fast context switch. Second, the workload itself must have favorable data

access patterns among the threads sharing the same cache, so that the context switch does

not thrash the cache content on each node. If there are enough threads waiting, multi-

threading can hide the latency well and yield high throughput . However, mult i-t hreading

cannot reduce the latency each individual thread experiences, and cannot reduce remote

traffic.

2.4.3 NUMA with Remote Cache

NUMA with Remote Cache (NUMA-RC) [ZT97] uses a large block of DRAM at each node

to form a local remote cache. Upon a cache miss to a cache block located in a remote

memory module, the block is brought into both the regular cache and the remote cache

of the requestor. Therefore, the local remote cache is likely to hold the working set of the

local thread over time. All of the blocks in the remote caches are kept coherent by the main

memory directory.

2.4.4 Cache-Only Memory Architectures

Similar to NUMA-RC, cache-only memory architectures (COMA) also use local memory to

hold the working set for the local thread. The main difference between COMA and NUMA-

RC is that in COMA, a data block is not stored at the home node, but rather resides on the

nodes where it is used most often. The local memory is referred to as attraction memory

(a) Hierarchical COMA (b) Flat COMA

Figure 2-5: Illustration of hierarchical and flat COMAs.

because the data block is brought (attracted) into the cache and the local memory of the

requestor. Because a data block in a COMA machine can reside on any node, the process of

locating any given block becomes more complex compared to NUMA-RC. Next, we describe

several different COMA designs that use different localization schemes.

Hierarchical COMA

One of the earliest COMA machines is the data diffusion machine (DDM) introduced

in [HLH92] (Figure 2-5(a)). The DDM uses a tree-like hierarchical approach to locate

a data block. At the root of each subtree, a directory records all the data stored in that

subtree, with the actual nodes and data as the leaves of the tree. Therefore, in order to

locate a block, a traversal of the tree suffices. The requesting nodes initiates the lookup,

traversing upward toward the root of the tree. The upward traversal stops when the request

reaches the subtree root that contains the directory information of the requested block. The

directory information is used to obtain the data within the subtree. Figure 2-5(a) shows an

example in which the information of the requested block is held at the root of tree.

Flat COMA

Since the process of locating a cache block in a hierarchical COMA system is rather complex,

a Flat- COMA architecture [SJG] simplifies this process by storing the location information

of a cache block at its home node, which is statically determined by its address (Figure 2-

5(b)). Each memory access locates the block by consulting the home node as shown in
Figure 2-5 (b) .

Simple COMA

Simple COMA [SWCL95] partitions the task of data management into a software component

and a hardware component. Simple COMAs use the operating system to manage the

data allocation in the attraction memory, and use hardware to manage data coherence.

Because data migration is done in software, sophisticated algorithms using software hints

can be used to better direct the data movement around the system. However, the operating

system must move data on a page granularity, thus managing coherence in software would

cause significant overhead because each miss would trigger a page fault. Therefore, data

coherence is left to hardware and performed at a cache block granularity. One concern often

encountered in simple COMA, however, is that spatial locality at page granularity is low,

thus significantly under-ut ilizing the memory space.

2.4.5 Summary

In this chapter, we reviewed some basics of multi-chip multiprocessor systems. We drew

parallels between DSM and CMP systems, especially between the NUMA and NUCA prop-

ert ies. In particular , we presented several well-known techniques for memory fetch latency

reductions for NUMA machines. While NUMA and NUCA present similar problems, these

latency reduct ion techniques cannot be directly applied to CMPs. Specifically, in CC-

NUMAs, the allocation of the local cache between private and shared data only affects the

local node performance because they are private to the node. Furthermore, in CC-NUMAs

and COMAS, remote data is further away than local DRAM, thus it is beneficial to use

local DRAM as remote caches, which is both cheap and does not reduce the local L2 cache

performance.

Chapter 3

Memory Hierarchy Architecture

and Implement at ion

In this chapter, we describe the implementation of the baseline private and shared cache

designs introduced in Chapter 1. The designs are instantiated on a specific underlying CMP

organization which we refer to as a Tiled CMP.

3.1 Tiled Single-Chip Multiprocessors

As more and more cores are placed on future CMPs, the bandwidth and latency of the

interconnection network in the "dance-hall" style CMPs will become a bottleneck. We

believe that in the future, on-chip interconnect will move away from a shared bus to a

switched network. CMP designs will naturally evolve toward arrays of replicated tiles

connected over these networks to further reduce the re-design effort of the communication

network. These tiled CMPs scale well to larger processor counts and can easily support

families of products with a varying number of tiles.

In this thesis, we focus on a class of tiled CMPs where each tile contains a proces-

sor with L l caches, a slice of the L2 cache, and a connection to the on-chip network, as

shown in Figure 3-1. This structure closely resembles a shrunken version of a conventional

mesh-connected multi-chip system. To maintain cache coherence, we use a directory-based

coherence protocol to facilitate scaling to larger node counts. The rest of this chapter uses

the tiled CMP as the baseline design to describe how the private and shared designs are

implemented.

3.2 Basic Assumptions

This section details some basic design assumptions applied to all designs in this thesis. We

assume all CMPs are based on a unit tile replicated in a 2-D mesh configuration, as shown

DRAM

Figure 3-1: Tiled CMPs are a subset of CMPs where each tile contains a processor with LI caches,
a slice of the L2 cache, and a connection to the on-chip network. This structure resembles shrunken
versions of a conventional mesh- connected multi-chip multiprocessor system. A 2D mesh routing
network is used to connect all the tiles in the system. Cache coherence is maintained through a
scalable directory-based protocol.

in Figure 3-1. Each tile contains a processor core, separate L l instruction and data caches,

a unified L2 cache storage with any associated directory information, and a network switch.

Additional assumptions are as follows:

1. The L l instruction and data caches are not the focus of this thesis. They are private

to the processor core and are kept small compared to the L2 caches. To provide the

lowest possible latencies, L 1 caches are tightly integrated with the processor.

2. The local L2 storage is tightly coupled to the rest of the tile and is accessed with a

fixed latency pipeline. The tag, status, and directory information are kept separate

from the data arrays and close to the processor core and network router for quick tag

resolution.

3. All the caches in our system are non-blocking. A miss buffer is used to store current

misses, allowing future requests for different addresses to proceed. Figure 3-2 shows

the data access path in our baseline system.

Access to L2 slices on remote tiles travels over the on-chip network and experiences

varying access latencies, depending on the inter-tile distance and network congestion.

The on-chip interconnection network used in this thesis is a deterministic wormhole

routed virtual channel network arranged in a 2D mesh. Figure 3-3 shows the router

architecture, which has two physical links per direction (one input channel and one

output channel). Each physical input channel has two virtual channels to avoid dead-

lock.

To improve scalability, a directory-based protocol is used as the basis for all the

coherence schemes discussed in this thesis. Each directory entry uses a rudimentary

full-map (one bit per tile) presence vector to keep track of the sharers.

A request-reply, invalidate-based, four-state MESI protocol, with reply-forwarding, is

used as the baseline cache coherence protocol, with each design using a minor variant.

More detailed discussion about the protocol features and implementations will be

presented in Section 3.5 and Appendix A.

Private Design

In the private design shown in Figure 3-4, the processor core uses the local L2 slice as a

private L2 cache. This approach is used by several commercial CMPs, such as the Intel

Montecito [CR05] and AMD's Opteron [KMAC03].

The operation of the private design is straightforward. When an L l miss occurs, it is

forwarded to the local private L2 cache, and a hit in the private L2 cache completes the

fetch. The miss scenario is more complicated because the directory entry must be consulted

to maintain data coherence for all of the L2 copies of the requestor data block. Because

each memory block is associated with a directory entry, the directory area overhead of

using a full-map directory can be significant as discussed in Section 2.3.2. Therefore, most

directories are kept in off-chip memory because the area necessary to place them on-chip is

unrealistic.

The main issue in using an off-chip directory is that its access latency is much higher

compared to on-chip communication latencies. This problem has not been severe in multi-

chip multiprocessor systems because most of the time the requested data is also in off-chip

DRAM modules, which must incur a long fetch latency anyway. For a CMP, however, the

difference between on-chip and off-chip latencies is dramatic.

In a naive implementation of the private design, even if a shared data block is present

in the private L2 cache of another tile, the L2 miss is not aware of their presence until it

Cache

off-chi,
reuues

reply

Figure 3-2: The access path of the non-blocking two-level cache hierarchy used in this thesis.
Each cache miss, writeback request, or explicit drop request is kept in a miss buffer to allow future
accesses to proceed. Misses to the same address are merged into a single entry in the miss buffer
when appropriate. Future misses to different addresses are not blocked as long as there is an available
entry in the miss buffer.

Input Channel North 1 4 Output Channel North

Input Channel Local

Output Channel Local

Input Channel West

Output Channel West

Input Channel South I ^ Output Channel South

Input Channel East

Output Channel East

Figure 3-3: A two-dimensional mesh router with two physical channels per direction and two virtual
channels per physical channel.

Coherence I Brecto,, 1
(a) Naive implementation of directory-
based coherence for private design
with off-chip coherence directory

Coherence
Directory

(b) On-chip directory cache is used
to avoid long access latency of off-
chip coherence directory

Figure 3-5: (a) A naive implementation that places the directory in off-chip DRAM can suffer
significant performance degradation as each coherence transaction involves at least one off-chip
access, even if the actual data is on chip. (b) Using a directory cache can significantly reduce the
access latencies to the directory entries stored in off-chip DRAM by keeping the directories of the
most recently used blocks.

1 1 tile 0, set 0 I tile 1. set 0 1 1

1 1 tile 0, set 2 1 , , A tile 1, set 2 1 I
tile 0, set 1 tile 1, set 1
tile 0, set 3

Home Select T
Index

Figure 3-6: Example of using duplicated L2 cache tags to implement an cache coherence directory.
Each L2 tag is duplicated and stored at its home node, determined statically by address. Directory
information is deduced from the collection of the L2 tags.

46

Duplicated 12 Tag Array at the Home Tile for Cache Set "S" Shared by Tiles 0 and 1

Duplicated Tags of Tile 0: Shared 1 A \~xclusivel B 1 Shared 1 C 1 Invalid 1 N/A r i Owned by Tile 0 -
c Sharedby Tile 0

Duplicated Tags of Tile 1: valid 1 N/A 1 Shared 1 A 1 Znvalid 1 N/A lÂ£xctosive E
Not on chip

Owned by Tile 1

(a) Deducing directory information from duplicated tag array

'etch

(b) Normal way allocation takes place
when the reply reach the requestor

request

(1) Fetch request: replacement
way is chosen and used by the
home tile and the requestor

(c) Way allocation in the private design
takes place when the fetch request is issued

Figure 3-7: Examples of the duplicated-tag directory for the private design.

accesses the off-chip memory, e.g., block i shown in Figure 3-5 (a). Using an on-chip directory

cache is one approach to reduce off-chip directory lookups by keeping an small subset of

the entries on-chip, as shown in Figure 3-5(b). Directory caches are simple to implement

and can be very effective, depending on the data access patterns of the cache. However,

in our simulations, using a directory cache did not lead to a high enough hit rate for our

benchmark suite. Thus, we opted to implement a duplicated-tag directory scheme, which

can be placed on-chip with a moderate area requirement.

3.3.1 Duplicated-Tag Directory Implementation

The goal of the duplicated-tag directory is to keep the directory entries of all the cached L2
blocks on-chip. The directory entries are held as a duplicate set of L2 tags distributed across

tiles by address [BGM'̂ OO]. For each processor accessing a particular cache block, a copy

of the block must be resident in its private L2 cache, such as block i shown in Figure 3-4.

In addition, an on-chip directory holding an entry for block i is stored at block i's home tile,

statically determined by the home select bits of the address, which in our case, is the lower

bits of the cache index form the home select.

Directory Usage

Figure 3-6 shows a simplified two-tile example of how this scheme works. In this example,

each tile has a direct-mapped L2 cache with four cache blocks. We use the home select bits

to find A's home tile and determine A's status on-chip. The remaining bits of the index are

used to find the duplicated tag entry corresponding to A in the directory on the home tile.

This entry stores the duplicates of all L2 tags in the cache set that A maps to from all the

tiles. In this example, A maps to set 3, and the duplicated tag entry has the L2 tags of set 3

from both tile 0 and tile 1. With these tags, we can easily deduce the directory information

of A. Therefore, we have constructed a perfect directory for all of the data currently cached

on chip. Figure 3-7(a) shows an example of a two-tile system and how the state and sharing

information of data blocks A to E can be deduced.

The main drawback of this approach is the area overhead, which we will discuss in

Chapter 6. Cache-to-cache transfers are used to reduce off-chip requests for local L2 misses,

but these operat ions require t hree-way communication between the requesting tile, the

directory tile, and the owner tile. This operation is more costly than hits to global locations

in a shared design, where a three-way cache-to-cache transfer only occurs if the block is held

in the exclusive state.

Directory Maintenance

One complexity in maintaining the duplicated-t ag directory is that the tags in the directory

must be identical to the actual L2 tags they shadow, or the directory would encode the

wrong sharing information. Therefore, each time the tag changes, the directory must also

be updated.

Normally, way allocation and any necessary writebacks in each cache set are done when

the requested data reaches the requesting tile, as shown in Figure 3-7(b). In the private

design, however, the L2 cache of the requestor and the directory on the home tile must agree

to use the same way for each refill data block. Therefore, we choose to select a way to refill

into (and necessary writebacks) and send that information to the home tile at request time.

When the requested data is returned, the directory has already updated the tag information

using the replacement way agreed upon to reflect the most up-to-date sharing information.

3.4 Shared Design

In the shared design, all of the L2 slices are managed as a single shared L2 cache with

addresses interleaved across slices. The shared design is used by a number of commercial

CMPs, such as IBM's Power series [TDJ%], Sun Microsystems' Niagara [Kre04b], and

Raza Electronics's XLR series [Raz05].

Figure 3-8 shows the implementation in detail for our tiled CMP. On-chip L2 storage is

split evenly among all tiles but logically forms one large cache. On an L l cache miss, the

7 Tile 0

A slice of
globally shared

L2 Cache

Block i Address:

c] Data Slice

Tile 3 /I

Tile 1
(Home Tile)

Home tile select (2-bit)

1 Tag 1 Index 1 Offset 1

Figure 3-8: In a shared L2 design, all of the on-chip L2 slices are aggregated to form a single large
logical L2 cache. Each L l cache miss must travel to the home node of requested block to access the
data. Data coherence is maintained for all the L l sharers.

fetch request is forwarded to the requested block's home tile, which could be either local or

remote. Latency to the L2 slice varies according to network congestion and the number of

network hops between the requesting processor and the home tile.

On-chip Directory Implement at ion

Because multiple L l caches can hold the same shared data, coherence must be kept among

all the Lls. Coherence protocol is much simpler to implement in the shared design because

we know which cache blocks are currently on-chip. We add additional directory bits to each

L2 block, to keep track of which tiles have remote copies. For a design with N processor

cores, this approach adds an N-bit sharing vector to each L2 cache block. The overhead

of the sharing vector will grow as the processor count grows, but a number of previously

proposed techniques, discussed in Chapter 2, could be used to reduce directory overhead.

3.5 Cache Coherence

In this section, we briefly describe the baseline cache coherence protocol used for all cache

designs in this thesis. We use a four-state MESI protocol first introduced by Paramarcos and

Pate1 [PP86, AB861. Each directory entry uses a full-map presence vector to store sharing

information. The details of the protocol are included in Appendix A. In this section, we

simply highlight some protocol properties and features, summarized in the following:

1. The protocol is non-blocking. A negative acknowledgment (NACK) is used as reply

if the home tile cannot service the request. A NACK'ed request must be retried by

the original requestor.

2. The protocol does not assume any network ordering of its message delivery. Coherence

messages can be reordered or delayed arbitrarily.

3. The protocol requires explicit drops of all clean cache blocks, i.e., the directory must

be informed when a clean cache block is evicted from the local cache.

4. The protocol dynamically backs off requests in a race condition to avoid starvation of

any of the requestors.

5. The protocol acknowledges all explicit drops and writeback requests.

3.6 Summary

Private Design Recap

The private design has low L2 hit latency, as the L2 is physically co-located with the

processor core and has much smaller area than a shared cache. This design provides good

performance when the working set fits within the local L2 slice. Its main disadvantage is that

effective on-chip cache capacity is reduced for shared data because each core must retain

its own copy of any shared data block. Furthermore, the fixed partitioning of resources

does not allow a thread with a larger working set to "borrow" L2 capacity from the private

caches of other processors hosting threads with smaller working sets.

Shared Design Recap

The shared design minimizes the off-chip miss rate for large shared working sets, as only

a single on-chip copy is required for any shared data. However, two significant drawbacks

may reduce the effectiveness of the shared design. First, large shared L2s will have worse

access latency than a small private L2 even when each physical L2 slice is optimally sized for

access latency. This is due to the increasing global wire delay that makes transferring data

across chip expensive. Second, the associativity of the L2 cache needs to be high enough

to accommodate the number of on-chip threads. Otherwise, we may suffer from inter-

thread cache conflicts, especially for applications that have little sharing. As more tiles are

anticipated in future systems, the off-chip misses caused by the inter-thread conflicts may

outweigh the savings from increased capacity.

Chapter 4

CMP Latency Reduction

Techniques

In Chapter 3, we introduced two baseline L2 cache designs. First, a private design dedicates

a slice of the on-chip L2 cache storage as a private L2 cache for each processor core. Second, a

shared design aggregates all the on-chip L2 cache capacity to form a single L2 cache shared

by all the processor cores. These two designs illustrate the trade-offs between two key

components that control effective memory access latency, namely, on-chip access latency

and off-chip miss rate. Figure 4-1 shows this trade-off.

4.1 Hybrid Designs

Each workload has specific characteristics that could lead to considerably better perfor-

mance with either a private or a shared design. Furthermore, each workload itself may be

divided into several distinct program phases that call for different designs. This intuition

has been shown by many recent studies [HKS+05, CPV051. In Chapter 6, our results also

confirm this hypothesis.

This observation is the chief motivation to develop hybrid cache system architectures

that retain the advantages of both private and shared designs. The main design goal of

any hybrid design is to achieve lower off-chip miss rate than the private design and lower

on-chip access latency than the shared design, as shown in Figure 4-1.

In this thesis, we present two hybrid designs, victim replication (VR) and vict im migra-

tion (VM) that try to reduce both on-chip access latencies and off-chip miss rates to yield

better performance than either private or shared design. Both victim replication and victim

migration are based on the shared design. We show that by using victim replication, we

can trade a small increase in the off-chip miss rate for significantly reduced on-chip fetch

latency. Victim migration has a slightly higher area overhead than victim replication but

is more flexible and can fully mimic the behavior of the private design, and is particularly

High on-chip
access latency

Low on-chip
access latency

Pure shared design

Hybrid designs

Optimal design

Low off-chip
miss rate

High off-chip
miss rate

Figure 4-1: The trade-offs between two conflicting goals in designing a hybrid on-chip cache archi-
tecture: off-chip m i s s rate and on-chip fetch latency.

well-suit ed for mult i-programmed workloads.

4.2 Overall Design Approach

Before explaining our hybrid designs in detail, we first discuss how we approach designing

a hybrid layout in a CMP cache system that combines the advantage of the private and the

shared designs.

4.2.1 Improving the Bottomlines

Figure 4-2 shows a generic four node CMP, with each node having a slice of the L2 cache

space. Depending on whether we use the private or the shared design, each cache block

falls into one of three categories: (1) an unshared (private) block, where the host node is

the only user of this cache block; (2) a global shared block in its statically mapped home

location; and (3) a replicated shared block, where each sharer replicates a copy in its local

cache slice.

With a pure private design, a cache slice can contain either private blocks or replicated

shared blocks, but not global shared blocks. However, introducing shared global blocks into

a pure private design can be beneficial. First, if the capacity in a particular cache slice is

not fully utilized, the unused space can store shared global blocks for other nodes, creating

a limited form of cache capacity stealing to reduce the off-chip miss rate. Second, if the

working set does not fit into the local cache slice, we can increase the effective on-chip cache

Private Data

P r e d Data

Replicated
Shared Data

Figure 4 2 : Illustration of the hybrid design approach. Three different types of blocks can be
present in a hybrid design: private blocks, global shared blocks, and replicated shared blocks.

capacity by replacing some replicated shared blocks with global shared blocks. While fewer

replicated shared blocks can lead to more cross-chip fetches, the increased on-chip capacity

can reduce costly off-chip misses, creating an overall performance gain.

With a pure shared design, each cache slice contains only global shared blocks. Allowing

replicated shared blocks in a pure shared design can also be helpful. First, if the capacity

of a slice is not saturated, the unused space could store replicated cache blocks local to

that node, turning some long cross-chip fetches into local ones. Second, if an often accessed

block is in a distant location from its requestor, allowing the requestor to having a local

copy of the block could significantly improve overall fetch latency, even if this means that

another global shared block must be evicted in order to accommodate this replicated block.

Therefore, a hybrid design allowing all three types of blocks to co-exist can potentially

perform better than both the private and the shared designs. In creating such a hybrid

design, we must first craft a mechanism that allows the caches to be divided into two

partitions, a shared partition holding global shared blocks, and a private partition holding

private and replicated shared blocks. Moreover, we must also devise management policies

to solve two problems, namely, how to determine what is the right division between the

two partitions, and what data to place in which partition. Victim replication and victim

migration use similar partition mechanisms, and each details a set of management policies

that achieve superior cache performance than both the private and the shared designs.

4.2.2 Design Criteria

Besides achieving good performance, our hybrid designs also have several other highly de-

sirable properties. They are summarized in the following:

1. Simplicity: These designs do not introduce significant additional complexity or over-

head to the baseline system.

2. Flexibility: As we will show in later chapters, certain workloads prefer either a pure

shared design or a pure private design. These hybrid designs are highly adaptive to

closely mimic the behavior of these two baseline designs and avoid significant perfor-

mance degradation from each baseline.

3. Robustness: These hybrid designs work very well across a wide range of workloads

and do not show significant performance degradation for any particular type of work-

load. Specifically, we devised victim migration to work better for multi-programmed

workloads than victim replication.

4. On- Line: These hybrid designs dynamically adjust to suit each individual execution

phase within each benchmark. Several proposed static designs use profiling informa-

tion to determine the best suited hybrid design. However, many workloads display

clear execution phases that may call for different designs during the execution.

4.3 Victim Replication

Victim replication is a simple hybrid approach based on the shared design. Its main idea is

to use the local L2 cache slice to capture some of the evictions from the local LI cache. Each

retained victim is a local L2 replica of a block that already exists in the L2 cache at the

remote home tile. This idea is shown in Figure 4-3. A significant number of future accesses

will hit in the capacity victim replicas, thus providing short fetch latency by efficiently

creating a local victim cache in the L2 slice.

4.3.1 Mechanisms

When a processor request misses in the shared L2 cache, a cache block is brought in from

memory and placed in the on-chip L2 at its home tile, just as in the shared design. The

requested block is also forwarded to the L l cache of the requesting processor. If the block's

residency in the L l cache is terminated because of an incoming invalidation request, we

simply follow the usual protocol of the shared design and invalidate the LI cache copy. If
an L l cache block is evicted because of a conflict or capacity miss, we attempt to keep a

copy of the victim block in the local L2 slice to reduce subsequent access latency to the

same block. In some instances, we may choose not to replicate the victim, as described

below.

All primary cache misses must now first check the local L2 tag array in case there is a

valid local replica. On a replica miss, the request is forwarded to the home tile following

standard protocol. On a replica hit, the replica is invalidated in the local L2 slice and moved

into the L l cache, completing the request. When a downgrade or invalidation request is

received from the home tile, the L2 tag array must also be checked in addition to the L l
cache tag array to maintain coherence.

<
Replica created
at eviction time
by storing a
local copy in the
shared L2 space

Core Ll$ Bm

L2$ L2$ L2$
Data Slice Tag Dir.

Tile 1
(Home Tile)

A slice of
globally shared
L2 Cache

Home tile select (2-bit)
A

Block i Address: 1 Tag 1 Index 1 Offset 1

Figure 4-3: Victim replication is a simple hybrid design that combines the large capacity of the
shared design with the low hit latency of private design. Victim replication is based on the shared
design, but in addition tries to capture evictions from the local L l cache in the local L2 slice, such
as the L2 copy of block i captured by Tile 2. Each retained victim is a local L2 replica of a block
that already exists in the L2 of the remote home tile.

Table 4.1: Cache management policies for victim replication. Blocks are chosen in descending order
according to their priority and blocks with the same priorities are chosen at random.

Priority] Target Block Type 1 Action
L2 Cache Refill Policy

4.3.2 Management Policies

1
2

3

A naive approach would be to create a replica for all L l cache victims, but L2 slice capacity

is shared between victim replicas and global L2 blocks, i.e., each cache set can contain

any combination of replicas and global blocks. By keeping the victim replicas, we are also

reducing the storage capacity for global blocks. Therefore, victim replication will have less

overall on-chip L2 capacity than a pure shared design. But by creating replicas, a fraction

of the L2 hits can now be serviced by these replicas, thus avoiding longer cross-chip fetches.

Therefore, an important task in managing replica creation is to not evict a global shared

block if it is potentially more useful than the replica itself.

We choose to use the sharing information of a block to evaluate its current usefulness. If a

global shared cache block is currently shared by another node, we deem it useful. Conversely,

if a global shared block is not used by anyone, i.e., has no sharers, it is considered less useful

and can be evicted to make room for a replica. This observation forms the basis for both

victim replication and victim migration.

Invalid block
Unshared global block
Replica block
Shared global block

In the following, we detail our heuristics to efficiently manage the on-chip cache capacity.

Specifically, we discuss two policies to manage way replacement in a cache set. First, the

L8 refill policy determines where to place a cache block when the L2 receives a reply for

an L2 miss from off-chip memory. Second, the L I eviction policy determines whether to

replicate, and if so, where to keep an L l victim in the local L2 slice. Table 4.1 summarizes

the policies.

Refill
If dirty, write back to DRAM, then refill
Writeback to home node, then refill
Invalidate all sharers, write back if dirty, then refill

L l Cache Eviction Policy

With victim replication, there can be four types of cache block that live in a cache set:

(1) an invalid block; (2) a replica block; (3) a global block that currently has Ll sharers; and

(4) a global block that currently does not have any L l sharers. The management policies

describe the process used to choose from these four types of blocks when looking for a space

to store either an off-chip memory refill or a replica.

1
2

Invalid block
Unshared global block
Replica block

Replace with replica
If dirty, write back to DRAM, then replace with replica
Writeback to home node, then replace with new replica

L2 Refill Policy

The L2 refill policy looks to replace the following three classes of blocks in descending

priority order: (1) an invalid block; (2) a global block with no sharers or an existing replica

block; and (3) a global block with active remote sharers.

L l Eviction Policy

The L I eviction policy is similar to the L2 refill policy. However, the key observation here is

that we never want to evict a global block with remote Ll sharers in favor of a local replica,

as an actively cached global block is likely to be in the current working set. Therefore, the

L l eviction policy will replace the following two classes of cache blocks in the target set in

descending priority order: (1) an invalid block; and (2) a global block with no sharers or

an existing replica block. If no blocks belong to any of these two categories, a replica is not

made and the victim is evicted from the tile similar to the baseline shared design. Finally,

victim replication never creates a victim replica when the home tile happens to be local.

Traditionally in uniprocessors, the replacement policies utilize some form of time-base

information, such as LRU. In our simulations, however, we have found that utilizing time-

based information did not particularly help with miss rates for the L2 cache. We believe this

is because the view of recency from local L2 accesses is not an accurate description of access

patterns of the processor. For example, a heavily accessed block in L l will not generate any

local L2 traffic, but it should not be evicted from the L2 cache. Thus, if multiple blocks are

available in each category, we simply choose one at random.

4.3.3 Implementation Overhead

Victim replication has a small area overhead over the shared design because the L2 tag must

be wide enough to hold physical addresses from any tile. Thus the tag width becomes the

same as the private design as shown in Figure 4-4. Global L2 blocks redundantly set these

bits to the address index of the home tile. Replicas of remote blocks can be distinguished

from regular L2 blocks as their additional tag bits do not match the local tile index.

4.4 Victim Migration

The main limitation of victim replication is that for each shared cache block, a copy must

also be present in the L2 cache of its home tile. For multi-threaded applications with a

reasonable amount of sharing among threads, this overhead is small. However, for multi-

programmed workloads, this data duplication significantly reduces on-chip capacity because

the sharing among the different threads is minimal. For these workloads, we expect a pure

private design will usually outperform victim replication.

Addr - - frmat:

Shared Design Tag:

Victim Replication Tag: 1 Tile Select

-Y-'
Log(N) bits

N = Number of Tiles

Figure 4-4: The tag width in victim replication is wider than the shared design by lg(N) bits,
where N is the number of tiles in the system. The extra bits are used to distinguish the actual home
tile of the address.

Because multi-programmed workloads are expected to be an important component of

the workload seen by future systems, we devised victim migration to combat this data

duplication problem. Victim migration uses the replication idea, but is more flexible and

can dynamically mimic the behavior of a pure private design. Figure 4 5 shows its cache

hierarchy arrangement. Each L2 cache consists of a tag array, a data array, and directory

bits, similar to the shared design. In addition, each L2 cache also has an extra tag array,

which we refer to as the VM tag array. To simplify the initial discussion, we assume that

the size and associativity of the VM tag array is identical to that of the regular L2 tag

array.

Mechanisms

In victim migration, each cache block is held in one of two forms. First, it can be managed

exactly like the shared design. Second, if the block is being actively shared by another tile.

either as a regular LI cache block or as an L2 replica, the L2 cache may choose to store

only its tag but no data in the VM tag array. By doing so, victim migration removes the

unnecessary duplication of data at the home tile, freeing up data array space to hold more

replicas or other global blocks. The only added complexity is that both regular and VM
tag arrays must be searched during a data fetch. If a hit is found in the VM tag array, the

request is satisfied through a three-way cache-to-cache transfer.

Management Policies

We again provide a set of heuristics to efficiently manage the cache on-chip capacity. Specif-

ically, we discuss three policies. The L8 refill policy and the LI eviction policy used in victim

replication must be retooled to take advantage of the VM tag array. In addition, if the local

L2 slice decides not to replicate an L l victim and sends it back to the home tile, or if a

""I

Tile 0
(Home Tile for Block j)

Tile 1
(Home Tile for Block i)

Home tile select (2-bit)

Blocck j Address:

1 Tag, 1 Index, 1 offset,

A
Home tile select (2-bit)

A. Blocck i Address:

1 Tagi 1 Index. 1 Offset, 1
Figure 4 5 : Victim migration is based on victim replication but more flexible. By using the VM
tag array, victim migration removes the unnecessary duplication of data at the home tile, freeing up
space to hold more replicas or other global blocks. If a hit is found in the VM tag array, the request
is satisfied through three-way cache-to-cache transfers using reply-forwarding.

Priority 1 Target Block Type(s) 1 Action
L2 Cache Refill Policy

1 1 Shared global block 1 Swap tags with VM tag entry, overwrite the data with

1

2

3

2

Invalid block in main array
Invalid block in VM array
Unshared global block
Replica block
Shared global block

Remote Tile Writeback Policy

main array
Unshared global block
Replica block

Refill
Refill
If dirty, write back to DRAM, then refill
Writeback to home node, then refill
Invalidate all sharers, write back if dirty, then refill

L l Cache Eviction Policy

with the L l victim replica.
If dirty, write back to DRAM, then replace with replica
Writeback to home node, then replace with new replica

the remote tile writeback data.
Move global shared block's tag into the invalid space in
VM tag array. Then overwrite the global share block

1
2

3

1 1 writeback data.

1

Invalid block in VM array
and global shared block in

Replica block

Table 4.2: Cache management policies for victim migration. Blocks are chosen in descending order
according to their priority and blocks with the same priorities are chosen at random.

main array
Unshared global block

tile writeback data
Writeback to home node, then replace with remote tile

replica is evicted, the remote tile writeback policy is used to determine where to place the

data if it is held in the duplicated tags. Table 4.2 summarizes the policies.

Invalid block in VM array
and global shared block in

with the remote tile writeback data.
If dirty, write back to DRAM, then replace with remote

L2 Refill Policy

Move global shared block's tag into the invalid space in
VM tag array. Then overwrite the global share block

The L2 refill policy replaces the following three classes of blocks in descending priority order:

(1) an invalid block, either in the main tag and data array or in the VM tag array; (2) a

global block with no sharers or an existing replica block; and (3) a global block with active

remote sharers.

L l Eviction Policy

The LI eviction policy determines whether to replicate an L l victim, and if so, where to

hold it in the local L2 slice. We first simultaneously search for an invalid VM tag and an

actively shared block in the regular tag array. If both exist, the tag of the actively shared

block can be moved to the invalid VM tag entry without losing information. The L l victim

can safely overwrite the shared block's local data. As no data is evicted from the local L2
cache, this operation should not cause performance degradation. The only minor effect may

come from the possibly longer hit latency required to perform a three-way cache-to-cache

transfer when a remote request hits in the VM tag array and the block was previously stored

in the regular tag array.

If the above scenario is not possible and we must evict a valid block, we look to replace

either a global block with no L l sharers or an existing replica block. If neither of the two

exist, we do not replicate the L l victim. This approach is the same as victim replication.

Remote Tile Writeback Policy

This policy is used whenever a tile has to evict a block back to the home node, either from

its primary cache when no replica can be created, or from the victim replicas when they are

evicted. At the home tile, if the block is already held in the regular tag and data array, we

perform a conventional update. If the tag is held in VM tag array and another tile still has

a copy of the data, we simply update the directory information in the VM tag. However, if

the last on-chip copy of a cache block is sent home and its tag is kept in the VM tag array,

we must decide if and where to keep this unique copy.

We first look for an actively shared global block, which currently does not need the data

array space. This global block can be swapped with the remote writeback. If we can find

such a swap, no data is evicted from the chip.

If this scenario is not possible, we use the approach outlined in the L l eviction policy

to look for unowned blocks or replica blocks to replace. If a replica is replaced, there can

be a ripple effect as the evicted replica is written back to its own home tile.

If no unowned blocks or replicas are found, we again choose not to evict actively shared

blocks as they are likely to be in the active working set. In this case, the remote tile

writeback is evicted from the chip and written back to memory if necessary.

4.4.3 Implement at ion Overhead

The main drawback of victim migration is its area overhead. First, because victim migration

builds upon victim replication, its tag width must be that of the private design. In addition,

the VM tag array also keeps the L2 tag and L l sharing information, which can incur a

costly area overhead. In Chapter 6, we will show that the size of the VM tag array can be

reduced to to one fourth of the regular L2 tag array size and still achieve reasonable latency

reduction. The overall area used by such a design is smaller than the private design. This

is because the private design must also use duplicated set of L2 tag arrays to implement

the on-chip directory, incurring a significant area overhead.

4.5 Related Work

A number of proposals seek to reduce the effective access latency of a large shared cache by

adopting a non-uniform cache access (NUC A) architecture. NUC A [KBK02] designs allow

access latency to vary depending on the relative placement of the processor and L2 slice

containing the data. Dynamic NUCA designs have been proposed for uniprocessors [KBK02,

(a) Data migration in uniprocessor: D- NUCA. (b) Data migration in chip multiprocessor.
Source: Kim et. al. ASPLOS-X, 2002. Source: Beckmann et. al. MICRO-37,2004.

Figure 4-6: Examples of data migration. Each rectangle represents a cache slice, with the
darker squares representing rectangles slices that are accessed more frequently. Figure(a) shows
D-NUCA [KBK02], a scheme that dynamically moves the more frequently used data to the closer
slices to the processor core. Figure(b) shows a data migration study conducted in [BW04] on a
CMP. The study shows that data migration might not work well as shared data tend to migrate to
locations equidistant to all sharers. In the configuration shown here, all shared data moves to the
center of the chip.

CPV031, where frequently-accessed cache blocks gradually migrate closer to the processor.

Figure 46(a) shows this approach taken by [KBK02]. These schemes are considerably more

complicated when applied to CMPs with the "dance-hall" configurations [B WO4, CPV05,

HKS+05] discussed in Chapter 3. They require some form of duplicated L2 tag array kept

local to each processor to reduce the number of slices that must be searched to locate an

on-chip block. Further, all such local tag arrays must be kept consistent with any block

migration triggered by a remote processor, imposing additional serialization constraints on

otherwise independent cache accesses [B WO4, CPV05, HKS+05].

Data migration techniques [KBK02, CPV031 discussed in the introduction could have

poor performance when applied to tiled CMPs because a given L2 block may be repeat-

edly accessed by processor cores at opposite corners of the die. A recent study [BW04]

investigates the behavior of block migration in CMPs using a variant of D-NUCA, but the

proposed protocol is complex and relies on a "smart search" algorithm for which no practi-

cal implementation is given. The benefits are also limited by the tendency for shared data

to migrate to the center of the die. This phenomenon is shown in Figure 46(b).

Several proposals advocate data replication [CPV05, S S ZR051, which allow sharers to

replicate local copies of shared data for fast access. CMP-NURAPID [CPV05] extends

NuRAPID to support data replication for CMPs based on a snooping coherence protocol.

The actual implementation, however, is complex and incurs a large area overhead. In the

baseline IBM Power4 scheme [TDJ+02], each node has a non-inclusive L3 cache that stores

the local L2 victims. However, while L3s can be snooped by other nodes, the local L2 victim

always overwrites the local L3, causing considerable pressure on the L3 and reducing the

effective L3 capacity. In [SSZR05], this baseline design is improved by using a small history

table to selectively remove some clean writebacks of data already present in the L3 cache.

Data replication also bears resemblance to earlier work on remote data caching in con-

ventional CC-NUMA and COMA architectures [OR99, DT99, ZT97], which also try to

retain local copies of data that would otherwise require a remote access. There are two ma-

jor differences in the CMP structure, however, that limit the applicability of prior remote

caching work. First, in CC-NUMAs, all of the local cache capacity on a node is private so

the allocation between local and remote data only affects the local node. In a CMP, on-chip

L2 capacity is shared by all nodes, and so a local node's replacement policy affects cache

performance of all nodes. Second, in both CC-NUMA and COMA systems, remote data

is further away than local DRAM, thus it is beneficial to use a large remote cache held in

local DRAM. In addition, the cost of adding a remote cache is low and does not diminish

the performance of existing L2 caches. In the CMP structure, the remote caches are closer

to the local node than any DRAM, and any replication reduces the effective cache capacity

for blocks that will have to be fetched from slow off-chip memory.

Bochs
Emulator

Interface

Detailed
Memory

Hierarchy
Simulator

Applications

Linux 2.4.24

2D Mesh
Network

Figure 5- 1 : The overall simulation infrastructure. A detailed cache and memory simulator is
developed to experiment with the cache designs. The Bochs full-system emulator is used as the
processor model and drives the detailed cache and memory simulator to form an execution-driven
system simulator.

achieve in trace-driven simulation. The workloads are compiled under Linux version 2.4.24.

This version of Linux is compiled for an x86 processor on an eight-way SMP. The overall

simulator infrastructure is shown in Figure 5-1. The detailed memory model consists of

three parts: the Ll and L2 caches for each tile, the DRAM module, and the interconnection

network as described in Chapter 3. The memory references from the code sequence are

extracted and fed into the detailed memory model, which provides a request-response inter-

face to the Bochs emulator. The execution rate of each processor in the Bochs emulator is

controlled by the feedback from the memory system. The magic memory is used to provide

values for processor data accesses during the fastforwarding phase, which we will describe

in Section 5.3.

5.1.2 Interfacing Bochs to Detailed Cache Simulator

Figure 5-2 details the interface between the Bochs emulator and our detailed simulator. The

main loop of Bochs moves round-robin between the processor cores, 1/0 devices, and disk,

incrementing the cycle count at the end of each loop. Devices that need attention assert an

interrupt line and are handled by the operating system of the simulated machine. During

each "Bochs cycle", one x86 instruction is executed. All instructions that do not contain

memory accesses are executed normally. For instruct ions that invoke memory accesses, we

extract these accesses and feed them into detailed memory simulator.

Because Bochs is an x86 architecture emulator, a single instruction could touch mem-

ory multiple times, such as the lea example in processor core 1 or the pusha example in

processor core 2. To simulate such an instruction accurately, we ought to suspend the pro-

cessor execution appropriately for each memory access that does not hit the cache, until it

is resolved by the memory simulator, then continue onto the next memory access. How-

ever, this approach requires significant modifications to the Bochs emulator to implement a

mechanism that checkpoints the state of the simulator in the middle of an instruction. The

frequent checkpoint ing could also significantly impact running time.

To avoid this cumbersome overhaul to Bochs, we took a simpler approach to handle

instructions with multiple memory accesses. Such an instruction is executed to completion,

performing all of the memory accesses necessary using data from the magic memory. The

actual loads and stores are buffered up in a memory access buffer and forwarded to the

detailed memory system. Execution for the requesting processor is suspended until all

of the memory accesses are resolved. Checkpointing here can only happen in between

instruct ions.

Our approach can create complications for a subset of the instructions with multiple

memory accesses when the address of a later fetch depends on the result of an earlier fetch.

Because of this dependence, coupled with the memory simulator timing and the specific

thread interleaving, the values fetched from the memory simulator may deviate from the

ones provided by magic memory. In actual simulation, we have found such instances to be

rare (under 1%). When it does happen, however, we use a fixup mechanism to force the

data in the memory simulator to match the magic memory, so that future memory accesses

to the memory simulator can produce the same values as the magic memory. This approach

guarantees that we are executing the workload with a legal thread interleaving.

5.1.3 Simulation Parameters

In this thesis, we chose to simulate four cache configurations. The parameters of each

configuration are summarized in Table 5.1. To simplify result reporting, we scaled all

system latencies to the access time of the Ll cache, which we assume can be reached within

a single clock cycle.

We picked the 70 nm technology parameters based on the Berkeley Predictive Technol-

ogy Model (BPTM) [UC 011. We use a 16 PO4 clock cycle [Hor83] time for configuration 1
because it has a smaller 16KB LI cache. We assume a 24 F04 clock cycle time for Configu-

rations 2 through 4 because they have a larger 32KB Ll cache. Both 16 F04 and 24 F04 cy-

cle times represent modern power-performance balanced pipeline designs [HP03, SBG+O2].

High-frequency designs may target cycle times of 8 F04 to 12 PO4 delays [HB J+02, SC021,

in which case our cycle latencies can be scaled appropriately. A five-cycle access latency

is used for a 256KB L2 cache with a six-cycle latency for 512KB and 1MB caches. We

also scale all other latencies appropriately for the smaller Configuration 1. Specifically,

assuming the same absolute off-chip fetch latency, the relative latency of the DRAM in this

configuration is significantly longer than the other three, at 192 cycles.

We model each hop in the network as taking 3 cycles, including the router latency and

an optimally-buffered inter-tile copper wire on a high metal layer. Note that the worst case

contention-free L2 hit latency is between 29 to 32 cycles for these configurations, hinting

that even a small reduction in cross-chip accesses could lead to a significant performance

gain. The 16-way L2 set-associativity was chosen to be larger than the number of tiles,

thus avoiding most of the cache thrashing caused by different threads. In our simulations,

we have found that for L2 associativities of eight or less, several workloads had severe

inter-t hread conflicts, reflected by high off-chip miss rates.

5.2 Workloads

This section summarizes the collection of workloads used to evaluate the cache management

policies. To minimize system variability, all workloads were invoked in a runlevel without

superfluous processes/daemons to prevent non-essential processes from interfering with the

workload execution. Each simulation run begins with the Linux boot sequence, but results

are only gathered after the workload begins execution until its completion.

Cores

Round-Robin Execution

Memory
Access
Buffers

Memory
Interface

Detailed
Memory
System

push $0~804952~

Figure 5-2: Illustration of the execution-driven model combining the Bochs emulator with the
detailed memory system. The data and instruction access streams in each instruction are buffered
in a data access buffer and fed to the memory simulator. The access results are fed back to the
simulator to control the progress of execution.

Component Parameter
Configuration 1 Configuration 2

8K+8K/256K/16F04 16K+16K/256K/24F04
L l I-Cache Size/Associativity 8 KB/16-way 16 KB/16-way
L l D-Cache Size/ Associativity 8 KB/16-way 16 KB/16-way
L l Load-to-Use Latency 1 cycle 1 cycle
L l Replacement Policy Psuedo-LRU Psuedo-LRU
L2 Cache Slice Size/Associativity 256 KB/16-way 256 KB/16-way
L2 Load-to-Use Latency (per slice) 8 cycles 5 cycles
L2 Replacement Policy Random Random
External memory latency 192 cycles 128 cycles
One-hop latency 3 cycles 3 cycles
Worst case L2 hit latency (contention-free) 32 cycles 29 cycles
CMP Configuration 4x2 Mesh
Processor Model in-order
Cache Line Size 64 B
Component Parameter

Configuration 3 Configuration 4
16K+16K/512K/24F04 16K+16K/lM/24F04

L l I-Cache Size/Associativity 16 KB/16-way 16 KB/16-way
L l D-Cache Size/ Associativity 16 KB/16-way 16 KB/16-way
L l Load-to-Use Latency 1 cycle 1 cycle
L l Replacement Policy Psuedo-LRU Psuedo-LRU
L2 Cache Slice Size/Associativity 512 KB/16-way 1 MB/16-way
L2 Load-to-Use Latency (per slice) 6 cycles 6 cycles
L2 Replacement Policy Random Random
External memory latency 128 cycles 128 cycles
One-hop latency 3 cycles 3 cycles
Worst case L2 hit latency (contention-free) 30 cycles 30 cycles
CMP Configuration 4x 2 Mesh
Processor Model
Cache Line Size

in-order
64 B

Table 5.1: Simulation parameters. The numbers for each configuration represent the cache sizes
and cycle times. For example, 8K+8K/256K/16F04 indicates 8KB L l instruction cache, 8KB L l
data cache, 256KB L2 cache, with a 16 F04-delay cycle time.

Name
bzip2
crafty
eon

Workload

mcf

parser

Instruct ion

perlbmk

Workload Description

twolf
vortex

(Billions)
Based on the popular bz ip2 compression algorithm version 0.1
A high-performance chess program designed around a 64-bit word.
A probabilistic ray tracer based on Kajiya's 1986 SIGGRAPH pa-
per.
Gap implements a language and library designed mostly for com-
puting in groups (GAP is an acronym for Groups, Algorithms and
Programming).
gcc is based on gcc version 2.7.2.2. It generates code for a Motorola
88100 processor. The benchmark runs as a compiler with many of
its optimization flags enabled.
gzip (GNU zip) is a popular data compression program written
by Jean-Loup Gailly for the GNU project. gzip uses Lempel-Ziv
coding (LZ77) as its compression algorithm.
A benchmark derived from a program used for single-depot vehicle
scheduling in public mass transportation. The program is writ-
ten in C, the benchmark version uses almost exclusively integer
arithmetic.
The Link Grammer Parser is a syntactic parser of English, based
on link grammer, an original theory of English syntax. Given a
sentence, the system assigns it a syntactic structure, which consists
of set of labeled links connecting pairs of words.
perlbmk is a cut-down version of Per1 ~5.005-03, the popular script-
ing language.
The TimberWolfSC placement and routing CAD tool package.
VORTEx is a single-user object-oriented database transaction
benchmark which which exercises a system kernel coded in inte-
ger C. The benchmark vortex is a subset of a full object oriented
database program called VORTEx (Virtual Object Runtime EX-
pository).
VPR is a placement and routing program; it automatically imple-
ments a technology-mapped circuit (i.e. a netlist, or hypergraph,
composed of FPGA logic blocks and I/O pads and their required
connections) in a Field-Programmable Gate Array (FPG A) chip.

Table 5.2: Single-threaded workloads in this thesis are taken from the SpecINT2000 bench-
mark suite [CorOO].

I I

System Applications

Workload
Name

Instruction
(Billions)

- -

Table 5.3: Mult i-t hreaded workloads include the NAS parallel scientific benchmark suite,
two system workloads, and one A1 application [GroOl, BBB+94].

Workload Description

BT

CG

EP

FT

IS
LU

MG

SP

apache

dbench

A1 Application
checkers

Table 5.4: Multi-programmed workloads are created by mixing single-threaded benchmarks.
Eight benchmarks are randomly chosen for each multi-programmed workload.

1.7

5.0

6.8

6.6

5.5
6.2

5.1

6.7

3.3

3.3

NAS Scientific Applications
A simulated CFD application that uses an alternating direction
implicit (ADI) approximate factorization to solve 3D compressible
Navier-Strokes equations. Class S.
Computation of an approximation to the smallest eigenvalue of
a large, sparse, unstructured matrix using the conjugate gradient
method. Class W.
An embarrassingly parallel benchmark. It generates pairs of Gaus-
sian random deviates. Class W.
The computational kernel of a 3D Fast Fourier transform (FFT)-
based spectral method. FT performs three one-dimensional FFTs,
one per dimesion. Class S, -00.
Integer sort. Class W, compiled using icc-v8.
LU decomposition that uses symmetric successive over-relocatoin
(SSOR) method to solve a seven-block-diagonal system. Class R.
MG uses a V-cycle multigrid method to compute an approximation
to the smallest eigenvalues of a large, sparce, unstructured matrix.
Class W.
A simulated CFD application that uses a Beam-Warming implicit
(ADI) approximate factorization to solve 3D compressible Navier-
Strokes eauations. Class R.

Apache benchmark's 'ab' worker threading model, 2000 requests,
3 at a time. Compiled with gcc 2.96.
Executes Samba-like syscalls, 3 clients, 10000 requests. Compiled
with gcc 2.96.

2.9

I

Workload
Name
mix0
mix1
mix2
mix3
mix4
mix5
mix6
mix7
mix8

Cilk checkers (parallel a - 13 search), Black plies 6, White plies 5.
Compiled using Cilk 5.3.2 and gcc 2.96.

Instruction
(Billions)

23.9
24.8
19.1
22.8
19.1
25.7
12.7
21.5
28.0

Workload Description

bzip, crafty, eon, gap, gcc, gzip, mcf, and parser
gcc, gzip, mcf, parser, perlbmk, twolf, vortex, and vpr
bzip, crafty, eon, gap, perlbmk, twolf, vortex, and vpr
bzip, gap, mcf, twolf, crafty, gcc, parser, and vortex
bzip, gap, mcf, twolf, eon, gzip, perlbmk, and vpr
crafty, gcc, parser, vortex, eon, gzip, perlbmk, and vpr
crafty, eon, gap, gzip, mcf, perlbmk, twolf, and vortex
bzip2, gap, gzip, mcf, parser, twolf, vortex, and vpr
bzip2, crafty, eon, gap, gcc, mcf, parser, and vpr

5.2.1 Single-Threaded Workloads

For single-threaded workloads, we used all twelve benchmarks in the SpecINT2000 bench-

mark suite, summarized in Table 5.2. They are compiled with the Intel C compiler (ver-

sion 8.0.055) using -03 - s t a t i c -ipo -mpl +FDO and use the MinneSPEC large-reduced

dataset as input. The size of the workloads ranges from one billion cycles to over six billion

cycles.

5.2.2 Multi-Threaded Workloads

The multi-threaded workloads include all eight of the OpenMP NAS Parallel Benchmarks

(NPB) (mostly written in FORTRAN), two server workloads (written in C), and one A1

workload (written in Cilk [GroOl]). Table 5.3 summarizes the workloads. For the NAS

Parallel Benchmarks, classes S and Ware standard input sizes, and class R is custom-sized

to give the workload a manageable simulation time that falls between the S and W classes.

The two server benchmarks, apache and dbench, spend significant execution time in the

operating system. Additionally, one A1 benchmark, checkers, uses a dynamic work-stealing

thread scheduler. All of the multi-threaded benchmarks are compiled with ifort-v8 -g

-02 -openmp unless otherwise noted. The size of the workloads range from 1.7 billion to

6.8 billion instructions.

5.2.3 Multi-Programmed Workloads

The multi-programmed workloads are created by mixing a set of randomly selected single-

threaded SpecINT2000 workloads, each consisting of eight different programs. Therefore,

the size of the workloads are much larger than that of the single-t hreaded and multi-threaded

workloads, generally at around twenty billion instruct ions.

5.3 Fast forwarding Multiprocessor Simulation

Due to the long running nature of our workloads, we used a sampling technique to reduce

workload simulation time. Figure 5-3 illustrates several traditional approaches in speeding

up simulation.

Many architecture studies have obliviously chosen a single sample, either taken from the

beginning or after some fixed number of instructions into the run, as shown in Figure 5-3(a)

and Figure 5-3(b). A detailed warm-up phase preceding the actual data gathering phase

can warm-up large data structures such as the branch predictor and caches, thus give more

accurate results (Figure 5-3(c)). A better approach is to search for an execution phase that

is representative of the workload's overall characteristics through profiling, and only gather

data in this representative phase.

I Detailed

(a) Single Sample

I ISA On1

(b) Fastforward + Single Sample

r Measure -
Ignored 1

(c) Fastforward + Warmup + Single Sample
P T

1 ZSA + uArch

(d) Selective Sampling (Simpoints)

(e) Statistical Sampling

(f) Statistical Sampling + Functional Warming (SMARTS)

Program Execution

Figure 5-3: (a) Statistics gathering in a single sample at the beginning of the execution. (b)
Statistics gathering in a single sample in the middle of the execution after initial fastforwarding.
(c) Statistics gathering is preceded by fastforwarding and detailed warming. (d) A representative
sample determined by profiling is used over a random sample. (e) Repetitive statistical sampling
with multiple sample points. (f) Functional warming is used to minimize the detailed warming
phase.

However, applications generally contain multiple phases of execution with varying prop-

ert ies and much better characterization is possible by using multiple sample point s spread

throughout a run. Statistical sampling [SPHC02, CHM96, LPI881 uses an ISA simulator

during the fastforwarding phase, then constructs the architecture st ate through detailed

warming before actually gathering data. To minimize the warming phase for architecture

with large amounts of state, SMARTS [WWFH03] uses a functional simulator during the

fastforwarding phase to update the architectural state, such as registers and memory, then

switches to a slower detailed simulator to accurately model the microarchitect ure during

the measurement samples.

In this thesis, we extend the functional warming method for superscalars proposed in

SMARTS [WWFH03] to an SMP system, and fastforward through periods of execution while

maintaining cache and directory state [BPZA05]. In fastforwarding mode, we do not forward

the load and store requests to the detailed memory timing simulator, but only update cache

and directory state fields. At the start of each measurement sample, we run the detailed

timing model to warm up the pipelines of the cache (the detailed warming phase), memory

and network. After this detailed warming phase, we gather detailed statistics for one million

instructions, before re-entering fastforward mode. Detailed samples are taken at random

intervals during execution and include 20% of all instructions executed, i.e., fastforward

intervals average around five million instructions. The number of samples taken for each

workload ranges from around 150 to 1,000. Simulations show that the fastforwarding results

match up with detailed runs to within 3% of error.

5.3.1 System Variability

Because we are running multi-threaded application with the operating system, our simu-

lation results are more vulnerable to system variability than uniprocessor simulations. As

Alameldeen and Wood point out, even with small variation in DRAM latencies, the overall

system result can be noticeably affected [AW03]. To minimize the bias in the results created

by this variation, we chose to execute multiple runs of each workload with varying sample

length and frequency. We found that the variability has an insignificant effect on our results

for these workloads.

Chapter 6

Experimental Results

This chapter presents the results of evaluating the four cache designs in this thesis on our

workload suite. We show that victim replication and victim migration provide better and

significantly more robust performance than the standard techniques. We first present the

results for the multi-t hreaded workloads because they best demonstrate the major trade-

offs in our management policies, then we move on to the results for single-threaded and

mult i-programmed workloads.

For each class of applications, we show several results. First, we show the average mem-

ory access latency seen by a processor. This the the key metric that we aim to minimize.

Second, to better understand the trade-offs outlined in Chapter 4, we also show a break-

down of the accesses by category. Third, we show the percentage of replicas held in the

L2 caches, demonst rating that our techniques dynamically exploit the different character-

istics of individual benchmarks and their execution phases. Finally, we show that victim

replication and victim migration also significantly reduce the on-chip traffic, which is an

important factor in reducing system power consumption.

6. I Multi-Threaded Workloads

Figures 6-1 to 6-4 show the key result, the average memory access latency seen by a pro-

cessor. The minimum latency is one cycle, when all accesses hit in the Ll cache. In the

following, we take Configuration 1 (8KB Ll I-cache, 8KB Ll D-cache, 256KB unified L2-

cache, 16F04 cycle time), and give a detailed analysis of how each of the four designs

works.

Figure 6-5 shows the breakdown of memory accesses for victim replication (the break-

down for victim migration is similar). An access in this figure belongs to one of six categories:

1. L l hits: Access results in an Ll cache hit.

2. Local L2 hzts: Access results in an L2 cache hit in the local slice of the L2 cache. For

the private design, all hits are local L2 hits. For the other three designs, local L2 hits

Average Access Latency Reduction of Multi-Threaded Applications

Workload
BT
CG
EP
FT
IS
LU
MG
SP
apache
dbench
checkers

Workload
BT
CG
EP
FT
IS
LU
MG
SP
apache
dbench
checkers

Configuration 1
8K+BK/256K/l6F04

Reduction (%}

27.7 -4.6 30.3 -2.7 2.0
3.7 0.0 4.1 0.3 0.3

18.0 -1.4 26.4 5.6 7.1
0.6 0.4 0.8 0.6 0.1

13.3 -2.9 27.3 9.0 12.3
3.2 6.3 6.1 9.3 2.8
3.5 17.4 7.7 22.1 4.0

10.0 -3.6 14.0 -0.2 3.6
2.2 7.5 4.5 9.9 2.2
3.8 26.5 8.7 32.5 4.7

12.0 4.0 15.9 7.6 3.5
Configuration 3

16K+16K/512K/24F04
Reduction (%}

- -

Configuration 2
16K+16K/256K/24F04

Reduction (%)
V H V H V M V M V M - - - - -
S P S P V R

11.2 -0.7 11.5 -0.6 0.2
27.5 -7.3 30.0 -5.6 1.9
0.1 3.2 -0.4 2.7 -0.5

14.6 0.9 17.5 3.5 2.5
0.0 0.1 -0.0 0.1 0.0

15.0 -9.5 31.6 3.5 14.4
2.5 9.1 6.0 12.9 3.4
9.1 17.2 14.6 23.1 5.0
6.3 9.9 7.3 10.9 0.9
2.0 0.37 8.2 6.4 6.0
3.9 26.8 8.1 31.9 4.0
8.4 4.5 12.2 8.1 3.4

Configuration 4
16K+l6K/lM/24F04

Reduction (%)

Table 6.1: Average access latency reduction of multi-threaded workloads achieved by victim repli-
cation and victim migration over the shared and private baseline designs. The five numbers for each
workload indicate the percentage reduction of VR to shared, VR to private, VM to shared, VM to
private, and VM to VR.

Data Accesses Breakdown

IS LU
Benchmarks

Figure 6-5: Memory access breakdown of multi-threaded workloads. Moving from left to right, the
four bars for each workload are for the private design, the shared design, victim replication, and
victim migration, respectively. Hits are categorized into (from bottom to top) : (1) L l hits; (2) L2
local hits; (3) replica hits; (4) L2 remote hits; (5) cache-to-cache hits; (6) off-chip accesses.

include all the hits whose home tile happens to be local.

3. Replica hits: Access results in a replica hit in the local slice of the L2 cache.

4. Global L2 hits: Access results in an L2 cache hit in a remote slice of the L2 cache. The

private design cannot have global L2 hits. For the shared design, victim replication,

and victim migration, this includes all L2 hits whose home tile is not local.

5. Cache-to-cache hits: Access results in an L2 coherence miss, where the requested data

is stored in another tile. A cache-to-cache transfer between the ownerlsharer of the

requested data and the requestor is used to satisfy the request. The transfer happens

between L2 caches in the private design and between LI caches in the other three

designs.

6. Off-chip miss: Data is not on-chip and the request is forwarded to the off-chip memory.

6.1.1 Performance Analysis

From Figure 6-1, we observe that for the multi-threaded workloads, the performance differ-

ence between private and shared designs is significant. We divide their behavior into three

scenarios and discuss each separately: (1) equal performance for private and shared designs;

(2) private design better than shared design; (3) shared design better than private design.

Equal Performance for Private and Shared Designs

One workload, IS, has a working set small enough that it fits in the Ll cache, thus L2

policies do not matter because most data accesses hits in the Ll. Average access latency

in this case is roughly one cycle for all four policies, equaling the access latency of the LI

cache.

Private Design Better Than Shared Design

Compared to the shared design (second bar in Figure 6-5), the private design (first bar

in Figure 6-5) has higher off-chip miss rates, but also many more local hits across the

workloads. We expect the private design to win if the difference in the off-chip miss rates

is small compared to the extra number of local hits it has over the shared design. This is

the case for BT, CG, EP, FT, LU, and apache.

For these workloads, the private design does better than the shared design for two

reasons. First, if the working set of a workload is small enough to fit into the 256KB local

cache capacity, the L2 miss rate is likely to be small. Thus, the lower L2 hit latency of the

private design dominates the performance. This is the case for workloads BT, FT, apache.

Second, if the working set is much larger than the total on-chip cache capacity, even the

shared design cannot hold the working set. Thus, both private and shared designs will have

high off-chip miss rate, prompting the private design to have better performance through

low L2 hit latency. This is the case for workloads CG, EP, LU.

For all workloads but CG, victim replication and victim migration are able to create a

significant number of replica hits to reduce the cross-chip fetch latency at the expense of

a small increase in off-chip miss rates. The performance of these techniques are usually

within 5% of the private design.

Workload CG has a very high L l cache miss rate at around lo%, but over 70% of the

L l misses hit in the L2 cache, magnifying the low latency advantage of the private design.

Our hybrid techniques significantly outperform the shared design but still fall short of the

private design.

Shared Design Better Than Private Design

If the difference in off-chip miss rates is significant, we expect the shared design to win even

though it has many fewer local hits because it minimizes expensive off-chip misses. This is

the case for workloads MG, SP, dbench, and checkers.

Both victim replication and victim migration create replicas for reduced hit latency

(shown by the significant number of replica hits) at the expense of slightly increased off-

chip miss rate, and achieve significant improvements over the shared design.

It is possible for an application to have a very large working set, yet with little reuse in

its data access patterns. In this case, the number of L2 replica hits created by our techniques

is low, and its benefit is outweighed by the additional off-chip accesses introduced by the

global block evictions. In this case, our techniques can reduce performance. We did not

encounter such an application in our workload suite, but a simple miss rate monitor could

perhaps be used to limit the replica creation rate to overcome this problem.

6.1.2 Victim Replication versus Victim Migration

Victim migration works slightly better than victim replication for the multi- t hreaded work-

loads by storing the tags of actively shared cache blocks in the VM tag array, vacating

some of the actual data storage space. This space is split between additional replicas and

unshared global blocks. Having more replicas is likely to increase the number of local L2

hits, and having more global blocks is likely to reduce the off-chip miss rate. Both of the

scenarios can be observed by comparing the third and fourth bars in Figure 6-5.

6.1.3 Other Configurations

As we increase the on-chip capacity, whether private or shared design works better changes

even for the same application depending on whether its working set fits into the given cache

configuration. Figure 6-6 presents a pictorial view of how the four policies work depending

on the relationships between the cache sizes and the size of the workload's working set. For

Private Design vs.
Shared Design -

hit latency

Application l l l l l

Working
Set Size L,2

Overall

I Capacity

DRAM
Capacity

Victim Replication & Workloads Workloads
Victim Migration Confie. 1 Confie. 4 - . -

Mostly LI hits, 12 policy is IS . IS
it important

Replicas are similar to - BT, * BT,
privately stored L2 data. 1 FT, C G ,
Performance close to the LU, - FT,
private design and better t h a n apache 1 LU,
shared design. apache,

v 6

Shared is better than private , Replicas eliminates many - MG, MG,
because of fewer off-chip cross-chip fetches, reduces , SP, ,, EP,
misses, even though the , the on-chip access latency. checkers - SP,
average on-chip access Performance better than both checkers
latency is longer private and shared designs.

I

t
~ m m m m m m m m m m m m m o m m m m m m a m m m m m m m m m m e m m m o m ~ m m m m m m

Ã Ã *
v Ã

Similar off-chip miss rate. Replicas are similar to CG, dbench
Thus, private design is better privately stored L2 data. 1 EP,
than shared design because of Performance close to the r dbench 8
its low L2 hit latency private design and better than

* shared design.
a

b

hip boundary
m m m m

Figure 6-6: Categorization of the behaviors of the different applications according to the relative
ratio of the application's working set and the size of the per-slice and overall L2 cache capacity.
The behavior of each of the management policies loosely belong to one of the categories shown. As
an example, we categorized the multi- threaded workloads for configurations 1 (the smallest cache
configuration) and configuration 4 (the largest cache configuration).

example, workload EP does better with the shared design in larger L2 caches because more

of its working set starts to fit on-chip, significantly reducing the off-chip miss rate compared

to the private design. As another example, workload SP does better with a private design

in larger cache sizes when more of its working set fits into the 1MB local L2 cache slice.

Our two techniques manage to be either the best policy or a close second for all of these

workloads.

6.1.4 Adaptive Replication Policy

Figure 6-7 plots the percentage of total L2 cache capacity allocated to replicas for the

eleven mult i-t hreaded benchmarks in our benchmark suite against execution time. This

graph shows two important features of the our hybrid techniques. First, they are adaptive

processes that adjust to the execution phases of the program. We can clearly observe

execution phases in CG, FT, and dbench. Second, the victim storage capacity offered by our

techniques is much larger than any feasible dedicated hardware victim cache. All workloads

reached over 25% replicas, in our case equal to a victim cache of over 50 KB.

bts

fts

dbench

isr

checkers

apache

Figure 6-7: Time-varying graph showing the percentage of the L2 allocated to replicas in multi-
threaded programs. Average of all eight caches is shown.

8K+8K/256K/16F04
Reduction (%)

Average Access Latency Reduction of Single-Threaded Applications

Workload
bzip
crafty
eon
WP
gee
gzip
mcf
parser
perl
twolf
vortex
VPr

Configuration 1

Avg

Workload
bzip
crafty
eon
gap
gee
gzip
mcf
parser
perl
twolf
vortex
VPr
Avg

Configuration 2

104.5 9.1 105.0 9.4 0.2
50.3 2.2 47.2 0.1 -2.1
34.2 13.7 38.0 16.9 2.8
41.0 17.9 42.6 19.2 1.1
75.7 36.5 81.6 41.1 3.3
19.0 43.5 28.5 54.9 7.9
36.3 40.2 41.7 45.7 3.9
6.7 9.3 9.1 11.8 2.2

123.8 -6.7 127.4 -5.3 1.6
45.0 12.3 48.2 14.8 2.2
77.6 13.9 78.0 14.2 0.2
52.0 18.3 55.8 22.1 2.9

Configuration 3
16K+16K/512K/24F04

- 16K+16K/256K/24F04
Reduction (%)

V H V H V M V M V M - -
'5

- - -
P P

16.5 30.9 17.5 32.0 0.8
42.6 9.6 43.6 10.4 0.7
6.2 1.6 5.7 1.1 -0.5

18.6 11.2 18.9 11.5 0.2
31.8 14.4 31.3 14.0 -0.4
82.5 22.1 81.6 21.5 -0.5
35.6 45.9 38.1 48.6 1.8
30.6 36.8 31.8 38.1 0.9
6.3 7.5 7.8 9.1 1.4

119.4 0.3 123.6 2.3 1.9
25.5 10.4 28.8 13.3 2.6
65.6 12.7 63.8 11.5 -1.1
40.1 17.0 41.0 17.8 0.7

Configuration 4
16~+16K/lM/24F04

Reduction (%)
V H V H V M V M V M - - - - - s P P

21.6 16.3 27.6 22.1 4.9
45.8 2.8 43.4 1.1 -1.7
5.0 2.3 4.5 1.8 -0.5

15.0 11.1 18.0 14.0 2.6
40.7 8.9 39.5 8.0 -0.9
65.6 6.2 65.0 5.8 -0.4
78.6 11.3 79.2 11.7 0.3
50.7 19.0 50.1 18.6 -0.4
4.7 8.6 3.1 6.9 -1.6

106.0 1.3 101.9 -0.7 -2.0
31.8 7.0 29.5 5.1 -1.8
71.0 0.3 69.2 -0.8 -1.1
44.7 7.9 44.3 7.8 -0.2

Table 6.2: Average access latency reduction of single-threaded workloads achieved by victim repli-
cation and victim migration over the shared and private baseline designs. The five numbers for each
workload indicate the percentage reduction of VR to shared, VR to private, VM to shared, VM to
private, and VM to VR.

Data Accesses Breakdown

lip Memory Accesses)
I Hits in through C2C ~ f e r -

d Hits in Non-Local L2 Data
Hits in Replica L2 Data
Hits in Local L2 Data

80
bzip crafty eon gap gcc gzip mcf parser per1 Wolf vortex vpr

Benchmarks

Figure 6-12: Memory access breakdown of single-threaded workloads. Moving from left to right,
the four bars for each workload are for the private design, the shared design, victim replication, and
victim migration, respectively. Hits are categorized into (from bottom to top) : (1) L l hits; (2) L2
local hits; (3) replica hits; (4) L2 remote hits; (5) cache-to-cache hits; (6) off-chip accesses.

bzip
100 1 I

mcf

n

twolf

crafty
100 1 1

parser
100

vortex
inn, 1

eon
lool 1

Figure 6-13: Time-varying graph showing the percentage of the L2 allocated to replicas in single-
threaded programs. The percentage of replicas in each individual cache is shown.

6.2 Single-Threaded Workloads

We present the same set of results for single-threaded workloads. Figures 6-8 to 6-11 show

the average access latency for the single-threaded workloads. Figure 6-12 shows the access

breakdown of the four cache designs. Figure 6-13 shows the replica percentage of each

individual cache during the execution of victim replication.

6.2.1 Performance Analysis

Figure 6-8 shows the memory access latencies for the single-threaded workloads using con-

figuration 1. In most cases, the shared design performs significantly worse than the other

schemes because the L2 hit latency is a critical component of performance for these codes.

Table 6.2 summarizes the savings achieved by the victim replication and victim migration

over the private and shared baselines. Compared to the shared design, nine out of the

twelve workloads achieved 15% or more savings, with six of them over 25%, and an average

of 24%.

Victim replication and victim migration are better than the private design for all of

the twelve workloads. In several cases, i.e., bzip, gcc, gzip, mcf, parser, our techniques

significantly outperforms both baselines. The performance gain came from two aspects as

shown in Figure 6-12. First, victim replication and migration techniques are based on the

shared designs, thus have fewer off-chip misses than the private design. Second, they create

almost as many local L2 hits through the replicas as the private design, reducing on-chip

access latency.

6.2.2 Three-Level Caching

Our hybrid techniques dynamically adapt to a single thread by forming a three-level cache

hierarchy: the Ll cache, the local L2 slice, and the remote L2 slices. The local L2 slice can

be viewed as the "level 1.5" cache because they hold mostly replicas for the active thread

running on the local tile.

This behavior is confirmed by Figure 6-13, which plots the time-varying graph of the

percentage of replicas in each of the eight individual L2 caches. For all of these workloads,

we observe that one cache holds a very high percentage of replica blocks, usually over 80%.

This is the L2 cache of the tile on which the active thread is running. Because we perform

full-system simulations and do not attempt to optimize the kernel scheduler to pin the

thread on one tile during each run, we sometimes observe the single thread moving between

tiles under the control of the scheduler. The replicas "moved" from the old tile to the new

one following the thread in benchmarks eon, twolf, vortex, and vpr.

Victim Replication versus Victim Migration

Because the single- t hreaded benchmarks have working sets that are generally smaller than

even the smallest configuration simulated (2MB), victim migration did not provide notice-

able improvement over victim replication. However, victim migration is either the best

policy or a very close second across all benchmarks.

6.3 Multi-Programmed Workloads

Multi-programmed workloads tend to have very little sharing among the different threads,

thus the private design is likely to do significantly better than the shared design. Figures 6-

14 to 6-17 confirm this intuition, where the shared design is always the worst by a large

margin.

6.3.1 Performance Analysis

The performance of victim replication is close to the private design, usually within 5%.

Figure 6-18 shows that victim replication can produce significantly more local L2 hits than

the shared design with a slight increase in off-chip miss rate.

However, victim replication is not quite as good as the private design. Because there

is very little sharing among threads in a multi-programmed workload, each home block

is generally used by only one tile, meaning that the cache block is stored twice on the

chip (once by the user tile, once by the home tile). This duplication significantly reduces

the effective capacity, making victim replication unlikely to win over the private design.

This effect is better demonstrated in the smaller cache sizes, where capacity is at a higher

premium.

Victim Replication versus Victim Migration

Compared to victim replication, victim migration eliminates the need to keep a duplicate

copy at the home tile, behaving just like the private design when necessary. In addition,

victim migration allows data to be stored at a global location, stealing limited capacity

from other threads when their working sets do not saturate their local L2 slice. This is

supported by the lower off-chip miss rate victim migration has over victim replication,

shown in Figure 6-18. Overall, victim migration is the best policy for almost all workloads.

While more flexible capacity stealing techniques have been proposed in [CPV05, SS ZR051,

they are based on snooping coherence protocols that can locate an on-chip cache block rel-

atively easily. Such global searches are complex and can take significant power to achieve

in a scalable directory-based design.

Data Accesses Breakdown

r r

mix4
Benchmarks

hisses (Off-chip Memory Accesses.
iits in through C2C Xfer
-tits in Non-Local L2 Data
Hits in Replica L2 Data
Hits in Local L2 Data

m ix5 mix6 mix7 mix8

Figure 6-18: Memory access breakdown of multi-programmed workloads. Moving from left to right,
the four bars for each workload are for the private design, the shared design, victim replication, and
victim migration, respectively. Hits are categorized into (from bottom to top): (1) L l hits; (2) L2
local hits; (3) replica hits; (4) L2 remote hits; (5) cache-to-cache hits; (6) off-chip accesses.

Latencv Reduction of VM over VR

50% VM Tag Array

"
16-way 32-way &way 128-way

Associativity

Figure 6-19: The reduction of victim migration over victim replication for three diierent VM
tag sizes. There is little performance degradation by halving the fully-duplicated VM tag array.
However, increming the VM tag array associativity does not provide any performance gain.

6.4 Reducing VM Tag Array Area Overhead

The main drawback of victim migration is the area overhead caused by the VM tag array.

For simplicity, we have so far assumed that the VM tag array size is identical to that of

the regular L2 tag array. However, the VM tag array can be of any size and associativity.

We selected configuration 3 (16K+16K/512K/24FO4) and simulated the performance of

two additional VM tag array sizes: at SO%, and 25% of the regular tag array size. The

50% case caused no performance degradation. The 25% case lost about 15% of the latency

reduction achieved by the fdl VM tag array over victim replication. We also experimented

with higher VM tag array associativities and observed no noticeable gains.

6.5 Area Comparison of Designs

The vast majority of the area in caches is occupied by data arrays, peripheral circuitry,

and interconnects, which is the same for all four designs described in this paper. How-

ever, the tag bits, status bits, and in our case, directory bits, all take up non-negligible

space. In this section, we provide a simple quantified comparison of the area occupied by

the tags and directories for each of these designs. We use the parameters in configura-

tion 1 (8KB+8KB/256KB/l6FO4) in the comparison. We also assume a 40-bit physical

address width and 64 byte cache block size, which are representative of modern CMP ma-

chines [TD J+02].

Table 6.4 shows the tag and directory area estimates in bits per block used for each

Table 6.4: Cache area overhead of different designs.

Design
Alternative

Shared
Private

Victim Replication
Victim Migration (111)
Victim Migration (112)
Victim Migration (114)

design. It also shows the total bits overhead compared to the shared design, which requires

the least area. The actual overall cache area overhead is likely to be much smaller than

the ones in Table 6.4 when the area of peripheral circuitry and interconnects are taken into

considerat ion.

Tag
Width

25
28
28
28
28
28

In the shared design, the address is used to index a single large shared cache, the width

of the tag is smaller than that of the private design. In the eight-tile configuration, three

bits are used to select a home tile, making the shared tag 3 bits shorter than that of the

private design. The directory uses an 8-bit wide sharing vector. It also leverages the existing

valid and dirty status bits to represent state, adding only one extra state bit in our design,

for a total of a 9-bit directory. The private design uses the largest area, by having a wider

tag and a fully duplicated tag array to maintain the on-chip directory.

For victim replication, the L2 tag must be wide enough to hold physical addresses from

any home tile, thus the tag width becomes the same as the private design. Global L2 blocks

redundantly set these bits to the address index of the home tile. Replicas of remote blocks

can be distinguished from regular L2 blocks as their additional tag bits do not match the

local tile index. The full version of victim migration incurs the largest area overhead of all

six designs. It consists of all of the components used in victim replication, as well as the VM

Directory
Entry Width

9
28
9
43
26
20

tag array. However, the overhead can be reduced to less than that of the private design by

halving the size of the VM tag array, which gives no significant performance degradation.

6.6 Coherence Tkaffic Reduction

Total
Width

34
56
37
7 1
54
48

An additional benefit of the victim replication and victim migration is the reduction of

coherence traffic. Compared to the private design, victim replication and victim migra-

tion minimizes off-chip traffic, significantly reducing power consumption caused by remote

D M M accesses. Compared to the shared design, victim replication and victim migration

eliminate some inter-tile messages when accesses can be resolved in local replicas. Figures 6-
20 to 6-22 show the number of coherence messages per thousand instructions executed,

weighed by the number of hops each message traversed. While the figures show that the

bandwidth of the on-chip switch network is not a bottleneck, reducing the on-chip traffic

can dramatically reduce the power consumption of on-chip switch routers. The reduction

Bit per Block
Overhead vs. Shared

0.0%
4.0%
0.6%
6.8%
3.7%
2.6%

Figure 6-20: On-chip coherence traffic for single-threaded workloads. Traffic is measured in number
of messages per hop.

Figure 6-21: On-chip coherence traffic for multi-threaded workloads. Traffic is measured in number
of messages per hop.

On-Chip ~a~ ~eaaeges
100

I I Privatedesign
I Shared deskn
I Viiim rmti i t i in i Vctim migration

Figure 6-22: On-chip coherence traffic for multi-programmed workloads. T r d c is measured in
number of messages per hop.

VR over Shared
VM over Private
VMoverShared

Table 6.5: Average latency reduction achieved by victim replication and victim migration over the
baseline private and shared designs for all three different classes of applications.

achieved by victim replication is usually better than victim migration. This is because for

victim migration, a non-negligible percentage of the hits are serviced through a three-way

cache-to-cache transfer, causing additional traffic.

VR over Private
40.1% - 52.0%

7.8% - 22.1%
41.0% - 55.8%

6.7 Summary

Multi-Threaded
4.0% - 5.8%

Single-Threaded
7.9% - 18.3%

In Chapter 4, we showed that the implementations of victim replication and victim migration

require only simple changes fkom the baseline shared design. The results presented in this

chapter further confirm that victim replication and victim migration are robust, i.e., they

work well across single-t hreaded, multi-threaded, and multi-programmed applications. This

can be seen from the brief summary of results in Table 6.5. Finally, the implementations of

victim replication and victim migration incur very little area overhead, with a maximum of

3.7% over the baseline shared design, which has the smallest area requirement.

Multi-Programmed
9

-4.8% - -1.9%
8.4% - 18.1%
7.6% - 8.9%

12.2% - 22.4%

21.1% - 44.1%
1.1% - 5.4%

32.6% - 55.4%

Chapter 7

Conclusions and Future Work

Single-chip multiprocessors have entered the mainstream microprocessor market. Instead of

devoting on-chip real-estate to larger data structures and exotic microarchitectural tricks,

CMPs achieve higher performance by replicating processor cores and by exploiting thread-

level parallelism. Compared to the wide superscalars which have been the driving force of

the microprocessor market for the past fifteen years, CMPs directly address several issues

that have stalled the continued development of these wide superscalars. First, CMPs can

achieve lower energy per operation by utilizing less aggressive cores and still achieve high

performance through application parallelizat ion. Second, they can drastically reduce the

redesign cycle for each subsequent generation of processors by reusing previous processor

designs.

Future CMPs are likely to continue to increase both the number of cores and the total

cache capacity on-chip. One key design consideration for these CMPs is how to manage

their large cache storage, as the effective data fetch latency heavily impacts the processor

performance. In this thesis, we present detailed study of the two baseline cache manage-

ment policies for these CMPs, private and shared designs, suited for different classes of

applications. We introduced two latency reduction techniques, victim replication and vic-
dm migration that can dynamically adjust between the private and the shared cases to

optimally place data on-chip, minimizing overall fetch latency.

7.1 Thesis Summary and Contributions

This thesis focuses on tiled CMPs, a class of the CMPs which we believe will become more

popular due to its regularity and scalability. The nodes, which we call tiles, are replicated

in a two-dimensional mesh. Each tile contains a processor core, L l caches, a slice of the

total L2 capacity on-chip, and a network switch to communicate with the rest of the chip.

Cache coherence among all tiles is maintained through a scalable directory-based protocol.

Two major components that govern the fetch latencies in a CMP are the off-chip miss

rate and the average on-chip fetch latency. A good cache management policy must consider

both of these conflicting constraints. We examine two baseline L2 cache designs, private

design and shared design that demonstrate the trade-offs of these two components. A
private design has short on-chip fetch latency, but generally has higher off-chip miss rate

than a shared design. A shared design provides the maximum amount of on-chip storage,

but on-chip fetches may have to travel across-chip, incurring longer latencies. We presented

detailed implementation of both policies under a directory-based protocol.

This thesis proposed two novel latency reduction techniques for tiled CMPs. Victim

replication is a simple hybrid scheme that combines the advantages of private and shared

design. Based on the shared design implement at ion, victim replication builds a local private

victim cache, backing up the local L2 slice, expecting the victims to be used in the near

future with reduced latency. A set of cache replacement heuristics is given to determine

whether and where to place the victims.

Three different types of workloads are used to evaluate the effectiveness of victim repli-

cation. For single-threaded workloads, victim replication works extremely well as it effec-

tively moves all of the recently used data into the local L2 slices of the tile hosting the

active thread. Similarly, for multi-programmed workloads, replication moves the working

set of each thread to the physical tile hosting that thread.

For multi-threaded workloads, there are two main scenarios. First, if the workload's

working set fits within the local cache slice, then the private design will do better than the

shared design because it provides short fetch latency. Victim replication also does well by

mimicking the behavior of the private design. For workloads with large working sets that

do not fit within the local L2 slice, shared design does better than private design because

it provides lower off-chip miss rate. Victim replication does better than shared design since

it can create replicas with short fetch latency.

We pay extra attention to multi-programmed workloads and introduce victim migration,

specifically targeting these workloads. Since there is very little sharing among the t heads,

we remove the need to keep the actual data block at the home tile of the block and simply

keep the tag and directory information. The space freed up by victim migration can be

used to store more useful data, reducing the off-chip miss rate. A set of replacement policies

is presented to complement the operat ions of victim migration. For mult i-programmed

workloads, victim migration is able to achieve better performance than all the other three

policies discussed in this thesis.

We used a full-system x86 emulator running Linux 2.4.24 as our processor model to drive

a detailed cache and memory simulator that implements the various management policies.

Experimental results show that for the four typical configurations simulated, our replication

techniques outperform most of the 32 applications used in this thesis.

Victim replication and victim migration are much simpler to implement, more flexible,

and more scalable than any other proposed related work in reducing cache access latencies.

In addition, by using a directory-based protocol, we remove the need of a global snoopy bus

for large node counts [SSZR05, CPV05, HKS+O5].

In doing so, we indeed sacrifice some flexibility by having to statically map each data

block to a fixed home tile, but avoid the global associative smart search required by all

other work. Our approach results in two simple, scalable, and robust cache latency reduction

techniques.

Before concluding this thesis, we point out some of the limitations of our experimental

infrastructure that st ill need to be examined further to better understand the effectiveness

of the proposed techniques. We conclude our discussion by presenting some possible future

work this thesis can lead to.

7.2 Simulation Infrastructure Limitations

In the initial phase of this thesis research, we examined several choices of multiprocessor

simulators to use, including Bochs [Law], Simics [MCE+O2], other proprietary simulators,

and an in-house custom simulator. Due to the limited time frame of the project and the

availability of the tools, we chose to use Bochs, an x86 emulator. The full-system nature of

the Boch simulator led us to observe the effect of the operating system, and it is open-source

so that we were able to easily integrate it with the detailed cache and memory simulator.

However, as mentioned in Chapter 5, a more accurate processor simulator is necessary to

further evaluate the effectiveness of our techniques. Bochs is merely an emulator that does

not simulate any architectural features of the processor. Specifically, features outlined in

Chapter 2, such as prefetching and multi-threading, can help with latency hiding in CMPs.

We were also limited in the number of processors (eight) we can simulate on our Linux

port and the Bochs simulator. We anticipate the performance improvement obtained by

our hybrid techniques will be more significant at higher core counts because the cross-chip

latencies in larger chips will be higher.

7.3 Future Work

In this thesis, we discussed some of the fundamental issues in designing an efficient cache

and memory hierarchy for future CMP systems and proposed some solutions. However,

as CMPs are a new and fast-evolving architectural target, many challenges lie ahead. In

this section, we outline some of these challenges and present our views on how to approach

them.

Future CMPs will have higher core counts and larger on-chip caches. If we maintain the

even data distribution across the L2 cache slices, the average distance between the requestor

and the home tile will also grow accordingly. Even though victim replication and victim

migration can create local copies of the shared data, they cannot reduce the latencies of the

initial trip to fetch the data from the home tile, as well the inquiries to the directory entries

at the home tile thereafter. Thus, we examine some possibilities of altering the on-chip data

mapping to minimize these two factors in fetch latency.

7.3.1 Using Hierarchy

Figure 7-1 shows an approach to reduce the long directory access latency using hierarchy. We

show a 16x 16, 256-core tiled CMP, a product of continued technology scaling. If we evenly

distribute data and/or directories across the entire chip, accesses to data and directory

entries will be increasingly more expensive because they incur cross-chip communications.

The goal in using hierarchy is to have the majority of the accesses to directories be

handled by a local directory, which is located in a nearby tile and much faster to get to than

the actual global directory.

Using Regions

To minimize these cross-chip communications, we divide the tiled CMP into coherent re-

gions. For example, regions Rl, R2, and R3 in Figure ?? are all 2x2 coherent regions.

Such a coherence region operates as an independent tiled CMP with respect to the rest of

the chip, and maintains its own coherence. Any latency reduction techniques can be used

within a coherence region, and data coherence between multiple regions are kept at the

home tile of the actual data. Each tile in this case would carry a directory to maintain

coherence within the region, as well as a directory to maintain coherence across all regions.

The example in Figure 7-1 shows the sharing of a data block whose global home is mapped

to the upper-left tile of region R3. Each individual coherence region must also cache a local

home directory entry to maintain data coherence among all the tiles inside the region. This

example shows a shared design for each region, and duplicated tag directory to keep all

the regions coherent. Specific implementations can choose to use any cache management

policies within each coherent region and among all regions. Furthermore, it is also possible

to allow a region to be incoherent.

Part it ion Algorithms

A challenge in the hierarchical approach is to find the appropriate partitions for these

regions to gain the optimal performance. One approach is to use profiling information and

statically partition the CMP array [HKS%]. A more appealing approach is to leverage

the operating system to help determine the optimal part it ioning dynamically.

7.3.2 Leveraging Software

The operating system can give us valuable hints in the sharing patterns of workloads,

as illustrated in Figure 7-2. (We again use a 16 x 16, 256-core tiled CMP as our target

architecture.) The idea here is to use the operating system to allocate the threads to

Region Rl

4

A 16 x 16 Tiled CMP Region 3

Figure 7-1: Illustration of hierarchical cache coherence for CMPs. In this example, each 2x2
square forms its own coherence region and the cache storage located within the region is shared by
all processor cores within the region. However, when two regions, e.g., regions 1 and 2 share data,
there is a directory entry on the home node that keeps track of all the data for each region.

Figure 7-2: Illustration of using the operating system to allocate a collection of physical tiles
for each independent program running on the CMP. The operating system is fully responsible for
maintaining cache coherence within different regions.

a contiguous collection of tiles. These tiles will form a coherence region, similar to the

hierarchical approach.

Flexibility

The complexity of partitioning the tiles is entirely handled by the operating system. Such

an approach is flexible, online, and can use operating system hints to experiment with more

complex heuristics. The hardware simply has to be informed of the static mapping between

the address and the home tiles of the data blocks.

Because part it ioning is dynamically adjustable to suit the usage of the workload, the

coherent regions can be of different sizes and shapes to optimally accommodate the char-

acteristics of the program.

One main drawback of the software approach is that the cache content is likely to be

flushed, depending on how the operating system partitions the regions and whether the

static mapping needs to change. This requirement, however, is unlikely to cause major

performance degradation for mult i-programmed workloads. An additional problem here

could be region fragmentation, because the operating system needs to partition and rejoin

different coherent regions at various times.

Figure 7-3: Illustration of using multiple moderate-sized tiled CMPs to form a massive many-core
CMP system. The integration between neighboring chips is tight.

Figure 7-4: Illustration of forming a multi-chip CMP system in three-dimensional fashion.

7.3.3 Future CMP Topology

Figure 7-3 shows an example of such a system, which consists of many moderately sized

tiled CMPs to form a massively parallel machine. Furthermore, various new silicon emerg-

ing technologies could allow multiple dies to be connect ed toget her in a three-dimensional

fashion, forming a tiled CMP cube as shown in Figure 7-4. These newer CMP topologies

present different trade-offs in cache and memory latencies. Thus, inventing flexible latency-

reduction techniques to manage the cache and memory of these new architectures will be

both challenging and vital to the performance of these machines.

Appendix A

Cache Coherence Protocol

Implement at ion

In this chapter, we briefly present the basic aspects of the cache coherence protocol used

in our memory system. A typical protocol can be described through three separate compo-

nents: 1) the coherence states associated with each cache or memory block, 2) the different

types of coherence messages communicated between the tiles, 3) the coherence actions taken

by the coherence controllers upon receiving the processor request, the coherence messages,

and the off-chip DRAM messages. Such actions may include block state transitions or gen-

erating reply messages. In the following, we present each of these three components in our

protocol.

A.1 Coherence States

This section presents the coherence states for the L l cache, the L2 cache, and the DRAM.

A.l.1 Memory Block States

The simplest module to implement in our coherence protocol is the physical memory

(DRAM). Traditionally, directories are stored in the DRAM. However, as we discussed

in Chapter 3, we implement a perfect on-chip directory cache for all cached data blocks

on-chip by duplicating tags. By doing so, we have removed the need to implement off-chip

directories, as shown in Figure A-1. When a block that is not on-chip is first requested by

any processor core, the request is propagated to the off-chip DRAM. The DRAM simply

returns the data to the home tile of the requested block. A directory entry is created once

the DRAM reply carrying the requested data reaches the home tile. The directory entry is

either in the true directory format for shared designs, or in the duplicated tag array format

for the private design. When the last copy of a cached block is evicted from the chip, the

on-chip directory is cleared and any dirty data is written back to the off-chip memory.

I H H I Ã ‘

Perfect directory
Information for

all cached data on-chip

On-chip Directory

2D Mesh
Network Router

No directory necessary

A
in off-chip DRAM

DRAlvi

Figure A-1: Implementing a perfect directory for all cached data on-chip removes the need to have
directories in the off-chip DRAM. The on-chip directory cache is guaranteed to have all the necessary
sharing information of any cached block.

A.1.2 Ll Cache Block States

The L l cache's states are list in Table A.I. There are four stable MESI states, and one

transient st ate indicating that there is an out st anding request being serviced.

A.1.3 L2 Cache Block States

The L2 cache's coherence states are list in Table A.2. The states include the four stable

MESI states, as well as two transient states. The two transient states are reached during

cache reply-forwarding and hold the final stable state to enter once the transaction is com-

plete. In addition to holding the state, each L2 block is associated with a presence vector

to keep track of all the sharers. A full presence vector is used in our system as the number

of tile is small with 1 bit per tile.

A.2 Coherence Messages

Table A.3 summarizes all of the coherence message types used by our protocol. The twenty-

six messages are prefixed to make them easier to read. We use c (cache) to indicate re-

questors, sharers, or owner, and h (home) to indicate the home tile. We also use q to

indicate a request message and p for a reply message. In addition, an message could

carry a payload of one cache block, and we use a suffix D to indicate that. The messages

are divided into the following five groups: 1) Type chq: request messages from requestor

to home tile. 2) Type hcp: reply messages from home tile to requestor. 3) Type hcq:

reply-forwarding messages from home tile to owner/sharers. 4) Type chp: reply-forwarding

Group
St able

Transient

States
INV
SHR

Description
The I state, indicating an invalid cache block.
The S state, indicating a read-only block is cached in this L l cache and
possibly in other L l caches as well.

CEX The E state, indicating a clean block is cached in this L l cache only. No
other L l cache has a copy.

DEX The M state, indicating a writable (dirty) block is cached in this L l
cache only. No other L l cache has a copy.

BSY Indicating a request is outstanding for this cache block.

Table A.1: Coherent states of the L l cache blocks include four stable MESI states and one transient
state.

Group
Stable

Transient

States
INV
SHR

CEX

DEX

BSH

BEX

Description
The I state, indicating an invalid cache block.
The S state, indicating a read-only block is cached in this L2 cache and
possibly in other L2 caches as well.
The E state, indicating a clean block is cached in this L2 cache only. No
other L2 cache has a copy.
The M state, indicating a writable (dirty) block is cached in this L2
cache only. No other L2 cache has a copy.
The busy-shared state, entered when a shared read request is received
but cannot be serviced immediately due to a coherence miss. Down-
grade request is sent to the owner and a revision block then sent to the
requestor. Wait for reply before entering SHR state.
The busy-exclusive state, entered when an exclusive read request is re-
ceived but cannot be serviced immediately due to a coherence miss. In-
validation request(s) are sent to owner/sharers and a revision block then , sent to the requestor. Wait for reply before entering EXC state.

Table A.2: Coherent states of the L2 cache blocks include four stable MESI states and two transient
states.

I l l

Table A.3: The types of coherence messages used in this protocol. The first two letters of the

Message
Group
Cache-+Home Request

Home-Cache Reply

Home+Cache Request

Cache+Home Reply

Cache-+ Cache Transfer

prefix signifies whether the message is from the sharing cache to the home tile (ch) , home tile to the
sharing cache (he) , or cache-to-cache transfers (cc) . The third letter of the prefix indicates whether
the message is a request message (q) or a reply message (p). Messages that end in D carry a payload.

Message
Type
chqRSH
chqREX
chqWBKD
chqDRP
hcpRSHD
hcpREXD
hcpUPG
hcpRUAD
hcpREV
hcpREVD
hcpWBK
hcpDRP
hcpNAK
hcqINV
hcqDNG
hcqCCX
chpINV
chpINVD
chpDNG
chpDNGD
chpREV
chpREVD
ccpINV
ccpINVD
ccpDNGD
ccpCCXD

Message
Description
Shared read request.
Exclusive read request.
Writeback request.
Explicit drop request.
Shared read reply.
Exclusive read reply.
Upgrade reply.
Exclusive read reply.
Exclusive read revision.
Exclusive read revision with data.
Writeback acknowledgment.
Explicit drop acknowledgment.
Negative acknowledgment.
Invalidation intervention request.
Downgrade intervention request.
Cache-to-cache transfer intervention request.
Invalidation reply from a clean-exclusive block.
Invalidation reply from a dirty-exclusive block.
Downgrade reply from a clean-exclusive block.
Downgrade reply from a dirty-exclusive block.
Revision reply.
Revision reply with data.
Invalidation reply from a clean-exclusive block.
Invalidation reply from a dirty-exclusive block.
Downgrade reply from a dirty-exclusive block.
Cache-to-cache reply from a shared block.

messages from ownerlsharers to the home tile. 5) Type ccp: cache-to-cache reply messages

from ownerlsharers to the requestor.

A.3 Coherence Actions

This section describes the coherence actions taken by the coherence controllers co-located

with the L l cache and the L2 cache. The DRAM behaves normally without the burden

of maintaining coherence. The actions are summarized in Table A.4 on page 115 and

Table A.5 on page 116. To simplify our discussions, these actions summarized in these two

tables only represent the main portions of the protocol and ignores some of the cumbersome

implement at ion details and corner cases. Further, to complement and to facilitate the

understanding of the coherence action tables, we also show several examples in Figure A-2
on page 114.

A.3.1 Examples

Figure A-2 shows four examples of how the coherence protocol works. Figure A-2(a) shows

the reply-forwarding action sequence of an exclusively held block in response to a shared

read request. Upon receiving the request, home sets its state to busy and sends a downgrade

request with the tile ID of the requestor to the owner of the block. In addition, a home

revision reply is sent to the requestor, telling it to expect one downgrade message. Once

the requestor receives the downgrade message, it considers the request complete and refills

its cache. It must also notify the home tile that the data is received by sending home an

acknowledgment. Upon receiving this acknowledgment, home tile completes the request and

moves into the shared stable state. Figure A-2(b) shows the action sequence of a shared

block in response to a exclusive request, which is similar to the previous one. Instead of

sending a downgrade request, home tile sends an invalidation request to each of the sharers.

The revision message tells the requestor how many invalidat ion replies to anticipate. Once

the requestor receives all of the invalidation messages, it considers the request complete

and refills its cache. It must also notify the home tile that the data is received and home

subsequently completes the request. Lastly, Figure A-2(c) shows the action sequence of a

shared block in response to a shared request. This case is simple, as the home tile chooses a

sharer and sends a cache-to-cache transfer request, asking the sharer to forward the actual

data to the requestor. However, this case only happens in the private design and the victim

migration design, in which cases the home tile may hold only the directory entry, but not

the actual data.

(1) shared read reg (chqRSH)

I
(2) downgrade reg (hcqDNG)

(a) Shared read through downgrading current owner

(3) invalidation rep

1 (2) invalidation rea (hcaIW 4
(b) Exclusive read through invalidating current sharers

(3) cache-to-cache

(c) Shared read through cache-to-cache transfer from a sharer

Figure A-2: Examples of reply-forwarding used in the coherence protocol. Figure (a) shows the
action sequence of an exclusively held block in response to a shared read request. Figure (b) shows
the action sequence of a shared block in response to a exclusive request. Figure (c) shows the action
sequence of a shared block in response to a shared request.

Request r
Request

hcqINV

State
INV
SHR
CEX
DEX
BSY

INV
SHR

CEX
DEX
BSY

NIA

State Message and Description

N/A chqRSH L l miss. Push request into miss buffer.
SHR N/A 1 L l hit.

I

CEX i N/A I LI hit.
L l hit.
L l miss. Push request into miss buffer and
merge with preceding requests to the same
block if appropriate.
L l miss. Push request into miss buffer.
L l coherence miss. Push request into miss
buffer.

I I

DEX 1 NIA I L l hit.
I

DEX 1 N/A 1 L l hit.
BSY C ~ ~ R E X L l miss. Push request into miss buffer and

1 1 merge with preceding requests to the same
block if appropriate.

INV ccpINV[D] Invalidates block. Dirty block attached if ap-
propriate.

SHR ccpDNGD Downgrades block. Data block attached.
SHR ccpCCXD Sends shared data directly to the requestor.
SHR N/A LI refill.
[CIDIEX' N/A L l refill.
[CIDIEX' N/A L l refill.
[CIDIEX' chpREVD L l refill.
E X * 1 chpREV If all downgrade/invalidation replies have
SHR'* been received, then refill L l . Otherwise, con-

I tinue waiting. -
N/A N/A Completes the writeback request.
N/A N/A Completes the explicit request.
N/A Original Reissue the original request. May merge with

1 Request 1 subsequent requests to the same block if ap-

DEX*

SHR*

propriate.
If all other invalidation replies and the home
revision (hcpREVD) have been received, then
refill L l . Otherwise, continue waiting.
If home revision (hcpREVD) has been re-
ceived, then refill L l . Otherwise, continue

1 1 waiting.
I

SHR I N/A LI refill.

Table A.4: L l cache controller actions to processor requests and incoming coherence mes-
sages. A (') indicates that one of the multiple states listed will be entered depending on the
original request (shared or exclusive). A asterisk (*) means that the state is only entered
upon described conditions.

1 Ll/DRAM 1 Initial 1 Final 1 Output 1 Cache Action
Messages State 1
request chqRSHTNVÃ‘Ã‘

1 DRAM
I I

1 BSH
1 reply BEX

State
B[SHlEX]

SHR
BSH

BEX

DEX
INV

SHR

SHR
DEX
SHR
DEX

Message
hcpNAK

I

~cDRSHD I L2 hit.

and Description
Reply with negative acknowledgment.

To DRAM

~ C ~ D N G & L2 coherence miss. Send downgrade request

L2 miss. Issues request to off-chip DRAM.
Push request into miss buffer.

hcpREV
To DRAM

to owner, and sends revision to the requestor.
L2 miss. Issues request to off-chip DRAM.

hcqINV &
hcpREVD

Table A.5: L2 cache controller actions to L l requests and DRAM replies.

Push request into miss buffer.
L2 coherence miss. Send invalidation re-
quest(~) to all sharers, and sends revision to

hcpREXD
chpINV[D]

chpDNG[D]

N/A
N/ A
hcpRSHD
hcpREXD

the requestor.
L2 hit. Private design only.
In private design only. Ll invalidation reply
to the local L2 cache.
In private design only. Ll downgrade reply
to the local L2 cache.
Concludes the shared read request.
Concludes the exclusive read request.
Concludes the shared read request.
Concludes the exclusive read request.

Bibliography

[AB86] J. Archibald and J. Baer. Cache coherence protocols: Evaluation using a
multiprocessor simulation model. A CM Transactions on Computer System
(TOCS), 4(4):273-298, November 1986.

[ACJ+99] A. Agarwal, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B. Lim,
K. Mackenzie, and D. Yeung. The MIT Alewife machine. Proceedings of IEEE,
87(3):430-444, March 1999.

[AGGDOl] M. Acacio, J. Gonzalez, J. Garcia, and J. Duato. A new scalable directory ar-
chitecture for large-scale multiprocessors. In The 7th International Symposium
of Computer Architecture^ Nuevo Leone, Mexico, January 2001.

[AHKBOO] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock rate versus
IPC: The end of the road for conventional microarchitectures. In The 27th
International Symposium on Computer Architecture, Vancouver, BC, Canada,
May 2000.

[ALKKgO] A. Agarwal, B. Lim, D. Kranz, and J. Kubiatowicz. April: A processor archi-
tecture for multiprocessing. In The 27th International Symposium on Computer
Architecture, Seattle, WA, June 1990.

[ASHHB] A. Agarwal, R. Simoni, J. Henessy, and M. Horowitz. An evaluation of direc-
tory schemes for cache coherence. In The 15th International Symposium on
Computer Architecture, Honolulu, HI, May 1988.

[AW03] A. Alameldeen and D. Wood. Addressing workload variability in architectural
simulations. In The 9th International Symposium on High-Performance Com-
puter Architecture, Anaheim, CA, February 2003.

[BBB+94] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-
toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,
V. Venkatakrishnan, and S. Weeratunga. The NAS parallel benchmarks. Tech-
nical Report RNR-94-007, NASA, March 1994.

[BC91] J. Bear and T. Chen. An effective on-chip preloading scheme to reduce data
access penalty. In International Conference on Supercomputing, Albuquerque,
NM, 1991.

[BGM+O0] L. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer, B. Sano,
S. Smith, R. Stets, and B. Verghese. Piranha: a scalable architecture based
on single-chip multiprocessing. In The 27th International Symposium on Com-
puter Architecture, Vancouver, BC, Canada, May 2000.

[Bur 921

[C0r9 la]

[Cod 1 b]

[Cor93]

[CorOO]

[CPV03]

K. Barr, H. Pan, M. Zhang, and K. Asanovi6. Accelerating multiprocessor
simulation with a memory timestamp record. In International Symposium of
Performance Analysis and System Simulation, Austin, TX, March 2005.

H. Burkhardt. Overview of the KSR1 computer system. Technical Report
KST-TR-9202001, Kendall Square Research, 1992.

B. Beckmann and D. Wood. Managing wire delay in large chip-multiprocessor
caches. In The 37th International Symposium on Microarchitecture, Portland,
OR, December 2004.

Cavium Networks. OCTEON network service processors, August 2005.

L. Censier and P. Feautrier. A solution to coherence problems in multicache sys-
tems. IEEE Transaction on Computer, C-27(12) : 11 12-1 118, December 1978.

T. M. Conte, M. A. Hirsch, and K. N. Menezes. Reducing state loss for effec-
tive trace sampling of superscalar processors. In International Conference on
Computer Design, October 1996.

David Chaiken, J. Kubiatowicz, and A. Agarwal. Limit LESS directories: A
scalable cache coherence scheme. In The 4th International Conference on Ar-
chitectureal Support for Programming Languages and Operating Systems, April
1991.

D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In The
4th International Conference on Architectureal Support for Programming Lan-
guages and Operating Systems, New York, NY, April 1991.

Intel Corporation. Paragon XP/S product overview, 1991.

Thinking Machines Corporation. The connection machine CM-5 technical sum-
mary, October 1991.

CONVEX Computer Corporation. Exemplar architecture manual, 1993.

Standard Performance Evaluation Corp. SpecINT2000, 2000.

Z. Chishti, M. Powell, and T. Vijaykumar. Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In The 36th In-
ternational Symposium on Microarchitecture, San Diego, CA, December 2003.

Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing replication, communica-
tion, and capacity allocation in CMPs. In The 32nd International Symposium
of Computer Architecture, Madison, WI, June 2005.

M. Cameron and B. Rohit. Montecito: A dual-core, dual-thread Itanium pro-
cessor. IEEE Micro, 25 (2): 10-20, March/April2005.

D. Culler, J. Pal Singh, and A. Gupta. Parallel Computer Architecture: A
Hardware/Software Approcah. Morgan Kuffman Publishers, 1997.

[JLGSgO] D. James, A. Laundrie, S. Gjessing, and G. Sohi. Distributed-directory scheme:
Scalable coherent interface. IEEE Thnsaction on Computer, 23(6), June 1990.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded
Sparc processor. IEEE Micro, 25 (2) :2l-29, MarchIApril 2005.

C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache struc-
ture for wire-delay dominated on-chip caches. In The 10th Intemtional Confer-
ence on Architectuml Support of Programming Languages and Opemting Sgs-
terns, San Jose, CA7 October 2002.

R. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24-36, 1999.

C. Keltcher, K. McGrath, A. Ahmed, and P. Conway. The AMD Opteron
processor for multiprocessor servers. IEEE Micro, 23(2):66-76, March/April
2003.

J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum7
and J. Henessey. The Stanford Flash multiprocessor. In The 21st International
Symposium on Computer Architecture, Chicago, IL, April 1994.

K. Krewell. Intel's PC roadmap sees double. Micropmcessor Report, 18 (5) :4l-
43, May 2004.

K. Krewell. Sun's Niagara pours on the cores. ~icroprocessor Report, l8(9) : 11-
13, September 2004.

R. Kalla, B. Sinharoy, and J. Tendler. IBM Power5 chip: A dual-core multi-
threaded processor. IEEE Micro, 24(2):40-47, MarchIApril 2004.

K. Lawton. Bochs. http://bocb.sourceforge.net.

R. Lee. The Eflectiveness of Caches and Data Pmfetch buflers in Large-Scale
Shared Memory Multzpmcessor~. PhD thesis, University of Illinois at Urbana-
Champaign, Urbana-Champaign, IL, May 1987.

J. Laudon, A. Gupta, and M. Horowitz. Interleaving: A multithreading tech-
nique targeting multiprocessors and workstations. In The 6th International
Conference on Architectuml Support of Pmgmmming Languages and Operut-
ing Systems, San Jose, CA, October 1994.

J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA highly scalable server.
In The 24th International Symposium on Computer Architecture, Denver, CO,
May 1997.

D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. Lam. The Stanford Dash multiprocessor. IEEE Trans-
action on Computer, 25(3):63-79, March 1992.

S. Laha, J. A. Patel, and R. K. Iyer. Accurate low-cost methods for performance
evaluation of cache memory systems. IEEE ~nsactionctions on Gomputers,
February 1988.

[PP 861

P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-
berg, F. Lamson, A. Moestedt, and B. Werner. Simics: A full system simulation
platform. IEEE Computer, 35(2):50-58, February 2002.

T. Mowry and A. Gupta. Tolerating latency through software-controlled
prefetching in shared-memory multiprocessors. Parallel and Distributed Com-
puting, Special issue on shared-memory multiprocessors, 12(2):87-106, June
1991.

S. Mukherjee and M. Hill. An evaluation of directory protocols for medium-
scale shared-memory multiprocessors. In The 8th International Conference on
Supercomputing, July 1994.

K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for
a single-chip multiprocessor. In The 7th International Conference on Architec-
tural Support of Programming Languages and Operating Systems, Cambridge,
MA, October 1996.

H. Oi and N. Ranganathan. Utilization of cache area in on-chip multiprocessor.
In HPC, 1999.

M. Paramarcos and J. Patel. A low-overhead coherence solution for multipro-
cessors with private cache memories. In The 11th International Symposium on
Computer Architecture, Ann Arbor, MI, June 1986.

Raza Microelectronics, Inc. XLR processor product overview, May 2005.

P. Stenstrom, M. Brorsson, F. Dahlgren, H. Grahn, and M. Dubois. Boosting
the performance of shared memory multiprocessors. IEEE Transaction on
Computer, 30(7):63-70, July 1997.

V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. Stenski, and
P. Emma. Optimizing pipelines for power and performance. In The 35th
International Symposium on Microarchitecture, Istanbul, Turkey, November
2002.

E. Sprangle and D. Carmean. Increasing processor performance by imple-
menting deeper pipelines. In The 29th International Symposium of Computer
Architecture, Anchorage, AK, May 2002.

P. Stenstrom, T. Joe, and A. Gupta. Comparative performance evaluation of
cache-coherent numa and coma architectures.

A. Smith. Cache memories. ACM Computing Surveys, 14(3):473-530, Septem-
ber 1982.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Auto-
mat ically characterizing large scale program behavior. In The 10th Interna-
tional Conference on Architectureal Support for Programming Languages and
Operating Systems, pages 45-57, October 2002.

[SS86] P. Sweazey and A. Smith. A class of compatible cache consistency protocols and
their support by the IEEE futurebus. In The 13th Intemational Synposium
on Computer Architecturn, Tokyo, Japan, June 1986.

[SSZRO5] E. Speight, H. Shaii, L. Zhang, and R. hjamony. Adaptive mechanisms and
policies for managing cache heirarchies in chip multiprocessors. In The 32nd
International Symposium of Computer Architecture, Madison, WI, June 2005.

[Stego] P. Stenstrom. A survey of cache coherence schemes for multiprocessors. IEEE
Zhnsaction on Computer, B(6): 12-24, 1990.

[SWCL95] A. Saulsbury, T. Wikinson, J. Carter, and A. Landin. An argument for simple
COMA. In The 1st International Symposium on High Performance Computer
Architecture, Raleigh, NC, January 1995.

[TDJ+o~] J. Tendler, J-Dodson, J-Fields Jr.,H. Le,andB. Sinharoy. POWER4systern
microarchitecture. IBM Journal of Research and Development, 46(1), 2002.

[UC 011
, UC Berkeley Device Group. Predictive technology model. Technical report,

UC Berkeley, 2001.

[WWFHO3] R. Wunderlich, T. Wenisch, B. Falsaii, and J. Hoe. SMARTS: Accelerating
microarchitecture simulation via rigorous st at istical sampling. In The 30th
International Sgmposium of Computer Architecture, San Diego, CA, June 2003.

[ZAO5a] M. Zhang and K. Asanovit. Victim Migration: Dynamically adapting between
private and shared CMP caches. Technical Report MIT-CS AIL-TR-2005-064,
Computer Science and Artificial Intelligence Laboratory, Massachusetts Insti-
tute of Technology, October 2005.

[ZAO5b] M. Zhang and K. Asanovie. Victim Replication: Maximizing capacity while
hiding wire delay in tiled chip multiprocessors. In The 32nd International
Symposium on Computer Architecture, Madison, WI, June 2005.

[ZT97] Z. Zhang and J. Torrellm. Fteducing remote conflict misses: NUMA with
remote cache versus COMA. In The 3rd International Symposium on High
Pe~fomance Computer Architecture, S m Antonio, TX, January 1997.

	00000001.tif
	00000002.tif
	00000003.tif
	00000004.tif
	00000005.tif
	00000006.tif
	00000007.tif
	00000008.tif
	00000009.tif
	00000010.tif
	00000011.tif
	00000012.tif
	00000013.tif
	00000014.tif
	00000015.tif
	00000016.tif
	00000017.tif
	00000018.tif
	00000019.tif
	00000020.tif
	00000021.tif
	00000022.tif
	00000023.tif
	00000024.tif
	00000025.tif
	00000026.tif
	00000027.tif
	00000028.tif
	00000029.tif
	00000030.tif
	00000031.tif
	00000032.tif
	00000033.tif
	00000034.tif
	00000035.tif
	00000036.tif
	00000037.tif
	00000038.tif
	00000039.tif
	00000040.tif
	00000041.tif
	00000042.tif
	00000043.tif
	00000044.tif
	00000045.tif
	00000046.tif
	00000047.tif
	00000048.tif
	00000049.tif
	00000050.tif
	00000051.tif
	00000052.tif
	00000053.tif
	00000054.tif
	00000055.tif
	00000056.tif
	00000057.tif
	00000058.tif
	00000059.tif
	00000060.tif
	00000061.tif
	00000062.tif
	00000063.tif
	00000064.tif
	00000065.tif
	00000066.tif
	00000067.tif
	00000068.tif
	00000069.tif
	00000070.tif
	00000071.tif
	00000072.tif
	00000073.tif
	00000074.tif
	00000075.tif
	00000076.tif
	00000077.tif
	00000078.tif
	00000079.tif
	00000080.tif
	00000081.tif
	00000082.tif
	00000083.tif
	00000084.tif
	00000085.tif
	00000086.tif
	00000087.tif
	00000088.tif
	00000089.tif
	00000090.tif
	00000091.tif
	00000092.tif
	00000093.tif
	00000094.tif
	00000095.tif
	00000096.tif
	00000097.tif
	00000098.tif
	00000099.tif
	00000100.tif
	00000101.tif
	00000102.tif
	00000103.tif
	00000104.tif
	00000105.tif
	00000106.tif
	00000107.tif
	00000108.tif
	00000109.tif
	00000110.tif
	00000111.tif
	00000112.tif
	00000113.tif
	00000114.tif
	00000115.tif
	00000116.tif
	00000117.tif
	00000118.tif
	00000119.tif
	00000120.tif
	00000121.tif
	00000122.tif

