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Abstract
Recently, revenue management has become popular in many industries such as the
airline, the supply chain, and the transportation industry. Decision makers realize
that even small improvements in their operations can have a significant impact on
their profits. Nevertheless, determining pricing and inventory optimal policies in more
realistic settings may not be a tractable task. Ignoring the potential inaccuracy of
parameters may lead to a solution that actually performs poorly, or even that vi-
olates some constraints. Finally, competitors impact a supplier's best strategy by
influencing her demand, revenues, and field of possible actions. Taking a game the-
oretic approach and determining the equilibrium of the system can help understand
its state in the long run.

This thesis presents a continuous time optimal control model for studying a dy-
namic pricing and inventory control problem in a make-to-stock manufacturing sys-
tem. We consider a multi-product capacitated, dynamic setting. We introduce a
demand-based model with convex costs. A key part of the model is that no backo-
rders are allowed, as this introduces a constraint on the state variables. We first study
the deterministic version of this problem. We introduce and study a solution method
that enables to compute the optimal solution on a finite time horizon in a monopoly
setting. Our results illustrate the role of capacity and the effects of the dynamic
nature of demand. We then introduce an additive model of demand uncertainty. We
use a robust optimization approach to protect the solution against data uncertainty
in a tractable manner, and without imposing stringent assumptions on available in-
formation. We show that the robust formulation is of the same order of complexity
as the deterministic problem and demonstrate how to adapt solution method. Fi-
nally, we consider a duopoly setting and use a more general model of additive and
multiplicative demand uncertainty. We formulate the robust problem as a coupled
constraint differential game. Using a quasi-variational inequality reformulation, we
prove the existence of Nash equilibria in continuous time and study issues of unique-
ness. Finally, we introduce a relaxation-type algorithm and prove its convergence to
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a particular Nash equilibrium (normalized Nash equilibrium) in discrete time.

Thesis Supervisor: Georgia Perakis
Title: J. Spencer Standish Associate Professor of Operations Research
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Chapter 1

Introduction

The profitability of operations of a firm is critically affected by decisions regarding

its pricing, inventory and production strategy. Static policies usually perform poorly

compared to dynamic policies, in which the price and production rate are adjusted

over time. Indeed, the demand in particular, and sometimes other components of

the system, usually evolve over time. Today, many channels of distribution (such as

the internet) allow suppliers to change prices over time when they can benefit from a

dynamic strategy. A dynamic strategy requires the price and production rate to be

determined at all times in order to maximize the net profit over a time horizon, while

obeying some constraints due to stock level limits or production capacity, taking into

account production and inventory holding costs. Moreover, when the firm produces

simultaneously multiple products, new decisions must be made to allocate the avail-

able production capacity among the products.

Practitioners often face the problem of uncertainty when determining model pa-

rameters. Ignoring uncertainties may yield a strategy that is useless if the true pa-

rameter values differ from their model estimate. Indeed, this strategy may not only be

very suboptimal, but may also be infeasible due to constraint violations. It is there-

fore of great importance to provide a way to incorporate uncertainty in the model,

while proposing tractable solutions, and without making unrealistic assumptions.
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We consider an oligopoly market with differentiated products, where multiple

competitors target the same potential buyers. In such a setting, the price of a prod-

uct at a given firm affects the demand of all firms for that product. In other words,

the demand observed by a given firm for some product depends not only on her own

price, but also on the prices applied by her competitors. Therefore, each competitor

has to determine her strategy based on her competitors' prices. To understand how

competition affects optimal decisions, we place the problem within a game-theoretic

setting and study equilibria.

The overall goal of this research is to provide a model of dynamic pricing and in-

ventory management under demand uncertainty and competition, when no stock-outs

are allowed. We are facing contradicting challenges, since we wish to build a model

as realistic as possible but at the same time to gain insights from its solution in or-

der to reach a better understanding of how to determine optimal strategies in practice.

1.1 Motivation

Recently, revenue management has become popular in many industries such as the

airline, the supply chain, and the transportation industry. Many retail firms have rec-

ognized that better revenue management and inventory control may yield significant

positive impact. They invest time and effort in an attempt to optimize their prices

and inventory policies. One of the critical factors to determine the profitability of a

firm is its pricing and production strategy. Many firms hire specialized consultants to

help them determine optimal strategies and improve their revenue management. A

study by McKinsey and Company on the cost structure of Fortune 1000 companies in

the year 2001 shows that pricing is a more powerful lever than variable cost, fixed cost

or sales volume improvements. An improvement of 1% in pricing yields an average

of 8.6% in operating margin improvement (see [10]). Therefore, companies' ability to

survive in a competitive environment depends on the development of efficient pricing
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models. Inventory control can also have a major impact on profits. Abernathy et

al. note that "Retailers no longer place large seasonal orders for goods in advance

instead, they require ongoing replenishment of stock, forcing manufacturers to predict

demand and then hold substantial inventories indefinitely. Manufacturers now carry

the cost of inventory risk. (...) The inventory demand for stock-keeping units within

the same product line can vary significantly. (...) By differentiating inventory policies

at the stock-keeping unit level, manufacturers (...) improve the profitability of the

entire line." [1]. As a result, dynamic pricing, inventory control and revenue manage-

ment have become very active research topics and have been extensively studied in

the academic literature in Economics, Operations Management, and Marketing (see

for example [34], [57], [119], [130]). In such settings, suppliers are maximizing their

profits over a time horizon subject to some constraints. Furthermore, data changes

over time. Therefore, these problems are typically formulated as constrained dy-

namic optimization problems. Dynamic Pricing and Inventory Control problems are

challenging due to various aspects of the problem:

(a) the intrinsically dynamic aspect;

(b) uncertainty of the demand;

(c) competition among suppliers;

(d) the non separability of the decision variables (prices and production decisions

are typically inter-dependent).

1.1.1 Dynamic nature of the problem

In a setting where parameters and decision variables change over time, the state of

the system constantly evolves. In particular, the inventory level is variable that rep-

resents the current state of the system. It results from the initial state and the entire

history of decisions until the current time. In an open-loop framework, the value of

data over time is known in advance, and decision makers commit at time zero to

their decision over the time horizon, in order to maximize the total profits. In such a
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framework, the solution is determined by considering the entire time horizon, rather

than by taking a myopic approach that would seek to maximize the instantaneous

profits. It is important to realize that the decisions at a given time have an impact

on the future state of the system. For example, if the demand is expected to increase

over time, and production capacity is small, it may be optimal to choose a high pro-

duction rate even at the beginning of the horizon even though the low demand at

the time does not require it, in order to build up inventory stock. Then it will be

possible to satisfy the high demand later on without increasing prices. Otherwise, the

low production capacity would not have been sufficient to satisfy the demand, and

prices would have to increase in order to slow demand. This example illustrates how

optimal decisions are linked over time. Therefore, the dynamic aspect of the problem

is essential for determining its optimal solution.

To model the dynamics of the system, some researchers choose to view time as

discrete. The drawback of such an approach is having to decide the length of the step

size. A fine discretization of the time horizon provides more accuracy. Nevertheless,

it gives rise to a problem of a huge size, both in terms of number of variables and

number of constraints (even though the dimension is finite), which implies significant

delays in obtaining good solutions. When viewing time continuously, the inventory

may be seen as a continuous flow, and as a result, there is no need to assume that

decisions occur only at discrete points on the time axis. The problem can be formu-

lated as a fluid model. Fluid models provide a powerful tool for understanding the

behavior of systems where the dynamic aspect plays an important role. They arise in

applications as diverse as routing, communication, queueing, supply chain and trans-

portation systems. They have been used in particular as approximations of complex

stochastic systems, such as queueing networks. Recent research has proven that an

attractive feature of these models in supply chain applications is that they provide

good scheduling, production and inventory policies in a variety of settings. Moreover,

fluid models allow a continuous time approach instead of having to discretize time.

However, since demand depends on prices, these formulations are nonlinear, and as
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such, may be very complex to solve. Examples of supply chain industries where fluid

models of the type we discuss in this thesis are relevant, include industries with a high

volume of throughput and data on costs and demand that change a lot. The hardware

as well as the semiconductor industries are such examples. Moreover, we believe that

a similar approach can be applied to problems in areas other than dynamic pricing

and inventory control, where the dynamic evolution of the system justifies a contin-

uous time approach. We believe that the techniques presented in this thesis may be

helpful to those areas as well.

1.1.2 Uncertainty

Most of the time, practitioners and researchers assume that their model represents

well reality, and that data are known with certainty. However, uncertainty is inherent

in nature and forecasts always involve some degree of randomness since many unex-

pected events may affect the future. Moreover, the model may inexactly represent

the system and the interactions between its components. For instance, modeling the

demand as varying linearly with the price, is an approximation of the true relation-

ship between price and demand. Finally, even when the model is exact, its validity

relies on the ability to determine the exact values of its parameters, which may be

difficult to measure in practice. One way to evaluate those parameters is the use of

regression or statistical inference models based on historical data. Nevertheless, these

methods provide only an estimate of the parameters. Furthermore, they are based on

the assumption that the future can be inferred from the past, and this assumption is

not always justified. Ignoring the potential inaccuracy of models parameters may lead

to a solution that performs poorly if the actual value differed from the one assumed

in the model, or even that is infeasible. In particular, when in the nominal model

constraints are binding at this solution, it is likely that even a small perturbation of

the data will yield a violation of those constraints.

A common approach to address uncertainty is to assume a probability distribu-

tion on the parameters, and use stochastic optimization and dynamic programming.

21



However, suppliers may find it difficult in practice to determine such probability dis-

tributions. In most applications, it may be unrealistic to know anything other than

the first and second moment of the distribution. For reasons mentioned above, even

historical data may not be sufficient to have an accurate idea of the probability dis-

tribution. Moreover, even if the distribution is known, solving these formulations is

often not possible because of what is known as the "curse of dimensionality". As

the number of periods increases, the dimension of the problem is so large that the

problem becomes intractable.

This idea motivates a robust optimization approach. The main idea is to find the

best strategy given some uncertainty model on the data. The field of robust optimiza-

tion has attracted a lot of research recently by providing an efficient way of finding

good solutions that are immune (or robust) to data uncertainty. Robust optimiza-

tion is also easier to use than stochastic optimization and dynamic programming in

practice because it does not require to make any assumption on the probability dis-

tributions: it only requires a range of variation, which is not very difficult to estimate

in most applications. We will consider that the demand parameters are subject to

uncertainty, since they are the most difficult to evaluate in practice. The tractability

of solving the problem under this approach depends essentially on the structure of

the uncertainty set within which the data are allowed to vary. Part of the task in

formulating the robust model is to design these sets in such a way that tractability

is preserved.

1.1.3 Competition

A third important feature we would like to study is competition. In a non-monopolistic

setting, several firms compete. The decisions taken by a firm may affect other firms

by influencing her demand, revenues, and field of possible actions. Thus when multi-

ple sellers compete in a market, these mutual interactions motivate a game theoretic

approach which makes a key difference in the techniques determining the solution.

Such problems have been studied in the literature in economics, revenue management,
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and supply chain.

There are many ways of modeling competition based on the number of competi-

tors, whether there is a leader and some followers, whether competitors cooperate,

etc. In this thesis, we assume an oligopoly where all suppliers simultaneously seek to

optimize their revenues. The question of interest is then to determine if the game has

an equilibrium, i.e. a solution for all competitors such that no one has an incentive

to unilaterally deviate from it (Nash equilibrium). For most settings, it would be un-

realistic to assume a monopoly or that competitors cooperate. Oligopolistic settings

with no collaboration are thought to protect the customer by guaranteeing fair prices

due to the competition between suppliers. Most developed economies have laws that

prohibit monopolies and cooperation (US Antitrust law for example). Therefore, in

this thesis we will consider a non cooperative oligopolistic competition.

1.2 Literature review

In this section, we provide an overview of the literature on topics closely related to

the thesis. We first discuss some related papers on revenue management, dynamic

pricing and optimal control in a monopoly setting. Then we present references that

are relevant to modeling demand uncertainty. Finally, we mention literature relative

to oligopolistic competition.

1.2.1 Dynamic pricing, inventory control, revenue manage-

ment, supply chain, and optimal control

There is a huge literature on inventory control as well as pricing and revenue manage-

ment. For example, the book by Porteus [108] and the book by Zipkin [130] review

inventory management techniques, while the book by Talluri and van Ryzin [119] pro-

vides an overview of the revenue management and pricing literature. In this section,
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we provide details and references on advances in areas related to different aspects of

the thesis.

In a setting where the problem has a dynamic aspect, such as traffic control,

queueing networks, supply chain, or transportation, there is a connection with fluid

models. These models can be viewed (when there is no stochasticity) as continuous

time optimal control models. A large part of the literature on continuous-time opti-

mal control models has focused on the solution of linear formulations (see for example

Anderson [4], [5], Pullan [109]). This part of the literature shows existence of an op-

timal solution with piecewise constant controls. Pullan in particular showed strong

duality and designed a class of algorithms solution convergent. For the solution of

linear fluid models, Bertsimas and Luo [93] construct an algorithm solving state con-

strained separated continuous linear programs under some assumptions. Fluid models

also connect with semi-infinite programming problems. Tuncel and Todd [121] study

the asymptotic behavior of interior point methods for semi-infinite programming by

finding the limits of search directions, potential functions and central paths as the

number of variables becomes infinite.

However, when fluid models are nonlinear, the dynamic together with the nonlinear

aspect of the problem make them harder to analyze. Nonlinear fluid models are par-

ticularly useful for dynamic pricing and inventory management applications, as we

explained above. A variety of models have been proposed in the literature for such

applications (see references below). These models typically differ due to the produc-

tion cost, inventory cost, and demand functions considered. More theoretically, many

papers study general continuous time optimal control models. [7], [73], [85] and [115]

give formulations of the Maximum Principle under state variable constraints. Clarke

([43], [44], [45], [46] with others) and Devdariani and Ledyaev [51] provide theoretical

results on global optimality conditions.

The literature on dynamic pricing is growing fast. Elmaghraby and Keskinocak in

[57] and the references therein provide a comprehensive literature review of dynamic
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pricing models while Bitran and Caldentey [34] provide an overview of research on

dynamic pricing and its relation to Revenue Management. Furthermore, Zipkin [130]

and the references therein provide a thorough review of recent advances in inventory

control theory and its relation to supply chain. Chan, Shen, Simchi-Levi and Swann

[39] review research on coordination of pricing and inventory decisions. Finally, Yano

and Gilbert [126] and the references therein provide a review of pricing and produc-

tion/procurement decisions.

A large volume of literature studies a demand model for the single-product case.

For example Pekelman [105] solves the dynamic pricing and production policy prob-

lem for a single product optimizing over a finite time horizon. He models the demand

as a linear function of the price with time-varying coefficients. The model uses linear

inventory cost with a constant coefficient, and a general strictly convex production

cost. The model does not allow backorders (negative inventory levels). Feichtinger

and Hartl [60] extend this model by considering a general nonlinear demand function

and allowing backorders, with both piecewise linear and strictly convex inventory

costs. They obtain phase diagrams for the equilibrium and transient behavior of the

optimal solution with a finite or infinite time horizon. Another extension is intro-

duced by Thompson, Sethi and Teng in [120], where the production rate and the

level of inventory are bounded, and the production cost is either linear or strictly

convex. Gaimon [64] considers additional controls by allowing decisions on the max-

imal production rate as well as price and production output, where the change in

maximal production rate has an effect on the production cost. [56], [78] and [89]

consider the case of centralized or decentralized decisions between a distributor and

a manufacturer in an industrial channel of distribution. Locke Anderson [91] con-

siders production decisions when the production of a final good requires as input

the production of an intermediate good. In the single-product model, Jrgensen [79]

uses a continuous time optimal control model to study demand learning effects while

Laurent-Varin [90] introduces an interior-point solution algorithm.
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In a multi-product setting, Bertsimas and Paschalidis [28], Harrison [72] and Meyn

[98] study a make-to-stock problem using fluids. Specifically, Bertsimas and Pascha-

lidis in [28] study an inventory control problem with fixed demand rate and capacity

rate shared among all classes. Their model allows backorders and computes a produc-

tion policy by minimizing either a linear or a quadratic inventory cost over successive

small intervals. Luo [92] considers a make-to-stock multi-class queueing scheduling

problem that minimizes a convex quadratic backorder and holding cost and finds an

optimal production policy over the entire time horizon. Kleywegt [86] uses a cutting

plane algorithm to solve a multi-class optimal control problem of dynamic pricing

with profit linear in terms of selling rate. Fleisher and Sethuraman [62] provide an

approximation algorithm to solve the optimal control of fluid queueing networks.

Moreover, van Ryzin and McGill [124] designed an adaptive approach within the

framework of airline revenue management based on historical observed data. They

study an algorithm through stochastic approximation theory. Gallego and van Ryzin

[66], [67] consider the problem of dynamically pricing over a finite horizon when de-

mand is stochastic and price sensitive. Finally, Kachani and Perakis [82], [83] take a

delay-based approach to determine optimal pricing and production policies, where the

price and level of inventory affect the delay (time that a product remains in inventory).

A stream of research has focused on a dynamic programming approach to solve

pricing and/or inventory problems (see [2], [26]), by dividing the (possibly infinite)

time horizon into time periodsand allowing decisions at the beginning of each period,

as opposed to the research cited above that takes a continuous approach, including

Maglaras and Meissner [95] who approach the pricing problem under fixed capacity by

reducing the problem to determining the aggregate rate at which all products jointly

consume resource capacity, and defining an efficient frontier.
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1.2.2 Demand uncertainty

Economists have used a variety of demand models which have been applied in the

revenue management literature (see for example, [6], [125], survey articles [39] and

[57]). The problem of demand uncertainty has motivated a significant amount of

literature in the field of Revenue Management and Pricing. A number of different

approaches have been introduced to model this uncertainty. Zabel [129] considers

two models of uncertain demand: a multiplicative model (dt = rtu(pt)) and an ad-

ditive model (dt = u(pt) + t), where dt is the demand at time t, pt is the price

at time t, u(p) = a - p, i.e. a downward sloping linear demand curve, and t is

assumed to be either exponentially or uniformly distributed with E[vt] > 0. Young

[128] and Federgruen and Heching [58] generalize the demand model to be of the

form dt = yt(p)et + t(p), where -y and 6 have first derivatives non positive and et

is a random term with a finite mean. Gallego and van Ryzin [66], [67] as well as

Bitran and Mondschein [35] assume that demand follows a Poisson process with a

deterministic intensity that depends on price and time. Raman and Chatterjee [110]

model the stochasticity of the demand by introducing an additive model where the

random noise is a continuous time Wiener process.

For additional details and references, see review papers such as [34], [57] and [126].

The Operations Research literature treats the presence of data uncertainty in op-

timization problem in several ways. The problem is sometimes solved assuming all

parameters are deterministic; subsequently sensitivity analysis is performed to study

the stability of the nominal solution with respect to small perturbations of the data.

Stochastic programming is used when a probability distribution of the underlying

uncertain parameters is available, and seeks a solution that performs well and has

low probability of constraint violation. Robust optimization is an alternative was to

seek an optimal solution of a problem when its data is uncertain.

A robust optimization formulation was first considered by Soyster [117] in the case

of a linear optimization problem where the data were uncertain within a convex set.
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He addresses uncertainty by taking a worst-case approach. Nevertheless, such an

approach decreases the performance of the solution significantly, and was criticized

of being overly conservative. Ben-Tal and Nemirovski ([16],[17]) address the issue

of over-conservativeness by considering data uncertainty sets that are ellipsoids, for

linear programming (LP) and general convex programming. Numerical examples of

their approach for polyhedral uncertainty sets, that allow to reformulate the robust

counterpart of an LP as an LP, can be found in [18]. El-Ghaoui et al ([54], [55]) inde-

pendently developed the approach of robust counterpart applied mostly to uncertain

semidefinite programming, by adapting ideas from robust control.

They show that the robust counterpart of many convex optimization problems (LPs,

second-order cone problems (SOCPs), semidefinite programming programs (SDPs))

with data within ellipsoidal uncertainty sets can be efficiently solved exactly or ap-

proximatively by polynomial-time algorithms. However, for this type of uncertainty

sets, complexity increases: the robust counterpart of an LP is reformulated as an

SOCP, of an SOCP is reformulated as an SDP, and the robust counterpart of an

SDP is NP-hard to solve. In [19], Ben-Tal, Nemirovski and Roos approximate the

solution of the NP-hard semidefinite robust counterpart of an SOCP with ellipsoidal

uncertainty sets with a single explicit semidefinite program.

Bertsimas and Sim [30] seek a model leading to a robust counterpart problem to an

LP that is still a linear optimization problem, by introducing the notion of budget of

uncertainty to control the level of conservativeness. They studied the tradeoff between

robustness of a solution to a linear programming problem and the sub-optimality of

the solution. In [29], they use this approach for discrete optimization and network

flow problems. Bertsimas, Pachamanova and Sim [27] propose a framework for robust

modeling of LPs using uncertainty sets described by an arbitrary norm. Bertsimas

and Sim [31] propose a relaxed robust counterpart for general conic optimization

problems that preserves the original structure (robust LPS are LPs, robust SOCPs

are SOCPs, robust SDPS are SDPs), and provides probability guarantees on the fea-

sibility of the solution. Bertsimas and Brown [25] construct uncertainty sets for LPs

by taking a coherent risk measure as primitive.
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The robust optimization methodology has been applied to a number of areas. Bert-

simas and Thiele [32] apply robust optimization principles to inventory theory and

supply chain management. In [15], Ben-Tal and Nemirovski use robust optimiza-

tion to formulate a robust truss topology design problem as an SDP. Goldfarb and

Iyengar [71] apply robust optimization to portfolio selection problems. They intro-

duce uncertainty sets that allow to reformulate the robust counterpart problem as

an SOCP. Ben-Tal et al [14] take a robust optimization approach for multi-period

stochastic operations management problems, and in particular the retailer-supplier

flexible commitment problem with uncertain demand.

1.2.3 Competition

In economics, many game-theoretic problems in continuous time are modeled as differ-

ential games, i.e. games involving a fluid equation. Jrgensen and Zaccour [80] apply a

differential game model to control pollution emission. They consider two neighboring

countries who make decisions on emissions and investments in abatement technol-

ogy. The dynamics of capital stocks and the stock of pollution are modeled through

a fluid equation. They solve in closed form the cooperative problem and the Nash

equilibrium problem, and they design an incentive strategy. Miler and de Zeeuw [96]

use a differential game to model a problem related to acid rains. Neighboring coun-

tries face a trade-off between costs of emission reductions and the damage to the soils.

Literature on oligopolistic competition in the field of pricing and revenue man-

agement is emerging fast in recent years. The book by Vives [125] presents a number

of pricing models in an oligopoly market. For a survey of joint pricing and produc-

tion decisions for inventory control in a supply chain setting, the reader can refer to

Chan et al. [41] as well as Cachon and Netessine [36]. A wide range of applications

of pricing can be found in the literature in economics, marketing and management

science (see for example, Jrgensen and Zaccour [81] and Dockner and others [52],

and the references therein). Fudenberg and Tirole [63] review a variety of game theo-

retic models for pricing and capacity decisions. Gaimon [65] studies open and closed
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loop Nash equilibria for two firms and a single product setting, where the price and

capacity are determined to maximize net profits when the acquisition of new technol-

ogy reduces the operating cost. For perishable products, Perakis and Sood [106] and

Perakis and Nguyen [100] study non cooperative equilibrium policies. Steinberg and

Eliashberg [118] study a production and expenditure problem and obtain a dynamic

open-loop Nash equilibrium. Feichtinger [59] applies differential games to advertis-

ing. He considers two profit-maximizing firms and studies the structure of optimal

advertising rates in the Nash equilibrium solution. For a survey of applications of dif-

ferential games to management science, see [61]. In many cases in these applications,

the equilibrium point is obtained by solving the differential form of the Kuhn-Tucker

optimality conditions. Nevertheless, it is not always the case that solving these con-

ditions is tractable.

Differential games are useful to model dynamic systems of conflict and cooperation

where decisions are made over a time horizon. Ba§ar presents some theoretic results in

[11] for non-cooperative dynamic games. Quasi-variational inequality problems were

introduced by Bensoussan and Lions [20], [21], [22], motivated by stochastic impulse

control problems. Mosco [99] studies topological and order methods to solve this type

of problems with implicit constraints and connects these problems with applications

to differential games. Quasi-variational inequalities in finite dimension have been

studied by several authors such as Yao [127], Pang [101], Pang and Fukushima [102],

and Chan and Pang [38]. Cavazzuti and others [37] introduce some relationships

between Nash equilibria, variational equilibria and dynamic equilibria for noncooper-

ative games without assuming that the dimension is finite. Cubiotti [48] and Cubiotti

and Yen [49] prove the existence of solution for generalized quasi-variational inequal-

ities in infinite-dimensional normed spaces under some conditions. Pang and Stewart

[103] recently introduced differential variational inequalities and illustrated this no-

tion in particular for differential games. Using the maximum principle, Schumacher

[112] provides an example of a differential variational inequality for a linear quadratic

dynamic optimal control problem with state constraints only, and a linear problem
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with control constraints.

The degree of interdependency between players' actions impacts directly the dif-

ficulty of finding an equilibrium. Rosen [111] extended the literature on finite dimen-

sional n-person non-zero sum games by considering games in which the constraints

as well as the payoff function depend on the strategy of every player. He called these

games coupled constraint games. He showed the existence of an equilibrium under

concavity assumptions, and he introduced the notion of normalized Nash equilibrium

as a particular Nash equilibrium. He showed uniqueness of a normalized Nash equi-

librium under certain assumptions. This type of games have several applications, for

example in routing [53], and in environmental economics [75], [76], [88], [87].

Relaxation algorithms provide a powerful tool for finding a Nash Equilibrium

when the problem is not tractable enough to solve the necessary conditions. These

iterative algorithms rely on averaging the current solution iterate with the solution

of the best response problem each player solves. Uryas'ev and Rubinstein [123] and

Bazar [11] study the convergence of such algorithms in finite dimensions for finding

the equilibria of a non cooperative game for some payoff functions on a closed, com-

pact, subset of Rm. Berridge and Krawczyk [24] apply these techniques to games with

non linear payoff functions and coupled constraints arising in economics. Krawczyk

and Uryas'ev [88] consider similar problems and use steepest-descent step-size con-

trol. Contreras et al. [47] illustrates this method for finding equilibria in electricity

markets.

1.3 Overall goal and structure of the thesis

The overall goal of this thesis is to introduce and study an optimization problem

for dynamic pricing and inventory control with no backorders for a make-to-stock

manufacturing system. We proceed as follows:
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Deterministic problem in a monopoly setting: We first present the basic model

in a monopoly setting with no uncertainty in the data.

Robust formulation: We then introduce uncertainty in the demand parameters

and take a robust optimization approach.

Robust formulation under competition: We finally add the aspect of compe-

tition to the model and address jointly uncertainty of demand in a duopoly

competitive setting. Our goal is to study the Nash equilibria of the system.

Given the complexity of the problems we consider, it is clearly impossible to ob-

tain closed form solutions. Our goal was to avoid making unnecessary approximations

and unreasonable assumptions. Moreover, we attempted to find solution algorithms

that, under certain assumptions on the data, converge to the desired solution either

in finite time, or in infinite time but with good performance in practice. To the best

of our knowledge, this is the first research work associating simultaneously optimal

pricing and production strategies, fluid models, uncertainty via robust optimization,

and competition.

The thesis is structured as follows. Chapter two provides a detailed description

of the model of dynamic pricing and inventory control problem we propose, the as-

sumptions of the model, and the notations used.

Chapter three describes a solution method for the deterministic problem in a monopoly

setting.

Chapter four proposes a robust optimization model to take uncertainty into account.

Furthermore, it illustrates the robust formulation is of the same order of "complexity"

as the nominal formulation. In particular, we show how to adapt the method from

Chapter three to get a robust solution.

Chapter five studies equilibria in continuous time in a duopoly market where demand

is deterministic. Subsequently, it extends these results to incorporate uncertain de-

mand. Moreover, this chapter studies an algorithm that converges to an equilibrium

in discrete time, when demand is uncertain.
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Chapter 2

Formulation

Throughout the thesis, we consider a finite time horizon [0, T] and a dynamic setting.

We assume that the suppliers produce multiple non-perishable differentiated prod-

ucts i = 1,..., N. We assume that these products share a common resource which

yields a production capacity constraint coupling the products together. Our goal is to

determine at time zero the optimal pricing and production strategy for all products

on the entire time horizon. The solution for prices and production rates is a set of

functions of time on the time horizon. Furthermore, the dimension of the problem

is infinite. Assuming that sellers are profit-maximizers, an optimal strategy is the

strategy providing the highest net profits, given by the sum over time and across

products of the demand multiplied by the price, after subtracting the production and

inventory costs. We model the production cost either as a strictly convex increasing

function, or more particularly as a quadratic function of the production rate. We

model the inventory cost either as a linear or a quadratic function of the inventory

level. The resulting problem is therefore nonlinear.

Note that all parameters of the problem are time dependent (including the bounds

defining feasible ranges when there is uncertainty), thus allowing to model the dy-

namic aspect of such problems.

This chapter provides a detailed description of the general setting, assumptions on

the data, and the motivation behind modeling assumptions.
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2.1 Modeling assumptions

2.1.1 No backorders constraint on inventory levels

Inventory problems may allow or deny backorders, i.e. the possibility of having a

negative inventory level. A key aspect of the problem under consideration is the no

backorders constraint which ensures that inventory levels remain non negative at all

times:

Ii(t) > 0, i= 1,...,N, tE [0, T],

where T is the time horizon and Ii(t) the inventory level of product i at time t. In a

manufacturing system which does not allow backorders and where the demand rate is

not external, but determined by a relationship with price, the price can be adjusted

so that no demand is actually lost. That is, the price is set so that there is enough

available inventory to satisfy the demand, in such a way that the selling rate equals

the demand rate. This setting can be justified by the presence of a contract between

a supplier and a retailer, or by very high fixed backlog cost. For example, Pekelman

[105] studies a problem of optimal pricing and production for a single product with

no backorders. Axsiter and Juntti [8] study echelon stock reorder policies with no

backorders.

In the fluid model, the inventory level is given as the solution of a first order

differential equation involving the production rate and the price in a linear relation.

More specifically, the inventory level at a given time t is the difference between the

cumulative production and the cumulative demand up to that time t, where the

cumulative production depends on all production rate decisions from time zero up to

time t, and the cumulative demand depends on all prices applied for that product

from time zero up to time t. It is therefore indirectly related to the decision variables.

Reversely, constraints such as production capacity and bounds on the prices involve

directly and instantaneously the decision variables, and have as a result a simpler

impact on the set of feasible strategies. The inventory level at a given time is a
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state variable, i.e. it characterizes the state of the system at that time based on all

choices of decisions variables up to that time. The no backorders constraint imposes

a non negativity constraint on the inventory levels at each time. Therefore, as a state

variable constraint, it is difficult to deal with and makes the problem significantly

more complex.

2.1.2 Capacity constraint

We assume that multiple products share a single common production capacity by

introducing the constraint

N

Zui(t) < K(t), Vt E [O,T],
i=l

where ui(t) is the production rate of product i at time t and K(t) is the total produc-

tion capacity rate at time t. This assumption is a standard one in the literature that

considers multiclass systems. For example, Bertsimas and Paschalidis [28] consider

a multiclass make-to-stock system and assume that a single facility produces sev-

eral products, with the production process over time taken as an arbitrary stationary

stochastic process. Also in a make-to-stock manufacturing setting with multiple prod-

ucts, Kachani and Perakis [82] suppose that the total production capacity rate across

all products is bounded. Gilbert [68] addresses the problem of jointly determining

prices and production schedules for a set of items that are produced on the same

production equipment and with a limited capacity. Maglaras and Meissner [95] con-

sider a monopolist firm that owns a fixed capacity of a resource that is consumed in

the production of multiple products. Finally, Biller et al. [33] extend a single prod-

uct model of dynamic pricing to cover supply chains with multiple products, each of

which is assembled from a set of parts and shares common production capacity. In

order to keep the model simple in this thesis, we make a similar assumption of a sin-

gle production capacity constraint, and we leave as a direction of future research the

case of multiple capacity constraints which could be applicable to certain production

settings.
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2.1.3 Cost structure

Monopoly setting

Producing and holding stocks of inventory incurs costs. A variety of costs structure

assumptions can be found in the literature. In the monopoly setting (both with and

without demand uncertainty), we assume that the production cost for a given product

is a strictly convex increasing function of the production rate:

fi (ui(t)),

where ui(t) is the production rate of product i at time t.

We make the following technical assumption on the production cost functions.

Assumption 1. For all products i, function fi(.) is assumed to be twice continuously

differentiable, strictly convex, non-negative and increasing. Moreover, we assume

limu_+,, fi(u) = +0o.

Note that Assumption 1 holds for example if fi(.) is quadratic.

We model the inventory holding cost as a linear function of the inventory level:

hi(t)I (t),

where hi (t) is the positive holding cost coefficient of product i at time t, and h (t) is the

inventory level of product i at time t. Pekelman [105] studies a problem of optimal

pricing and production for a single product with strictly convex production costs

and linear holding costs. Clark and Scarf [42] introduce the Multi-echelon Inventory

Problem which includes linear holding costs. This model was used extensively in the

literature. We provide below references of studies involving quadratic production cost

(which are strictly convex).
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Duopoly setting

In the duopoly setting, we assume that production and inventory costs are quadratic,

and formulated respectively as

-Yi (t) (Ui (t)2

and

hi(t)(Ii(t))2,

where ui(t) is the production rate of product i at time t, Ii(t) is the inventory level of

product i at time t, hi(t) is the positive holding cost coefficient of product i at time

t, and yi(t) is the positive production cost coefficient of product i at time t.

This type of cost model has been used often in the literature on inventory control.

Goh [70] assumes that the holding cost is a nonlinear function of the amount of the

on-hand inventory. He motivates the model by discussing its application to products

whose inventory value is very high and many precautionary steps are to be taken to

ensure its safety and quality. He cites in particular luxury items like expensive jew-

elry and designer watches, for which as the on-hand stock inventory grows, some firms

employ higher dimensions of security such as hidden cameras and infrared sensors.

Similarly, Giri and Chaudhuri [69] consider a model with nonlinear holding cost de-

pending on the stock level with the form hi", n > 1, where I is the inventory level.

They justify this assumption by taking the example of electronic components, radioac-

tive substances, or volatile liquids which are costly and require more sophisticated

arrangements for their security and safety.

Holt et al. [77] introduce a linear-quadratic inventory model in which the production

and the holding cost are respectively the sum of a linear and a quadratic term in

the production rate or the inventory rate. Our model is a particular case where the

coefficient of the linear term is zero. They justify this approximation for production

costs from a connection with workforce costs. They observe that the cost of hiring

and training people rises with the number hired, and the cost of laying off workers,

including terminal pay, reorganization, etc., rises with the number laid off. Moreover,
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for fixed workforce, increasing production may incur overtime costs.

Pindyck [107] models production costs for commodities such as copper, lumber and

heating oil as quadratic costs.Finally, Sethi et al. [114] assume general convex pro-

duction and inventory costs. Our model is also a particular case of this model.

2.2 Demand model in a deterministic monopoly

setting

In the monopolistic and deterministic setting, the demand for product i will be mod-

eled as a linear decreasing function of the price of that product:

di(t) = ai(t) - P(t)pi(t),

where di(t) and pi(t) are respectively the demand and the price at time t for prod-

uct i, and ai(t) and p(t) are known positive real valued functions of time. We will

sometimes refer to aci(t) as the fixed term of the demand, and to Oi(t) as the price

sensitivity or elasticity. Notice that since the demand must be non negative, prices

may not exceed m(t).

We make the following assumption on the production cost function and demand

parameters.

Assumption 2. f(0) < (t, i = 1,. .. ,N Vt E [0,T].

Assumption 2 means that the intercept of the marginal production cost function

is smaller than the maximum price that may be charged at any fixed time. (Clearly

if this is not the case for some time t, no production will take place at that time.

Therefore this assumption simply states that producing may be relevant at all times.)

We also make some technical assumptions on the inputs of the model, that are

satisfied in all our numerical examples.
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Assumption 3. For all products i, cai(.), pi(.), hi(.) as well as K(.) are assumed to be

positive, continuous functions of the time. Moreover, ai(.), /i(.) and K(.) are assumed

to be continuously differentiable.

Econometricians have considered the problem of estimating price elasticities over

time. Senhadji and Montenegro [113] analyze time series to estimate short-run and

long-run price elasticities via regression techniques. Slaughter [116] also considers

elasticities that vary over time.

In the Operations Research literature, demand learning problems have motivated

many researchers. In the case of models of demand linear with the price, the meth-

ods they propose can be applied to estimating the parameters a(.), /(.) in our model.

For example, Kachani, Perakis and Simon [84] design an approach that enable to

achieve dynamic pricing while learning the price-demand linear relationship in an

oligopoly.

We have assumed that the demand for a product depends only on the price for

this product and not on the prices of other products. This assumption is standard

in multi-product pricing problems when the products are considered distinct so that

they target distinct classes of customers. The automotive industry is one example

of industry where such an assumption is valid (see [33]). Bertsimas and de Boer

[26] study a joint pricing and resource allocation problem in which a finite supply of

resource can be used to produce multiple products and the demand for each prod-

uct depends on its price. They apply this problem to airline revenue management.

Paschalidis and Liu [104] consider a communication network with fixed routing that

can accommodate multiple service classes and in which the arrival rate of a given

class (or demand for that class) depends on the price per call of that class only. In

their multi-product case, Biller et al. [33] assume that there are no diversions among

products, i.e. that a change in the price for one product does not affect the demand

for another product. They motivate this assumption by focusing on items that appeal

to various consumer market segments, such as luxury cars, SUV, small pickup, etc.

for example of the automotive industry. We position this thesis in the same line of
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research and make the similar assumption of a demand independent of prices of other

products. A more general model would allow the demand to depend on all prices

with various price elasticities. However, such a model would significantly increase the

complexity of the problem. This problem would go beyond the scope of this thesis

but could be the focus of follow-up research.

2.3 Uncertainty model in a monopoly setting

Chapter 3 of the thesis takes a deterministic approach in a monopoly setting. In

Chapter 4, we introduce uncertainty on some input parameters. Specifically, we will

assume that the term ai(t) of the demand is subject to uncertainty. The motivation

for considering that parameters ai(t) are particularly subject to uncertainty comes

from the difficulty in practice of forecasting the demand. As a result, in a model

linking the demand with price, the parameters of this relationship may be quite

difficult to estimate accurately. Other parameters characterizing the system, such

as costs parameters or capacity rates, are typically easier to estimate. The results

obtained under this model can be generalized to an uncertainty model where the slope

of the demand with respect to the price is uncertain as well, as shown in Chapter 4.

2.3.1 An additive model

We first introduce an additive model of demand uncertainty as follows:

di(t) = cai(t) - Pi(t)pi(t) + Ei(t),

where ei(t) is uncertain within a given interval, with unknown probability distribution

on that interval. This model essentially assumes an additive demand model, i.e. that

there is uncertainty on the demand parameters ai(.), i = 1,...,N. We denote

ai(.) the nominal function, &i(.) the realization, and we suppose that the realization

belongs to an interval centered around the nominal function with half-length &i(.).

This model is illustrated in Figure 2-1.
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i(t) = ai(t) + Zi(t)ai(t), - 1 < z(t) _ 1

Allowed range for realization ii(t)

Figure 2-1: Uncertainty model: illustration for &i(t)

We assume that

0 < &i(.) < oai(.) Vi

and write the constraints as follows:

I&i(t) - ai(t) < a&i(t) Vt, i

2.3.2 Budget of uncertainty

To avoid making assumptions that are difficult to satisfy in practice, we do not in-

troduce a particular probability distribution on the range described above for the

uncertain parameters. However, we do not want to take an overly conservative ap-

proach that would allow parameters to be at the value corresponding to the worst-case

scenario (typically, one extreme of the allowed interval) at all times, since such a sce-

nario is highly unlikely. We favor a more reasonable and realistic approach that would

bound from above the cumulative deviation of the realization away from the nominal
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value. Motivated by this observation, we introduce "budget of uncertainty" functions

ri(.),

taking values on [0, T] that are increasing functions of time and bound the cumulative

dispersion of the realized values &i(.) around the nominal values ai(.) over time. The

general notion has been used by several authors (see for example, Bertsimas and Sim

[30], Bertsimas and Thiele [32]).

The motivation for introducing this notion is twofold. On the one hand, it does

not require to assume a particular probability distribution on the uncertain data.

This is an important feature since in practice it is very difficult to determine the

probability distributions.

On the other hand, it provides an alternative to worst case reasoning, that can be

seen as unnecessarily overly conservative. Indeed, assuming that the data takes, at

all times, the least favorable values enables to be fully protected against data per-

turbation. However, this high protection level comes at the cost of performance: the

solution obtained may be very suboptimal and yield poor objective values. Budgets

of uncertainty are motivated by the observation that it is not necessary to protect

against the highly unlikely event that data realizations take the worst values at all

times. In other words, it allows to take advantage of risk pooling. The level of pro-

tection should be the choice of the decision-maker, based on her risk aversion.

The budget of uncertainty is an efficient way to measure the trade-off between

conservativeness and performance. It represents a bound on the allowed spread of

the realized data around the nominal value over time. The budget of uncertainty is

input in the model. The modeler can decide whether she wants to obtain a more

conservative solution (by choosing a large budget of uncertainty) while sacrificing op-

timality, if she is very risk averse. She may prefer a solution that performs well and

is less immune to data uncertainty (by choosing a smaller budget of uncertainty), if
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she is less risk averse. In other words, a risk averse decision maker will consider large

uncertainty sets for the data and wants to be protected for any realization within

this set. A risk taking decision maker will choose smaller uncertainty sets. The risk

aversion may depend for instance on true preferences, confidence in data estimates,

stakes of the decisions, etc.

We assume that

/n (t) > 0 vi, t,

since the aggregate dispersion over time can only increase, and that

P.(t) < 1 i, t,

in order to ensure that the budgets of uncertainty do not grow faster than new vari-

ables are added.

The feasible realizations of the parameters must then satisfy the following budget

of uncertainty constraints:

It (s) - ai(s) ds < r (t) i, t.

Denoting
Z _ i(t) - ai(t)z(t)- & (t)

the scaled variations, it follows that the constraints can be rewritten

-1 <zi(t) 1 Vi, t

j 1zi(s)lds < ri(t) i, t.

Uncertainty set .' is defined as the set that contains all realizations &(.) satisfying

the inequalities above.
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We observe that any realization within the range of variation satisfies

j Iz(s)Ids < t Vi, t.

This implies in particular, that if for some time t, the budget of uncertainty exceeds

value t, the inequality fo Izi(s)lds < ri(t) follows directly from the bounds imposed on

the scaled variation. As a result, at the optimal solution to the robust optimization

problem, Izi(.)l will be equal to 1 on [O,t] as this corresponds to the worst case

scenario on that interval and it is allowed by the budget of uncertainty constraint. In

particular, the exact value of the budget of uncertainty (given that it is greater than

or equal to t) will not matter in that case. We conclude from this remark that the

effective budgets of uncertainty are

min{t, ri(t)}.

In order to measure the global uncertainty of the problem, we will introduce a quantity

used as a metric representative of the budgets of uncertainty. As a result, instead

of simply using the integral of the budget of uncertainty over the time horizon, we

introduce the cumulative effective budgets of uncertainty defined for all products i by

T
R min{t, ri(t)}dt.

2.4 Model in a duopoly setting

2.4.1 Formulation

The competitive model of duopoly places the problem in a game-theoretic framework.

The dynamic aspect leads to consider a non-zero sum, two-person, differential game

of pre-specified duration [0, T]. We assume that the game is non cooperative, with

no leader / follower: the competitors make their choices simultaneously.
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We focus on open-loop pure Nash equilibria: the competitors decide at time t = 0

their strategy for the entire time horizon. In an open-loop equilibrium, a firm makes

an irreversible commitment to a future course of action. This situation may arise in

practice if a contract with the buyer or with a labor union forces the firm to commit

to prices or workforce at the beginning of the time horizon. In such an equilibrium,

the policy depends on time and the initial state vector only, the players do not use

any other information, on the state variable in particular. In contrast, a feedback/

Markovian Nash equilibrium induces strategies that are based on time and on the

current state vector. Then the competitors can observe at all times their current

inventory level to choose an optimal policy over the rest of the time horizon. In a

closed-loop strategy, the firms may also review their course of action as time evolves

based on the observation of their inventory level since time zero. A closed-loop Nash

equilibrium yields optimal policies that depend on time and all state vectors from

time zero up to the current time.

See [65] for more details on the difference between closed-loop, feedback, and open-

loop equilibria. Note that a feedback solution may be approximated by deriving an

open-loop solution and using rolling-horizon techniques.

In the problem we consider, the competitor's strategy plays a role in the demand,

and as a result it appears not only in the objective function, but also in the set of

feasible strategies via the upper bound on prices and the inventory level constraint

of not allowing backorders. Therefore, the game under consideration is couple con-

strained. This features adds to the complexity of the problem because the feasible

set is not fixed.

2.4.2 Demand model

To ease the exposition, we start by presenting the demand model in a deterministic

setting, and we then incorporate uncertainty on the demand parameters.
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Deterministic coefficients

In the duopoly case, the demand for a given product is modeled as a decreasing linear

function of the supplier's price for that product, and an increasing linear function of

the competitor's price for that same product: the nominal demands are as follows:

=C,(t= -_ AAA + AB Bd (t) = aI(t) - PAA(t)p (t) v+ ,A B(t)pB(t) Vi, t

dB(t) = B(t) -BB(t)pB(t) + BA(t)Pa(t) i, tA

where the superscripts A and B denote the two competitors, and ,I-k (.) > 0 denotes

the demand sensitivity of supplier k, for product i, with respect to the price of product

i applied by the competitor -k.

The demand viewed as a function of prices must be constrained to be non negative

at all times, which yields an upper bound on prices applied by the supplier.

Notice that this model implies in particular that, in general, the total demand for a

product is not fixed: instead, it depends on the prices applied by the two suppliers.

Customers would then buy the product if they believe the price is reasonable, but

they would not make the purchase if the price is too high.

Assumption 4. We assume that the following inequalities hold Vi, t:

0_ <] pi (t) < pi3k(t), k = A,B (2.1)

0 < Ii'-k(t) < lUk'-Ik(t), k=A,B. (2.2)

The first condition (2.1) states that the demand observed by a given supplier

is more sensitive to that supplier's price rather than to her competitor's price of the

same product. It is a fairly standard assumption in economics for this type of demand

model. This assumption can be rephrased in the following way. Supplier A's demand

decreases when her own price increases, or when supplier B's price decreases. If we

consider a price increase of the same amount for both suppliers, supplier A's demand

increase due to supplier B's price increase does not fully compensate supplier A's
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demand decrease due to her own price increase. Therefore supplier A's demand actu-

ally decreases. The same is true for supplier B, as a result the total demand decreases.

Condition (2.2) has the following interpretation: if the price applied by supplier B

increases, then the demand observed by supplier B decreases more than the demand

observed by supplier A increases (so the total demand decreases). In other words,

the price chosen by a given supplier affects her own demand more than it affects her

competitor's demand. This is also a standard assumption in economics (see Vives

[125]). It may be explained by a certain reluctance of customers to change supplier,

and thus a price increase would make them give up the purchase rather than go to

the competitor.

Remark:

Instead of assumping conditions (2.1) and (2.2), it would be sufficient to assume

condition (2.1) and condition

(A'B(t) + 'A(t)) 2 < 16fP3?A(t)IB(t) (2.3)

(which clearly holds under Assumption 4).

Condition (2.3) avoids too large an asymmetry on the suppliers' demand sensitivity

to prices. We notice than in the case of a symmetric demand sensitivities, where

suppliers are subject to similar market conditions, in the sense that they each have

the same demand sensitivity with respect to their own price and to their competitor's

price:

PA B(t) = A ( = and P 'A = = 'BI(t) = pii(t) Vi, t,

condition (2.3) follows from condition (2.1). We can show that this implication is

true even in the asymmetric case provided that

7- v/4 < B B )< 7 + 4,
B47B(t
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in other words, that p3 4i A(t) and PB'B(t) are not disproportionately different.

Uncertain coefficients

We then consider a general additive and multiplicative demand model, where not only

coefficients o4 (.) uncertain (like in the monopoly setting) but also the price elasticities

Pk'k(), lk-k (.). The realized demand of supplier k for product i is given by

d (t) = &(t) - ~'k(t)pk(t) + pi (t)p (t)

where -k designates the competitor, and the realized values &/k(.), /]kk(.), /-k(.)

are uncertain. As explained for the monopoly case, we do not assume a particular

probability distribution, but rather assume parameters may vary within a range of

values that is symmetric around some known nominal value, denoted respectively

cik(.) k(), Pi'k(.) , with respective half-length &f(.), p'k(), /i'k.). This model

is illustrated for &(t) in Figure 2-2.

kt(t) = a(t) + 4(t)&(t), -1 C zk(t) 1

t)

Allowed range for realization ak(t)

Figure 2-2: Uncertainty model: illustration for &~c(t)
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Without loss of generality, we assume that

o < ik(.) < c(.) Vi, k

o < i, (.) < k(.) Vi, k

< pi,-k( < .,-k(.) Vi, k

to ensure that the realized values remain non negative.

The feasible realization must therefore satisfy:

Ior(t)- ,a k(t)lI/(t) -f
'kiik,k(t) _ k,k (t) 

,ik,-k (t) k',-k (t) 

2.4.3 Budget of uncertainty

Similarly to the monopoly setting, we introduce for each uncertain parameter budget

of uncertainty functions

rk(.), ekk(), oek,-k(.)

taking values on [0, T] that are increasing functions of time and bound the cumulative

dispersion over time of the realized values a i (.), pfk(.), Xk(.) respectively, around

their nominal values. As explained before, these function are chosen such that

0 < 'k(t), Ok'k(t), Ok'-k(t) < 1 Vt, i, k

49

< ~jk(t) t, i, 



and the set .Fk of feasible realizations (&k(.), /kk(.), k,-k(.)) must satisfy

Z (t), yi (t), '-k(t) E [-1,1] Vt, i,'k

f0 (s)Ids < rk (t) Vt, i, k
t

' lyk'-k(s)lds < OE-k(t) Vt, i, k,

where

z (t)_ - k(t)- ck(t)ak(t)

kk(t)

k,-k(t) - k,-k(t)
y?_k(t) _ i ( ) - (t)

As explained in the monopoly setting, we define the effective budgets of uncertainty

min{t,0k(t)}, min{tk(t)}, min{t, ek'-k(t)}

and the cumulative effective budgets of uncertainty

Tk ( tT ek"k(t) T

|mIt, I int,(t)}dt, m int, e (t)}dt, mint, k'-*(t)}dt.

2.5 Objective function under uncertainty

When dealing with uncertainty on input parameters, a natural question is to decide

what the objective value should be. A common approach when assuming that de-

mand follows a particular probability distribution, is to maximize the expected value

of the objective. One may also introduce constraints bounding the variance of the

objective. Alternatively, one may minimize the variance subject to bounds on the

profits. Depending on the context and on risk preferences, it is also possible to op-
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timize the best case or worst case objective, or to define a utility function based on

expected value and standard deviation of the objective.

In robust optimization, since no probability distribution is assumed, one traditional

option is to aim at optimizing the realized objective, which is reformulated as maxi-

mizing the worst case objective within the uncertainty set of the parameters.

In this thesis, both in the monopoly and the duopoly setting with data uncer-

tainty, we consider a robust approach that maximizes the nominal objective function.

In other words, like in traditional stochastic optimization approaches, we maximize

the "expected" objective function value - not in the probabilistic sense since we do

not know the distribution, but in terms of considering the values at the center of

the allowed range of variation for the realized values. However, we still consider de-

mand uncertainty in the feasibility constraints. Another motivation for this approach

comes from the following qualitative observation. The worst case objective in our

model corresponds to high inventory costs and low revenues, i.e. low demand realiza-

tion. However, the worst case realization for the no backorders constraint corresponds

to low inventory levels, i.e. high demand realization. Therefore the worst case can-

not occur simultaneously for both the objective and the constraints, and it would be

overly conservative to protect against both occurrences simultaneously. As a result,

we choose to focus on guaranteeing the feasibility of the problem, and to solve for the

worst case of the constraints, but to maximize the nominal objective. The goal of the

robust formulation is then to find the solution that maximizes the nominal objective

value and that is feasible for any feasible realization of the parameters.

2.6 Notations

This section summarizes the main notations used throughout the thesis. Additional

notations may be defined when they are introduced if they are used in limited parts.

For a given set S, Sc denotes the complementary set.
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For a given differentiable function of time p(.), the first. order time derivative is de-

noted ,b(.). If ,o(.) takes an argument that is not time, the first order derivative is

denoted so'(.). For function of multiple variables so(xl,.), the partial derivative is

denoted by -1 (x1, .).

For given functions vi(.), i = 1,..., N defined on [0, T], v(.) denotes the vector with

components (v1(.),..., VN(.)).

For given real numbers vi, i = 1,...,N, v denotes the vector with components

(V1 , .* , VN)-

For two given vectors v and w, v'w denotes the inner product Ei viwi and v x w

denotes the vector with components viwi.

In the monopoly setting, if x is a decision or state variable, the value at the optimal

solution is denoted x*. In the competitive setting, x* represents the value of the

variable at a Nash equilibrium.

In the notations below, the subscript i refers to some product i, and time varying

parameters or variables are defined at some given time t.

2.6.1 Monopolistic and deterministic setting

Inputs
[0, T]: time horizon;

N: number of products;

K(t): shared production capacity rate;

I°: initial non negative inventory level;

hi(t): holding cost of one unit;

f i(.): production cost function with respect to the production rate;

ai (t), 3i (t): coefficients of the linear relationship between price and demand;

gi(t,z) = z -f:(i(t)- i(t)) defined for t E [0,T] and,

(for a given value of t) for z E (- c, t)];

lit : z gi(t, z);

ib(t, 7) : solution of the equation with unknown z: gi(t, z) = ;

4'i(t) = oi(tO).
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Outputs
pi(t): price of one unit of product (control variable);

ui(t): production flow rate (control variable);

Ii(t): inventory level (number of units) (state variable);

di(t) = ai(t) - i(t)pi(t) demand rate;

qi(t): adjoint variable used to write the Hamiltonian function;

qO = qi(0);

pi(t): Lagrange multiplier dualizing the no backorder constraint in the

Lagrangian function;

1(t): Lagrange multiplier dualizing the production capacity constraint in the

Lagrangian function;

7(t): set of indices of products with a positive production rate at time t;

jo: smallest index in Z(t) if non-empty;

S(t): set of indices of products with inventory level at zero at time t;

J(t): set of indices of products with a positive production rate

and zero inventory level at time t (= Z(t) n S(t));

i1: smallest index of J(t) if non-empty;

io: index preceding il in S(t) (if ii 4 min S(t));

J'(t): set of indices of products with a positive production rate and positive

inventory level at time t (complementary set of J(t) in set J(t));

i': smallest index of J' if non-empty;

io: index preceding i in S(t)C (when i minS(t)c);

to: when the inventory level is positive, last time it was at zero;

t: when the inventory level is positive, next time the inventory level reaches

zero;

t0: when the inventory level is positive, next time after t the inventory level

becomes positive.
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2.6.2 Additional notations for the monopolistic setting with

uncertainty

Deterministic inputs
ai(t): nominal value of the fixed term in the demand (center of the range of

variation);

&i(t): half-length of the range of variation for the realization, centered around

the nominal value ai(t);

Fi(t): budget of uncertainty;

F: uncertainty set that contains all feasible realizations o(.)

Ji(t): minimum inventory security level;

Di(t) = Ji(t).

Uncertain parameters
di(t): realization of the parameter;

zi(t) = a(t)t) scaled variation around the nominal value.

2.6.3 Notations for the duopolistic setting with uncertainty

The notations defined above will be used in the duopoly setting by adding the super-

script k to denote supplier k, for price, production rate, inventory level, production

capacity rate, nominal fixed term of the demand and its realized value, half range

of variation, and budget of uncertainty. The superscript -k refers to supplier k's

competitor.

Some new notations for supplier k are defined below.

Deterministic inputs

hik(t) coefficient of quadratic holding cost;

7yi(t) coefficient of quadratic production cost;

,pc'k(t), Pk'-k(t) nominal values of price sensitivities of the demand with respect

to respectively pik(t) and p-k(t);
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,z.k(t), ?,3 '-k(t): half length of the allowed range of variation;

EOk'k(t): budgets of uncertainty for ?ik'k(t);

EOk,-k(y): budgets of uncertainty for ik'k(t);

Q pf(t, pT k(.)): minimum inventory security level as a function of the prices;

Fk: uncertainty set that contains all feasible realizations

(ok(, Pkk(), pk.-k( ).

Uncertain parameters
ikc'k(t), /ik'-k(t): realization of the parameter;

C Yk(j) - T'j(tk(t ) scaled variation around the nominal value.

k-k( ) _ '-(t)- (t) scaled variation around the nominal value.
k,- (t)

Ouputs
dk(t) = - (t) - (t)(t) + 'lc-(t)p -k(t) demand rate;

x k = (pk, uk, Ik) strategy and state vector of supplier k;

(xA, xB): collective strategy and state vector

Additional notations
E1: vector space containing vectors with 3N components that are real

bounded functions defined over [0, T];

E = E1 x El;

Xk: set of strategy and state vectors for player k satisfying the

constraints that are independent of the competitor's strategy;

X = XA X XB;

Qk (-k): set of feasible strategy and state vectors for player k, given some

strategy and state vector '-k of her competitor;

Y = {x E X : xk E Qk(x-k), k = A, B} set of collectively feasible

strategy and state vectors for both players;

Q: mapping such that Q(x) = QA(xB) x QB(xA) (set of feasible

strategies for each player, assuming that the competitor's strategy

is unchanged;
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nk(xk, -k): objective value of supplier k corresponding to strategy xk,

when supplier -k has a strategy x- k
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Chapter 3

Deterministic and monopolistic

setting

In this section, all data are deterministic, and the market is a monopoly. Our goal is

two-fold: to study the structure of the optimal solution on the finite time horizon, and

to propose under some additional assumptions a method for computing it. We derive

a continuous time optimal control solution that applies to the entire time horizon

determining simultaneously the prices and the production rates of all products. Our

approach does not introduce a time discretization. It provides an analytical way to

compute optimal policies throughout the time horizon. Furthermore, our approach

does not require that we observe the state of the system. It illustrates the effect of

capacity in the problem as well as the effect of the dynamic nature of the problem.

3.1 Definitions, formulation, and description of the

solution approach

We define:

Constrained interval: Interval of time where the inventory level equals zero (also

called boundary interval).

Constrained product: Product that is on a constrained interval.
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Unconstrained interval: Interval of time where the inventory level is positive.

Unconstrained product: Product that is on an unconstrained interval.

Active product: Product with a positive production rate.

Inactive product: Product with a production rate equal to zero.

We notice that for any pricing and production policy we consider (and in particular

an optimal policy), the inventory level will be structured via a sequence of intervals,

where the inventory level is successively positive and equal to zero, as illustrated in

Figure 3-1. A constrained interval starts at an entry time and finishes at an exit time,

i.e. the time the inventory level becomes again positive.

Assumption 5. We will assume throughout this section that for each product, there

is a finite number of entry and exit times.

I(t)

entry exit
time time

Ul

entry
time

t

interval interval : interval interval

Figure 3-1: Example of evolution of the inventory level

3.1.1 Description of the model

This problem was solved by Pekelman [105] for the single product case with a hold-

ing cost coefficient constant in time. Nevertheless, the presence of multiple products
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sharing production capacity makes the problem rather complex.

The problem seeks to maximize the revenues minus the inventory and production

costs. As a result, it can be written as follows:

max [ (pi(t)di(t) - f(ui(t)) - hit)(t) )]dt

s.t. Ii(t) = u(t) - di(t), Vt E [0,T] i = 1,..., N,

di(t) = ai(t) - 3i(t)pi(t), Vt E [0, T] i = 1, ... , N,
N

Z ui(t) < K(t), Vt E [0,T],
i=1

ui(t), p(t), di(t), Ii(t) > 0, Vt E [0,T] i = 1, . . . N,

Ii(O)=Ii, i=1,...,N.

(3.1)

Equivalently:

max fT[ (pi(t)(ai(t) - 3i(t)pi(t)) - fi(ui(t)) - h(t)Ii(t))]dt

s.t. i(t) = ui(t) - a1(t) + /i3(t)pi(t), t E [0, T] i = 1, ... , N,
N

Zui (t) < K(t), Vt E [0,T],
i=l

Ii(t)> 0, Vt [0,T] i=1,...,N,

(t) > 0, t [0, T] i= ,..., N
0 _ pi (t) < /~, Vt · [0, T] i 1,..., N,

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

We observe that in this continuous time optimal control model, constraint (3.3) is

the dynamic equation that describes the evolution of the level of inventory, modeled

as a continuous and differentiable function of time.

Constraint (3.4) corresponds to the common production capacity that is shared among

all the products. This is the only constraint that is coupling the products and pre-

vents us from simply solving N times a single-product problem.
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Constraint (3.5) represents the no backorders constraint. Notice that these are con-

straints on the state variables. This makes their treatment different from constraints

on control variables but also harder. We will apply the Maximum Principle in the

case of inequality constraints on the state variables (see [7], [85], [115]).

We introduce constraints (3.6) and (3.7) to ensure that prices and production rates are

non-negative. Furthermore, the upper bounds on the prices reflect the fact that the

demand should remain non-negative. These are constraints on the control variables,

which are taken into account by simply restricting the feasible domain of admissible

controls.

In what follows, we establish existence of an optimal policy. Furthermore, we

will examine conditions of optimality. Specifically: we will simultaneously compute

Lagrange multipliers and adjoint variables that satisfy these optimality conditions,

and will allow us to compute an optimal policy.

3.1.2 Existence of an optimal solution

Theorem 1. Under Assumptions 1, 2, 3 and 5, there exists an optimal solution

u*(.),p*(.) to Problem (3.1).

This existence result follows similarly to [73]. To prove it, we consider the following

control problem

max j F(I(t), w(t), t)dt (3.8)

subject to I(t) = (I(t), w(t), t) (3.9)

I(0) = o (3.10)

(I(t), w(t), t) > 0 (3.11)

a(I(t), t) > o (3.12)

where:
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T

I(t)E E'

w(t) Em

F: En x Em x E- E

V: En x Em x E-- E n

: E x E x E - Ea

w: En x E Eb

is the time horizon,

is the vector of state variables at time t,

is the vector of initial conditions,

is the vector of control variables (prices and

production rates) at time t,

is a function assumed to be continuously differentiable,

is a function assumed to be continuously differentiable,

is a function assumed to be continuously differentiable

in all its arguments and depends explicitly on w(t),

is a function assumed to be continuously differentiable.

We notice that constraint (3.11) involves control variables and possibly state vari-

ables as well (we refer to this as a mixed inequality constraint) while constraint (3.12)

involves the state variable only (we refer to this as a pure state variable inequality

constraint).

We define a control w(.) to be admissible if it is piecewise continuous and if, together

with the state trajectory I(.) it generates through (3.9) and (3.10), it satisfies (3.11)

and (3.12).

Inequality (3.12) represents by definition a set of constraints wi(I(t),t) > 0, i =

1,...,b. The constraint wi(I(t), t) > 0 is called a constraint of r th order if the rth

time derivative of wi(I(t), t) is the first in which a term in control w(.) appears. To

make this dependency in the control variable clear, we will add w(t) as an argu-

ment of the rt h time derivative of wi(I(t),t), even though w(t) is not an argument

of wi(I(t), t). For the sake of simplicity and because it is satisfied in the application

we are interested in, we will assume that each constraint wi(I(t), t) > 0 is of the first

order.

Define the (state-dependent) control region

Q(I,t) = {w E Em l~(I,w,t) > 0} c Em
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and the set

Q(I, t) = {(F(I, w, t) + c, (I, w, t))lc < O, w E Q(I, t)} C En+ .

Theorem 2 (Filippov-Cesari Theorem). Consider problem (3.8). Assume that

F, 9, , and w are continuous in all their arguments at all points (I, w) E En x Em.

Suppose that there exists an admissible pair and that the following Roxin's condition

holds:

set Q(I, T) is convex, for all I E En.

Suppose further that

there exists > 0 such that II(t)ll < 6, for all admissible {I(t), w(t)} and t,

and that

there exists 61 > 0 such that l1wj < 61, for all w E Q(I, t) with IIII < 6.

Then there exists an optimal couple {I*, w*} with w*(.) measurable.

Theorem 1. Under Assumptions refassump2, 2, 3 and 5, an optimal control policy

exists for Problem (3.1).

Proof. We will show that conditions of Theorem 2 hold for Problem (3.1).

For Problem (3.1), the control region is independent of the state and may be expressed

as:

Q(t) = {(u,p) E 2 N[I(u,p,t) > O}

= {(u,p) ER2Nu >, p >, P< -(t), i=,...,N, ui < K(t).}AM~~~~~~~~i-
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The set Q(I, t) is given by

N

Q(I, t) = ( E (Pi(ai(t)- Pi(t)p,)- fi(ui)-hi(t)Ii) c. u- a(t) -(t) x p) 
i=l

c < 0, (u,p) Q(t)}.

· Continuity:

It is clear that

(i) the integrand F of the objective function

N

(I,u,p,t) - (i(i(t) - i(t)pi)- fi(ui)- hi(t)Ii) 
i=l

(ii) the function V describing the dynamic evolution (u, p, t) - u-a(t)+/p(t) xp,

(iii) the function J giving rise to control inequality constraints

alp~~(t)i=1

and

(iv) the function w giving rise to the pure state variables inequality constraints

I - I are continuous functions in all their arguments.

* There exists an admissible pair:

Consider the policy

Pi(t) (t) ui(t) = 0, i = 1,.. .. ,N, Vt e [0,T].

Under this policy, i(t) = ui(t) - ai(t) + oi(t)pi(t) = O, so the generated state

trajectory satisfies Ii(t) - I ° > 0 Vt E [O,T]. As a result, this policy satisfies

all constraints so it is an admissible pair.

* Roxin's condition holds:
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Y2 E R N such that (X l,yl), ( 2, y 2 ) E Q(I,T) with

N

X (pi(i(T) - i(T)P) - fi(i) - hi(T)Ii) + c
i=l
N

2 = (p2 (a(T) - O (T)p2)- f(u2) - hi(T) i) + c2

i=l

Yl = ul - (T)+/3(T) xpl

Y2 = U2 _a(T) + (T) x p2

C1 < 0

c2 < 0

(l pl) E Q(T)

(u2,p 2) CE (T).

Let A E [0, 1]. We want to show that (, )- (X, y1)+(1-)(X 2 , Y2) E Q(I, T).

Let (u,p) = A(ul,p) + ( -))(u 2,p2).

It is easy to verify that (u, p) E Q(T).

It is also clear that = - a(T) + P(T) x p.

Since the function (u,p) - EiN= (pi(aic(t) -i(t)pi) - fi(ui) is concave in (u,p),

it follows that

N

(A(ci(T)- i(T)pi)- i(i) - hi(T) h)

i=1N>-- ( Z T ( (i(T)-i(T)P') - fi(ul) - hi(T)Ii)

+ (1i e ( i(T) - i (Ti fi(ui -hi(T)I1).

By observing that the right hand side of this inequality may be rewritten as

A(Xl - cl ) + (l-)(x2 - ca), we obtain that there exists C3 < O such that

N

Z (Pi(Oli(T) - i(T)pi) - fQi(i)) - hi(T)) + C3 Ac -C 1
-(1 - )c2

i=l
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Letting -= Ac' + (1 - A)c2 + c3 < 0 implies that

N

x = (p(ai(T) (T) ) -- f(fi) - h(T)Ii) + E.
i=l

Therefore, (E, ) E Q(I, T) and Q(I, T) is a convex set.

* The admissible controls are bounded:

The constraints defining the admissible controls provide bounds to the prices

0 < pi(t) < "(0_ and to the production rates 0 < ui(t) < K(t), where ci(.), i(.)

and K(.) are positive- and finite-valued functions of time. Since the time hori-

zon is finite, there exists bounds on the control variables at each time.

* The state variable is bounded:

The inventory level is bounded below by zero. Moreover, the control variables

pi (t) and ui(t) are bounded (as we discussed above). As a consequence, Ii(t) =

ui(t) - ai(t) + ,i(t)pi(t) is bounded too. Since the time horizon is finite, it

follows that there exists also an upper bound on the state variable Ii(t) for all

times t.

This proves that all assumptions in Theorem 2 hold for Problem (3.1). 0

3.1.3 Solution approach

In order to solve problem (3.1), we will address its various stages of difficulty grad-

ually. We will treat those difficulties by employing ideas from control theory and

nonlinear optimization. First, the problem has a capacity constraint which couples

the products. Second, the dynamics of the system are described through the dynamic

equations which illustrate how the state variables (namely, the levels of inventory)

evolve. Third, there are no backorders constraints on the state variables (i.e., the

inventory level for each product).
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Since we are dealing with a continuous-time control problem, we will first define the

Hamiltonian function using adjoint variables corresponding to the dynamic equations.

We will also introduce a Lagrangian function by dualizing the difficult constraints, i.e.

the capacity constraint and the no backorders constraints. Dualizing the capacity con-

straint will enable us to decouple the problem, and reduce it to several single-product

problems. Subsequently, we will use the Maximum Principle under constraints on

the state variables and the indirect adjoining method to the Lagrangian function (see

Hartl, Sethi and Vickson [73] or Sethi and Thompson [115]).

* We will assign adjoint variables qi(t) in order to dualize the dynamic constraint

i at time t;

* We will write the Hamiltonian function;

* We will assign multipliers pi(t) to dualize the constraint on the non negativity

of Ii(t);

* We will assign a multiplier r7 (t) to dualize the capacity constraint;

* Through these multipliers, we will construct the Lagrangian function (3.13).

Due to its complexity, we will present this solution approach in three stages of

increasing complexity. In particular,

(i) We will first focus on the capacity constraint while "ignoring" the dynamic aspect

of the problem and the no backorders constraints. To achieve this, at the first stage

we will assume that qi(t)+pi(t) are known. This will allow us to construct the optimal

policy as a function of these multipliers. We will construct a procedure to compute

the multiplier r/(t) (corresponding to the capacity constraint) and derive an optimal

policy at time t, which clearly will depend on vector q(t) + p(t).

(ii) At the second stage, we will augment the approach by also computing the vector

q(t) + p(t) instead of assuming it is given. We will solve the problem for any time

t under the assumption of observability of the system, that is, that we know which
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products have a non-zero inventory level at that time t (we will define this notion

more accurately later). This allows us to "ignore" the state variable constraints but

allows us to take into account both the dynamic equations as well as the capacity

constraint. We will express vector q(t) + p(t) as a function of multiplier q7(t), then

solve for (t) - and thus obtain q(t) + p(t). Finally, incorporating the solution ap-

proach in (i), will allow us to present a solution method for computing the optimal

policy under the assumption of observability of the system.

(iii) Finally, we consider the problem solution over the whole time horizon and show

how to compute the optimal pricing and production policy without assuming observ-

ability of the system at each time, but by imposing a no backorders constraint in the

optimization problem.

In order to solve the problem under consideration, we first present some prelimi-

nary results.

3.2 Maximum Principle

3.2.1 Theoretical results

In this section, we state the maximum principle for optimal control problems with

mixed inequality constraints and pure state variable inequality constraints. These

results are described in more detail in Sethi and Thompson [115], Hartl, Sethi and

Vickson [73], Arrow and Kurz [7].

Consider the problem (3.8) defined in Section 3.1.2.

We define

al(t), w(t), t)= dw (I(t), t) = 1(I(t), w(t)t) + ((t),t.

With respect to the ith constraint wi(I(t),t) > 0, an interval ( ,0?) C [0, T] is called

an interior or unconstrained interval if wi(x(t), t) > 0, Vt E (, 0A). If the optimal

trajectory "hits the boundary," i.e., satisfies wi(x(t), t) = 0, Vt E (, Tr), for some
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i and some interval (ri, ri2) C [0, T], then [r, r] is called a boundary or constrained

interval. An instant ril is called an entry time if there is an interior interval ending

at time 7r and a boundary interval starting at time ri'. Correspondingly, r2 is called

an exit time if a boundary ends and an interior interval starts at time i2. If the

trajectory touches the boundary at time ri, i.e., wi(I(ri), Ti) = 0 for some i and if the

trajectory is in the interior just before and just after ri, then ri is called a contact

'time. Taken together, entry, exit and contact times are called junction times.

We assume that the following constraint qualification holds:

rank [[,, diag()] = a

as well as the full-rank condition on any boundary interval [, rT]:

rank = l,

where for t E [,r,], wi(I*(t),t) = 0 i = 1,...,b < b and vwi(I*(t),t) > 0 i =

+ 1,...,b.

We define the Hamiltonian function H : En x Em x En x E -, E as

H(I, w, q, t) - F(I, w, t) + qO(I, w, t),

where q E En (a row vector). We also define the Lagrangian function L : En x Em x

En x Eq x E - E asl

L(I, w, q, r, p, t) = H(I, w, q, t) + r,(I, w, t) + pwl(I, w, t),
1We form the Lagrangian function by adjoining indirectly (i.e. via their first time derivative) the

constraints on the state variable. This method is called indirect adjoining method. In the direct
adjoining method, the Lagrangian function is formed by adjoining directly the constraints as follows:
Ld(I, w, q, 7rd, pd, t) = H(I, w, q, t) + ,rd5(I, w, t) + pdW(I, t), with H = F(I, w, t) + qdO9(I, w, t). It is
shown in [73] that 77d(t) = 71(t), qd(t) = q(t) + p(t) (I*(t), t).
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where r E E a and p E Eb are row vectors, whose components are called Lagrange

multipliers. These Lagrange multipliers satisfy the complementary slackness condi-

tions

(t) > 0, r(t)(I(t), w(t), t) = 0,

p(t) > 0, (t) < O, p(t)W(I(t), t) = 0.

We now state the maximum principle for the problem under consideration.

Theorem 3. (Maximum Principle) We suppose that I*(.) has only finitely many

junction times, that each pure state constraint wi(I(t), t)) > 0 is of the first order,

that constraint qualification holds, and that the full rank condition holds. The neces-

sary conditions for w* (with state trajectory I*) to be an optimal control policy for

the problem we defined above are the following:

There exist piecewise continuous2 and piecewise continuously differentiable adjoint

variable q(.), piecewise continuous multipliers rl(.), p(.), parameter v, and jump pa-

rameter ((.), such that the following conditions hold almost everywhere:

· i*(t) = (I*(t), w*(t), t), I*(0) = Io, satisfying constraints

(I*(t), w*(t), t) O, (I*, t) > 0;

* q(t) = -i (I*(t), w*(t), q(t), r(t), p(t), t) except at entry/contact times, with

transversality conditions3

q(T-) = v lo (I*(T),T), v > O, v(I*(T),T) = O;

2In the direct adjoining method, qd(.) is continuous.
3In the direct adjoining method, the transversality conditions are:

qd(T) = vd (I (T),T), d > 0, vdw(I*(T),T) = 0.
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· the Hamiltonian maximizing condition

H(I*(t), w* (t), q(t), t) H(I*(t), w(t), q(t),t),

at each t E [0, T], for all w satisfying

* at any entry/contact

of the form

time4
T, the adjoint variable q may have a discontinuity

q(r-) = q('+) + () (I*(),7) and

H(I*(r), w*('-), q(r-), 7) = H(I*('), w*(7r+), q(r+) )- (-)at (I*-(r), 7);

· the Lagrange multipliers r(t) are such that

aL
w (I*(t), w*(t), q(t), 7r(t), p(t), t) = 0

and the complementary slackness conditions

7r(t) > 0, r(I*(t), w*(t), t) = 0,

p > O, p < 0 on boundary intervals of w, pw(I*(t),t) = 0, and

((T) > 0, ((T)w(I* (r), T) = 0.

Theorem 4. Let (I*(.), w*(.(.), .), r (.), P(.), , ((.)) satisfy the necessary conditions

above. Suppose that constraint qualification and full-rank condition hold. Let

qd(t) = q(t) + p(t) (I* (t),t). If H(I, w, qd, t) is a concave function in (I, w), at each
4We are using the convention specifying that the adjoint variable is continuous at exit times.
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t E [0, T], (I, W, t) is a quasi-concave function in (I, w), w(I, t) is a quasi-concave

function in I, then policy (I*(.), w*(.)) is optimal.

3.2.2 Necessary conditions for optimality

We express the Hamiltonian function as follows:

N

H(I,p, u, q, t)= E (pi(cai(t)- ,3i(t)pi) - f i (ui) - hi(t)Ii + qi(ui - ai(t)+ /3i(t)pi))
i=l

where the arguments I, p, u, q are vectors with N components and t is the time argu-

ment.

The Lagrangian function relaxing the no backorders constraints and the capacity

constraint can then be written as:

N

L(I,p,u,q,p, , t) = H(I,p,u,q,t)+ E pi(ui-ai(t)+ li(t)pi)
i=l

+rq (K (t) - ui) (3.13)

where the arguments I, p, u, q, p are vectors with N components, argument r is a non

negative real number, and t is the time argument.

Notice that we dualized only the difficult constraints, i.e. the capacity constraint and

the no backorders constraint, and not those that bound the admissible controls.

In what follows, we illustrate why the assumptions in Section 3.2 apply to the

pricing problem (3.1) we are studying under Assumptions 1, 2, 3 and 5. In particular,

we show that the assumption of constraints of the first order, constraint qualification,

full-rank condition, and sufficiency conditions defined in Section 3.2 hold.

In Problem (3.1),

* the control variables are (ui(.), pi(.), i = 1,..., N) which are functions defined

on [0, T],

71



* the state variables are (Ii(.), i = 1,..., N) which are functions defined on [0, T],

* the dynamic evolution of the system is given by

i(t) = (I(t), u(t), p(t), t) = u(t) - a(t) + O(t) x p(t),

· the mixed inequality constraints are (u(t), p(t), t) > 0 where

= (P(t), , PN (t), (t) -p(t)' ~~~~p(t)N (t)
pt(t),"''" QN(t)

N

U(t),..., UN(t), K(t) - E ui(t))
i=l

(note that 6(u,p,t) E 3N+1),

· the pure state variable inequality constraint is given by

w(I(t)) = (Ii(t),...,IN(t)) > O.

We have qid(t) = qi(t) + pi(t) the adjoint variables within the framework of the direct

adjoining method.

Lemma 1. The pure state variable inequality constraints are of order 1.

Proof. The ith pure state variable inequality constraint is wji((t)) = Ii(t) > 0. By

taking the derivative with respect to time once, we obtain

dti (I(t))
dt

d i dl t dli
= d (I (t)) -~(t) = -(t) = ui(t)- ai (t) + Pi(t)pi(t).dli dt dt

We thus observe that the first time derivative depends explicitly on the controls,

therefore the constraint is of the first order. O

We define

wl(I(t), u(t),p(t), t)- ((t)) = d (I(t))i(t) = (t) = u(t) - (t) + (t) x p(t).

Lemma 2. Constraint qualification holds.
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Proof. This condition guarantees that the gradients with respect to (u,p) of active

constraints on controls are linearly independent.

We need to show that rank [a , ,diag()] = 3N + 1.

Let M - "[ , , diag(r)]. Then we can write matrix M E R3N+l x R5N+1 as follows

(omitting the time argument for a lack of space):

the first 2N columns are:

1 Pi

1 PN

-1

-1
1

-1

1

... -1

and the next 3N + 1 columns are:

El(t) -Pl

aN(t)
N(t) PN

U 1

UN

K(t) -Ei 
To show that rank(M) = 3N + 1, we observe that:
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(i) there are 3N + 1 rows in M, so the rank is at most 3N + 1;

(ii) if there is no binding constraint on the control variables, the last 3N + 1 columns

are non zero and linearly independent, implying that the rank is equal to 3N + 1;

(iii) for each i such that the price Pi = 0, column 2N + i is the zero vector; however

we can replace it with column N + i to obtain a set of linearly independent columns.

Similarly, for each i such that pi = ai(t)/P3i(t), we replace column 3N +i with column

N + i. We observe that the constraints Pi = 0 and Pi = Cai(t)/i(t) cannot be binding

simultaneously.

Using the same reasoning, for each i such that ui = 0, we replace column 4N + i with

column i.

Finally, if ENl ui = K(t), we replace the last column with any column i, 1 < i <

N such that ui > 0. We observe that this is possible because when the capacity

constraint is tight, at least one of the production rates must be positive (i.e. the last

N + 1 columns cannot be simultaneously equal to the zero vector).

This implies that there are 3N + 1 linearly independent columns. O

Lemma 3. Let [1, r2] be a boundary interval. The full-rank condition holds on [r1, T2].

Proof. Suppose that Ii(t) = O, i = 1,... ,no, and Ii(t) > O, i = no + 1,... ,N, on

[71,a2]. Let

K u ap

Q - u p

We need to show that rank(Q) = no. We can express matrix Q E Rno x R2n as

follows:

1 2(t)

i ,no(t)
which clearly has rank no. l
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Remark. In the direct adjoining method, qi(t) = qi(t) + pi(t) and the transver-

sality conditions are given by

qd(T) = vd (I*(T), T) = vdd d > O, Vdw(I*(T),T) = vdI*(T) = 0,

which can be rewritten

qi() + (T) + pi(T) 0, (qi(T) + pi(T))I*(T) = 0.

Proposition 1. Under Assumptions 1, 2, 3 and 5, the assumptions in Theorem 4

(see Section 3.2) hold for Problem (3.1).

Proof. Notice that

* H(I, u, p, qd, t) = E (pi(ai(t) - Pi(t)pi) - fi(ui) - hi(t)Ii + qid(ui - ai(t) +

Ai(t)pi)) is a concave function in (I, u,p);

*· is a linear function in (p, u), and thus quasi-concave in (I, p, u);

· w is a linear (thus quasi-concave) function of I.

C1

Using Theorem 3 in Section 3.2, at the optimal solution,

* The state trajectory satisfies:

I* (0)

I (t)

i (t) i = 1,...,N.

* The optimal control on [0, T] is then given as a function of the adjoint variable

and Lagrange multipliers by:

(p*(t),u*(t)) = arg max L(I*(t),p,u,q(t),p(t),,(t)),
(p,u)EW(t)
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2! , Vt E [0, , i 1,.. N

= (t - ai (t) + (t~p (t), t E [ T],



where W(t) is the set of admissible controls (p, u) such that:

ui > O, i=1,...,N,

0 <_ Pi < ai (t)3i (t)' i= 1,...,N.

* Additional feasibility constraints on [0, T] include constraint (3.4), i.e.:

N

Z u:(t) < K(t),
i=1

as well as

Ii(t) = 0 Vi, t such that I(t) = 0.

* Complementary slackness conditions on [0, T] give rise to:

N

E ui(t))
i=l

= 0

pi(t) < 0 on boundary interval of Ii*(.), i = 1,..., N

pi(t) > O, i=1,...,N

77(t) > O, i= 1,...,N.

* The vector of adjoint variables q(.) satisfies the adjoint equation almost every-

where (i.e. except at the entry times to the boundary condition Ii*(t) = 0):

qi(t) = -VI, L(I*(t),p*(t), u*(t),q(t),p(t),r,(t),t)

= hi(t) i=1,...,N,

as well as transversality conditions5

(qi + i)(T) > 0, i = 1,...,N

5Notice that the transversality conditions are written using the direct adjoining method.
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I (T)(qi + pi)(T) = 0,

* Finally, for i = 1,... N,

o I(.) is a continuous function of time;

o qi(.) is a continuous function of time except at the entry times to the

boundary condition 6 I(t) = 0;

o (qi + Pi)(.) is a continuous function of time everywhere7 .

3.3 Derivation of the solution method

3.3.1 The optimal policy as a function of the multipliers and

adjoint variables

Proposition 2. Under Assumptions 1, 2, 3 and 5, given q(.),p(.) and 7r(.), there

exist at each time t E [0, T], unique optimal controls given by:

- arg max

0

_ 1 f,~,_+-~ \ 3(t)

2 (t)
pi(t)

(ai(t) - /3(t)pi + (qi(t) + pi(t))i(t))pi

if qi(t) + pi (t) < - ir)

if - ,(t) < q p(t) + tt),
o therwise,

otherwise,

- argmax (qi(t) + pi(t) - rl(t))ui - fi(ui)

0 if qi(t) + pi(t) - 71(t) < f'(O),{ fi- (qi(t) + pi(t) - r(t)) otherwise.

(3.15)

(3.16)

Proof. We solve optimization problem (3.14) in order to determine the optimal policy

as a function of the multipliers and adjoint variables. We notice that the Lagrangian

6 The adjoint variable may be discontinuous at the entry or exit times to constrained intervals.
However, by convention, we impose continuity at the exit times. This allows to constrain the
multiplier p to be non negative. See [73] for more details.

7This is a consequence from the theory of the direct adjoining method. See [97] or [105] for a
justification.
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function is separable across products and in Pi and ui (we have dualized the coupling

constraints). Furthermore, it is a strictly concave continuously differentiable function

in pi and ui (since for every product i, fi is a strictly convex function, which implies

that the function ui -+ (qi(t) + pi(t) - r(t))ui - fi(ui) is strictly concave on R+).

Moreover, the remaining constraints (those not dualized, which are constraints on

the control variables only) are linear, i.e. they constrain the control variables within

a convex set.

Therefore, there are unique optimal controls (u*(t), p*(t)), which are the maximizers

of the Lagrangian function over the feasible control variables. To compute them, we

consider the partial derivatives of the Lagrangian function:

dLa (I,p,u,q,p,,t) = -fi'(ui) +qipi- q
0ui
DL
ap (I,p,u,q,p,r, t) = ai(t)- 2/i(t)pi + 3i(t)qi + fl(t)pi.

To obtain the optimal solution, we proceed as follows. We first solve the equations

setting these partial derivatives to zero. If the solution obtained lies within the set

of feasible controls (defined by the linear, not dualized constraints), then it is the

optimal control. Otherwise, the optimal control lies on a boundary of the set of

feasible controls, i.e. zero for production rates, and either zero or id(t) for the price,

depending on which value corresponds to the higher value of the Lagrangian.

Before ending the proof, we recall that we assumed fi defined on R+ to be positive,

strictly convex and increasing. Moreover, f is also defined on R+ and is strictly

increasing with range [fi'(O), +oo). Therefore, on the one hand it is invertible and on

the other hand fi'(u) > fi'(O) > 0 Vu > 0. Moreover, it implies that f- is positive

valued and fi-l(u) is defined for u > f(O). The result then follows.

We can also derive the expression for Ii*(t) = ui(t) - ai(t) + Pi(t)p!(t). Clearly if

product i is on a constrained interval at time t, then Ii*(t) = 0. If product i is on an
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unconstrained interval at time t, then pi(t) = 0 and

M3(t)-oi(t) if q(t) < -pi(t)
2( - ai(t) + i(t)qi(t)) if i(t) < qi(t) <

min{fi(O) + r/(t); i(t)

i1 q(t) - (t+ t2 qi(t) if f(o) + v(t) < qi(t) <it)

0 if i(t!) < qi(t) < f(0) + r(t)(t) -

if qi(t) > max'"{t; f"'(0) + ),f-i (qi(t) - rl(t) 
(3.17)

3.3.2 First step: (qi + pi)(t), i 1,..., N are known

In this Section, we relax the difficulties associated with the dynamic aspect of the

problem as well as the no backorders constraint by fixing the value of t and assuming

that qi(t)+ pi(t), i = 1, ... , N are known. The following algorithm Al(t) takes vector

q(t) + p(t) as input and gives the optimal policy at time t: u*(t), p*(t) as output.

The intuition behind the algorithm is to first check whether the components of the

given vector q(t) + p(t) imply that the capacity constraint is tight or not at time t. If

it is not, then we set qj(t) = 0 and compute the solution. Otherwise, we determine the

value of qr(t) > 0 by using the associated complementary slackness condition. To do

so, we need to find the set of active products at time t which will be denoted by 1(t).

Once the value of qr(t) is computed, we obtain the optimal policy by using the results

from the previous section. See Figure 3-2 for an illustration of algorithm Al (t).

More formally,

Initialization

1. Renumber the indices by increasing value of qi(t) + pi(t) - fi'(O).

Initialize a set of indices 1(t) = {i : qi(t) + pi(t) - fi(O) > 0}.

If 1(t) = 0, set r(t) = 0 and go to step 5.

Otherwise, initialize jo = minl(t) the smallest index in Z(t) 8; go to step 2.

8Index jo actually depends on time t but we omit the time argument in order to improve the
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2. Compute

B(t)= fj'(q(t) + pi(t)).
iEI(t)

If B(t) < K(t), set tI(t) = 0, go to step 5.

Otherwise, go to step 3.

Determination of 7(t)

3. If the following equation for 7:

K(t) = E fi-' (qi(t) + pi(t) - )
iEZ(t)

has a solution 7 E [0, qj(t) + pjo(t) - fj(O)], set 1(t) = 71 and go to step 5.

Otherwise, do 1(t) +- Z(t) \ {j0}, jo - o + 1 and go to step 4.

4. If the following equation for 7:

K(t) = E (qi (t) + pi (t) - )
iEz(t)

has a solution 7 E (qjo-l(t) + pjo-l(t) - fjo-l(0), qjo(t) + pjo(t) - fo(O)], set

0q(t) = and go to step 5.

Otherwise, do 1(t) -- Z(t) \ {jo}, jo - jo + 1 and go to step 4.

Computation of the optimal policy

5.

0

f,'-l(qi (t) + pi (t) - (t))

if i 1z(t)

if i E 1(t)

exposition.
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0 if

pi (t) +qi(t) + pi(t) if

qi(t) + pi(t) < i, (t)

- i(t) < qi(t) + pi(t) < i(t)Xi (t) A- > it i(t)
qi(t) + pi(t) > 2i(t)

f (U )-f' (0)

3 3

(t)

q,(t)+ p,(t) - f'(0) 0I -~~~~~~~ -~~~ ~
I I

q2(t)+P 2 (t) - f2(0) - f;(0) ... q (t)+ p(t)- f(O)
N N N

I

Figure 3-2: Algorithm Al(t): Example with qr(t) > 0, when products 3,..., N are
active.

Next we prove that, given q(t) + p(t), this algorithm computes an optimal policy

at time t.

Proposition 3. Under Assumptions 1, 2, 3 and 5, given q(t) + p(t), (qi(t) is the ad-

joint variable for dynamic constraint i at time t and pi(t) is the Lagrangian multiplier

dualizing the non negativity constraint for the inventory level of product i at time t),

then there exists a unique optimal policy (u*(t),p*(t)) at a fixed time t E [0, T], for

problem (3.1) obtained via algorithm Al (t).

Proof. We will use the necessary conditions for optimality to find the optimal policy

for the production rate as a function of the multipliers qi(t) + pi(t).

,(t) > 0 is the Lagrange multiplier dualizing the capacity constraint. We have two

possibilities:
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· (t) = O, which implies that

0

f'-l(qi(t) + pi(t))

if qi(t) + pi(t) < fi(O),

otherwise

and for feasibility,

N

Z u*(t) =
i=1

E fi-1(qi(t) + pi(t)) < K(t).
i s.t. qi(t)+pi(t)>fI(O)

*· (t) > 0 in which case, by complementary slackness,

N

u(t) = K(t).
i=l

Furthermore, since f-l' is strictly increasing,

fi- (qi(t) + pi(t) - r(t)) < fi'-l(qi(t) + pi(t)).

This implies that

i s.t. qi(t)+pi(t)-7r(t)>f~(0)

i s.t. qi(t)+pi(t)-r(t)>f(0)
f,- (qi(t) + pi(t)).

The fact that qi(t) + pi(t) - q(t) > f(O) = qi(t) + pi(t) > f(0) and that f-1

has positive values, implies that

E
i s.t. qi(t)+pi(t)-(t)

i s.t. qi(t)+pi(t)>f'(O)

fi-'(qi(t) + pi(t))
:fi'(o)

f,-1 (qi(t) + pi(t)). (3.19)
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K(t) = u;(t) =
i=l

fi-(qi(t) + Pi(t) -r(t))

(3.18)

K(t) <

UI(t)=



As a result, we have established that

E fj-l(qi(t) + pi(t)) < K(t) 4= (t) = 0.
i s.t. qi(t)+pi(t)2f(0)

Therefore if qi(t) + pi(t), i = 1,..., N are given, we can compute the optimal policy

by using the following procedure:

· Compute B(t) = i s.t. qi(t)+pi(t)>f?(o) fi-(qi(t) + Pi(t)).

* If B(t) < K(t), then r(t) = 0 and use the result from Proposition to obtain

u*(t).

* Otherwise, using (3.18), a(t) > 0 is the solution of

K(t) = E fi-'(qi(t) + pi(t) - ,(t)).
i s.t. qi(t)+pi(t)-7?(t)_f'(0)

Once 7(t) is determined, use the result from Proposition 1 to obtain u*(t).

We also notice that we first checked whether or not the capacity constraint could be

non tight, and if it cannot be non tight, we then repeatedly try to determine the

value of 7(t) > 0 by letting the set of active products decrease at each step. Since

at that point we know that the capacity constraint must be tight, the set I(t) of

active products cannot become empty (at least one product must be active) so the

algorithm stops before we have removed all indices from the set, which guarantees

that the algorithm terminates.

It can then be seen that algorithm Al(t) provides u*(t) and p*(t) the optimal

production and pricing policies at time t. [1

We observe that this algorithm (which applies for a fixed value of time t) terminates

in at most N + 1 iterations.
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In what follows we execute the algorithm in an example at time t = 1.

Example

Let us consider the setting of two pro(

T = 10, and the following data:

fi(u) = 2U2 + U + 0.

al(t) = 1 + 0.5t

pl1(t) = 0.4 + 0.3t

K(1) = 13.

We assume that q(1) + pi(1) = 27,

compute

fI(u) = 4u + 1

f-l(u ) = U-1

f;(0) = 1

lucts, i.e. N = 2, a time horizon [0, 10], i.e.

.2 f2 (u) = u2 + 2u + 1

a2(t) = 2 + 0.1t

p2 (t) = 0.1 + 0.1t

q2(1) + p2(1) = 18 are given. Then we can

f2(u) = 2u + 2

f2-1(u) = u/2 - 1

f2(o) = 2.

We compute the optimal pricing policy at time t = 1. Notice that

o(1)/1(1) t 2.14 < qj(1) + pl(1), a2(1)//2(1) = 10.5 < q2(1) + p2(1).

Therefore
1

pi(1) = (ai(1) //i(1) -qi(1) p(1)), i = 1,2,2

which implies that p;(1) 14.57, p(1) = 14.25.

Let us compute the optimal production policy at time t = 1 using algorithm Al(1).

Step 1:

q1(1) + p(1) - f(O) = 27 - 1 = 26 > q2(1) + p2(1) - f2(0) = 18 - 2 = 16.

Therefore we reorder the products by using the indices: k = 2, k2 = 1.

Since qk,(1) + pk,(1) - f,( 0 ) > 0, qk2 (1) + pk 2(1) - f 2 (0) 0, we let (1) =

{kl, k2}, jo = k.
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Step 2: We compute

S(1) = fk l(qk (1) + pkl(1)) + fk2l(qk2 (1) + Pk2(1))
27- 1= 18/2-1 + = 8 + 6.5 =14.5 > K(1) = 13.

4

This implies that 7/(1) > 0.

Step 3: We consider the equation

K(1) = fl'(qk, (1) + pk(1) -) + fl(qk 2(1) - r),
-18- _ 27-7-- 1

2 4

Step 4: Therefore, u (1) = f-(qp(1)6, + (1) - ), i 1,2, and

3.3.3 Second step: the system is observable at each time t

So far in this chapter, we have illustrated how to compute the optimal production and

pricing policies p*(t) and u*(t) at any fixed time t, as functions of vector q(t) + p(t).

In this subsection, we will introduce one additional level of difficulty, that is, we will

not assume that q(t) + p(t) is known. This allows us to incorporate the dynamic as-

pect of the problem. In particular, we extend the approach in the previous subsection

by illustrating how to compute the quantities qi(t) + pi(t) as well as r(t).

However, in order to provide some intuition on the problem solution for the gen-

eral case (i.e., when no information on the system is available, see Subsection 5.3),

in this subsection we assume that at time t we know whether the current level of

inventory Ii(t) for each product i, is positive or equal to zero. Moreover, we assume

that at any fixed time t, for each product i with positive inventory level we kept

track of the last exit time t and of the value q(tl) of the adjoint variable q at that% llU I2I~VIL~Y\r
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time9. If product i has a positive initial inventory level and at time t lies on its first

unconstrained interval, then we define t to be zero. These assumptions define the

notion of observability we have referred to before (see Subsection 3.1.3).

Let us fix the value of time t; Perhaps after renumbering the products (see below for

further details), we will use the following notations 1 0 :

S(t) set of constrained products at time t;

J(t) set of active constrained products at time t (J(t) C S(t));

il smallest index of J(t) (when J(t) 0);

io index preceding i in S(t) (when il min S(t));

J'(t) set of active unconstrained products at time t (J'(t) C S(t)C);

i/ smallest index of J' (when J'(t) # 0);

io index preceding i in S(t)c (when i min S(t)c).
i 1 

The procedure that follows starts by checking if the observation of the system im-

plies that the capacity constraint is not tight (i.e. if 7(t) = 0). If this is not valid, we

increase the value of 7(t) gradually, until all the necessary conditions (see Subsection

3.2.2) are satisfied at time t. Figure 3-3 provides an illustration of algorithm A 2(t).

Before describing algorithm A 2(t), we show some properties that will be useful.

Let

gi (t, z) Z- fH(Oi (t) - 1i (t)z)

defined for t E [0, T] and, (for a given value of t) for z E ( - o, (t)].

We define li,t : z '-+ gi(t, z).

9Time t and thus multiplier qi(t) actually depend on time t but we omit the time argument in
order to improve the exposition.

10Indices i, io, i', i' actually depend on time t but we omit the time argument in order to improve
the exposition.
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Proposition 4. Under Assumptions 1, 2, 3 and 5, function li,t(.) is an invertible

mapping on (-o, i t) a ] and its range for a fixed t is (- - t)i - fi'()] 

Proof. It is clear that li,t(.) is continuous and differentiable.

It easily follows from the definition that li,t ai(tL) = i(t) -fi'(). Moreover, since f'(.)

takes only non negative arguments, the definition of li,t(z) requires a(t)-(t)z > O or

equivalently, that z < (t)

We recall that fi' is a strictly increasing function, so it is clear that lim-_o li,t(z) =

-oo.

We compute

lt(z) = 1 + f (t ui(t) - pi(t)z) > 0

since fi is strictly convex, so li,t(.) is strictly increasing (for a fixed t), and hence

invertible. Also, since it is increasing, it follows that its range for a fixed t is

(- 0c, ,(t) - f;(o0)] 

Corollary 1. Under Assumptions 5, 3, 1 and 2, given 0 < 7 < t) - f(0), equation

gi(t, z) = v for argument z (and fixed t) has a unique solution zo -= i(t, r7) satisfying

f(0) < q(t,r/) < i(t)* Moreover, i(., .) is continuous in both arguments.

Proof. Since 7 < it) - fi'(0) is in the range of li,t(.) (for a fixed t), using the previous

proposition 1-1 (r) is well defined. As a result, the solution of the equation is uniquely

defined by z0 = ,t(71) and we have r = li,t(zo) = gi(t, zo).

Let Oi(t,7 ) = lT'(r). In particular, since li,t(.) is continuous, i(.,.) is continuous in

its second argument. The continuity of i(.,.) with respect to its first argument fol-

lows from the fact that gi(.,.) is continuous in both arguments and from the relation

gi (t, bi (t, r))- 7 = O.

Using the previous proposition, it is clear that lT- () < it) Therefore, 4i(t, ) <

ai (t)
pi(t) .
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Suppose qi(t,r) < f(O). Then, using Assumption 2, qi(t,r/) < (t). Moreover,

since 7 > 0, we have Oi(t, r7) - 7 < f(O). It can be seen using the definition of Oi(t, r7)

that

_ = fIQli(t) - Oi(t)Oi(t,r))

and therefore
f/(ai(t) - fl(t)pj(t, l)) < f(0)

This implies ai(t) - i(t)ci (t, 77) < 0 since fi' is increasing, or equivalently i(t, 77) >

a(t), which is a contradiction. It follows that i(t, 7) > fi'(0). a
f3i(t)'

Corollary 2. (i) Function ¢i(.,.) is continuously differentiable in its first argument

and
o- 1(t, v) = 1( (t) +-( )(t ))f+)

at n-1 + p(t) f(i(t-i(t )

(ii) Function Oi(.,.) is continuously differentiable in its second argument and

o (t, ) = 1 I , .f,(t)-(t)(t)
1+ i L W Oi (00)

Proof. (i) Differentiability follows from the differentiability of g(.,.) with respect to

both arguments and from the relation gi(t, qi(t, 77))- = 0. The expression is ob-

tained by observing that the relation gi(t, qi(t, r)) -77 = 0 implies by differentiating

with respect to t:

agi (t, i(t, 7)) + 0i (t, V7) agz (t, i(t, )) = 

and since i (t, bi(t, )) = lI (Oi(t, )),

0i (t 7v) t= - (t,, 7l))
at it, (O(t, ))

(ii) The result follows immediately from Oi(t,q ) = 17-l() and the expression of the

derivative of li,t(.). E

Let 4'i(t) = Oi(t, 0). In particular, function 0p(.) is continuously differentiable.
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In what follows, we will show that Oi(t, r(t)) represents qi(t) + pi(t) expressed as

a function of r(t) for constrained products.

Algorithm A 2(t) has input:

* the data of the problem,

* whether each product i is constrained or unconstrained at time t,

* for each unconstrained product i at time t, the last exit time t (defined by time

0 if t belongs to the first unconstrained interval for that product),

* for each unconstrained product i at time t, the value q%(t ) of qj at time ti,

and output (u*(t), p*(t)) as described below.

Recall that we have fixed time t. We use the convention that min 0 = oo.

Initialization

1. Let S(t) be the set of constrained products.

For each unconstrained product i, compute qi(t) = qi(t!) + ft' hi(s)ds.

Reorder the indices by increasing values of {a2(t) - fi'(O),i E S(t)} U{qi(t) -

fi(),i S(t)}.
Initialize J(t) = S(t), J'(t) = {i E S(t)c : qi(t) - f(O) > 0}.

Let j = minj(t), j' = min '(t) (by convention (t)-f (O) = qo-f (O) =

00).

2. Test of the hypothesis 7r(t) = 0.

If

fi-l(q(t)) + (ai(t) - t0j(t, 0)) < K(t),
iEJ'(t) iEJ(t)

set 7 (t) = 0 and go to step 8.

Otherwise, go to step 3.
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Determination of r7 (t).

3. Let il = j, i = j' and k = min il, i}l.

If the following equation for q

i f (qi(t) -7) + 2 E (ai(t) - i(t)Ci(t, 7)) = K(t)
iEJ'(t) iEJ(t)

has a solution 7 E [0, (0)] (t)- set 7(t) = and go to

step 8.

Otherwise, go to step 4.

4. If k = ii, do J(t) -- J(t) \ {il}, update il = min J(t) and k = min il, i}.

Otherwise (k = i), do J'(t) - '(t) \ {i)}, update i = min J'(t) and

k= m in {il,il}.

If j' < k < j, go to step 5.

If j < k < j', go to step 6.

Otherwise (k > j, j1 2), go to step 7.

5. Let i = max S(t)c \ '(t)1 3 .

If the following equation for 7

f (t) -) + (a(t) -((t) i(t, 7)) = K(t)
iEJ'(t) iEJ(t)

has a solution r7 E [0, i -f' (0)] f (#i(t)-f , (0) qi (t)-f i (0)] set 7(t) 7

and go to step 8.

Otherwise, go to step 4.

1 Index k is always finite because at this stage, the capacity constraint must be tight, therefore
the set of active constrained products and the set of active unconstrained products cannot both be
empty.

' 2 At this stage of the algorithm, one index has been removed from either J(t) or J'(t), therefore
we cannot have k < j, j'.

13Index i is well defined because at this stage of the algorithm, the index that has just been
removed from set J'(t) remains in set S(t)C.
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6. Let io = maxS(t) \ J(t) 14 .

If the following equation for 7

fi- (4i(t) - 77) + (oli(t) - i(t)i(t, 7)) = K(t)
iEJ'(t) i~E(t)

has a solution (%(t) - fi o(O) i (t)- fi()] [, (t) - fO, 0[)], set

r(t) = and go to step 8.

Otherwise, go to step 4.

7. Let i = max S(t)C \ J'(t), io = max S(t) \ J(t).

If the following equation for q7

E fi (i(t)J-7) +'2 (ai(t) -3i(t)0i(t, r7)) = K(t)
iEJ'(t) iEJ(t)

has a solution 7 E (to) , ( f (0)] n (i(t) - o) (t) -

f' (0)], set r1(t) = V7 and go to step 8.

Otherwise, go to step 4.

Computation of the optimal policy.

8. Do

0,

ui(t)= fi- (qi(t -

2(azi(t) -

cY,(t)
Pi(t) '

p*(t) = 2 Pi(t)
Pi - 2(L(t) + i,(t, 77(t)) ,

O (t) 

0,

7

i(

i J(t), i j'(t),

7(t)), i '(t)

(t)0i(t,7(t))), i E (t),

(i E S(t)C s.t. qi(t) > t) or i E S(t) \ (t),-M~,(t), or i · S(t)

i E S(t)C s.t. - .(t) < qi(t) < '(t),

i E (t),

i E S(t)c s.t. qi(t) < -('")- M() 

and stop.

14Index io is well defined because at this stage of the algorithm, the index that has just been
removed from set J(t) remains in set S(t).
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q3(t) - t'(U)
3

I

Figure 3-3: Algorithm A 2(t): Example with > 0, when products 3,... N are active
at time t. In particular, products 1 and 3 are unconstrained and products 2 and N
are constrained.

In what follows we prove that algorithm A 2(t) finds an optimal policy at time t

for problem (3.1). We will show that algorithm .A2(t) has a unique solution.

Theorem 5. Assume the following is known at a fixed time t:

* the information of whether each product i is constrained or unconstrained,

t the last exit time for each unconstrained product i (defined as zero if product

i is on its first unconstrained interval),

* the value qi(t1 ) of the adjoint variable qi at time t for each unconstrained prod-

uct i.

Then under Assumptions 1, 2, 3 and 5, there exists a unique optimal policy for

problem (3.1) at time t computed through algorithm A2 (t).

In order to prove this result, we first need to show some preliminary results that hold

under Assumptions 1, 2, 3 and 5, and that connect the multipliers with the notions

of unconstrained and active products.

92

N r()
D (t) N

,,,,



Lemma 4. For each unconstrained product i at time t with last exit time t1 (possibly

0), the following equality holds:

qi(t) + pi(t) = qi(t) = qi(tl) + J hi(s)ds.

Proof. On the current unconstrained interval (including t, starting at t), the inven-

tory level for product i is positive, therefore by complementary slackness, i(.) takes

value 0 on that interval. Moreover, the adjoint equation (which holds everywhere

except at entry times1 5) gives i(s) = hi(s). Since qi(.) is continuous at exit time time t!

implies in particular that this differential equation is valid on [ti, t], which gives rise

to the result. [

Corollary 3.

zero),

For each unconstrained product i at time t with last exit time t! (possibly

u*(t) = f ° if q (t) - (t) < f'(0),

u (t) - fi-l(qi(t) -r (t)) otherwise,

0 if qi(t) < -_ (t)

pi(t) 2,i(t) + iqi(t) if - pi(t ) it< (t) ,
2031(t) 2(t) 2 - A -

Iadt) if qi(t) > ,i(t)

where qi(t) qi(tl) + ft hi(s)ds.

Lemma 5. If qr(t) = O, then for each constrained product i at time t,

qi(t) + pi(t) = bi(t) = qi(t, 0) > fi(0).

Proof. We consider the products i that have a zero inventory level at time t. The

condition i(s) = 0 must hold on the interior of the current constrained interval

(which includes time t) since the inventory level remains at the value 0. Therefore,

on that interval,

u*(s) - ai(s) + Pi(s)p (s) = 0, (3.20)
15 When writing the necessary conditions for optimality, by convention, the adjoint variables may

be discontinuous only at entry times of constrained intervals.

93



equality which holds in particular at time t. We suppose r(t) = 0. If i is an inactive

product at time t, then u*(t) = 0. This is equivalent to qi(t) + pi(t) < f(0), using

(3.16). In that case, (3.20) gives rise to p(t) = (t which implies, using (3.15), that

qi(t) + pi(t) > i(tt) This contradicts Assumption 2.

Therefore, all constrained products must be active, implying further that

qi(t) + pi(t) > f(0) (3.21)

since from (3.16), u(t) = f-l(qi(t) + pi(t)) > 0. Relation (3.20) then implies that

-ai(t) + 3i(t)p*(t) < 0. Consequently, relations (3.15) and (3.21) give rise to

pi (t) = +qi(t) + Pi(t)).

As a result, (3.20) can be rewritten as:

fi-'(qi(t) + pi (t))) = 0. (3.22)

Recalling the definition of Oi(t, r(t)) > fi'(0) as the unique solution of the equation

f-(qi(t) + pi(t) - 7(t)) + 2(- (t) + i(t)(qi(t) + pi(t))) = 0

gives rise to the result. [

Corollary 4. If r!(t) = O, then each constrained product i at time t is active and

ui* (t) = fs-(i(t)) = (I(t)- (t)i(t)),

p*(t) = ( a (t (t) +

Lemma 6. If r(t) > 0, then each constrained product i at time t is active if and only

if
Ci(t) f() > 

(t
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Proof. For any constrained product i at time t, as we saw in the proof of Lemma 2,

equality (3.20), i.e. u(t) - cit(t) + Pi(t)p7(t) = 0, holds.

First, we assume that product i is constrained and inactive at time t.

Then using (3.16), qi(t) + pi(t) - (t) < fi'(O). Since an inactive product is defined by

u7*(t) = 0, (3.20) implies that pi*(t) = i(t). Relation (3.15) leads to qi(t)+pi(t) > aI(t)

Combining these inequalities, we get

a/i(t) - (t) < qi(t) + pi(t) - r(t) < fi'(O)

and therefore iat) - f(0) < r(t).

For the converse, assume product i is constrained and active at time t.

Then (3.16) implies that qi(t) + pi(t) - q (t) > fi'(0) and u(t) = fi-l(qi(t) + pi(t) -

?r(t)) > 0. To satisfy (3.20), we need -ai(t) + Pi(t)p!(t) < 0. This implies that

qi(t) + pi(t) < ~(t) (see (3.15)).

Moreover, since qi(t) + pi(t) - (t) > fi'(0) we obtain

3i (t) - (t) > qi(t) + pi(t) - r7(t) > fi'(O)
(t)

which implies i(t - fi(O) > (t). E

Corollary 5. If r(t) > (t) _fi(0) (> ) and product i is constrained at time t,

then

U(t) = 0; P*(t) -= i(t

Lemma 7. If < (t) < t) fi(O) and product i is constrained at time t, then

ui*(t) = fi- (Oi(t, (t)) - r(t)) = 2(ai(t) - P3i(t)qi(t, l(t)));

p( t)

Proof. We saw in the proof of Lemma 3 that qi(t) + pi(t) - rl(t) > fi'() > , which

implies qi(t) + pi(t) > 0. Also, qi(t) + pi(t) < L(!t) holds.At)
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2i(_ + q(t) + pi(t). Relation (3.20) canAs a result, (3.15) implies that p(t) = (at(t) + q(t) + P(t)) Relation (3.20) can

then be rewritten as

fi-1(qi(t) + pi(t) - r(t)) + ( - ci(t) + pi(t)(qi(t) + pi(t))) = 0.

From the definition of bi(., .), we obtain qi(t) + pi(t) = Oi(t, 7(t)). [

Proposition 5. If a product i enters (resp. exits) a constrained interval, it does so

as an active product.

Proof. Suppose product i is unconstrained on some interval [r - , r), and is con-

strained inactive on [r, r + 3'], where 6, ' > 0. Since r is the time when product

i becomes constrained, we assume without loss of generality that is small enough

so that we have i(t) < 0 on [r - , r). Since we supposed that i is inactive con-

strained on [r, r + 3'], we have pi(t) = i on that interval (using (3.20)) and thus

qi(t) + pi(t) > i(t) on [, r + ']. Continuity of qi + Pi implies that, for 3 small enough,

qi(t) + pi(t) = (t) > ,(t) on [r - 6, r). As a result, we have on [r - 3, r):

(t) < qi(t) < i'(0) +rl(t) if i is inactive, in which case expression (3.17) implies

Ii(t) = 0 and leads to a contradiction, and

* qi(t) > max{iI;(t), fi(0) + r/(t) if i is active, in which case expression (3.17)

implies

Ii(t) = fi-l(qi(t) - qr(t)) > 0 and leads to a contradiction as well.

Therefore i is active on [r, r + 6'].

The proof for exiting a constrained interval is similar. C]

Corollary 6. A necessary condition for an unconstrained product i to enter (resp.

exit) a constrained interval at time r is

lim qi(t) = ~i(r, 1())

(resp. lim qi(t) = i(r, r(r)).)
t--~7+
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Remark.

This result implies that a constrained interval begins and ends as active. While ac-

tive, qi(t) + pi(t) = Oi(t, r/(t)). It is possible that during the course of the constrained

interval, the product becomes inactive (if 77(t) > i(t - f(O0)), in which case the

optimal policy is known - but q(t) + pi(t) is undetermined. However, we claim that

supposing qi(t) + pi(t) = Oi (t, r(t)) throughout the entire constrained interval, includ-

ing the inactive part of it, leads to the same optimal policy, provided that we can

extend the interval on which fi' is defined and differentiable to negative real numbers,

while keeping the assumption that fi' is strictly increasing on IR. (We do not make

assumption on whether fi' is lower bounded.)

This will allow to define li,t(z) on IR instead of (-oo, i(t!)] and therefore li,t(.) has range

JR instead of being upper bounded by i(t) - f'(0). As a result, li,t is strictly increasing

and thus invertible on R and we can define i (t, 7) for > -- - f(O0). Therefore, un-

der that assumption, if r/(t) > -)f'() (= li,tl then qi(t,7(t)) = -'(77(t)) >

i(t) and therefore p(t) -= it Since the product is constrained, u*(t) = 0 in order

to ensure i (t) = 0.

Therefore, in order to simplify the analysis, we will consider in the remaining of the

chapter that qi(t) + pi(t) = bi(t, r(t)) on any entire constrained interval, whether the

product is active or not.

Assumption 6. The domain of fi can be extended to R- such that fi' is strictly

increasing and differentiable on R.

Notice that there is an automatic extension for the case of fi quadratic since its

derivative is linear and can be directly extended to R-.

We are now ready to proceed with the proof of Theorem 5.

Proof. Set S(t) denotes the set of constrained products at time t.

(a) We first suppose 71(t) = 0.

Using the optimal policy from Corollaries 2 and 3 we will check whether this assump-

tion satisfies the capacity constraint, i.e. if the following inequality holds:
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each product i. We need to validate the hypothesis on 7(t) by checking whether the

solution is feasible, in particular if the capacity constraint holds.

1

fi- (qi(t)) + 2 E (ai(t) - Pi(t)i(t)) < K(t),
ioS(t) s.t. qi(t)>f~(O) iES(t)

where qi(t) qi(til ) + ftt hi(s)ds for i 4 S(t).

If this holds, then since all the conditions are satisfied, q(t) is indeed equal to 0 and

we found the optimal policy. Otherwise, we must determine the value of q(t) > 0.

(b) (t) > .

Now by complementary slackness the capacity constraint must be tight. Using Corol-

laries 3 and 5 and Lemma 4, the fact that the capacity constraint is binding implies

that:

S Hfj-l(qi(t) - (t))
ioS(t) s.t. qi(t)-n7(t)>f'(0)

2 (ai(t) - i(t)i(t, l(t))) = K(t),
iES(t) s.t. (t)< -f (0)

where qi(t) qi(tl) + ftt hi(s)ds for i S. This equation allows us to compute the

value of 7(t).

It is then easy to see that algorithm A 2(t) gives rise to the optimal solution at time

t.

We also notice that we first checked whether or not the capacity constraint could

be non tight, and if it cannot be non tight, we then repeatedly try to determine

the value of r7(t) > 0 by letting the set of active products decrease at each step,

via either the set of active constrained products or the set of active unconstrained

products. Since at that point we know that the capacity constraint must be tight,

the set J(t) U J'(t) of active products cannot become empty (at least one product

must be active) so the algorithm stops before we have removed all indices from this
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set, which guarantees that the algorithm terminates.

Notice that this algorithm (that applies for a fixed value of t) terminates in at most

N + 1 iterations.

Remark.

It follows from this proof that 71(.) is piecewise differentiable. On an interval of time

where the set of active products and the set of constrained products do not change,

and the capacity constraint remains tight, its derivative is obtained by differentiating

with respect to t the equation providing the value qr(t):

hi(t -7'(t)
i active, unconstrained f(fi(qi(t) -7(t)))

+2 E aci n ie - (t)(t,(t)) - p(t) [ '(tO)) + 7'(t) a0(to (t))])
i active, constrained

= K'(t)

where the partial derivatives of Oi(.,.) are given in Corollary 2 (clearly, in the interior

of an interval where the capacity constraint is not tight, y?(t) = 7r/(t) = 0). By denoting

J'(t) (resp. (t)) the set of active unconstrained (resp. constrained) products on

the considered interval, this leads to r/(t) =

Zi'(t) f,(fh-L(Q(t))-(_t)) + 2 EiE (t) ( (t(t))- (t) )
.iEJ'(t) .f,'(If (qz(t)-n(i))) + 2 .EiEJ(t) p(t)^ (t, (t ))

In what follows we execute the algorithm in an example at time t = 1.

Example

Let us consider the setting of three products, i.e. N = 3, a time horizon [0, 10], i.e.
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T = 10, and the input data

fi(u) = 2u2 + u + 0.2

a,(t) = 1 + 0.5t

p31(t) = 0.4 + 0.3t

hl(t) = 2t

K(1) = 13.

f2 (u) = u2 + 2u + 1

a2(t) = 2 + 0.1t

p2(t) = 0.1 + 0.1t

h2 (t) = 2.5t

f3(u) = u2 + u - 2

a3(t) = 1 + 0.8t

3(t) = 0.3 + 0.5t

h3(t) = 3t

We assume

I()
12(1)

13(1)

>0, tl =0.6, ql(tl) = 2,

=O0

= 0.

We first compute

fA(u) = 4u + 1

fl-(u) = u41

f2(u) = 2u + 2

f2-'(u) = u/2 - 1

f3(u) = 2u + 1

f3- (U) = -12 

It is easy to verify that condition f'(O) < (!-, i = 1, 2, 3, 0 < t < 10 holds.

In what follows we compute the optimal policy using algorithm A 2(1).

Step 1: Notice that S(1) = {2, 3}. We compute

ql(l) = 2 + f016 2s ds = 2 + 12- 0.62 = 2.64

ql(1) - fj(O) = 2.64- 1 = 1.64

2(t) - f 2() = 10.5 - 2 = 8.5

c3(1) - f'(0)) = 2.25 - 1 = 1.25.

We reorder the products as follows: kl = 3, k2 = 1, k3 = 2. We thus have S(1) =

{kl,k3} and i = kl = 3, i = k 2 = 1.
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Step 2:

f-'l( 2(1, 0)) + 2( - 2(1) + 2(1)q02(1, 0)) = 0
X 0.502(1, 0) - 1 + 0.5(-2.1 + 0.202(1, 0)) = 0 X 02(1, 0) = 41/12 : 3.417

fj-1 (3(1, 0)) + ( - a3(1) + 33(1)q3 (1,0)) = 0

X: 0.503(1, 0) - 0.5 + 0.5(-1.8 + 0.803(1, 0)) = 0 X 03(1, 0) = 14/9 1.556.

We now compute

fl-'(q1(1)) + 0.5(a2(1) - 2(1)02(1, 0) + a3(1) - /3(1)03(1, 0))
2.64 - 1
2 64 + 0.5(2.1 - 0.2 x 3.417 + 1.8 - 0.8 x 1.556) = 1.396 < K(1).

4

Since ql(l) > a(1) 2.143

u*(1) = f-l(ql(1)) = 0.41

u(1) = 0.5(a 2(1) - 32(1)02(1, 0)) ~ 0.708

u;(1) = 0.5(a3(1) - P3(1)03(1, 0)) X 0.278

p*(1) = (1) 2.143

p(l1) = 0.5(2() + 02(1, 0)) . 6.959

p;(1) = 0.,5(a3(1) + 03 (1, 0)) 1.903.

3.3.4 Third step: No external information is given

Finally, in this subsection we also relax the assumption that the system is observable

at each point of time. In what follows we will not take an instantaneous approach

as we did before. To make our analysis more accessible, we first show the following

results, under Assumptions 1, 2, 3 and 5.

Proposition 6. If a product i has a positive level of inventory at time T, then the

inventory level is positive throughout the entire time horizon.

Proof. Consider a product i that has a positive inventory level at time T. This

means by complementary slackness that Pi (T) = 0. Moreover, using the transversality
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conditions, it follows that qi(T) + pi(T) = qi(T) = 0. Suppose that the inventory

level of that product has reached zero at some point within the time horizon. Let

r < T be the last exit time from a constrained interval. We have Ii(r) = 0 and

Ii(t) > 0 Vt E (-r,T], therefore pi(t) = 0 Vt E (r,T]. In particular, pi(r+) = 0.

Then, since qi + Pi is continuous everywhere and since product i is constrained at

time -,

0 < fi(0) < i(T-,r(7r-)) = qi(r-) + pi(r-) = qi(r+ ) + pi(r+ ) = qi(r+ )

and therefore, using the adjoint equation valid on [, T],

qi(T) = qi(T+) + hi(s)ds > qi(r+) > 0.

This is a contradiction. [1

We notice that this result makes sense at an intuitive level. There is no reward at the

end of the time horizon for any remaining inventory. Moreover, incurring inventory

that is not sold incurs cost but not revenue. Therefore, if the retailer follows an

optimal pricing and production policy, she will not incur any inventory that will not

be sold by time T. As a result, if there is some remaining inventory at time T,

it means that this inventory was not incurred by some additional production, but

was incurred from the initial inventory. In other words, no production took place

throughout the entire time horizon and therefore, since there is some inventory at

time T, the inventory level was positive all along.

Corollary 7. There exists i > 0 defined as i - - fT vi(t)dt > 0 such that

I > i 4=: product i is unconstrained on the entire time horizon,

where

t) -aliGi (if Gi(t) < - i(t!)
0 i(t) > t-!(t) +,3i(t)Gi(t)) ifGj +) - a(t)
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Gi(t)=- hi(s) ds0.

Proof. If a product i is such that I*(t) > 0, Vt E [0, T], then pi(t) = 0, Vt E [0, T]

and for this product i there is a unique unconstrained interval, on which the adjoint

equation is valid.

Since qi(t) = qi(0) + fot hi(s)ds and qi(T) = 0, it follows that qi(0) = - T hi(s)ds

and therefore

qi(t) + pi(t) = qi(t) = - hi(s)ds Gi(t) < 0 < f'(0), Vt E [0, T].

Therefore, u (t) = 0, Vt E [0, T] and

0 if G,(t)< ,( )
p(t) t) (3.23)

(Gi(t)+ ) if Gi(t) > a-(t) (3.23)

We will denote P this pricing and production policy on [0, T].

Therefore, since I*i(t) = ut(t) - ai(t) + ,3(t)p*(t), it follows that

-a(t) if Gi(t) < - t
i(t = AM

_ aci(t) 0(tGj() if G(t)Gi(t)>- (

i.e. Ii (t) = vi(t). Moreover,

o < I*(T) = Ip + Ji(t)d t l- - i,

For the converse, suppose I > i and that the inventory level reaches zero within the

time horizon. Let r < T the first time the inventory level becomes equal to zero. On

the first unconstrained interval [0, r), since I(t) > 0, by complementary slackness

pi(t) = 0, Vt E [0, r). The adjoint equation then implies

qi(t) = qi(-) - hi(s)ds Vt e [0, r).

The adjoint variable qi(.) may be discontinuous at entry time r, but (qi + Pi)(.) is
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continuous and in particular at the entry to the constrained interval, (qi + Pi)(r) =

qi(,7(T)) > 0.

Continuity of (qi + pi)(.) along with the fact that Pi(r-) = 0 then imply

qi(T-) = (qi + pi)(T-) = qi(T, 1()) > 0.

Therefore,

qi(t) = qi(r-) - hi(s)ds > - h(s)ds > - j (s)ds = Gi(t) t [0, r).

As a result, since we notice in expression (3.17) that the derivative of the inventory

level on an unconstrained interval is non decreasing with qi(t), this implies that i* (t) >

vi(t) Vt E [0, T). In other words, in this case the inventory does not decrease as fast

on [0, T] as with policy P. However, Ii represents the total inventory consumed on

[0, T] with policy P7. Our assumptions imply that I ° > 1i was consumed during [0, ],

which is a contradiction.

Therefore, I ° > i implies I' (t) > 0 Vt E [0, T].

Remark.

If I ° = Ii, then the same policy holds and we obtain Ii(T) = 0. (The inventory level

reaches zero for the first time at time T, and the optimal strategy is given by policy P.)

This result suggests that there exists for each product a critical value of the initial

inventory level above which it is optimal to never produce on the entire time horizon.

This critical value depends only on the demand parameters and the holding cost of

that product.

This result will also be used in its negative form, i.e. if I° < i then the inventory

level of product i reaches zero on [0, T], and is at zero level at the end of the time

horizon T. We will distinguish two possible cases then:
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case a: the inventory level of product i reaches zero for the first time before the

end of the time horizon T, i.e. enters a constrained interval of non zero length

within the time horizon, and as we proved earlier it is on a constrained interval

at the end of the time horizon T

case b: the inventory level of product i reaches zero for the first time at the end of

the time horizon T (without entering a constrained interval). Then the product

is unconstrained on [0, T), and the initial inventory level is totally consumed by

the end of the time horizon T.

We will refer to these two cases in the remaining of the chapter and the description

of the algorithm. Note that if I °' = i, the inventory level also reaches zero for the

first time at time T (like in case b) but the optimal strategy is to idle while in case

b the optimal strategy will not be to idle in general.

Let i(t) i(t, 7r(t)). Since 7(.) is piecewise differentiable, and i(,., ) is differ-

entiable with respect to both arguments, then i(.) is piecewise differentiable. We

have

di (t = ai (t t ) i (t, r(t))

and we gave the expression of those derivatives earlier in the chapter.

We will call transitive time for product i a time such that either 4i(.) is differen-

tiable with i (t) < hi(t), or, if t is a time where 7(.) and thus qi(.) is not differentiable,

a time such that lim,-t- d (s) < hi(t).

Proposition 7. Product i may enter a constrained interval only at a transitive time.

This is simply saying that the transition from an unconstrained interval to a con-

strained interval may occur only at a transitive time. Intuitively, this is due to the

fact that it may not be possible to optimally maintain the inventory level of a product

at zero under any circumstances.
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Proof. On a constrained interval, qi(t) + pi(t) = qi(t, r(t)) = qi(t). By taking deriva-

tive with respect to t and using the adjoint equation as well as the fact that pi(t) < 0,

the result follows. [

Description of the method for determining the optimal policy

In what follows, we describe how to derive the optimal solution. The reader should

refer to Section 3.4 for more details.

First we eliminate the products whose initial inventory level is high enough (i.e.

higher that Ii) so that it is optimal to never produce them. The pricing policy is as

shown in the proof of Corollary 7. Therefore, without loss of generality, we assume

that all products have an initial inventory level low enough so that their inventory

level reaches zero by time T.

As we discussed earlier in the chapter, once for all i the sum of the adjoint variables

qi, i = 1,..., N,, multipliers Pi, i = 1,..., N, and r7 are known, the optimal pricing

and production policies p* and u* are easy to compute.

We first ignore the capacity constraint; compute the solution for all products, and

subsequently, check whether the capacity constraint is violated within the time hori-

zon if we apply that solution. If it is not, we can stop. Otherwise, we will have to

take into account the capacity constraint.

To do so, we solve N single product problems. We proceed as follows for each product

i:

Method for a single product i

Step 1: (first unconstrained interval)

If there is a non zero initial inventory level I°, we start on an unconstrained interval.

(If there is no initial inventory level, we start on a constrained interval: set t = 0

and go to Step 2.)

On that unconstrained interval, pi(t) = 0 and qi(t) + pi(t) = qi(t). Using the adjoint
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equation, the value of qi(t) + pi(t) on that interval can be determined as a function

of time t and the initial value of the adjoint variable qi° - qi(O). Precisely, we have

qi(t) = qi° + hi(s)ds.

Supposing we are in case a, this interval ends at the first entry time t, the time when

the product becomes constrained. By continuity of (qi + i)(.), we have

qi(ti°- ) = (qi + Pi)(ti-) = (qi + Pi)(ti°+) = i(ti°, 0) = i(t°).

To determine simultaneously q and t, we solve the nonlinear system of equations

and an inequality that ensures that the change of inventory on [0, t °] equals -I ° and

that the adjoint variable intersects for the first time at a transitive time the function

'oi(.) at time t °.

More specifically, we attempt to solve the following system of two equations for to

and qi such that t is the smallest positive number satisfying the equations and the

inequality:

Ii(t)dt = -Ii
to

qi + hi(s)ds = Oi(t° )

i(ti) hi(t °)

where i(t) is given by expression (3.17) in which we use 7(t) = 0 and qi(t) = qi +

fo hi(s)ds.

If this system has a solution, once we have solved this system, we know the bound

of the first unconstrained interval and the expression of qi(t) + pi(t) = qi(t) on that

interval, and we can calculate the optimal policy.

If this system has no solution, we are in case b and we must only determine q such
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that

j i (t dt = -Ii ° .

In particular, qi(t) does not reach 0i(t) on [0, T] in that case. Then [0, T) is un-

constrained and we have determined qi(t) on that interval, so we can calculate the

optimal strategy on the entire time horizon.

Step 2: (constrained interval and following unconstrained interval)

On a constrained interval, the trajectory of qi + Pi follows that of ~'i. In order to

determine whether this constrained interval is followed by another unconstrained

interval, we will attempt to compute the exit time t (> t) of this constrained

interval, and the next entry time t (> t) (if there is another unconstrained interval,

it must be followed by a constrained interval since all products are constrained at

time T). If we find no solution we will conclude that product i remains constrained

until the end of the time horizon.

We first suppose that there is an unconstrained interval (til,ti). We have pi (t) = 0

and qi(t) + pi(t) = qi(t) Vt (ti,t). Using the adjoint equation, the value of

qi (t) + pi(t) on that interval can be determined as a function of time t and the initial

value of the adjoint variable qi(tl. Using the necessary conditions pi(t) = 0 Vt E

(tl, t), (qi + pi)(t) = bi (t) on the constrained interval (t°, ), and the continuity

of (qi + Pi)(.), we obtain

qi(tl+) = (qi + Pi)(t4) = (qi + i)(t'-) = qi(ti, O) = i(t

qi(ti- ) = (qi + Pi)(t- ) = (qi + Pi)(ti+) = 0i(ti, 0) = i(ti).

We then attempt to solve the nonlinear system of equations that ensures that the

change of inventory on [ti, t] equals zero and that the adjoint variable intersects for

the first time on a transitive interval the function Oi at time t.
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More specifically, we want to solve the following system of two equations for t and t?

such that t E [t°, T] and t is the smallest number in [tl, T] satisfying the equations

and the inequality:

i(t)dt = O
Jt

i\(tl) + i hi(s)ds = i)(t2)

)(t2) < hi(t2)

where i(t) is given by expression (3.17) in which we use 7(t) = 0 and qi(t) = 'i(t 1) +

ft hi(s)ds.

If we can solve this system, we know the bounds on the constrained interval and the

following unconstrained interval. Moreover, we have

qi(t) + pi(t) = 0i(t) Vt E (t°,t')

ft
qi(t) + pi(t) = oi(tl) +1 hi(s)ds Vt E (t1, t2)

which we can calculate and as a result we can obtain the optimal policy on these

intervals. We set t - t and we repeat Step 2.

If we cannot solve this system we conclude that product i is constrained on (t °, T].

We set t = T and stop.

We assumed that the number of junction times is finite (see Assumption 5), so

that this process iterates only a finite number of times (i.e. there is a finite number

of constrained and unconstrained intervals).

Method for multiple products

Once this algorithm has been executed for each product, we compute the aggregated

production rate over time and compare it with the capacity rate. If the capacity rate
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exceeds the aggregated production rate at all times, the solution obtained for each of

the single product cases is optimal in the capacitated setting as well. Otherwise, we

proceed as follows.

Re-calculation of the parameters

Let's first assume that we know for each product, the phase within which the product

lies when the capacity constraint becomes tight at time r in the capacitated setting,

i.e. first unconstrained interval in case a, first unconstrained interval in case b, sub-

sequent unconstrained interval, or constrained interval (see Assumption 7 for a more

formal description). We will discuss below how we can make such an assumption. If

a product i is on the first unconstrained interval at time T, the parameters q and

t9 (or only q if we are in case b) must be recomputed taking into account the fact

that the capacity constraint becomes active during interval [0, t]. If product i is on

a constrained or on a subsequent unconstrained interval at time r, the corresponding

parameters t and t2 must be recomputed taking into account the fact that the capac-

ity constraint becomes active during that interval. Furthermore, since time r depends

on the values of these parameters, it must be recomputed as well as soon as not all

products are constrained at time . (It need not be recomputed if all products are

constrained at time r because of the following reason: time r is determined the first

time the aggregate production rates reach K(.). We showed that on a constrained

interval, while the capacity constraint is not tight, a product is active and its pro-

duction rate depends only on the data of the problem (see Corollary 4). Therefore

the time when the capacity constraint becomes tight is independent of all parameters

ti, t that must be recalculated.)

Those parameters along with time r are all simultaneously recomputed by solving

the nonlinear system of equalities and inequalities that, similarly to the single-product

algorithm, includes constraints on the change of inventory, and the condition to enter

a constrained interval when t H (qi + pi)(t) intersects t - i(t, ](t)) at a transitive

time, for each product i. Moreover, we have the additional constraint that the capac-
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ity becomes tight at time r (and possibly, as we explain below, non tight later on,

etc.) This system involves multiplier 7(.) when the capacity constraint is tight, and

its derivative in order to determine transitive times.

Derivation of multiplier 7(.) and its derivative

The derivation of multiplier 7(.) and its derivative when the capacity constraint is

tight is based on the algorithm described in Subsection 5.1. This algorithm takes as

inputs multipliers (qi + i)(.), i = 1 ... , N, which can be expressed depending on the

parameters to be recalculated, the activity of products, and the phase they are on

(constrained or unconstrained). The idea is to start by making the assumption that

the capacity constraint remains tight after time T until the end of the time horizon,

and that the activity of products is the same as what it is when the capacity con-

straint becomes tight (i.e. either active or inactive on the rest of the time horizon).

However, we notice that the presence of a capacity constraint may lead some products

to become inactive at time r while they were active in the uncapacitated setting, so

we will have to first use the procedure described in algorithm A 2(T) to know which

products are active at time r.

Under those assumptions, we can derive 7(.) and its derivative as a function of all the

parameters to recalculate. Therefore we can solve the system that recomputes time r

and the parameters t, t (or qjo, t) for all products. We first do not impose the times

to be necessarily smaller than time T (the end of the time horizon).

Checking the assumption on the capacity constraint and activity status of products

Then we check if the assumptions on tightness of capacity and activity of products

were violated by time T. In order to check whether the capacity constraint should

indeed have remained tight until the end of the time horizon, we check whether the

expression giving (t) under all those assumptions takes only non negative values on

[r, T] (using the recalculated time T). In order to check whether the assumption that

the activity of each product does not change, we check whether qi(t)+pi(t)-rj(t)-f(O)

changes sign.
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If there is a violation, we consider only the first one, we make the corresponding

correction in our assumptions, and solve the system again under these corrected as-

sumptions. For example, if the first violation is a negative value of the expression

giving 77(t), then we add to the system of equalities and inequalities the assumption

that the capacity constraint becomes non tight at a time r' > r that will have to be

determined when solving the corrected system - and we assume capacity remains non

tight until time T. This new assumption will change the way 7(.) and its derivative

are calculated, and time r' is determined by an equality ensuring that (.) reaches

value 0 for the first time at time r'.

If the first violation is qi(t) + pi(t) - (t) - f'(0) becoming negative within an interval

where the product was supposed to be active, we add the constraint that this product

goes from being active to being inactive on the interval, and the time when this occurs

is a variable to be redetermined by the time when qi(t) + pi(t) - 7(t) - fi(O) becomes

negative. Changes in activity also impact the derivation of 7r(.) and its derivative. We

treat similarly the case where the first violation is qi (t) + pi (t) - 7(t) - f(O) becoming

positive for some product assumed to be inactive.

It can be seen at this point that in the most general setting of input parameters as

functions of time, the solution algorithm may be extremely complex. In order to

simplify the problem, we will make some assumptions that will allow us to reduce the

complexity of the computations and simplify the description of the algorithm. These

assumptions are not necessary for the general solution approach to be adapted, but

they allow significant simplification, while being consistent with most real-life scenar-

ios.

Phase of a product when the capacity constraint becomes tight

We recall that this process relies on the knowledge of which products are constrained

when the capacity constraint becomes tight. We recognize that in the capacitated

case, the system may tend to produce in advance in order to compensate for a fore-

seen shortage of production capacity later on. In that case, a product that lies on its

second unconstrained interval at the time when the capacity constraint becomes tight
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in the uncapacitated case may be constrained or on its first unconstrained interval

in the capacitated case. Therefore, we cannot assume in general that the phase of a

product is the same as the phase in the uncapacitated case at time r.

In order to simplify the problem, we assume that one of the following holds:

Assumption 7. * The capacity rate is high enough so that at every time T when

the capacity constraint becomes tight in the capacitated setting, the phase of a

product (constrained interval, mth unconstrained interval, m > 1) is the same

as the phase it is on in the uncapacitated setting.

* The capacity rate is low enough so that the capacity rate is tight from time 0 or

becomes tight during the first phase of each product (first unconstrained interval

if I° > O, first constrained interval if I° > 0) and then either remains tight until

time T, or until some time r' such that the capacity is non tight on [IT', T].

This assumption is saying that if the capacity is high, there may be multiple

changes in the tightness of the capacity constraint, but the capacitated case will not

incur critical changes in the phases of products compared with the uncapacitated

case. Therefore, we can use the phases observed in the uncapacitated case. More-

over, if the capacity is very low, then the capacity constraint is a hard constraint and

it will be tight most of the time, except possibly at the beginning while the system

can use the existing initial inventory, and at the end when the approaching end of

the time horizon makes it unnecessary to keep producing for more than for keeping

the inventory level at zero. In most applications, the second case of this assumption

is satisfied, since resources are expensive and it does not make sense to have available

capacity that is not necessary. We chose the parameters of the numerical implemen-

tation to illustrate that case. In order to determine whether a product that was in

case b in the uncapacitated setting, is in case a in the capacitated setting, we first

assume the product is still in case b and check whether the system is solvable under

that assumption. Otherwise, the product is in case a.
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Iteration of the process

This process of checking assumptions and correction if necessary is repeated until no

more violation of assumption is observed as explained above. Clearly, the number

of times we must iterate this process depends on the variability of input parameters

such as holding cost, capacity rate, and demand parameters. Therefore, in principle

there could be an infinite number of iterations even though we already assumed that

the number of junction times is finite (see Assumption 5). We make the assumption

that the parameters are reasonably variable, in the sense that they are somewhat

smooth/steady, so that the capacity constraint does not change status infinitely many

times, as well as product activity, and that products do not enter a constrained

interval infinitely many times.

Assumption 8. We assume that the activity status of each product does not change

infinitely many times, and that the tightness of the capacity constraint does not change

infinitely many times.

We do not formalize these conditions in order to avoid making too restrictive and

unnecessary assumptions. However, it can be seen in the numerical computations

section of this chapter that for reasonable inputs that make practical sense, the num-

ber of iterations is small and the calculations can be carried out quickly by using a

software solving nonlinear systems of equalities and inequalities.

To simplify the problem, we make a seasonality effect assumption as follows:

Assumption 9. There exist seasonality effects such that on any constrained interval,

there exists a time at which all products are constrained.

This assumption means that the demand is somewhat cyclical with cycles not

influenced by the holding cost in ways that differ for the various products. Therefore

there are periods at which it is optimal to not hold any inventory for any products.

In other words, the mth constrained interval of all products intersect, for any integer

m> 1.

This assumption simplifies the problem because it allows us to solve multiple smaller
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systems of equalities and inequalities (one for each season) instead of one much bigger

system that would involve the entire time horizon. Under this assumption, we need

to recompute simultaneously 2 parameters at a time for each product (initial value

of qi and entry time, or exit time and entry time), then we reach a time when all

products are constrained, and we iterate to determine the next exit and entry time

(if they exist) for all products, that correspond to the next cycle.

Section 3.4 provides a formal description of this algorithm.

Finally, notice that this algorithm computes the unique optimal control policy.

This follows since earlier in the chapter we had illustrated both the existence and

uniqueness of the optimal policy through the necessary conditions for optimality. We

therefore have the following theorem.

Theorem 6. Under Assumptions 1-9, the algorithm described in detail in Section 3.4

computes the unique optimal control policy for problem (3.1).

3.4 Algorithm

We recall and introduce some notations:
Ii critical value of the initial inventory above which it is optimal to idle for

product i and to price according to policy P on the entire time horizon;

r first time the capacity constraint becomes tight;

Firsti(t) binary variable equal to 1 when product i has an initial inventory level

O < I ° < and is on the first unconstrained interval at time t, equal to

O otherwise;

Consti(t) binary variable equal to 1 when product i is on a constrained interval

at time t, equal to 0 otherwise;
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to entry time on a constrained interval for product i;

t? subsequent entry time on a constrained interval for product i;

t! exit time from a constrained interval for product i;

J(t) set of active constrained products at time t;

J!(t) set of active unconstrained products at time t;

S set of constrained products when the capacity constraint becomes tight;

Si C Sc set of products on their first unconstrained interval when the capacity

constraint becomes tight;

S2 C Sc set of products on a subsequent unconstrained interval when the capacity

constraint becomes tight;

Algorithm for a single product i

Initialization

1. Let

G,(t) = hi(ss)ds, t E [0, T].

Let

- (t) if G (t) < - EOŽ )

Vi Le ai(t) +i(t)Gi(t) if Gi(t)> ai(t)

Let

fi = - dvi(s) s.

* If I° > i, go to 2.

* If O < I < i, go to 3.

* If I° = 0, go to 8.

2. Large initial inventory level
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Let

q,(t) = Gi(t) Vt E [O,T];

pi(t) = 0 t [,T];

Consti(t) = 0 t E [O0,T];

Firsti(t) = 1 Vt E [0,T].

Go to 9.

3. Small initial inventory level

(First unconstrained interval, case a)

Define

t

-a(t)
( - ai(t) + Pi(t)qi(t))

fil-l(qi(t)) - 2 + qi(t)
fi-' (qi(t))

if qi(t) < -i(t)
if - a ILt (t))

i ,f(t) < qi(t) < f (0)

if fi'(0) < qi(t) < i(t)

if qi(t) > i:(t)
MOt

Solve for q and t (smallest feasible solution) the following nonlinear system:

I

4i(t) = q(t °)

0'(t ) < hi(t?))

fot yi(t) dt = -I °

te E (0, T)

If there are multiple solutions for t, choose the smallest solution. Go to 5.

If there is no solution, go to 4.

4. Small initial inventory level

(First unconstrained interval, case b)
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Define

t

qi(t) = q + hi (s) ds

- ai(t)

yi(t) = ( - ai(t) + 3i(t)qi(t))

'-' (qi(t)) - i( + i(t) qi(t)

if q,(t) < - '

if - (t < qi (t) < f(O)

if f(O) < qi(t) < i(t)

(Note that in this case, qi(t) never reaches i(t) which lies in [fi-1 (o), /]t, so

qi(t) can never be greater than (t).)

Solve for qO the following equation:

1 y(t) dt=-I ° .
fo

Let

qi (t)

pi (t)

Consti (t)

Firsti (t)

t

= qi + hi(s) ds t E [O, T];

= Ot E [,T];

= O Vt c [,T];

= i Vt E [O,T].

5. Let qi(t)

Go to 6.

as given above, Firsti(t) = 1, Consti(t) = 0 and pi(t) = 0 on [0, to].

6. (Next intervals)

Define

qi(t) = ¢i (t') + hi(s) ds
tl
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-ai (t)

fI (qi(t)) 2- 2+ t qi(t)

-i (qi(t))

if qi(t) < -i(t)
if- ,(t) < qi(t)< f(O)

if fi'(0) < qi(t) < (t)

ii(t) 3 >i(t)
if qi(t) > (t

Solve for t and t (smallest feasible solutions) the following nonlinear system:

I

i(t) = qi(t?)

¢i(ti) < hi(t2 )

t (t) dt = 
t t < t

If there are multiple solutions, choose the smallest one (giving priority to t).

If there is no solution such that t < T, let t = t = T and go to 9. If there is

a solution such that t < T, go to 7.

7. Let

(qi + pi)(t)

Consti(t)

Firsti (t)

pi (t)

qi (t)

Consti(t)

Firsti (t)

- (t) Vt [t° , ti]

= O t 0 ¥ [ti°,til ]

= 1 VtE [t°,til]

= 0 Vt E [t,t0]

as described in step 6 Vt E [ti, ti2]

= 0 Vt [t,ti 2]

= 0 Vt E [t,ti 2]

Do t t2; go to 6.

8. Zero initial inventory level

Let t = 0; go to 6.
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9. Final step Let

0 if qi(t) + pi(t) < - it)

Pi ((t) + P(t) + ait)) if- i(t) < qi(t) + pi(t) < i(t) Vt E [0, T]2p(t) = i(t) A ( i - (t)

aiq pit)if qi(t) + pi(t) > a1(t)

ui (t)f 0 if qi(t) + pi(t) < f(0) Vt E [0, T]

t f-1 ((t) + pi(t)) if qi(t) + pi(t) > f'(0).

Algorithm for multiple products:

Initialization

1. Do the algorithm for a single product above, for each of the N products. Output

Consti(.), Firsti(.), ui(.), and the successive values of the entry times t°.

Remove indices such that I ° > I, update the value of N as the number of

remaining products, and possibly renumber the indices from 1 to the new value

of N.

2. Let
N

T = n min { min{t ui(t) = K(t)};T}
i=l

3. If r = T, stop.

Otherwise, based on Assumption 6, either the phase of products when the ca-

pacity becomes tight is the same in the capacitated case as it was in the un-

capacitated case, or all products are in their first phase. In either case, we are

able to determine the phase in the capacitated case. (Also, we first assume

that products in case b remain in that case. If there is no solution under this

assumption, we will assume they are in case a. To ease the exposition in the

following we do not distinguish cases a and b and provide the description of the

algorithm for products in case a only. The difference can be easily extended
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from the description in the single product case. )

Let

S1 -(i Firsti(r) = 1, Consti(r) 0= 

S2 {i Firsti(r) = 0, Consti(r) = 0}

S -{i: Consti(T) = 1)}

if the first case of the assumption is satisfied, and let

Sl={i: I>O}, S{i:IO=O}, S2=0

if the second case of the assumption is satisfied.

Parameters r, q, t, i E Si and t, t, i E 2 U S need to be updated simul-

taneously with the computation of r(t), t > r. Note that for i E S2 U S, we

know the value of the last entry time t which is not to be recalculated.

4. We determine 7(.) along with r, q,t°, i E S1 and t, t, i E S2 U S where

to (i E Si), t (i E S2 U S) are the smallest solutions such that all of the fol-

lowing holds:

* Vi E S1, we have

o E [0, t °]

o qi(t) = q + f hi(s) ds, pi(t) = 0, t E [0, t°]

o qi(ti) = i(t° , rl(t°))

°o (tP) < hi(tI)

o fo yi(t) dt= -I ° where

121



i (t)

(-ai (t) + 0i (t)qi(t))

if qi(t) < - i(t)

if - ¢ < qi((t) <

min{(t) + fi'(0) }(t) I
, ~(t)

'-1 (qj(t)

i- (qi(t)

ai(t)+ (t)

if f(O) + (t) < qi(t) < 2 (i )

if ( < q(t) < r(t) + f(O)
0if q(t) > max{ , 0(t) + fi°)}

* Vi c S 2, we have

o E [t, t ]

o qi(t) + pi(t) = Li (t), t E [t, tl] (to is given, not a variable)

o qi(t) = l(t) + t-f hi(s)ds, pi(t) = 0, t E [tti 2]

o qi(ti2) = /¢(t2 r(t2))

o limt2- (t) < hi(t2)
dt -

o ftt yi(t) dt = 0 with yi(.) as above

Vi E S, we have

o r E [t°, tl] (to is given, not a variable)

o qi(t) + pi(t) = i(t),

o qi(t) + pi(t) = i(t, 7(t))I

t C [t °, T]

t E [T,ti 

o qi(t) = 0i(t7(tl)) + fttl hi(s)ds,

o q(t) = i(t2,q(t?))

o lim t2- (t) < hi(ti2) and

o j y(t) dt = O

* i(t) = O on [0,7],

pi(t) = 0, t E [t1, t2]
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* ENl u*(t) reaches K(t) for the first time at timme r, where

u (t) = 0 if qi(t) + pi(t) < f(0),

fi- (qi(t) + pi(t)) otherwise.

* Let 1(t) = '=(t) 0, t E [0, 7).

The set of active products at time r is determined by the procedure de-

scribed in algorithm A 2(T) in Section 5.2.

Then the sets J(t) (resp J'(t)) of active constrained (resp. unconstrained)

products are determined over time by supposing that the activity status

remains the same as the activity at time T and by using the entry and

exit times t (i E S), t (i E S2US) that define whether products are

constrained or not.

We then compute r(t), t > r by solving

1
E fi-X(qi(t) - 7r(t)) + 2 (oai(t) - i(t) i(t, rl(t))) = K(t)

iEf'(t) iEJ(t)

and its derivative is

1

( S) hi(t)

iE'(t) f(fi- (qi(t)- r (t)))

+2 1 asli t - i M0i (t, 77 (t) - (t)-0ti (t, /(t))) -K'(t)).
iEJ(t)

· If at a time t > , we observe that either qr(t) takes negative value, or for

some product i, qi(t) + pi(t) - (t) - fi(O) changes sign, we consider the

first time r1 such an event occurs.

In the former case, we update the system to be solved in step 4 by including

time rl as a variable and letting qr(t) = 0, t > l. Once we have solved
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the system, we check that the aggregated production rates do not exceed

the capacity rate at a time greater than rl if they do, we introduce in the

system a time T2 when the capacity becomes tight again (assuming that

the phase of all products is unchanged) and we calculate (.) for t > r2;

we iterate the process.

In the latter case occurring for some product i, and we update sets J(t)

and J'(t) for t > rl by either removing index i if qi(t) + pi(t) - r(t) - f(O)

became negative, or if it became positive, by adding i to J(t) when i is

constrained, and to J'(t) when i is unconstrained. We update the system

to be solved in step 4 by including time T1 as a variable.

Every time we re-run step 4 after modification, we do this step again to

check that all assumptions are satisfied.

* We iterate the process to determine the times of further exit and entry

times on the next cycle if there is one.

5. Final step

Let

0 if qi(t) + pi(t) < -i(t!)

Pi(t) = 2 (qi(t) + Pi(t)+ at) ) if -t) <qi(t) + pi(t) < it) Vt E [O, T]pi(t) i(t) A - (t)

a(t)0 if qi(t) + pi(t) - (t) 

u~i(t) = 0 if qi(t) + pi(t)-71(t) < fi(0) Vt E [O, T].

fi- (qi(t) + pi(t) - (t)) if qi(t) + pi(t) -rl(t) > fit(O)
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P h y I
product 1 1 1 10 10

product 2 1 2 20 10

Table 3.1: Choice of input parameters in the deterministic, monopoly setting

3.5 Computational results and insights

3.5.1 Example 1: Impact of a demand peak and of the ca-

pacity constraint

Input parameters

In order to illustrate our results, we consider an example with 2 products and 3

different maximum demand scenarios (coefficient ai(.)), on a time horizon [0, 10].

In each scenario, we let the capacity take 3 different values chosen as we illustrate

below. For each demand scenario we keep the capacity constant throughout the

time horizon. For simplicity, and in a similar fashion as in numerical results from the

literature (see [40], [64], [68], [94], [95], [120]), we consider coefficients pi(t) (describing

the elasticity of the demand with respect to the price) and holding cost coefficients

that are constant. We also assume that the production cost is quadratic, that is,

'Yi 2fi (ui) = 'iu,

with coefficients yi, i = 1, 2, constant.

The inputs chosen are summarized in the following table:

Product 1 has smaller holding and production costs, but both products start with

the same initial inventory and their demands have the same sensitivity to price. This

is to ease the comparison of results.

In a similar fashion as in the literature, we model the maximal demand (coefficient

a) increasing on the first half of the time horizon and decreasing on the second half
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Scenario 1 Scenario 2 Scenario 3

al(t) 30 + lOt10-t2 13.33+20t-2t 2 30 +lOt- t2

a2(t) 30 + o10t - t2 30 + o10t - t2 13.33 + 20t - 2t2

Table 3.2: Scenarios of evolution of parameter a(t)

to study the effect of a demand peak in the middle of the time horizon. We will

consider 3 scenarios. In all scenarios, the average demand for both products is the

same (equal to 46.67). However, the amplitude differs: in scenario 1, cal(t) and a2(t)

both have an amplitude of 25; in scenario 2, we double the amplitude of a2(t) only,

while in scenario 3, we double the amplitude of cl(t) only, as shown in the following

table:

The corresponding plots are shown in Figure 3-4.
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Figure 3-4: Choices of parameters a

In each scenario, we first compute the optimal pricing and production policy for
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both products separately based on the assumption that there is no capacity constraint.

We then determine the maximum value of the total production maxtE[,Tl ul(t) +

u2(t) u*. Clearly, if the capacity remains greater than or equal to u*, the policies

obtained are optimal.

Then in each demand scenario, we compute the solution for lower values of the ca-

pacity, that is, for a capacity equal to 0.75u* and to 0.5u*. In these two cases, the

capacity will be binding at least at some point within the time horizon.

Interpretation of the results

The results can be seen in Figures 3-5, 3-6, and 3-7. These figures show the evolution

of inventory levels, production rates, and prices for both products in the optimal

solution for each scenario, and in each scenario for three values of the capacity as

explained above.

We also report the objective value (profit) under each scenario and for each value

of the capacity available, as well as the proportion of the total profit generated by

product 1.

We observe that in all cases, the system builds up some inventory at the beginning

of the time horizon because of the upcoming demand peak, and then maintains a

level of inventory at zero for the remaining time. Of course, the lower the capacity,

the least the system has the ability to build up inventory.

We observe that the prices increase and production rates decrease when capacity

decreases.

We also observe that in Scenario 1, the capacity is tight from the beginning of the

time horizon both for capacity levels of 0.75u* and 0.5u*, and only in the latter case

it is tight over the whole time horizon.

In scenario 2 and 3, in both cases the capacity is tight from the beginning, but is not

tight near the end of the time horizon.

Moreover, by comparing the scenarios, we notice that the amplitude of variation for

prices increases when the amplitude of the coefficient a(t) increases.

Finally, it is worth noticing that in all scenarios, under no capacity constraint, the

127



c.j

bU

45

40

35

30

95

CLICL

capacity= u*
- - - capacity = 0.75 u*
.... capcity = 0.5 u*

Figure 3-5: Solution for demand scenario 1
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Figure 3-6: Solution for demand scenario 2

129

2U

15

10

5

0

12

10

8

6

4

2

0

_-

- /
--

__

u· M u I V

. ^ n ,~~~~~~~~r

-r v.�



0.

CM
0

capacity = u*
- - - capacity = 0.75 u*
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Figure 3-7: Solution for demand scenario 3

130

1C

NU

V. U -- ----



7rl

Total profit

Total profit
71

7r2
Total profit

u* = 6.5352 u* = 6.9099 u* = 6.7935

1327.5 (54.6%) 1523.4 (58.01%) 1327.5 (51.24%)
1102.8 1102.8 1263.1
2430.3 2626.2 2590.5

1311.6 (59.79%) 1520.4 (62.78%) 1328.5 (56.46%)
881.9 901.5 1024.4
2193.6 2421.9 2352.9

1160.2 (59.19%) 1435.0 (67.11%) 1156.3 (55.30%)
799.9 793.2 934.9

1960.1 2138.3 2091.1

Table 3.3: Numerical results: Profits under different scenarios. 7ri denotes the profits
due to product i.

production rate for both products increases in the first part of the time horizon (while

the inventory level is non zero) since the system attempts to build up some inventory

due to the upcoming demand peak. However, under lower capacity, the production

rate for product 1 decreases in that phase, while production rate for product 2 keeps

increasing (but is lower in all cases). The fact that the system tends to produce

more of the less expensive product is quite natural. Therefore, introducing a capacity

constraint has more effect on the production for that product. It can also be seen

that the level of inventory changes much more for product 1 than for product 2 in

the presence of a capacity constraint, with maybe the exception of scenario 3 where a

noticeable peak of demand for the expensive product justifies to stock some inventory

in the beginning of the time horizon, despite the higher holding and production costs.

We observe that profits decrease as the capacity decreases (when the capacity drops

by 25% and 50% respectively, there is a 9.74% and a 19.35% decrease in scenario 1,

7.78% and 18.58% in scenario 2 and 9.17% and 19.28% in scenario 3.

We also notice that the capacity constraint increases the proportion of total profit

due to product 1, which is the least expensive product (to hold in inventory and to

produce).

When a product has a demand that is more time varying (but with the same aver-
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age), the proportion of profit that product generates is also greater. Also the total

profit increases if the demand for one of the products is more varying, compared with

demands that are both less varying.

Finally, the maximum demand satisfied under no capacity constraint increases when

the demand for one of the products is more varying. This effect is more marked when

the demand for product 1 (the cheapest product) is more varying.

To conclude this section, the major insights from the numerical tests we performed

are the following:

1. The optimal solution tends to build up some inventory prior to the demand peak

(and more so for the cheapest product), and subsequently lets the inventory level

remain at zero.

2. As the capacity decreases (i.e. the capacity constraints more the system), in-

ventory levels and production rates tend to decrease, prices tend to increase,

and profits decrease.

3. As the capacity decreases, the proportion of profits due to the cheapest product

increases.

4. As the capacity decreases, the production rate of the most expensive product

decreases less than the other product, while remaining smaller.

5. The shape of the evolution of prices over time is similar to the shape of the

evolution of coefficient a(t).

6. As the amplitude of the coefficient a for a product increases, the amplitude

of prices increases as well and the proportion of profits this product generates

increases. Moreover, the maximal demand satisfied over the time horizon in-

creases.
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3.5.2 Example 2: Impact of constant price sensitivities (co-

efficients 3i(.)) with a demand peak

We consider the same inputs as above in scenario 1 of coefficients ci(.) and a capacity

level constant and equal to 1, but with 3 different cases of coefficients pi(.), defined

by

· 3l1(t) = 32(t) = 1, t E [0,T]

* pl(t) = p2(t) = 2, t E [O, T]

*· (t) = p2(t) = 3, t E [O,T].

The results are shown in Figure 3-8.
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In all three cases the capacity was tight all along the time horizon. We observe

that, as suggested by intuition, the prices decrease when the price sensitivities in-

crease, and the inventory levels reach zero earlier. Moreover, the amplitude of prices

decrease as well.

3.5.3 Example 3: Impact of time-varying price sensitivities

(coefficients Pi(.)) with a constant maximum demand

We now consider that coefficients ai(.) are fixed at 15, t E [0, T] and that the capacity

level is constant and equal to 1. We want to study the effect of time varying price

sensitivities, both increasing and decreasing. We will run the solution method for

* Pl(t) = 2(t) = 0.5 + 0.1t

* 31(t) = P2(t) = 1.5 - 0.1t.

Price sensitivities that increase with time correspond to products that become less

attractive to the customer towards the end of the time horizon, for example products

subject to a seasonality effect, or such that there have appeared on the market newer

products that can serve as a substitute. Price sensitivities that increase with time cor-

respond to products that become more attractive to the customer towards the end of

the time horizon, for example because of a marketing campaign or an appearing trend.

The results are shown in Figure 3-9. The capacity level was tight all along the

time horizon (except in one case at the very beginning). Similarly as above, the trend

of prices is intuitive: the prices evolve with time in an way opposite to the way the

price sensitivities evolve with time. Notice that for decreasing price sensitivities, the

products are in case b, i.e. the inventory level is positive on [0, T) and reach zero

at time T. Indeed, it is optimal to save inventory to be sold at the end of the time

horizon when the price sensitivity is lower and the products can be sold at a higher

price. This effect is stronger for product 1 which has a lower holding cost. When

price sensitivities increase with time, the inventory levels reach zero faster that when
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they were constant since it is optimal to sell all inventory before price sensitivities

become too high and the prices are low.
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Chapter 4

Uncertain data in a monopoly

setting: a robust optimization

approach

In this chapter, we consider formulation (3.1) where the demand parameter a(.) is

uncertain. The model of uncertainty is detailed in Chapter 2. In particular, we recall

that the realization may be written

Ci(t) = Ci(t) + Zi(t)&i(t)

where the scaled variation zi(t) is constrained by

-1 < z(t) < 1, Izi(s)lds < ri(t) Vt,i.

The set F is the set of realizations &(.) that satisfy the conditions above.

The results we obtain under this additive model of uncertainty can be generalized to

a more general additive and multiplicative model of demand uncertainty. Details are

provided in Chapter 5.

In this chapter, we show how to reformulate this problem deterministically. The

equivalent deterministic problem is called robust counterpart. For reasons detailed in
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Chapter 2, we do not maximize the worst-case objective, but the nominal objective,

such that the constraints are satisfied for any realization of the parameter within the

specified uncertainty set F. However, we provide in Section 4.2 a formulation of the

robust counterpart problem under the traditional approach that seeks to maximize

the worst-case objective function.

We then show that the solution method detailed in Chapter 3 can be adapted to solve

the robust counterpart without increasing the complexity.

4.1 Derivation of the robust counterpart problem

4.1.1 Equivalent deterministic formulation

The problem with uncertainty is the following.

T N
max I (pi(t)((t) - i(t)pi(t))- fi(ui(t))- hi(t)Ii(t))dt (4.1)

i=l

s.t. Ii(t) = ui(t) - &i(t) + Pi(t)pi(t), t E [0, T] i = 1,..., N (4.2)

ii(t) = ui(t) - ai(t) + Pi(t)pi(t), Vt E [0, T] i = 1,..., N (4.3)

i(O) = Ii(O)= Ii, i= 1,..., N. (4.4)

i(t)>O, VtE[O,T] i=1,...,N V&E . (4.5)

pi(t) < (t' Vt E [0, T] i = 1,..., N V E F (4.6)

ui(t), pi(t) > 0, Vt E [O,T] i = 1,...,N
N

ui(t) < K(t), t E [0,T]
i=l

We observe that constraints (4.5) and (4.6) are the ones where uncertainty has an

impact, (equation (4.2), along with the initial conditions (4.4), simply defines the

realized state variable I.)

Observe that the objective involves the nominal inventory level, defined by equations

(4.3) and (4.4), while the no backorders constraint (4.5) states that realized inventory

levels must be non negative.
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Notice also that the inventory level depends on all previous control decisions. As

a result, constraint (4.5) links the time instants together by involving the inventory

level. In contrast, constraint (4.6) is separable across time. This will have an impact

in the way we derive the robust counterpart in the following sense: a constraint that

does not link together time instants needs to be satisfied at each time for the worst

realization, while for a constraint that links time, the worst realization may not occur

at each time because of the budget constraint involving ri(.).

In order to reformulate this problem deterministically, we need, for each constraint

where uncertainty is involved, to determine the realization of a, that is the "worst-

case scenario", i.e. that makes it hardest to satisfy (for example for constraint (4.6),

the realization that minimizes the right hand side). Then we will be guaranteed that

the constraint is satisfied for any realization.

We start by considering constraint (4.6) for a given product i and at a given

time t. Clearly, the worst case is obtained when the numerator is the smallest, i.e.

zi(t) = -1. It may be seen that for any given time t and index i, it is possible to find

a vector of functions z such that zi(t) = -1, and & E F. As a result, in the robust

counterpart, constraint (4.6) is written as

p(t) < ai(t) - &,(t) Vi, t.
pz (t)

In constraint (4.5), at fixed time t, we seek for the deviation zi on [0, t] that

minimizes Ii(t). We observe that we may write the realized inventory level at time t

as follows:

i,(t) = Ii + (u(s) - ai(s) - zi(s)&i(s) +i3(s)pi(s))ds

= 1,(t) - z,(s)&i(s)ds,
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where

Ii(t) = I + (ui(s) -) + (s) p + S)p2(s))ds

is the nominal inventory level.

Therefore, we must seek for the feasible deviation zi that minimizes

t

- f zi(s) &(s)ds.

Clearly in the optimal solution, Zi > 0, so we can rewrite this subproblem as follows,

for each product i and at any given time t:

-Ji(t) = min - zi(s)&(s)ds

s.t. zi(s)ds < ri(t)

0 < zi(s) < 1 s E [0, t],

where the decision variable is the function zi(.) over [0, t]. Equivalently,

-Ji(t) -max zi (s)&i(s)ds

/t
s.t. zi(s)ds < r(t)

0 < zi(s) < 1 s E [0, t].

This is a particular instance of a continuous linear program. This class of problems

was introduced by Bellman [12], [13] to model some economic processes. A dual

formulation for this class of problems was studied by Tyndall [122]. Some results by

Tyndall also establish strong duality under some regularity assumptions on the data

of the problem. Using these results, we have strong duality, with a dual problem
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-Ji(t)=- min
wi(t),ri(.,t)

s.t.

t

wi(t)r(t) + ri(s, t)ds

wi(t) + ri(s, t) > &i(s) Vs e [O, t]

wi(t) > O

ri,(s, t) > Vs E [0, t]

or equivalently

-Ji(t)= max
wi(t),ri(.,t)

s.t.

(4.7)-wi(t)r,(t) - ri((s, t)ds

wi(t) + ri(s, t) > &i(s) Vs E [,t]

wi(t) > O

ri(s, t) > Vs [0, t].

We notice that in this case the primal (and thus the dual) subproblem takes as

inputs only the known parameters Fi(.) and &i(.).

In the robust formulation, strong duality allows us to replace the minimization

problem objective (primal subproblems) in the constraint

I(t)- Ji(t) > ,

by its dual maximization subproblem objective:

Ii(t) - Wi(t)ri(t) - ri(s, t)ds > O.

Indeed, at the optimum, the maximum will be realized as it makes the constraint

easier to satisfy, therefore, we can simply replace the maximization subproblem by

its objective function and integrate the constraints on the dual variables into the

constraints of the robust counterpart.
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Therefore we obtain the following.

Theorem 7. The robust counterpart problem for problem (3.1) is:

oT - fi(ui(t))- hi (t)Ii(t))dtE (pi(t)(ai(t) - (t)pi(t))
i

s.t. ]i(t) = ui(t) - ai(t) + fi(t)pi(t) Vi Vt E [0, T]

Ii(o) = I° Vi

i(t) > wi(t)ri(t) + ri(s, t)ds Vi Vt [O, T]

wi(t) + ri(s, t) > &i(s) Vi Vs E [0, t] Vt E [0, T]

pi(t) _ ci(t) - ]i(t)pi(t • a(t)&(t) Vi t E [, T]

N

Zui(t) < K(t) t E [O, T]

pi(t), ui(t) > 0 Vi Vt E [0, T]

wi(t) > o i t [, T]

ri(s, t) >0 Vi Vs E [, t] Vt E [O, T]

4.1.2 Solution of the dual subproblem

We denote (w(t), r(., t)) the optimal solution of problem (4.7).

Case 1:
If w!(t) = 0, then r!(s,t) = &i(s), Vs E [0, t] and

Ji(t) = Ji(t) - &i(s)ds.

Case 2 :

If wi(t) > sups[O,tl&(s), then r(s,t) = 0, Vs E [0, t] and Ji(t) = Ji2(t) 

r(t)w (t). Therefore if this case is optimal, w (t) =- sups[o,t] &i(s) and

J2(t) = r(t). sup &i(s).
8E[O,t]
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Note: a necessary condition for Case 2 to be better than Case 1 is r(t) < t.

Case 3 :

If 0 < w'(t) < supS[O,t] &i(s), then

ri (s, t) = 1
&i (s)- i* (t

if w (t) > (s)

if w(t) < &i(s)

and t
(&i (S) - w*(t))+ds.

In other words, by denoting Dr*(t) the domain

Dw (t) = {S E [, t] : &(s) > wi (t)}

and l(t) its measure, then

J 3(t) = (r(t) - l(t))W(t) + j
SEDW*(t)

&i (s)ds.

As a result, w*(t) takes the value in (O,sups[o,t] &i(s)) that minimizes the ex-

pression above for Ji3(t).

Notice that if F(t) > t, then

= -(r(t) tO"(t))w t) + D &i(s)ds
w (t)

< -(r(t) - UW (t))W*(t) + (t - lW,(t))Wi*(t) = (t - r(t))Wz (t) < O

so Case 1 is optimal.

. Case 3a: if wi*(t) < infSE[o,t] &(s), then

J3a(t) = (r (t) - t)w:(t) + j &2(s)ds.2~~~~~~~~
If r(t) > t, the best value is wi(t) = 0 and this leads to Case 1.
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If r(t) < t, the best value is wi(t) = infE[o,t &(s) and

Ji"(t) = -(t - r(t)). inf &i (s) + &i(s)ds.

Clearly then the objective value is lower than in Case 1. Note that depend-

ing on actual data, if F(t) < t, either Case 2 or Case 3a may be optimal.

Indeed,

dj (t) -jia (t) = - &i(s) ds +t inf &i(s)+r(t)(sup &i(s)- inf &i(s))
sE[O,t] sE[O,t] sE[O,t]

which tends to a non positive value as 1(t) -, 0+ and to a non negative

value as 1(t) -- t-.

* Case 3b: if infE[O,t] &i(s) < w (t) < supsE[,t]& i(s): notice that at the

extreme points of this range, we are respectively in Case 3a and Case 2.

However, it is possible that for some value of w*(t) in this range, Ji3(t)

takes an even lower value than in those two other cases.

In particular, if &i(.) is strictly increasing and differentiable, then DW*(t) =

(&-(w(t)), t], () = t - &-l(w(t)) and by seeing Ji3b(t) as some function

g(w(t)), we have

t

g(w;*(t)) = (r(t) - t + &:l(w(t)))w;(t) + &i(s)ds.

We have

gw(t) _(-()

(w(t)) = r(t) - t + &-(wt(t)) + , . l(w , _ (t))~,(& ( (t))) (t)))

r(t) - t + &; (Wt(t))

so g(w!(t)) reaches a minimum on the considered range if r(t) < t, and

then

Ji3b(t)= Jt &i(s)ds
t-r
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(note: we verify that this case yields indeed a smaller objective value than

Case 3a and Case 2)

Finally, we have to compare which of Cases 1, 2, 3 provides the smallest value

of Ji(t).

Note in particular that Ji(t) < J(t) = fot &i(s)ds.

We observe that if r(t) > t, then Case 1 is optimal. If r(t) < t, in general, either

of the cases may be optimal depending on the data.

In the particular case where &i(.) is strictly increasing and differentiable,

Ji (t) = ftt-r(t) &i(s)ds
1fA &i(s)ds

if r(t) < t

else.

Conclusions

To summarize, in the general case, Ji(t), depending on t, r(t) and &(.), is as follows:

* if r(t) > t, then Ji(t) = fo &i (s)ds.

* else, Ji(t) = min{Ji(t), Ji3a(t), Jib(t)} where

J(t) = r(t). sup &i(s)
sE[O,t]

J3a(t) = -(t- r(t)). inf &i(s) +
sE[O,t]

and

J2 b(t) = min [rtww(t) +
N( wi* (t)E(infE [o,tl &i(s)supotl &i (s)) [()

Notice that this can be rewritten as

(t d

&i(s)ds

f(&i(S) - (t))+d,].

Ji(t) = m*(tE[in [r(t)w (t) + j (&i(s) - w(t))+ds]
JiJ (t)E[inf.E[O,tl &i(8),sup.E[o,t1 ai(s)] i
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(the minimum is taken over the closed interval).

4.1.3 Properties

Proposition 8. The function Ji(.) is non decreasing on [0, T] for all i.

Proof. We consider the dual problems (Pt) and (Pt+dt) respectively at times t and

t + dt:

-Ji(t) = max
wi(t),ri(.,t)

-w(t)P 2 (t) -

s.t. wi(t) + ri(s, t) > &i(s) Vs E [, t]

wi(t) 0O

ri(s, t) > O V's [0, t],

-wi(t + dt)ri(t + dt) - ot+dt ri(s, t + dt)ds
Jd"

s.t. wi(t + dt) + ri(s, t + dt) > &i(s) s E [0, t + dt]

wi(t + dt) > 0

ri(s, t + dt) > O s E [, t + dt].

We denote by (w (t), ri*(., t)), (w (t+dt), r(., t+dt)) the respective optimal solutions.

It is clear that (w*(t + dt), r (.,t + dt)) is feasible for (Pt), therefore, we have

(st)s 
-Wo*(t)ri(t) - r~*(s, t)ds > -*(t + dt)ri(t) -i i - io

or equivalently

lt r*(s, t + dt)ds > .(t)r i(t) +i 
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As a result, we observe that

rt+dt
= (t + dt)ri(t+dt) + r*(s,t + dt)ds

= w(t + dt)Fr(t) + wi*(t + dt)ri(t)dt + r*(s,t + dt)ds

t+dt+y ri(s,
rt t+dt

> w*(t)ri(t) + r (s, t)ds + w*(t + dt)Fi(t)dt + d

t+dt
= Ji(t)+ *(t + dt)ri(t)dt+ r(s,t + dt)ds.

r

t + dt)ds

*(s, t + dt)ds

Since Fi(t) > 0 by assumption, and for feasibility of (Pt+dt), we have w (t + dt) > 0

and r(s, t + dt) > 0 Vs E [t, t + dt], we obtain that

Ji(t + dt) > Ji(t).

Assumption 10. We assume that (w(t),r!(.,t) are differentiable with respect to

variable t.

Proposition 9. Under Assumption 10, function Ji(.) is differentiable on [0,T] for

all i and has derivative

Di(t) = X (t)ri(t) + w(t)ri(t) + r(t, t) + J (s, t)ds.

Proof. The result follows directly from taking the derivative with respect to t of

-Ji(t) = -*(t)ri(t) - f r(s, t)ds. E
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4.1.4 Robust counterpart problem

As a result, we obtain the following robust optimization formulation:

max E [jT (pi(t)(ai(t) - ,i(t)pj((t) - f(u(t)) - hi(t)Ii(t))dt (4.8)

s.t. ii(t) = ui(t) - ai(t) + Pi(t)pi(t) Vi Vt E [0, T] (4.9)

Ii (0) = I ° Vi

Ii(t) > J(t) i Vt E [,T] (4.10)

pi (t) - &(t) Vi Vt E [,T] (4.11)
1i3(t)

N

E ui (t) < K(t) Vt E [0, T]
i=l
Pi(t), ui(t) 0 i Vt E [0, T]

In this formulation, the uncertainty of demand has an effect only on the no backo-

rders constraint and the upper limit on prices. The uncertainty of demand translates

into protection levels for the prices and the inventory levels (see (4.10), (4.11)) that

are stronger than in the nominal case. That is, protection levels ensure that the

inventory remains above level Ji > 0, and prices below the limit '(t)-&1 (t) < i(t) As

a result, even with some variation in the demand - within the introduced uncertainty

constraints - the inventory level will remain positive, and prices will remain below

their upper bound. These protection levels depend on the budget of uncertainty F

and on the half length & of the interval of variation for the demand parameter a.

They are determined through the solution of the dual subproblem (4.7).

The following theorem follows after a change of variable Ii - Ii - J i.
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Theorem 8. Under Assumption (10), problem (4.1) is equivalent to:

max E [jo (Pi(t)(ai(t) - fi(t)pi(t)) - fi(ui(t)) - hi(t)Ii(t))dt]

s.t. i(t) = ui(t) - ai(t) + Pi(t)pi(t) - Di(t) Vi Vt E [0, T]

Ii(t) > 0 Vi Vt E [O, T]

Ii (0) = P Vi

pi(t) a(t)- (t) i t E [, T]
,3(t)

N

Zui(t) < K(t) Vt [0,. T]
i=l

pi(t), ui(t) > O Vi Vt E [O,T]

where = I -Ji() = I.

This problem is very similar to the original problem, in terms of type and number

of constraints and variables. However, it differs in the fact that we cannot introduce

a parameter di(t) such that we have:

· Ii(t) = ui(t) - &i(t) + Pi(t)pi(t) be the evolution of inventory levels

* i(t) be the upper limit of the price pi(t)

· the revenue term of the objective function be of the form pi(t)(di(t) -Oi (t)pi(t)).

Therefore, a straightforward application of the algorithm we propose in Chapter 3 is

not possible. In what follows we explain how to modify algorithm solving the nominal

problem in order to solve this new robust optimization reformulation. The discussion

that follows also allows us to illustrate that solving the robust optimization model is

of the same difficulty as the nominal one.
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4.2 Traditional worst-case objective robust coun-

terpart

In general, a robust optimization formulation seeks a solution that is feasible for any

realization of the data within the uncertainty set and maximizes the realized objective

function. Under this approach, the robust counterpart problem of problem (3.1) can

be written as

max /
T N

s.t. < (p E (i(t)(&i(t)-O(t)p(t))-fi(ui(t))-h(t)Ii(t))dt V E F

(4.12)

Ii(t) = ui(t) - &i(t) + Pi(t)pi(t), Vt E [0, T] i = 1,..., N

I(o) = I, i= 1,...,N.

Ii(t) > , Vt E [0, T] i = ,... N, V E F

p2(t) _ i(t)Pi (t) tt E [O, T] i 1,..., N, V& E F

ui(t), pi(t) > 0, t E [O,T] i = 1,..., N
N

i (t) < K, Vt [0, T]
i=1

Recall that the realized inventory level at time t can be written:

i(t) = i,(t)- jzi(s)&i(s)ds,
where

i,(t) = Io + (ui(s) - ai(s) + i(s)p(s))ds

is the nominal inventory level.

Moreover, the constraints must be satisfied for all scaled variations z(.) such that

-1 zi(t) < 1 i, t
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and

Izi(s)lds < ri(t) i, t,

where &i(t) = ai(t) + zi(t)&i(t).

In order to reformulate this problem, we proceed in a way similar to Section 4.1.1.

Specifically, for each constraint where uncertainty in involved, we seek the feasible

realization of &(.) that makes the constraint hardest to satisfy.

We may rewrite constraint (4.12) as follows:

T N

PI < L (pi((t)ai(t) -P i(t)pi(t)) - fi(ui(t)) - hi(t)Ii(t) + pi(t)&i(t)zi(t)

+hi(t) z (s)&i (s)ds)dt V& E F

X < C +- L (pi(t)&i(t)zi(t) + hi(t) zi(s)&i(s)ds)dt V& E , (4.13)

where
T N

i=l
is the nominal objective function, and is independent of z(.).

We seek the feasible realization of z(.) that minimizes the right-hand side in in-

equality (4.13). We notice that we may consider each product separately; in other

words we minimize each term of the sum across products. We thus need to find, for

each i, the feasible realization of zi(.) that solves

min (Pi(t)&i(t)zi(t) + hi(t) zi(s)&i(s)ds)dt.

Since pi(.), &i(.) and hi(.) are positive valued, it is easy to see that in the optimal

solution, Zi(.) < O. Therefore, after transformation of variables, we may rewrite the
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constraints on the new variable zi(.) as follows

o < z (t) < 1 t

Z (s) ds < r (t) vt

(note that we abuse notations to avoid confusion) and rewrite the minimization prob-

lem as

min (pi(t)&i(t)zi(t) + hi(t) (-zi(s)&i(s))ds dt

X- max j (t)(t)()dt+T (h(t)Ji() z(s)&(s)ds)dt

X -max Pi(t)&(t)zi(t)dt + i (| hi(t)zi(s)&i(s)ds)dt<=~ - max pi(t)di(t)zi(t)dt + hi (t)zi(s)i(s)ds dtzi.) o o

- max pi(t)&i(t)zi(t)dt + ( hi(t)zi(s)&i(s)dt)ds
zi( ) o (t))(t)

where max pi(t)&i(t)zi(t)dt + Hi(s)zi(s)i(s)dsZiO ) 0o

<-max (pi (t) + Hi(t))zi(t)&i(t)dt,

where Hi(t) -t T hi(s)ds.

Therefore, we obtain the equivalent subproblem

- max j(pi(t) + Hi(t))zi(t)&i(t)dt

s.t. 0 < zi(t) < 1 Vt

zi(s)ds < ri(t) vt.

We notice at this point that this subproblem depends on the control variable pi(.).

This dependency comes from the fact that the revenue term is non linear in both the

control variable pi (.) and the uncertain parameter ai (.).

This is an instance of a separated continuous linear program (as introduced by An-
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derson [3], [4]). It was shown that if the functions (Pi(.) - Hi(.))&i(.), and ri(.) are

piecewise analytic, and we search for the optimal zi(.) in the space of of measurable

bounded functions, there is strong duality and the dual problem is given by:

-min |fri(t)dri(t) + wi(t)dt
n(l.),wi(.) o

s.t. -nIIi(t + wi(t) > (pi(t) - Hi(t))&i(t) Vt

wi(t) > 0 Vt

Hi(T) = 0

IIi non-decreasing.

To ease the exposition, let's assume that the optimal solution II(.) is differentiable

and let vi(.) its derivative. The dual problem above is then equivalent to

max - ri(t)Vi(t) - wi(t)dt

s.t. -ni(t) + wi(t) > (pi(t) - Hi(t))&i(t) Vt

1i(t) = v(t) t

ni(T) =0

wi(t) > O Vt

vi(t) > o Vt

The deterministic robust version of the no backorders constraint and the upper

bound on prices is obtained identically to Section 4.1.1.

Therefore, under the traditional approach where the worst case objective is maxi-

mized, the robust counterpart problem takes as decision variables p(.), u(.), v(.), w(.)
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and as state variables I(.), II(.) as follows:

max j z (pi(t)(ai(t) - i(t)pi(t))- fi(ui(t)) - hi(t)I-(t)- wi(t)- rIi(t)vi(t))dt

s.t. ii(t) = ui(t) - ai(t) + Pi(t)pi(t), Ii(O) = Ii° Vi Vt E [0, T]

.i(t) = vi(t), Ii(T) = 0 Vi Vt E [O, T]

Ii(t) > Ji(t) Vi Vt E [0, T]

-ni(t) + Wi(t) - (pi(t) + Hi(t))&i(t) > 0 Vi Vt E [0, T] (4.14)
N

E i (t) K (t) Vt e [O,T]
i=l

pi(t) a(t) - &i(t) Vi Vt E [0,T
i ) (t) [,T]

wi(t), vi(t) > 0 i t E [O,T]

pi(t), ui(t) _> 0 Vi Vt E [0, T]

This new robust optimization problem is still a convex fluid model with linear con-

straints, and with twice as many variables as the nominal problem (3.1). However,

the solution method developed in Chapter 3 for solving (3.1) is not easily adaptable.

The main reason is the inequality constraint (4.14) that couples the new state vari-

able with a decision variable. As a result, the order of complexity is higher than the

nominal problem.

We notice that if pricing was not a decision, or if demand was external (i.e., not

depending on pricing), the general model of uncertainty (i.e. with realized revenues)

would yield a tractable formulation (see for example [32] for a discretized version

of the problem). This discussion, along with Section 2.5 on modeling the objective

function under uncertainty, motivates the model we introduce and study in Section

4.1.1 and in the remainder of this chapter.
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4.3 Solving the robust counterpart problem

To avoid repetition, we do not derive in detail the solution method to solve this

problem, as it is very similar to the one described in Chapter 2. We however mention

that an additional assumption is necessary for the robust counterpart problem to be

feasible. Indeed, while the nominal problem is always feasible, the robust counterpart

may not be feasible, for example if the production capacity K(t) is close to zero,

the production rate must remain close to zero, and even by setting prices at their

maximum in an attempt to slow the decrease of inventory level, it may not be possible

to always satisfy the minimum inventory security level guarantee.

Assumption 11. The following inequality holds at all times t

E (h(&i(t) + Di(t)) < K(t).
i S.t. O> Q.i(t)- fi(t) j)+Dj(t))ti(t)

This assumption ensures that the production capacity level is sufficiently large to

guarantee that the minimum inventory level constraints can be satisfied, i.e. that

there exists a feasible solution to this problem.

One difference with the method detailed in Chapter 2 is that constrained products

never idle in the robust problem, while in the nominal problem they either (a) idle or

(b) are produced in order to satisfy the demand. We do recognize two possible states

however, one (a') in which they are produced in order to keep the inventory level at

zero and allow for demand uncertainty (the rate depends on Di and &i only), and a

second one (b') where they are produced in order to satisfy the demand with uncer-

tainty. This discussion leads to conclude that the modified method for solving the

robust optimization formulation is of the same order of complexity as the algorithm

for solving the nominal problem.
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4.4 Numerical results

4.4.1 Choice of parameters

In this section, we consider a numerical example for two products on a time horizon

[0, 10] that is similar to the example we considered in Chapter 2. In this chapter

we also introduce demand uncertainty. Our goal is to understand the relationship

between the optimal objective value and the budget of uncertainty ri(.). As a result,

we will consider only one demand scenario and demand uncertainty model, and a

capacity level that is constant at 75% of the maximum of the cumulative production

rate achieved in the nominal case under not capacity constraint: K(t) = 4.9014. This

guarantees that the capacity constraint is tight for most of the time horizon.

We consider the same production cost structure where the cost f i (.) is a quadratic

function of the production rate:

fi(ut ) = ¥iu2

&i(.), which represents the half-length of the allowed range for parameter ai(.), must

satisfy 0 < &i(.) < ci(.). For ease of computations in this example, we consider

input parameters &i(.) that are linear functions of the time (nevertheless, the linearity

assumption is not necessary):

i(t) = ait + bi,

where ai, bi > 0. Indeed, it is reasonable to consider that in practice, the accuracy of

a forecast for the demand is non increasing on the time horizon, i.e. that the length

of the interval of feasible outcomes is non decreasing, hence ai > 0.

We choose ai, bi, i = 1, 2 such that, the uncertainty on ai is rather small initially,

when the forecast should be rather accurate, and is about 4% of its nominal value at

the end of the time horizon, as illustrated in Figure 4-1.

156



P h y I° a(t) &(t)
product 1 1 1 10 10 30 + 10t -t 2 0.lt+0.2

product 2 1 2 20 10 30+10t-t 2 O.1t+0.2

Table 4.1: Data chosen as input in the numerical implementation for the robust
formulation

The input data are summarized in Table 4.1.

60
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Function alpha: nominal value and range of uncertainty
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Figure 4-1: Demand uncertainty

The choice of ri(.) satisfies 0 < i(t) < 1. In this example, we first consider these

input parameters Fi(.) to be linear functions of the time:

ri(t) = git + i,

where gi, ci O0, i < 1.
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Indeed, it can be seen that as soon as the graph of ri(.) is above the 45 line with the

horizontal axis, its actual value does not matter and Izi(t) takes the value 1, meaning

that the realized di lies at the extreme of its allowed range (worst case scenario). To

avoid this from happening on much of the time horizon, we choose gi < 1.

r

T

C

t

c/1-g) to T

Figure 4-2: Choice of budget uncertainty function F(.).

In order to study the effect of the budget uncertainty on the optimal objective

value (i.e. performance), we will consider multiple scenario in which only the param-

eter ri(.) varies, and in which it varies in the following way: on the one hand we let

the value at time 0 change but keep a constant slope, and on the other hand we keep

a constant slope, and change the value at time 0. In all scenarios we assign the same
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rk(t) fo, min{t, rk(t)}dt
scenario 1 1+0.8t 47.5
scenario 2 1+0.5t 34
scenario 3 1+0.2t 19.38
scenario 4 0.5+0.8t 44.38
scenario 5 0.5+0.5t 29.75
scenario 6 0.5+0.2t 14.84

Table 4.2: Multiple scenarios of budget of uncertainty

budget of uncertainty to both products. The scenarios are shown in Table 4.2

We will compute the cumulative effective budget of uncertainty fo min{t, ri(t)}dt as

a measure of the global uncertainty in each scenario.

4.4.2 Closed-form solution for the dual subproblem (4.7)

In order to implement our algorithm, we need to compute the derivative of the in-

ventory safety level Di(.). After calculations, we have

_ at + b

a(l -g)(gt + c) + g(at + b)

if 0 < t < 1Cg

if l < t< T.
1-g

It is also easy to verify that in all scenarios we have at all times

E (&i(t) + Di(t)) < K(t)
i=l, 2

which implies that Assumption 11 holds.

4.4.3 Results

Using these inputs, we run the algorithm and obtain the production rates, prices, and

inventory levels under the optimal policy for the robust formulation we described in

(4.8). Recall that in this formulation, the inventory levels are constrained to remain

above a safety level Ji(t) > 0.
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Figure 4-3: Optimal inventory levels over time results
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Figure 4-4: Optimal production rates over time results
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Figure 4-5: Optimal prices over time results

Similarly to the nominal problem, the system starts by building up inventory in

anticipation of the demand peak that occurs in the middle of the time horizon. Then

the inventory levels are kept at the minimum level - zero in the deterministic model,

but J(t) in the robust formulation - for the remaining time. Notice that prices have

the same shape as the demand curves.

We notice that in all scenarios, the capacity constraint is tight except at the very

end of the time horizon. Since product 2 is cheaper to produce and to hold, its pro-

duction rate is maintained at a lower value than for product 1 as the products are

unconstrained. In that stage, the budget of uncertainty has no significant influence

on the production rates. This makes sense because we saw in formulating the problem

that uncertainty played a role in the no backorder constraint and the upper bound

on prices. As a result, while the inventory level is positive, the uncertainty does not

matter.

In the constrained phase, the safety level Ji(t) for the inventory increases as the

budget of uncertainty increases, which is consistent with our interpretation that the

more demand uncertainty we impose to the system, the larger should be the min-
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imum value of the inventory level guaranteeing no backorder for any realization of

the demand. We observe that in that phase, as the cumulative budget of uncertainty

increases, the production rate for product 2 increases more and more because main-

taining the level of inventory for that product at J2(t) requires to produce more and

more, given that production rate for product 2 starts from a lower value that produc-

tion rate for product 1.

Finally, we notice that prices slightly increase as the cumulative budget of uncertainty

increases, reflecting the increasing difficulty of satisfying all constraints as the uncer-

tainty increases.

These numerical results suggest that the cumulative effective budget of uncertainty

might be a relevant metric for measuring the global uncertainty. This is further con-

firmed by the following computation on the objective value.

We compute in each scenario the optimal objective value and the cumulative

effective budget of uncertainty (see Table 4.3).

Cumulative effective
Budget of uncertainty budget of uncertainty Objective value

ri(t), i = 1, 2 foT min{t, ri(t)}dt
scenario 1 1+0.8t 47.5 1693.5
scenario 2 1+0.5t 34 1791.5
scenario 3 1+0.2t 19.4 1928.7
scenario 4 0.5+0.8t 44.4 1707.7
scenario 5 0.5+0.5t 29.8 1812.7

scenario 6 0.5+0.2t 14.8 1972.3
scenario 7 0 0 2198.4

Table 4.3: Objective value results

Table 4.3 and Figure 4-6 seem to suggest that the cumulative effective budget

of uncertainty may be a reasonable way of measuring the uncertainty in the prob-

lem. Notice that as the uncertainty increases, the optimal objective value decreases.

This illustrates the trade-off between optimality (high optimal objective value) and

robustness (high level of uncertainty).
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Objective value as a function of the effective cumulative budget of uncertainty

0 5 10 15 20 25 30 35 40 45 50
Effective cumulative budget of uncertainty

Figure 4-6: Trade-off between robustness and performance
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Chapter 5

Uncertain data in a duopoly

setting

Our goal is now to extend the results of the previous chapter to a duopoly setting, and

address competition together with the presence of demand uncertainty. We assume

that the demand observed by a given supplier is a linear function not only of the price

applied by this supplier, but also of the price applied by her competitor. Moreover,

we model in this section the inventory and production costs are quadratic. Finally,

we consider an uncertainty model that is more general than in the previous chapter,

by also introducing a multiplicative uncertainty factor in addition to the additive one.

This form of uncertainty is more general but also more difficult to address than the

additive uncertainty.

We first reformulate the robust problem faced by each supplier as a fluid model

of a form similar to the deterministic fluid model in a monopoly setting. We show

existence of a Nash equilibrium in continuous time by using an equivalent variational

inequalities formulation. We then discuss issues of uniqueness and address how to

compute a particular Nash equilibrium, i.e. the normalized Nash Equilibrium (this

term will be defined in this chapter).

To achieve these goals, we gradually increase complexity and start by showing exis-

tence of an equilibrium in a duopoly setting without data uncertainty. Secondly, we
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generalize the results to the problem with uncertainty on all the demand parameters.

Thirdly, we study the model in discretized time and study uniqueness of equilibria.

Finally, we describe an algorithm and show its convergence to a particular equilibrium.

We recall that Chapter 2 details the notations for the problem in this setting, and

that generally speaking, the superscript k = A or B is used to designate a supplier,

and -k for her competitor.

5.1 Duopoly setting with deterministic data

In this section, we assume that the demand parameters are deterministic and equal

to their nominal values.

5.1.1 Formulation

Since the demand depends on the competitor's prices, a given supplier's optimiza-

tion problem also depends on these prices. In this setting, the term best-response

corresponds to the optimal strategy of the supplier assuming that the prices of her

competitor are fixed and known.

Supplier k needs to determine the optimal decision variables pk(.), uk(.) and re-

sulting state variables Ik(.). The best response problem she faces, given price pk(.)
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for product i applied by the competitor, may be formulated as follows

max T (pik(t) kk(tpk(t) + ik,-k(t)p (tp (t)) (t)(uk(t))

-hk(t)(Ik(t))2)dt (5.1)

s.t. Ik(t) = uk(t) - k(t) + /kk(t)pk(t) - ik,-k(t)p-k(t),

Iik(0) = I, Vt E [O, T], i= 1,...,N (5.2)
N

uf (t) < K (t), Vt e [0, T] (5.3)
i=l

pk(t) < ,(t) + k(t)pt (), Vt E [0, T] i 1,. .. ,N (5.4)
f3ki(t)

Ik(t) > 0, Vt E [O,T] i = 1,..., N (5.5)

uk(t), p(t) , Vt E [O,T] i = 1,..., N

In this formulation, objective (5.1) describes the profit by adding over all products

and over the time horizon the price multiplied by the demand, and subtracting all

costs, that is the quadratic production and inventory costs. Fluid equation (5.2)

along with the initial condition, determines the inventory level at all times by defin-

ing the change of inventory level as the difference between the production rate and

the demand rate. Constraint (5.5) ensures that there are no backorders. The upper

bound on the price (5.4) comes from the fact that the demand rate should remain non

negative. Finally, constraint (5.3) is the capacity constraint on the total production.

We notice that the revenues, the inventory level, and the upper bound on prices

involve the demand. Furthermore, the demand involves the competitor's prices. As

a result, not only the objective function, but also the set of feasible strategies for a

given player, depend on the pricing strategy of the other player, via the no backorders

constraint and the upper bound on the price. We assume that the competitors make

their choices simultaneously. As a result, we have to study a coupled constraint game.

As we will see in the remaining of this chapter, existence, uniqueness, and determi-

nation of Nash equilibria for games of this type are more difficult to study than for
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games where the feasible strategy set is. independent of the competitor's strategy.

Remark.

Notice that combining the feasibility conditions in the best-response of both suppliers

Al(t) AtB P
pA( , + (t) iA (t)(t

and

PiB(t) < , + ,(Pi A(t)
- Oi (t) 3B; (t)

gives rise to the following bounds on prices

pS(t) < a (t)piA(t) + a (t)A (t)
; (t)pl A(t) (t)+ ( t)iAt)

and
p!A(t)fiBSB(t) + OB (t)iAB (t)

iPi BB(t)fAA(t) - fPiBA(t)/iAB(t)

In particular, this shows that the feasible prices are bounded with an upper bound

independent of the competitor's strategy. Also, the production rates are bounded by

the capacity rate. Moreover, since the time horizon and initial inventory level are

finite, and the inventory levels are differentiable and as such continuous functions of

time, they are bounded as well. Therefore, the strategy and state space are bounded.

5.1.2 Definitions and properties

Vector space and associated norm

Let E1 be the vector space such that any element of El has 3N components (price,

production and inventory vectors) that are real bounded functions defined over [0, T].

The integral of the square of their absolute value is well-defined. Let E = E1 x E1 be
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the Hilbert space (we use the L2 norm on E so we have a reflexive Banach space):

I'(x1,x2 )II =
T 3N

E E (X(t))2dt
i=l k=1,2

with x1, x2 E E1, associated with the inner product

T 3N
< (,x 22), (,x2) >= __ Ex (tk (t)dt

i=l k=1,2

Note that this space has an infinite dimension.

We will denote by xk E E 1 the vector representing a pricing and production

strategy along with the state variables of player k in the following way:

xk = (pk, Uk, k),

where

pk = (k(.), ,p(.)), Uk = (Uk(.) , . . ., u k ( .) ) , Ik = (Ilk(.),...,i(.)).

The vector

As a result

(xA, xB) E E represents the collective strategy and state vector.

the norm for a collective strategy and state vector is given by:

E E [(Pi(t))2 + (ik(t)) 2 + (Iik(t))2]dt x E E
i=1 k=A,B

associated with the inner product

T N

< xX >= |o E E (pik(t)ik(t) + Uik(t)uik(t) + Ii(t)?(t)) d r ,E E.
i=l k=A,B
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Feasible set

Let's denote Xk C E1 the set of strategy and state vectors for player k satisfying the

constraints that are independent of the competitor's strategy:

Xk = { X= (p,, I) E El:

ui(t), pi(t), Ii(t) > 0 Vi, t
N

Zui (t) < Kk(t) Vt

Ii(0) = Iik ) }.

Let X c E such that X = XA x XB.

The following lemma follows directly from the definition of X.

Lemma 8. X is a non empty, convex, closed subset of E.

For a fixed strategy and state vector of the competitor, let's denote Qk(-k) C Xk

the subset of all feasible strategy and state vectors for player k, given the strategy

and state vector -k of her competitor:

Qk( k) = { x = (Pl(.), ... ,PN(-), U1(.),... ,UN(), Ii(.),..., IN(.)) E Xk
Qk(t) + pk.-k(tp--k(t)

pi(t) < pat)+'ikk(t) k(t) i, t

Ii(t) = ui(t) - ai(t) + Oi'k(t)pi(t) - lk-k(t)pi-k(t) Vi, t }.

Lemma 9. For all ±-k E X-k, Qk(-k) is a non empty, closed, convex subset of Xk.

Proof. Convexity follows from the fact that the constraints defining the set are linear.

To see that the set is closed, note that if we take a convergent sequence of vectors of

Xk (even not uniformly convergent), since the inventory levels are bounded and the

time horizon is finite, we can interchange the limit and the integral, and as a result

the limit belongs to the set as well.
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It is easy to verify that the vector x = (p, u, I) such that

(t + k,-k(t)pk(t) Kk(t) (t) K (s)pi(t) ik (t) + i (t)p i (t) ui(t) = K Ii(t) = ik + ds i, t

is an element of Qk(X-k). [

We denote Y C X the set of collectively feasible strategy and state vectors for

both players:

Y = {X E X :x k E Qk(X-k), k = A, B}.

Lemma 10. Y is a convex, closed, non empty subset of X.

Proof. Convexity and closedness follow from the fact that sets X and Qk( -k) are

convex and closed.

It is easy to verify that vector x = (p, u, I) such that

ck(t)-k,-k(t) + a (t)3ipk(t) kt Kk(t)
,(t) _ a , ut =

p iB(t) A (t) - B'A(t)pA'B(t)' -

i t Kk(s) ds i, t

is an element of Y. [1

We denote Q: X F- 2 the mapping such that Q(x) = QA(xB) X QB(xA). Q(x)

represents the set of unilaterally feasible strategy and state vectors for both players

when the competitor keeps her strategy fixed at x- k.

The following lemma follows from Lemma 9.

Lemma 11. Q(x) is a non empty convex closed subset of X.

The following proposition is immediate.

Proposition 10. The following equivalence holds:

x e Q(x) X x E Y.
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Objective function

Let Ik the payoff function of player k. Note that, since the objective function depends

on the competitor's strategy, k depends not only on k but also on x-k. Therefore

I1 k is defined on set X and is real-valued. We recall that for x = (xA, xB) E X, we

have for k = A, B,

T N
nk(x) = (i(t)(a(t) _ ,k(t)pk (t) + pkk k(t)p k (t ) � (( (t))2

i=l

-hik(t)(l (t)) )dt.

Definition 1. A Nash equilibrium is a vector x = (xA, xB) E Y such that

nk(X) > nk(k, X-k) wVk E Qk(x-k), k = A, B. (5.6)

In other words, at a Nash equilibrium, no supplier can increase her profits by

unilaterally deviating from the equilibrium solution, when the competitor keeps her

strategy fixed.

Proposition 11. Vector x = (xA, xB) is a Nash equilibrium if and only if x E Y and

= ( A,1 ) E Q(x), nA(xA, xB) + nB(xA, xB) > HA(±A, xB) + IB(xA, ±B).

Proof. It is clear by adding (5.6) for k = A and k = B that the inequality above is a

necessary condition for x to be a Nash equilibrium.

For the reverse, suppose x E Y satisfies the inequality above for all x E Q(x) but it

is not a Nash equilibrium, i.e.

3k, k E Qk(x-k) such that nIk(xk, X-k) < Ik(k, X-k).
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Let y such that yk = Xk, y-k = x-k. Then clearly y E Q(x). Moreover,

nA (yA, XB) + nI(XA, yB) = jk(k, X-k) + n-k(xk, - k)

> nk(Xk, - k) + n-k(xk, X-k ) = nA(x) + nB(x)

which is a contradiction. [

We observe that the payoff function of player k may be formulated as follows:

nk(x) = -ak(x, xk) - 2bk(X-k, k) + 2Lk(xk)

where

* ak : E1 x E1 - R is the continuous bilinear form, symmetric and non-negative

along the diagonal such that

T N

ak(X, x) = | E ('(t)i(t)Pi(t) + ik (t)ui(t)ui(t) + h(t)Ii(t)fi(t))dt
i=l

* bk : E1 x E1 -* R is the continuous bilinear form such that

1T N

bk(x, x) = -2 f ,i' (0P(t)pii(t) dt
i=l

· Lk : El H * R is the continuous linear functional such that

T N
Lk(x) = 2 j E (ai(t)pi(t))dt.

i=l

Let a: E x E - R defined by

a(x,x) = aA(xA,xA) + aB(xB, B) + bB(xA, B) + bA(XA, XB)
T N

= |TE EN (i (t)Pik(t)ik(t) + k(t)u (t) (t)
i=1 k=A,B

+ h(t)Iik(t)I(t)- 1ki'(t)pk(t)i dt.

(5.7)
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Let L: E - IR the linear functional defined by

L(x) = LA(xA) + LB(xB). (5.8)

5.1.3 Quasi-variational inequality formulation

The following theorem reformulates the Nash equilibrium problem as a quasi-variational

inequality problem.

Proposition 12. There exists f E E and a linear operator A on E such that

a(x, ) = < Ax, >

L(x)= <f,x>

Vx, x E E

Vx EE

with

,0)f = 1 (.),..., (.), . .. ,0, 0 . . 0, 1 ( .)..., (.), O 0, 0,.

2\~~~212
^4 p7 1 .. . AN,

A(.)IA(.),., A( )A(.)

/BB)pB(.) I BAf )pA( ) N'OB )pBN(.) pNBA( )pA(. ),1 01 '- N 'N

B (.)U (.),...,7B(.)UB(.),

h (.)IJ (.), .*, h )IN

Proof. Follows from (5.7) and (5.8).

Theorem 9. [9] x E Y is a solution of (5.6) if and only if

a(x,x-x) < L(x - ) * E Q(x). (5.9)
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Corollary 8. x E Y is a solution of (5.9) if and only if

<Ax-f,x-x> <_ 0 VEQ(x). (5.10)

We observe that the problem is thus reformulated as a quasi-variational inequality

(QVI), since the set Q(x) in which the inequality must be satisfied depends on the

QVI solution x. (If that set was independent of x, we would simply have a variational

inequality.) The fact that the inequality is quasi-variational results from the fact that

the feasible strategy set depends on the competitor's strategy, i.e. that the game has

coupled constraints.

Properties

Definition 2. Operator v defined on V is coercive if and only if there exists real

A > 0 such that

v(x) > Allxll2 Vx E V.

Lemma 12. Under Assumption 4, operator a (and thus A) is coercive.

Proof. Let A > 0 a constant.

T N

a(x, x) - AIX112 [(iAA(t) -)(p(t)) 2 + (BB [](t) ())2

(pAB (t) + p,i A(t))piA(t)pB (t)

+ (f(t) - A)(UA(t))2 + (i(t) - )(UB(t))

+ (h(t)- A)(IiA(t))2 + (hB(t)- A)(Ii(t))2]dt.

Let

A1 = minmin inf h(t), A2 = minmin inf -yr(t).
k i tE[O,T] k i tE[O,T]

A sufficient condition for the expression above to be positive for all x E E is that
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A < A1, < A2 and the symmetric matrix (defined at fixed i, t)

}PA,A _ _A (fA,B+'B,A)
M = 4

(a,+ ,A) 3B,B _ A

is positive semi-definite for all i, t (we omit the product index and time variable for

the sake of clarity).

We notice that

M O = (Tr(M) > O and Det(M) > O)

3A,A + pB,B _ 2A > 0

( 3A,A _ A)(fB,B _ A) _ (A,B + PB,A)2 > 0

A< PA,A+PB,B{ <- 2
2 _ (pA,A + B,B) + PA,A-B,B 1_ 61 (AB + B,A)2 > O

The discriminant of the polynomial above is

= (PAA + PBB)2 _4(PAAB,B 1 (pA,B + PBA)2)
16

= (pAA _ B,B)2 + 1 (pA,B + pB,A)2 > o

so the polynomial has two real roots oAA+3B B± and only one, which we denote

, satisfies < A+BB2 ' The polynomial takes positive values below the smaller

root and above the larger root. Since we are interested in positive parameters A, we

obtain that

(A > 0 and M - 0)
A = A+B'B-- > 0

2

2

(pA,A _ pB,B)2 + (pAB + pBA)2 < (AA + p3BB)2

< A < pA,A+pBB _ V
2 4

1(pA,B + B,A)2 < 4AA 3BB
O< +< pA,A+pB,B _ 
0 < A A-2 4T
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which is satisfied under Assumption 4 and provided that 0 < A < A3 where

A3 = min inf _ (t) + () (PA(t ) -3Bt)(t))2 + (A B(t) + 1,A(t))2i tE[O,T+ 2 +).
As a result, by taking 0 < A < min{A, A2, A, 3 }, we obtain that

a(x,x)- XAllx 2I1 > Vx E E.

5.1.4 Existence of a Nash equilibrium

Definition 3. Q: X H 2x is lower semi continuous on Do if and only if

for a generalized sequence xn converging to x in Do, for every x E Q(x), there exists

an integer no and a sequence t,n E X converging to x, such that n E Q(xn), for all

n > n.

Definition 4. Q : X 2 is upper semi continuous on Do if and only if

for every generalized sequence (Xn, n) converging to (x, x) in Do x Do and

satisfying ,n E Q(xn), then in the limit E Q(x).

Definition 5. Q: X 2 is continuous on Do C X if and only if it is lower semi

continuous and upper semi continuous on Do.

Let S the selection map corresponding to the quasi-variational inequality (5.10):

S : X - E associates with any fixed vector u E X the unique solution v E E of the

following variational inequality:

v E Q(u), <Av - f, v- w >< 0 Vw E Q(u).

Definition 6. [99] A set Do is stable under selection map S if set S(u) is contained

in set Do whenever u belongs to Do.
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Theorem 10. [99] If

* a(.,.) is a coercive continuous bilinear form on the Hilbert space E

* f is a continuous linear functional on E

* Q is a map that associates with each vector u of the convex closed subset X of

E a non empty convex closed subset Q(u) of E

* There exists a Hilbert space Eo, which has a continuous injection -* into E,

and a non empty convex closed subset Do of Eo, with Do - X, such that

- Do is stable under S

- Q is continuous on Do

- S(Do) is bounded in Eo

then (5.10) admits a solution.

We are going to show that the assumptions from this theorem hold with Eo = E,

Do = X and the injection -* being the identity function.

Since the space E consists of bounded functions, it is immediate that S(X) is

bounded in E.

Proposition 13. X is stable under S.

Proof. Let x E X and let -_ S(x). Then x E Q(x) c X. As a result, S(X) c X. 

Proposition 14. The mapping Q is upper semi continuous on X.

Proof. Consider a sequence (n, n) converging to (x,x) = (p, u, I, p, , I) in X x X

such that tn E Q(xn), i.e. ,n E X and V n, i, t

-k a(t) + -k(t)p-k(t) ,k-
Pni\() • ji3t) + (t) - and I ,(t) = i(t)-a II(t+'k (t)p i- (t)p-i(t)
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where

Ax, ) =(P, U AP, u ,II
-A (A X,=A A , B I B, pn ) (Pn n Un v In Pn U n I

= (xA, XB) = (pA,A,IA,pB,B, IB)

X tAB = (A 2) A, A, IA, pB, jB B)

Since limpni(t) = p-k(t), limpn I (t), limUi(t, =(t) 4(t), and lim nki (t) =

[If(t), we obtain that I is differentiable and

t) = (t) (t) - (t) + 3kk(t)k(t) - k,-k(t)p-k(t) Vi, t

k(t ) +k,-k(tand pk(t) < ai(t) + 1 (t)Pk(t)and O"'\&kk(t)

As a result, x E Q(x). []

Proposition 15. The mapping Q is lower semi continuous on X.

Proof. Consider a sequence x,( = (xI, B) (p nA , pI , pB , IB) E X convergingUn n n , U n ,

to x = (xA,xB) = (pA, UA, IA, pB, UB, IB). Let X = (jA, B) = (pAA UA, AB,B B, IB) E

tAB n AA A -B -BQ(x). Since X is closed, x E X. Let n = (nA,B) (pA n A, B, B) such

that V n, i, t,

Uni (t) = ui(t){ p-k (t)

pi (t) + pkk (pk(t) -pk(t))l?' ,(t) il

if pk(t) = 0 and pn i(t) - p- (t) < O0

if (t) > 0 or pi (t) -pik(t) > O

= + ( ,(8) - i() + (_ - k-k ( )p-k ())dsi o

We want to show that in constructed above satisfies xn --+ and tn C Q(xn).

We clearly have In(0) = Io, un(.) > 0 and Ei u ,i(t) < Kk(t).
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We notice that

t

I (t)-i 4(t) = j(fpiX(s)((pn,i(s) _ pik(s)) k,-(s)(p ( -k()))d

= n[o, k(s)(Pn(S ) - p-k(s)))ds > 0
kn[o,t]

where Dik = t E [0, T] Pik (t) = 0 and pi (t) t O}

Therefore, In > I > 0.

Also, when pn,i(t) is equal to the expression pik(t) + ,k(t ) (pn-(t) -pi-k(t)), since

pn(t)- p-k(t) -- 0, we notice that for n sufficiently large pni(t) > 0 (either it is

equal to a positive term to which we add a term that tends to zero, or it is zero plus a

positive term that tends to zero). Clearly, when pn,i(t) is given by the first expression,

this still holds.

As a result, ,n E X.

Moreover, U ii -+ and since pk p- _- 0 we also have In -- I, fPn - p, so that

n .-- .

Finally, we notice that when Pi, (t) is equal to the expression pik(t)+ k(pn,i (t -

pi-k(t)), then

-k a (t) + (t)p, (t) pk(t) _ °/ k(t) + 3AS-k(t)p-k(t) < 0
t+7(t)pI= k (t)_Pn Okgk (t) pi - . O[k,k

Clearly, when n ,i(t) is equal to pik(t), then nki(t) = i(t) = 0 so the inequality

p-k aci (t) + ik-k(t)Pni(t)
pi(t) < k,k

g k(t)

it is also satisfied. As a result n, E Q(xn). E

Corollary 9. Q is continuous on X.

The following result then follows from Theorem 10.

Theorem 11. Under Assumption 4, there exists a Nash equilibrium to the determin-

istic problem under competition (5.6).
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5.2 Duopoly setting with uncertain data

In this section, we assume that all demand parameters are uncertain within the model

detailed in Chapter 2. We recall that for each supplier k, the realized demand for

product i is given by

d(t) = &i(t) _ ak (t)pk (t) + Xk, (t)p-k(t)

Denoting

k(t) _ (t)- , (t)Zi(tt
k k k(t) k(t)

k M (t ik, (t)

Y/k'k(t) _/?-k(t ) _ k,-k(t)a the sa v- it s (t)
se lits, if-k(t)

as the scaled variations, it follows that the constraints can be rewritten

e' (t) Vt,i,k

Oe'-(t) Vt, i,k.

Uncertainty set Fk contains all realizations

above.

(&k, pkk, pk,-k) satisfying the constraints

We aim at maximizing the nominal objective such that the constraints are satisfied

for any feasible realization of the data.

5.2.1 Robust counterpart problem

The best response problem faced by supplier k under uncertainty can be written as

follows (we omit the time argument for the sake of clarity in each of the terms below,
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that are all time dependent - except the initial inventory level):

p max) fT N
Pk(.),'uk() i/ %--- 1P Z=1~~i~

s. 'k =k _k kk _ k k k Vt E [0, T] Viip = ui - i +i · pi A- i Pi
N

ui < K, Vt E [O,T]

u, pi > 0, Vt E [O, T] Vi

(k, k,k pk,-k) E k,

jk k k + ik,kpk _ -iktkpk OT V
[i = i -- °t + Pi Pi -- P [0, T] i

~&k + ,,-kp-k
- , , Vt [0, T] Vi

lk > 0, t E [, T] i

ik (o) = ik(o) = i° i

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

Notice that the fluid equation (5.12) describes the evolution of the nominal inventory

level, while the fluid equation (5.13) describes the evolution of the realized inventory

level. The no backorder constraint (5.15) is a constraint on the realized inventory

level. The non negativity of the realized demand leads to an upper bound on prices

(5.14). Finally, as we discussed before, the objective function involves the nominal

inventory level.
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Theorem 12. The robust counterpart of Problem (5.11) is the following:

T N
ax (t)('(t) k,(t)tpi(t) + 3ik-k(tp-k(t)) k(uk(t))2

-h k(t)(Iik(t))2)dt

s.t. i2k(t) = u'(t) - a:(t) + pi'k(t)pk(t) - pi-(t)p-k(t) Vi Vt E [0, T]
N

i=lZ u (t) < K k(t) Vt E 
pk(t) < a~(t) - &i(t) + (fi'-k(t) - fik,-k(t))p~-k(t) Vi Vt e [,T]

P/3(t) + /; (t)
Iik(t) > Qk(t,p~(.),p-k(.)) Vi Vt E [0,T]

pk(t), ui (t) > 0 Vi Vt e [0, T]

Ik(0) = Iik Vi

where Q(t, pi(.), p-k(.)) is a minimum inventory security level given by (5.17), (5.18),

(5.19), and (5.20).

The problem written in this form is intuitive in the sense that the uncertainty

on the demand parameters translates into an upper bound on the prices and on

a minimum inventory level that are tighter than in the deterministic model (5.1).

As a result, even in the presence of data perturbation (as defined by the budget of

uncertainty and ranges of variation), these stronger constraints guarantee that the

bounds will be satisfied.

Proof. Similarly to the reasoning detailed in Chapter 4, we obtain that in the robust

counterpart, the price constraint (5.14) is written as

p(t) <e a~(t) - &i (t) + (ikk k(t) - ' (t))p i (t) i

p3ik(t) + i (t)

We observe that we may write the realized inventory level at time t as follows:

(t (t)- ( - y () k(

lk?(t) k (t) (zi () k(8) kfk(S))i&k(S)pk(S) + Yik(,)ki(,)
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where

t

Ik(t) Ik + (U() - () + ik()pik(S) _ Pi,-k( s) ds

is the nominal inventory level.

The no backorders constraint at time t indirectly involves the control decisions on

prices and production rates from time 0 up to time t, and as such, the budget of

uncertainty has an impact on it. We obtain the equivalent deterministic constraint by

seeking the feasible realization that makes the no backorders constraint most difficult

to satisfy (i.e. that yields the smallest inventory level). As a result, constraint (5.15)

is equivalent to

Ii (t) > Qk(t) Vi,t (5.16)

where Qlk(t) can be viewed as a minimum inventory security level that can be com-

puted via the following deterministic continuous linear program

Zk(.),y 'k (.),YI,' (.) J 
+yk,-k(s) ()p-k (s))ds

s.t. Zy(), yi'k(s), (s) E [-1,1] Vs E [0, t]

I' I1 < rt(t)
t

y' y?(s)lds < Oek(t)

t

lyki-k(s)lds < Ok,-k(t).

Notice that bQ(t) depends on the pricing strategies of both suppliers on [0, t] via the

objective function. To make this dependence clear, we will denote it by Q(t, pk(.), p-k(.)).
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Equivalently, after a change of variables, (2k(t, pk(.) p-k(.))=

max
zk( ),ykk (.) yk,-k( )i ', i ~', i (' ot

s.t. zk(t), y (t), yk,-k(t) [0,1] Vs E [0,t]

fzi (s) ds< rk (t)

Y (s)ds < E (t)

t' yp'k(s)ds i eesk(t)
gYir m(s)ds < I,-kl (t)

This problem separates into three subproblems, that are continuous linear pro-

grams, as follows:

Qik(t, pk(), p-k()) = Qik (t) + i2 (t, pk(.)) + k3(t, p-k()) (5.17)

with

il (t) = max
zk (.)

jt()()d
Zi (s)&i (s)ds

s.t. < i (t) < 1 s E [, t]jdt F(t)
Zi (s) ds < r (t)

o~~ 

Qk2(t, Pk()) = max
ykk(.)

t)p
0

s.t. O < y' k(t) < 1 Vs E [O, t]
t(s)ds 
o~~~~~~~~~~

k3(t,p-k(.)) = max
y,-k(.)

s.t.

t

0k,-k( )$k,-k(,) -k(s)d

0 < y-k(t) < 1 VS E [0, t]

ykk (s)ds < OeI-k ((t).
•o
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Notice that f2(t,pk(.)) depends on pC (s), 0 < s < t and 3 (t,p-k(.)) depends on

p- k(5), 0 < < t.

Under regularity assumptions (see Chapter 4) we have strong duality and the

respective dual subproblems are given by the continuous linear programs:

Qk' (t)= min
wk (t),rk (.,t)

s.t.

Qk2(t, pk(.)) = min
Oi (t),qi (, t)

s.t.

w(t)r(t) + r k(s, t)ds

wk(t) + rk(s t) > & (s) Vs E [0, t]

wk(t) > O

k(s, t) > Vs E [, t]

i (t)ei k(t) + qik ( t)ds

Okk(t) + qikk(s, t) > l' k()p k (S) Vs E [0, t]

ok (t) > o

qi(s, t) > O Vs E [O, t]

k (t, p-k(.)) = min
i (t),qi (s.t.)

s.t.

Okk(t)Ek,-k(t) + qik k(, t)ds
i i~~~~~

(5.20)

Ok' -k(t) + qk-k(S t) > ,ik k(s)p-k () Vs E [0, t]

ok k(t) > o

qi-k (s, t) > o Vs [O, t].

The uncertainty of demand thus translates into protection levels for the prices (via

an upper bound) and for the inventory levels (via a lower bound) that are stronger

than in the nominal case so that, even with some variation in the demand parameters

- within the introduced uncertainty constraints - the realized inventory levels will

remain positive, and realized demand will remain non negative.
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5.2.2 Properties of the minimum inventory security level

In Chapter 4, we show how each of the three dual subproblems can be solved. Even

though there is no closed-form solution in general, we show how to calculate the ob-

jective value of the dual subproblems as a function of the data - and the prices for

Qik2(t,pk(.)) and ik£3 (t,p-k(.)) .

Referring to that chapter, the reader may notice that the notion of effective bud-

get of uncertainty we introduced is validated. Indeed the robust counterpart involves

the actual value of the budget of uncertainty for each parameter only if the budget

of uncertainty at time t is smaller than t. Otherwise, the robust formulation does

not depend on it, and the security level requirement corresponds to the worst case

scenario on [0, t]. In the case where the actual budget of uncertainty does matter

(i.e. has a value smaller than t), then the security level is lower, thus easier to satisfy,

which makes the solution less conservative and yields a higher objective.

In particular, we note from Chapter 4 that

Qk(t Pik(.), P-k()) < &k(s) + kk(s)Pk(s) +k-k(s) P-k(s)) ds. (5.21)

Proposition 16. The minimum inventory security level £f(t, pk(.),pk(.)) is non

decreasing with time.

Proof. We prove this result by showing that Qk~, Qk2, and Qi3 are each non decreasing

with time. The proof for Qfk1 is similar to the one given in detail in Chapter 4 for the

minimum inventory security level in a monopoly setting. We show similarly that Q122

and Q3 are non decreasing with time. O

Proposition 17. The minimum inventory security level Qik(t, pik(.),p -k(.)) is non

decreasing with each budget of uncertainty rk(t), eOkk(t), eOk'-k(t).

Proof. We prove this result by showing that , Qk2, and QF3 are respectively non

decreasing with Ik (t), 0Ek (t) and Ek -k(t). We give below the detailed proof for Qk,
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and it is similar for ik2 and Qr.

Let rFk(t) such that F~(t) < rFk(t), and let (w(t), r(., t)) and (w'(t), r'(., t)) the respec-

tive optimal solutions of the dual subproblems, which we denote (D) and (D'), and

&Qk (t) and Qk' (t) the respective optimal objective values. Notice that (w'(t), r'(., t))

is feasible for (D), since (D) and (D') have the same feasible sets. Therefore

/t

Q (t) = w(t)rk(t) + r(s, t)ds

< w'(t)Fi(t) + r'(s, t)ds, since (w'(t), r'(., t)) is feasible suboptimal

< w'(t)r'k(t) + f r'(s, t)ds, since w'(t) > O, rk(t) < r'k(t)

= 2'k1 (t).

These properties make sense at an intuitive level since the more uncertainty in the

problem, the higher the protection level should be. Moreover, we observe that the

minimum inventory level is also non decreasing in the half-lengths of allowed ranges of

variation &k(.), /i9 kk(.) kk(.), which makes sense for the same reason. Furthermore,

the cumulative uncertainty over time can only increase, therefore the protection level

should also increase over time.

Proposition 18. The minimum inventory security level f,(t, p(.), p~k(.)) is convex

in pik(.) (and thus, by symmetry, in p -k(.)).

Proof. Let us, for example, show the convexity of Q2 (t, p(.), p-k (.)) in p (.).

Q (t, p(.), p-k(.)) is the sum of the objective values of the three corresponding dual

subproblems. Two of these subproblems are independent of p(.) (the ones addressing

uncertainty on respectively &' and ik- ). Therefore, it is necessary and sufficient to

show that Q f(t, pi(.)) is convex in pk(.).
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The subproblem involving prices pik (.) is

min
ok(t),qik(.t)

s.t.

skk(t)ek(t) + fo q, (s, t)ds

kk(t) + qSkk(S' t) > 3cikk(S)pk(S) Vs E [0, t]

ikk(t) > o

qkk(s,t) >0 Vs E [O, t].

Let p'(. ), Pi (.), A E (0,1) and p(.) = Ap/k(.) + (1 - A)pk2(.). We will use

superscripts 1, 2, 3 similarly to denote the optimal solutions of the corresponding

subproblems with input pI (.), pi 2 (.), p, 3 (.). Clearly,

Ak,k' (t) + qkkl' (S t) > ik;k (s)Apik (s) Vs E [0, t]

(1 - A)Okk2 (t) + (1 - )qk'k2 (s t) > ik(S)(1 - A)pk 2 (s) Vs E [0,t].

Adding these inequalities shows that Ai-'k (t)+(1- A)Ok'k2(t) along with Aqik' (., t) +

(1- A)qik'2(. t), is feasible for the subproblem with input p 3(.) (non negativity is

clearly satisfied). Since it may not yield the optimal objective value, we have

< (A6Ok' (t) + (1 - A)Okk2 (t))Ekk(t)

+ j(qik ' (s, t) + (1 - A)qi 2(s, t))ds

- AQk' (t,pk1 (.)) + (1 -Q (t,Pk ())

Corollary 10. For a fixed p-k(.), the feasible set of the robust counterpart above is

convex.

Proof. All constraints are linear except the minimum inventory security level con-

straint. This constraint can be written as Qk(t,pk(.),p-k(.)) _ Iik(t) < 0. Since

Qi (t, p(.), pi-k(.)) is convex in terms of the prices, the left hand side is convex in the

variables, which yields the result. [
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In this formulation of the robust counterpart, we have a deterministic fluid model

with no more variables than the initial problem. Nevertheless, the constraints are

no longer linear. However, we still have a convex optimization problem since the

objective to maximize is concave (quadratic) over a convex set.

5.2.3 Existence of a Nash equilibrium

We can show the following using the upper bound on feasible prices described in the

previous section.

Proposition 19. Prices pk(t) are bounded from above by p kma (t) =

(k(t) - &(t (k-k(t) + -k-k(t)) (k-k(t) - &yk(t))(3-kk(t) _- -kk())
(k k(t + f3 I(t))(k ,-k(t) + , 9-kk(t))-(p/ke (t) fk(t))(/zk (t) -i ))

In particular, all control and state variables are bounded. (The production rates

are bounded above by the production capacity rate, and the inventory level evolve

continuously on a finite time horizon from a finite initial value.)

Assumption 12. We assume that

N
(&k (t) + (^k,k k ^(t)+i..l t) + 4ik,-k (ti-k . t)) k 2 E (&i(t) + s (t)Pima(t) + '(t)p1 (t)) < Kk(t) Vt, k = A, B.

i=1

This assumption guarantees that the feasible set is not empty (see proof of Theo-

rem 13). More specifically, it ensures that the capacity level is sufficient to guarantee

the feasibility of the problem. Intuitively, the larger the range of allowed variation

for the parameters, the higher the security level for the inventory, and the lower the

upper bound on prices. To stop the inventory from decreasing and going below its

minimum security level, we can either increase production or increase prices. Since

the prices are bounded from above, the more uncertainty, the higher the production

rates will be required to be in order to satisfy such a guarantee. This is the reason

why we have to impose a minimum production capacity available. In other words,

if the production capacity level is too low, we are not able to immune the solution
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against too much uncertainty on data parameters.

Theorem 13. Under Assumptions 4 and 12, there exists a Nash equilibrium to the

general robust formulation.

Proof. We start by reformulating the robust counterpart problem.

The following lemma follows from the derivation of the robust counterpart by inte-

grating the dual subproblems into the main optimization problem.

Lemma 13. The robust counterpart for the best response problem faced by supplier

k (at p-k(.) fixed) can be written:

T N
max E (Pi(t)(k(t) - t)i ��(k(t) +p(t) ) -k k(t))

-h k(t) (Iik(t))2)dt (5.22)

s.t. (ik(t) = uk (t) - ,k(t) + P k'(t)p(t) _ k-k(t)pT(t) i t E [O T]

ik(o0) = ik Vi

N

Zu,(t) < Kk(t) t E [,T]

a"(t)- &(t) + (Pk-k(t) - k'-k(t))p-k(t)
pi"k(t) + ( '-(t) ,-

p/k(t), ui(t) > 0 Vi Vt E [O,T]

k(t> w(t)k(t) > wkk(t)Ek(t ) + 6k, k(t) + -(t) k(t)

+ j(r (s t) + qi (s, t) + qk((s, t))ds i Vt [0, T]

w k(t) + ri (s, t) > &k(s) Vi Vs E [, t] Vt E [O, T]

k0k(t) + qk'( s , t) > 1 k (s)p~(s) Vi Vs [0, t] Vt E [0, T]

Ok?-k(t) + qk'-k(, t ) Vi s E [0, t] t E [0, T]

wk(t), ok(t), okk(t) > 0 Vi Vt E [O,T]

rik(s,t), q (s,t), qi-k(s,t) > 0 Vi Vs E [0,t] Vt E [0,T].

Adding the constraint that prices must be lower than their maximum price leaves

the problem unchanged. After introducing new variables in order to reformulate the
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constraint involving an integral expression, we obtain the following:

Lemma 14. The robust counterpart problem can be reformulated equivalently as a

deterministic fluid model with linear constraints:

T Noma x f (pk(t)(Ck(t) _- ikk(t(t)t + ik (t)pk(t)) - (U(t))

-hk(t)(Iik(t))2)dt (5.23)

s.t. iik(t) = ui(t) - ai(t) + ,3ik(t)pk(t) ' ,-k(t)pik(t) Vi Vt E [0, T]

ik,(O) = Iik Vi
N

Eu k(t) < K (t) Vt E [O,T]
i=1

t) (t)- &k(t) + (ik-k(t) - k'-k(t))i-k(t) Vi Vt [0,T]
pikk(t + a(tk(t

pi (t) < PI (t) Vi t E [,T]

pik(t), uk(t) > O i Vt E [OT]

I >(t) > Wk(t)rk(t) + e ,k(t)E ,k(t) + (,-k(t),-(t) + Ri(t, t)

+ S'kk(t, t) + S,-k(t, t) Vi Vt e [0, T]

2w(t) + rk(s, t) > &k(s) i s E [, t] Vt E [0, T]

9kA(t) + qi k(s, t) > ik()pk(S) i Vs e [O, t] Vt E [O, T]

g-k(t) + qk-k(s t) > 1 ikX-k(s)pzk(s) Vi Vs E [0, t] Vt E [0, T]

zw(t), 9 k(t), ikk(t) > 0 Vi Vt E [, T]

R k(O,t) = Sik(O t) = Sk,-(O,t) = O Vi Vt E [O,T]

a 2 (s,t) = ri(s,t) Vi s E [,t], Vt [,T]

a (s,t) = q (s,t) Vi Vs E [0, t], Vt E [0,T]

a Si-k(s,t) = qi-k(s,t) Vi Vs E [0,t], Vt E [0,T]
ds

ri(s,t), q'k(s,t), qk-k(St) > O Vi Vs e [0, t], Vt E [0, T].

Note that the fluid equations as well as the constraints remain linear, even though
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there are more variables than in the nominal problem: only the size has increased,

but the complexity is of the same order.

We now prove Theorem 13.

Proof. We will show that the existence theorem (Theorem 10) used in Section 5.1.4

holds for this problem as well.

The variables space is now the space of vectors x = (xA, xB) with

Xk = ( (.), ui (.), Ii( w (.), (), jk ( (., , ., qk, qik( ) kk

Rk(.,) Skk(.,.), Sik k(., .), 1,...,N).

To ease the exposition, we will denote yk = (pk(.), uk(.) I(.), i = 1,... , N) and

Ak = (k, i = 1,...,N), where

Ak = (Wk(.), kk(.), k-k(.), r/k ( .,.) , q ik,k(., ), k,-k, .), Si' (-*= qi [., .), R, (.,) (., .), s?(., .))

so that xk = (yk, Ak).

By defining Xk as the set of variables xk that satisfy the constraints that are inde-

pendent from p-k, and X such that X = XA x XB, it is clear that X is convex

and closed. We notice that it is non empty by taking all variables equal to 0 except

r~(s, t) = & R(s), R'(r, t) = foT &(s)ds, and Ik(t) = Ij ° + Ri(t, t) Vi, t, k = A, B.

As previously, we denote Qk(i-k) C Xk the subset of all feasible strategy and

state vectors xk for player k including all constraints, given the strategy and state

vector 2- k of her competitor. Again, it is clear that for all ±-k E X - k, Qk(i-k) is a

closed and convex subset of Xk. We will prove that it is non empty by showing that

the solution (feasible under Assumption 12) such that Vi, t:

wk(t) = okek(t) = ok,-k(t) = O
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pk(t) _ q(t) - &(t) + (k-k(t)- k,-k(t))%Tk(t)
)k'k(t) + ~k(t)

r (s,t) = &(), qik (, t) = pik (s)pi (s) , qk(s 8 t) = i '-k(s)p i (s) Vs E [O, t]

R (r, t) = r (s, t)ds

o, ' (T, () X , qi (S t)ds, S ( t) q(, t)ds VT E [0, t]

u (t) = 2&/i(t) + 2I (t)pi (t) + 2 k(t)pi k(t)

i (, i + (U(S)_ (S) + pk'k(S)pik(S) _ ~k-k(S)P-k(s))dIk(t) - I,~°+ ju )- Q () + i -

belongs to the set Qk(X-k) for x-k E X - k.

Since x-k E X- k, ~pi-k(t) < p7-i(t) and therefore pi(t) < pi,(t).

Since both prices are below their maximum threshold, it is clear that under Assump-

tion 12, Ei ui (t) < Kk(t).

Finally, it is easy to derive that zI,(t) = &i(t)(t) + .i'k(t)P and since

Iik > 0 = Rk(, 0) + S'k(O, 0) + Sk,-k(O, 0), using inequality (5.21), the security level

for Iik(t) is satisfied.

We denote Y C X the set of feasible collective strategy and state vectors:

Y = E X: x k E Qk(x-k), k = A, B}.

Then clearly Y is a convex closed subset of X. To show that it is non empty, we

take the same solution as above except that both prices are set to their maximum

threshold. Using the same reasoning, this point is an element of set Y.

The objective function is unchanged, so all the properties we proved regarding it ear-

lier still hold for this problem.

The proof of upper semi continuity of Q can be adapted from the proof of Proposition

14 in a straightforward way.

Now let's prove that Q is lower semi continuous. Consider x, E X such that
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, x(E X) and E Q(x). We want to construct ,n such that ,n - and

for n large enough, , E Q(xn). We observe that the difficulty comes from the

inventory security level guarantee; it is straightforward to satisfy the constraints that

are involving directly the control variables.

Let's denote

mI(t, A) (t)rk(t)+Okk(t)nkk(t)+Ok'k(t)e -k(t)+ R (t, t)+ Si'k (t, t) + S-k(t, t)

the minimum security level for the inventory of product i at time t for supplier k. The

constraint guaranteeing no backorders is written Ik(t) > m~I(t, A). Note that mik(t, .)

is a continuous function.

First, we notice that if ik(t) > mik(t, A) Vi, t, then for any xn such that n, - x, we

will have Iki(t) > m(t, An) for n large enough since in(t) 1(t) and mik(t, n) -

mi(t, A). It is therefore easy to construct xn such that n - x and xn E Q(xn) in

that case, so let's assume we have a time t and a product i such that /ik(t) = mi(t,A)

for supplier k.

To prove the result, it would be sufficient to construct feasible xn such that in par-

ticular

ik(t)- t) > Mk (t, Mi (t, A),

(in addition to other feasibility constraints) i.e.

t
(fi(t) -uk (t)) + (l3i (s)(pn,i(s) Pik k(s)) k,- k ()(pk(S) -k(n'iu~, i (t> -/3 (s)(p,i s) -, p -(s)))ds 
-ki(t)i- k(t))r(t) + (k:k(t) ik, k(t))E k,k (t) + (-k(t) - ()) ,-k

+ i(S, t) - r(s, t) + t) - ( t) + t) - (, t))ds. (5.24)

In order to satisfy this inequality, we should attempt to choose ,n such that tn -

-k - -kui, Pn ,i -p are as large as possible (while converging to zero) and mi (t, An)-mi (t, A)

as small as possible (while converging to zero). Our goal is thus to construct An by

modifying A (this modification converging to zero) while decreasing its value is pos-

sible, and satisfying all feasibility constraints.
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Note that for a given x and (in particular their price components), the vector A

that minimizes mr(t, A) under the constraint x E Q(x) is obtained if A is formed by

the variables that solve the dual subproblems presented in section 5.2. Let's denote

ik* (t, k(.), p-k(.)) the minimum value of the security level obtained with the solution

above. Let Af*(t, pk(.), p-k(.)) the corresponding components (we write explicitly the

arguments for the same reason as just explained).

Let > 0. We claim that givenx, - n x and n -- , if Aik $ Ak(t,pk(.),p-k())

(and thus m(t, A) > Qi (t,k(), p-k(.))), there exists An.i - Ai such that for n large

enough, m\(t, m i (t, mn) (t, A) - mn,i for some positive mn,i that converges toward

zero, and such that Ani satisfies the feasibility constraints depending on Pn,i and pnk

for n sufficiently large. To see this, notice that A is not the optimal solution of the

continuous LPs shown above; therefore the linearity of the problem implies that it is

possible to perturb its components (in a way that converges to zero at n -- o) while

decreasing the objective value. Furthermore, the linearity of the constraints satisfied

by A that involve prices pk and pi-k implies that it is again possible to perturb the

components of A (in a way that converges to zero at n -- oc) to make the perturbed

solution feasible with i and pk since - x and y

Moreover, the only situation in which we cannot choose ik strictly greater than

Uik is when the capacity constraint is tight under uk and the inventory security level

guarantee is satisfied with equality for all products. Indeed, otherwise we can in-

crease infinitesimally the production rate by shifting production from a product that

has a non tight inventory level constraint (shifting production from that product will

slightly decrease its inventory level, but as long as the security level constraint is not

tight we can do it infinitesimally and remain feasible).

Similarly, the only situation in which we cannot perturb pik by increasing it while

remaining feasible is when the price is already at its maximum (for fixed p-k).

Let's define on [0, t] (omitting the time argument for the sake of clarity) for some
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e'>O

- if E ji, = Kkand 1jk(t) = mj(t, A) VjUi =
i2- + mnie' else

k(t)- ik((t)+( ,' ) (t))p (t) f -k _(t) -- (t)+('(- '-(0t))p "(t)
k pkk(t)+ik k (t) i Pikk'(t)+i? k(t)-kk --k k i/ elseP-ik+ mnie e

_lk _ - J Af(t, pkn ( ), p n
k) if Ak = *(t,pk(),p- k)-- { ( else.

We observe that if for some product i, either in i or -nji is given by its second expres-

sion on a domain with positive measure, or if k i is given by its second expression,

then the inequality (5.24) that we want to prove can be rewritten e"mk i + Ani > 0,

with e" depends on , c' and the measure of that domain. If An > 0, taking mn i = 0

will satisfy the inequality. Otherwise, we take mni = -An 

So now let's suppose that for all products i, ui and i are given at all times by

their first expression and that so is An ,. Therefore we are supposing that at time t,

the production capacity is tight, that for all products the inventory security level is

tight, and for some product i prices are equal to their upper bounds, and the variables

introduced by the dual subproblems are at their optimum. We will show that this

situation is impossible by displaying a contradiction.

In this case, the fact that the inventory security level is tight can be rewritten as

~,~, _ &~,~) (s - (S) + ^k ksp (s)Ik° + J(s - i ±)( sk( s ) (s)(s) + (Pis) - i (s))Pi
pk(s>) + fl (s)

k( s) -&') + k(s)pk-k(k(s))ds) 

( ai(s)- &k(s ) + (k-k(s)- '-(s))p- (s)i~~~t~,,k(9) + ~k?(8) E 
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k k(s) + fzk (S) \ k)

+l ,-k (s)p- k(s)) ds

which (after calculations) implies that

Ik + f ((s) - 2&(s) - 2k k(s)pi (s)

kk\ _ 2ai \31 \2 'kmk+ }· (is 2 ai(s) _ &(S) + p,(S)_ - /3-k(S))P S))LSNote that this expression is lower bounded byIik°+ ( (s) -2& (s) -2 S'-k (s)p -2(s) k2 (s)pk (S)ds

which, after adding over all products, and under Assumption 12, since the capacity is

tight, is lower bounded by E-N1 IkO > 0. This is a contradiction since the right hand

side in the last equality is negative. O

5.3 Formulation in discrete time with uncertain

data

5.3.1 Formulation and properties

We rewrite the best response problem for player k by dicretizing time. To improve the

exposition, we consider without loss of generality a time step length of 1 and assume

that T is an integer, such that the discrete time instants are t = 0, 1,...,T. The

first decisions are made at time t = 1. For each player, we now have 2NT control

variables (prices and production rates for all products at all times) and NT state

variables (inventory levels).

We obtained in the previous section (see Theorem 12) the robust counterpart prob-
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lem, and we extend to the following formulation in discrete time (where the con-

straints must be satisfied for t = 1,... ,T and, except the capacity constraint, for

i= 1, . . .,N):

T N
max ((t) -( , (t)pi (t) + ;? (t)pi (t)) - (i (t))k ty~.~ Y ~k y (pi -± -k ku)=

ik(t),pk(t)'Vit t=l i=l

-h (t)(Ik(t)))2 (5.25)

s.t. Iik(t) Iik(t_ 1) = uki(t) -ak(t) + ,i (t)Pik(t) (t)P (t)

i=l
+ qk (st k(P,"c(s) i (t)1.(tt)Pk a() k(t k(t) q ik(k(t+ (ikk(t) ik -k(t))P (t)Pi - dikk(t) + i (t)

ki (t), uik(t) > 0

i (t (t)(t) > k(t) k,t) (t)(t) + k(t) 'k(t) + -(t)-k(t)
t

+(rik (s, t) +qi s, t) +qi (s, t))
S=1

cik(t)+ i(St) > k, s= ,.,t S 

0 '- (t) + qi ' (s, t) > ikpk(S s), s = 1, . t

kI(t), ok '(t), oI '(t) > O

rk(S,t), qk(s, t), qk-k(s t) > s= 1... ,t.

This problem was shown to have a simpler equivalent formulation (where the

constraints must be satisfied for t = 1,..., T and, except the capacity constraint, for

i = 1, ... , N):
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T N

um(tat),Vit E E p (P (t)(e(t) - ikk(t)p(t) + ,3k-k(t)p -k(t)) - (t)(u(t)) 2uk (t)Vi t (Pit=l i=1

-h k(t)(Iik(t))2) (5.26)

s.t. Ii(t) - Ii(t- 1) = uk(t) - k(t) + pik(t)pk(t) - '-k(t)p k(t)

Ii (O) = i
N

i=1

(t) (t) - &(t) + (ik-k(t) - -k(t))p-k(t)
Ik(t) >
Pi - ik '"(t) + ik' (t)

Iik(t) > Q(t, pk(.),p-k(.))

uk(t), p (t) > 0

where Qk(t, pk(.), p-k(.)) is extended in discrete time from the expression given in

Section 5.2, and was shown to be convex in pk(.) and in p-k(.), non decreasing with

time and with each budget of uncertainty as well as each half length of range of vari-

ation.

We will first briefly recall some properties of the problem that were shown in

Section 5.2 in a continuous-time setting. We extend them to a discretized time setting.

Let's denote xk the vector of control and state variables for supplier k with 3NT

components

Xk = (p (t), (t), ik(t), t= 1,...,T, i= 1,...,N).

We denote x = (xA, xB) E 6NT. We will use the usual norm on this vector space.

We recall that the formal definition of the set Y of jointly feasible strategies and the

product Q(x) of feasible sets of strategies for a player when her competitor keeps

strategy x-k:
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xk = =(p,u,I) E R3NT: u,(t), p,(t) > O Vi, t
N

EUi(t) < Kk(t) Vt
i=l

Ii(o) = ik Vi }

X = X A X XB C R6NT

Qk(x-k) = {x = (pe Ux I) EXk: p,(t) < °c4,(t) + i -k(t)pk(t) i, tQ'(z - {=(=X =(p,U,I)EXk: p(t) • lk(t)
- Oik?(t)

Ii(t) - Ii(t - 1) = ui(t) - a (t) + P, (t)p (t) - ik ,-k(t)plk(t) Vi, t

Ii(t) > Q2ik(t,pk(.),p-k(.)) Vi, t }

Y = {x = (xA, xB) E X: xk E Qk(x-k), k = A, B}

Q(x) = Q(XA, B) = QA(XB) X QB(XA).

Notice that we have

Q(x) = Q(xA, xB) = {z = (zA, zB): (zk, X- k ) E Y, k = A, B).

Clearly, x E Q(x) : x E Y.

Lemma 15. The set Y is convex.

Proof. This is clear under formulation (5.25) since all constraints are linear. In formu-

lation (5.26), the result follows from the convexity of Qik(t,pk(.), p-k(.)) with respect

to pk(.) and p-k(.). [

We also showed in Section 5.2 (and this remains correct in discrete time) that

jointly feasible prices are bounded from above by pimax (t) =

(af(t) - &~(t))(f3T'- k(t) + (t) + ((t) - k(t))(/3k'-k(t) - ,'-k(t))
(/3kk(t) + kk(t))(/3k-k-k(t) + 3-k'-k(t)) - (3ik'-k(t) - ,-k(t))( -kk(t) - kk(t))
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Production rates are bounded from below by zero and bounded from above by the

capacity rate. Prices are non negative, and as we just showed, they are also bounded

from above. Also, inventory level start from a finite value and can be expressed as

a linear combination of prices and production rates. Therefore, since the horizon is

finite, they are bounded from above as well. As a result, set Y is bounded. It is also

clearly a closed set. Therefore the following corollary holds.

Corollary 11. Y is a compact set.

We prove in Section 5.2 that under Assumptions 4 and 12, Y is a non empty set.

We denote the objective function for supplier k, when supplier -k has a strategy

-k as

T N

k(k,k) (P (t) ( (t)- (t)pk (t) + k'- (t)p (t))- (t)( ( ))
t=l i=1

-h (t) (Ik (t))2)

We observe that IIk(x) is continuous with x, and is concave with xk for a fixed - k.

Example 1:

We illustrate the sets Y and Q(x) on a simple example. Let's simplify our problem

and consider the case of one product and one time period in the space of prices only.

We ignore the production rates and inventory levels. The goal is then to maximize

revenues so that price and demand are non negative. The best response problem for

supplier k is then written as follows:

max pk(a k - 3pkkpk + pk,-kp-k)
pk

0 < k < a + k,-kp- k

k,k
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We then have

Q(p*A p*B) = { (pA pB) > O pA < a +AA pB < + 3p }
,f3AA 1 3B,B

and

y { (pA, B) > 0: A - A,ApA + /A,BpB > O aB _ PB,BpB + B,ApA > 0}.

See Figures 5-1 and 5-2 for an illustration.

aQ + A 3 *1pi1

Figure 5-1: Example 1 in the space of prices: set Q(p*A,p*B)
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pB

caB

j;1rH

aA 3 Bt+, BalBOA
I DSAI LCAI 3/Bl,

Figure 5-2: Example 1 in the space of prices: set Y
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5.3.2 Nash equilibria

We recall the definition of a Nash equilibrium.

Definition 7. A Nash equilibrium is a vector x = (xA, xB) E Y such that

IIk(xk, -k) > nHk(k, X-k) Vk E Qk(x-k), k = A,B. (5.27)

In other words, at a Nash equilibrium, no supplier can increase her profits by

unilaterally deviating from the solution.

The following existence result was proven by Rosen [111] based on Kakutani's fixed

point theorem, using the facts that the joint strategy set is closed, convex, bounded,

the payoff function of a player is continuous in all arguments and concave with the

player's strategy vector. In particular, it holds for a 2-person game.

Theorem 14. [111] An equilibrium point exists for every concave n-person game.

We introduce the Nikaido-Isoda function

(x, Z) = E ( I(z.Xk) _Hk(Xk)), X-) x, Z E NT
k=A,B

Notice that if x E Y, z E Q(x), this expression represents the sum of the changes

in the players' payoff function when they change unilaterally their strategy and state

from xk to zk while the other player keeps strategy and state x- k.

In the expression below we omit the time argument in order to ease the reading.

T N
~ E~ E E[p-i (aik i pkk + k,-kp-k) kk 2 _hk 2

t=l i=1 k=A,B

pk(Ck - kp + /3Pkp-k) + yku-k2 hkIC2]i pi Pi + i i ) + ikuik + hii
T N

E [(k + p ik kP )(p - p ik ) -
ikkk(p k 2 _ k2

t=1 i=l k=A,B

-Yi (Ik2 -U)_ h(Iik 2
- ik2)
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We observe that Ob is a continuous function in each one of its arguments.

It is clear from the definition that 4'(x, x) = 0 V E R6NT.

Consider a fixed x E Y. Since x E Q(x), we have

max ,O(x, z) > 0, max 4'(x, z) > 0.
zEY zEQ(x)

We now introduce another characterization of a Nash equilibrium.

Proposition 20. x* E Y is a Nash equilibrium if and only if

max Ob(x*, z) = 0.
zEQ(x*)

Proof. Let x* a Nash equilibrium and z E Q(x*). By definition of a Nash equilibrium,

since (zk, x*- k) Y, k = A, B, we have nk(zk, x *- k) - Ik(*k, *- k) < O, k = A, B.

Summing these inequalities over k = A, B leads to O(x*, z) < 0 Vz E Q(x*). Since

x* E Q(x*) and 4'(x*,x*) = 0, we have maxZEQ(X*.) y(x*,z) = 0.

To show the reverse, let's assume that x* E Y is given and maxzEQ(X*) O(x*, z) = 0,

and suppose x* is not a Nash equilibrium. Then there exists ko and zko such that

(zko, x- k o) Y and

nko (zko, *-ko) - ko(2*ko, x *- ko) > 0.

Let z* such that z*ko = zko and z*- k = x- ko. Then z* Q(x*) and

V(x*,z*) = Znk(z*kx*-k) _ n.k(X*X*-k)
k

= rIko (z*ko,X*ko) - ko(x*ko,x*-ko) + E nk(z*k, X*-k) - k(x*k, X*-k)

k:ko

= nko(zko *-koo)_ nko(X*ko, X*-ko) + ' jjk(z*k, X*-k) - k(x*k,x*-k)
koko

= IHko(zko, X*-ko) _ ko(X*ko, *-ko)

> 0
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which contradicts maxzeQ(Xz) 4,(x*, z) = 0.

In other words, we showed that x* a Nash equilibrium if and only if

x* = Arg max IIA(zA, xB*) + IB(xA*, zB).
zeQ(x*)

This property presents the advantage of combining into a single condition the usual

definition of a Nash equilibrium that involves conditions for each player. Note that

the set we are maximizing over depends on x*.

Example

As an illustration, consider Example described in the previous section. In order to

determine the Nash equilibria using the traditional definition, we solve for k = A, B,

the following optimization problem (assuming p-k fixed):

max pk(ayk -_ k,kpk + pk,-kp-k)
pk

.t. 0 <k < ak + fk,-kp-k
tOk,k

which yields
*k + k,-k P-k

Therefore a Nash equilibrium is solution to the following system of two equations

with two unknowns p*A, p*B:

A a A + 3A,Bp*B B a
_ + 3 BAp*A

2A,A - 2pB,B

This system has a unique solution:

p*A _ 23BI B aA + PA,BB p*B _ 2PA,AaB + PB,A A
4pfA,AfB,B_ pA,BB,A' 4AApB,B _ PA,B3B,A

We conclude that there exists a unique Nash equilibrium p* = (p*A,p*B) as given

above, that is located in the interior of Y and in the center of the rectangle repre-
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senting Q(p*).

We could obtain the result similarly using Proposition 20, imposing (p*A, p*B) as the

solution of:

max pA(aA -_ A,ApA + A,Bp*B) + pB(aoB _ B,BpB + pB ,Ap*A)
pA,pB

< A + /ABp*B
s.t. 0 pA _ A<

~ ,A

<aB +B,Ap*A
O p B < / B,B

Indeed, the problem is equivalent to the two subproblems that were solved using the

traditional definition.

In this example, the Nash equilibrium is unique. However, as we will illustrate, this

is not necessarily true for a coupled constraint game.

5.3.3 Normalized Nash equilibrium

Definition and illustration

We now introduce normalized Nash equilibria as a particular case of the ones defined

by Rosen [111].

Definition 8. We will refer to x* as a normalized Nash equilibrium if and only if

max 0(x*, z) = 0.
zEY

In other words, in this chapter, x* is a normalized Nash equilibrium if and only if

x* = Argmax IIA(A, XB*) + I B(xA*,ZB).
zEY

Note that in this definition the maximum is taken over Y, and not Q(x*) like for a

Nash equilibrium. This means that we consider responses that are jointly feasible,

and not responses that are unilaterally feasible given the current competitor's strategy.
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Example

In Example 1, the normalized Nash equilibrium (p*A, p*B) is determined as the solu-

tion to :

max
pA pB

s.t.

pA(aA _ pA,ApA + /3A,Bp*B) + pB(aB - pB,BpB + PB,Ap*A)

aoA -_ A,ApA + A,BpB > 0

aB _ 13B,BpB + PB,ApA > 0

pA, p _> 

This problem does not decouple into two subproblems here, because there are con-

straints that involve simultaneously the controls of both players (coupling constraints).

We can solve and obtain the solution that is the unique Nash equilibrium presented

in the previous section.

Lemma 16. [111] A normalized Nash equilibrium is a Nash equilibrium.

Proof. We give the proof for an arbitrary number of players.

Suppose x* is a normalized Nash equilibrium but not a Nash equilibrium. Therefore,

3ko, ko E Qk°(x*-ko) : rko(zko, X *- k ) > Ik°(X*ko, X*-ko).

Notice that zko E Qko(x*-ko) implies (zko, X*- ko) E Y.

Let z* such that z*k = zko, z* - k o = x *- ko. Then z* E Y and

O(X* Z*) = (nlk(Z*k, X*-k) _ k(X*k, X*-k))

= E (Iz* x* k) - nk(x*k, X*k))+ Iko(z* ko, X*ko)- lko(X* ko, x*ko)

k3ko

= E (rk(X*k, X*-k) - k(X*k X*-k))+ ko(ko, Xko) + o- Ik-(X*ko, X*-ko)
koko

= IIkO(ZkO, X*-ko) _ IkO(x*kO, X*-ko)

> 0
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which contradicts maxzEy +(x*, z) = 0.

As a side remark, Rosen [111] showed that the converse is true when the feasible

strategy set is not a coupled constraint set, i.e. when the feasible strategy of each

player is independent of the competitors' strategies. For a coupled constraint game,

a Nash equilibrium is not necessarily a normalized Nash equilibrium (when there are

multiple Nash equilibria).

The normalized Nash equilibrium can be interpreted qualitatively as the Nash

equilibrium where the coupling constraints have the same shadow price (or Lagrange

multiplier) in the best response problem faced by each player. In other words, the

marginal profit change per unit change of the right hand side of a coupling constraint

is the same for the two players (when the constraint gets tighter, i.e. harder to satisfy,

each supplier observes the same profit loss after re-adjusting her strategy).

In this sense, the normalized Nash equilibrium may seem "fair", since both players

contribute equally to the global constraints, relative to the marginal profit loss. As

a result, this Nash equilibrium may be the most desirable to attain. Moreover, in

some settings, couplings constraints may be due to social requirements that a central

authority wants to impose, but that players have no direct incentive to achieve. It

is therefore of interest to design a way to give incentives to the players in order for

them to reach the normalized Nash equilibrium, assuming that they will ignore the

coupling constraints, and thus they participate in a decoupled game.

To this end, Haurie ([74], [75]) presents a tax scheme that modifies the payoff functions

and leads the decoupled game to have as a Nash equilibrium the original normalized

Nash equilibrium, and achieves the coupling constraints. Indeed, the common multi-

plier (or shadow price) to a coupling constraint can be economically interpreted as a

Pigouvian tax that modifies the agents' profits if this coupling constraint is violated,

and that induces them to satisfy it. After introduction of this tax, the game is non

cooperative and decoupled. In this thesis, the normalized Nash equilibrium is calcu-

lated by assigning the same weight to the two players. Therefore, the authority that

imposes the taxes treats the two players in the same way and as equally responsible
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of the burden of achieving the coupling constraints.

The tax is designed such that, assuming the agents solve a best response problem

ignoring coupled constraints, and considering only non coupled constraints, the Nash

equilibrium corresponds to the normalized Nash equilibrium under the presence of

the coupled constraints. This tax is proportional to the amplitude of violation of the

coupled constraint, with a coefficient of proportionality that equals the common value

of the shadow price for this constraint at the normalized Nash equilibrium.

In this thesis, the coupled constraints for a player are the non negativity of her

inventory levels and of her demand rates (that imply an upper bound on her prices).

Observe that the coupled constraints faced by a given player's best response problem

do not appear in the competitor's best response problem. However, a Nash equilib-

rium must be jointly feasible, and therefore satisfies both sets of coupled constraints.

As a result, adding to player k's best response problem the coupled constraints from

the competitor's best response problem leave the set of Nash equilibria unchanged.

The normalized Nash equilibrium is then the Nash equilibrium that shares equally

the burden of satisfying each one of those coupled constraints, i.e. keeping inventory

levels and demand rates of both players, all products, at all times, non negative.

Remark:

Rosen [111] introduced a more general definition of a normalized Nash equilibrium,

where the competitors do not share equally the responsibility of achieving the coupling

constraint, but do so according to some given (arbitrary) weights. Specifically, he

assumes as given the weights rk for player k. The corresponding normalized Nash

equilibrium x = (xk, x- k) is then the solution of:

x = Arg max rAnIA(zA, xB) + rBIB(xA, z3 ).
z=(zk,z-k)EY

This normalized Nash equilibrium presents the following property: the Lagrange

multiplier vectors AA and AB (with dimension m) of the m coupling constraint hj (x) <
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0, j = 1,..., m in each of the two best response problems faced respectively by A and

B, satisfy

rAAA = rBAB = A0,

where AO is a vector of dimension m.

The tax scheme is then as follows: if the jth coupling constraint is violated (hj (x) > 0),

we impose to player k a tax Tkh(x) proportional to the amplitude of violation, for

k = A, B. The coefficient of proportionality is defined by k = k = a. Therefore

the taxes are different for the different players in general. Observe that as the weight

rk for player k increases, player k's burden of achieving the common constraints

decreases with respect to the other player.

Discussion and insights

To understand the notion of normalized equilibrium more intuitively, we put it into

perspective by comparing it to other types of equilibria or optima. We recall

* XNE is a Nash equilibrium if and only if

XNE = Arg max HA(zA,Z XNE)+ nB(NE, B).
zCQ(XNE)

This means that at a Nash equilibrium, no player has an incentive to unilaterally

deviate.

* XNNE is a normalized Nash equilibrium if and only if

XNNE = Arg max nIA(zA, XNNE) NR (xNE, z).
zEY

Definition 9. The system optimum is defined as

Xso = ArgmaxlA(zA, zB) + nB(ZA, zB).
zEY

The system optimum corresponds to the solution that the players would choose if

they were to fully cooperate, and aimed at maximizing the overall profits instead
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of having each player maximize her own. Another way to interpret it is to imagine

that a central authority has the power to assign decisions to the players, and aims

at maximizing the global objective function, that is the sum of the players' payoff

functions.

In Example 1, we can determine the system optimum by solving

max pA(aA - pA,ApA + PA,BpB) + pB(aB _ PB,BPB + pBApA)
pA pB

s.t. oaA _ 3A,ApA + 3A,BpB > 0

aSB -_ B,BpB + 3B,ApA > 0

pA, p > 

To simplify the calculations, let's focus on the symmetric case: pA,A = B,B =

/, 3A,B = /3 B,A = 3', aA = OB = a. In that case the unique Nash equilibrium

(and normalized Nash equilibrium) is PN = E = -. "

At the system optimum, by symmetry, psA = PBo is the solution to

max p(c - ( - )p)
P

s.t. a - (- ')p > O

p0

which leads to pAo = pBo = i t- > pk E. In particular, the system optimum is not a

Nash equilibrium and is not the normalized Nash equilibrium.

Definition 10. A Pareto optimal point is a solution xp o E Y such that

nA(Z) > nHA(XPO) * nB(Z) < nHB(xPo).

In other words, at a Pareto optimal point, it is impossible to increase one player's

payoff without decreasing another player's payoff. This notion is used to determine

solutions that are socially desirable. Indeed, a point that is not Pareto optimal is
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never a good outcome, since it is possible to select another solution that is strictly

better for a player, and leaves the other player indifferent or better off as well.

Clearly, the system optimum is Pareto optimal. A Nash equilibrium is not necessarily

Pareto optimal.

For example, consider the Prisoner's dilemma problem where players (A,B) receive

penalties as given in Table 5.1: (xk = 1 means that k admits the crime, xk = 0 that

she denies)

XB = 1 xB = 0
A = 1 (3,3) (8,0)

x = 0 (0,8) (5,5)

Table 5.1: Prisoner's dilemma penalties: first case

In this example, xA = xB = 0 is the unique Nash equilibrium, with penalties (5,5).

The system optimum is xA = xB = 0 with penalties (3,3).

All points are Pareto optimal except the Nash equilibrium, since the system optimum

strictly dominates the Nash equilibrium.

Let's now consider a modified version where the penalties are given in Table 5.2:

B -1 XB = 0
xA= 1 (2,6) (8,0)

x = 0 (0,8) (5,5)

Table 5.2: Prisoner's dilemma penalties: second case

xA = xB = 0 is still the unique Nash equilibrium, with penalties (5,5). The three

other solutions are system optima. All points, including the Nash equilibrium, are

Pareto optimal.

Notice that if we change the penalty (2,6) above to (1,6), xA = xB = 0 is still the

unique Nash equilibrium, xA = xB = 1 is the unique system optimum, but all points

are still Pareto optimal.

Therefore, a Nash equilibrium may or may not be Pareto optimal, the system optimum
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is always Pareto optimal, and there may be Pareto optimal points that are neither a

system optimum nor a Nash equilibrium.

Example

We illustrate these notions on another example inspired from [111]. Figure 5-3 sum-

marizes the results for that example.

Example 2:

Consider two players A and B who must decide their respective strategies x and y in

R subject to the non coupling constraints x > O, y > 0 and the coupling constraint

x + y 1, with payoff functions

nA(x, y) = -x 2 + y, nB(X y) = _y2 _ xy.

In this example,

Y = {x, y 0 : x+y 1)

while

Q(x°0 , y0 )= [m(y 0 ), o) x [m(x), oo),

where rn(z) = max{O, 1 - z.

Nash equilibrium :

WVe first determine the Nash equilibria, by deriving the best response of each

players. For a fixed (x° , y0 ) E Y, we solve for A:

max HA(x, yO) = 12 + yO0
X 2

s.t. x > 1-y

x>O

We dualize the coupling constraint x > 1 - y by introducing the Lagrangian
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Figure 5-3: Example 2: illustration of jointly feasible set, set unstable under the best
response function, Nash equilibria, system optimum, normalized Nash equilibrium,
and Pareto optimal points
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multiplier AA > O. The Lagrangian function is

LA(x, AA) = _x2 + xyO
2

and it is maximized over {x: x > 0} for

AA+ yO
X= C

O

if AA > _yO

if AA < _yO

The complementary slackness condition leads to

* if Y < , then x = - y, AA = 0 andlA = (yO)2

* if yO > , then x = yO, AA = 1- 2y° and iA = (1 - y)( 3y- 1

Similarly, we solve for B:

max iiB(xO, y) = _y2 _ Oy

s.t. y > 1 -x °0

y_0

We dualize the coupling constraint y> 1 - x° by introducing the Lagrangian

multiplier AB > 0. The Lagrangian function is

LB(y, AB) = _2 _ xOy + AB(xo + y

and it is maximized for

y= 2

0

- 1)

if AB > x°

if AB < X °

The complementary slackness condition leads to

* if x°0 < 1, then y = 1 - x ° , AB = and r B = 0

* if x° > 1, then y = 0AB = 2 - and B = - 1.
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As a result, (x, 1 - x) is a Nash equilibrium for all x E [, 1].

We easily derive that at the Nash equilibrium (x, 1 - x) for some x E [, 1],

AA = 2x-1

HA(,- 1 ) = X 2
B = 2-

AB = 2-x

IIB(X, 1 - X)

HA(X,1 _-X) + B(X, 1 -X)

= x-1
3 2

= 2x-1-x 2 .

In particular, the Nash equilibrium that yields the maximum joint profits (equal

to ) is (, ).

We also obtain from this analysis that the best response to (x°, y0) E Y is

BR(x°, y) =

(yO, O)

(yO, 1 - x ° )

(1 - y°, O)

(1 - yO, 1 - x ° )

In particular,.

BR(xo,y) ( Y (O<y <l x°+y° >l, y°< x°).

We denote Z= (x,y): O < y <1, x + y > , y < } the subset of points of

Y that have a best response outside Y. We say that set Z is not stable under

the best response function. Clearly, a Nash equilibrium is not in set Z since it

is a fixed point of the best response function.

Normalized Nash equilibrium:
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if x° < 1,

if x °0 > 1,

if x° < 1,

0 > 1
y- 2

> 1

0< 1

0< 1



Let's now find a normalized Nash equilibrium by solving for a fixed (x°, y) E Y

max IIA(x yO) + IIB(x, y) = 2x + xyO _ y2 _ y

subject to x+y > 1

x, y> 0.

Dualizing the coupling constraint with multiplier A > 0, we write the Lagrangian

function

L(x, y) =- 2+y - -y2 + (x + -1),
2

and
DL DL= - + y + A, = -2y- x° + A

-Ž if A > x°

therefore the optimal solution is x = yO + A, y = 2

0 if A < x° .
Using the complementary slackness condition, we obtain

* if y° > 1, thenx=y°, y=O

* if y° < 1, then A = 1-y° < x and x = y+A = 1, y = O .

(Note: the case A > x° is impossible because it leads to y + 3A - - = 1 by

complementary slackness, thus A = x°-2y° < x which is a contradiction.)3

Therefore (x° = 1, yO = 0) is the only normalized Nash equilibrium. It has

joint profit equals -. Notice that it is also a Nash equilibrium.

Furthermore, the normalized Nash equilibrium is Pareto optimal here. Indeed,

IB(1, 0) = 0 so only points such that y = 0 would not decrease player B's

payoff. However, on the half-line y = 0 in Y, any point with x > 1 decreases

IA

Moreover, it is the only Nash equilibrium for which the Lagrange multiplier of

the coupling constraint are equal. Indeed, the shadow price at the normalized
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equilibrium (, 3) is

AA = 1 - 2y0 = AB = 2- x° = 1.

Therefore to induce players to satisfy the coupling constraint if they do not

include it in their program, we should impose to each a tax T = 1 per unit of

violation of the coupled constraint. In other words, the players' best response

problems is now

12
for A: max -x2 + xy - T(1 - - y0 )

subject to x > 0

and

for B: max -_y2 _ x 0 y - T(1 - y -x ° )

subject to y > 0.

We easily derive the respective optimal respective best responses, for (x°, y0) 6

Y:

x = 1 + , Y O 1
0 if x0 > 1

It follows that there is a unique Nash equilibrium to this game: x° = 1, yO =

0. We verify that this Nash equilibrium is the normalized equilibrium of the

coupled constraint game.

System optimum

Consider

max nIA(x, y) + IB(x, y) = -X2 _ y2
2

subject to x + y > 1

x, y> O0.

220



There is a unique solution Xso = (2, ), with joint profit of -.

Notice that the system optimum is a Nash equilibrium here (but this is not

necessarily true in general), because it is not in set Z.

Indeed, suppose it is not a Nash equilibrium. Then it is not a fixed point of the

best response function: BR(xso) xso. We have xSO ~ Z, so BR(xso) E Y,

so by definition of the system optimum,

HIA(xso) + HB(xso) > IIA(BR(xso)) + nIB(BR(xso))

However, since the best response of xso is not the point xso itself, BR(xso)

has a greater joint profit, which is a contradiction.

Therefore, when the system optimum has a best response that belongs to Y, it

is a Nash equilibrium.

Clearly, the system optimum is Pareto optimal, since no point yields a strictly

higher joint profit.

Pareto optimal points :

If the optimal solution to

max IIk(x, y) (5.28)

subject to x + y > 1

x, y O0.

exists and is unique, then it is Pareto optimal, for k = A, B. Indeed, at this

optimal solution, the only way to increase - k is to move to a different point,

that necessarily yields a lower value of k .

For k = A, the problem is unbounded. For k = B, the optimal solution is (1, 0).
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We can find other Pareto optimal points by solving

max aIIA(x,y) + B(x,y) = 2x2 + (a - l)xy -y 2

subject to x+y > 1

x, y > 0.

for fixed parameter a > 0.

Indeed, suppose the optimal solution to the problem above was not Pareto op-

timal. Then there would be a feasible point that, compared with the optimal

solution, strictly increases the payoff of one player while increasing or keeping

constant the other player's payoff. This is a contradiction since this new point

would yield a strictly higher value for aIIA(x, y) + IIB(, y) .

This quadratic problem is convex if the matrix given by

a _a-1
2 2

a-1 
2 

is positive semidefinite, i.e. iff

a (a- 1)2 >0
2 4 -

2a- (a- 1)2 > O

X~ -a 2 + 4a-1 > 0

X 2- V3_< a< 2 + v

(5.29)

Notice that the problem has

system optimum.

The Lagrangian function is

been solved for a = 1 when we determined the

L(x, y) = x 2 + (a - 1)xy - y2 + (x + y - 1)
2
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and we have

L =-ax + (a
= -ax + (a - l)y ± A,

Ox:
= -2y + (a- )x + 

Oy

so, for 2 - v'3 < a < 2 + v, the Lagrangian function is maximized for

if A > -(a - l)y

if A < -(a - l)y,

(a- 1)x+A
2

0

if A > -(a - 1)x

if A < -(a - )x

* if A < -(a - )y and A < -(a - 1)x, then x = y = 0 which is infeasible.

* if A > -(a - l)y and A > -(a - 1)x, then

(a- )y + A
x7 = --- a

a
(a - 1)x + A

2

and therefore

A A(a - 1)
x = -+ +

a 2a
x(2a - (a - 1)2) = 2A + (a - 1)A

a+ 
4a - a2 - 1'

a 2+v 

or (a = 2 V, A=Oand x > 0O)
A a2 - 1 2a -1

y 2 2(4a= - 2- 2 2(4a-a2 -1) 4a-a 2-1'

or (a = 2 t /'3, A = O andy (a- 2)x
2

and y > 0 implies: either a = 2 + and A = 0, or < a < 2 + .

By complementary slackness, if a y 2 + 4v, then A > 0 and

3a4a = 1 a2 -
4a - a2 - 1

4a - a2 -

3a

(A = 0 would imply x = y = 0 which is infeasible).

If a = 2 + v, then any point (x, (1+±)x ) with x > 2 is solution. In
2 3 
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the case a $ 2 + v3, we must verify

A>0 4a-a2-1>0 2-V<a<2+V

* if -(a- 1)x < < -(a- 1)y, then x = 0,y = . For feasibility, A > 0,

and by complementary slackness, A = 2. We must verify 2 < -(a - 1), i.e.

a < -1 which is impossible.

* if -(a- 1)y _ A < -(a- 1)x, then y = 0,x = a. For feasibility, A > 0,

and by complementary slackness, A = a. We must verify a < -(a - 1), i.e.
1a< .

As a result, we obtain:

- if a = 2 + , the optimal solutions are (x, ('+') with x 2 = 32- 3+--- 3

- if 1 < a < 2 + AV, the optimal solution is (a+l 2a-1). In other words,2 -3a' 3a

(x, 1-x) is optimal solution corresponding to a = I if 3+v = 3-V <
3x-1 3 (2+ v) 3

x<1.

- if 0 < a < 1, the optimal solution is (1, 0).

Therefore, any point in the set

1 <r (1±) +)x 1
(x, l- x)l X_ - 1 < < U (x, + )5-, x , > 1

is Pareto optimal. In particular, this proves that any Nash equilibrium is Pareto

optimal in this example.

Notice that if a > 2 + v/, the problem is unbounded, so there is not Pareto

optimal point. In particular, along the line y = a-x, x > , the problem is

feasible and the profit increases as x increases since on this line,

) = X2((a- 1)2 a x 2
aII'A(x,y) + IB(x, y) = x2((a 2) (a2 -4a + 1)

4 2 4
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and a2 - 4a + 1 > 0 for a > 2 + vA.

Now suppose that z = (x, y) is Pareto optimal. Then the system of inequalities

with unknown z'

nk(Z' ) > nk (z)

n-k(ZI) > n-k(z)

has no solution on Y, for k = A, B.

Since Y is convex and nA, IB are concave, by a fundamental property showed

in [23],

3A E [0, 1]: Vz' Y, AIIA(z) + (l - A)B(zI) < AA(z) + (1 - )B(Z).

The cases A = 0 and A = 1 correspond to the problem (5.28) for k = A and

k =B.

If A E (0, 1), dividing each side by (1 - ) yields

3a > 0 Vz' E Y, aHA(z ') + IB(z 'I) < aIIA(z) + IB(z).

Therefore, any Pareto optimal point is the optimal solution to the problem

(5.28) for k = A or k = B or to problem (5.29). As a result, we have found all

the Pareto optimal points.

To conclude, in this example, each payoff function to maximize is concave, and

the jointly feasible set is convex. We obtain that there are infinitely many Nash

equilibria, but there is a unique normalized Nash equilibrium. The normalized Nash

equilibrium is included in the set of Nash equilibria.

The (unique) system optimum is a particular Nash equilibrium (thus the socially best

one) in this example, but not the normalized Nash equilibrium. In addition, it is not

the Nash equilibrium that maximizes the joint payoffs.
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There are infinitely many Pareto optimal points. All Nash equilibria are Pareto op-

timal (in particular the system optimum and the normalized Nash equilibrium are

Pareto optimal). In addition, there exist Pareto optimal points that are not a Nash

equilibrium.

Generally however, the system optimum may not be a Nash equilibrium, and there

may be Nash equilibria that are not Pareto optimal.

Conclusion

There are many notions that characterize equilibria or the concept of optimality in

a game. In this thesis, we will focus on the normalized Nash equilibrium. The

motivation is the following:

* as we show in the following section, it is unique in the problem under consider-

ation;

* it is a Nash equilibrium;

* it is the Nash equilibrium such that the two competitors contribute fairly to

achieving the coupling constraints, in the sense of how much they would benefit

from violating it in terms of objective value change;

* assuming that it is impossible to directly force the competitors to satisfy these

constraints, we can design a tax scheme which would give incentives to the

players to reach a solution that achieves these constraints.

5.3.4 Uniqueness results

Theorem 15. [111] There exists a normalized Nash equilibrium point to a concave

n-person game.

This theorem applies in particular to the problem we are considering in this chap-

ter.
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We observe that set Y can be written as a set of inequalities {x: H(x) > O}

with H being concave. (This is clear for formulation (5.25) given the linearity of the

constraints. For formulation (5.26), the result follows from the convexity of Qk with

respect to both pk(.) and p-k(.).)

We argue that the following constraint qualification holds: 3x E Y : Hj (x) > 0 Vj.

This can be shown in a way similar to the how we proved that Y is non empty. We

also notice that Hj(x) possesses continuous first derivatives for x E Y in formulation

(5.25) since all constraints are linear.

For a scalar function J(xA, xB) = J(x) taking arguments in IR3NT X R3NT, we will

denote by VkJ(x) the gradient of J(x) with respect to xk. Thus Vxk J() E R3NT.

We denote a(x) = IIA(x) + HIB(x) and

Vis called (x)

g(x) is called the pseudogradient of a(x).

Definition 11. The function a(x) = A(x) + IB(x) is called diagonally strictly

concave for x E Y if for every x°, x1 E Y we have

(x 1 - x0 )'g(x) + ( - x1 )'g(x') > 0.

In this problem we have (we abuse notations by mentioning only the component
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for product i at time t in order to ease the exposition):

V(AA(X) ) 

/ ~~ -

a?(t) - 2 (t)pi (t) + i (t)p (t)

-2~' (t)u_ (t)

-2hA(t)IiA(t)

aSP(t) - 2iB '(t)pB(t) +i BA(t)pA(t)

-2yiB (t)u- (t)

-2h.S(tL)IB(t)
_ Z \'1-/ \1 

Using the Karush Kuhn Tucker conditions, Rosen shows the following:

Theorem 16. 111] If a(x) is diagonally strictly concave, then the normalized Nash

equilibrium point is unique.

Note that the strict diagonal concavity of o(x), which here implies uniqueness of

the normalized Nash equilibrium for coupled constraint games, would imply unique-

ness of the Nash equilibrium if the constraints were not coupled. For coupled con-

straint games, the Nash equilibrium is in general not unique. We illustrate this in the

following example.

Example modified:

We now modify Example 1 in order to show that there may be multiple Nash equi-

libria, but a unique normalized Nash equilibrium, when a Nash equilibrium lies on

the boundary of the feasible set. We will assume here that all data are symmetric

between A and B and we will simplify the notation as follows:

PA,A = PB,B = f A,B = B,A = aA = aB = a.

We add the constraint:

pA + pB < 

in addition to the previous ones defined in Example 1. It is easy to verify that

the solution for the Nash equilibrium obtained in Example 1 does not satisfy this
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constraint.

The sets Q(p*A,p*B) and Y for the modified example are illustrated in Figures 5-4

and 5-5 below.

Figure 5-4: Modified example in space of prices: set Q(p*A,p*B)

We can show that there is an infinite number of Nash equilibria as indicated on Figure

5-5, that correspond to prices such that

pA + pB _ a and + 2 < pk < a
- - + 23'
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Figure 5-5: Modified example in space of prices: set Y

230

riu m

pA

fi B

atf

01+20



The unique normalized Nash equilibrium is

p*A = p*B= 
2,'

Intuitively, what makes the modified problem have multiple Nash equilibria, including

the normalized Nash equilibrium that is unique, is the fact that a coupling constraint

is binding at the normalized equilibrium. Indeed, in that case, the optimization

problem determining the normalized Nash equilibrium is not separable into the two

subproblems that determine the Nash equilibrium.

Notice in particular that in Example 1 the unique Nash equilibrium is in the interior

of Y while in Example 2 and Example 1 modified there are multiple Nash equilibria

that lie on the boundary of Y. In all three examples however, there was, as expected,

a unique normalized Nash equilibrium.

Theorem 17. Under Assumptions 4 and 12, the normalized Nash equilibrium point

is unique.

To prove this theorem, we first mention a result from [111].

Let G(x) E R6NT x R6NT the Jacobian of g(x). We have

/ ... \

G(x) =

r -2/F'-(t) -A 2-yiA ,(t)

-2<y_(t)

-2hA(t)

PBA (t) _2BB(t)

-2B (t)
-9hB(tf

Theorem 18. [111] A sufficient condition that a(x) be diagonally strictly concave

for x E Y is that the symmetric matrix G(x) + GT(x) be negative definite for x E Y.

We now prove Theorem 17.

Proof. G(x) + GT(x) is a symmetric and strictly diagonally dominant matrix under
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Assumption 4 for x E Y, with negative elements on the diagonal. Therefore, it is

negative definite. The result then follows from Theorem 18. 0

To summarize, although the Nash equilibrium is in general not unique, the nor-

malized Nash equilibrium is unique. Hence we will focus on how to compute the

normalized Nash equilibrium, via the algorithm presented in the following section.

5.4 Solution algorithm

5.4.1 Description of the algorithm

We consider an iterative relaxation algorithm in which at each iteration, a current

pricing policy is given for both suppliers, and the suppliers respond by determining

simultaneously a new strategy such that

* the objective function involves the current given pricing policy of her competi-

tor, but

* in the feasibility constraints, the responses must be jointly feasible.

The intuition behind this algorithm is to reflect actual practices in which suppliers

adapt their policy in order to improve their performance based on their competitor's

current strategy. Nevertheless since they adapt their policies simultaneously, they are

constrained by the competitor's reaction as well.

As we will show, this algorithm converges to the unique normalized Nash equilib-

rium, which as we proved above is a particular Nash equilibrium.

We define the simultaneous best response function BR(x) Y -+ Y by

BR(x) = Arg maxl V(x, z)
zEY

(or equivalently: BR(x) = ArgmaxzEy IA(zA, xB) + IIB(xA, zB).)

Therefore the unique normalized Nash equilibrium is defined as the fixed point of
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map BR.

BR(x) represents the vector with components the respective optimal strategies

each player should simultaneously adopt (and are thus jointly feasible, since the max-

imization is taken over set Y) when their payoffs are based on the fact that the other

player keeps strategy x-k . We observe that to compute the optimum response we only

need to solve a constrained concave maximization quadratic program with a convex

bounded non empty set, which is tractable. Therefore the solution BR(x) exists and

is uniquely defined.

We introduce an algorithm in order to find the fixed point of map BR which is

the unique normalized Nash equilibrium.

Starting from an initial feasible collective strategy and state vector xo E Y, we

will use the following relaxation algorithm.

Algorithm A:

1. Start at x0 E Y; let s = 0.

2. Let

2x+ = (1-6)x + BR(x,) (5.30)

and do s -- s + 1.

3. if Illx - BR(x s)Il < , stop. Else, go to 2.

We will use this as a stopping criterion with 7 = 10-6.
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We choose step sizes s E (0, 1), s = 0, 1,... such that

5s>O, s=0,1,...

8=0

6, - 0 as s oo.

We observe that since the starting point x0o is chosen in the set Y, and since

BR(x) E Y for x E Y, the sequence of vectors produced by this algorithm remains in

set Y.

We showed in Section 5.2 that the vector such that Vi, t

Pik(t) = Pkx (t)

u(t) = 2&k(t) + 2/,k (t)pkma (t) + 2 -k(t)p- k (t)

Ik(t) = I-1 + ut() - Ca(s) + i',k(s)pmax(s) - ;k-k(S)p-k (s)

is a feasible vector and we will use it as a possible starting point for Algorithm A.

5.4.2 Theorem of convergence

Theorem 19. [123] If

1. Y is a convex compact subset of R6NT;

2. the function 1b is a continuous weakly convex concave function and b(x, x) =

0, x E Y;

3. the optimum response function BR(.) is single valued and continuous;

4. the residual terms v and ,l (defined below) satisfy the inequality

v(x,y) - p(y,x) > (llx - YII), x,y E Y,
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where ( is a strictly monotonically increasing function such that ((0) = 0;

5. the step sizes satisfy condition (5.31)

then Algorithm A described in Section 5.4.1 converges to the unique normalized Nash

equilibrium.

In order to apply this theorem and prove convergence of algorithm A, we first

show some properties.

5.4.3 Continuity of the best response function

The following result is obtained in a way similar to Daniel [50].

Proposition 21. BR is continuous on Y.

Proof. Let's consider formulation (5.26). Let x E Y; we can rewrite BR(x) as the

solution of the quadratic program

min zTMz - c(x)Tz

subject to z E Y

where M E 6NT is positive definite, c(x) is a vector such that c(.) a continuous

mapping. (M is a diagonal matrix with components (t, -y�(t), h(t), and c(x)

has components ak(t) + fi-k(t)p-k(t), with the prices pk(t) taken from vector x).

Based on the fact that the feasible set is convex and independent of x, Daniell showed

using variational inequalities that if x' E Y, e - Ilc(x) - c(x')ll and ni is the smallest

eigenvalue of matrix M, then we have

IIBR(x') - BR(x)lI < (rn - e)-(1 + IBR(x)ll)

for e < .

Since c(.) is a continuous mapping, it follows that BR is continuous. []

1Daniel [50] proved the result under linear equality and inequality constraints. Nevertheless, it
is easy to see that the proof remains the same under a more general convex set.
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5.4.4 Weak convexity with respect to the first argument

Definition 12. A function f(.): S - R is said to be weakly convex on a convex set

S if and only if Vx, y E S, 0 < 0 < 1, the following inequality holds:

Of(x) + (1 - )f(y) > f(Ox + (1 - )y) + 0(1 - O)r(x, y)

where the remainder v: S x S -÷ R satisfies

v(xy) - O as x - w, y w

for all w E S.

Proposition 22. The Nikaido-Isoda function O(x, y) is weakly convex on Y with

respect to the first argument.

Proof. Let 01 E [0, 1] and 02 = 1 - 01. To ease the exposition, we omit the time

argument.

A = 01)(X, X) + 02/)(X, ) - /(01X + 02X, X)
T N

=EE E [1
t=1 i=1 k=A,B

((+ kp Pi -k)(Pik - p) - P lkk(pik - Pk2) -_ Yk(k 2 -U 2

i i ))

2((k + kpi k)( - - kk -i k2) -(k 2 k2) k( 2 _ k2)

-(oq + pi k-k(OlPik + 2pi-k))(i - p - 02pik) + ikk (pk2 - (01Pk + 02Pi))2)

( - (0iU + 02U)2 -h ik(I; 2 -(01I k + 0i)2)]

After calculations,

T N

A = EE E [ k p-k(p-k _i-k)(pk- k) + 0102ik k(p_ pi)2

t=1 i=1 k=A,B

+ i0102(U - k)2 + his0 2(Ik -i k)2] = 02v(x, )
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where

T N
v(,) = 1E Z [ _ ,-k(p-k _p-k)(pk _ ) + iik',k( -Pk )2

t=1 i=1 k=A,B

+ (U, -,a)2+ ( -)2].

We have

T N
v(x,) _ E A,B +3B,A) (pB _ pB) (pA _ ) + Ol -( IX 112),

t=1 i=1

and thus

v(x, )

I12 -±It

T 1EN i(A B + B'A)(pB -_ p)(p A _ iA)_t=l -i=l\V /Vi , ~ t - z 

VzT t=1 N=ZAB [(pk -P ik)2 + (U - U)2 + (Ik - I)2]
+Qi(10x - XII)

which tends to 0 as x, - w E Y since in the ratio above, the numerator is of

the order of 2 and the denominator is of the order of , with e - 0. O

5.4.5 Concavity with respect to the second argument

Definition 13. A function f(.) : S -4 R is said to be weakly concave on a convex set

S if and only if Vx, y E S, 0 < 0 < 1, the following inequality holds:

Of(x) + (1 - )f(y) < f(Ox + (1 - )y) + 0(1 - O)t(x, y)

where the remainder p1 : S x S -* R satisfies

1lx - yl 0 as x -* z, y -* w

for all w E S.

The function is concave if ,l(x, y) < 0 Vx, y E S.
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Proposition 23. The Nikaido-Isoda function ?k(x, y) is concave on Y with respect to

the second argument.

Proof. This is clear considering that in the expression of V)(x,x ), the dependence in

x appears as negative quadratic terms in p, and I. More explicitly, let 01 E [0, 1]

and 02 = 1 - 01. To ease the exposition, we omit the time argument.

A = 010(.X, x) + 021/(X=, ) - (1, 01x + 02X)
T N

E E Z [1 ((Olk + Pk, P-k)(p - Pk) - pikk(pk _ k2 -k2 (u 2 - k2)
t=l i=1 k=A,B

h(Iik2 _ - k2)

+02((o + ik,-k=k)(k ik) _ ik (p _ i2) (Uk 2

-(a i Pi )(lp + 02Pi -Ii k) + 2((l P -+-0Pi) -k 22)

Vi - 0((oIi + ui ) - UiI )]

After calculations,

T N
(3[k,k2(p (Pik) + Yik _ -k)2 k Ik)2

t=1 i=1 k=A,B

= 0102(x, X)

where

T N
-'= -- Pi ) ( Piu )2+k(uk _ IU k2 k k)2]

[' - i -i
t=l i=l k=A,B

We have

/(X, X) = Ol(llx - jl2),

and thus

P(X_,~ = 01(ll - ll)

which tends to 0 as x,x -- w E Y.

In particular, 0 is weakly concave with respect to the second argument. O
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Since E) is weakly convex with respect to the first argument and weakly concave

with respect to the second argument, is said to be weakly convex concave.

5.4.6 An inequality

In what follows, we illustrate that the inequality in Theorem 19 indeed holds.

Proposition 24. There exists a strictly monotonically increasing function :R -+ 1R
such that ((0) = 0 and

v(x,y) - (y,x) > (([Ix -Yl), x,y E Y.

Proof. Consider (x) = Ax2 for some A > 0. Then v(x, ) - (.t,x) - Allx - tI2 =

N

Z E[ (20A tA(t ) - )(p(t)- piA(t))2 + (2Pi (t)-)(p(t) pi(t)) 2
t=l i=l

-(/ A'B(t) + i (t))(p (t)- piA(t))(p(t)- iB(t))

+ (2'y (t) - A)(u (t) - (t))2 + (2yi(t) - A)(u(t) i -(t))-

+ (2h(t) - A)(I2(t) - (t)) + (2h (t)- A)(Ii(t) - i(t))2].

Let

A1 = 2 min min min hk(t), A2 = 2 min min min ik (t).
k i t k i t

A sufficient condition for the expression above to be positive is that A < Al1, A < A 2

and the symmetric matrix (defined for fixed i, t)

N = 2PiA'A(t) _ A
_ (I3AB(t)+OfA(t))

2

is positive semi-definite for all i, t.
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We notice that

N >-0 (Tr(N) > 0 and Det(N) > O)

(Oi? (t) + Oi (t) > o{(2f3AA(t) - (2OfB (t) -A ) - (iAB(t) + )(2iBA(t))2 > o)

< ; A (t) + pi '(t)

A2 - 2A(p3AA(t) + p-B,B(t)) + 4piAA(t)pi B(t) -(0, (t) + -A ())

> 0.

The simplified discriminant of the polynomial above is (for fixed i, t)

A = (I3.A (t) + Pi, l(t))2 - 4PIAA+ (t)B t)+ iABt) +)

(,A(t) - BB(t))2 + B(AB (t) + ,A(t))2 > 0

so the polynomial has two real roots PiAA(t) + PiBB(t) ± sV/ and only one satisfies

A < gi3 A(t) + PiB'B(t). Since we are interested in positive parameters A, and since

the polynomial is non negative when evaluated at point below the smaller root and

above the larger root, we obtain that

(A > O and N O0) f |=A A(t) + pifBB(t) s > 
0 °< A < iA'A(t) + pi (t) - s
(iAA(t) _ B'B(t))2 + 1(pA,B(t) + B,A(t))2

< (iA'A(t) + PB~'B(t))2

< A< iAA(t) + BB(t) _ /-

jp| 4(B(t) + 3B,A(t))2 < 4iAA(t)BB(t)

0 < A < PiA'A(t) + PiB,B(t) - s/.

The first condition is satisfied under Assumption 4. Let

A = min inf i A(t)+BB(t)_ (fIA(t B)- B(t)2 + 1 (t)) B > 0.
i te[O,T] 4
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As a result, by taking 0 < A < min{Al, A, A3 , we obtain that

v(x, X) - (, ) - AIIX -_11 2 > 0 Vx, E Y.

We have shown that all the conditions in Theorem 19 hold for our problem.

Corollary 12. Under Assumptions 4 and 12, Algorithm A converges to the unique

normalized Nash equilibrium (which is a particular Nash equilibrium).

5.5 Numerical results

5.5.1 Deterministic model

We implement the robust competitive reformulation discussed in Section 5.1 and Al-

gorithm A we introduced in the previous section. We first consider an example with

no data uncertainty, on a time horizon T = 10. Our goal in this chapter is to study

the role of input parameters on the equilibrium solution. In order to isolate the effect

of these parameters, we will implement the algorithm for N = 1 product. We will

thus omit the subscript i in this section.

We want to study the effect of:

* the price sensitivities (coefficients ,(.))

* the capacity level K(.)

* the initial inventory level I° .

We will consider symmetric suppliers on the one hand (i.e. subject to similar market

conditions, so all inputs are the same for both), and asymmetric suppliers on the

other hand, in the sense that they are subject to different price sensitivities.
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We choose s as the constant 0.99 for the first 50 iterations, and then equal to

s 49 (In practice, the stopping criterion is reached before the 5 0th iteration in the

numerical examples. Most solutions were obtained in less that 20 iterations of the

algorithm.)

5.5.2 Effect of the price sensitivities

We will consider on the one hand price sensitivities that are symmetric for the sup-

pliers (scenarios a through d), i.e. 3 A,A(.) = B,B(.) and A,B(.) = 6B,A(.), and on

the other hand asymmetric price sensitivities (scenarios e through j).

In both the symmetric and the asymmetric case, we will consider successively

1. demand sensitivities to prices that increase with time (i.e. when closer to the

end time, an increase on prices affects the demand more): scenarios a, b, e

through g

2. demand sensitivities to prices that decrease with time (i.e. products whose high

price matters less at the end of the horizon): scenarios c, d, h through j.

Price sensitivities that increase with time correspond to products that become less

attractive to the customer towards the end of the time horizon, for example products

subject to a seasonality effect, or such that there have appeared on the market newer

products that can serve as a substitute. Price sensitivities that increase with time cor-

respond to products that become more attractive to the customer towards the end of

the time horizon, for example because of a marketing campaign or an appearing trend.

Also in both cases, we will choose the data such that the ratio pk = _ of

the sensitivity to the competitor's price over the sensitivity to the supplier's price

is constant across time (and we will consider two possible values for this ratio). In

the symmetric case, this ratio will clearly be the same for both suppliers. In the

asymmetric case, we will consider inputs such that either this ratio is the same for

the two suppliers (with two values), or it is different.
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Table 5.3: Scenarios of price sensitivities

We use the following parameter values for k = A, B,

* ak(t) = 15

*· k(t) = 0.01

* hk(t) = 0.01

· Ik = 10

· capacity Kk(t) = 10

* demand sensitivities to prices as shown in Table 5.3. (We verified that Assump-

tion 4 holds in all cases.)

However, one must be careful when interpreting the objective values across sce-

narios since the demand sensitivities have an effect on the total demand.

The results are shown in Table 5.4 and Figures 5-6 and 5-7.

The insights are summarized as follows.
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Scenario 3pA,A(t) PBB (t) PA,B(t) pB,A(t) A 

a 1 + 0.2t 1 + 0.2t 0.5 + 0.1t 0.5 + 0.1t 0.5 0.5
b 1 + 0.2t 1 + 0.2t 0.25 + 0.05t 0.25 + 0.05t 0.25 0.25
c 3 - 0.2t 3 - 0.2t 1.5 - 0.1t 1.5 - 0.1t 0.5 0.5
d 3 - 0.2t 3 - 0.2t 0.75 - 0.05t 0.75 - 0.05t 0.25 0.25
e 1 + 0.2t 0.6 + 0.2t 0.5 + 0.1t 0.3 + 0.1t 0.5 0.5
f 1 + 0.2t 0.6 + 0.2t 0.5 + 0.1t 0.15 + 0.05t 0.5 0.25
g 1 + 0.2t 0.6 + 0.2t 0.25 + 0.05t 0.15 + 0.05t 0.25 0.25
h 3 - 0.2t 2.2 - 0.2t 1.5 - 0.1t 1.1 - 0.1t 0.5 0.5
i 3 - 0.2t 2.2 - 0.2t 1.5 - 0.1t 0.55 - 0.05t 0.5 0.25

3 - 0.2t 2.2 - 0.2t 0.75 - 0.05t 0.55 - 0.05t 0.25 0.25

t= 1,...,10.
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Table 5.4: Objective values: effect of price sensitivities

· Prices evolve with time with a trend opposite to the price sensitivities, i.e.

prices are higher when the sensitivities are lower. In most cases (when the

sensitivities are not too high), the inventory levels decrease from the initial

value to zero, and then remain at that level. Production rates are adjusted in

order to maintain the zero inventory level. When the price sensitivities are very

high (A in scenario h, i), the inventory level remains high for most of the time

horizon and is sold at the very end only. Selling earlier would not result in high

enough profits because the high price sensitivities would force to price too low.

* We observe that when the cross price sensitivities are assigned in a scenario

lower values than in another scenario, the equilibrium prices and production

rates decrease, and profits decrease whether only one cross sensitivity is low-

ered or both. This remark holds for symmetric and asymmetric scenarios, and

with sensitivities increasing and decreasing with time. If only one of the cross-

sensitivities is decreased, the effect is stronger on the supplier subject to the

decrease.

* Moreover, comparing the asymmetric case with the symmetric case (a vs. e, b

vs. g, c vs. h, d vs. j), we notice that supplier B's share of the total objective

is greater when she has lower price sensitivities than A. It seems that this is

due to the decrease in the sensitivity to her own price though since comparing
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Scenario Supplier A's obj. Supplier B's obj. Total obj.
a 514.83 514.83 1023.8
b 375.83 375.83 750.8
c 581.49 581.49 1157.1
d 484.80 484.80 848.7
e 578.86 611.73 1183.6
f 540.71 481.20 1018.2
g 401.45 465.57 866.1
h 1012.9 1171.2 2097.5
i 944.24 975.63 1866.5
j 586.77 934.24 1518.8



e and f, and h and j, we observe that her share of total revenues decreases when

only her cross sensitivity decreases.

5.5.3 Effect of capacity

To study the effect of the capacity level, we choose the sensitivities as given by sce-

nario f and h (asymmetric, respectively increasing and decreasing with time. Supplier

A has higher price sensitivities.) and the coefficients ak = 15, I°O = 10 also fixed

as in the previous section. We compute the equilibrium for a capacity limit taking

values 6, 8, 10, 12, 14, 16 (identical for the two suppliers). The results are presented

in Table 5.5 and Figures 5-8 and 5-9.

K 6 8 10 12 14 16

Supplier A's profit 540.86 540.22 540.71 540.71 540.71 540.71
Scenario f Supplier B's profit 505.56 492.58 481.20 481.20 481.20 481.20

Total profits 1046.4 1032.8 1021.9 1021.9 1021.9 1021.9
Supplier A's profit 1031.8 1006.6 1012.9 1018.5 1018.5 1018.4

Scenario h Supplier B's profit 1270.1 1239.2 1171.2 1141.8 1135.4 1134.8
Total profits 2283.9 2245.8 2184.1 2160.3 2153.9 2153.1

Table .5.5: Results: Effect of production capacity. Profits for various symmetric
capacity levels

First, we notice that under scenario f, when the capacity equals 10, the production

rate for supplier A never reaches 10. As a result, the optimal policy is identical for

higher capacity levels.

In scenario f (sensitivities increasing with time), supplier A gets higher profits than

supplier B, but the reverse is true in scenario h (sensitivities increasing with time).

Overall, we observe that when capacity increases the prices decrease at the equilib-

rium.

Interestingly, supplier B's profits tend to slightly decrease as the capacity increase.

This may look surprising since a higher capacity gives more flexibility. This illustrates
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that the presence of competition may not yield an equilibrium that is unilaterally op-

timal for a given supplier.

Notice also that in scenario h, when the capacity is high enough in order to enable to

meet the no backorders constraint towards the end of the time horizon (when sensi-

tivities are lower and prices can increase) without using all available capacity, at the

equilibrium the inventory levels decrease from the beginning of the time horizon in

order to decrease holding costs. However when the capacity is low, inventories are

kept around the initial value until the sensitivities become lower, so that selling yields

more significant profits.

5.5.4 Effect of initial inventory level

To study the effect of the initial inventory level, we choose the sensitivities as given by

scenario f and h (asymmetric, increasing and decreasing with time) and the coefficients

ak = 15, Kk = 10 also fixed. We compute the optimal solution for an initial inventory

level identical for both suppliers, and taking values 6, 8, 10, 12, 14, 16 (identical for

the two suppliers).The results are presented in Table 5.6 and Figures 5-10 and 5-11.

OI° 6 8 10 12 14 16

Supplier A's profit 540.51 540.63 540.71 540.73 540.67 540.43
Scenario f Supplier B's profit 481.03 481.14 481.20 481.21 481.17 481.00

Total profits 1021.5 1021.8 1021.9 1021.9 1021.8 1021.4
Supplier A's profit 1011.8 1012.7 1012.9 1012.5 1011.5 1011.5

Scenario h Supplier B's profit 1181.6 1176.4 1171.2 1166.0 1160.9 1160.2
Total profits 2193.4 2189.1 2184.1 2178.5 2172.4 2171.8

Table 5.6: Results: Effect of initial inventory level. Profits for various symmetric
initial inventory levels

We observe that in scenario f where the capacity constraint is not tight, when the

initial inventory level changes, the production rates changes in such a way that the

effects cancel out (i.e. the production rate increases by as much as the initial inventory

level decreased), and the prices and cumulative profits do not vary. Therefore, the
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initial inventory levels seem to have a low impact.

The same is true for supplier B in scenario h for the same reason. However, for

supplier A in case h, the capacity constraint is tight, the only way to compensate

for the increase in initial inventory level is by decreasing prices. The profits slightly

increase for supplier B, and slightly decrease for supplier A. As a result, suppliers

with high price sensitivities are slightly advantaged by having low initial inventories,

if the capacity is a binding constraint.

5.5.5 Robust formulation

We will implement the algorithm for N = 1 product (therefore we will omit the sub-

script i) on a time horizon T = 10 for symmetric and asymmetric suppliers in the

case with uncertainty.

We want to study the effect of the budget of uncertainty so we will fix the param-

eters as given in the beginning of the previous section, and prices sensitivities as in

scenarios f and h.

We will consider &(t) uncertain and we take input parameters &(.) and F(.) that

are linear functions of the time (although the linearity assumption is not necessary

in general). To be able to isolate the effect of uncertainty, we will suppose that the

parameters pk,-k(.) are certain, i.e. pk,-k(.) = 0.

In these computations, we choose for both suppliers

&(t) = b + at = 0.1 + 0.2t.

Indeed, it is reasonable to suppose that in practice, the inaccuracy of a forecast for the

demand increases on the time horizon, i.e. that the length of the interval of feasible

outcomes increases with time. This choice of inputs represents an uncertainty on the

nominal value of parameter a of ±j% where j equals 2 at time t = 1 and 14 at time
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t= 10.

We will consider the input parameters rk(.) to be linear functions of the time and

identical for the two suppliers:

rk(t) = gt+c

where g, c > 0, g < 1. We will compute the cumulative effective budget of uncer-

tainty foT min{t, rk(t)}dt as a measure of the global uncertainty in each scenario. See

Table 5.7 for the values we consider.

We now have to compute the corresponding inventory security levels QA(.), QB(.).

We proved in Chapter 4 that with &k(.) increasing with time and k(.) ( .) = k,-k(

0, then

Qk(t) = ft-rk(t) &k(s)ds, r(t)< t
tf ak(s)ds, rk(t) > t.

Therefore

Qk (t) | ftt_1(as + b)ds = (gt + c)(at + b) - (gt + c)2, 1 < t < T
fo (as + b)ds= t2 + bt, O<t< C

after calculations. In particular, Qk(O) = 0 < I k° . We also verify that with these

inputs Assumption 12 is satisfied.

he results are presented in Figures 5-12 and 5-13.

Recall that in the deterministic case, in scenario f, at the equilibrium the inventory

levels of supplier A and supplier B decrease from their initial value until they reached

zero (before time t = 5) and then are kept at zero. In the case under uncertainty, the

inventory levels must satisfy the minimum inventory security level, which is increasing

with time. As a result, they do decrease from the initial value, until they reach the
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minimum security level, and then they are kept at that security level, which explains

why they increase with time in the remaining of the time horizon. This effect is

stronger as the budget of uncertainty increases because the minimum inventory level

increases with the budget of uncertainty. In order to produce this higher inventory,

the production rates increase with time faster that they do in the deterministic case,

and for both suppliers, they quickly use all the production capacity (which was not

the case when data are deterministic). Once the capacity is tight, the only way to

keep more inventory in stock is to decrease prices, and we observe that prices are

lower in the robust formulation than in the deterministic one.

In scenario h, price sensitivities are decreasing with time, therefore in the deter-

ministic case, both suppliers have prices that increase with time. Supplier A has

sensitivities twice bigger than supplier B. Therefore, we observed that they are high

enough for A to justify keeping most of her initial inventory until the end of the time

horizon, when the sensitivities are low, and then only sharply increase prices and sell

all the inventory. Supplier B however uses the strategy of selling the initial inventory

and then keeping it at zero. In the robust formulation, supplier B's strategy is af-

fected in the way explained before, i.e. guaranteeing the minimum inventory security

levels forces her to have the inventory level that increases with time, thus to have

lower prices and produce more than in the deterministic case.

Supplier A's strategy however was to keep a high inventory all along except at the

very end when she would bring it to zero. The production capacity is too low to

enable meeting the minimum inventory security level at the end of the time horizon

if the inventory was kept at that level earlier. Therefore when data is uncertain,

the minimum inventory security level affects her inventory level only at the last time

period when instead of bringing it to zero she brings it to the final minimum level.

Since less sales will be allowed at the end of the time horizon (to meet the minimum

level), supplier A sells more before, therefore the inventory is kept at a level lower

than in the deterministic case. To sell more, supplier A must produce more, and

quickly reaches the production capacity, and as a result must significantly decrease
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rk(t) fkmint, rk(t)}dt IIA + IB (SC. f) HnA+ B (SC. h)
scenario 1 1+0.8t 47.5 1008.5 1253.5
scenario 2 1+0.5t 34 1010.3 1257.2
scenario 3 1+0.2t 19.38 1013.8 1264.9
scenario 4 0.5+0.8t 44.38 1008.8 1253.6
scenario 5 0.5+0.5t 29.75 1011.0 1258.4
scenario 6 0.5+0.2t 14.84 1014.8 1266.3

Table 5.7: Total objective value for various budgets of uncertainty

prices. Notice that supplier A realizes much lower profits than supplier B, as shown

in Table 5.7.

We observe moreover that as there is more uncertainty on the data (i.e. as the

cumulative effective budget of uncertainty increases), the inventory levels, produc-

tion rates and prices overall increase, but the profits decrease. Figures 5-14 and 5-15

show that the sum of the suppliers' profits decrease as the cumulative effective budget

of uncertainty increases, which illustrates the trade-off between performance (profit)

and conservativeness (amount of uncertainty allowed), as well as confirms that the

cumulative effective budget of uncertainty is a valid metrics to measure the global

uncertainty.

In order to illustrate that the robust formulation is beneficial when data is un-

certain, we want to show that the nominal solution may yield infeasibility when the

realized value differs from the nominal one.

We focus on scenario f and h with the same inputs as in the previous numerical

examples, and scenario 5 of budget of uncertainty.

We generate 1000 realizations of parameter (ek(.) according to both (i) a uni-

form distribution on [a"k(.) - &k(.), ak(.) + &k(.)] and (ii) a normal distribution with

mean ak(.) and standard deviation 0.5&k(.). The realized values are generated in-
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dependently over time and for the two suppliers. See Figure 5-16 for an example of

realizations.

17

16.5
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2 3 4 5 6 7 8 9 10
Time

Figure 5-16: Example of realizations for alpha under uniform and normal distributions

We apply the nominal solution to these realizations and we record whether the no

backorders constraint and upper bound on prices were violated. We calculate empir-

ically the probability of violation of the constraints.

We obtain that, under either distribution, the upper bound on prices is never violated.

However, the no backorders constraint is violated very frequently. See Table 5.8 for

the numerical results. These high probabilities of a violation of the no backorders

constraint were expected since, in the deterministic case, often the inventory level

was on the boundary (zero level), so when the data are slightly perturbed, the actual

inventory level may easily become negative. The question of interest is to determine

by how much this constraint is violated.

In order to have an idea of the amplitude of violation of the no backorders con-
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Distribution D Uniform Normal
supplier A, sc. f 83.3% 82.4%
supplier B, sc. f 82.9% 81.4%
supplier A, sc. h 88.1% 91.2%
supplier B, sc. h 100% 100%

Table 5.8: Probability of violation of the no backorders constraint for the nominal
solution

straint, we record the lowest value taken by the inventory level on the time horizon.

The results are presented as histograms in Figures 5-17, 5-18, 5-19 and 5-20. We

observe that the inventory levels may reach values significantly below the zero level.

As a result, it seems relevant to use robust optimization to avoid a situation where

backorders are likely to occurs at a significant level when there is uncertainty on the

data.

As a comparison, we apply the robust solution (for each budget of uncertainty) to

the generated simulations &(.) and calculate the probability of constraint violations.

We obtain that the upper bound on the price is never violated, and the probability

that the no backorder constraint is violated is given in Table 5.9. Note that the robust

solution are designed so that there is no violation for any realization that satisfies the

bounds and the budget of uncertainty constraints. Since the generated realizations

may not satisfy these constraints, it is possible that the no backorders constraint or

the upper bound on prices are violated by the robust solution. We expect to verify

that the higher the budget of uncertainty, the least likely it is to have violation of

the no backorders constraint, since the protection levels increase with the budget of

uncertainty.

We also computed the average minimum inventory level attained over the time

horizon for each robust solution and under both scenarios of price sensitivities. We

obtain that the only case where the average is negative is supplier B, with scenario h
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Minimum value attained by the realized inventory level in scenario f for uniform distribution
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Figure 5-17: Histogram of minimum inventory
realization in scenario f

-2 0 2

level reached for uniformly distributed

Budget of Distribution supplier A supplier B supplier A supplier B
uncertainty scenario f scenario f scenario h scenario h
scenario 1 Uniform 0% 0% 0% 0%

Normal 0% 0% 0.1% 0%

scenario 2 Uniform 0% 0.8% 1.3% 0.2%
Normal 0% 0.6% 0.5% 0%

scenario 3 Uniform 5.1% 11.8% 20.8% 28.2%
Normal 1.8% 5.0% 15.2% 21.0%

scenario 4 Uniform 0% 0% 0% 0%
Normal 0% 0% 0.2% 0%

scenario 5 Uniform 0% 1.5% 2.1% 0.3%
Normal 0% 1.0% 0.6% 0%

scenario 6 Uniform 10.6% 21.6% 28.1% 48.9%
Normal 5.5% 13.3% 25.4% 44.7%

Table 5.9: Probability of violation of the
solution

no backorders constraint for the robust
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Minimum value attained by the realized inventory level in scenario h for uniform distribution
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Minimum value attained by the realized inventory level in scenario f for normal distributionI-,
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Minimum value attained by the realized inventory level in scenario h for normal distribution
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of price sensitivities and scenario 6 of budget of uncertainty (which has the smallest

cumulative effective value), when the realization is normally distributed. In that case,

the average is -0.19, which shows that the violation tends not to have a very large

amplitude. In all other cases, the average was positive.

We observe that the probability of violation of the no backorders constraint for the

robust solutions is small in most cases, while it was very large for the nominal solution.

Moreover, these probabilities are a decreasing function of the cumulative effective

budget of uncertainty: the least overall uncertainty is allowed in the model, the least

protected the system is against constraint violations, the higher the probabilities are.
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Chapter 6

Conclusions

In this thesis, we studied a continuous time optimal control model for a dynamic pric-

ing and inventory management problem with no backorders. In particular, we studied

a demand based model in a make-to-stock system and a multi-product capacitated

dynamic setting. We considered a particular cost structure, allowing time flexibility

in the demand, production capacity, and cost parameters. A particular feature of the

model we considered is that it does not allow backorders.

We introduced a continuous time solution approach utilizing the KKT conditions

and an extension of Pontryagin's Maximum Principle for state-constrained problems.

Through numerical examples, we illustrate the role of capacity and of the dynamic

nature of demand in the model.

We have then proposed and studied a robust optimization approach for incorporat-

ing demand uncertainty into the fluid model. Using ideas from robust optimization,

we reformulated the problem as a deterministic problem (robust counterpart problem)

of a similar form as the original nominal formulation. Our approach does not make

assumptions on the probabilistic distribution of the demand but rather assumes a

general demand model whose uncertain parameters lies in a given interval; and a

budget of uncertainty that allows to control the level of conservativeness sought. Fur-

thermore, we were able to adapt to the robust formulation the algorithm for solving
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the deterministic problem and show that the adapted algorithm is no more complex

than the original one. We implemented this algorithm on a numerical example that

illustrates the trade-off between robustness and performance.

Finally, we introduced competition by considering the problem with demand un-

certainty in a duopoly setting as a non cooperative differential game. We first use

ideas from robust optimization to reformulate the problem as a deterministic one, and

we show the existence of a Nash equilibrium for the robust formulation in continuous

time. We then study issues of uniqueness of a Nash equilibrium solution, and of a

particular equilibrium: the normalized Nash equilibrium. Furthermore, we present a

relaxation algorithm for solving the problem in discrete time and prove its conver-

gence to the normalized Nash equilibrium. Finally we perform some computations

and discuss some insights.

Throughout the thesis, our goal was to study a model that would be as realistic

as possible, but remain tractable. In particular, practitioners often face issues such

as multi-product systems, production capacity, price dependent demand, uncertainty

on data and presence of competition. Our approach aimed at incorporating these

constraints, without making assumptions that in practice are difficult to satisfy, such

as probability distributions of uncertain data. The numerical experiments show that

the methods that are presented allow, under reasonable assumptions, to compute the

solution and gain insight.

We also believe that the interest of this thesis lies not only in the implications in a

dynamic pricing and inventory control setting, but also in the optimization techniques

presented. Indeed, these techniques may be adapted to other areas of application.

Future directions of research include studying further the role of the production

capacity limit and the no backorders constraint, how they may affect the overall prof-

its and policies.
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In the thesis, suppliers have open-loop strategies: they commit to pricing and produc-

tion decisions at the beginning of the time horizon. That is: they must make decisions

at time zero for the entire time horizon. In closed-loop strategies, the suppliers may

adapt the future strategy based on the current state of the system and on modified

data forecasts. One could adapt an open-loop approach by applying it on a rolling

horizon. An interesting direction of research would be to evaluate how good of an

approximation this would be.

To address uncertainty without considering an open-loop setting, one could focus

on adjustable robust formulation, where the decision maker may observe realization of

past uncertain data before making decisions concerning the future. It would be inter-

esting to compare this approach with results obtained with a Dynamic Programming

model, in terms of average profits realized, tractability, and necessary assumptions.

Similarly, the non adjustable robust formulation could be compared with the stochas-

tic optimization approach.

In the competition setting, an interesting area of research would be to quantify

the loss of efficiency incurred by the presence of competition, also called " price of

anarchy" in the literature. This can be done by comparing the overall profits at an

equilibrium with the overall profits if one could impose the suppliers a strategy in

order to maximize the overall profits. Then it could be possible to find incentives for

the suppliers to decrease the loss of efficiency.
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