
On the Complete Testing of Simple
Safety-Related Software

by

Kenneth E. Poorman

Submitted to the Department of Nuclear Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

at the

Massachusetts Institute of Technology

February 1994

© 1994 Massachusetts Institute of Technology
All rights reserved

Signature of Author - --
Department of Nuclear Engineering

January 12, 1994

Certified by --I, ~'*-
g<Professor Michael W. Golay

Thesis Supervisor

Certified by
)

Professor David D. Lanning

Thesis Supervisor

-.

/

Science
MASSACHlUSETTS NSTITUTE

OF TWC(H4OtlOGY

APR 26 1994
LIBRARIES

Professor Allan F. Henry

Chairman, Graduate Thesis Committee

Accepted bV

-

Y_

I - - - -

6'. W ki

On the Complete Testing of Simple, Safety-Related Software

by

Kenneth E. Poorman

Submitted to the Department of Nuclear Engineering in
February 1994 in partial fulfillment of the requirements for the

Degree of Master of Science in Nuclear Engineering

ABSTRACT
In order to facilitate the introduction of safety-related software applications into

the nuclear power industry, a theoretical study on the complete testing of simple,
safety-related software is performed based upon information obtained in a literature search
and applied to a sample program supplied by the research sponsor. The simple,
safety-related program uses two parallel Modicon 984 programmable controllers to
monitor the secondary coolant, collapsed liquid levels in two steam generators as well as
the pressurizer pressure of a pressurized water reactor nuclear power station. It requires
two-of-two concurrence to activate auxiliary water pumps if the steam generator levels
should fall below their setpoint limits, or to generate a reactor shut down signal should the
pressurizer pressure exceeds its setpoint limit.

The literature search produced few results applicable to simple software testing,
validation or verification. The search did produce some useful techniques, however,
2which could be applied to the sample code. A particularly promising approach was that
of McCabe [McCabe, "Structured Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric," National Bureau of Standards special publication 500-99,
December 1982]. The technique involves analyzing the structure of the code using
cyclomatic, execution-sequence-based flowgraphs. By reducing the code to functional
modules and independent flowgraphs, complete sets of tests could be defined for the
software code.

The work reported here is restricted to the analysis to software testing, avoiding
the topics of design specifications, hardware reliability and human interaction. It is
assumed for this study that the systems of interest would be simple and therefore not pose
great challenges in creating specifications. Hardware and human concerns are assumed to
be on the same order of difficulty as those of similar analog systems.

The results of this study indicate that the complete testing of simple, safety-related
software is feasible. While the scope of this study is limited, there is reason to believe that
it can be applied equally well to other applications with similar conditions. If the structure
of the software execution flowpath network is kept simple, there is no evident limit on the
number of lines of code (i.e., PLC networks) which could be tested completely.

Thesis Supervisors: Michael W. Golay
David D. Lanning
Professors of Nuclear Engineering

2

Acknowledgments

The authors would like to acknowledge the generosity of the sponsors,

ABB-Combustion Engineering, Inc. and MIT. This report is based on work done by

Kenneth E. Poorman in fulfilling requirements for the Master of Science degree.

Special thanks go to Michael Novak, the primary contact-person within ABB-C/E,

and others at ABB-C/E who made valuable contributions in the formulation of the

problem and subsequent progress.

3

Table of Contents

Abstract ..
iAcknowledgements ...

Table of Contents ...

List of Figures and Tables ..

PIart 1

Introduction ..
1.1 General ...

1.2 Background ..

1.3 Method of Investigation ...

1.4 Scope of this Work ..

Part 2
Literature Search

2.1 General

2.2 Software Concerns vs. Other Concerns ...

2.2.1 Concerns about Control Algorithms

2.2.2 Hardware Concerns

2.2.2.1 Computer Hardware Problems

2.2.2.2 Reducing Hardware Concerns

2.2.3 Human Factors

2.3 Software Issues

2.3.1 Software Development Processes ..

2.3.2 Software Complexity

2.13.2.1 General Complexity Metrics ..

2.3.2.2 Halstead's Metric

2.:3.2.3 McCabe's Metric

2.3.3 Software Reliability

2.4 Current Work and Progress

2.5 Review

4

2

3

4

7

8

8

9

12

12

14

14

15

15

16

17

17

19

22

22

25

25

27

28

31

31

33

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

..................

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

Part 3
Understanding Software Structure ...

3.1 Nature of Software Uncertainties

3.2 Complexity Measures ..

3.2.1 General ..

3.2.2 Halstead's Metrics ..

3.2.3 McCabe's Metrics ..

3.2.3.1 Simple Structures ..

3.3 Flowgraphs ..

3.3.2 Flowgraph Theory ...

3.3.2 Determining Independent Flowpaths

3.4 Testing Methods

3.4.1 Flowpath Tracing ..

Part 4
Simple Software Example

4.1 PLC Software Code

4.1.1 PLC Characteristics

4.1.2 PLC Structure

4.2 Conversion of PLC Codes into a Flowgraph

4.2.1 PLC Function Modules

4.2.2 Contacts and Coils

4.2.3 Modules and Functions

4.2.4 Complex Networks

4.3 Flowgraph Reduction

4.4 Interpretation of Flowgraphs

Part 5
Implementation ..

5.1 General ..

5.2 Current Process ..

5.3 Comments on the Current Process

5.4 Alternative Process ..

5.5 Comments on the Alternative Process

5

34

34

35

35

36

38

41

43

44

47

50

53

55

55

55

56

58

59

63

70

74

78

88

93

93

93

93

96

96

................

................

................

................

................

................

................

................

................

................

................

5.5.1 Validity of Tests

5.5.2 Completeness of Tests

5.5.3 Validity of Specifications

5.5.4 Completeness of Specifications

5.6 Additional Comments

5.6.1 Reverse Specifications

97

98

98

99

100

100

102

Part 6
Future Work ..

Part 7
Review and Conclusions ... 103

References ... 106

6

...................................

...................................

...................................
..................................
..................................
..................................

List of Figures and Tables
In Order of Appearance

Type & No.

Figure 3-1

Figure 3-2

Figure 3-3

Figure 3-4

Table 3-1

Table 3-2

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 4-9

Figure 4-10

Figure 4-11

Figure 4-12

Figure 4-13

Figure 4-14

Figure 4-15

Figure 4-16

Figure 4-17

Discription P

Sample node in a flowgraph

A strongly connected set of nodes

Graphic model of the five basic command structures

A simple flowgraph illustrating dependent flowpaths

A list of the possible flowpaths for Figure 3-4

Logical definitions of flowpaths for Figure 3-4

Execution order for nodes and networks

Example of PLC command function

Flowgraph of a subraction module

Flowgraph for a subtraction module with conditional command

Simplified functional flowgraph equivalent to Figure 4-4

Normally-open and normally-closed contacts with model

Simple PLC code employing only contacts and coils

Flowgraph for PLC code displayed in Figure 4-7

PLC code of subtraction module with timer function and coil

Flowgraph for the logic circuit of Figure 4-9

Complex network with multiple 'parallel' logic circuits

Flowgraph for the third logic circuit of Figure 4-11

Rearranged flowgraph for the third logic circuit of Figure 4-11

Simplified flowgraph for the third logic circuit of Figure 4- 11

Flowgraphs for logic circuits of Figure 4-11 connected serially

Compressed flowgraph of Figure 4-15

'Ideal' flowgraph for the combined logic circuits of Figure 4-11

7

39

41

42

46

46

52

58

60

60

62

63

64

65

65

71

73

75

78

80

81

82

85

87

Part 1

Introduction

1.I General

Penetration of digital control software into nuclear power safety applications has

been retarded by the difficulties of the verification and validation (V&V) process, which

includes testing the software performance against the required software specifications [1].

As a consequence, the advancement of nuclear power technology has been unable to take

advantage of modem information processing technologies to the extent that is common in

other industries. The work reported here was undertaken to improve the ability to test

nuclear safety-related software.

The development of high reliability software has been concentrated in areas of high

commercial importance (e.g., telecommunications control systems) and high human risk

potential (e.g., aeronautical and astronautical application of fly-by-wire technologies).

Such applications typically involve very large, complex programs having many statements,

program operational states and opportunities for developmental errors.

The techniques of V&V ultimately require extensive program testing, both

manually and automatically. This is done in the hope that after sufficient testing all errors

will have been found, or at least that any remaining errors will not appear at unacceptable

frequencies for which the program is being used. An acceptance criterion which has been

8

used in aerospace applications is that if the expected time scale (i.e. inverse frequency) of

appearance of an undetected error is substantially longer than the expected useful life of

the program then the program would be acceptable.

The difficulty of acceptance of nuclear safety-related software in nuclear power

applications has arisen from concerns over its reliability. These concerns are similar to

those focused upon hardware and human reliability. The problem with each is to show

that the expected frequency or conditional probability of correct performance is greater

than a minimum threshold value. Standard methods for providing high-reliability software

have not yet evolved, and such proofs are inherently difficult.

The purpose of this work is to provide some improvements to the current situation

by determining whether nuclear safety-related software can be made simple enough that it

can be tested completely [2]. If it can be tested completely, it is expected that it can

satisfy the safety-related requirements imposed by the Nuclear Regulatory Commission

(NRC).

1.2 Background

Ultimately, it will be necessary to show that the use of safety-related software can

be expected to improve safety [1]. If this can be done with low uncertainty then use of

such software will become imperative. However, a partial proof-- one consisting of an

9

expectation of highly reliable behavior, but subject to substantial uncertainties -- will likely

be unsatisfactory. Incorrect software performance can arise from many sources, including

the following:

· incorrect conceptual program formulation;

* programming errors, which can include:

* transcription errors,

* program conceptual errors (e.g., incorrectly formulated logic statements)

* numerical method errors;

* operating system errors, or those arising from incorrect use of the operating system;

* input data and control parameter errors.

Ways of searching for errors all rely upon comparison of program foundations,

features or results to independent standards. These comparisons can fail because of faulty

standards, faulty comparisons or incomplete comparisons. The different types of error

searches include the following:

* use of independent theoretical derivations of solutions, with independent computation of

their solutions using the program being tested;

· independent checking line-by-line of program encoding for transcription and program

conceptual errors;

* comparison of program results for simple cases to those obtained from independent

sources, including analytic solutions, those from peer programs, and those from more

accurate programs;

* independent review of numerical methods used in the program being tested, checking for

solution sensitivities to numerical parameter variations (e.g., time step size changes) and

10

comparison of program computational results to those obtained using alternative

numerical formulations;

* independent reviews of the operating system and its uses in controlling the program

(because of the large experience-based characteristic of the typical operating system,

however, the former is presumably a relatively rare source of error);

* independent review of input and control data to ensure its correctness, and comparison

of sample results to reference result sets;

* verifying that specified input data leads to expected output results over the anticipated

operational range of program use.

Several means of developing reliable software are available. These include:

* employing, where possible, simple theoretical problem treatments having few

alternative logic states, which lend themselves to reliable checking of the algorithm's

conceptual formulation, software encoding, and solutions;

* use of highly reliable programmers;

* use of image-oriented programming languages which have internal consistency and

completeness tests and employ natural language inputs, input echoes and outputs.

In addition, the program can be structured to enhance reliability. Some ways of doing this

include the following:

* minimizing program complexity

· modularizing the program, or portions of it, through the use of well-tested macros or

subroutines.

11

1.3 Method of Investigation

There are primarily two tasks undertaken for the work reported here [1]. The first

task is a literature search of both nuclear and non-nuclear industries concerning

development, verification, validation and application of simple, high-reliability software.

This includes an examination, with the aim of identifying the reasons for the successes and

failures which have occurred, of the experiences within the international nuclear power

industry and their attempts to introduce highly-reliable, but simple, nuclear safety-related

software.

The second task is to examine an example of simple nuclear safety-related software

in order to understand the strengths of current approaches for enhancing reliability, and to

identify some means of improving both expected reliability and the ability to demonstrate

high reliability.

1'.4 Scope of this Work

The primary sources contributing to the system unreliability are review before

defining the scope of the work presented in this report:

1. the hardware;

2. the environment (e.g., electromagnetic (EM) pulses);

3. the system program;

4. the compiler

12

5. the software specifications; and

6. the testing procedure.

The work presented here is concerned only with simple software and does not

include a reliability study of other potential sources of control system errors, including the

necessary hardware components, environmental effects, conceptual errors, or design

errors -- all of which are commonly found in more complex software codes. The software

being examined is considered therefore to be fully and correctly specified, including all

features and feature interactions.

Simply put, the work shows that simple software can be completely tested to

satisfy all of its specifications given the very limited scope allowed for a program. If there

exist unstated control system specifications, the control software code will fail to deal with

them.

13

Part 2
Literature Search

2.1 General

The literature search of this work found that there is not much information

available that specifically deals with simple, safety-related software testing, verification or

validation. Rather, the majority of relevant software information deals with long, complex

software programs that consist of thousands of lines of code, complicated control

specifications and complex hardware or software interactions. Most of the articles

indicate that software codes can not be completely tested. While this conclusion is

common to much of the literature, there are various reasons for it, either stated or implied.

For example, some of the arguments given for software untestability are based on the

premise that software codes are too large or complicated to permit one to be certain that

all possible conditions (i.e., software states) have been tested; some arguments criticize

the hardware components that execute the software codes; and finally, some arguments

suggest a lack of confidence in the operators' ability to use the software properly, whether

or not the software is functioning correctly. One other software concern often cited

relates to the user-friendliness of the code, or specifically, the complications that arise

when creating user-friendly software. This is because it is usually necessary to add many

features to the software codes in order to make them user-friendly that are not necessary

for proper execution of the code itself, and any added features can only complicate the

14

code structure. While the literature uses all of these reasons to label software as being

untestable, it is apparent that most of the reasons cited are not software related but are

directed at the hardware, human, or control aspects of the software code.

In order to explain why these various concerns are not relevant to this particular

study, a closer examination of some of the articles is necessary. An example of each case

cited above is presented subsequently in more detail and a counter-argument is proposed

in order to isolate that concern from this study.

2.2 Software Concerns vs. Other Concerns

Since this study concentrates on software concerns, it is necessary to eliminate

other concerns from the scope of the study. Such concerns include those about the

correctness of system control algorithms, the associated hardware systems, and the human

operators [3, 4].

2.2.1 Concerns about Control Algorithms

In simple control cases, the control algorithms are typically well understood before

any effort to encode them is begun. Regardless of whether the system being designed to

implement the control algorithm uses analog or digital hardware, the reliability of software

is not an issue during the earliest phases of control system development.

15

Particularly for the most basic, safety-related control functions, the control

algorithms are well understood [5]. For example, one of the functions of the code being

used for this study [6] is to turn on a pump if the water level in a vessel is reduced beyond

a minimum value (i.e., the setpoint). Once the current level and the setpoint level are

known, the control algorithm is extremely simple: if the current level is less than the

setpoint level then the pump is to be turned on, otherwise the pump is off. For such

simple algorithms, small modifications can be made (e.g., for timing purposes) without

complicating the control system beyond testable limits.

2. 2.2 Hardware Concerns

Another reason often cited for the inability to test software systems completely

concerns the hardware that must be used in conjunction with the software code itself [7,

8]. Hardware components used for data acquisition, for example, have a limited reliability

that will determine how reliably the software receives its necessary input data. For critical,

safety-related soft:ware, the consequences of misinformation could be extreme indeed.

Therefore, there are many who believe that even if the software code were perfect, the

entire system would be limited by the reliability of its supporting hardware -- which is true.

I-Iardware reliability, however, is not a new issue to the nuclear industry, or any industry

demanding high-reliability, and it has been dealt with successfully in the past. Indeed, the

very same high-reliability systems which are currently trying to introduce software

replacements are entirely made up of hardware components.

16

2.2.2.1 ComputerHardware Problems

With the rapid development of electronic technology, very few products are on the

market long enough to provide the experience base needed to certify their reliability for

safety-related operations. Typically, systems that have managed to exist long enough for

an accurate collection of fault data are nearly archaic compared to the newer, improved

systems. Fortunately, successive generations of hardware components are often based

upon earlier ones, with improvements being made from experience, so that the quality

typically increases with each generation of computer hardware technology. While such

trends do not guarantee future good performance, they provide indications and can be

used for initial reliability estimates.

2.2.2.2 Reducing Hardware Concerns

In order to minimize concerns about faulty hardware in safety-related systems,

many techniques have been developed to ensure proper operation of both the mechanical

and software systems. The most promising of these developments is the distributed, fault

tolerant architecture which is being investigated extensively by Hecht and Agron at Oak

Ridge National Laboratory and privately as well [9, 10]. The proposed concept is based

on redundant hardware systems, not only to provide multiple concurrence of critical

processes, but also to have systems perform on-line testing and backup of the input data

and system performance, as well as functional fault detection; the result has been a more

reliable system for safety-critical operations. Hecht and Agron have developed systems

17

such as the Extended Distributed Recovery Block (EDRB), which is specifically designed

for real-time processing of critical control processes and takes advantage of multiple

(redundant and/or diverse) hardware and software components. With such a system,

primary control software could be optimized for performance and economy while alternate

software "provides a 'life-boat' to prevent a reactor trip in the event that the primary

system fails to properly execute its control functions."

Other researchers at the Oak Ridge National Laboratory, such as Battle and Alley

[1] are investigating options that go beyond the software and hardware systems and take

full advantage of modern digital technology. They claim that such options involve none of

the complicated verification processes which are responsible for the stall in advanced

software, safety-related control applications. Specifically, Battle and Alley have been

investigating the use of application-specific integrated circuits (ASICs). These integrated

circuits are developed and optimized using advanced software tools, but they are only

practical for simple systems. Their advantage is that since the algorithms are contained in

integrated circuits, backup and restart operations are not concerns for reliability, as they

are with conventional software systems. Battle and Alley claim that ASICs provide all of

the benefits for high-reliability systems that digital computers offer, but very few of their

complications. They claim that this is primarily due to the fact that the production and

verification of ASICs is well understood, whereas the development of software control is

in its infancy. Advancements in integrated circuit (IC) production technology have also

made the limited production of a small number of ASICs much less expensive than it once

18

was. Finally, another benefit of ASICs, due to their IC form, is that they are easy to

replace and can be adapted easily to most remote computer control software.

The software code used for this study [6] uses both software and hardware

redundancy (2-of-2 concurrence of software control activation signals). It is assumed that

the hardware industry has developed sufficient methods to ensure the necessary reliability

cf the control system's hardware components. The reliability thus achieved is assumed to

be comparable to the reliability of similar analog equipment used for similar safety-related

purposes.

2'.2.3 Human Factors

Another reason often given for the inability to test software completely concerns

the role of human interaction. The greater the involvement of humans in the operation of

software systems, the greater are the chances of encountering human-induced faults.

There are several reasons for this relationship [4,12]: 1) programs with human input must

typically be more complicated than similar, human-free counterparts; 2) humans can

misunderstand which information needs to be provided to the system; 3) humans can be

careless and accidentally provide the wrong information (especially in mundane or

repetitious operations); and 4) humans are subject to psychological stresses, causing

inefficient or false operation of the system.

19

A simple scenario demonstrates how humans can be the root of system failures:

faults can be introduced into a system when a procedure alters the operational state of the

software or hardware (e.g., by putting the code into a testing mode or service mode),

which is then "forgotten;" it is clear that this results in faulty operation until the condition

is noticed and remedied.

While hardware and software systems can theoretically be tested completely if

given enough time and money, human beings cannot. Human behavior is a science, but

the subject is extremely complex. Situations which might cause hardware and software

failure might also cause unpredictable stress (and responses) from otherwise reliable

operators. Hope in reducing human error rates is one of the key reasons for which

advanced control is being given so much attention by industries requiring high-reliability

performance. While human designers are required to anticipate new operating or accident

situations, human operators are often fooled by circumstances or initial impressions (i.e.,

humans have preconditioned attitudes and understandings). For example, the plant

operators at the Three Mile Island (TMI-2) nuclear power station were victims of just

such an accident [13, 14]. While observers speculate about actions which might have

prevented that accident, human error is certainly one of the factors that caused it [13].

Humans are susceptible to information overload and must therefore be provided with the

information which will be most beneficial for the occasion. (Ironically, the best

information to provide, even with software systems, must be determined by humans who

have most likely not been in similar circumstances and cannot know what information is

20

necessary or helpful.') In accident scenarios, too much can happen too fast for humans to

react rationally, often leading to an overreaction or even no action at all.

With the introduction of advanced control, some researchers are worried that

human error rates might actually increase [15]. Complacency or complicated software

procedures might lead to problems that cannot be predicted under current conditions, and

operational circumstances might actually become more dangerous than those that

currently exist [16]. The National Air and Space Administration (NASA) has conducted

studies that show how such complacency can develop and the devastating results it can

have on pilots traveling at speeds greater than the speed of sound. Also, there is some

worry that humans will be excluded from software control too much and that the resulting

automation might actually be counter-productive, reducing the reliability of safety-related

systems instead of increasing it. Supporting this claim, NASA studies have shown that

humans who remain an integral part of the operating system are more likely to perform

well and operate with the system most effectively [14].

The software for this study does not required much human interface [5]. Also,

since the human interactions that do exist with this system are not considerably different

than those existing with the analog equipment which it potentially replaces, human error

does not appear likely to increase the risk to the overall performance of the system.

Additionally, the majority of all human interactions for this code are related to diagnostic

testing [17, 18] which is used in the hope of creating a more reliable system.

21

2.3 Software Issues

Henceforth, focus is placed on the software codes themselves, which are the

primary emphasis of this study. The scope of eligible systems has been defined in part by

the previous sections in this chapter, but eligible software codes are further limited by

problems described in this section. For example, in order to aviod the specification

difficulties inherent in making user-friendly software, eligible codes need to have very

limited interactions with human operators [19, 20]. Also, due to the difficulty of

determining test independence when there exist too many flowpaths, eligible codes are

limited to a small number of flowpaths such that all independent tests are easily

understood [21]. Finally, in order for software control to be a reasonable alternative to

current methods of control, the reliability of software systems must be better than the

alternative non-software systems [1].

2.3.1 Software Development Processes

The entire software development process has been scrutinized closely in an effort

to decrease the introduction and incidence of software related faults in control systems

[22]. Since complete testing of software codes has commonly been viewed as impossible,

various other means have often been sought to reduce the introduction of faults into the

system, requiring a plan encompassing the entire software development process [23 - 29].

22

The software development process begins with the establishment of required

specifications, continues through the design descriptions, test plans, and user-manual

development, and finally terminates when the user accepts the complete and finished

product [4]. During all four phases of the development process (e.g., specification,

design, testing and documentation), conscious efforts are made to include extensive

evaluations, inspections, and software code walk-throughs, to be certain that all possible

errors are removed. The entire process also includes various external audits and reviews.

While these software development processes reduce the introduction of software

errors and are a significant step in the correct direction, they are not likely to be sufficient

to completely eliminate all software errors from the system since software is traditionally a

user-defined product. Since the people involved in designing system specifications are not

usually the same people who eventually use the software, the specifications for

user-intensive programs often contain many user-specific "errors" and must be changed

(e.g., "I didn't want the screen to clear before each run"). It is also customary in the

software industry to categorize these specification faults, including unstated specifications,

as "software defects," even though the code executes correctly. This custom makes

error-free software codes difficult to achieve.

The solution to user-specific errors adopted for this study involves limiting the

human-software interaction, which makes the necessary specifications much more

concrete and less likely to contain unforeseen human-related specification faults.

23

Additionally, more narrowly defined system specifications are possible, which are very

precise and leave very little room for misinterpretation.

Another concern in general software development that is not frequently addressed

is the flexibility that must be incorporated into new versions of an old code [30]. Modern

software codes must conform to so many different software standards that it is not

surprising that there should be so many problems. For example, an improved word

processor code, written to take advantage of a modern computer processor, must account

not only for compatibility with older versions of the same word processor, but also for

compatibility with older computer processors. System idiosyncrasies are also a concern,

such as the various operating speeds, monitor types, display attributes, keyboard

configurations and printer types. Also, with the ability of having so many different

software applications running simultaneously, it is no wonder that there should be

occasional configuration problems.

As a result of the complexities involved in making a code universally compatible,

this study limits each processor to the execution of one application and does not require

that the code conform to other processor or hardware standards. As an extra precaution,

the code used for this study involves a minimal amount of machine-machine interaction as

well as very limited man-machine interaction.

24

2.3.2 Software Complexity

The most powerful and relevant argument against the ability to completely test

software relates to the extremely inconsistent topic of software complexity [31 - 35].

Although the various definitions of software complexity and their methods of calculation

are inconsistent, the theory behind software complexity is simple: to be able to classify

software codes into groups such as "complex" or "simple" according to some common

numerical scale. It is important to understand that all of the software complexity metrics

which have evolved are empirical, primarily because "complexity" depends largely on

human perception, and also because it is relative to specific applications; complexity is not

based on firmly established mathematical, physical, or other scientific grounds. By limiting

this study to simple software -- software which has relatively few execution states -- the

intention is to limit the complexity of software codes so that they are easily understood

and can be tested completely.

2.3.2.1 General Complexity Metrics

For many years, software complexity has been associated with the "program

length." Most frequently, program length is related to the physical size (e.g., the number

of lines or words) of a software code [31], though it is sometimes considered to be more

closely related to the number and variety of data objects (e.g., inputs) and command

statements (i.e., software commands such as the if. then command) used in the code [35];

in both cases, each is related to a quantity referred to as the "program length." (While

25

these two views might seem to be closely related, consider the case where a physically

short program -- one with very few lines -- repeatedly accesses data from a remote file and

manipulates it; the physical length of the program would indicate that it is unlikely to have

many errors, while the size of the data file might indicate otherwise.)

Another independent theory of software complexity suggests that it should be

related to the logical structure, or state diagram, of the software code [31, 36]. These

two unrelated theories of software complexity, one based upon the program length (also

known as "linguistically" based) and one based upon the logical structure (or

"cyclomatically" based), are a result of the fact that there are no universally accepted,

rigorous definitions of software complexity. Software complexity is simply one of many

software tools that software programmers have developed in order to quantify the quality

of their codes on the basis of characteristics which they consider important in relation to

software correctness. Regardless of the method chosen, however, the objective remains

the same: to create reliable software codes with fewer defects. Ultimately, a higher

complexity number theoretically reflects a less desirable software code.

While, theoretically, there are only two types of software complexity, there exist

many different measures of software complexity (also known as complexity metrics),

developed and proposed by software programmers or theorists based on their subjective

observations of specific applications. There is a large variety of software applications and

programming techniques, resulting in the fact that no single software complexity metric

26

has been widely adopted; there seem to be conditions where each metric is particularly

well behaved but no metric that is universally applicable to a full spectrum of conditions.

2.3.2.2 Halstead's Metric

The most notable proponent of a linguistically based metric, Halstead [20, 34, 35]

developed an empirical formula which he uses to estimate the number of software errors

(i.e., "bugs") that one can expect to find in a given software code. Like other early

complexity metrics, the formula Halstead developed is based "program length," although

his metric has some unique modifications. Unlike other linguistic metrics, Halstead does

not presume to "count" the number of lines, or even the number of words in a code in

order to determine what he terms the "program length." Instead, Halstead's method

counts the number of discrete data (i.e., specific information, such as a person's height or

weight) and it counts the number of discrete commands (e.g., the if. then.. else, while..do,

and repeat.. until commands), combining each of these counts with its total number of

appearances (e.g., how many references there are to the person's height or weight, or how

many times the if. then..else, while..do, and repeat..until commands are used). An

example using Halstead's metric is presented in Chapter 3, section 3.2.2.

Although all linguistic metrics, Halstead's metric included, are no longer

considered to be valid for determining the complexity of a program, they have given

meaningful insights into certain types of defects commonly found in software codes and

27

can often be useful in judging the potential for problems during the earliest development

phases of software systems. In order to keep the value of Halstead's metric as small as

possible, a minimal number of discrete commands should be used, as well as a very limited

amount of data. For this study, there are no complex data files that need to be accessed,

and the program length of the code is short (far fewer than one thousand lines of code).

2.3.2.3 McCabe's Metric

One of the prominent advocates of a cyclomatically based complexity metric,

McCabe [31, 36] employs flowgraph theory, which is mathematically based and involves

the logical structure of the executed code rather than the code's particular linguistic

properties. One of the advantages of basing his complexity metric on a program's array of

alternative execution flowgraphs (or "state diagrams") is the firm mathematical foundation

on which the flowgraph analysis is based.

The biggest disadvantage (and source of debate) of McCabe's complexity metric in

particular is largely semantic: high "complexity" values obtained using McCabe's metric

do not always correspond to highly complex program structures [31, 34]. The reason for

this discrepancy is that the "complexity" number obtained using McCabe's metric actually

corresponds to the number of alternate ways a program can be executed (i.e., the number

of "flowpaths" through the code) -- programs which can be executed in a large number of

different ways (i.e., programs with a large number of flowpaths) inherently have larger

28

"complexity" measures according to McCabe's metric, but they are not necessarily more

complicated programs (i.e., the logic for each flowpath could be easy to determine and

check). To illustrate this point, it is only necessary to demonstrate that it is possible for

such so-called "complex" codes (according to McCabe's metric) to be simple, as it is with

the case statement.

EXAMPLE: consider a program that is required to display different information

depending on the day of the week -- in this case, there would be seven different "cases"

(Sunday through Saturday) corresponding to seven different ways (seven flowpaths) for

the code to be executed. Since each of the seven flowpaths is independent (i.e., the code

cannot possibly execute more than one of those seven flowpaths, and it cannot ever switch

flowpaths), case statements are not considered to be more complex than their close

relative, the if..then..else statement.

It is relatively clear that software codes with even more "cases" than the example

above, would have higher "complexity" numbers according to McCabe's metric (the value

of the measure increases by unity for each case) but the code would actually be no more

complicated than a code with just two simple cases (e.g., the if..then..else command).

Nonetheless, it is true that case statements require as many tests as McCabe's metric

indicates, although those tests are easily determined and are therefore not "complex."

29

Based upon experience in developing his complexity metric, McCabe chose a

metric value of 10 as the upper limit for simple, easily-testable software [36]. He has also

categorized codes with metric values between 10 and 50 as "moderately complex," and

those with values over 50 as "complex." McCabe justifies his selections by arguing that

while metric values less than or equal to 10 are sometimes extremely simple, they are

testable even in "worst case" scenarios.

For this study, McCabe's metric is not used as a measure of complexity, but rather

it is simply taken for what it is: a measure of the number of tests that are required to

completely test the software code. For this reason, the term "complexity" is not used this

context.

If the difference between "complex" codes and "easily tested" codes has been

confusing, consider this: regardless of the number of flowpaths, if the logical conditions

for all of the flowpaths are easily determined (exactly what "easily determined" means is

left for future discussion), then the code is "easily tested;" if the tests are not easily

determined, for any reason, the code is "complex." As was discussed above, McCabe

considers simple codes to be those with metric values of 10 or less (i.e., 10 or fewer

flowpaths and tests required). Since McCabe's measure is actually a count of the number

of tests required, his reasoning is simply that the tests for codes with 10 flowpaths are

generally simpler to determine than codes with 50 flowpaths -- a reasonable expectation.

30

2.3.3 Software Reliability

When complete testing of software is not possible, software reliability can be

calculated using techniques similar to those used for hardware reliability [30, 33].

Measures of hardware reliability are traditionally accepted, and similar procedures are

proposed for software reliability. In both cases, the procedure involves accurate

documentation of historical errors or problems [33]. More formally, assuming that the

rate of use of a program is constant, the reliability (R) of a software code can be measured

by using the mean time between failures (MTBF) and the probability of success on

demand (P). The value of the MTBF can be estimated by dividing the cumulative

operating time by the number of failures experienced during that time. To measure the

probability of software success upon demand, one can use data accumulated from system

testing. The actual software reliability can then be calculated as the product of the two

values thus obtained: R=MTBF*P. The biggest problem with this type of software

reliability measurement (a problem which is not present in hardware reliability) is that once

a defect has been corrected, it will never again occur; also, all future defects are already

present but remain undetected until accessed, unlike the hardware analogy where defects

are created as a function of time.

2.4 Current Work and Progress

In order to facilitate the introduction of computers into the nuclear power industry,

many large studies are being conducted to determine what tests must be performed and

31

what procedures must be followed in order to ensure plant safety and proper operation

[37 - 40]. The Nuclear Regulatory Commission (NRC) has been working with the

Electronic Power Research Institute (EPRI) to produce a guideline for new nuclear

reactor power plant systems [37]. The resulting manual is expected to provide helpful

guidelines to vendors and operators on which systems are "safety-related" and which are

not. Such guidelines would help to ensure that the procedures followed by the nuclear

power industry to update and replace its critical high-reliability systems would result in

systems with more confidence and higher system reliability, and an overall reduction in

licensing procedures [41]. This would ideally reduce the verification and testing costs

which are currently very prohibitive.

Also working toward a more systematic approach to the refitting of nuclear power

plants, the International Electrotechnical Commission (IEC), the International

Organization of Standardization (ISO) and the International Atomic Energy Agency

(IAEA) have been instrumental in establishing procedures and guidelines for system

development [42]. The standard released as IEC 1226, "The classification of

instrumentation and control systems important to safety for NPP's" will have major

applications to the various digital computer systems currently used for monitoring, control

and protection functions for NPPs. The current requirements for the design of both the

hardware and software are graded based on the importance to safety of the systems and

equipment that perform these functions. Collectively, these groups are also responsible

for circulating documents which they hope will be of use in the future, to better

32

understand the comments others in the nuclear power industry have to make. Two

documents currently being circulated are concerned primarily with the design of control

rooms, the area most likely to heavily use computers: "Verification and validation of

control room design of NPPs" and "VDU applications to main control rooms of NPPs."

2.5 Review

Literature that is relevant to software verification, validation and testing deals

primarily with complex programs or with factors beyond the scope of this study, such as

hardware or operator concerns. While the literature is helpful in limiting the scope of this

study, it is not specifically applicable to the complete testing of simple, high-reliability

software codes. Suggestions were found for improving the software development

process, but none were found which might be used to confirm the ability to test simple

software completely. The most promising case for complete simple software testing is the

related technology of application-specific integrated circuits (ASICs).

33

Part 3
Understanding Software Structure

3.1 Nature of Software Uncertainties

The nature of software uncertainties is elusive. Unlike those of hardware, the

population of latent software errors is not time-dependent and does not appear after a

certain number of hours of use. Software errors are programmed errors -- they exist ab

initio in the software and lurk waiting for the proper conditions to arrise in order for the

errors to be revealed. However, software errors do not create themselves and are not in

any way mysterious. The only way for a software error to exist is for it to elude, by

whatever means, the different testing phases of the software.

With this concept in mind, it should be possible in principle to test every

conceivable operational state of the software and to reveal the existence of any software

errors before the software is packaged for use. In order to perform such a complete

battery of tests, however, several conditions must exist: there must be relatively few tests

to run (so that there is enough time to run them all before the software becomes obsolete);

the test paths must be very well defined and understood; and the proper operation of the

program must be well understood. Where these three conditions apply, complete testing

of software should be possible.

34

There is a prolific amount of literature discussing the best way to create software

specifications, as was discussed in Chapter 2. Simple software is in a sense classified by

the ease of its specification. If there is one task to be accomplished, it is easy to specify

that task in great detail, including the very limited number of ways it interacts with other

components. The question that will have to be addressed at some point (and not here) is

how much is too much for "simple" specification? It seems evident that the specifications

will finally determine how reliably tests can be executed and software codes be verified as

correct.

3.2 Complexity Measures

3.2.1 General

In order to quantify how difficult a software code is to understand and test, many

researchers have been trying to determine a measure of software "complexity." There are

literally hundreds of different complexity measures [31], but two are most notable since

they are the standards against which most of the others are compared.

As is discussed in Chapter 2, complexity measures can be separated into two

different classifications, commonly referred to as "linguistic" and "cyclomatic." Linguistic

measures are those that deal with the written code itself (e.g. line counting, word

counting, and data counting). Cyclomatic measures are those that deal with the logical

flowgraph dictated by the code rather than the actual text itself Both methods are under

35

constant revision and improvement; neither method is accepted as a best measure since

each seems to apply better to different types of codes. There are also hybrid complexity

measures which incorporate qualities of both methods, but to-date none is considered

superior.

3.2.2 Halstead's Metrics

Halstead [13] developed his complexity metric by evaluating many independent

program codes and empirically fitting error data to them. There are linguistic metrics

subsequently developed which have tried to improve upon Halstead's basic premise, which

leads to the conclusion that Halstead developed one of the most fundamental linguistic

metrics being used to determine software complexity.

In order to calculate the number of software errors (i.e., bugs) which one can

expect to find in a program code, Halstead developed a function to determine what he

considered to be the "program length" and then related that length to the total number of

anticipated software errors. The general Halstead metric is simply scans the entire

program code and counts the number of distinct operators (e.g., program "keywords"

such as if. then or while..do loops), designated by the term n,, and also counts the number

of distinct operands (e.g., variables or data objects used by the operators), which will be

designated n2. Halstead could then define his version of the "program length," designated

here as H, as being a function of both n and n2 as given by Equation 3.1:

36

H = n, log2 (nl)+ n2 log2 (n2).

After defining the program length according to his method, Halstead further

defines N, and N2 which are the program's total operator count and total operand count,

respectively. The sum of these two counts is known as the "actual Halstead length" and

is given by Equation 3.2:

N = N + N2. (3.2)

By using a combination of all of these parameters, Halstead determined the total number

of software errors one could anticipate finding in the code by Equation 3.3, which is given

by

Errors NN1 n (3.3)
3000

As an example, consider a program which uses 75 discrete variables (or data

objects) which are accessed a total of 1300 times. The program also uses 150 discrete

operators a total of 1200 times. This program, according to Halstead's metric, would be

expected to have a total of (1300+1200)1og 2(75+150)/3000 = 6.5 errors.

One of the greatest advantages of this type of calculation is that it can often be

applied for estimates of software errors long before actual programming starts, which can

aide in determining which proposed software code to pursue. To apply Halstead's

formula, all that is required is some general knowledge of the data base to be used and the

37

(3.1)

code operators that will be needed, as well as some general estimates of the procedures

that are to be employed.

The biggest disadvantage to this type of measure is that it is very empirical and

becomes unreliable as the programmers learn how to "correct" for the errors that Halstead

has observed. Also, there is no guarantee that there will be only 6.5 errors in this

particular code (e.g., testing cannot be terminated simply because the anticipated number

of errors have been revealed), and experienced programmers might have far fewer errors

than anticipated (e.g., testing cannot continue until the anticipated number of errors are

found). This metric is an excellent tool to use as a means of comparison with other codes

being considered, however, or as a means of "simplifying" the present code by reducing

the number of operators being used or the number of times data is accessed, for example.

3.2.3 McCabe's Metric

As discussed briefly in Chapter 2, McCabe [14] developed a method for

determining the relative complexity of a software code that is not dependent on any formal

definition of the "program length." In fact, McCabe indicates that codes with greater

numbers of lines actually tend to be less complicated per unit length than shorter, more

compact codes.

38

Instead of counting the number of lines in a code, McCabe found that using a

flowgraph of the code structure resulted in far better results and could then be directly

applied to the test development phase. McCabe's metric yields a number which he terms

"complexity" but is essentially a measure of the number of tests required to completely test

the structure of the code. McCabe's metric itself does not reveal much about the tests

which must be executed, but there are relatively simple procedures which can be employed

for specific types of code, especially if the number of flowpaths is kept to a minimum.

FIGURE 3-1
Sample node of a flowgraph

node

McCabe's metric involves breaking the program code into simple units of function

(which can be thought of essentially as Halstead's program operators). Each function

performed in the program code is represented as a circle, or "node," as shown in Figure

3-1. The lines shown entering and exiting the node represent the number of inputs and

possible outputs for that node, thus indicating the possible flows of information through it.

In order to link several nodes together, one must determine the relationship

between the nodes. It is important to keep in mind the fact that the links between nodes

39

are not necessarily consistent with the physical layout of the program code and may

depend exclusively upon the logical conditions necessary to execute the function

represented by that node. The theorem of flowgraphs used as a foundation McCabe metric

states that for a strongly connected set of nodes, the number of flowpaths (F) is a function

of the number of links (L) and the number of nodes (N), as shown in Equation 3.4:

F=L-N+ 1. (3.4)

A "strongly connected set of nodes" reflects the fact that a completely closed loop

exists -- every node has at least one input and one output. In practice, a strongly

connected set of nodes can be created by connecting the first and last nodes (shown as a

dashed line) for calculation purposes only, as shown in Figure 3-2. As an alternative,

McCabe introduces a specialized relationship, shown in Equation 3.5, accounting for the

fact that the first and last nodes are not connected (but could be), and his formula

therefore applies to "otherwise" strongly connected nodes:

M=L-N+2 (3.5)

EXAMPLE: To demonstrate that both formulas produce the same result, apply Equation

3.4 on Figure 3-2. Evident from the flowgraph, there are 10 links (counting the dashed

line) and 8 nodes, which results in F = 10 - 8 + 1 = 3 flowpaths. By removing the dashed

line, the set of nodes is altered from a "strongly connected set of nodes" to an "otherwise

strongly connected set of nodes." McCabe's formula applies to an otherwise strongly

40

connected set of nodes. The number of links has been reduced to 9 but the number of

nodes has not been changed, so Equation 3.5 gives M = 9 - 8 + 2 = 3 flowpaths.

FIGuRE 3-2
A strongly connected set of nodes

3.2.3.1 Simple Structures

There are five functional structures that McCabe recommends that programmers

use in creating their code. The five general functions include: sequence, if.then,

while..do, until..do, and case statements, as shown in Figure 3-3. The reason for choosing

these particular functions is the ease with which they can be modeled using flowgraphs. If

the entire program consists only of these five functions, it can quite often be simplified by

grouping the functions together into modules.

There is one function in particular that is troublesome and not recommended for

use in general programming: the conditional goto statement. Seen frequently in the

BASIC programming language, the conditional goto statement "jumps" around the code

41

arbitrarily at the will of the programmer, often creating flow discontinuities which cannot

be reduced into modules. While conditional goto statements often reduce the linguistic

metric values obtained by Halstead's, similar benefits are not present when evaluated using

cyclomatic metrics.

FIGURE 3-3
Graphic model of the five basic command structures

Sequence If.Then..Else Until While Case

McCabe also describes a metric for "essential complexity" which can be applied to

a set of nodes grouped into a module. In this manner, a set of connected nodes is

simplified to an equivalent "large" node representing the entire module, where the modular

"essential" complexity is a function of the number of inputs and outputs to the module,

according to Equations 3.4 and 3.5. For example, each of the structures shown in Figure

3-3 has an essential complexity value of unity even though the "internal" complexity values

range from M=1 (for the sequence) to M=3 (for the case statement). The essential

complexity is useful in reducing the general code complexity and is valid because, for a

42

t

given set of inputs, the output of the module is known in the same way that the output of a

single functional node is known. Where the links on a functional node are scalar,

representing the logical state of one variable, the links on a modular node are vectors,

representing possible combinations of variables where each input state determines a

specific output state.

Using the essential complexity, the structural relationship of modules is determined

in the same was as the structural relationship of the nodes is determined. McCabe found

that applying this technique to modules, as well as within modules, results in codes which

are considerably more reliable.

3.3 Flowgraphs

McCabe uses the logical structure, or flowgraph, of a code in an effort to

determine the level software of complexity, but flowgraphs are also used by computer

programmers to "map" the execution of software codes. McCabe relates the complexity

of software code to the number of flowpaths through the it, and that number is the same

as the number of tests which are required to exercise each flowpath. The benefit of

flowpath analysis is that, although actual software programming methods are more of an

art than a science (it is unlikely that two programmers would write code in the same way,

even if they were given exactly the same set of specifications), the development of

flowgraphs for software codes is relatively straight forward and independent of the art

43

employed. That is not to say, however, that every set of specifications has a fixed

flowgraph, and like mathematical equations, a set of flowgraphs can be functionally the

same while their physical layout and appearance are not. Furthermore, while each

flowgraph has an easily determined number of "independent" flowpaths through it, there

may be an infinite number of "dependent" flowpaths associated with them.

A firm understanding of the nature of flowgraphs is necessary in order to fully

comprehend the arguments made in this thesis; what follows is a review of some of the

more basic flowgraph properties. A more thorough examination of flowgraph theory can

be found in McCabe's document published by the National Bureau of Standards.

3.3.2 Flowgraph Theory

It has already been discussed that every node of a flowgraph represents a module,

function or instruction that gets executed in the code. The links leading into the node

represent the conditions required to execute the node while the links leading out of the

node indicate the possible logical results of the function. There are several possibilities to

consider when dealing the exit links, though they can all be dealt with by examining two

cases: 1) one exit, and 2) more than one exit.

Where only one link exits the node, the condition must always be "TRUE" and

there is no corresponding conditional statement required. This type of node consists of

44

functions which perform tasks having no logical result (e.g., print commands or algebraic

functions).

Where two or more links exit a node, one link must correspond to "all cases not

represented by other exiting links." For example, two exit links would represent an

if..then..else statement where one link represents the TRUE condition of the statement

and the other link represents all other conditions (e.g., the else condition). Where three or

more links exit a node, the situation is that of a case statement and one of the cases must

include all conditions not otherwise specifically covered. Also note that there may never

be more than one TRUE exit link for any given pass, so that there is only one discrete path

corresponding to every set of input conditions.

A series of linked nodes which leads from the first node in a flowgraph to the last

node is referred to as a flowpath, with the number of independent flowpaths in an

otherwise strongly connected flowgraph being given by Equation 3.5. A close, personal

examination of the flowgraph might indicate that there are additional flowpaths, but

Equation 3.5 insures that they are not independent flowpaths. Therefore, if you execute

all of the independent flowpaths, all possible flowpaths (including all dependent flowpaths)

will at least have been exercised piecewise. Figure 3-4 illustrates an example of this

relationship between independent and dependent flowpaths. For this case, there are 12

links and 9 nodes, leading to only 5 independent flowpaths. A close visual examination

reveals that there are a total of 6 possible flowpaths, however, as outlined in Table 3-1.

45

The discrepancy in the number of flowpaths indicates that there is one dependent

flowpath. (Do not let the simplicity of this system of nodes be misleading, however; it is

not always so easy to determine the total number of possible flowpaths through a system

of nodes, much less determine which of them are dependent or independent.)

FIGURE 3-4

A simple flowgraph illustrating dependent flowpaths

Db bg

TABLE 3-1

A list of the possible flowpaths for Figure 3-4

46

Path Flowpath

1 a+b+d+g+i

2 a+b+e+g+i

3 a+b+e+h+i

4 a+c+e+g+i

5 a+c+e+h+i

6 a+c+f+h+i

Examining Figure 3-4 reveals that paths 1 and 6 are independent, which only

leaves the other four paths to consider for dependence, three of which must be

independent. It turns out for this example that any three of the four are independent and

the last is a function of the other three. For example, consider paths 2, 3, and 4 as the

independent flowpaths. Path 5 can be expressed mathematically as a linear combination of

the others: path 5 = path 4 + path 3 - path 2.

path 5 = (a+c+e+g+i) + (a+b+e+h+i) - (a+b+e+g+i) = a+c+e+h+i

In the same way, path 2 is a function of paths 3, 4, and 5; paths 3 and 4 can be

similarly defined as functions of the remaining flowpaths. A more elaborate method of

determining the independent flowpaths was described in detail by McCabe, which is now

summarized.

3.3.2 Determining Independent Flowpaths

The method described by McCabe to determine an independent set of flowpaths is

in very mechanical in nature and is therefore easily employed. Note, however, that even

using this mechanical method many different independent sets of flowpaths can be

generated. (For the simple example shown in Figure 3-4, there are five different, though

equivalent sets of independent flowpaths).

47

The first step in establishing an independent set of flowpaths is to determine the

"basepath" that will be used. Since any of the possible paths can serve as the basepath,

this is where most of the alternate sets are eliminated. For this step, McCabe suggests

picking a flowpath that exercises the greatest number of nodes, as this facilitates the ease

with which subsequent flowpaths are determined.

The next step in determining independent flowpaths is to locate the first node

which has a conditional split, and follow the alternate path, rejoining the basepath as

quickly as possible. The flowpath thus defined is independent. In the same way, again

following first alternate flowpath at the first node, exercise the second conditional split,

rejoining the already-tested flowpath as quickly as possible. This process is repeated until

all conditional splits in the alternate flowpath have been exercised, or the alternate

flowpath has rejoined the basepath.

After all the first node's alternate flowpaths have been fully exercised, the basepath

is followed once again until the second conditional split is encountered, at which point the

alternate flowpath is followed, again rejoining the basepath as quickly as possible. As

before, the second alternate flowpath is exhausted, until in the end, every conditional split

encountered along the basepath and all alternate flowpaths have been exercised. Note that

if a flowpath joins another previously tested flowpath, the current flowpath ends.

48

Although determining independent flowpaths might be confusing (and lead

McCabe to limit the number of independent flowpaths to 10 for simple software), an

example with clarify it. For this example, refer once again to Figure 3-4. Each of the

steps will be explained again as they apply to this example.

First, a basepath is chosen from the list of possible paths. Since it is not necessary

(and is sometimes impossible) for all possible flowpaths to be known, simply start at the

first node and choose one of the two paths randomly, making similar random choices at

each node encountered, with a conscious effort to make the longest possible flowpath. In

all cases (if the links are properly followed), the resulting flowpath can serve as a

basepath. For this discussion, the basepath will be path 3 of Table 3-1, consisting of nodes

a+b+e+h+i.

The second step is to exercise the first conditional split, which occurs at node a,

creating an alternate path which rejoins the basepath quickly. This leads to the flowpath

a+c+e+h+i, which is path 5 of Table 3-1. The next step is to follow the alternate

flowpath, exercising each conditional split encountered until it rejoins the basepath, but in

this case, there is only one conditional split encountered, yielding the flowpath a+c+f+h+i.

If there had been other splits along the a+c+f path, or the a+c path, they would have been

followed next. Having no other possibilities, however, the basepath is followed again until

the second conditional split is encountered at node b, which yields path a+b+d+g+i,

which again terminates alternate flowpath because there were no conditional splits

49

encountered along the way. Following the basepath once again, this time to the third

conditional split at node e, the result is the flowpath a+b+e+g+i, which not only ends that

alternate path but also the baseline path since there are no more conditional splits in either.

Thus, using path 3 as the basepath, the other independent paths selected by this process

are (in the order they were encountered) paths 5, 6, 1, and 2.

Choosing a different initial basepath, for example path 6 of Table 3-1, and

following the same steps results in paths 3, 2, 1 and 5 respectively -- exactly the same

paths that resulted from path 3 as the basepath, although that is not always the case. For

example, choosing path 4 as a basepath (not part of either example above), results in paths

2, 1, 6, and 5 respectively, after following the necessary steps.

The same process works well for more complicated structures too, although the

nesting of alternate paths can become quite complex and often leads to confusion. That is

the primary reason McCabe chooses to limit the number of flowpaths to less than 10.

3.4 Testing Methods

McCabe indicates that in order to completely test a software code, each flowpath

must be exercised and verified. It is not enough simply to ensure that each node can be

reached, however, or that each node can be exited. While it is true that for each node

every entrance to it must be exercised as must every exit, it is not necessary to exercise

50

every combination of the entrances and exits. Only the independent flowpaths, as

determined in Section 3.3.2, need to be tested, and the test conditions necessary to

execute each flowpath can be obtained by examining the flowgraph.

As an example of determining the necessary test conditions, refer once again to the

flowgraph shown in Figure 3-4. To aide in discussion, each of the testable nodes (which

could be viewed as variables) will be named. In particular, the nodes that need names are

those with multiple exit links, where specific conditions are applied to each exit link: here,

let node a test the logical state of Boolean variable "A," nodes b and c will both test the

logical state of Boolean variable "B," and node e tests the logical state of Boolean

variable "C." (Note that nodes b and c could also test two different Boolean variables

with no logical consequence.)

Once named, the logical conditions required for all necessary flowpaths can be

specified for each of the three variables. Table 3-2 shows the logical definition of each

flowpath for Figure 3-4, corresponding to the respective paths listed in Table 3-1.

In reference to Table 3-1, note that node e (variable C) is never encountered, so

that the conditions necessary to test flowpaths 1 and 6 appear only to include the states of

variables A and B. For the remaining flowpaths, however, the condition of variable C

must also be specified. In order to illustrate the feasibility of this point better, let us

examine a possible "real" application of this system. Note that since any system of three

51

,(or four) variables which are related as shown in Figure 3-4 would be suitable, and that the

example presented here is only one of many possibilities.

TABLE 3-2

Logical definitions of flowpaths for Figure 3-4

Flowpath Condition of A Condition of B Condition of C

1 0 0 N/A

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 N/A

EXAMPLE: Consider a software code designed to "poll" three digital responses and

reproduce the response that occurred 2 out of 3 times. This system would have as input

three variables (A, B, and C) whose values were all either unity (1) or zero (0). The

output of the code is a single value equal to either unity or zero. With the definitions of

variables given in Table 3-2, each time node g is reached the output of the system is zero,

while node h corresponds to a value of unity -- as a result, the function of node g is to

52

make the value of the output zero, and the function of node h is to make the value of the

output unity.

3.4.1 Flowpath Tracing

Unfortunately, a computer programmer cannot be content just with the fact that

the output of the code corresponds to expectations -- there are too many cases where the

correct answer is obtained in the wrong way. However, by analyzing the answer as well

as the flowpath, a programmer can be certain that the code executed correctly and

produced the desired output. Verifying that the correct flowpath is executed, however, is

not always a simple task and it can require using laborious code tracing techniques which

are often very confusing.

One method that can be used to determine the actual, executed flowpath takes

advantage of the equation-like properties of flowgraphs, which properties are readily

apparent in Table 3-1. By equating the flowpath to the sum of the nodes involved, it is

possible to derive a value associated with each node such that the value of the sum of the

nodes executed is equal to the value of the path taken. For example, using the flowgraph

of Figure 3-4 and the path definitions of Table 3-1, it is possible to associate a value with

each node and have the sum of the node yield the path number: since both a and i are

common to all paths, let them both equal to zero; for path one, b equals the opposite of g,

so set both to zero and let d be unity; then for path two, e must equal two; for path three,

53

h is found to be unity; for path four, c is determined to be two; and finally, for path six, f

is three. If each node then adds its own value to the tracer variable, the executed path

number will result.

A whole series of tests could then be designed to exercise each of the independent

flowpaths. One disadvantage of this tracing method, however, is that all possible

flowpaths must be accounted for, not only the independent flowpaths which are produced

by the techniques discussed in Section 3.3.2.

In order to avoid laborious searches for all possible paths, however, there are other

tracing methods available. Assigning prime numbers to each node and using the product

of the path nodes is one such alternative. Another alternative is to create an output file

which could record the progress of the flowpath, indicating the execution of each node

encountered. In all cases, it would be necessary to compare the actual flowpath and the

expected flowpath as well as the actual and expected outputs.

54

Part 4

Simple Software Example

4.1 PLC Software Code

For many years, industry has been trying to integrate software codes into their

high-reliability systems and there has been a considerable amount of research done toward

that end. One of the results of these investigations was the use of relay ladder logic [2,

25]. Programmable logic circuits (PLCs) are used to implement the code in relay ladder

logic style, and it therefore has many of the same benefits as pure relay ladder logic.

There are also several properties of PLCs that make them particularly attractive in light of

complete software testing, as will now be discussed.

4.1.1 PLC Characteristics

For high-reliability systems, the most valuable characteristic of PLC code is its

execution method [43, 44]. Since relay ladder logic exercises each command during

execution, the possibility of accidentally nesting a command such that it is not executed

properly is minimal. Also, this method of execution eliminates loops of all types from the

code, including the possibility of infinite loops.

Secondly, the logic of execution is entirely discrete, as with traditional, electronic

logic circuits. Thus, although the code has the ability to access and manipulate memory

55

locations during execution (e.g., to perform arithmetic), the execution of the code is based

upon the discrete values of specified input states. This allows the code to be mapped

logically in the same way that integrated circuits are mapped (e.g., Carnot mapping).

Finally, PLC codes (as employed by the nuclear industry) have limited access to

input data. This is accomplished by having the input buffer updated only once per scan

(once per execution). By ensuring that none of the input values is altered during

execution, the output of the code is essentially determined as soon as the input states are

known. This fact makes the output of the code easy to associate with the corresponding

input data set and to validate, since each input set can be mapped directly to an output set.

4.1.2 PLC Structure

The structure of PLC code is organized into a multi-level execution matrix [43].

On the lowest level, a single PLC node is executed. (Unfortunately, the term "node" is

used in both flowgraph theory and PLC structure, so a structure node will be referred to

by the term "PLC node" as much as possible to reduce confusion.) The next level is a set

of networks, which together comprise the third level, identified as a segment.

A PLC node is analogous to a memory location -- it's an intersection of the current

column address and the current row address. There are a variety of simple commands that

require only one PLC node address, while other commands occupy several PLC nodes.

56

In general, each command occupies the same number of nodes as there are inputs or

outputs associated with the command. The PLC nodes are organized into 7 rows and 11

columns which together form the next level of the PLC structure, the network.

Networks are the second level of the PLC code structure and each one consists of

77 addressable PLC nodes organized as described above. Each network is evaluated node

by node before proceeding to the next network. The PLC nodes within the network are

executed from top to bottom, left to right, as shown in Figure 4-1 taken from the Modicon

Manual. Every network and PLC node is evaluated each time the code is executed unless

the "skip" command has been used in the previous network. (Using the skip command is

not recommended, however, and if it is used, it should be done sparingly and carefully.) A

complete functional set of networks forms the next level of the PLC structure, which is

called a segment.

PLC segments are executed according to their arrangement in the order-to-solve

table (called the "segment scheduler") which is in system memory. As a whole, the

segments are executed in their pre-assigned order, executing each network within that

segment and each node within every network. Segments can be thought of as individual

programs, or even modules of a larger program.

The sample program being evaluated for this study, which was supplied by the research

sponsor, only employs one PLC segment with a total of 73 networks.

57

FIGURE 4-1
Execution order for nodes and networks

row 1

Network 1

row 7

row 1

Network 2

row 7

4.2 Conversion of PLC Codes into a Flowgraph

Due to many of the characteristics of the structure of PLC codes, especially those

mentioned in the previous section, PLC codes develop a unique flowgraph structure when

they are "translated" into flowgraphs similar in appearance to those described by McCabe

and discussed in the previous chapter. Initially, the flowgraphs derived from PLC codes

appear to be complicated or meaningless, but duplication of testing is the primary

explanation. Realizing this, the flowgraphs derived from PLC codes can be simplified or

structurally reduced, allowing them to be more accurately evaluated using methods such

as those described in Chapter 3.

58

Although not necessary for PLC codes in general, it is important to recall that for

the high-reliability codes like that being evaluated for this report, the input to the code is

received at only one point, staying fixed it for the remainder of the code's execution. This

property allows all of the input variables to be held constant for the entire execution of the

code, thereby eliminating the need to "double check" variables for a change of state. This

property allows the code to assume a form consistent with established flowgraph theory.

4.2.1 PLC Function Modules

Like other programming languages, PLC ladder logic has a limited command

function vocabulary, and each function can be "modularized" into an equivalent flowgraph

form. For example, a subtraction routine like the one taken from the Modicon Manual,

shown in Figure 4-2 (which occupies three PLC nodes of a network and corresponds to

the three possible outputs) can be represented as a single command node in flowgraph

firm with three possible exit cases: one exit representing a positive value, another exit

representing a negative value, and the third exit being equal to zero.

Since PLC logic is discrete, each of the values exiting is either unity (1) or zero

(0), but actually only one of the three outputs can be satisfied and therefore be equal to

unity. In fact, for every command function, one and only one exit can be equal to unity;

the remaining outputs must be equal to zero. Besides the exit logic, the memory value

59

associated with "difference" has also been altered by the subtraction subroutine. The full

flowgraph that would represent this subtraction routine is given in Figure 4-3.

FIGURE 4-2
Example of PLC command function

IIIpUL

command
to execute

Value 1

Value 2

SUB

Difference

Pncitil VnliP

value 1 > value 2

Zero Value
value 1=value 2

Negative Value
- value 1<value 2

FIGURE 4-3

Flowgraph of a subtraction module

| Command to Execute

tive Value

60

Positive

I·�·· YY · I�l··1L·T __ ·s

If the general structure of the program were known, the command function

flowgraph shown in Figure 4-3 would appear where all subtraction modules are used for a

comparison between numbers (though not where it was used simply to perform the

subtraction of two numbers with no logical result). Due to the nature of outputs and their

functional uses, which allows several of the outputs to do nothing while those that affect

the program are often used to perform a common task, it is tempting to combine output

links together. For example, if a conditional command function following the subtraction

command were only to be executed if the result of the subtraction were greater than or

equal to zero, the exits associated with positive and zero values could then be linked to the

conditional command function while the exit associated with the negative value could be

linked directly to the next command in the ladder logic. Figure 4-4 illustrates the more

elaborate, "extended" flowgraph, while Figure 4-5 shows the same logic in a simpler,

function-only form. While the functional flowgraph of Figure 4-5 produces all of the

results associated with the extended flowgraph of Figure 4-4, it does not include the

explicit boundary conditions associated with the extended flowgraph. The extended

flowgraph, however, allows for a more accurate count of the number of tests that need to

be executed for a complete test of the flowgraph network including all boundary

conditions. Notice that in the simplified flowgraph, there are only two outputs: one

corresponding to the conditions leading to the execution of the conditional command, and

one corresponding to "all others." The extended flowgraph clearly indicates that three

tests are required. Due to its explicitly clear form, the extended flowgraph is preferred for

high-reliability systems over the simplified flowgraph.

61

FIGURE 4-4

Flowgraph for a subtraction module with conditional command

Positive Value Zero

0

Command to Execute

iValue Negative Value

0 0

Execute Conditional
Command

0
In order to understand better the complete flowgraph and how to derive it from the PLC

code (so that its correctness can be scrutinized), the flowgraph models for each of the

additional components in the sample program are introduced. This is necessary so that the

overall PLC code can be modeled as a McCabe-format flowgraph.

62

FIGURE 4-5
Simplified functional flowgraph equivalent to Figure 4-4

Positive or ()

Execute
Conditional
Command

Negative Value

4.2.2 Contacts and Coils

In order to describe the flow of logical signals from one command to another, PLC

logic uses a series of contacts and coils which can assume either of the two logical states.

In the software code, both of these constructs occupy only one PLC node.

Contacts are logical "switches" that can be normally open or normally closed. A

normally open contact passes a logical unity signal if the value of the memory location

being accessed is equal to unity, while a normally closed contact passes a value of unity if

the value of the memory location being accessed is equal to zero. Figure 4-6 shows these

two contacts as they appear on PLC code and in flowgraph form. Note that the standard

terminology for logical variables dictates that "NOT(00822)" means that the memory

63

location 00822 has a value of zero while "00822" means that the memory location

associated with it has a value of unity. Note also that both contacts have the same

flowgraph model -- the type of contact distinguishes which link to follow normally closed

contacts take the "00822" path while normally open contacts take the other.

FIGURE 4-6
Normally-open and normally-closed contacts with flowgraph model

Normally Open Normally Closed Flowgraph of Contact

00822 00822
NOT(00822) 00822

Coils in PLC ladder logic represent a module used to alter memory values by

placing the logical value reaching the coil through the logical "circuit" in the appropriate

memory location. Coils are often used to "set" or "reset" memory locations within the

logical framework of the PLC code which can then be used in future contacts (in the same

or a future network) or the value can be passed to other programs through

communications ports. (Note that "set" means to place a value of unity into the

appropriate memory location while "reset" means to place a value of zero into the

appropriate memory location.)

In order to demonstrate the use of contacts and coils, as well as their translation

into flowgraph form, let us look at an example network from the sample code [6]. Figure

64

4-7 illustrates a simple PLC code (network #31) employing five contacts and five coils.

Figure 4-8 is the flowgraph corresponding to the PLC code in Figure 4-7.

FIGURE 4-7

Simple PLC code employing only contacts and coils

001

002

003

-\ - - - -

003

-H-I\ e

003

FIGURE 4-8
Flowgraph for PLC code displayed in Figure 4-7

set
014

set
011

reset reset 013

reset UIUUILreset
011 0reset14

011 014

65

o "o ------- ()
010

------------------ ()

011

()

012

)------
013

()

014

0

-

. A 1 n

In order to proceed to more complicated codes and flowgraphs, this simple

example must be reviewed thoroughly and understood completely. It is important to

remember that one property of the PLC code is that a logic "circuit" is not always

evaluated as a whole before others begin to be evaluated. Nonetheless, the order of their

execution and final result can be found by the position they occupy on the network "grid."

]'LC logic makes it easy to ascertain what the timing of the "circuit" will be, so that the

flowgraph can connect the entire logic "circuit" together in its appropriate location. To

understand this concept better, a closer examination of the flowgraph of Figure 4-8 is

now presented.

According to the original code and PLC execution, the first command to be

executed is the normally open contact labeled "001." Following the determination of this

contact, the code evaluates the contact labeled "002." Then the contact labeled "003" at

the top of the next column is determined (using the output of the connected contact),

which is followed in turn by each contact below it in the same column, each time using the

outputs determined in the previous column as appropriate. Finally, the coils 010, 011,

012, 013 and 014 are executed in that order. (In each case the order is because of their

relative positions, not their numbers). So, although the individual "circuits" are not

executed as connected wires, their timing is carefully controlled such that coil 010 is

determined first, followed by the other coils in order.

66

The order of execution can be very important to some codes, and in those cases

PLC codes offer great control to the programmer. In Figure 4-8, node b indicates that

the coil "011" is set and node c indicates that coil "011" is reset. Note that this can be

done here because the logic used to determine the configuration of coil 011 is a subset of

the logic used to determine those of coils 010 and 012. While it is true that the state of

coil 011 has essentially been determined, the actual memory manipulation does not occur

until after that of coil 010 has been established.

The nodes on the flowgraph of Figure 4-8 indicate the following states and actions:

NODE a: Here, the contact evaluates the state of memory 001. If the value is unity, the

next node to be evaluated (logically) is node b. Otherwise, the value of 001 is equal to

zero, and node c is executed.

NODE b: This node represents the logical condition "001" and determines the state of

coil 011 to be unity, though the coil cannot be energized yet due to timing conditions.

The exit of this node is a contact determined by the state of memory 003. If 003 is equal

to zero then node d is executed, otherwise node e is next.

NODE c: This node represents the logical condition "NOT(001)" and determines the state

for coil 011 to be equal to zero, although the actual memory location is not yet altered.

The exit of this node has no contact and leads directly to node e.

67

NODE d: This node represents the logical condition "001 and NOT(003)" which

determines the value of coils 010 and 012 to be equal to unity. Coils 010, 011 and 012

can all be set to unity at this point. The exit of this node leads to node f where the next

logical circuit begins.

NODE e: This node represents the logical condition "003" which determines the value of

coils 010 and 012 to be equal to zero. The three coils can now be placed into their proper

states: 010 is reset to zero, 011 is set to unity or reset to zero (depending on the previous

node), and 012 is reset to zero. The exit of this node leads directly to node f where the

next logical circuit begins.

NODE f: This node is the beginning of another logical circuit. The states of the previous

circuits (and coils) have no effect on this one, so all paths lead to this single node.

Technically, the order of these two circuits could be switched because they are

independent, but the in the code the coils of the second circuit are programmed to be

determined last (arbitrarily) so this circuit appears last in the flowgraph. The exit of node f

is determined by a contact evaluating the memory location "002." If the value in that

memory location is equal to unity then node g is executed next, otherwise node h is next.

NODE g: This node represents the logical condition "003" and determines the value of

coil 014 to be equal to unity. However, because coil 014 is to be established last, the

memory is not set at this point. The exit of this node is determined by a contact evaluating

68

memory location 002, which was previously evaluated at node b. If memory 002 has a

value of unity then the circuit proceeds to node j, otherwise it proceeds to node i.

NODE h: This node represents the logical condition "NOT(003)" and determines the

value of coil 014 to be equal to zero, but the memory is not reset at this time because coil

013 has not yet been determined. The exit of this node goes directly to node j.

NODE i: This node represents the logical condition "002 and NOT(003)" which

determines the value of coil 013 to be unity and sets it. At this point, coil 014 can also be

set. Note that memory location 002 was already evaluated at node b so that if node d

was executed, so must node i be executed from node g. The exit of this node is the

terminal node k.

NODE j: This node represents the logical condition "002" which determines the value of

coil 013 to be equal to zero and resets it. Here, coil 014 can also be set or reset

depending on the previous node. The exit of this node is the terminal node k.

NODE k: This is the terminal node for this code. No coils are set or reset, and the next

node would be the first node of the next network.

As this elaborate description shows, it is sometimes more convenient to show the

state of "determined" coils before they are actually executed in the code. Care must be

69

taken, however, that logic depending on those states do use it until they have actually been

set physically. Also, while the coil appears at the end of the row, the logic actually

manipulates it where the dashed line begins.

4.2.3 Modules and Functions

More complicated programs naturally include functions other than contacts and

coils. Examples of functions and modules frequently employed are the subtraction,

addition, multiplication, division, MOVE, and timer modules. There are a few other

functions which are less frequently used, but all of them use flowgraph techniques similar

to the subtraction module which has already been discussed. Figure 4-9 illustrates part of

the sample PLC code (a portion network #29, among others) which executes a subtraction

function and one other, in this case a timer module. The result is saved as the state of a

single coil. Figure 4-10 is the complete flowgraph for the logic code shown in Figure 4-9.

Before the flowgraph is presented for this code, its function should first be

understood The subtraction module, when executed, will subtract the value in memory

location 002 from the value in memory location 001 and store the result in memory

location 003. If the result was positive (i.e., value 002< value 001), the uppermost

terminal (not connected to anything in this case) would be true (also referred to as

"energized.") If the result is zero (i.e., both values are equal), the center terminal would

70

be energized, and if the result is negative (i.e., value 2> value 1), the bottom terminal

would be energized. (This is described in detail earlier in this chapter.)

FIGURE 4-9
PLC code of subtraction module with timer function and coil

001

002

SUB

003

100

r' ^ 1
1 .U1

Timer

/ \

010

In this case, if the result is either zero or negative (i.e., value 001 is less than or

equal to value 002) the lead to the timer will be energized. (Unlike traditional electronic

circuits, the input to the timer is not linked directly to the subtraction module; rather, the

input to the timer module is not received until the timer node is executed in its turn.)

When the program examines the timer (remember, other events could take place below the

subtraction routine, as will be demonstrated soon), both timer inputs would be energized

since they are linked together (i.e., they are "short circuited"). The timer module is

controlled by two inputs: 1) the top input indicates whether the timer should be counting

(the timer counts if the input is equal to unity); and 2) the lower input resets the timer if

it has a value of zero or enables the timer if it has a value equal to unity. Thus, in order

for the timer to count effectively, the lower input must be enabled and the upper input

71

I

must be counting (e.g., both inputs must be equal to unity). The two outputs of the timer

indicate the status of the count with respect to the preset timer value: if the upper

terminal is equal to unity, it indicates that the accumulated time is equal to or greater than

the value stored in memory location 100, while if the lower terminal equals unity, it

indicates that the accumulated time has not yet reached the value stored there. (Note that

if the upper terminal is equal to unity, the lower terminal must be equal to zero; the

opposite is also true.)

For this circuit, coil 010 indicates whether the timer has "elapsed" the preset value

stored in memory location 100. If coil 010 has a value of unity, it indicates that the preset

time has elapsed, while a value of zero indicates that time has not elapsed. More globally,

the timer counts only when the value stored in 002 is larger than or equal to the value

stored in 001, so that coil 010 actually indicates that the value 002 has been equal to or

greater than value 001 for a time equal to or greater than the value stored in location 100.

The flowgraph shown in Figure 4-10 illustrates the states that must be passed for

coil 010 to be set or reset. Clearly, the value of the subtraction module cannot be positive

(i.e., value 001 greater than value 002) and result in setting coil 010, so that path seems to

reset coil 010 directly -- the actual reason coil 010 resets is slightly more complicated:

since the timer module resets and stops counting when it does not get an input of unity

from the subtraction module (e.g., when it receives a value of zero), the timer's output,

which is linked to coil 010, is reset. Functionally, these conditions are the same, but the

72

issue once again is timing. Remember that a flowgraph does not always reflect timing

(e.g., when a coil is actually executed), but rather indicates if the module is executed and

what results are possible.

It is important to note here that between executions the states of inputs and

outputs are not changed. Therefore, until the subtraction routine is executed again, the

input to the timer will remain as it was previously, either counting or not counting. The

interval between executions can be determined by timing the entire segment, which

naturally depends on the length of the segment and the routines that are executed in it.

FIGURE 4-10
Flowgraph for the logic circuit of Figure 4-9

Positi

RESET (
TTPR .R

ve Value

0

:lapsed

SET
coil 010

73

ILIIYIL�

. . -

4.2.4 Complex Networks

As networks become more complex, it is reasonable for timing to become more

crucial. For example, if the subtraction and timer modules discussed in the previous

section are found working on the same network as another subtraction module with a

conditional command, as well as a complicated array of contacts and coils, the order in

which the coils are determined is significant. Figure 4-11 illustrates a complicated

network taken from the sample PLC code (network #29) which has all of these properties.

Future discussions will be related to this more complex network.

Eventually, this network and others must be executed together, for which set the

overall performance of the code must be included. Section 4.3 will introduce methods

developed by this research which help to simplify the flowgraphs created here into clean

McCabe-format flowgraphs.

As the circuit diagram in Figure 4-11 makes apparent, several of the memory

locations are accessed more than once, and each time the same memory location is

accessed, the value must be the same since they are fixed for the duration of the segment's

execution once the set of input/outputs network have been completed. Also note that the

settings of coils 010 and 01 1 are established before they are used in the lower contact

array, as is required.

74

FIGURE 4-11
Complex network with multiple "parallel" logic circuits

2

3

A

5-

6-

001

004

SUB

003

010
010

011

0()

012

005

7

005 006

It is perhaps not clear that each of the three logic circuits is executed piece-wise

rather than as a whole. Recall that this PLC software determines the value of each PLC

node column-wise first. Thus, the subtraction module of circuit one is executed to

determine the values of each of its PLC exit nodes (e.g., column 1, rows 1-3), and then the

subtraction module of circuit two is executed to determine its exit values (e.g., column 1,

rows 4-6); finally, the PLC node corresponding to circuit three (e.g., column 1 row 7) is

detemined to be unity becuase it is linked directly (i.e., "shorted") to a source of unity

value (i.e., column 0, also known as the "hot wire"). The PLC nodes of the second

75

I -__+ ----------------- ()

column are then determined, with those directly related to the three circuits simply

becoming the value detemined by the links to column 1 -- all PLC nodes not specifically

defined are reset to zero since they have no link to the previous column. In column 3, the

input for the first circuit (column 2, row 2) is used by the timer module to determine its

outputs (column 3, rows 2-3), while the second circuit defines its output by using a

contact to evaluate the value at memory location 005; the PLC node corresponding to the

third circuit is simply carried over from column 2 again (i.e., it performs yet another

"short"). The determination of the PLC nodes in column four establishes values for coils

010 and 011 (i.e., column 4, rows 2 and 5). Similar processes continue until the value of

coil 012 has been established in column 7.

Clearly, the flowgraph for this network cannot be constructed as piecewise as it is

actually executed, but neither is that necessary for an accurate model. Since the PLC

nodes for the first circuit are the first to be determined within each column, before they

can potentially affect other circuits, it can clearly be modeled first. Likewise for the

second circuit, although their mutual independence makes this choice arbitrary. The third

circuit, however, uses memory values manipulated by coils of the first two circuits, so it

must be modeled last.

The flowgraph for the first circuit has already been presented and explained, so for

this discussion it will be ignored until those of all three circuits are brought together again.

76

The second circuit has a flowgraph similar to the first, where the timer is simply

replaced by a contact which evaluates the state of memory location 005, connecting the

NOT(005) branch to the 011 coil. Figure 4-12 illustrates the flowgraph for the third

circuit.

When all three of the individual circuits have been modeled as appropriate

flowgraphs, they can be linked together serially with the terminal node of the preceding

circuit functioning as the start node for the next circuit. As a note, this is the same way

that individual networks are linked, so that each of these circuits could have been given its

own network with no overall functional change. However, before the third circuit is

connected to the other two circuits necessary for proper operation, a closer examination

should be made in order to be sure of its correctness.

Note first that the flowgraph of the third circuit has two nodes evaluating the

condition of memory location 005. Assuming, for the sake of argument, that this

flowgraph has a format compatible for use with McCabe's metric, the metric would give

this flowgraph a value of six (i.e., there are apparently six independent paths which require

six independent tests, as discussed in Section 3.2.3). For a flowgraph to be compatible for

use with McCabe's metric, however, no condition (i.e., memory value) can be tested more

than once. The multiple appearance of memory value 005 is one indication that this

particular flowgraph network could be simplified, eliminating at least one of the paths and

reducing the number of flowpaths to five.

77

Figure 4-12
Flowgraph for the third logic circuit of Figure 4-1 1

,NOT(005)
005

006

005

1)

RESET
coil 012

SET
coil 012

4.3 Flowgraph Reduction

Before the flowgraphs of the individual circuits (or networks) are linked serially,

each flowgraph should be reduced to its simplest, though complete, form. One of the

criteria for this simple, complete form is that there must be no flowpaths which are

78

T

impossible to execute. As is noted in the preceding section, it is sometimes possible to

reduce the flowgraph directly derived from the PLC code. In some cases, this flowgraph

reduction also results in a simplification of the PLC code.

Where impossible paths occur, the first step is to evaluate the underlying logic that

is required in order to define the circuit. For the third circuit of Figure 4-12, this logic is

given by the relation

coil 012 = {[NOT(005)*006]+010}*{005+011 }, (4-1)

which can also be written as

coil 012 = NOT(005)*006*005 + NOT(005)*006*011 + 010*005 + 010*011, (4-2)

where the algebra being performed is binary multiplication (AND) and binary addition

(OR). It is clear from Equation 4-2 that the first term, NOT(005)*006*005, is an

impossible path since the memory at location 005 cannot be both unity and zero

simultaneously (represented in the flowgraph as "a+b+d+f'). The remaining terms of

Equation 4-2 dictate that

coil 012 = NOT(005)*006*011 + 010*(005 + 011), (4-3)

which can also be written as

coil 012 = 01 I*(NOT(005)*006 + 010) + 010*005, (4-4)

where all of the term seem to be valid.

79

A new flowgraph, shown in Figure 4-13, can be created using the Equation 4-4,

which is equivalent to the Equation 4-2 but does not include the impossible flowpath. It

would seem that this equation eliminates the impossible flowpath, but since the total

number of flowpaths has not changed, an impossible flowpath must still exist in the logic.

FIGURE 4-13
Rearranged flowgraph for third logic circuit of Figure 4-1 1

NOT(4

NOT(O

RES]

coil C

SET
coil 012

What is not clear from the flowgraph in Figure 4-13 is the subtle fact that coil 011

incorporates into it the condition NOT(005), making the link from node b to node e

impossible to traverse. Since this is the case, node b can be eliminated altogether, which

reduces the total number of flowpaths and required tests by one, as shown in Figure 4-14.

80

Once each flowgraph has been reduced as far as possible, and is therefore as

simple as it can get (i.e., there are no impossible paths), all related flowgraphs can be

connected together serially, as shown in Figure 4-15. In the case of the three flowgraphs

presented here, recall that both coils 010 and 011 are used in the third circuit.

FIGURE 4-14
Simplified flowgraph for the third logic circuit of Figure 4-1 1

NOT((

NOT(O0

RES
coil C

SET
coil 012

81

FIGURE 4-15
Flowgraphs for logic circuits of Figure 4-1 1 connected serially

RESET C
thner

SET
coil 012

82

Once all of the related networks have been linked together in the appropriate

order, further simplification of the composite flowgraph might be possible. In this case,

the initial flowpath count (which falsely assumes that the overall flowgraph is in a correct

McCabe format) indicates that there are 11 independent flowpaths due to its 21 nodes and

30 links. However, once all three individual flowgraphs are connected, redundant nodes

are once again introduced. In order to eliminate the newly introduced redundancies, it is

important to note which nodes are extraneous.

There are two primary cases to consider when checking for redundant nodes, as

has been discussed previously: 1) a contact re-evaluates a memory location without the

value of that memory location having been altered, or 2) a contact evaluates the value of a

memory location previously established by a coil. Since both of these cases are essentially

the same (the logical value of the memory being checked is already known), the only

distinction is the form they take in the flowgraph.

The first case, which corresponds to using the same contact more than once in

PLC code, is seen in the flowgraph as repeated nodes. Because the logic of the exiting

links of repeated nodes is identical, they are very easy to locate. The second case, which

corresponds to contacts evaluating previously established memory locations, is not quite

as easy to recognize, however, and therefore requires more extensive searching.

83

In this example, Figure 4-15 has one instance of the first case (there are two

,contacts evaluating memory location 005) and two instances of the second case: nodes

which evaluate previously established memory values. (Values for memory locations 010

and 011 are established by coils in the first two circuits of the flowgraph -- since the

process corresponds to the specific function of a node rather than the logic of the

flowgraph, instances of this case are not as easy to isolate; the same memory locations are

evaluated by contacts in the third circuit, which does correspond to flowgraph logic.)

To eliminate multiple instances of the same contact can require extensive

flowgraph manipulation, or may not even be possible. Ultimately, such manipulations

require that the logic to reach all nodes remains unchanged. (Since the flowgraphs are

drawn on two-dimensional paper, it might be necessary to cross lines, but that is of no

consequence.) This case will be dealt with momentarily.

To eliminate any instances of the second case, the entire set of nodes associated

with the logic necessary to execute the node which establishes the value of the desired

memory location must be moved to occupy the location of the node associated with the

PLC contact. That is to say for this example, node a replaces node r, where the exit

nodes of r are replaced by nodes f and g as the two possible exit conditions (memory

location 010 is set or reset). The same is process done for nodes h, m and n into nodes o,

p., and q respectively. The resulting flowgraph is shown in Figure 4-16.

84

FIGURE 4-16
Compressed flowgraph of Figure 4-15

001>004

35

(o)
I 001<0(

D (3
- 55

NOT(005)

) (q)

NOT(005)

RE"
coil

(9)-

85

SET
coil 012

04

{

\ nn<

The result of this entire manipulation reduces the flowpath count by two, to a total

of nine flowpaths. However, it becomes apparent that there is yet another impossible

flowpath -- a result of the one repeated contact which was not dealt with previously. In

order to elimiate the impossible flowpath, the flowgraph in Figure 4-15 could be altered

slightly to yeild the flowgraph of Figure 4-16: the link that binds nodes and m could be

moved to bind nodes and a since any flowpath taking the 1-m link could never use the

m-f link and would invariably traverse node a. Note, however, that the memory location

005 is still evaluated twice, a condition that is usually best avoided. Re-arranging Figure

4-16 gives an equivalent "ideal" flowgraph with no impossible paths and no duplicate

nodes, as shown in Figure 4-17. This "ideal" arrangement is in McCabe format and

further reduces the network by one, resulting in just eight independent flowpaths. Recall

that this is compared to eleven flowpaths for the original flowgraph presented in Figure

4-15 and nine flowpaths for the flowgraph presented in Figure 4-16. It is interesting to

note, too, that the three original flowgraphs had thirteen flowpaths, which can be

explained by the fact that when any two flowgraphs are connected serially, one of the

paths is "eliminated" simply because the basepath is common to both (instead of counting

both basepaths as two separate flowpaths, they are counted as the same flowpath).

Similarly, when three flowgraphs are joined and the common basepath is accounted for,

two flowpaths are "eliminated."

The primary difference between the flowgraphs in Figure 4-16 and Figure 4-17 is

the location of node m which evaluates the state memory location 005, though many of

86

the node locations have been switched superficially. It is not difficult to verify that the

logic for all valid flowpaths has remained unchanged, but it will not be done here.

FIGURE 4-17
An "ideal" flowgraph for the combined logic circuits of Figure 4-1 1

®
04

RESET
coil 012

coil 012

87

4.4 Interpretation of Flowgraphs

After finally achieving the "ideal" flowgraph presented in Figure 4-17, having a

McCabe metric value equal to eight, it must follow that the actual metric values

corresponding to each of its equivalent, though unreduced flowgraphs must also be equal

to just eight (not to eleven or nine, as the false McCabe counts would indicate). With this

knowledge as a basis, a simpler method of establishing the fundamental number of paths

was determined, eliminating the need to reduce flowgraphs altogether.

In order to simplify the method used to determine the actual number of flowpaths

through a flowgraph (i.e., the number of tests that need to be run for any given PLC

code), one property of flowgraphs proves particularly invaluable: once a variable has been

evaluated at any node, future tests of that variable cannot produce a dissimilar result.

Thus, while every unique binary decision node (one input and two outputs) increases the

overall complexity by one, duplicate nodes do not alter the complexity at all. Therefore,

since an "ideal" flowgraph has no duplicate nodes (as such a node is the source of all

impossible flowpaths), eliminating duplicate nodes from "non-ideal" flowgraphs will result

in the actual number of flowpaths (the actual McCabe complexity value).

It is important to recall that duplicate nodes are not only those that correspond to

repeated contacts, but also those nodes which correspond to contacts evaluating memory

locations which were previously established using coils.

88

Using this method of flowgraph simplification can now be used to examine Figure

4-15. Recall that there was one instance of the first case (memory location 005 is

evaluated by contacts a total of two times), and two instances of the second case (one

contact each which evaluates memory locations associated with coils 010 and 011). The

original, false count of eleven flowpaths is therefore reduced by three, resulting in an

"idealized" count of eight flowpaths, just as it must have. Note that the impossible

flowpaths do not effect the final count and do not need to be dealt with separately.

Tracing even further back into the flowgraph reduction effort, recall that the circuit

of Figure 4-11 is represented as a series of three flowgraphs. These three flowgraphs, in

their "rawest" forms, are shown in Figures 4-10 and 4-12. Figure 4-10 represents (in form

only) both of the upper two circuits and has four flowpaths. Figure 4-12 represents the

third circuit having six flowpaths, yielding a sum of fourteen flowpaths. Taking into

account the fact that the three circuits are connected serially, thus combining the

basepaths, reduces that complexity by two, resulting in twelve flowpaths. Subtracting the

number of duplicate nodes yields (accounting for both cases) further reduces the count by

four (the two duplicate 005 contacts and one contact each evaluating memory locations

established by coils 010 and 011), correctly produces the actual count ofjust eight

flowpaths, even though impossible paths are present.

This revised method of determining the flowpath count can be applied with nothing

more than the individual flowpaths for each circuit or network as long as the number of

89

duplicate nodes can be determined. Since network flowgraphs are relatively easy to

create, and duplicate nodes (including those referring to previous coils) are usually easy to

identify, determining the number of tests for any given PLC circuit is a relatively simple

task.

The following simple formula can be used in determining the number of tests necessary:

Number of Required Tests = F - N + 1 - D, (4-5)

where F is the sum of all flowpaths for the individual networks (or circuits), N is the

number of networks (or circuits), and D is the number of duplicate nodes.

The only note of caution applies to determining the total number of flowpath for

networks with multiple circuits: although the above formula can be employed on the

individual networks (where the number of flowpaths in the network is given by one minus

the sum of the number of flowpaths for each circuit, minus the number of circuits, minus

the number of duplicate nodes), the duplicate nodes which are eliminated for this step

should not be counted as duplicate nodes again for the complete network. A simple way

to avoid any confusion with regard to this over-counting is to create separate networks for

each circuit and use the "circuit networks" to determine the number of tests that will be

required.

90

Finally, the revised flowpath counting method outlined above leads to a direct

count of the number of tests necessary directly from the PLC code itself. While it seems

intuitive in retrospect, the work leading up to it is necessary to prove its validity. Recall

that this process can be applied directly to the PLC code and does not require any

flowgraph generation.

The first step in the process is to evaluate each network individually. For each

module on the network, a predetermined number of tests is necessary which does not

depend in any way on the logic of the network. For example, a contact (other than a

repeated contact) adds one to the required test count while a subtraction module (if it is

used for a comparison of two numbers) adds two to the test count. A timer also adds one

to the test count. In every case, each component (e.g., a contact, a timer, a comparitor)

always contributes the same number of tests to the overall test count -- contacts which

were introduced in earlier networks are identified as such (on each network as they

appear) and those contacts are not counted as additional tests (since they are repeated

contacts). The number of tests derived in this way is the number of tests necessary in

addition to the basepath test, and the sum of all additional network tests plus one is the

number of tests required for a complete test.

In summary, to arrive at the number of tests necessary for a complete PLC code

software test, count the number of unique contacts, comparitors, timers and other modules

used in the code and multiply the occurrence of each component by the number of

91

additional tests required for each one. The sum of the result, plus one, is the number of

-tests required:

Number of Required Tests =1+ Ec (Fc Nc), (4-6)

where c represents each component being used in the PLC code, F represents the "test

factor" (number of tests required for that component), and N represents the number of

occurrences of that component.

92

Part 5

Implementation

5.1 General

In order to take advantage of the complete-test counting process developed in this

report, the differences between currently employed processes and the proposed process

should be discussed. This discussion does not necessarily suggest that the process

currently being used is not correct or adequate, but it simply illustrates how the proposed

process could be implemented and substantiated.

5.2 Current Process

The currently accepted testing process involves an extensive procedure which

attempts to utilize all possible input data combinations and variations. The resulting

output data set for each input data set must be verified with respect to the required

specifications governing them.

5.3 Comments on the Current Process

For programs which have even a moderate number of discrete input data, the

testing of all possible combinations of input data is prohibitively time consuming. For

example, for fifty binary data there are 250 (1.23 x 10'5) input combinations. If each test

93

were executed on a computer requiring an average of 1 millisecond per test, the time

required to run the complete test would be nearly 40,000 years! At that rate, in fact, only

.3.16 x 10 ° tests can be completed in a single year. If tests were conducted all year-round,

only about 35 binary data combinations could be tested. In two years, the number of

testable binary data would increase only to 36, and 37 input data sets would take nearly

4.5 years to fully test! To put this into another perspective, if analog input data were

converted into 8 bit digital signals, then only the interaction of 4 analog input signals and 3

binary signals could be fully tested in one year.

The inspiration for this exhaustive method of input testing comes from the domain

of hardware wiring, where each combination of possible logic configurations must be

tested due to possible miss-wiring or poor soldering. Such extensive testing is not

necessary for software codes, however, since there is no analogy to "miss-wiring" or

"poor soldering" in software codes. Testing four individual analog-to-digital converters

for proper operation does not take a full year (providing they are not 35-bit converters),

and once the hardware has been certified correct, testing them in software applications is

trivial. Since each of the data converters functions properly, the software code only needs

to be tested for proper operation given that the input data fall into certain ranges. An

example is given below to better illustrate this point.

EXAMPLE: Consider that a software program is written to compare an analog input

signal (which is converted to an 8 bit digital signal) to two different setpoints, labeled

94

Setpoint 1 and Setpoint 2. If the input signal is less than Setpoint 1, the code should

generate Signal A; if the input signal is greater than (or equal to) Setpoint 1 but is less

·than Setpoint 2, Signal B should be generated; finally, Signal C should be generated if the

input signal is greater than (or equal to) Setpoint 2. Assuming that all of the comparitors

within the computer also function properly, testing this program for proper operation

requires only five (carefully selected) inputs: one which is less than Setpoint 1, one which

is equal to Setpoint 1, one which is between Setpoints 1 and 2, one which is equal to

Setpoint 2, and finally, one which is greater than Setpoint 2. Thus, though an 8 bit signal

has 256 different variations, there would be only 5 test cases, and if the code executes

properly in each case, then the software functions properly.

The example above gives rise to another possible type of error: what would

happen if Setpoint 2 were somehow less than Setpoint 1? The exact nature of the output

would depend on the structure of the software code, but it is fairly safe to say that the

output would not make sense. The solution to this type of error is to be certain that

Setpoint 1 is less than Setpoint 2. (If the setpoints are determined using analog hardware,

mechanical interlocks could be used. For digital control, logical interlocks could be

employed to secure against such errors. For safety-related applications, software

interlocks are preferable since they are not subject to mechanical failure and can be

tested.)

95

Another characteristic of software testing is the possibility of independent inputs or

outputs. It can be shown that certain inputs are not related to some outputs, and in those

cases independent modules can be defined. Each independent module can each be tested

separately, with another set of tests confirming the structural relationship between the

modules. A general rule is that if each module can be reached as necessary, and the

independent modules execute properly, then the entire code will function properly.

5. 4 Alternative Process

The alternative process is to examine the code and determine the number of

independent modules that need to be tested and the corresponding number of tests, as was

described in the previous chapter. With each independent module defined by its own

specifications and tests, the sum of the tests would be far fewer than the current process

requires, though the coverage of the tests would be just as thorough.

5. 5 Comments on the Alternative Process

There are several issues to be dealt with in this discussion: the validity of the tests,

the completeness of the tests, the format of the specifications and the completeness of the

specifications. Each is addressed separately.

96

5.5.1 Validity of Tests

In order to demonstrate the validity of the proposed tests, it is important to

understand the concept of independent modules and their relationship to one another.

McCabe [31, 36] describes the structural relationship between modules as the "essential

complexity" of the code, as discussed in Chapter 3. This concept simply establishes the

number of tests that are required to ensure that all modules are executed given the correct

logical conditions. Within each module, additional tests are executed to ensure proper

operation of the module. Given that all independent modules operate correctly internally

and that they are invoked properly, the entire code must also perform according

specifications. That is not to say that the overall modular structure and the individual

modules do not need to be tested as a whole unit -- it just simplifies the process of

defining which tests need to be executed.

In this phase of testing, it is important to distinguish between a code's functional

modules and PLC code networks. While each PLC network might appear to be its own

module (because of the structure of the PLC code), such is not the case, as was shown in

the Chapter 4. Each of a code's independent functional modules comprises one or more

PLC networks, where each network included in the module either supplies input data to or

requires input data from other PLC networks. Thus, the overall effect of the module is

such that all of the included PLC networks must operate together to achieve the desired

output. As is the case with all software codes, it is possible for two PLC networks (or

97

even functional modules) to operate on the same inputs and produce entirely independent

outputs; such PLC networks would be independent of each other and could therefore be

part of independent functional modules.

5.5.2 Completeness of Tests

There might be some concern that eliminating so many tests from the current

process might also delete some of the necessary tests accidentally, thus leaving crucial

errors undiscovered. Such is not the case, however, since in employing this testing

process, all functional paths of the code are tried and tested. It is true, however, that to

ensure complete test coverage, the limits of the program (and hardware) must be

understood and tested as well. For example, if the registers can overflow (during addition,

subtraction, or other routines), those failure modes must be accounted for and eliminated.

It is common practice during software testing to exercise limit conditions to ensure that all

such error modes have been dealt with, and those tests fall into a separate category (as do

hardware tests, for example). While addressing such problems in the software itself would

bring them into this realm of software testing, hardware and machine specific tests (such

as register overflows) should always be performed.

5.5.3 Validity of Specifications

Since PLC modules follow an extremely simple structure with only a single

flowpath, they lend themselves easily to simple specification tasks. For highly reliable

98

software, specifications could be categorized into two types, both of which would serve to

define the structure and operation of the code: 1) task-oriented specifications; and 2)

control-oriented specifications.

Task-oriented specifications would be those that pertain to actions needing to be

accomplished and would most likely account for a majority of all specifications. This

group would be responsible for defining the logic necessary for actuation as well as

implementing the actions to be taken. This category of specifications could be broken

down into independent modules where applicable.

Control-oriented specifications would define the relationship between

task-oriented specifications. For example, it might be necessary to insist that readings

fi-om one instrument be taken before taking readings from another due to the nature of the

readings (e.g., one reading changes more rapidly than the other). This category would

include the overall structural relationship of the task-oriented modules, clarifying those

that are dependent or independent.

5.5.4 Completeness of Specifications

A major concern in the nuclear-power industry is the issue of complete

specifications. While this is not an issue with other high-reliability components (such as

hardware), it is argued that software cannot be fully specified. However, since application

99

specific integrated circuits (ASICs) are digital hardware and are governed by the same

logic that governs PLCs, there is no reason to preclude the possibility of complete

specifications. If the computer hardware meets all of the required reliability standards,

completely tested software (which is being executed by that acceptable hardware) should

not alter the reliability of that hardware. The issue here is to be sure the software is

completely tested on the actual hardware which is to be employed. Since all applicable

hardware circuits will have been exercised during such a complete software test, future

performance of the equipment will be ensured by hardware reliability.

5.6 Additional Comments

5.6.1 Reverse Specifications

As the PLC program code is written and tested, it is possible to reverse the

specification process in order to validate the original specifications. To accomplish this,

an independent consultant could analyze each module and establish a complete set of

independently derived specifications based upon the code itself. Once documented, both

sets of specifications could be compared and corrected as necessary. Reverse

specifications should reveal extraneous conditions that were introduced into the logic

while satisfying the original set of specifications.

Finally, there are some arguments against complete software testing that are based

on software/hardware failure modes. For example, if the hardware begins to fail, but does

100

not fail noticeably (e.g., a memory location will not change values properly), how will the

software react? While it is necessary to consider such circumstances, such concerns can

also be addressed with redundant hardware and polling techniques, thereby reducing the

probability of such an event. There are other similar concerns about the use of software in

high-reliability applications, but most should be addressable with hardware (and sometimes

software) modifications.

101

Part 6

Future Work

The reduction and testing procedure developed by this study should be applicable

to all varieties of safety-related software systems written using PLC ladder logic. The

process of collecting data must include further examples of simple software as well as

investigating the applicable limits of complexity or length on the reliability of the

procedure. The exact definition of simple software might be defined as that limit which

precludes the use of this procedure, whether it be physical length or, more likely, the

scope of the specifications.

Finally, work could be done on creating reliable specifications for PLC codes, or

alternatively, to develop a method which creates code specifications from the structure of

the code itself. Such a method would serve as a means of verification for the

specifications.

102

Part 7

Review and Conclusions

In order to establish a basis for complete software testing of simple, safety-related

software, it is necessary to limit the scope of the problem in several ways. By insisting

that certain properties apply to the software system, the problem can be limited to

concerns about software testing, making it possible to directly address statements

generally made that one cannot completely test software. There are three areas in

particular that must be addressed and limited, two of which are not directly related to the

software testing process but are often cited as obsticals: 1) hardware concerns; 2)

concerns about human interactions with the software systems; and 3) software concerns.

First, the hardware requirements for software systems are no different than those

for hardware systems, so the methods used to ensure hardware reliability should still be

used where applicable (on computer hardware components). This problem is essentially

no different than that of using reliability methods employed for current safety-related

systems. Hardware redundancy and periodic tests are the primary means of improving

reliability, where the required mean time between failures (MTBF) is specified. The

additional complexity of equipment being used for software systems should not be a

concern since the technology is well developed for hardware reliability in these

environments.

103

Secondly, the human interactions involved in the new safety-related software

systems must remain as simple as possible, so that the possible introduction of human

errors is minimized. Since even the current safety-related systems, which are being

considered for replacement by software systems, must have some limited human

interaction, it would be ideal to have similar, though improved interactions with the new

software systems.

Finally, a major obstical for complete software testing is the issue of software

complexity, which is not a well defined term and means different things to various groups

of researchers. For this study, a variation of McCabe's cyclomatic complexity theory is

investigated and adapted to PLC codes. It is found that flowgraph theory is particulary

well-suited to PLC code testing and offers insights for how to structure a campaign of

complete software testing, suggesting that such a goal is attainable.

Research done by McCabe indicates that simple software codes, those with ten or

fewer flowpaths, can be written, combined and tested with a high degree of confidence. In

fact, if every flowpath of a software code is tested, validated and verified, the code is

completely tested. Since independent modules can be written and tested separately, a set

of modules can also be completely tested by exercising the entire code. This process

guarantees the correct operation of the code, given that the computer hardware functions

properly.

104

In order to avoid unforseen interations, the PLC software processor never

executes an item of code other than the safety-related code concerned. Also, there are no

unexpected runtime conditions since all conditions have been fully exercised. It is

important to keep in mind the four assumptions used in determining the number of tests

necessary using the test counting method developed by in this study. All four points apply

to a single pass of the PLC code:

1. each network is executed serially and cannot be skipped;
2. every element in each network being executed is evaluated;
3. all circuits within a network can all be written as separate networks; and
4. once established, external memory values associated with flowpaths cannot be

altered by external equipment.

The objective of this initial study is to provide evidence that software reliability can

equal or surpass the reliability of similar analog systems. To do this, it is necessary to

keep as many features common to both systems as possible. By maintaing the reliability of

the present hardware systems and by using comparable human interactions, the only

remaining variable which can affect reliability is found in the application and

implementation of the software code versus the development of analog equipment. The

differences between the development processes of the two systems is therefore the crucial

element. As this study shows, completely testing simple, safety-related PLC software is

feasible and offers great potential to all industries requiring high-reliability of safety-related

systems.

105

References

1. M. W. Golay and D. D. Lanning, "Methods for Development and Demonstration of High
Reliability Nuclear Safety-Related Software," proposal to M. Novak of Combustion
Engineering in Windsor, CT, Revision 1, MIT, Cambridge, MA, 22 January 1993.

2. M. Novak, "Items related to Graduate Research Project on Software Reliability," letter to
Professor M. Golay of MIT, ABB-C/E, Windsor, CT, 13 April 1993.

3. R. Bell and S.S.J. Robertson, "Programmable Controllers in Safety-Related Systems: HSE
Guidelines on Programmable Electronic Systems," HMSO, London, 1992, pp. 41-46.

4. T. Daughtrey and J. Scecina, "Engineering of Software for Acceptability," Proceedings of
the Topical Meeting on Nuclear Plant Instrumentatoin, Control and Man-Machine
Interface Technologies, 18-21 April 1993, pp. 51-54.

5. ABB-Combustion Engineering, Inc., "Software Design Specification for Diverse Protection
System for Yonggwang Nuclear Power Plant Units 3 and 4," Revision 01, Status 1,
ABB-C/E, Windsor, CT, 1992.

6. ABB-Combustion Engineering, Inc., Sample PLC code, provided by ABB-C/E, Windsor,
CT, 1993.

7. M. E. Hardy, "Reliability and Availability within Programmable Control Systems," HMSO,
London, 1992, pp. 47-49.

8. M. M. Mano, Computer Engineering Hardware Design, Prentice Hall, Englewood, Cliffs,
NJ, 1988.

9. M. Hecht and J. Agron, "A Distributed Fault Tolerant Architecture for I&C Applications,"
Proceedings of the Topical Meeting on Nuclear Plant Instrumentatoin, Control and
Man-Machine Interface Technologies, 18-21 April 1993, pp. 55-62.

10. J. K. Munro, Jr., "Considerations for Control System Software Verification and Validation
Specific to Implementations Using Distributed Processor Architectures," Proceedings of
the Topical Meeting on Nuclear Plant Instrumentatoin, Control and Man-Machine
Interface Technologies, 18-21 April 1993, pp. 496-501.

11. R. E. Battle and G.T. Alley, "Issues of Verification and Validation of Application-Specific
Integrated Circuits in Reactor Trip Systems," Proceedings of the Topical Meeting on
Nuclear Plant Instrumentatoin, Control and Man-Machine Interface Technologies, 18-21
April 1993, pp. 487-491.

106

12. J. M. O'Hara, "The Effects of Advanced Technology Systems on Human Performance and
Reliability," Proceedings of the Topical Meeting on Nuclear Plant Instrumentatoin,
Control and Man-Machine Interface Technologies, 18-21 April 1993, pp. 253-259.

13. D. D. Lanning, "Human Factors in Design and Operation: TMI-2 and Chornobyl Case
Study," MIT, Cambidge, MA, 1993.

14. D. D. Lanning, Course Notes for 22.32, Nuclear Power Reactors, MIT, Spring 1993.

15. J. P. Jenkins, "Human Error in Automated Systems: Lessons Learned from NASA,"
Proceedings of the Topical Meeting on Nuclear Plant Instrumentatoin, Control and
Man-Machine Interface Technologies, 18-21 April 1993, pp. 269-272.

16. W. R. Nelson, et al., "Lessons Learned from Pilot Errors Using Automated Systems in
Advanced Technology Aircraft," Proceedings of the Topical Meeting on Nuclear Plant
Instrumentatoin, Control and Man-Machine Interface Technologies, 18-21 April 1993,
pp. 189-194.

17. ABB-Combustion Engineering, Inc., "Diverse Protection System Functional Test Procedure
for Yonggwang Nuclear Power Plant Units 3 and 4," Procedure 10287-IC-TP620-1,
Revision 01, Status 1, ABB-C/E, Windsor, CT, 1992.

18. ABB-Combustion Engineering, Inc., "Software Quality Assurance Plan for Diverse
Protection System for Yonggwang Nuclear Power Plant Units 3 and 4," Revision 00,
Status 1, ABB-C/E, Windsor, CT, 1992.

19. S. J. Andriole, ed., Software Validation, Verification, Testing and Documentation, Petrocelli
Books, Princeton, New Jersey, 1986.

20. K. R. Apt and E. R. Olderog, Verification of Sequential and Concurrent Programs,
Springer-Verlag, New York, 1991.

21. P. Shewmon, "Letter to the Chairman of the U.S. Nuclear Regulatory Commission," 18
March 1993, released 29 March 1993.

22. C. Jones, chairman Software Productivity Research, Inc, "Software Quality: What Works
and What Doesn't?," Burlington, MA, November 1993.

23. S. Clatworthy and P. Hickford, "The Attainment of Optimum Systems Reliability -- a
Structured Approach," HMSO, London, 1992, pp.5 1-52.

24. 0. J. Dahl, Verifiable Programming, Prentice Hall, London, 1992.

25. B. K. Daniels, Safety and Reliability of Programmable Electronic Systems, Elsevier Applied
Science Publishers, London, 1986.

107

26. E. B. Eichelberger, et al., Structured Logic Testing, Prentice Hall, Englewood Cliffs, NJ,
1991.

27. A. Ghosh, et al., Sequential Logic Testing and Verification, Kluwer Academic Publishers,
Boston, 1992.

28. P. Gray, ed., "Europe's Conference on Programmable Controllers," Conference
Proceedings, Metropole Hotel, NEC, Birmingham, 1 lth-12th November 1987.

29. M. Treseler, Designing State Machine Controllers Using Programmable Logic, Prentice
Hall, Englewood Cliffs, NJ, 1992.

30. Musa, Iannino, and Okumota, Software Reliability: Measurement, Prediction, Application,
McGraw-Hill, New York, 1987.

31. H. Zuse, Software Complexity: Measures and Methods, Walter de Gruyter, Berlin, 1991.

32. B. Littlewood, ed., Software Reliability, Blackwell Scientific Publications, Oxford, 1987.

33. J. R. Matras, "Criteria for Computer Systems Used in the Design of Nuclear Generation
Plant Safety Systems," Proceedings of the Topical Meeting on Nuclear Plant
Instrumentatoin, Control and Man-Machine Interface Technologies, 18-21 April 1993,
pp. 397-404.

34. B. Beizer, Software Testing Techniques, 2nd ed., Van Nostrand Reinhold, NY, 1990.

35. M. H. Halstead, Elements of Software Science, Elsevier, North-Holand, 1977.

36. T. J. McCabe, "Structured Testing: A Software Testing Methodology Using the
Cyclomatic Complexity Metric," National Bureau of Standards special publication
500-99, December 1982.

37. W. B. Reuland and R.T. Fink, "Digital I&C Upgrade Licensing Guidelines," pp. 410-414.

38. S. Koch and K. Andolina, "Qualifying Software for Class 1E Equipment," Nuclear Plant
Journal, January-February 1993, pp. 66-69.

39. L. C. Oakes, "Transition from Analog to Digital Technology: Current State of the Art in
Europe," WTEC Panel Report on European Nuclear Instrumentation and Controls,
December 1991, pp. 27-43.

40. P. Rook, ed., Software Reliability Handbook, Elsevier Applied Science, London, 1990.

41. S. C. Bhatt and J. A. Naser, "Software Verification and Validation for Instrumentation and
Control Systems in Nuclear Power Plants," Proceedings of the Topical Meeting on

108

Nuclear Plant Instrumentatoin, Control and Man-Machine Interface Technologies, 18-21
April 1993, pp. 492-495.

42. J. M. Gallagher, "The Role of International Standards in the Design of Modern I&C
Systems for Nuclear Power Plants," Proceedings of the Topical Meeting on Nuclear
Plant Instrumentatoin, Control and Man-Machine Interface Technologies, 18-21 April
1993, pp. 361-365.

43. Modicon, Inc., Modicon Modsoft Programmer User Manual, GM-MSFT-001 Rev B, North
Andover, MA, September 1991.

44. Modicon, Inc., Modicon 984 Programmable Controller Systems Manual, GM-0984-SYS
Rev. B, North Andover, MA, May 1991.

109

