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Abstract
The Jumping Automaton for Graphs (JAG) is a model of computation introduced by
Cook and Rackoff to study the computational complexity of st-connectivity. Although
it is more restricted than a general Turing Machine, it can implement most known
algorithms for this and related problems. Therefore, a fruitful intermediate step in
understanding st-connectivity to attempt to prove tight upper and lower bounds on
this model.

We will discuss variants of the model and give examples that demonstrate both
the power of JAGs and also the difficulties involved in proving lower bounds. Space
upper bounds by Cook and Rackoff will also be presented as well as space lower bounds
by Poon that show how these difficulties can be overcome. Time lower bounds and
time-space tradeoffs will also be discussed.
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Chapter 1

Introduction

1.1 Graph Connectivity

An important open question in Complexity Theory is the L vs. question - are

there languages that can be decided by nondeterministic logspace Turing Machines

that need superlogarithmic space on deterministic Turing Machines? As with the P

vs. A7P problem we have the notion of completeness for A'£ with respect to logspace

reductions. The set {< G, s, t >: s and t are connected in directed graph G} is com-

plete for JAfL and so pinning down the space complexity of st-connectivity will settle

the above question. Savitch's Theorem tells us that J'C C DSP4AC£(log2 n) and

theoreticians have tried for many years to either improve the simulation or prove a

good lower bound on the complexity of st-connectivity.

1.2 JAGs

Most popular algorithms for st-connectivity, breadth and depth-first search, for ex-

ample, mark previously visited nodes (s is initially marked) and then explore new

areas of the graph by marking neighbours of these nodes. JAGs, introduced by Cook

and Rackoff [4], formally capture this strategy.

A JAG (Jumping Automaton for Graphs) is a Turing Machine that accesses its

input graph in a restricted way. It has no tapes, and "reads" the graph using a set
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of objects called pebbles. To start off the computation, they are placed on the nodes

of the graph in some initial configuration. Based the coincidence partition of the

pebbles (which pebbles are on the same nodes) and the current state, the transition

function specifies the new state and next move. JAG moves are of two types - walks

and jumps. In a walk, a pebble is moved along an outgoing edge (the edges are

labelled), and in a jump a pebble is moved to the node occupied by another pebble.

An example of a walk is "Walk pebble 4 along edge 2" and an example of a jump is

"Jump pebble 1 to pebble 6".

Intuitively, a JAG can be thought of as a finite state machine giving instructions

to a "black box" which contains the graph and the pebbles. After every move, the

box returns the coincidence partition of the pebbles, so that the next move can be

computed. See Figures 1-1 and 1-2 for an example of a JAG in action.

Notation. In what follows we will always use P to refer to the set of pebbles and

Q to refer to the set of states.

"t1·1 23 1

Figure 1-1: A JAG

For solving st-connectivity problems, the JAG is started out with P - 1 pebbles

on s and the remaining pebble on t and it must accept its input graph if and only if

s is connected to t.
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1

3 1s 1

Figure 1-2: The positions of the pebbles after the move "Walk pebble 4 along edge
2"

JAGs, like boolean circuits, are non-uniform models of computation. For every

n and d, we are allowed to give a JAG that works correctly on all n node, d degree

graphs. The complexity measures that are important here are time and space. The

time taken is simply the number of moves made, and the space used is PI log n +

log IQI. Basically, we need this much space to simulate a JAG by a general Turing

Machine - log n bits for the position of each pebble, and log IQI bits to keep track of

the state.

Note that a JAG only knows the partition of the pebbles - that pebbles 2, 3, and 5

are on the same node, for example. It cannot directly tell that they are on node 7

or that they are not on node 1. To overcome this limitation, Poon [6] improved the

basic model in two ways.

In a Node-Ordered JAG (NO-JAG), the finite control knows not only the partition,

but the ordering of the classes in the partition. We order the classes by saying that

P1 < P2 if the label of the node that contains pebbles P1 is less than that of the

node containing P2. In a Node-Named JAG (NN-JAG) the finite control knows the

mapping from pebbles to nodes. Figure 1-3 shows the information that an NO-JAG

and an NN-JAG would receive for the graph shown in Figure 1-1.

In reasoning about JAGs, we need to be able to refer to a snapshot of a JAG's

computation much like a configuration of a Turing Machine. For a computation on a

graph, an instantaneous description (ID) consists of the current state and the partition

of the pebbles. For NO-JAGs and NN-JAGs, we include the additional information.

9



NO-JAG: 14 <1< 2 5 

NN-JAG:

Pebble Node
1 1

2 7
3 7

4 1

5 7

6 6

Figure 1-3: NO-JAG and NN-JAG Pebble Information

1.3 Universal Traversal Sequences

One way to see that JAGs are able to solve st-connectivity on undirected and strongly

connected directed graphs is to observe that 1 pebble JAGs can follow Universal

Traversal Sequences.

Definition. For graphs of degree d, a Universal Traversal Sequence for n is a

sequence of edge labels (i.e. integers from 1 to d) that, if given any n node graph,

any labelling of the edges and any starting node, the path in the graph defined by

following each outgoing edge in the sequence touches every node. For graphs that are

not regular, the edge numbers range from 1 to n.

For strongly connected directed graphs, it is not too difficult to show that such

sequences exist and must have exponential length. Thus, if the moves to be made

are "hard coded" into the finite control, we have a 1 pebble JAG for st-connectivity

on strongly connected directed graphs that uses polynomial space. For undirected

graphs, however, better bounds can be obtained. A survey of the these results can

be found in [7]. Some of them that can be applied to JAGs follow:

* Undirected Universal Traversal Sequences of polynomial length exist. Thus, a

1 pebble JAG can solve undirected st-connectivity using O(log n) space and

polynomial time.
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* It is possible (for a Turing Machine) to construct undirected Universal Traversal

Sequences using O(log2 n) space.

1.4 Overview of Results

We start our tour of JAG results with an example that proves that, on a wide class

of graphs, a nondeterministic JAG with one pebble needs an exponential number

of states to correctly solve directed st-nonconnectivity. This example demonstrates

some techniques that are used in proving lower bounds and also shows that when

given more pebbles, JAGs can drastically reduce the number of states needed.

Before proceeding any further, we provide some evidence that JAGs are reasonable

models, by presenting an algorithm by Cook and Rackoff [4] that solves directed st-

connectivity using O(log2 n) space - the upper bound proved by Savitch for Turing

Machines.

A lower bound by Poon [6] is then given, that proves that NN-JAGs require

Q( log2 n ) space to solve directed st-connectivity.log log n

Time-space tradeoffs are then discussed. We describe a result by Barnes and

Edmonds [1] who prove that the time-space product for directed st-connectivity on

JAGs is Q(Plplog2(n/ll)). Finally, we give a proof by Beame, Borodin, Raghavan,

Ruzzo, and Tompa [2] that shows that a modified nondeterministic JAG with some

unmovable pebbles needs time Q(n2/IPI) to solve undirected st-nonconnectivity.

11



Chapter 2

An example

2.1 NJAGs

In this chapter we will examine the space complexity of solving st-nonconnectivity

on 1-pebble nondeterminstic JAGs (NJAGs). Nondeterminism is introduced to the

model in the usual way - for every ID the NJAG can choose the next state and

move from a set of possible candidates. We will add the additional constraint that all

branches of the nondeterministic computation must end, i.e. we can't get into infinite

loops.

The main result of this chapter shows that 1-pebble NJAGs need superlogarithmic

space to solve st-nonconnectivity. Like most lower bounds on this model, we prove

this by coming up with a "difficult" family of graphs and showing the lower bound

when inputs are restricted to this family.

2.2 The Graphs

2.2.1 Skinny Trees

Skinny trees were invented by Poon [6] for proving lower bounds on NN-JAGs. For

every k, there exists a family of trees with 2k + 3 nodes. Each tree consists of a root

(s) and k + 1 levels containing 2 nodes each. Each level has a left side node (i) and
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a right side node (ri). See Figure 2-1 below:

0
0
0
0

0
0
0

Figure 2-1: The nodes of a skinny tree

To produce the set of trees we vary the edges. For every x E {0, 1}k there is a

different skinny tree S(x). It is constructed as follows:

* All trees have the edges (s, 11) and (s, r).

* If xi (the ith bit of x) is zero, then we include the edges (i, li+l) and (, ri+l).

If not, then we include (ri, li+l) and (ri, ri+l).

Figure 2-2 shows a skinny tree with k = 2 and x = 01.

Figure 2-2: A sample skinny tree

2.2.2 Modified Skinny Trees

For the purposes of the lower bound of this chapter, some more nodes are added to

the trees. This is done so that all leaves are on the same level. We add two new

nodes (bli and bri) to each level except the first. For i = 2... k the following edges

are added:
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* Edges (bli, bli+l), (bli, bri+l), (bri, bri+l), and (bri, bli+l)

* If xi_1 is zero, edges (ri-1, bli) and (ri-1, bri). If not we add edges (li_1, bli) and

(li-l, bri)

As before, for each x E {0, 1}k there is a Modified Skinny tree MS(x) with 4k + 3

nodes.

Figure 2-3: MS(O1)

If a pebble is ever on a node with label bli or bri, we say that it is on the bad side.

Otherwise it is on the good side.

The graphs used in the lower bound below will be modified skinny trees with an

additional isolated vertex t. Since the NJAG only has 1 pebble, we provide two fixed

pebbles, one on s and one on t. They can't ever be moved but they help the NJAG

tell when s and t are visited. We start off the computation with the movable pebble

on s.

Before proving the lower bound, we first argue that a 1-pebble NJAG can solve

st-nonconnectivity on this family of graphs. There are 0(2 k+l ) paths from s to the

leaves. Each path can be thought of as a k + 1-bit string indicating, at each node in

the path, whether the first or second edge is taken. Therefore, with O((k + 1)2 k+1)

states the NJAG can deterministically follow each of those paths and verify that there
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is no way to get to t. We can have one state for each of the k + 1 moves made down

each of the 2k+l different paths.

2.3 The Lower Bound

Theorem 1. 1-pebble NJAGs (with fixed pebbles on s and t) need superlogarithmic

space to solve st-nonconnectivity.

Proof: The proof rests on the key observation that any accepting branch for MS(x)

is an accepting branch for all y {0, l}k. To see this note that the coincidence

partition of the NJAG doesn't depend on x. Note also that since we added the bad

side, the degree of the node that the pebble is on at any time also doesn't depend on

x. It depends only on the number of walks from s.

Therefore any accepting branch must work on all 2 k modified skinny trees. On

any accepting branch both good side leaves must be visited, else putting an edge from

the leaf that isn't visted to t will result in a graph that is st-connected but is accepted

by the NJAG. The only way to visit these leaves is to walk from s. But any walk

from s visits a good leaf of only 1 modified skinny tree. So we must have at least 2 k

walks from s in any accepting branch. Each of these walks must start in a different

state or else the NJAG may loop. Thus we must have at least 2 k states. Since the

graphs have 4k + 4 nodes (including t), the space used by this NJAG must be as least

log 2" = 4. ·

2.4 An Upper Bound

It is relatively easy to see that an NJAG with 4 pebbles can solve st-nonconnectivity

on this family of graphs using O(log n) space. The algorithm is based on the fact that

there are many different paths to nodes blk+l and brk+l. We can get to the bad side

from s by following either edge leaving s.

To visit all of the leaf nodes we perform the following steps:

15



1. Pebble 1 guesses a path to a bad side leaf, first following edge 1 from s. We

can assume here that the NJAG "knows" when it has reached a node with no

outgoing edges.

2. Pebble 2 verifies that pebble 1 is indeed at a bad side leaf by guessing a path

to pebble 1, but first following edge 2 from s. It will verify this if it meets up

with pebble 1.

3. Pebble 2 jumps back to s, and guesses a path to the other bad side leaf.

4. Pebble 3 verifies that pebble 2 is at the other bad side leaf.

5. Pebble 3 guesses a path to a good side leaf. It will be at a good side leaf if,

after k + 1 walks from s, it is at a leaf and hasn't encountered pebbles 1 or 2.

6. Pebble 4 guesses a path to the other good side leaf. If there is no edge to t from

any of the good side leaves, we accept the input graph.

For each step above, it takes a constant number of states to guess a path from s

to a leaf and so the total space used by this NJAG is O(log n).

2.5 Interaction

It is interesting to note where the lower bound proof breaks down when dealing with

4 pebbles. The key observation no longer holds. An accepting branch for x may

not be be an accepting branch for y since there may be pebble collisions (pebbles

meeting because of a walk) in the computation on x that don't occur with y. It

seems that pebble interaction plays a very important role in helping JAGs solve

graph connectivity problems. As we can see, they also frustrate attempts to prove

good lower bounds. The other lower bounds discussed in later chapters show how

interactions are taken into account.

16



Chapter 3

An Upper Bound

3.1 Overview

As evidence that JAGs are reasonable models to study, we present in this chapter the

following result of Cook and Rackoff [4]:

Theorem 2. JAGs can solve directed st-connectivity using O(log2 n) space.

This bound matches the best known space bound of Savitch's Theorem and, in

fact, the JAG algorithm can be thought of as a "bottom-up" version of Savitch's

recursive Turing Machine algorithm.

Suppose we had a JAG J that could visit every node within a distance of 2 k nodes

from s. With a few extra pebbles we would like to use some copies of this JAG to

explore out to a distance of 2 k+l . One thought is to have 3 copies of J: J1, J2, and

J3 . We initially run J1 with all pebbles starting at s. Each time J1 thinks it has

explored a new node, we jump a new pebble r to that node to mark it. We then

jump all other pebbles to r and then simulate J2. J2 will attempt to visit every node

within a distance of 2 k from r. After it has done so, we then try to put the pebbles

in the same configuration as they were when J1 visited r so that it can continue. To

do this we jump all pebbles except r to s and then run J3 until we visit r.

This has a small problem, however. It it not entirely clear how J1 knows then it

has visited a new node for the first time. If it visits a node b more than once and J2

17



is run from b a second time, J3 would restore the pebbles to how they were when b

was visited initially, and our algorithm would get into an infinite loop. With a few

more copies of a modified version of J, and some more pebbles, a working algorithm

can be devised.

3.2 The Details

The formal proof is by induction on k. With 1 pebble, a JAG can visit all nodes 1

step away from s by just moving the pebble along each outgoing edge and jumping

back to s. The induction step shows how to build a JAG H that covers twice the

distance as a JAG J:

The idea is to avoid getting into an infinite loop after Jl's pebbles are restored.

This can be ensured by requiring that the JAG J that searches to a distance of 2 k

from s enter a special state qd when it "thinks" it visits nodes for the first time. We

can specify that it visits all nodes within 2 k steps from s at least once and for nodes at

a distance of 2k steps from s, it enters state qd exactly once when each one is visited

by pebble 1. Armed with this modified JAG, we can avoid the pitfalls of the previous

try.

* Each time J1 enters state qd, we jump all pebbles including a new pebble rl to

the node being visited by pebble 1 of J1. Since we can be sure that we haven't

run J2 yet from this node (since we enter state qd only once), we start running

J 2 from the node scanned by rl.

* Each time J2 enters state qd, we want to be sure that the node being visited by

pebble 1 hasn't been touched before. We therefore jump another new pebble r2

to this node and then jump all pebbles except rl and r2 to s and we perform a

check using more copies of J.

* If the node containing r2 hasn't been scanned before, H enters state qd and

continues. If not, then we simply continue without going into qd.

18



* When J2 is finished exploring all nodes within a distance of 2 k steps from s, we

must restore the pebbles to their places before J2 started. Since qd is entered at

most once for each node visited, we jump all pebbles except rl to s and simulate

J until pebbles 1 and rl meet in state qd.

Assuming that we can check whether r2 had been previously visited, we see that

the above algorithm succeeds in visiting all nodes within a distance of 2
k+1 from s

and enters state qd only once for nodes 2 k+1 steps from s.

3.2.1 The Check

When r 2 is visited, we must decide whether to enter state qd or not. We want to

ensure that qd is entered exactly once for nodes 2 k+1 steps away, and at most once for

closer nodes. Since we only enter qd for nodes visited by J2, we can re-run J1 and J2

with two new JAGs (J3 and J4) to tell whether r2 was visited before by J2 in state

qd 

Figure 3-1 below shows the configuration of the pebbles before the check is started.

Figure 3-1: The positions of the pebbles before the check is started

* Let J3 simulate J starting from s. If we enter state qd and pebble 1 isn't at the

same node as rl, we jump another new pebble r3 to the node being scanned by

pebble 1.

19
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* Another copy J4 then continues the search, this time starting at r3 (see Figure

3-2). If it ever meets r 2 in state qd, we know that it has been visited before.

* If so, then J7 attempts to restore the pebbles for J2. We first jump all pebbles

except pebble r2 to rl and simulate J until we are in state qd and pebble 1 is

visiting r 2.

* If J4 never meets r2 in state qd, we jump all pebbles except rl, r2 , and r3 to s,

and J 5 attempts to restore the pebbles for J3. It does so by simulating J until

it reaches r 3 in state qd.

* The check is completed when J3 reaches rl in state qd. At this point we can be

sure that r2 hasn't been visited.

Figure 3-2: The positions of the pebbles when J4 is started

The key point here is the use of qd to avoid looping. One final detail needs to be

addressed. H starts its search at s, but in the proof the copies of J start out their

searches at any node. To fully complete the induction step we note that H can be

easily modified to perform a search starting at any distinguished pebble.

Figure 3-3 gives a pictorial description of the algorithm.

20



Figure 3-3: Flow of control in the algorithm (inner boxes denote important tests)
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3.2.2 Space Analysis

Note that the 8 copies of J use the same pebbles to perform the simulation. Only 3

new pebbles are introduced. Thus, if P(k) represents the number of pebbles used to

search to a distance of 2 k from s, then P(k + 1) = P(k) + 3 with P(O) being some

constant. Thus P(k) E O(k).

Let S(k) represent the number of states that are used. We can easily see that

S(k + 1) < 9S(k) (8S(k) for the copies of J and another one for any additional states

that we might need). S(O) is also constant. Thus S(k) E O( 9 k) and so the space used

by the JAG is O(klogn + k). Since we stop this construction when k = logn, we

visit all nodes within a distance of 2 1°gn = n from s using O(log 2 n) space.
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Chapter 4

A Lower Bound

4.1 Introduction

Chapter 3 showed that Savitch's upper bound applies to JAGs. In this chapter we

will prove something not known for general models of computation - that NN-JAGs

require superlogarithmic space to solve st-connectivity. It is hoped that results like

this shed some light on the general problem.

Cook and Rackoff [4] proved the first such result for JAGs and recently Poon [6]

showed the same bound for NN-JAGs. Both results share the same basic plan - using

iteration to build up a difficult graph and, at the same time, taking pebble interaction

into account. Poon's proof is described below.

4.2 Skinny Trees Revisited

As always, we need a family of graphs. Skinny trees, described in Chapter 2 will be

generalized as follows:

* The skinny tree S(x) will have a goal node that is the left leaf (k) if the last

bit of x is 0, or the right leaf (rk) otherwise.

* The graph GS(x, y) is built by replacing each node in S(y) with a copy of S(x).

Some additional edges are needed to make this graph connected. If there is an
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edge from node a to node b in S(y), there will be an edge from the goal of the

copy at a to the root of the copy at b. We will denote the copy at a by Ca. The

root of the new graph is the root of Coot and the goal is the goal of Cgo,,,.

* Similarly, to get gS(X 1, X 2, X3,... , Xj), copies of gS(x 1, x 2, x3,..., xj_1) are used

to replace the nodes of S(xj) and additional edges are introduced from goal to

root as described above.

Figure 4-1 shows 6S(01, 10). Note that S(xl, 2, X3 ,... ,xj) consists of many

copies of S(x 1 ).

4.3 The Lower Bound

Theorem 3. NN-JAGs require Q(log2 n/log log n) space to solve directed st-conn-

ectivity.

4.3.1 Dealing with Interaction

Chapter 2 showed that pebble interaction can help a JAG obtain connectivity infor-

mation about a graph. To this end, we need some way of capturing what goes on

when pebbles meet.

Given the mapping from pebbles to nodes, we can partition the pebbles in groups

called blocks in the following natural way: two pebbles can be in the same block only

if they are on the same node. Note that the coincidence partition implicitly defines a

set of blocks.

One way to follow pebble interaction is to see what happens to these blocks as

the JAG computation progresses. At each step t, we can define the continuation of

block i at step t, Bi(t) as follows:

If a pebble r of block i meets, by a walk or a jump, a pebble of block j, then

intuitively, the JAG "knows" something about how the portions of the graph visited

by blocks i and j are connected. In this case, to obtain the blocks at time t + 1 we
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Figure 4-1: A generalized skinny tree
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delete pebble r from block i and add it to block j. If moves don't cause inter-block

collisions, then the blocks remain unchanged at this step.

In the proof that follows we will be trying to stop blocks of pebbles from exploring

too much of the graph. The following definition will be useful:

Definition. A block B traverses a copy of SS( 1, x2 ,..., x) if, when the computa-

tion is started, no pebble of B is below the root of $S(xl, x 2,. . , xl), but at a later

time, some pebble of B visits its goal.

4.4 The Main Lemma

The number of non-empty blocks in the computation gives us some idea of the amount

of pebble interaction that has occured. If there are many non-empty blocks, then we

can be certain that the blocks have worked somewhat independently to explore the

graph. Conversely, if there are few non-empty blocks, then the JAG has learned a

lot of information by way of pebble collisions. Since it is difficult to deal with all

of the ways that pebbles can meet, we construct a hard graph inductively. We will

construct a sequence of graphs G1,..., Gp with the following properties:

* If we allow p- k + 1 blocks to remain non-empty, then traversing a copy of Gk

is impossible.

* Gk+l is constructed from Gk by replacing nodes of S(Xk+l) with copies of Gk.

In other words, each Gk is a generalized skinny tree.

In the end, we will have Gp that is impossible to traverse as long as we have

p-p + 1 = 1 non-empty block. But this always occurs and so we will have succeeded

in constructing a difficult graph for the NN-JAG. The precise statement of the main

lemma follows:

Lemma 1. Given an NN-JAG with p pebbles and Q states, and an integer k between

1 and p we can find
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* d the length of the strings xi (which only depends on p and Q)

* X, X2, .. , Xk

Such that for all Xk+l,...,xzp (ways of completing the graph) if we run the NN-

JAG on S(xl,... .,xp) with any intial state and configuration of the pebbles no block

traverses a copy of a gS(xl, x2 ,..., Xk) as long as p- k + 1 blocks remain empty. The

initial block division is the one defined by the initial coincidence partition.

This is proved by induction on k.

4.4.1 Base Case - no interaction

Here there is no interaction. Requiring that p blocks remain non-empty implies that

pebbles cannot meet at all. If pebbles collide, by a walk or a jump, we are violating the

hypothesis. What needs to be shown here is that there is a base graph (remember that

the Generalized Skinny Trees are nothing but copies of S(x)) that can't be traversed

without interaction.

An interesting point to note is that proving the base case involves more than

showing that a 1 pebble NN-JAG can't traverse all S(x)s. Although pebbles are not

allowed to interact, the NN-JAG can gain some information about the structure of

the graph by examining the positions of all of the pebbles. For example, if pebble

1 started walking down a skinny tree S(x) and reached a leaf after 1 step, then the

NN-JAG "knows" the first bit of x. There is probably a more direct way to prove

the base case along these lines, but the proof that follows has the advantage that the

induction step is similar.

Characterizing Computations with no interaction

We first need to define a computation history of an NN-JAG:

Definition. A computation history for an NN-JAG J on input graph G start-

ing in state qo and initial pebble mapping Po is a sequence of state-mapping pairs
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(qo, P0 ). (ql, P1),..., (qt, Pt) indicating at each step of the NN-JAG computation what

state it's in and where the pebbles are.

We will be analyzing computation histories where there are no pebble collisions:

Definition. A 1-computation history for an NN-JAG J starting with initial state qo

and pebble mapping Po on S(xl,2, x2..., xp), denoted by CH(1, qo, Po, xl, x2,... , p)

is a computation history of J where no pebble interaction occurs and the last move

of this history completes a traversal of a copy of S(xl).

In what follows we will show that there is an x such that one cannot find qo, P0,

x 2,..., p to make CH(1, qo, Po, x, x2,..., xp) a 1-computation history.

One additional definition that we will need describes the leaves of the graph:

Definition. The p-bit boolean vector leafl(Po, x2, .. ,xp) describes, for each pebble,

whether the goal of the copy of the S(x) on which it rests is a leaf in 9S(x, x 2, ... , Xp).

This vector depends only on Po and x2 ,..., Xp. Connections between goals and roots

don't depend on x. For example, in Figure 4-1, if we assume that pebbles 1 and 2

are on the nodes shown, then the leaf vector begins with 01.

It seems reasonable that the computation history of the NN-JAG depends on leafl.

Lemma 2. If

leafi(Po, x2, . ., Xp) = leafl(Po, x2,..., xp)

then

CH(1, qo, Po, x, x2,...,Xp) = CH(1, qo, PO, x, x'2, ... ,p)

Proof:

If this is to be false, there must be a point where the histories diverge. It isn't

the first step since the initial states and pebble positions are the same. Thus there

is an i such that the histories agree at time i but don't agree at time i + 1. To get a

contradiction we need only consider what moves can be made:
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* If the move is a walk within a copy of S(x), then the new state and pebble

mapping must be the same.

* If the move is a jump, then since the pebble positions at time i are the same,

they must be the same at time i + 1.

* If the move is a walk from the goal of an S(x) to the root of another S(x), the

target of the walk is the same in both cases since the leaf1 vectors are the same.

This is true because we can be assured that the pebble that does the walk is

leaving the copy of S(x) that it started off at. (If not, then it traversed the

graph and the 1-computation history wouldn't have reached that far).

We can thus associate with every (qo, Po, x, leafi) tuple, the 1-computation history

for the NN-JAG J on any graph gS(x, x 2 ,...,xp) with leaf vector leafi. We now

consider the set of all 1-computation histories and count how many strings x occur

in the tuples of this set.

Known bits, traversed bits, and active pebbles

As mentioned earlier, when one pebble successfully finds its way down a copy of S(x)

the entire JAG knows what links to traverse. The concept of known bits, traversed

bits and active pebbles attempt to capture this idea.

Definition. A bit position i of x is known if, according to P, there is a pebble

visiting a node of level i of a copy of S(x). For example, in Figure 4-1, bit position 1

is known since pebble 1 rests on level 1.

Definition. A bit position j of x is traversed, if it isn't known, but sometime in the

computation, level j of a copy of S(x) is visited. A bit that isn't known and hasn't

been traversed is called free.

If, in a 1-computation history, a pebble walks down a copy of S(x) and reaches

a leaf that isn't a goal, it is lost since it has no way of reaching the goal of that
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copy of S(x) (or any other since no jumps are possible - we decrease the number of

non-empty blocks when we jump). A pebble is active if it isn't lost and can traverse

a copy of S(x). If the pebble initially started out on the root of a copy of S(x) then

it is active if it is on the path from the root to the goal of that subgraph. If it started

out below the root, then it can possibly traverse the graphs which are rooted at the

descendents of the goal of the graph it started out from. In this case, it's active if it's

on the path to any of the goals of the descendents of the goal of the S(x) it started

out on. In Figure 4-1, pebble 2 is active.

Given qo, P, and leaf, we want to count the number of strings x such that

(qo, Po, x, leafi) gives a 1-computation history. This is accomplished by the following

lemma that allows us to break up {O, 1}d into subsets that agree on the known bits

and counting the number of "good" strings in each subset.

Lemma 3. Let count(u,v) = count(u-1, v)+count(u-1,v-1) with count(O,v) = 1

and count(u, 0) = 0. Given qo, P0, and leaf1, and a subset S of {O, 1}d, if

* For every string x in S, there are at most u free bits and v active pebbles at

some time t suring the 1-computation history described by (qo, P0, , leafi)

* The known bits and the traversed bits at time t are the same for every string

in S - (not just the indices, but the values as well)

Then the number of strings in S that give valid 1-computation histories (qo, P, x, leafi)

is bounded by count(u, v)

Proof: This lemma is also proved by induction - this time on u + v. The base case

occurs when u = 0 or v = 0:

* v = 0. Here there are no active pebbles at time t. Since we're in the middle

of a 1-computation history we haven't traversed a copy of S(x) yet. But since

all of the pebbles are lost, we can't ever do the traversal. Thus the number of

"good" strings in S is 0. This equals count(u, 0).
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u = 0. There are no free bits at time t. Thus all bits are either known or

traversed. In this case S can have at most 1 element since all elements of S

agree on the known and traversed bits. Therefore, the number of "good" strings

is at most 1 = count(0, v).

The proof of the induction step rests on the observation that the compuation

histories of J on all x in S are the same up to time t. We know that the positions and

values of the known and traversed bits are the same for all x in S. This means that

all of the nodes that are visited in all of the computation histories must be on the

levels that correspond to the known and traversed bits. Thus, during the computation

history, all walks (there are no jumps in 1-computation histories) result in the same

target and so the computation histories all agree.

Using this argument we can see that the histories agree until a bit that was free at

time t becomes traversed at time t'. (Since all walks till then touch levels that were

either known or traversed at time t). Let's say that bit i was changed to traversed.

We now break up S into two sets So and S where Sj = {x E Slbit i of x is j}. Note

that that the pebble that reaches level i becomes lost in one of So or S1 (Either that

node is a leaf in the graphs described by the members of So or the members of Si).

Note also that at time t' there are v - 1 free bits (we just lost one). Therefore the

induction hypothesis is satisfied at time t' for the sets So and S since the positions

and patterns of the known and free bits agree in So and S1. Thus, SI = Sol + ISl 

count(u - 1, v) + count(u - 1, v - 1) = count(u, v).

It can be shown that count(u, v) < u if v > 1. ·

Putting it all together

We want to prove that we can find x such that no matter what qO, Po, and x2,.. ., xp we

chose no copy of S(x) is traversed in $S(x, x2,..., xp) starting in state qo with pebble

mapping P if no pebble collisions occur. Lemma 2 allowed us to replace x2, ... , xp

with leaf,. Therefore, the tuple (qo, Po, x, leaf1 ) completely describes a 1-computation

history.
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Given qo,Po, and leafi we will now count how many strings x result in 1-computation

histories. Once we know Po, we can find the known bits of each x in {0, 1}d. Let there

be b of them. We can therefore divide {0, l}d into 2b subsets S1, S2 ,..., S2b such that

all the elements of each Sj agree on these bits. The above lemma then applies to each

of the subsets at time 0. We know that we start out with p pebbles and d - b free

bits so we have at most p active pebbles. Therefore the number of "good" strings in

each subset is bounded by (d - b)P < d. Thus the total number of good strings is

bounded by 2bdP < 2Pdp = (2d)p since b < p.

To bound the total number of good strings over all qo,Po, and leafl settings, we

need to bound their sizes. Let Q be the number of states. Since leafl is just a p-bit

vector there are at most 2P of these. To count P, we first need to find the number

of nodes in a generalized skinny tree. We know that each S(x) contains 2d + 1 nodes

and each time we iterate, we multiply the number of nodes by 2d + 1. Therefore

a generalized skinny tree has (2d + 1)p nodes. Now the pebble mapping is just a

function from {1,...,p} to the nodes of the skinny tree. So the number of these is

((2d + 1)P)p = (2d + 1)P2. Thus the number of strings x that result in 1-computation

histories is at most (2d)PQ2P(2d + 1)P2 = (4d)PQ(2d + 1)p2. The total number of

such strings is 2d. To prove the base case, all we need to do is find d such that

2 d > (4d)PQ(2d + 1)P2. Choosing d = 18p2 log(pQ) does the trick.

4.4.2 The Induction Step

The proof of the induction step is basically the same as the proof of the base case. The

important step in the proof of the base case occurs in Lemma 3 where we note that

when a bit becomes traversed, in some of the strings, a traversing pebble becomes

lost. In the proof of the induction step we want to say the same thing for blocks. We

assume that we have built up Gk that is impossible to traverse if p- k + 1 blocks

remain non-empty. We now want to find Xk+l such that, if we replace the nodes of

S(xk+l) by copies of Gk, we get Gk+l that is impossible to traverse even with a little

more interaction.

To accomplish this, we can view traversing Gk+l as traversing S(Xk+l) with the
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nodes replaced by copies of Gk. This correspondence is further strengthened by

Lemma 5 that lets us treat a block of pebbles on Gk+l as an individual pebble on

S(xk+l) in the following way:

We know that if we allow p - k + 1 blocks to remain non-empty, a copy of Gk

cannot be traversed. Lemma 5 proves that, if we allow p - k blocks to remain non-

empty, traversing a copy of Gk can only be accomplished if all of the block's pebbles

lie in that copy of Gk. Therefore when a copy of Gk is traversed, the entire block is

in that copy and so all of that block's pebbles can be viewed as a single pebble on a

node of S(Xk+l). The details of the proof follow.

Assuming that we have already found x1, x2 ,...,xk, we need to find Xk+l such

that for all ways of completing the graph (with Xk+2,... ,xp), and initial state and

pebble configuration, no block manages to traverse a copy of S(xl,.. ., Xk+l) as long

as p - k of them remain non-empty.

To this end we will find a way of characterizing computations that succeed in

traversing gS(xl,..., Xk+ ) :

Definition. A k + 1-computation history for an NN-JAG J starting with initial state

qo and pebble mapping Po on gS(xl,..., ,p) is much like 1-computation history. It

is a computation history that maintains the invariant that p - k blocks remain non-

empty and ends when a block traverses a copy of S(xl,... , Xk+l).

As with the base case, a p-bit boolean vector that describes the interconnections

between goals and roots will be used.

Definition. The p-bit boolean vector leafk+l(Po, Xk+2,...,xp) describes, for each

pebble, whether the goal of the copy of the gS(Xl,...,xk+l) on which it rests is a

leaf in gS(xl, 2,x2,. . , p).

We can now observe that k + 1-computations depend only on the initial state,

pebble configuration, xl,... xk computed earlier, xk+l, and leafk+l. In other words, if

leafk+l(Po, k+2 ,xp) = leafk+l(Po, +2, ),~~~~~~k 2 .. --
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then

CH(k + l,qo, Po, xi,...,xk+l,k+ 2,, p,) =

CH(k + 1, q0, Po, ,..., Xk+l, Xk+2* ,...,p)

The proof of this is the same as in the base case. We simply replace S(x) with

S(Xl,.. ., xk+l). Note that this implies that once we fix x1,..., k, a k + 1 compu-

tation history can be described by (qo, Po, Xk+l,leafk+1).

Known bits, traversed bits, and active blocks

The concepts that were introduced in the base case need to be generalized here. Since

S(x,..., xk+l) consists of many copies of S(xI,... .,k) we can refer to the copies

of 9S(x1,... ,k), Cli and Cri that form "level" i of S(xl,...,Xk+l).

In this case, a bit i is known if initially, some pebble rests on (any of the copies of

$S(x, ... ., xk) that form) "level" i of any $S(xl,..., Xk+l). Bit j becomes traversed

if any Cr3 or Clj becomes traversed. As before, bits that are not known or traversed

are free.

Since the initial division of the pebbles into blocks is the one induced by the

coincidence partition, we are assured that the pebbles of a block start out at one node

(not necessarily the same node for all blocks). This allows us to define active blocks.

If all of the pebbles of block i start out at the root of a copy of gS(xl, x2,.. , xk+l),

then block i is active if it has some pebble on the path to the goal of that copy. Note

that the path passes through many copies of ,S(xl,... .,xk). If block i initially lies

below the root of some copy of S(xl,. .. , xk+l) ) then it is active if it has a pebble on

the paths to the goals of the copies of gS(xl,... ,xk+l)) that are the descendents of

the initial $S(Xl,..., k+l). Note that a block can become lost, much like a pebble,

if all of its pebbles get stuck in C,,s or Clis that replace non-goal leaves of S(Xk+l).

Once a block becomes lost, it can't ever become active again. This is because the

only way its pebbles can become "useful" again is to jump to other active blocks.

But these jumps remove pebbles from the block. This can be seen as a justification

for the rules that specify how blocks evolve.
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As with the base case, we have the following analogue of Lemma 3 (blocks replace

pebbles and k + 1 computation histories replace 1 computation histories):

Lemma 4. Let count(u, v) = count(u-1, v)+count(u-1, v-1) with count(O, v) = 1

and count(u, 0) = 0. Given qo, Po, and leafk+1, and a subset S of {O, l}d, if

* For every string x in S, there are at most u free bits and v active blocks at some

time t during the k + 1-computation history described by (qo, Po, k+l,leafk+l)

* The known bits and the traversed bits at time t are the same for every string

in S - (not just the indices, but the values as well)

Then the number of strings in S that give valid k+l-computation histories (qo, Po, Xk+l,-

leafk+1) is bounded by count(u, v).

Proof: The proof of the base case of this lemma is the same. The induction step is

essentially similar. We have to prove that at time t', a block becomes lost (in order to

use the induction hypothesis). A block becomes lost if all of its pebbles lie on a copy

of S(x,.. ., Xk) and there are no edges from the goal of this graph. If we can show

that when a bit becomes traversed (a copy of S(xl,..., Xk) is traversed), all pebbles

of the traversing block lie within that copy of S(xl,... , k), a block becomes lost

and we can apply the same proof as in the base case. Lemma 5 below proves the

above assertion and so the same count can be performed and the same value of d

obtained.

Lemma 5. Choose x1 ,...,xk as in the induction hypothesis. For any Xk+,..., ,

if some block B finishes traversing a copy of S(Xxl,..., k) at time t, and there are

p - k non-empty blocks throughout the computation, then all pebbles of that block

lie in that copy of S(x 1,..., Xk) at that time.

Proof: This lemma intuitively states that traversing a copy of C = S( 1,..., xk) is

hard. Since pebbles may enter and leave B, we need to carefully deduce what B(t)

looks like.
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The proof first finds the pebble r that completes the traversal of C and works

backward to find a block of pebbles Bo on the root of C such that r E Bo(t). Since

Bo is on the root of C, Bo(t) is entirely within C. To show that all of B(t) lies in C,

we then prove that Bo(t) = B(t).

We start by identifying the pebble r of the continuation of B that first reaches

the goal of C. We then attempt to come up with a time to and a block Bo such

that, if Bo consists of all of the pebbles on the root of C at time to, then r E Bo(t)

(the continuation of Bo at time t). To find Bo, we work backwards from t. We show

that for all nodes co, l,...,Cm on the path from the root to the goal of C, we can

find a time ti such that, if Bi consists of all of the pebbles at node ci at time ti, then

r e Bi(t). Initially, tm = t. Given that we know ti+l we want to find ti. We know that

there are some pebbles on node ci+ at time t+l (actually the set Bi+1 ). Therefore

there must be a time when c+1 fails to have any pebbles on it (since C is traversed).

Let ti be the latest such time before ti+l. By the definition of ti, we see that node

ci+1 always has some pebble on it (not necessarily the same one) from time t + 1

to time ti+l. Let Bi be the set of pebbles on ci at this time. We need to show that

r E Bi(t). By the way we chose ti, B+ 1 C Bi(ti+l). To see this note that a pebble

from Bi reaches c+l at time t + 1 (ti is the latest time that c+l is unoccupied and

the only way to reach c+l1 if it's unoccupied is to walk from ci). Note also that all

other pebbles that reach c+l from t + 1 to ti+l belong to the continuation of Bi (if

you move to a node that is already occupied by a pebble, you belong to that pebble's

block. Since the node is continuously occupied by pebbles from time t + 1, all of

these pebbles belong to the block of the first pebble that reached node ci+l. That

pebble came from Bi). Thus, since Bi+1 C Bi(ti+1 ) and r e Bi+l(t), r E Bi(t). So we

can find a time to with the property that, if Bo is the set of pebbles at co at time to,

then r E Bo(t).

The second part of the proof shows that Bo(t) = B(t). Since Bo is entirely within

C, Bo(t) and hence B(t) are entirely within C. We first prove that Bo C B(to). Since

all of the pebbles of Bo are on one node, if some pebble of Bo is in B(to), then all of

Bo is in B(to). If Bo g B(to), then Bo and B(to) have no pebbles in common. If this
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is the case, then Bo(t) and B(t) have no pebbles in common. But r is in both Bo(t)

and B(t). Thus Bo C B(to).

We now consider the pebble mapping Po at time to. It divides the pebbles into a

set of blocks, Bo being one. Let no be the number of these blocks that are non-empty

at time t and let n be the number of non-empty blocks of the original computation

at time t. We know that n > p - k (one of the hypotheses of this lemma).

The final step of this proof shows that if B' is a block defined by Po, and B' C B(to)

and B' Bo, then B'(t) is empty. Note that if Bo(t) and B'(t) are both non-empty,

then no > n.(The blocks defined by Po are subsets of the blocks of the original

computation. Therefore, we have at least n such blocks at time t. But since at least

two blocks of Po give B(t), no must be strictly greater than n.) This means that

no > - k. But B0o traversed a copy of 6S(xl, 2,..., k) with more non-empty

blocks allowed by the induction hypothesis of the Main Lemma. We therefore have a

contradiction and so B(t) = Bo(t).

4.5 Proof of Theorem 1

From the Main Lemma, we know that, for any NN-JAG with p pebbles and Q states,

we can find d and xl,...,xp such that if we run the NN-JAG on S(xl,..., xp), no

block traverses S(xl,..., xp) as long as 1 block remains empty. This means that we

can find a graph with (36p2 log(pQ) + 1)P nodes that is not totally explored by the

NN-JAG.

This means that if the NN-JAG J correctly solves st-connectivity on all n node

graphs, then n must be less than (36p2 log(pQ) + 1)P. Therefore

log n < p log(36p2 log(pQ) + 1)

and
log n

P log 36 + 2 log p + log log(pQ)
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Now, if p > log n or log Q > log2 n we already have the theorem, so we can assume

that p < log n and Q < log2 n and so

log n
-log 36 + 2 log log n + log log(log 3 n)

Thus p E Q(log') and the theorem follows.
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Chapter 5

Time-space tradeoffs

5.1 Introduction

This chapter presents two results that prove time-space tradeoffs for solving graph

connectivity problems. Given a JAG algorithm that uses space S(n) and runs in

time bounded by T(n), we can compute the time-space product for the algorithm

T(n)S(n). What we show in this chapter is that, for some problems, we can bound

TS from below. In fact both results prove lower bounds on the time required to solve

the problem.

5.2 A tradeoff for JAGs

In this section, we will prove the following theorem due to Barnes and Edmonds [1]:

Theorem 4. JAGs with p pebbles require time (plogn(/p)) to solve directed st-

connectivity.

From this we can derive the lower bound TS E sQ(Clog ) since the space used

by the JAG, plog n + log q is Q(log n).
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5.2.1 The graphs

The graphs that are used to prove the lower bound help us deal with interaction in

a very interesting way. As seen in Chapter 4, a JAG must expend a lot of effort

to fully explore a binary tree. In a tree there is only one path to any node and

so chance collisions are more unlikely. The problem with trees is that they contain

many nodes (usually exponential in their depth). Barnes and Edmonds solved this

problem by coming up with a graph that has relatively few nodes, but to a JAG, is

indistinguishable from a tree.

Layered Graphs

Each member of the set of layered graphs on n = dw + 1 nodes, £(d, w), has dw nodes

laid out in a d by w grid with w nodes in each row (layer) and d layers. Nodes in the

grid will be referenced by their grid position (row, column). There is a special vertex

t (the nth node) that may or may not be attached to some node in the last row. The

edges of a layered graph are of two types:

* Cross-edges - These form a path from node (1, 1) to node (1, w) along the first

row of the graph.

* Down-edges - Every node of grid level i has associated with it two edges to two

nodes of level i + 1. To form the different layered graphs of LC(d, w) we will vary

how these edges are chosen.

Figure 5-1 shows a graph from /2(3,4).

0
Figure 5-1: A layered graph
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When solving st-connectivity on layered graphs, the start vertex s is node (1,1)

and the goal vertex is t.

Generalizing Layered Graphs - k-tree Graphs

As previously mentioned, layered graphs will "look" like trees to the JAG. We will

build up a good layered graph in stages. The following family of graphs, called k-trees

will be useful.

A k-tree with width w and height h looks much like a layered graph with the

same width and height. The first k layers are the same as for a layered graph. The

diferences are on levels k through h. In a k-tree, each node on level k is the root of

a different complete binary tree of height h - k + 1. For example, a 1-tree consists of

w binary trees of height h with the roots connected by a line. See Figure 5-2 for a

diagram of a k-tree.

5.2.2 The proof

The proof shows that if a JAG claims to visit all nodes on the last level of all

n node layered graphs with width w and height h, then it must use more than

min(w2h,2(p-) ) steps to do so. We will build up a difficult layered graph by running

the JAG on k-tree graphs that have more than n nodes. This may seem a little un-

fair, but we maintain the invariant that on all of the graphs that we construct, the

sequence of state-coincidence partition pairs stays the same for the first w2h steps.

If we manage to keep the coincidence partition the same then the JAG doesn't know

that the k-tree it's running on has more nodes that it can "handle".

The theorem is proved using the following lemma:

Lemma 6. If the JAG J runs for fewer than min(w2h, (-)2 )steps, then there is a

leaf of some k-tree (1 < k < h) that isn't visited.

Proof:

We prove this by induction on k. For the base case, k is 1. Recall that a 1-tree

consists of w trees of height h. The total number of leaves in this graph is w2h.
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The JAG can't possibly visit all of them in fewer than w2h steps. So there is a

distinguished vertex v* that J does not visit.

To prove the induction step, we are given a k - 1 tree and the vertex v* that J

does not visit. To construct a k-tree, we observe that "level" k of a k - 1 tree consists

of 2w nodes since this level is the first level of each of the binary trees. We also note

that these nodes are the roots of 2w binary trees (see Figure 5-2). If we can delete

half of these trees, by connecting the nodes of level k - 1 to only w of them (so that

each node is connected to 2 trees), we will have a k-tree. The challenge is to find such

a tree with the required property.

Given the k - 1 tree, we can identify the 2w binary trees that are rooted at level

k, (T1,...,T2w). What we want to do is to break up the trees into w disjoint sets

where all trees in each set are "equivalent". Trees Ti and Tj are "equivalent" if, at no

time during the computation, the JAG has a pebble on Ti and a pebble on Tj. We

now show how to find such a partition that is small.

We can construct the undirected graph H where the nodes represent the trees

T1,... ,T 2w and an edge between node i and j means that there is a time in the JAG

computation where there was a pebble on Ti and a pebble on Tj. If we can colour

this graph with c colours, we can find a partition with c sets (just put all of the trees

with the same colour in the same set). By the construction of the graph, we are

guaranteed that all trees in each set are "equivalent".

To bound the chromatic number of H, we first observe that H has at most (W-1)22

edges. To see this note that we add at most p - 1 edges to H every time a move is

made. Each time we move a pebble, there are p- 1 other pebbles that need to be

checked. This means that there are only p - 1 trees that need to be checked to see

whether we add edges to H. Since we run for time bounded by (W1)2 and we add
2(p-1)'

at most p - 1 edges at each time step, we have at most (W-12 edges in H.

We next use the fact that a graph with E edges can be coloured with v'2 colours.

This implies that we can colour H with w - 1 colours. Therefore, we can partition

the trees into w - 1 sets. We know that there is some tree T, and some leaf v* of

T that isn't visited by the JAG during the computation on the k - 1 tree. We want
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Row k-1

Row k

Row k- 1

Row k

Figure 5-2: The transformation we hope to achieve

43



to keep this invariant, so we put T, in a separate class. We now create the k tree

by picking one member of each class and replacing links to any member of that class

with links to that distinguished member.

We now note that the sequence of state-coincidence partition pairs is the same

for this k-tree as for the k - 1-tree that we started out with and that v* isn't visited.

The only way the coincidence partitions could differ is if two pebbles meet in some

tree in Gk but don't meet in Gk-1. However, from the way we chose the partition

this can't happen. Collisions in Gk are the same as those in Gk-1l

Using this lemma we can find a layered graph with n nodes and a leaf v* that

isn't visited by the JAG. Therefore, the answer given by the JAG ("s and t are/aren't

connected") doesn't change if we add or remove an edge from v* to t. Therefore the

JAG makes a mistake. So JAGs need more than min(w2h, 2(p-) to solve directed

st-connectivity. Setting w = log(n/p) gives a time bound of 2(plog2(nlp))

5.3 A tradeoff for modified NJAGs

Our final result proves a lower bound of Q(n 2/p) on the time it takes for a modified

nondeterministic JAG to solve st-nonconnectivity on a class of undirected 3-regular

graphs. The NJAGs that are discussed in this section have the following additional

features:

* p - 1 unmovable pebbles and 1 active pebble. The NJAG is given p pebbles,

but can only move 1 of them, the active pebble. The other p - 1 pebbles are

fixed-once placed they cannot be moved during the computation

* Strong Jumping. The NJAG can jump the active pebble to any node in the

graph (not just nodes with pebbles on them).

This result was proved by Beame et al. [2] and uses following idea: There will be

a path from s to t in all but 1 of the graphs. The fact that the NJAG must answer

"yes" on one graph forces it to have a long computation on that graph.
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5.3.1 The graphs

The basic graph that we work with here is a "squirrel cage" graph.

Definition. A squirrel cage graph with k nodes consists of two k/2 cycles with

edges joining node i of the first cycle with node i of the second cycle for 1 < i < k/2.

Intuitively, we can view the graph as forming a "cage" (see Figure 5-3)

Figure 5-3: A squirrel cage graph with 16 nodes

To construct our n node graphs, we first take 2 squirrel cage graphs with n/2

nodes, S o and S1. We then fix r = n/4 - 1 of the inter-cycle edges in So (and note

the corresponding edges in S1). We call these edges switchable edges. Given a binary

string x of length r we will construct the graph Gx in the following way:

We order the switchable edge indices from 1 to r. We then replace the switchable

edges (u°,v ° ) in S, and (ul,v!) in S, with (u,vOXOR xi) and (ul,v XR xi). We

basically "switch" some of the edges in the squirrel cage graph. Note that if there is

at least 1 bit that is set to 1 in x, then the graph Gx is connected and so the only

graph that isn't connected is Gor. The start node s is any node in SO and t is any

node in S 1. Figure 5-4 shows such a graph.
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Figure 5-4: A sample input graph (the dashed edges have been switched)

5.3.2 The proof

As with the proof described in Chapter 2, we will identify important features of the

computation of the NJAG on Go0 r. As before, we will view the computation history

of the NJAG as a sequence of state-partition pairs. Since a NJAG learns about the

graph by colliding with other pebbles (the unmovable ones), we will mark the nodes

that have unmovable pebbles on them. We will actually go one step further and mark

node i in both S° and S1 if node i in any of S° or S1 contains an unmovable pebble.

The important features of the computation history of J on Gor (denoted by I)

are walks that are between marked nodes, for J learns that the two marked nodes

are in the same connected component. Formally we will be interested in sequences of

moves that:

* Begin with the first move from a marked vertex or a vertex that was just jumped

to (in the previous move).

* End when the next move lands us at a marked vertex, is a jump, or the com-

putation history ends.

Note that all IDs of -t don't necessarily appear in some sequence. If we have a
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sequence of jumps, then they don't appear in a sequence.

The above procedure allows us to break up 7- into I sequences {1,..., 7Ii.

Consider the moves of 'Hi (for any i). They are all walks and we can attempt to

follow -i on graph G.. Since no marked vertices are reached, and each node along

the way has the same degree, 7-i can indeed be followed on graph G.. If we cross

from SO to S1 and from S1 to SO an even number of times, we end up on the same

Sb (b = 0, 1) as we started out with. In fact, we will end up on the same node in G,

as in Gor.

Lemma. Given x in {0, l}', if we cross an even number of "switched" edges in Gx

in all 'Hi, then the computation history 'H is also a computation history for J on Gx.

Proof: The lemma is proved by proving the following inductive statement: For

1 < i < I the portion of 'H from the beginning till the end of 'i7- is a computation

history for J on G, if number of switched edge crossings in k is even for 1 < k < i.

The base case of this proof is when i = 0. There is nothing to prove here. For

the induction step assume that everything agrees up to the end of 'Hi. We will now

show that the history agrees up to the end of 'Hi+1. Note that the positions of the

pebbles at the end of 'Hi are the same in Gx and Gor. So get from the end of 'Hi to

the beginning of 7-i+1 we do some jumps. We know that all of the unmovable pebbles

are in the same positions so we start -i+1 in the same configuration. Since all of the

moves of 7-i+1 are walks and we cross an even number of switched edges, the active

pebble will end up on the same node in Gor and Gx. Thus the computation histories

agree up to the end of 7Hi+l.

Note that after the last sequence 'Hl only jumps or a walk that doesn't end in a

marked vertex is possible and in this case the partitions agree since the degree of each

vertex is the same. ·

Since we accept Gor and reject G (for x - Or) we must ensure that we never

satisfy the hypothesis of the above lemma. There is an interesting linear algebra

formulation of this requirement. If i,..., it are the switchable edges that occur in
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-Hi we know that:

xi1 + xi + ... + xi, O (mod 2)

Since the bits of x are 0 or 1, this gives us an equation over GF(2). This equation

must hold for all of the sequences and so we have a system of I linear equations in r

unknowns over GF(2). Note also that this system is homogeneous (the right side is

zero).

We now show that the walks that comprise the sequence Hi are long. To do this,

some more definitions are needed:

Definition. Given a switchable edge e, dist(e) is the "distance" from e to the closest

node that is marked. The distance from an edge to a node is defined here to be the

length of the shortest path that contains both the node and the edge.

Definition. The set Sd contains all switchable edges e with dist(e) > d. maxd is

the maximum distance of any switchable edge. rd denotes the number of switchable

edges with distance exactly d. Note that rd = SdI - ISd+l I

Consider the number of walks of length at least d. We claim that it is bounded

below by ISd. To see this note that if fewer than ISd walks have length at least d,

then the variables (bits of x) that correspond to the edges in Sd are represented in

fewer that ISd of the equations of our system. Therefore, setting the other r - ISdI

bits to be zero, we have a system of fewer than ISdI equations in ISdi unknowns.

Systems with fewer equations than unknowns always have non-trivial solutions, and

so we violate our requirement of no non-zero solutions to the system.

Therefore at least ISdl of the sequences are walks of length at least d. From the

above paragraph we can infer that rd lower bounds the number of walks of length d.

Thus the total number of walks that the NJAG makes is at least:

mard

yE drd
d=1
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Since rd is the number of switchable edges with distance d, the sum equals

E dist(e)
e a switchable edge

We now want to lower bound the above sum. It turns out that the minimum value

of the sum occurs when all of the marked nodes are equally spaced in each cycle. In

this case the sum is Q(rn/p) = (n2 /p). This proves the theorem.

It is interesting to note that in this proof we don't construct the graph to "fool"

the NJAG in stages as in previous results. The graph is fixed and we prove the lower

bound no matter what NJAG we are presented with.
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Chapter 6

Conclusion

Many other results concerning JAGs and their variants have been proved. This chap-

ter attempts to summarize some of them and present some interesting open problems.

6.1 Other Results

6.1.1 Probabilistic JAGs

As with Turing Machines, probabilistic analogues of JAGs can be defined. Berman

and Simon [3] defined one such model where there are 2 functions (fl and f 2) that

determine the next move. f takes a state and the coincidence partition and outputs

the probability distribution on the next state. f2 takes the next state and determines

the move made (walk or jump). On this model they proved a space lower bound of

fQ(log2 n/ log log n) for solving directed st-connectivity in time O(n l° g
n
' ) (c > 0) with

one-sided error less than 1/2.

Poon [6] also extended his NN-JAG model with probabilism in a slightly different

way. An instantaneous description of a probabilistic NN-JAG contains the current

time as well as the state and pebble mapping (t, q, P). Based on this and the random

string given to the NN-JAG (the entire string, not just single bit) the next move and

state is computed. A space lower bound of log2 n/(10 + c) log log n is shown for this

NN-JAG to solve directed st-connectivity in time 2
1 °g n with one-sided error less than
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1/2.

6.1.2 Tradeoffs

The "state of the art" in time-space tradeoffs for directed st-connectivity appears in

[1]. Along with the result presented in Chapter 5, they show a tradeoff of S1 3T =

Q(m2/ 3 n2/3) for NN-JAGs on n-node, m-edge graphs.

6.1.3 Directed st-nonconnectivity

Poon [6] showed that nondeterministic NO-JAGs (and hence nondeterministic NN-

JAGs) can perform "inductive counting" using logarithmic space and so can solve

st-nonconnectivity using logarithmic space. This can also be interpreted as further

evidence that JAGs are quite powerful models of computation.

6.1.4 Undirected Graphs

In his PhD thesis Edmonds [5], viewing a probabilistic JAG as a distribution on

JAG algorithms proved that if we have O(log n/ log log n) pebbles and 21°g0(') n states

then the expected time for a such a JAG to solve undirected st-connectivity is

n2i(lo°g n/lglogn). Beame et. al. [2] prove many other results dealing with the com-

plexity of traversing undirected graphs.

6.2 The future

While improving on the bounds described above is interesting and worthwhile, other

challenges exist. Chapter 2 introduced the problem of solving st-nonconnectivity on

NJAGs. Matching upper and lower bounds (for space) were shown for the 1-pebble

case. However, we know no good bounds when we don't restrict the number of

pebbles.

In the end of their paper Barnes and Edmonds [1] suggest that we consider what

additional power we can add to a JAG while still being able to prove superlogarithmic
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space bounds. They note that Poon did just this by inventing NO-JAGs and NN-

JAGs. This seems to be a very plausible way to approach the eventual goal of proving

lower bounds on Turing Machines.
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