
Design of a Large Scale MIMD

by

Eleni Kapogiannis

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

© Massachusetts Institute of Technology 1994

Signature of Author-. -- r. --. ...--.-

Department of Electrical Engineering and Computer Science
May 13, 1994

Certified by

Profess6r of ElectricA Egtneerild
I / v % k I II

Rodney A. Brooks
Computer Science
dIhesis Supervisor

Accet
[. . . . -IWN \ '4rederic R. Morgenthaler

FHO~hairm n, Department Committee on Graduate Students
M ASSACHLISE-TTS ' I

JUN 1 51994

Computer

Design of a Large Scale MIMD Computer

by

Eleni Kapogiannis

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 1994, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract
With the increase in availability of low cost, high performance computing technology
has come the ability to develop significant complex systems. A research group at the
MIT Artificial Intelligence Laboratory is currently capatilizing on this computational
technology in developing an almost humanoid system called Cog. This system is
to include vision, sound input and output, and dextrous movement. The enabling
technology for Cog is a large scale MIMD parallel computer named 7rf. This thesis
focuses on the design and development of rfi, including a detailed description of the
design, reasons for the particular choice of architecture, and an evaluation of the
computer's performance.

111

Many thanks are due to all the people who have supported me throughout my

research work. I would especially like to thank my thesis supervisor, Professor Rodney

Brooks, for the help, advice, and confidence which he gave me over the course of my

research. This work would not have been possible without his constant support.

I would also like to thank the members of both the Cog and Mobot research

groups at the MIT Artificial Intelligence Laboratory. The enormous amount of help

and advice which I received from them is greatly appreciated.

Finally, I wish to thank my family and friends for their support during my studies

at MIT. I would not have reached this point without them. Special thanks to my

parents, Argie, and Christos who have provided encouragement through all of my

endeavors in life.

iv

Contents

1 Introduction

2 Background

2.1 Reasons for Parallelism

2.2 Types of Parallel Architectures

2.3 MIMD systems

2.3.1 Organization of Memory

2.3.2 Granularity

2.4 Analysis of and Comparison to Past Parallel Processor

2.4.1 Thinking Machines Corporation CM-5

2.4.2 BBN Butterfly Parallel Processor

2.4.3 PASM - Purdue University

2.4.4 Intel iPSC/860.

3 Description of Hardware

3.1 Design of r/

3.1.1 Vesta SBC332.

3.1.1.1 Motorola MC68332 microcontroller

3.1.2 Dual Port RAMs

3.1.3 Motor Board Port Connection

3.2 Interface from FEP to ir3

3.2.1 SCSI Interface From FEP to InterFEP

:3.2.2 Interface from Inter-Front End Processor to 7r/

v

1

4

6

8

8

10

11

11

12

13

14

. . . .

. . . .

. . . .

. . . .

Systems

. . . .

. . . .

. . . .
·

16

16

19

19

21

24

25

26

30

. . . .

. . . .

. . . .

. . . .

. . . .

. . .

. . . .

. . . .

. . . .

.

.

.

.

.

.

.

.

4 Performance Evaluation and Future Work

5 Conclusion

A Schematics of System

38

40

vi

35

List of Figures

2-1 Hierarchy of Parallel Processor Architectures 7

3-1 Diagram of Backplane 17

3-2 Block Diagram of MC68332 20

3-3 Interface from FEP to r3 25

3-4 SCSI Hardware Interface From FEP to InterFEP 27

3-5 Logic for Communicating With Selected Processor 31

A-1 Detailed Schematic of a 7r3 Node 41

A-2 Schematic of InterFEP 42

vii

List of Tables

3.1 Decoding of Data Transfer Sizes. 24

:3.2 Am53C80A Registers 28

viii

Chapter 1

Introduction

Research in the design and development of parallel computer architectures has in-

creased drastically in recent years, sparked by the availability of low cost micropro-

cessors. Parallel computers avoid the bottleneck found on single processor computers

of only being able to execute one instruction at a time. Thus, much of the research

into parallel architectures has been focused on increasing the performance of serial

computational problems through the use of parallel machines.

There has also been a noticeable increase in the use of parallel computer archi-

tectures for various applications within the field of artificial intelligence. Whereas

classical approaches to artificial intelligence were based on centrally controlled sys-

tems, recent applications have tended toward the use of behavior based systems. The

behavior based approach offers a large potential for parallel and distributed process-

ing, which can be easily exploited by parallel hardware.

Though really complex behavior based systems have not yet been built, with the

recent technological advances, the present seems to be an opportune time for the

construction of a complex, intelligent system. With this in mind, a research group at

the MIT Artificial Intelligence Laboratory, under the direction of Professors Rodney

Brooks and Lynn Andrea Stein [Brooks and Stein, 1993], is currently developing an

almost humanoid system named Cog. This system will include vision, sound input

and output, and dextrous movement. The goal of this project is to increase our

understanding of human cognition.

1

The enabling technology for Cog is a large scale, MIMD parallel computer which

is called 7r3. This thesis is about the design and evaluation of 7ri.

Many different types of parallel computer architectures have been developed, each

having its own strengths and weaknesses. The architectures differ in several ways, such

as the number of instructions issued per cycle, the number of data streams operated

on per cycle, the organization of memory, the choice of processor granularity, and the

choice of interconnection topology. 7r is a loosely coupled, MIMD parallel computer,

with a fixed topology network. This design was chosen as the one best suited for the

control of the humanoid system.

Some may argue that 7rfi is not an optimal choice for the control of Cog. It would

perform poorly on typical benchmark programs used in the evaluation of conventional

parallel computers. Also, a very high performance single processor solution would

yield a greater throughput and probably be more cost effective than 7rf. However,

such an argument is made without a thorough understanding of the goal of the entire

system.

Realizing that the overall goal of the project is to better understanding human

cognition, we wish to find solutions which match what is already understood about

biological systems. Since the architecture of an enabling technology affects the way

in which solutions to the problem are implemented, putting various constraints on

the design of 7r/ will guarantee some degree of biological relevance in the solutions.

The constraints which this research group feels are important include a system which

is totally asynchronous, has no global control, has no globally shared memory, and

cannot transmit pointers between processors.

Furthermore, 7ro was designed as a scalable system. This allowed subsystems

to be implemented and left operating while other subsystems were still being devel-

oped. This corresponds to the layered approach [Brooks, 1986] to building intelligent

systems, which has been used at the lab for several years. Such a scalable design,

eventually reaching the required control for human level of cognition, is simply not

possible using a single processor solution.

Therefore, 7r3 was designed with the above constraints in mind. It is not designed

2

to be the highest performance parallel processor, but it is designed to be well suited

for the control of the humanoid robot. The reasons for 7r's choice of architecture, a

detailed description of the design, and an evaluation of the computer's performance

are each addressed in this thesis.

3

Chapter 2

Background

The constraints faced in designing 7r3 are somewhat different than those usually

confronted in the design of large scale parallel machines. Most general purpose par-

allel computers are designed to act like fast serial computers, and they are typically

intended to increase the performance and throughput of sequential numeric compu-

tations [Hwang and Degroot, 1989]. Many benchmark programs have been developed

to measure the increase in performance yielded by these computers. Unlike these de-

signs, however, 7r/ is constructed for a very specialized application. It is specifically

designed to act as the enabling technology for Cog, which is an inherently parallel

system. The idea behind the development of 7r3 is to take advantage of the available

parallel hardware in order to simplify the task of controlling the humanoid robot.

Due to the fundamental differences constraining the design of 7r, with regards to

other large scale parallel processors, there are certain architectural distinctions in the

resulting systems.

2.1 Reasons for Parallelism

A parallel structure was chosen for the control of the system for numerous reasons.

Since the main goal of the overall project is to construct a humanoid system that

is capable of learning and interacting with its surroundings, 7r/ must be able to

respond to the inputs from the environment on a real-time scale. A great amount

4

of data will be continuously sensed by Cog, and will need to be processed by the

computer. This sensory data will come from the cameras providing for vision, the

microphones allowing for hearing, the 'skin' used for the detection of touch, motor

data which assists in detecting position, as well as various other sensors on the body

of Cog. The controlling computer must be able to quickly process and respond to

this incoming data. A serial computer is simply unable to handle the vast amounts of

inputs to the system and respond on a real-time scale. Parallelism offers the ability

to simultaneously receive and process the data at various processor nodes of the

system, and thus react to the environment on a human time scale. In addition to

processing the incoming data quickly, parallelism enables us to servo the actuators

on the humanoid at high rates, ensuring a quick response from the humanoid to its

environment. Furthermore, through the use of parallelism, one is able to coordinate

the many actuation systems on Cog which need to be synchronized. For example, the

movement of the eye and neck motors must be coordinated so that stable images can

be received [Brooks and Stein, 1993]. Hence, parallelism provides for the simultaneous

processing of various inputs to the system, as well as the quick response of the many

outputs of the system, all resulting in the ability to control a real-time application.

A second reason for using a parallel architecture is that it allows us to add function-

ality to different processor nodes, without needing to recompile, reload, and restart

the entire system. Thus, lower level functions which have been implemented and are

operating as expected may be left running continuously on the system, while new

functionality is being added or debugged at other processor nodes. This permits us

to get entire subsystems of the humanoid up and running, while other subsystems are

still being developed or debugged.

One of the most important reasons for selecting a parallel architecture is that

it allows us to take advantage of the inherent parallelism in the humanoid system.

Recently, development in artificial intelligence has seen a switch from the use of

centralized systems to that of distributed systems. Just as the human body is a

highly parallel system, so is the control of the humanoid system. 7r3 is proposing

to model the brain slightly above the neural level. Thus, at one level, groups of

5

processors will be responsible for the control of such functions as lower level motor

control (cerebellum) and facial recognition (cortex). At a slightly different level of

parallelism, various processors will be dedicated to controlling complete subsystems

such as the visual system or the hearing system. Therefore, the control of these

obviously parallel systems will be simplified through the use of parallel hardware.

2.2 Types of Parallel Architectures

There are several classifications of parallel processors which are in use today. Figure

2-1 shows a hierarchy of the various types of architectures which are commonly used

[DeCegarma, 1989]. The majority of parallel processors are made up of two or more

von Neumann-based processors. The two other types of parallel processors which have

been developed use either the dataflow or reduction approach, both of which differ

from the von Neumann-based machines in that their instructions are not issued in a

sequential order. I will focus only on the issues involved in designing von Neumann-

based machines, since 7r/3 is included under this classification.

Von Neumann-based parallel computers are further classified according to the

number of instructions issued and the number of data streams active during a single

cycle [Flynn, 1972]. Thus, there are four major categories of von Neumann-based

parallel architectures: a single instruction working on a single data stream (SISD) ,

a single instruction working on multiple data streams (SIMD), multiple instructions

working on a single data stream (MISD), and multiple instructions working on multi-

ple data streams (MIMD). The SISD architecture corresponds to the traditional von

Neumann processor. SIMD architectures add the capability of working on multiple

data streams, and they are widely used in modeling low levels of parallelism in a

system. Typical examples of SIMD architectures include vector and array processors.

The MISD category does not seem to offer any benefits for the control of various

applications which have been studied, so this classification has not been studied in

any detail. Finally, the MIMD category of parallel computers seems to offer the most

flexibility in designing truly parallel systems. A great amount of time has been spent

6

Parallel Computers

von Neumann-based Data flow Reduction

SISD MISD MIMD

Pipelined
MIMD

Pipeline o I..
processors Connectivity

differentiation

SIMD

Vector/array MSMD
processors

Pipelined Associati
array processor processo

Hybrid

Orthogonal
processors

ve Connection
rs Machine

Crossbar Switch
Lattice

Single Cluster Single Clusters
bus bus network Processor arrays Hypercubes Hierarchical

Grid Systolic Wavefront
arrays arrays

Tree Pyramid Prism

Figure 2-1: Hierarchy of Parallel Processor Architectures

7

VLIW

Bus Multistage
Network

Direct

developing MIMD architectures, and this category seems to offer the most hope in

further improving the capabilities of parallel systems.

2.3 MIMD systems

-r/3 is classified as a MIMD parallel computer. The category of MIMD systems in-

cludes a wide variety of network architectures, each one geared towards improving a

different performance specification. They differ in the way that memory is organized

in the system, the interconnection topology, and the granularity of the processors.

Certain types of MIMD architectures offer great performance for use as general par-

allel processors, while others are well suited for specialized applications. Thus, one

needs to select the best architecture for the application in which it will be used.

2.3.1 Organization of Memory

The category of MIMD parallel processors can be further categorized in the way that

memory is organized in the system. The two basic types of memory organization in

MIMD computers are tightly coupled MIMD systems and loosely coupled MIMD sys-

tems. Tightly coupled systems consist of a global memory that is accessible to all the

processors in the system. The bus, multistage networks, and crossbar topologies are

examples of tightly coupled systems. These systems are often used as general purpose

computers, since they easily allow the sharing of memory between any processors in

the system. However, in order to keep the memory access time of these systems low,

and thus keep the performance high, some sort of local cacheing scheme must be used

[DeCegama, 1989]. This implementation can get rather expensive in hardware, since

the problems of cache coherency and maintaining a consistent global memory must

be addressed. Also, the performance of the entire system declines as more processors

are added. Hence, though the cost of implementing a tightly coupled memory system

is often worth the performance yield for general purpose computers, this does not

carry over to many specialized parallel systems where the communication between

the various processors is relatively fixed.

8

Alternately, loosely coupled systems are designed with each processor having its

own local memory where the bulk of the processing is done. Communication among

the processors is achieved via some sort of message passing scheme. Both dynamic

and static interconnection implementations have been used in loosely coupled sys-

tems. The switch lattice is an example of a dynamic implementation, in which the

connections allowing communication between processors are run-time flexible. This

involves the use of some sort of high speed switching network, which can again get

rather costly in hardware implementation. On the other hand, static interconnections

are fixed at run-time. Certain designs have been made directly connecting each pro-

cessor in the system to every other processor, but this is very impractical and costly

for large systems. Thus, fixed topology networks are usually successful when dealing

with applications that are easily broken up into sections, and where the communica-

tion between sections is relatively light and predictable. Examples of these types of

networks are the processor array, hypercube, and tree topologies. These topologies

work well with applications where communication between processors depends on lo-

cality. In this case, the processors are most likely to communicate with their nearest

neighbors. The loosely coupled systems seem to offer a greater performance for the

given cost when applied to certain tasks, and they are successful designs for more

specialized applications.

The level of parallelism which is being modeled by 7ro/ for the control of the

humanoid system is slightly above the neural level. Thus, small groups of processors

will be in charge of various subfunctions such as low level motor control (cerebellum)

and facial recognition (cortex), as well as the control of entire subsystems such as the

vision and hearing systems [Brooks and Stein, 1993]. Since the number of connections

between the various parallel functions is rather small and static, a fixed topology

network was chosen for 7r. The connections between processors are flexible during the

development stages of the system, and they can be made by the placement of a dual

port RAM (DPRAM) board between any two processors which need to communicate.

Cables are run from one port of each processor node to a port of the DPRAM, and

this enables both processors to access the memory of the DPRAM. These connections

9

__ - ~ _ _ _
- - - -

remain fixed at run-time. Since a fixed topology network was implemented, the issues

of maintaining cache coherency and designing high speed switching networks were not

involved. Therefore, a high performance system was able to be designed at a relatively

low cost.

2.3.2 Granularity

Another classification of large scale MIMD computers involves the granularity of the

parallel processing system. This reflects the size of the various processor nodes in the

system. Task granularity is broken up into three main sizes: fine-grain, medium-grain,

and coarse-grain parallelism.

Fine-grain parallel systems involve the use of a large number of simple, single bit

processors connected together. This is the approach taken by neural networks and

connectionist systems. These types of systems are trying to model parallelism at the

neural level, where the basic processor element may be rather simple and slow, but

the interconnection topologies are extremely complex [Almasi and Gottlieb, 1994].

This work has shown success in controlling smaller, local problems. However, for the

complex application proposed for rfl, the fine-grain processors simply do not have

the capability of processing and reacting to the input data on a real time scale.

The complete opposite approach would be to use coarse-grain parallelism. This

involves the use of a small number of very high performance computers. In designing

7rf for the control of Cog, the group is trying to find parallel solutions to the control

problem. In keeping with the level of parallelism that is being modeled, such high-

performance computers would be underused.

Therefore, medium grain processors were chosen to be used in ro. They appear

to have the right amount of performance capabilities to successfully control the hu-

manoid system. The choice of medium granularity also enabled 7r/ to make use of

available, low cost, moderate performance microprocessors. The processors which

were actually used are the Motorola MC68332 microcontrollers. By capitalizing on

their availability, a high performance parallel parallel computer was able to be devel-

oped at a relatively low cost.

10

2.4 Analysis of and Comparison to Past Parallel

Processor Systems

Several MIMD parallel systems have been developed over the last decade. These

systems are all similar to a certain degree, but contain specific architectural differences

from each other and from r/3. Several of these systems are discussed in this section,

with an emphasis on the reasons for their architectural differences.

2.4.1 Thinking Machines Corporation CM-5

The CM-5 connection machine available from Thinking Machines Corporation is an

extremely powerful distributed memory MIMD machine. It consists of a fat tree

interconnection topology, where links higher up in the tree structure have greater

bandwidth. Thus, one is able to keep the clock constant and use wider busses near the

root of the tree. This increases performance by assuming that more communication

will occur at levels higher up in the tree. Each processor is connected to its four

nearest neighbors, again using the principle of locality in assuming processors near

each other will communicate most often. Thus, local communication is achieved at

the rate of 20 Mbyte/sec, while random communication is executed at a rate of 5

Mbyte/sec. The CM-5 is a coarse-grain parallel processor, with each processor node

containing a Sparc microprocessor and 32 Mbytes of local memory. As of last year,

the machine was able to include up to 16K nodes because of restrictions on cable

lengths, but it is designed to include up to 256K nodes [Almasi and Gottlieb, 1994].

The CM-5 offers excellent performance capabilities for a large variety of applica-

tions. 7r can in no way compare with the performance results of the CM-5. There

are some very strong reasons, however, that favor the use of r/3 for the control of

Cog. One main reason is that the Sparc microprocessors would be greatly underused

in the way that parallelism is implemented in the humanoid system. The processing

power of each node in wfl is purposely limited so that parallel solutions to the task

can be found, ensuring that the solutions retain some sort of biological relevance.

11

The biggest reason against using a design such as the CM-5 is simply the cost of

the system. As of last year, a full 16K node system would cost about one-half billion

dollars [Almasi and Gottlieb, 1994]. This corresponds to a cost of over thirty thousand

dollars per processor node in the CM5. In comparison, each node of 7r costs only

a couple of hundred dollars. Thus, 7r is clearly a much cheaper system. Since the

CM-5 is obviously much more powerful than necessary and is not geared toward the

grain of parallelism which is being modeled in Cog, it would make a poor choice of

an enabling technology. 7r/3 admittedly has a much lower performance, but it still

has the performance necessary to control the real-time humanoid system. Therefore,

though the CM-5 is admittedly a powerful computer, it is not necessarily the best

choice for a given application.

2.4.2 BBN Butterfly Parallel Processor

The Butterfly Parallel Processor developed by BBN Labs in Cambridge, MA is a

tightly coupled, shared memory multiprocessor system. This processor was used in

computer vision applications. The system can include up to 256 processors, with each

processor node consisting of a Motorola 68020 and 68881 floating-point coprocessor,

and 4 Mbytes of local memory [Hwang and Degroot, 1989]. The granularity of this

system is very similar to that of 7r/, with similar Motorola processors used in both

designs, and the BBN Butterfly having slightly more local memory than that used in

7r3.

The major difference between the BBN Butterlfy processor and 7r/ is in the way

in which communication between processors is achieved. The BBN Butterfly machine

has a multistage butterfly switching network that allows all of the local memories to

form a collective global memory. A local memory access takes about 2 microseconds,

whereas accessing a remote memory location through the network takes about 6 mi-

croseconds [Hwang and Degroot, 1989]. 7r/ has approximately the same performance

capabilities as the BBN Butterfly Parallel Processor, though it does not need to make

use of the high speed switching networks. Since inter-processor communications are

fixed at run-time in the control of the humanoid, not all of the processors need to

12

communicate. Thus, the BBN would be better at handling more general purpose par-

allel processor applications, but it does not yield any better performance over that of

7rf for the control of Cog. Thus, by examining the specific features of the application

to be controlled, 7r/ was designed to yield a higher performance per cost in controlling

the humanoid robot than the BBN Butterfly Processor.

2.4.3 PASM- Purdue University

The PASM system of Purdue University is a parallel processing system similar to

F7r. The PASM system can be configured as either a SIMD or MIMD system, and it

was used as a way of studying the use of parallelism in computer vision, speech pro-

cessing, and expert systems [DeCegama, 1989]. PASM included numerous processing

elements, with each processing element consisting of a general purpose microproces-

sor where the bulk of the processing was done, and memory modules for data and

instruction storage. This is similar to the structure of 7r3, where, as will become clear

later on in this thesis, the Vesta SBC332 board is essentially the same as a PASM

processing element.

The PASM system was expandable to include over 1000 processing elements, each

with its own physical address. The processing elements were connected in a general

cube network [DeCegama, 1989]. Supposing the system contained 'N' processing el-

ements, the cube supports up to 'N' simultaneous transfers, where microcontrollers

were used to direct the activities of the processing elements in MIMD mode [De-

Cegama, 1989]. This type of network offers diverse implementation options, and

because of the connections between local processors, many different subsystems can

be used simultaneously. The PASM architecture also has the advantage of a certain

amount of reliability. If one processing element fails, only those processing elements

which rely on the failed processor must be disabled. The other functional processing

elements can continue operating as usual, and thus the entire system does not need

to be shut down.

7rw is very similar to the PASM system. The major difference lies in the inter-

connection structure of the two systems. Instead of the cube interconnection system,

13

TO: makes use of a point-to-point interconnection scheme, with sparsely connected

nodes. Each processor in 7r3 can be connected to any other processor in the system

via a dual port RAM. This gives 7r/ a little more flexibility over PASM, which was

restricted by the cube configuration. Furthermore, 7r does not need the use of mi-

crocontrollers to direct the communication between processors, since the dual port

RAMs are directly connected to both processers which are sharing information. The

only circumstance in which the cube interconnection system would be better than the

point-to-point system, is if the processors communicating together changed rapidly,

and many processors needed to directly communicate with each other. Since Cog

did not require such a high number of processors to communicate with each other,

and the processors which need to communicate are relatively fixed, the point-to-point

system worked well. 7r/3 offers the same advantages as PASM, while allowing a sim-

pler interconnection scheme. Therefore, the overall performance per cost of 7r was

greater than that of PASM.

2.4.4 Intel iPSC/860

The Intel iPSC/860 is a MIMD parallel machine with a hypercube interconnection

topology. The computer is designed to support anywhere from 8 to 128 nodes, with

an 'N' node hypercube having each processor connected to its log2N nearest neighbors

[Hwang and Degroot, 1989]. The Intel iPSC/860 had the Intel i860 processor at each

node of the system, which is a 64-bit RISC processor and runs at 40 MHz. Internode

communication was achieved at 5.6 Mbytes/sec [Almasi and Gottlieb, 1994].

The hypercube structure has many similar properties to the fixed topology net-

work of 7r/3. The Intel iPSC has a slightly more powerful processor at each node, and

thus inter-processor communications are slightly faster on the iPSC. Also, the iPSC

uses the principle of locality, where nearest neighbor communication is much faster

than general communication. Hence, it is again clear that the iPSC is a much better

general purpose parallel processor than 7rA. However, the flexibility which r: offers

us during the development phase in selecting which processors will communicate help

make the addition of new functionality to the system a much simpler task. Therefore,

14

while 7r/3 does have a slightly lower performance than the Intel iPSC/860, it offers us a

greater flexibility during the development phase, while still maintaining the required

performance capabilities.

In the comparison of the above systems, it is clear that 7rf is not designed to be

used for conventional parallel processing applications. There are much more powerful

computers available which are designed for that purpose. However, it should also

be clear that given the constraints of the humanoid system, 7r3 meets the necessary

requirements while offering a greater performance per cost over other available parallel

machines. Therefore, :/ was successfully designed to meet the requirements for the

control of the humanoid, while maintaining a relatively low overall cost for the system.

15

Chapter 3

Description of Hardware

The hardware design of the massively parallel system consisted of two main parts.

The first of these involved the design of the actual parallel processing system, 7r3,

while the second involved the design of an interface between a MacIntosh computer

acting as a front end processor (FEP) and 7r/. This interface to the FEP was provided

for both file serving and debugging purposes.

3.1 Design of rp

The design of 7r3 was made modular by breaking the overall parallel processing system

into identical sections, which will be referred to as backplanes. 7ri is expandable to

contain up to sixteen backplanes, with each backplane consisting of sixteen processing

elements. Figure 3-1 shows a diagram of the backplane, where the major components

include Vesta SBC332 boards, ports allowing connections to IDT7025 Dual Port Static

RAMs, connections enabling communication to numerous motor controller boards,

and an interface to the front end processor.

The Vesta SBC332 Board was used as the basic processing element of the system,

with each board containing a processor paired with its own local memory. Thus, 7r/

contains a large number of these processing elements, with each one dedicated to the

control of a specific subsystem of Cog. For example, one might be dedicated to the

control of the cameras used for the vision system, while another may be dedicated to

16

Pi Beta Node 0…--------- -------- ------ -I
I | Dual Port RAM - Port

18
Dual Port RAM - Port 1

18rt RAM - Po

Dual Port RAM - Port 2
18

Dual Port RAM - Port 418
Dual Port RAM - Port 4

1 i Dual Port RAM - Port 5

Debug Port

!Reset CS3, 2IRQ7

TP154

TP13

TP~.l VESTA

TP10i
I9 I P1 SBC332 P2

U IgI

WI
I

t IReset I
tor RxD I

, QSPI, I
Reset

' Connector to I
Motor Controller I

Boards____ - i

A7-AO, Tx, Rx, Reset

Figure 3-1: Diagram of Backplane

17

UO

CO0m

*0unvn'a4

Compara
plus

Decodin!
Circuitry

r - - - - I
I I
I Pi Beta I

Node 15
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
1 I
1 1
I I

I
I I

I I
I 1I I
I I
I I
I I
I I
I I
I I
I I
I I
I I___1.___

Il

I
I
I
I

I
I
I
I
I
L_
bakpa
seec
sitc

11Interface"
ToFEP -

via
InterFEP

-F---- I

e 1

CfL

A I

,1

:

the control of the arm motors. On a higher level of parallelism, a group of these pro-

cessing elements may be dedicated to the control of the vision system, while another

group may be dedicated to the control of the hearing system, and still a third group

may take on the role of motor control usually associated with the cerebellum.

Though each of the processing elements operates independently, communication

between certain processors is required for the proper control of the humanoid system.

This is the case since many of the processors rely on information obtained from other

processors in order to perform their function. One system in which processor com-

munication is required is the vision system. The processor dedicated to determining

the position of an object in sight would require information from both the eye and

neck motors in order to identify the precise location of the object relative to Cog. If

the eye motor was at a position of thirty degrees relative to the head, and the neck

motor was at a position of thirty degrees relative to the body, the object would be

at a position of sixty degrees relative to the humanoid. Thus, it is crucial that the

processor responsible for determining the position of objects obtain all of the neces-

sary information. If the eye and neck motors are controlled by different processors,

the processor determining the position must be able to communicate with these other

processors and acquire the necessary information.

In 7r/, communication between processors is accomplished through the use of dual

port RAMs (DPRAMs). Two processors are able to share the memory of a DPRAM

and communicate by passing information over this shared memory. There are six

ports available per processor, each of which may be connected to a DPRAM. Thus,

each processor node on 7r/3 is able to communicate with up to six other processors.

Each processor node on r/3 also has an interface allowing for communication to

various motor controller boards. This interface allows for the exchange of motor

control information between the processor node on 7r and the processor on the

motor controller board. Thus, the r/ processor is able to monitor the operation of

the specified motor through the information it receives, as well as send information

changing the position and/or velocity of that particular motor.

18

3.1.1 Vesta SBC332

The main component of 7r3 is the Vesta SBC332 board, which is a commercially avail-

able board manufactured by Vesta Technologies, Inc [Ves, 1993]. Each Vesta board

is a complete standalone unit similar to the Motorola Business Card Computer. The

Vesta SBC332 board contains a Motorola MC68332 microcontroller, sockets for on-

board RAM and EPROM up to 1 Mbyte each, a continuous-cycling external watchdog

timer, a power supply monitor, and an on-board reset switch. Thus, each Vesta board

functions as a self-contained computer with its own local memory. There are two sixty

four pin connectors on the Vesta board, labeled P1 and P2, which allow access to the

signals coming off the Motorola MC68332 microcontroller. Each Vesta SBC332 board

is mounted onto the backplane via the connectors P1 and P2, and the backplane is

thus able to access the MC68332 processor as needed.

3.1.1.1 Motorola MC68332 microcontroller

The Motorola MC68332 is a 32-bit microcontroller which runs at 16.78 MHz. It is up-

wardly compatible with the Motorola M68000 family of processors. A block diagram

of the MC68332 is shown in Figure 3-2 [Mot, 1990], where the major components

include the CPU32, the timer processor unit (TPU), and the queued serial module

(QSM). Both the TPU and the QSM modules are stand alone subsystems which,

after having been configured by the host CPU, require little or no CPU intervention

to operate.

The TPU is an intelligent peripheral module which provides sixteen different chan-

nels, each associated with a specific pin on the MC68332, to be used in time-related

functions. The TPU can be used for simple activities such as discrete input/output,

or more complicated functions such as pulse width modulation. Complicated timing

functions were not necessary for the control of Cog, so, in 7r, the TPU lines are sim-

ply used as discrete outputs. These outputs are completely controlled by the CPU32,

and they can be set high or low only upon request from the CPU. The TPU lines were

used in the interface to the dual port RAMs, where they controlled the semaphore

inputs to the dual port RAMs. This is further discussed in the section describing the

19

INTERMODULE BUS

(QSM)

QUEUED
SPI

SCI

CHIP
SELECTS

EXTERNAL

Figure 3-2: Block Diagram of MC68332

functionality of the dual port RAMs.

The queued serial module provides two serial communication interfaces: the queued

serial peripheral interface (QSPI) and the serial communications interface (SCI). The

QSPI is a synchronous serial communications interface intended for use in commu-

nicating with peripherals and other MCUs. It consists of seven signals: master in

slave out (MISO), master out slave in (MOSI), the serial clock (SCK), and four select

lines (PCS3-PCSO). Thus, the processor is able to select one of sixteen peripherals by

asserting the correct address on the lines PCS3-PCSO, and then sending serial infor-

mation out over the MOSI line or reading serial information in over the MISO line. In

7rw, the QSPI is used to interface to various motor controller boards. This interface

is discussed in the section describing the communication to the motor boards.

The SCI on the MC68332 is used to communicate to a MacIntosh computer acting

as a front end processor (FEP). This connection is needed for file serving purposes as

well as for the debugging of the various processor nodes. This interface is discussed

in detail in section 3.2.

20

2K BYTES
STANDBY
RAM

TIME
PROCESSOR
UNIT

(TPU)

CPU32

BUS
INTERFACE

SYSTEM
PROTECT

TEST

CLOCK

I

3.1.2 Dual Port RAMs

The dual port RAM (DPRAM) used in 7r is the IDT7025 high speed 8K X 16 dual

port static RAM [Int, 1990]. The two ports on the IDT7025, referred to as 'left'

and 'right', are completely independent, with separate control, address, and data

lines. Thus, each port has asynchronous access to any memory location, regardless

of whether the other port is also accessing memory or not. The memory access time

of the DPRAM is 55ns. This is fast enough to respond to the MC68332 memory

accesses, since the MC68332 runs at approximately 60ns. The DPRAM currently

provides for inter-processor communications as well as an I/O interface for the vision

system. Hardware for capturing sound input is currently under development, and

this system will also interface to the MC68332 via the DPRAM.

There are several features of the IDT7025 DPRAM which make it an appealing

choice for the communications interface. One feature is that it has on-chip power

down circuitry controlled by the CE line which puts the chip in standby mode when

it is not selected. The standby mode allows the chip to consume very little power

when it is not being used.

Another feature of the IDT7025 is that each port has an interrupt line. On the left

port, this line (INTL) is set when the right port writes to memory location Ox1FFE.

Similarly, on the right port, this line (INTR) is set when the left port writes to mem-

ory location OxlFFF. To clear the interrupt, the respective ports need to read the

memory location that triggered the interrupt. Thus, the left port needs to read ad-

dress OxIFFE, and the right port needs to read address OxlFFF. The interrupt lines

from this chip are connected to the interrupt lines on the MC68332 and are used for

the vision system of Cog. The lines IRQ1 through IRQ6 on each MC68332 proces-

sor are connected to the interrupt outputs from the DPRAMs on ports five through

zero, respectively. A frame grabber board is interfaced to a MC68332 processor node

on v7r/ through the DPRAM. The frame grabber continuously writes frames to the

DPRAM, and the interrupt is set when it finishes writing the last byte of a 128 X 128

Kbyte frame. Thus, the processor receives an interrupt when a complete frame has

been written, and it may access any portion of that frame by reading the memory of

21

the DPRAM. Information is obtained from the cameras of the vision system in this

manner.

One extremely useful feature on the IDT7025 DPRAM is the on-chip hardware

support of semaphore signalling between ports. Problems may arise in the system if

the two ports on the DPRAM both try to access the same location in memory at the

same time. Though simultaneous reads provide no problems, simultaneous writes or

a simultaneous read from one port and write from another may result in faulty data

being passed between processors. The IDT7025 provides one semaphore line for each

port, (SEMR and SEML). The on-chip semaphore logic on the IDT7025 is a set of

eight latches. These latches are independent of the DPRAM, and may be accessed by

asserting the semaphore line of the corresponding port. The address lines A2-AO are

used to select the latch, and data pin DO is used to set or reset the latch. Thus, if two

processors are sharing a portion of memory on the DPRAM, when a processor wishes

to access the shared memory, it requests a token by writing a zero to the agreed latch

in the semaphore logic. The processor then reads back this value. If it is a zero, the

semaphore was successfully set, and the processor has gained control and may modify

the memory as needed. If, however, when the latch value is read back it is a one,

this means that the other port currently has access to the shared memory. In that

case, the processor can continue to wait until the other side relinquishes the token,

or it may go on to perform another function and later return to try and gain control

of the token. The IDT7025 also provides semaphore logic to take care of the case of

both ports attempting to gain control of the semaphore token. If simultaneous token

requests are made from both ports, the chip will arbitrarily select one side to receive

the token. Therefore, by using the semaphore logic, one is able to ensure that valid

data is consistently transmitted between the two ports.

As was mentioned previously, the semaphore line inputs are controlled by the CPU

of the MC68332 microcontroller. TPU lines ten through fifteen from the Vesta board

connector P1 are connected to the semaphore line input on the DPRAMs in ports

zero through five, respectively. Thus, a processor can request a token from a specific

DPRAM by asserting the semaphore line input and selecting the correct DPRAM

22

port. In this manner, the message passing technique between two processors was

guaranteed.

Appendix A-1 contains a detailed schematic of a rk processing node where the

connections to the DPRAM boards are clearly shown. The address and data lines of

the DPRAMs are connected via a cable to those on the MC68332, and chip selects

CS4, CS5, and CS7 through CS10 are connected to the chip enable inputs of the

DPRANMs on ports zero through five, respectively. The MC68332 may assert the chip

select output corresponding to the selected DPRAM, and may thus exchange data

with the processor connected to the other port of the DPRAM. The read/write output

(R/W) from the MC68332 is connected to the input/output write input (IOW) of

the DPRAM, enabling the transfer of information from the selected dual port RAM

to the MC68332. Likewise, the input/output read input (IOR) of the DPRAM is

connected to the inverted R/W signal from the MC68332, enabling the transfer of

information from the MC68332 to the selected DPRAM.

The first version of 7rf provided for only word addressing of the DPRAMs, with

the upper byte (UB) and lower byte (LB) inputs to the DPRAMs tied low. This

required the use of different code to access the DPRAM than that used to access other

parts of memory. Hence, it had the result of immensely complicating the system. For

this reason, byte addressing functionality is being added to the DPRAM interface in

version two of the backplane, which is currently under development. The logic for

the control of the UB and LB inputs is as follows:

UB = SIZ1 * SIZO * AO

LB = SIZ1 * SIZO * AO

The SIZI and SIZO outputs of the MC68332 indicate the length of data being trans-

ferred as is shown in table 3.1 below. 7rf currently does not use transfer sizes greater

than a word, but such transfer sizes could be used in the future if desired. The AO

address bit is asserted when addressing the upper byte of a word, and is otherwise

not active. Thus, by using the above decoding logic, a word as well as a particular

23

SIZ1 SIZO Data Transfer Size

o 1 byte

1 0 word

1 1 3 byte

0 0 long word

Table 3.1: Decoding of Data Transfer Sizes

byte of a word are able to be transferred between the MC68332 processor and the

DPRAM.

The second version of r will also include drivers on the address and data signals

sent to the DPRAMs. The transfer of information to and from the DPRAMs in

version one was not robust when long cables were used in the connection from the

backplane to the DPRAM board. Thus, processors relatively far from each other

would sometimes lose some information that should have been passed between them.

By buffering these signals, the second version of the backplane should provide for

stable message passing via relatively long cables.

3.1.3 Motor Board Port Connection

There are several motors on Cog which are used to control its body movements as

well as its eye movements. The actuators on the various motors are controlled by

a motor controller board whose main component is the Motorola MC6811 micro-

controller. The MC6811 exchanges control information with an MC68332 processor

node on rf. The interface between the MC68332 and the MC6811 is achieved using

the QSPI port, which was described in the section dealing with the MC68332. The

MC68332 functions as the master, with the MC6811 taking on the role of the slave.

Each processor node on 7rfi is able to communicate with up to sixteen of these mo-

tor controller boards, with each board controlling one of the motors on Cog. Each

MC6811 processor has a specific identity associated with it, and the MC6811 that

the MC68332 processor wishes to communicate with is selected by placing the correct

address on the PCS3-PCS0 lines. Information is sent to the MC6811 over the MOSI

line, while information is sent back to the MC68332 over the MISO line.

24

SCSI Bus Serial Port
FEP i InterFEP p

IInterface Intebeta
Figure 3-3: Interface from FEP to

Figure 3-3: Interface from FEP to -fi

The design of 7r currently has packets being exchanged with the motor controller

boards at a rate of 32 Hertz as long as less than eleven motor controller boards are

attached to the single processor. This rate drops down to 16 Hertz if this condition

is not met. The MC6811 receives information for the velocity and position of the

motor. It sends back to the MC68332 information about the encoder reading, the

motor and driver temperature, and the motor current. From this information, the 7r3

node communicating with this MC6811 is able to ensure the correct operation of the

motor and detect if any problems have occurred.

3.2 Interface from FEP to r3rp

Though the processors on the backplane all have the information necessary to control

the specific function which they are in charge of, there is still a need to communicate

with these processors. Users may need to communicate with a certain processor in

order to pass various instructions to that processor. Also, users will need to know

if a processor is functioning as expected. If not, the user may want to restart that

processor and ignore any faulty results which it may have computed. In order to

achieve this communication, an interface was set up between a MacIntosh computer

dedicated as a front end processor (FEP) and 7r. This interface entailed the use of a

Motorola MC68332 similar to those used on the backplane to act as an intermediate

front end processor (interFEP), with this interFEP connected between the FEP and

7rw as shown in Figure 3-3.

25

3.2.1 SCSI Interface From FEP to InterFEP

The FEP is connected to the interFEP over the small computer system interface

(SCSI) bus of the MacIntosh computer. SCSI provides a specification for connecting

small computers with intelligent peripheral devices [Ame, 1986]. It is a local I/O

bus which can sustain data transfer rates up to 4 Megabytes per second. The SCSI

standard provides for two types of SCSI devices: an initiator and a target. As is

implied by the name, the initiator is capable of beginning an operation, whereas

the target is capable of responding to a request to perform a specific operation. The

SCSI allows for multiple initiators as well as multiple targets. At the moment, 'i only

requires the use of a single initiator (the FEP) and a single target (the Am53C80A

SCSI interface controller connected to the interFEP). As newer versions of Cog are

created and multiple existing versions will want to be used, this situation may change.

One may want to have a different interFEP for each version of Cog, and the FEP

would be able to select which version to communicate to through the SCSI bus. This

functionality would require only minor software additions to the system, and is thus

easily added to the overall system.

The hardware interface between the FEP and the interFEP is shown in Figure

3-4. The 25 pin connection coming out of the FEP is converted to a 50 pin interface

with the ground signal alternated between the previous 25 signals through a stan-

(lard MacIntosh converter cable. This interface, having alternating grounds between

signals, allows for better transmission of the signals over the cables. The alternating

ground wires help to eliminate any crosstalk between the signals being transmitted

which could otherwise interfere with the proper transmission of these signals. The

SCSI standard allows for cable lengths of up to six feet when using the single-ended

fifty pin connection. Since the distance between the FEP and the backplane is actu-

ally about 10 feet, the interFEP board was mounted close to the FEP, keeping the

cable length from the SCSI interface to about 2 feet. Next, the SCSI bus signals are

brought into an Arm53C80A SCSI interface controller. This chip provides an interface

between a SCSI bus and a microprocessor. Thus, the Am53C80A connects directly

with the SCSI bus signals and the interFEP, allowing the interFEP to control certain

26

DB7-DBO

DBP

ATN

SCSI BUS BSY

ACK AM53C80A
CONNECTOR

RST

MSG

SEL

C/D

REQ

110

MOTOROLA MC68332

RESET…

I P1

A2-AOI TP15-TP10

'RxD

IRQ1 'TxD

CS4

D7-DO

I , .
P2

IOW

IOR
lo --

RESET

A7-AOI

Rx Differential

Tx Drivers

! to Pi Beta

Figure 3-4: SCSI Hardware Interface From FEP to InterFEP

SCSI bus operations.

The SCSI standard calls for a MacIntosh computer to always take on the role of

the initiator. Accordingly, in 7ri, the FEP acts as the initiator, while the Am53C80A

assumes the role of the target. The interFEP is able to communicate with the

Am53C80A as a peripheral device. The SCSI controller chip contains thirteen regis-

ters, each holding eight bits of information, which may be accessed by the interFEP.

The interFEP may select a register by asserting the chip select input (CS) to the

Am53C80A and addressing the specific register through various combinations of the

inputs A2-A0, I/O read (IOR), and I/O write (IOW). A summary of the registers

along with their address is shown in Table 3.2 [Adv, 1992]. Only three of these reg-

isters are both readable and writeable, while the others are either read only or write

only. Information is transferred to or from the selected register via the data bus con-

necting the interFEP to the Am53C80A. By reading and writing these registers, the

interFEP is able to control the SCSI controller chip's operation, and thus monitor or

assert the various signals on the SCSI bus. Since the programmed I/O input mode

27

I

Register Address (A2-AO) IOR IOW
Current SCSI Data Register 000 0 1

Output Data Register 000 1 0
Initiator Command Register 001 X X

Mode Register 010 X X
Target Command Register 011 X X

Current, SCSI Bus Status Register 100 0 1
Select Enable Register 100 I 0

Bus and Status Register 101 0 1
Start, DMA Send Register 101 1 0

Input Data Register 110 0 1
Start DMA Target Receive Register 110 1 0

Reset Parity/Interrupts Register 111 0 1
Start DMA Initiator Receive Register 111 1 0

Table 3.2: Am53C80A Registers

was used to transfer data over the SCSI bus, the registers dealing with DMA mode

transfers were not needed. The programmed I/O mode offered sufficient data transfer

rates, so that the DMA mode of operation was not necessary. Also, some of the SCSI

controller chip's registers are only used when the chip is operating as an initiator.

Since the chip is functioning as a target in 7r3, these registers were also not necessary.

The SCSI protocol defines eight bus phases which a SCSI device can be in. These

phases are as follows:

bus free phase

arbitration phase

selection phase

reselection phase

command phase

data phase

status phase

message phase

Both the FEP and the interFEP commence in the bus free phase. The FEP is

able to control the SCSI bus via the SCSI manager trap routines implemented in

Macintosh Common Lisp [App, 1985]. In order to initiate a data transfer, the FEP

first needs to arbitrate for control of the SCSI bus by asserting the SCSIGet command.

28

The FEP thus enters the arbitration phase, and this command returns successfully if

the FEP manages to gain control of the SCSI bus.

The FEP may now enter the selection phase, where it selects the target that it

wishes to communicate with. The interFEP code would have already written the

device ID into the SCSI controller chip by writing the specific ID value to the Select

Enable Register of the Am53C80A. When the SCSI controller chip senses that a

selection attempt is being made and its ID is on the bus, it sends an interrupt to the

interFEP. The interFEP thus realizes that it has been selected, and it then begins to

take control of the SCSI bus.

Next, the interFEP needs to write the Target Command Register of the SCSI

controller chip in order to assert the CID signal and enter the command phase.

Meanwhile, the FEP would have already called the SCSICmd routine, passing it

a pointer to the specified command, as well as the size of the command in bytes.

The FEP and interFEP then go through a handshaking routine, where the interFEP

requests the next data byte, and the FEP acknowledges when it has been sent. The

interFEP knows how long the command is, and when all the command information

has been received, it deasserts the CID signal and enters the data transfer phase.

In the data transfer phase, the FEP is able to send information to the interFEP

by calling the SCSIWrite function and passing it a transfer instruction block as an

argument. Likewise, it is able to receive information by calling the SCSIRead function

and again passing it a pointer to a transfer instruction block. The transfer instruction

block contains information regarding how many bytes to transfer, as well as the

location in memory from or to which these bytes should be sent. The interFEP

knows which way the data is to be transferred from the information received during

the command phase, and it places the corresponding signal on the I/O line to direct

the exchange of communication. The FEP and interFEP will then again go through

the handshaking routine of the interFEP requesting a data transfer and the FEP

acknowledging that the requested information is on the bus. This will continue until

the data transfer is complete.

The interFEP then either enters the message phase by asserting the MSG signal,

29

or it completes its routine and waits for another selection attempt. The FEP calls

the SCSIComplete function, passing along a message as an argument if the interFEP

is expecting one. When this call completes, the SCSI bus again enters the bus free

phase, and the FEP may again select a device, while the interFEP monitors the bus

to see if it is being selected.

Thus, the FEP and interFEP are able to exchange data in the above manner. This

is useful for file serving purposes as well as aiding in the debugging of the system.

The SCSI bus provides for a fast and reliable exchange of data.

3.2.2 Interface from Inter-Front End Processor to 7rp

The interface from the interFEP to -r takes place over the serial peripheral interface

on the MC68332 microprocessors. There are eleven signals which are sent between

the interFEP and 7rf. These signals consist of A7-AO, Rx, Tx, and Reset. The signals

A7-AO are used to select which processor to communicate to. The upper four bits,

A7-A4, select the backplane that the processor is on, while the lower four bits, A3-

AO, select which processor on the particular backplane to communicate to. The Rx,

rx, and Reset lines are then decoded properly so that they are sent to the selected

processor. Data is received by the processor over the RxD line, and transmitted from

the processor over the TxD line. Also, the Reset signal from the FEP is decoded so

that it is received by the Reset input on the selected MC68332 microcontroller.

The logic ensuring that the signals are decoded properly and sent or received from

the selected processor is the same for each processing node on 7r. Figure 3-5 shows

the schematic for this decoding logic. First of all, each processor node has a HC688

eight bit comparator associated with it. The HC688 has connections for power and

ground, an active low cascade in signal, sixteen input signals (A7-AO and B7-BO),

and one active low output signal. When the cascade low input is asserted, the HC688

compares the values A7-AO with B7-BO. If there is a perfect match, the chip asserts

its output.

In 7r/ the 'B' inputs to the chip are fixed. Each 7r node has a particular physical

address associated with it. The high order bits, B7-B4, are the same for all nodes on a

30

Rx from

interFEP

i/6

ILS04 i'

11/6

LS04

BACKPLAE

SELECT

SIGNALS FROM

ROTARY

SWITCH

PROCESSOR SELECT SIGNALS

FROM INTERFEP

(A7-AO)

TxD output 1l04

from MC68332L

Figure 3-5: Logic for Communicating With Selected Processor

31

GND

:ade
VCC

RxD input

to Mc68332

1/4 ',

I LS03)-

interFEP

RESET

casc

in

AO

BO

Al

B1

A2

B2

A3

B3

GNC

PROCESSOR

NMBER

(hard wired]

A=B

B7

A7

HC688 B6

A6

B5

A5

B4

A4

1/4
LS03

MC68332

RESET

i!
K

I 1/4

I LS03,
Tx input

tointerFEP

I'

i

I

i I

backplane. These bits are set by a rotary switch which is mounted on the backplane.

Since the backplane is quite big and the outputs from the switch need to be brought

to each node on the backplane, the lines are buffered, with one buffered line attached

to the top eight processor nodes, and the second buffered line attached to the bottom

eight processor nodes. This assures that the signals from the rotary switch are sent

reliably to the input of the comparator. The LS244 non-inverting buffer is used to

buffer the signals in the current version of the backplane. In version two, however, a

current driver will instead be used to buffer these signals. This will provide stronger

signals to the processor nodes on the backplane.

Each backplane has a unique ID set by the rotary switch. With the rotary switch

outputing four lines connected to the upper four 'B' inputs to the comparator (B7-B4),

there are up to sixteen unique ID's, and thus, up to sixteen backplanes in 7r/. The

bottom four 'B' inputs to the comparator (B3-B0) are directly set for each processor

on the backplane. From left to right, starting on the first row and proceeding to the

second, each processor is numbered sequentially with the bottom four bits beginning

at '0000' and ending at '1111'.

The 'A' inputs to the comparator are connected to the signals A7-A0 coming

from the interFEP. These signals are brought in through a fourteen pin connector

on the backplane, and then buffered, just as the rotary switch outputs are buffered,

to the sixteen various nodes on the backplane. Finally, the cascade in input to the

comparator is tied to ground, so that the comparator is always activated. Thus, one

of the processors on v7r may be selected, and the comparator associated with that

processor will have its output signal asserted.

This output signal is then used to direct the Rx, Tx, and Reset lines to the correct

processor node. The following equations were used to decode the serial and reset lines

to the selected processor, with the A = B signal being the active low output of the

comparator determining if a node is being selected or not:

RxD = (A = B) * Rx

T-'x = (A = B) * TxD

32

RESETMC68332 = A = B * RESETFEP

A LS03 four channel NAND gate and a LS04 six channel inverter were used to

implement this logic. First, the active low output signal from the HC688 is brought

into an input of the LS04 inverter, so that the signal is now active high. For the case

of the Reset signal, which is also active low, this signal is brought into a second input

of the inverter making the output of the inverter active high. The active high Reset

output of the inverter is then sent into one input of the LS03 nand gate, with the

active high processor select output of the inverter being the other input to the nand

gate. Thus, when both the reset and processor select signals are asserted, their inputs

to the nand gate will be high, resulting in a low output. Since an open-drain nand

gate is used, this ouput is connected directly to the active low Reset input of the

MC68332 through a pull-up resistor. Thus, only when both the Reset and processor

select signals are asserted will the processor node have its reset signal asserted.

The logic for directing Rx to the MC68332 input RxD is similar to that for the

Reset signal. The active high Rx signal is first run through an inverter, and then

brought through the nand gate with the other input being the active high processor

select signal from the inverter. The output of the nand gate is then connected directly

to the MC68332 RxD input, again using a pull-up resistor. Thus, the input to RxD

will be a zero only if the processor select signal is asserted and a zero is being received.

Otherwise, the input to RxD will be a one. This functions properly, since the processor

will know when data is actually being sent between the interFEP and a processor node

by looking for the valid stop and start bits for data transmission.

Finally, the Tx signal is also similar to the others, except that; it goes in the

opposite direction, from the processor node to the interFEP. Thus, the TxD signal

from the MC68332 is brought to the one input of the LS03 nand gate, with the other

input being the active high processor select signal from the LS04 inverter. This is

clone for each of the processing nodes, and all the nand gate ouputs from these nodes

are tied together, run through a pull-up resistor, and connected to the Tx line sent to

the interFEP. Thus, if any processor node is trying to transmit a zero, the Tx line will

33

be held low, and otherwise it will be tied high. Again, this system works because the

various combination of start and stop bits will trigger a valid transmission, and then

the valid bits will get to the interFEP. Thus, communication is properly achieved

between the interFEP and the selected processor node.

As was explained in the previous section, the interFEP was mounted near the FEP

in order to keep the SCSI cable length small, and thus have reliable data transfers over

the SCSI bus. Unfortunately, this required that the connection from the interFEP

to 7r3 take place over a relatively long cable (about ten feet). In order to ensure

that the communication over this longer cable is also reliable, differential drivers were

used to transmit and receive the signals. The differentially driven signals, with the

true and complement signals driven on properly terminated twisted pair cables, offers

very good cominon-mode rejection and generates clean logic levels. Also, properly

terminating the lines gets rid of any transmission line effects from reflections due to

impedence mismatching, which may alter the signal.

The 96172 quad differential drivers are used to take in the single-ended signal and

output the differential signal. On the receiving end, the 96173 quad differential line

receivers are used. They take in the differential signals, have the necessary termination

resistors to get rid of transmission line effects, and then output the single-ended signal.

Therefore, information was sent reliably between the interFEP and ,.

The interFEP enabled communication between the front end MacIntosh computer

and r/. It is able to select any of the processor nodes on 7ri to communicate with, and

thus check on the status of each of these nodes. It also will send any information to

the FEP about problems which it has discovered. Thus, this is helpful in debugging

the system. The interFEP also provided for file serving purposes by receiving or

sending bytes friomrn or to the FEP, and directing any data to or from the correct

processor node.

34

Chapter 4

Performance Evaluation and

Future Work

irTi is currently in use at the MIT Artificial Intelligence Laboratory for the control of

the partially developed humanoid robot. However, since Cog is still in the early stages

of development, -7rx has yet to be used for an extended period of time so that conclusive

performance evaluations can be made. Nevertheless, 7r is being extensively used in

developing early control for various subsystems of the humanoid, and has met the

real time requirements which have thus far been encountered.

One major subsystem which is currently under development and has used r/3

for an extended period of time is the vision system. A great amount of work has

been done in developing this system. Images from the frame grabbers are able to be

obtained and processed by 7ir on a real time scale. These images are also successfully

output through monitor boards to a display within the same time frame. 7r/ has

the capability of reading in about ten frames per second, which is adequate for the

amount of capability expected from Cog.

Also, the beginnings of a visual tracking system has been implemented using 7r/3.

This system enables Cog to 'track' a specific object, keeping it in its field of sight.

7r/3's architecture has been successful in enabling such functionality on the humanoid

robot. These early results suggest that 7r3 does indeed have the capability to control

the humanoid.

35

Another major subsystem which has been under development and made use of

r/3 involves the lower level motor control of the humanoid. Communication with the

MC6811 motor controller boards has been achieved at a rate of 32 Hz. Thus, a 7r

node is able to successfully send control information to the MC6811. and change the

position arid/or velocity of the specified motor. The actuators on Cog are able to be

ser-voed at high rates, and the system is thus able to respond to its environment in a

human time scale.

As for the interface to the front end processor, some work still needs to be done

in completing this implementation. The hardware for the system is complete, and

communication between the FEP and the interFEP has been achieved. However, the

entire interface has not been tested as of yet, and we expect the need for some amount

of debugging of this interface. We are confident, though, that the interface will run

as expected from the results of early tests on certain aspects of the interface. We

expect to be able to reach communication rates of about 1.5 Mbytes/sec between the

FEP and interFEP.

As more functionality is added to the humanoid robot, and more tests are done

with the system, we expect to make better performance evaluations of 7r/. Since this

was a first attempt at the control of such a complex, intelligent system, we expect

to find areas which need improvement in the current architecture, and iterations of

the design will then be made. Furthermore, once a clear picture of the necessary

requirements for the control of the system is obtained, an intelligent selection of

a system with higher performance processors which is well suited to the specific

application may be made.

A second revision of the backplane is already under way with some minor changes

from the first. It will provide for byte addressing of the dual port RAMs, more reliable

communication to the dual port RAMs, and better power distribution to the system.

T'his new revision should be completed shortly.

In future revisions of 7r,3, there are several factors which may be improved if nec-

essary. The frame size read in from the vision system may be increased to larger than

128 X 128 Kbyte frames to facilitate processing this data. This should not be very

36

difficult since the interface to the dual port RAMs provides several unused address

lines. Furthermore, the communication rate between the FEP and the interFEP may

be increased by using either blind SCSI data transfers or using the DMA mode of

operation on the Am53C80A SCSI controller chip. Thus, there is the capability of

easily adding in certain improvements, should the performance of 7r, turn out to be

slightly less than what is expected.

37

Chapter 5

Conclusion

The design of 7ro is unique from the design of conventional parallel processor com-

puters. Since it was developed for a very specialized purpose, the constraints of the

specified application were able to be considered in the architectural design of 7r3. Not

only was there a need for a high performance enabling technology for Cog, but there

was also the constraint of guaranteeing that the implemented solutions for the con-

trol of the humanoid robot would be relevant to what is currently understood about

biological systems.

Thus, the major constraints which were considered in the design of r3 are that

it respond to its environment in real-time, the subsystems operate asynchronously,

there is no global control, and there is no globally shared memory. These constraints

differed from those faced in the design of most large scale parallel machines, since

these are generally aimed at speeding up serial computations. Contrary to these

designs, rf3's purpose was to simplify the control of the inherently parallel system by

making use of available parallel hardware.

These constraints simplified the required parallel architecture needed to control

the humanoid robot. Since memory was local to each processor, there was no need to

maintain a consistent global memory or worry about cache coherency. This simplified

the architecture, resulting in a higher performance system at a lower cost.

Though 7r/ may not offer the best performance and throughput as compared to

other parallel computers, it does offer the high performance necessary for the control

38

of Cog, as well as meet the specified constraints of the system. The scalability of

the design enables the developers of Cog to use the layered approach to designing

an intelligent system, and therefore not need to change the subsystems which have

already been implemented.

Therefore, 7r/3 does successfully meet the requirements for which it was designed.

It does encourage the finding of parallel solutions to the control of Cog, and it does

allow for the control of a real-time system. It is a good choice of the control for an

application which is expected to go through many different iterations and will thus

change often. Therefore, 7r, functions well as the enabling technology for Cog.

39

Appendix

Schematics of System

40

A

IIl

r*******v
15 513 2 i 0�

LG
N 88 88 88 BBe

mobile t

i - H - f

|UAAAA*DDDDDDDDRC
| B 1 B342 02 1 3 5 9 1 1 1 z E |

'Is , i I , ""

L E 1 AAn n DD1 1 1 N
IBM 9 5 3 ? d o Z4 9 5 0 2 TI

' 477Fs74~lT1Tl1D -7

, ~~ e Motor Board

zS 1 connections pt S PC =
W.

0
r-1B . skI

!~ ~ ~ ~~~~~~~~~. .. .I..,
AA I ''IVCDDDDDD, 1S 79 1 1,, ECS I 1 r 641 2

317SC 4ZO Debug
ConnectorA tntsrr 00000

=a** I a,,-oo

No

1 11 I 111

FV'igure A-1: Detailed Schematic of a 7r/3 Node

41

panl ect _

II

Al

G nd .I I
c V7 r

P2
Gnd GOll

1 D

0iD DSI~M
D DI
D1 D1O

aD'S Dl4

1-

I
7 P
;;F2

A= CS"

11

I
--III

V

bh'ttI'>'1 IlPk
|UASAAAAADDDDDDDRC|||

11 6 2 o t 1 3 s 7 91 1 1 l L

Zo I 11-W
dp,.. l

I I~ · I I I

i Er AAA n ODDDD 1 1 N l

IBM 9 7 5 3 1 d c 0 Z 4 6 1 0 24 T

TI
Rx *
Reset

1�

- 1 ,F-F-

--- '·a

1111 1. _-.-

_
_-

--.--- t ,,,,. ,,,.,, ,,,,..

' I- 1 §1 1 1 91 1 1t+ L l l l l l l I I _

11 I . . I
-------------------.. __

q l~ i i i i i I I I i i I I i
I I I I I I I l _ | .1

-- _ " ''

_ii i i i i I i i

.
_ I ~~~~~~~L

Er

]1

1

I

.1nr

11 110
11 1;1-5 r I
21 1 *1

1- 1" I'llBI'll ".KI'll 1-1
I'll I'll

- 11 T1

-P1 I.,
.1I S

rU Y"'t .__U2

11 1-LI

"""-
'·""��

I~l l frur-
" ' TI L

,, 1,
--.! I- LI
--- U

LL-7
,- "I,

, . - 1171
-' -

-' 11 ,,gL

7 , ..
"'Rmh

I

%I 'l

117lrt

I

11
LI

· I
- I II

L

I

L

b

CEl~K:

'
I

;-

I I*I* DOODR

_ _i i 2_ ...11 1 Ill
I'll31

I p ' ' d,,.. oo

''I Il~ DDD

2 L 1 1 r 6i 2

UI*III*A~mD~mmeQBRC

- 1 r0452
I ... I l l i . I

'f 21-, rl �"' -]

8 I FT 311 1 1

10 I 11-
I -~a oo

B I 9 I I I I c 0 I 6 i a 2

. I

I Io

BMDE T T M1a 21 a 1

I .. FI . . I I I I I

--- JAMI� I -

U4a

2 ,'/I

P1-68332
1 2

rGndl Gnd4 4
AM53C8OA 5 Vccl Vcc4

ncl A0
2D7 DB6 Al A21
RST DB546 A3 A41 2
Gndl Gnd 45 A5 A6 14
BSY DB 4 1 A7 A81 6
S 03431 A9 Al118

7 ATN DB2 All A12 2 0
NC1 NC4 A13 A1422
RESET DB1 A15 A16 2 4

IRQ DBO 3 9 2 A17 A18 26
DRQ Grd4 nc2 nc5
EP DBP3 7 nc3 VSTBY 3 0
DACK RE 36 nc4 T2CLK 2
Gnd2 ACK TP15 TP14
READY I/O TP13 TP12 3
A0 Gnd3 3 TP11 TP103 8
1Al C/D 3TP9 TP84
A2 MSG 4 TP7 TP6
NC2 NC3 TP5 TP4 4 4
CS DO29 TP3 TP2
lOW D1 TP1 TP0 4 8_22 l1I Sze

2 27 4 50D7 D3 1 PCS0 SCK 2
D6 D4 PCS2 PCS1255
05 Vdd TxD PCS3 5

DSCK RxD5
RESET (UOT6
6DSO 1DSI

6Vcc2 Vcc3
Gnd2 Gnid3

11__ _ lilill I 11

L .1 r iii h lm I
--- ,I I® 1 - I

961721
~1A 3Y

711A I1Z
2A Z2Y3A 5

-4A I ~~~~3Y F-
19617212 1 li
2A 1Z

2A ,Y

E 3W Ii
LsY 4 Y , , III

6 17
3A A 2Y

2Z
41 ' 3Y

vC 3Z
8 4Y

4Z

2
3
6
5
10

1 1
14I L 4

F 1 cc Y 1

JAJ

I I

OOOQIOjOQO

P2-68332
1 2

Gndl Gnd44
Vccl Vcc4
D71 DO
D3 D2 90 R/W 02ODCK 10

1D5 D4 1
D7 D6 1
D9 D8
D l l D10

nc2 XMT232 26
CSBOOT RCV232 28

2 R/W MOCK 30

TSC C S1 0 32
CS9 CS8
CS7 CS6
CS5 CS4 38
CS3 CS2

4 Cl SO 42

IRQ3 IRQ4 46

IRQ7 BERR

AVEC RMC54
O DSA AS 6 |
SIZO SIzi 5 H,
nc3 CLKOUT
nc4 HALT 2
Vcc2 vc3 6

21

2 +A ̂ 1
AS A2 2 5

_ _ _ _ _ MA 1 2

+A7 +A1 30
-A7 -A0
+Reset +A0 4

IF-I-'- . x3; _I- _

+ Rx +Tx

J~z(j I Differential
connector
to pi beta

I

Figure A-2: Schematic of InterFEP

42

2 D08
8 DB
5 DB2/
9 DB3
1ODB4/
12DB5/
146DBI 8flR7 I
18

22
24

SCSlconn
Gndl)B0
Gnd2 DB1
Gnd3 [)82
Gnd4 [)83
Gnd5 DB4
Gnd6 D85
Gnd7 DB6
Gnd8 DB57
Gnd9 D)BP
Gnd10 Gnd26
Gndl Gnd27
Gndl2 Gnd28
Gndl3 TERMPWR
Gndl4 Gnd29
Gnd15 Gnd30
Gnd16 ATN
Gnd17 Gnd31
Gndl8 SSY
Gnd19 ACK
Gnd20 RST
Gnd21 MSG
Gnd22 SEL
Gnd23 C/D
Gnd24 FE
Gnd25 I/O

2

2

3

4
4
5

68o

24
6
824
6
8

0

J

s
4

1
4

1 -9

2391 A
1 1AI2Y 1

2A71 Y 2Bio

1E 3A9T
- 3 4-LU i

48

/
-

I

i
I2

-1 -

!_..

Et
I

.- t----------
',-,v- _ I,

_T:- :I :-
4 · , 41-w -~~~~~~~~~~~~~~~~~~~~~~,

I

- -'~T - Ilr1 unuz unuo

- L

I

i

I I1r _1

-

I
n

·70 Il

F1II

-

1

., R

F

�U�ki

__
�f�J"

t" - r <V ll I] ' I 1m~ 4

_---
&

"

I I' I I
. 11 I I

Bibliography

[Adv, 1992] Advanced Micro Devices. Data Communication Products, 1992.

[Almasi and Gottlieb, 1994] George S. Almasi and Allan Gottlieb. Highly Parallel

Computing. The Benjamin/Cummings Publishing Co., Inc., 1994.

[Ame, 1986] American National Standards Institute, Inc. American National Stan-

dard For Information Systems - Small Computer System Interface (SCSI), 1986.

[App, 1985] Apple Computer, Inc. Inside MacIntosh Volume IV, 1985.

[Brooks and Stein, 1993] Rodney A. Brooks and Lynn Andrea Stein. Building brains

for bodies. Memo 1439, Massachusetts Institute of Technology, Artificial Intelli-

gence Laboratory, Cambridge, Massachusetts, 1993.

[Brooks, 1986] Rodney A. Brooks. A robust layered control system for a mobile robot.

IEEE Journal of Robotics and Automation, RA-2:14-23, 1986.

[DeCegama, 19891] Angel L. DeCegama. The Technology of Parallel Processing. Pren-

tice Hall, 1989.

[Flynn, 1972] Michael J. Flynn. Some computer organizations and their effectiveness.

IEEE Transactions on Computers, C-21:948-960, 1972.

[HIwang and Degroot, 1989] Kai Hwang and Douglas Degroot, editors. Parallel Pro-

cessing for Supercomputers and Artificial Intelligence. McGraw-Hill Publishing

Company, 1989.

[Int, 1990] Integrated Device Technology, Inc. Specialized Memories Databook, 1990.

43

Illlot, 1990] Motorola, Inc. MC68332 User's Manual, 1990.

IVes, 1993] Vesta 'rechnology, Inc. Vesta SBC332 Family Hardware Manual, revision

1].3 edition, 193.

44

