
Fault Tolerant Adaptive Routing in

Multicomputer Networks
by

Thucydides Xanthopoulos
B.S.E.E., Massachusetts Institute of Technology

(1992)

Submitted to the Department of Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements for the Degree of

Master of Science
in Electrical Engineering and Computer Science

at the
Massachusetts Institute of Technology

February 1995

®1995 Thucydides Xanthopoulos. All rights reserved.

The author hereby grants to MIT permission to reproduce and to

distribute copies of this thesis document in whole or in part.

Signature of Author -

Depart of Electrical Engineering and Computer Science

January 20, 1995

Certified by

William J. Daily

Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by v

Frederic R. Morgenthaler

Chairman, Departmental Committee on Graduate Students

fing,
MASSACHUSETS INST1TUTE

0n Tr n A d /

APR 13 1995

LIBRARIE

I

Fault Tolerant Adaptive Routing in

Multicomputer Networks
by

Thucydides Xanthopoulos

Submitted to the
Department of Electrical Engineering and Computer Science

on January 20, 1995, in partial fulfillment of

the requirements for the Degree of Master of Science in

Electrical Engineering and Computer Science

Abstract

Interconnection networks play a major role in the performance and reliability of massively

parallel processors (MPPs). This work is concerned with the design and implementation

of a wormhole fault-tolerant adaptive routing algorithm for k-ary n-meshes called Reliable

Adaptive Routing (RAR).

RAR when coupled with a fault-detection mechanism and a retransmission protocol is ca-

pable of handling a single link or node failure anywhere in the network without interruption

of service. Furthermore, RAR can assign multiple message paths between each source and

destination pair. RAR uses virtual channels to prevent deadlocks. A total of three virtual

channels per physical channel are necessary for deadlock prevention. The routing algorithm

is formally defined and a formal proof of deadlock freedom is presented.

This work also presents the Virtual Channel Dependency Analyzer (VCDA) a software tool

with a graphical user interface that helps in the visualization and study of the channel

dependency graph produced by Reliable Adaptive Routing.

A sample circuit implementation of RAR is also presented. The circuit uses 236/Om x 904pm

of silicon area and has a worst case delay of 6 ns. This work concludes by describing higher

level design issues such as the integration of the above circuit in a complete routing system,

and also the coupling with a retransmission protocol to produce a reliable network layer.

Thesis Supervisor: William J. Dally

Title: Associate Professor of Electrical Engineering and Computer Science

Keywords: Adaptive routing, virtual channels, channel dependency graph, reliable rout-

ing, fault tolerance.

4

I 11

Dedication

rLa ro Oo6wp? (1963 - 1992)

ME 7,epvoVcaeC E7a Xpovta. Twpa pe ire pvQa povo TEUerapa.

Tr?7 W/ro7paCta sravw rpEEl va erLIarT aTrrv l6ta lALKLRY.

Eav arv KaAvpvo, wpaoq, vvaTro, pasvptLapvo , Xap3aAfe, E 7vQAtL aAtov.

Eyw aer7' BoUarwv, Xovpoq, 5varKLVr70oq, lrpoora aro tla o~ov /Le 7vaAtls 1Lvworta.

Eav Arov ovpavo KL EyW rr? yIrl.

atveCra EOtLOq VA &L7717OEL sraAt nauLa tropta.

TtL Xw rtar7EteE L oAE E TO roT ro mttal: IIwg Oa pELELt fyta iraa ELtKoLevVLta.

You were seven years older than me. Now, you are just four years older. In the picture

above, we probably have the same age.

You are in Kalymnos, handsome, strong, tanned, having fun, wearing sunglasses. I am in

Boston, fat, pathetic, in front of a computer screen wearing prescription glasses.

You are in heaven, I am still in earth.

You look ready to tell a story again. I have believed them all except for one: That you

will always be twenty-nine.

5

6

Acknowledgments

I would like to thank a number of people that have contributed to one way or another to

the completion of this project:

* Bill Dally for his energy, enthusiasm and most constructive supervision.

* Larry Dennison for his valuable experience and enormous patience.

* All the past and present members of the Reliable Router team including Larry Den-

nison, Kin Hong Kan, David Harris, Ivan Oei, Dan Hartman and Jeff Bowers for their

valuable contributions to our project.

* All the members of the CVA group for providing a most pleasant and stimulating

work environment. I would like to thank especially Rich Lethin for volunteering to

proofread the most basic chapters of this thesis.

* All my friends here in Boston, especially Sylvi Dogramatzian for helping me get a life!

* Finally, I would like to thank my parents Maria and Nicholas Xanthopoulos as well

as my uncle John Xanthopoulos for their invaluable love and support throughout all

these years that I have been away.

7

8

I I l

Contents

1 Introduction

1.1 A Case for Adaptive Routing

1.2 Contributions of this work

1.3 Thesis Overview

2 Background

2.1 Evaluation Criteria

2.2 The Linder-Harden Algorithm

2.3 Planar Adaptive Routing

2.4 The Turn Model For Adaptive Routing

2.5 Dimension Reversals

2.6 Compressionless Routing

2.7 Pipelined Circuit Switching

2.8 f-cube3 Algorithm .

2.9 Duato's New Theory on Adaptive Routing

2.10 Summary and Conclusion

3 Definitions, Theorems and Notation

3.1 Notation
3.2 Definitions

3.3 Theorems

9

17

17

19

20

21

21

22

23

24

26

26

27

28

30

30

32

32

32

35

4 Adaptive Routing

4.1 Informal Description.

4.2 Formal Description.

4.2.1 Notation..........
4.2.2 Defining R and R 1 . .

4.3 Facts about R and R 1

4.4 Proving Freedom from Deadlock

4.5 Summary

5 Reliable Adaptive Routing

5.1 Fault M odel

5.2 Informal Description

5.2.1 Examples

5.2.2 The Algorithm

5.3 Formal Definition

5.3.1 Notation

5.3.2 Defining R and R2

5.4 Facts About Reliable Adaptive Routing

5.4.1 Fault Along a Dimension d 0

5.4.2 Fault Along Dimension 0

5.5 Proof of Deadlock Freedom

5.5.1 Fault along the x dimension

5.5.2 Fault along the y dimension

5.5.3 Proving Deadlock Freedom In Two Dimensions

5.6 Extending the Proof to Arbitrary Dimensions

5.6.1 Fault Along Dimension n - 1.......................

5.6.2 Fault Along Dimension d such that 0 < d < n - 1...........

5.6.3 Fault Along Dimension 0

5.6.4 Proving Deadock Freedom in n Dimensions

5.7 Summary

10

37

37

40

40

40

43

46

48

49

49

50

50

51

53

53

53

57

58

58

59

61

68

68

70

70

70

70

70

71

1 :1

.

.

.

6 The Virtual Channel Dependency Analyzer

6.1 Functional Description 72

6.2 A Sample Session with VCDA 73

6.2.1 Program Manager 73

6.2.2 Building and Displaying the Network 73

6.2.3 Creating the Dependency Graph 74

6.2.4 Looking for Deadlocks 74

6.2.5 Placing Faults 78

6.3 VCDA Internals 80

6.3.1 Object Representation 80

6.3.2 The Cycle-Search Algorithm 86

6.3.3 Interfacing Tcl and C 87

6.4 Future Work 88

6.5 Summary 89

7 Implementation Issues

7.1 Input and Output Specification

7.1.1 Routing Problem

7.1.2 Output Virtual Channel Availability Information .

7.1.3 Port Status Information

7.1.4 Routing Answer

7.2 Optimizing Circuit Latency

7.2.1 Parallel Computations

7.2.2 Preprocessing Output Virtual Channel Availability

7.3 Logic Circuit Schematics

7.4 Logic Simulation and Validation

7.5 Determining Circuit Delay

7.6 Circuit Layout

.

.*

.*

.

.

.

.

Information

.

.*

.

11

90

90

91

92

93

93

94

94

94

97

99

101

101

72

. .

. .

.

7.6.1 Determining Latency Using Extracted Layout.

7.7 Layout Verification .

7.8 Summary

8 The Big Picture

8.1 Brief Architectural Description

8.2 The Unique Token Protocol

8.2.1 Fault Handling

8.2.2 Flit-Level Implementation of the UTP

8.3 Summary

9 Conclusion

9.1 Future W ork

A Circuit Schematics

B Verilog Schematic Validation Wrapper

C Hspice Decks

C.1 Wrapping Deck and Input Generation

C.2 Optimistic Router Netlist

12

104

104

105

106

106

109

110

111

111

113

115

116

121

133

133

135

.l 1l

.

.

.

.

.

.

.

.

List of Figures

1.1 Adaptive routing achieves better physical link utilization

2.1

2.2

2.3

2.4

Planar Adaptive Routing vs. Fully Adaptive Routing

An illustration of the Turn Model in a 2D mesh

Example message paths under the West-First routing algorithm .

Fault chains and fault rings in f-cube3 routing

3.1 Notation used .

3.2 Visualizing Indirect Dependencies

4.1

4.2

4.3

4.4

Minimally Adaptive Vs. Dimension-Ordered Path . .

Example of a Path Under Adaptive Routing

Flowchart of Adaptive Routing

Assignment of subscripts to channels in a 4-ary 2-cube

5.1 Faults that cannot be handled by Adaptive Routing

5.2 Faults handled by Reliable Adaptive Routing

5.3 Flowchart of Reliable Adaptive Routing

5.4 Undesirable minimal step

5.5 Addition of Fault-Handling channels when a fault occurs along a dimension

d $ 0 (two dimensions)

5.6 Addition of Fault-Handling channels when a fault occurs along a dimension

d $ 0 (three dimensions)

13

18

24

24

25

29

33

34

38

39

39

41

50

52

54

56

58

59

.

5.7 Addition of Fault-Handling channels when a fault occurs along dimension 0 60

5.8 Addition of Fault-Handling channels when a fault occurs along the x dimension 61

5.9 The Channel Dependency Graph fefore the occurrence of a fault . . 63

5.10 The restructured Channel Dependency Graph 66

5.11 Restructuring the Extended Channel Dependency Graph in 3 steps 67

5.12 dth digit of Fault-Handling channel subscripts 69

6.1 The VCDA Program Manager 74

6.2 The VCDA Network Window 75

6.3 The Extended Channel Dependency Graph as displayed by the VCDA . . . 76

6.4 The Direct Channel Dependency Graph as displayed by the VCDA 77

6.5 Notification that the algorithm is deadlock-free 78

6.6 The VCDA displays a cycle in the Extended Channel Dependency Graph . 79

6.7 The Fault Placement dialog box 80

6.8 Fault-Handling channels added due to a fault along the x dimension 81

6.9 Fault-Handling channels added due to a fault along the y dimension 82

6.10 Dependencies involving Fault-Handling channels for a fault along the x di-

mension 83

6.11 Dependencies involving Fault-Handling channels for a fault along the y di-

mension 84

7.1 Routing a message to the neighboring node instead of the original recipient 92

7.2 Parallel computations in the Optimistic Router 95

7.3 Block Diagram of Optimistic Router logic circuit 98

7.4 Schematic validation process 100

7.5 Hspice transient analyses of the Optimistic Router critical path across all

process corners. 102

7.6 Optimistic Router layout 103

8.1 Organization of the Reliable Router 107

14

8.2 Architecture and rough floorplan of the Reliable Router chip 108

8.3 Buffering and forwarding under the UTP 109

8.4 Fault Handling under the UTP 110

8.5 The UTP at the flit-level 112

A.1 Top level schematic . 117

A.2 Adaptive and Dimension-Ordered computation 118

A.3 Fault-Handling computation 119

A.4 Processor and Diagnostic computation 120

15

List of Tables

2.1 A brief comparison of existing adaptive routing algorithms (a) 30

2.2 A brief comparison of existing adaptive routing algorithms (b) 31

6.1 Correspondence between port numbers and link positions 78

7.1 Routing Problem Decomposition 91

7.2 Virtual channel availability information 92

7.3 Virtual channel bit assignment within a single port 93

7.4 Correspondence between port-status bit and link positions 93

7.5 Routing Answer Decomposition 94

7.6 Encoding of free bits within each network port 96

7.7 Encoding of free bits within the processor and diagnostic ports 96

7.8 Optimistic Router rise and fall delays across all process corners 101

7.9 Optimistic Router physical characteristics 104

7.10 Extracted layout rise and fall delays across all process corners 104

16

Chapter 1

Introduction

Massively parallel processors (MPPs) are considered today a very promising approach of

achieving teraflops of computational power. Multicomputers of this kind are usually or-

ganized as a number of nodes where each node has its own local processor and memory.

The nodes are connected to each other by means of an interconnection network. MPPs

are capable of exhibiting such desirable properties as scalability, reconfigurability and fault

tolerance. Moreover, MPPs as opposed to other architectural approaches such as networks

of workstations exhibit cost balance [Dal93].

The interconnection network is the key component of a parallel computer. Such networks

may accept a message from any processing node, and deliver it to any other processing node.

Interconnection network design greatly affects both system cost and performance [Da193].

This thesis is concerned with one important aspect of interconnection network design:

routing. Routing [Da190] is the method used for a message to choose a path from source to

destination over the network channels. Routing decisions can be classified as oblivious or

adaptive. An oblivious routing method does not use information about the network state in
choosing a path. An example of an oblivious routing method is Dimension-Ordered routing

[DS87]. Adaptive routing on the other hand, may use information concerning the state of

the network. This thesis is concerned with the design and implementation of an adaptive

routing algorithm for k-ary n-meshes.

1.1 A Case for Adaptive Routing

Most existing multicomputer routing networks use oblivious deterministic routing [DFK+92]

[SS93]. Oblivious deterministic routing assigns a single path between each source and

17

CHAPTER 1. INTRODUCTION

Oblivious (Dimension-Ordered)
Routing Adaptive Routing

Figure 1.1: Adaptive routing achieves better physical link utilization from oblivious routing.

destination pair without taking into account the state of the network. The problem is

illustrated in Figure 1.1.

As can be seen from the figure, oblivious routing cannot achieve good physical link utiliza-

tion because of strong restrictions in the use of physical channels. In Figure 1.1, three nodes

try to send messages to three different destinations. Dimension-Ordered routing forces the
messages to use the same physical channels, thus overloading the physical links and de-

creasing performance. Messages first have to reduce their offset along x and then along

y. Adaptive routing, on the other hand, is capable of assigning different paths between

each source and destination based on channel availability. If a desired physical channel

is busy, another channel leading towards the destination may be chosen. Adaptive rout-

ing algorithms can achieve a much better utilization of physical links and thus increase

performance.

A number of studies regarding the performance of adaptive routing have been published.

Among those, we pick the one by Duato and Lopez [DL94] because the routing algorithm

evaluated has been derived using the same methodology that will be used in chapter 4 to

construct Adaptive Routing. This study examines a variety of traffic patterns and also

takes into account the fact that adaptive routers need more complicated routing logic than

oblivious routers. This assumption is incorporated in the study in the form of increased

cycle time for the adaptive router. Chien's parametric speed model [Chi93] was used to

derive specific cycle times. The results indicate that adaptive routing consistently produces

lower average message latency than Dimension-Ordered routing for all traffic patterns.

18

_ _

1.2. CONTRIBUTIONS OF THIS WORK

Adaptive routing has critics too. Recently, Pertel [Per92] has published a study in which

he presents simulation results that allegedly refute the claims that adaptive routing is

superior to Dimension-Ordered routing in terms of performance (average message latency).

The main conclusion of the study is that under heavy traffic, Dimension-Ordered routing

tends to queue more packets at their source and fewer packets in the network compared

to adaptive routing. Queueing in the network is the major factor that contributes to the

increased message latency exhibited by adaptive routing.

There are two main issues that undermine the significance of Pertel's results:

1. All results assume random uniform traffic patterns. There is no reason that adaptive

routing should perform better in such cases.

2. Pertel's simulator assumes infinite buffering to resolve deadlocks in adaptive routing.

This is not a realistic assumption. Infinite buffering practically eliminates backpres-

sure at the source and can increase unrealistically network queue sizes. Given this

assumption, Pertel's conclusion regarding network queue sizes is self-induced.

Adaptive routing is a very promising approach to take advantage of the rich and regular

connectivity of multicomputer networks. Increasing the utilization of the network bisection

bandwidth will increase performance in most traffic cases. The only serious disadvantage

of adaptive routing is the design complexity introduced to the switching element.

1.2 Contributions of this work

A number of wormhole adaptive routing algorithms have appeared in the literature [NM93].

Yet, there are no hardware implementations of such algorithms in part because of the

difficulty and design complexity involved.

This thesis presents a complete solution to the problem of adaptive routing ranging from

the formal definition of a simple but powerful routing algorithm to the circuit implementa-

tion and layout. The algorithm presented is fully adaptive, can handle a single non-transient

fault at a time, and has advanced features such as neighbor routing if the original message

recipient is not available due to a fault. The circuit presented has a worst case delay of 6

ns (slowest process corner) when implemented in the hp26 process, and has a total area of

236#m x 904#gm.

19

CHAPTER 1. INTRODUCTION

1.3 Thesis Overview

Chapter 2 gives some background information on adaptive routing. It presents adaptive

routing algorithms proposed in the current literature and briefly analyzes their strong and

weak points.

Chapter 3 presents a number of formal definitions regarding interconnection networks,

routing functions and dependencies between virtual channels. It also presents two important

theorems, the first by Dally [DS87] and the second by Duato [Dua93] regarding deadlock-

freedom in wormhole networks.

Chapter 4 formally defines Adaptive Routing, an adaptive routing algorithm for k-ary

n-meshes. It also proves that Adaptive Routing is deadlock-free.

Chapter 5 augments the Adaptive Routing algorithm presented in the previous chapter

with the capability to handle a single non-transient fault at a time anywhere in the network

without interruption of service. The resulting algorithm is called Reliable Adaptive Routing.

The chapter also includes a proof of deadlock freedom.

Chapter 6 describes the Virtual Channel Dependency Analyzer (VCDA). The VCDA is

a software tool that helps in the visualization and analysis of Reliable Adaptive Routing.

It can also prove by exhaustion that Reliable Adaptive Routing is deadlock-free.

Chapter 7 is concerned with implementation issues. It describes the physical design of a

two-dimensional version of Reliable Adaptive Routing. The resulting circuit is actually used

in the MIT Reliable Router [DDH+94b], a high-performance network switching element.

Chapter 8 describes how the circuit presented in the previous chapter fits into the Reliable

Router design. Moreover, it presents a message retransmission mechanism which must be

used in conjuction with adaptive routing for a reliable network layer.

Finally, Chapter 9 summarizes and conludes the document.

20

Chapter 2

Background

This chapter constitutes a survey of wormhole adaptive routing algorithms for low dimen-

sional bidirectional meshes that have appeared in the literature. A brief overview of each

algorithm is presented along with a discussion of strong and weak points. The first section

of the chapter introduces a common study framework in terms of a number of evaluation

criteria. These criteria are mainly concerned with the degree that a routing algorithm can

be easily and efficiently implemented in a VLSI system.

2.1 Evaluation Criteria

Reasonable Virtual Channel Requirements Virtual channels [DS87] can be very

expensive to implement. Not only do they require additional on-chip memory, but also they

require allocation mechanisms and arbitration layers for other resources that are shared

among them. Chien [Chi93] presents a parametric model that quantifies the cost of virtual

channels in a generic router architecture in terms of number of gates and added latency.

Virtual channels in adaptive routing algorithms are used to guarantee deadlock-freedom.

We are interested in adaptive routing algorithms that require a small number of virtual

channels in order to be deadlock-free.

Minimality A routing algorithm is minimal if it does not allow misrouting steps - steps

that will move a message away from its destination. Minimality is important for two reasons:

First, it guarantees freedom from livelock. Second, it prevents wasting network resources in

terms of channels and buffers used to take a message further from its destination [Dal90].

Minimality is a desirable property in a routing algorithm. Departures from minimality

should only take place when there is absolutely no alternative due to a faulty link.

21

CHAPTER 2. BACKGROUND

Full Adaptivity Full adaptivity means that a routing algorithm gives maximum routing

freedom (within the limits placed by minimality) to a message trying to reach its destination.

A fully adaptive algorithm can assign a next step channel of any possible direction that will

move the message one step closer to its destination. Full adaptivity is a desirable property

because more choices result in increased performance for non-uniform traffic patterns.

Fault Tolerance Fault-tolerance is the ability of a routing algorithm to bypass faulty

links in the network. We are interested in routing algorithms that can handle gracefuly one

non-transient fault at a time anywhere in the network.

Dependence on Local Information This last requirement means that the routing de-

cision depends only on the current position of a message and the position of the message

destination. It does not depend on any past routing decisions. This requirement simpli-

fies the physical design of the routing subsystem because it does not involve updating the

header of a message with certain state information. Moreover, it makes possible to employ

a higher level end-to-end error detecting (or correcting) protocol that includes the message

header as well.

2.2 The Linder-Harden Algorithm

Linder and Harden [LH91] have proposed a fully adaptive routing algorithm for bidirectional

k-ary n-cubes. The main idea behind the Linder-Harden approach is the partitioning of the

bidirectional physical network into several Virtual Networks. These virtual networks are

unidirectional in all dimensions except for dimension 0. Messages are routed within a single

virtual network throughout their course. The selection of the virtual network to be used

by each message is based on the relative address of the message source with respect to

the message destination. Routing within each virtual network is fully adaptive (minimal).

Disadvantages of this algorithm are:

1. The Linder-Harden approach requires 2
n- 1 virtual networks where n is the dimension

of the mesh, and therefore requires 2n- 1 virtual channels per physical channel. The

exponential dependence of the number of virtual channels on the mesh dimension

makes the Linder-Harden algorithm impractical for network dimensions greater than
two.

22

2.3. PLANAR ADAPTIVE ROUTING

2. The Linder-Harden scheme is not designed for fault-tolerance. Routing is minimal

and does not allow side steps. Fault tolerant capabilities can be added in an ad hoc

fashion on top of the existing algorithm at the expense of more virtual channels.

2.3 Planar Adaptive Routing

Chien and Kim have proposed Planar Adaptive Routing [CK92]. Planar Adaptive Routing

provides adaptivity in only two dimensions at a time. Figure 2.1 contrasts Planar Adaptive

Routing with a fully adaptive routing algorithm in three dimensions. Within each adaptive

plane, messages are routed in a fully adaptive fashion in a way very similar to the Linder-

Harden algorithm. More specifically, in every adaptive plane Ai, the physical network is

partitioned into two virtual networks: The increasing network which is used for messages

that need to travel in the positive direction along dimension i, and the decreasing network,

used by messages that need to travel in the negative direction along dimension i. When the

distance in dimension i is reduced to zero, the message proceeds to adaptive plane Ai+l. In

the two-dimensional mesh case, Planar Adaptive Routing is equivalent to the Linder-Harden

approach.

By providing adaptivity to only two dimensions at a time, Chien and Kim have managed

to reduce the virtual channel requirements of the Linder-Harden algorithm. Planar Adaptive

Routing needs 3 virtual channels per physical channel for an n-dimensional mesh except for

n = 2. In this case only two virtual channels are necessary.

The Planar Adaptive Algorithm can be extended to handle faults that form convex regions

within the network. The fault-tolerant version still requires 3 virtual channels per physical

channel. The two-dimensional case requires 3 virtual channels as well. There are three

major drawbacks in the way that the Planar Adaptive algorithm handles faults:

1. Misrouting steps result in tagging the message header. Therefore, the routing decision

does not depend on local information only.

2. The algorithm requires an intermediate deactivation phase each time a fault occurs

to ensure that the faulty regions are convex. In the case where there is a fault along

the edge of the network, the deactivation algorithm will deactivate all k nodes along

that particular edge.

In conclusion, Planar Adaptive Routing is not an attractive routing algorithm because of

limited adaptivity and complications and inefficiencies in the fault-tolerant version.

23

CHAPTER 2. BACKGROUND

(a) (b)

Figure 2.1: An example of Planar Adaptive Routing (a) vs. fully adaptive routing (b).

L t_J
(a)

F r1-I --V n
i Ii i

I I
I IL__J L 2 .

(b)

I'l

(L L)
(c

Figure 2.2: An illustration of the Turn Model in a 2D mesh: (a) abstract cycles in a 2D
mesh; (b) four turns (solid arrows) allowed in Dimension-Ordered Routing; (c) six turns
(solid arrows) allowed in West-First routing. This figure has been reproduced from Ni and
McKinley [NM93]

2.4 The Turn Model For Adaptive Routing

Glass and Ni have proposed the Turn Model for Adaptive Routing [GN92]. The Turn Model

is an elegant framework that can produce a family of partially adaptive routing algorithms

which have the highest possible degree of adaptivity that can be achieved using a single

virtual channel.

Deadlocks in wormhole routing are caused by messages waiting on each other in a cycle.

The Turn Model prevents deadlocks by placing restrictions on the turns that a message can

take throughout its course. The fundamental concept in this algorithm is the prohibition

of the smallest number of turns so that cycles are prevented.

Figure 2.2 illustrates the concept behind the Turn Model in a two-dimensional mesh.

Figure 2.2 (a) shows the two abstract cycles that can cause deadlocks in a 2D routing

algorithm. Figure 2.2 (b) shows the four turns that are prohibited in Dimension-Ordered

routing. Finally 2.2 (c) shows that Dimension-Ordered routing places more restrictions than

necessary for deadlock-freedom. The formation of cycles that lead to deadlock can be pre-

24

2.4. THE TURN MODEL FOR ADAPTIVE ROUTING

Figure 2.3: Example message paths under the West-First routing algorithm

vented by prohibiting only two turns instead of four. The resulting routing algorithm that

can be derived from the prohibition of the two turns in Figure 2.2 (c) is called West-First:

It routes a message first west if necessary and then it routes it nonminimally adaptively

south, east and north. Example message paths under the West-First algorithm are shown

in Figure 2.3. Other algorithms can be constructed by prohibiting a different pair of turns.

Although the Turn Model is a simple and elegant framework for adaptive routing with

minimal resource requirements, it has a number of weak points:

1. It does not scale easily to more than two dimensions. The framework with the abstract

cycles does not extend in an obvious fashion to more than two dimensions because of

the possibility of cycle formation that spans three or more dimensions.

2. The Turn Model produces algorithms that are not symmetric and place an uneven load

on the physical links of the network. Independent studies by Glass and Ni [GN92] and

Boppana and Chalasani [BC93] have concluded that the performance of Turn Model

routing is inferior to other routing schemes especially for uniform traffic.

3. The Turn Model does not produce fault-tolerant algorithms.

25

i,

i

CHAPTER 2. BACKGROUND

2.5 Dimension Reversals

Dally and Aoki [DA93] have proposed an adaptive routing algorithm which is based on

the notion of "dimension reversals". Dimension reversals is the count of the number of
times a packet has been routed from a channel in one dimension to another in violation

of the dimension order imposed by the underlying Dimension-Ordered routing algorithm.

The static version of the algorithm divides the virtual channels of each physical link into r

classes where r is the maximum number of permitted dimension reversals. Messages with

a dimension reversal count less than r can be routed adaptively but only using channels

of class equal to their dimension reversal count. Once a message has a dimension reversal

count equal to r it can only be routed using Dimension-Ordered routing on virtual channels

of class r.

The dynamic version of the algorithm does not place an upper bound on the dimension

reversal count. It divides the virtual channels of each physical channel into two classes:

adaptive and oblivious. Messages originate in adaptive channels. While in those channels

messages can be routed along any direction. The dimension reversal count is maintained in

the same way as before. Each time a virtual channel is allocated to a message, it is marked

with the dimension reversal count of the message. To avoid deadlock, a message may not use

a channel labeled with a count less than or equal to its own dimension reversal count. If an

appropriate adaptive channel is not found, the message switches to the oblivious channels

under Dimension-Ordered routing. It may not reenter the adaptive channels.

This routing scheme is not attractive for a number of reasons:

1. Updating dimension reversal counts and marking virtual channels increases routing

complexity significantly and does not meet the requirement that the routing decision

should depend on local information only.

2. The algorithm is not fault-tolerant.

2.6 Compressionless Routing

Kim, Liu and Chien have recently proposed Compressionless Routing [KLC94]. The main

concepts behind this scheme are: Compressionless Routing (CR) supports deadlock recovery

instead of prevention because according to the authors deadlocks are infrequent. Second,

CR uses the feedback that wormhole routing provides in the form of flow control.

26

2.7. PIPELINED CIRCUIT SWITCHING

A message routed under Compressionless Routing does not release intermediate virtual

channel buffer storage until the head flit reaches its destination. In this way, the tail flit of

the message does not leave the source node before the head flit reaches the destination. If

the message length is shorter than the distance between the message source and destination,

then the message is padded with idle flits to ensure that the message header reaches the

destination before the last flit has been injected by the source. The sender keeps track of the

number of flits it has injected, and increments a timeout counter each time that it cannot

inject a flit. The timeout counter is reset each time a flit is injected. After a number of flits

equal to the distance between the source and the destination have been injected, the sender

releases the path because the header has succesfully reached the destination and there is

no possibility for deadlock. If on the other hand, the timeout counter reaches a threshold

value before the header reaches the destination, then this indicates a possible deadlock. In

such a case, the sender tears down the connection and will attempt retransmission after a

certain time period.

Since this scheme supports deadlock recovery instead of prevention, routing is fully adap-

tive with no restrictions and no virtual channels. Compressionless Routing can be thought

of as a recast of circuit switching adapted to wormhole networks.

Compressionless Routing can have serious performance problems:

1. CR is an unstable routing scheme because it resolves conflicts by dropping [Dal90].

This means that for traffic over a certain threshold, network throughput will drop

dramatically.

2. CR is geared to small flit size, small physical channel bandwidth and very narrow flit

buffers in each network node. Unless the above are true, sending medium and short

messages under Compressionless Routing will result in sacrificing substantial network

bandwidth due to message padding.

2.7 Pipelined Circuit Switching

Another similar approach to Compressionless Routing is Pipelined Circuit Switching (PCS)

proposed by Allen, Gaughan, Schimmel and Yalamanchili [AGSY94]. PCS has been imple-

mented in hardware in the Ariadne Router.

PCS is different from wormhole routing in the following respect: In wormhole routing,

data flits immediately follow the head flit in a pipeline fashion. In PCS, the data flits do

27

CHAPTER 2. BACKGROUND

not immediately follow the head flit into the network. Instead, the head flit acts as a probe

that sets up a circuit. When the head reaches the destination, an acknowledgment returns

to the source. Only then can the data flits be pipelined through the circuit that has been

set up.

The fact that the data flits do not immediately follow the head flit results in increased

flexibility in the routing of the head. The head flit can backtrack and release previously

reserved virtual channels instead of blocking and waiting on busy channels. PCS can use

the family of Misrouting-Backtracking (MB-x) protocols [GY93] for head flit routing. The

MB-x protocols search the network for a path in a depth-first manner. Routing is minimal

with the addition of x misrouting steps. The misrouting count is decremented each time a

misrouting step is reversed. Neither deadlock nor livelock can occur because MB-x protocols

do not block holding resources and they can use history information to avoid searching the

same path repeatedly.

PCS uses three virtual channels per physical channel. Data and control information

(header) use separate virtual channels. There is an extra virtual channel that has the

opposite direction from the previous two and is reserved for backwards-travelling flits: ac-

knowledgments and backtracking flits.

There are three main concerns with PCS:

1. The added round trip probe latency will have a big impact on network performance.

2. Maintaining misrouting history for a number of misrouting steps greater than one can

sunstantially increase system complexity.

3. There is no support for fault tolerance once the circuit has been set up.

2.8 f-cube3 Algorithm

An interesting fault-tolerant extension to e-cube (Dimension-Ordered) routing was recently

proposed by Boppana and Chalasani [BC94]. Faults are grouped into fault sets that occupy

rectangular regions such that the boundary of the rectangle has only fault-free nodes and

channels and the interior of the rectangle contains all the faulty channels and nodes that

correspond to that particular fault set. This fault model is superior to the convex fault

regions proposed by Chien and Kim [CK92] because it deals more effectively with faults

along the network boundary. Boppana and Chalasani develop the concept of fault rings

28

2.8. F-CUBE3 ALGORITHM

LT CHAIN

RINGS

Figure 2.4: Fault chains and fault rings in f-cube3 routing. This figure is reproduced from
Boppana and Chalasani [BC94].

and fault chains, rectangular paths around the fault regions that consist of fault-free nodes

and links. Figure 2.4 shows examples of such structures.

Messages are routed under regular Dimension-Ordered routing until they reach a fault

ring or a fault chain. Then, depending on the relative position of the destination, messages

are routed clockwise or counterclockwise around the fault ring until all misrouting steps are

reversed. Three virtual channels are necessary to ensure deadlock-freedom.

The disadvantages of this algorithm are:

1. f-cube3 is not an adaptive routing algorithm. Although it requires a minimum of three

virtual channels for deadlock freedom, it is a fully oblivious scheme. Adaptivity can

be added on top of the underlying fault-tolerant algorithm at the expense of more

virtual channels.

2. f-cube3 requires a cumbersome setup phase each time a fault occurs during which

nodes around the fault exchange messages to determine their position on the fault

ring. Such a phase can add considerable complexity to the system. Moreover, f-cube3

requires updating the message header to indicate misrouting and direction around the

fault ring.

3. Overlapping fault rings cannot be handled in f-cube3. Extra virtual channels are

necessary for deadlock-freedom.

29

30 CHAPTER 2. BACKGROUND

Table 2.1: A brief comparison of existing adaptive routing algorithms (a)

2.9 Duato's New Theory on Adaptive Routing

Duato [Dua91][Dua93] has set up a theoretical framework and provided a methodology for

constructing fully adaptive routing algorithms with minimal virtual channel requirements.

Duato divides the virtual channels of each physical channel in two classes: oblivious and

adaptive. Messages can use both channel classes and switch freely between the two. Duato

studies the dependencies among the oblivious channels. Part of these dependencies are direct

dependencies and are introduced by messages using two consecutive oblivious channels, and

the rest of the dependencies are indirect and are introduced by messages using oblivious

channels, then switching to adaptive and then switching back to oblivious. Duato proves

that such an adaptive routing algorithm is deadlock-free if there are no cyclic direct nor

indirect dependencies. The minimum number of virtual channels necessary for algorithms

derived using Duato's methodology is two.

Duato's methodology is valuable because it can be used to add full adaptivity on top of

an existing deadlock-free oblivious routing algorithm at the expense of one more virtual

channel.

2.10 Summary and Conclusion

This chapter has presented a number of wormhole adaptive routing algorithms that have

appeared in the literature. Tables 2.1 and 2.2 summarize the algorithms presented in terms

of the evaluation criteria set in section 2.1. As one can see from the tables, none of the

proposed algorithms is particularly attractive either because it does not meet our criteria

or because it does not have adequate performance. Of all the algorithms presented, Duato's

Algorithm VC's (min) Adaptivity Minimality Local Info
Linder-Harden 2n - Full Yes Yes
Planar Adaptive 3 Partial Yes Yes
Turn Model 1 Partial No Yes
Dimension Reversals (s) r Full Yes No
Dimension Reversals (d) 2 Full Yes No
Compressionless 1 Full Yes Yes
PCS 3 Full No No
f-cube3 3 None Yes No
Duato's New Theory 2 Full Yes Yes

I i 11

2.10. SUMMARY AND CONCLUSION

Table 2.2: A brief comparison of existing adaptive routing algorithms (b)

theory and methodology is the most attractive candidate. In the next chapters we will use

Duato's theory to construct a new fault-tolerant adaptive routing algorithm which meets

all the requirements set in section 2.1. We call this algorithm Reliable Adaptive Routing.

Algorithm Support for Fault Tolerance
Linder-Harden Ad hoc and not well integrated
Planar Adaptive Inefficient and complicated because of deactivation algorithm.
Turn Model Incomplete
Dimension Reversals (s) Incomplete
Dimension Reversals (d) Incomplete
Compressionless Complete but decreases performance
PCS Incomplete
f-cube3 Complete but complicated
Duato's New Theory Left to designer

31

I III

Chapter 3

Definitions, Theorems and
Notation

This chapter presents a number of definitions necessary for clarity and coherence throughout

this document. Two very important theorems are also presented which will serve as the

basis for the proof that the routing algoritm presented in Chapter 5 is deadlock-free. But

first the notation that will be used in subsequent chapters is introduced and explained.

3.1 Notation

The following notation will be used throughout the rest of this document.

Ca A virtual channel.
src(ca) The source node of virtual channel ca.
dst(c,) The destination node of virtual channel c.
x(c,) The x address of src(c,).
y(ca) The y address of src(c,).

Figure 3.1 can be a helpful reference for the notation used.

3.2 Definitions

The definitions that appear in this section are based on the definitions given by Dally [DS87]

and Duato [Dua93].

Definition 1 An interconnection network I is a strongly connected directed graph, I =

G(N, C). The vertices of the graph N represent the set of processing nodes. The arcs of

32

3.2. DEFINITIONS

src(Ca) dst(Ca)

I

Y(Ca) = 0

Figure 3.1: Notation used.

the graph C represent the set of communication channels. More than one arcs may connect

two nodes.

Definition 2 A routing function R C C x N x CP where p is an integer, maps the current
channel c and the destination node nj to a set of channels where the packet can be routed

next.

Definition 3 A routing subfunction R1 for a given routing function R and channel subset
C1 C C, is a routing function such that:

R 1 : C x x C I R(c,n)=R(c,n)n CP Vc,nE (C,N) (3.1)

where p again is a positive integer.

Definition 4 A channel dependency graph D for a given interconnection network I and
a routing function R, is a directed graph, D = G(C, E). The vertices of D are the channels

of I. The edges of D are the pairs of channels connected by R:

E = (ci, cj) cj E R(ci, n) for some n E N. (3.2)

Definition 5 Given an interconnection network I, a routing function R, a channel subset

C1 C C which is the range of a routing subfunction R 1, a channel c and a pair of channels

ci, c E C1, there is a direct dependency from ci to cj if

c E R(cs, n) (3.3)

cj E R(ci, n) (3.4)

33

CHAPTER 3. DEFINITIONS, THEOREMS AND NOTATION

These channels belong to channel subset CI These channels belong to channel subset C-CI

Indirect Dependency from Ci on CJ

Figure 3.2: Visualizing Indirect Dependencies.

In other words, c can be used immediately after ci by messages travelling from channel

c, to a destination node n.

Definition 6 Given an interconnection network I, a routing function R, a channel subset

C1 C C which is the range of a routing subfunction R1 and a pair of channels ci, c E C1 ,

there is an indirect dependency from ci to cj iff

ei E Rl(ci_1, n)

3c,C2, ... ck E C-C1 I c E R(ci, n)
c+l E R(c, n)
cj E Rl(ck, n)

(3.5)m= 1,..., k- 1 (3
for some n E N

Figure 3.2 can be helpful in understanding better the definition of an extended depen-

dency.

The existence of an indirect dependency between channels ci and cj means that it is

possible to establish a path from ci to dst(cj) where ci and cj are the first and last channels

of the path and belong to channel subset C1 and all the intermediate channels belong to

channel subset C - C1 .

Definition 7 An extended channel dependency graph DE for a given interconnection net-
work I and routing subfunction R 1 of a routing function R, is a directed graph, DE =

G(C1 , EE). The vertices of DE are the channels which are the range of the routing sub-

function R 1. The arcs of DE are the pairs of channels (ci, cj) such that there is either a

direct or indirect dependency from ci to cj.

I ''I

34

roll

3.3. THEOREMS

3.3 Theorems

Theorem 3.1 (Dally) A routing function R for an interconnection network I is deadlock-

free if there are no cycles in the channel dependency graph D.

Dally [DS87] presents a formal proof of this theorem. Duato [Dua93] presents a slightly

different version of the proof.

Theorem 3.2 (Duato) A routing function R for an interconnection network I is deadlock-

free if there exists a subset of channels C1 C C which forms the range of a routing subfunc-

tion R1 which is connected and has no cycles in its extended channel dependency graph DE.

Duato [Dua93] has formally proved the above theorem. Theorem 3.2 has shown that

Theorem 3.1 imposes too strong a constraint on a routing function R in order to be deadlock-

free: The acyclic channel dependency graph is a sufficient but not a necessary condition.

Theorem 3.2 poses a less strong constraint on R. The result is that "cheaper" adaptive

routing algorithms can be made now possible (in terms of the number of virtual channels

necessary to ensure freedom from deadlock.) Actually, both Theorems 3.1 and 3.2 only

give a necessary but not sufficient condition for a routing function R to be deadlock-free.

Duato [Dua94a] has showed that the inverse of Theorem 3.2 is not true and the necessary

condition is not as strong as the one suggested in the above theorem. Yet, Theorem 3.2

is sufficient for the development of a simple and symmetric fault-tolerant adaptive routing

algorithm which can be easily implemented in silicon. This theorem will be used to show

that the algorithm presented in the following chapters is deadlock-free.

There is a difference in the definitions given by Duato for a routing function and a routing

subfunction and the definitions presented in the previous section. Duato [Dua93] defines a

routing function as follows:

R:NxN -+CP (3.6)

We have decided to define a routing function as Daily [DS87] does.

R:CxN - CP (3.7)

Duato does not define a routing function as in Equation 3.7 because in such a case

Theorem 3.2 would not be valid. Consider for example two subsets of C, C1 and C - C1.

35

36 CHAPTER 3. DEFINITIONS, THEOREMS AND NOTATION

Let R be a routing function defined in such a way that all messages arriving in a node

through a channel that belongs to the C - C1 subset are routed to a channel that belongs
to the same subset. Suppose that are cyclic dependencies among the channels that belong

to C - C1. Moreover, suppose that there exists a routing subfunction R 1 whose range is

C1. R 1 is connected and has no cycles in its extended channel dependency graph. In such

a case, R is not guaranteed to be deadlock-free.

We believe it is important make the domain of a wormhole routing function C x N instead

of N x N for the following reasons:

1. As Dally [DS87] suggests, the formulation of routing as a function from C x N to

CP has more memory than the conventional definition of routing as a function from

N x N to CP. This definition has actually helped to develop the notion of channel
dependence.

2. The formulation from C x N to CP provides information that is actually used in certain

cases by the algorithm to be described in the following chapters. As an example, our

algorithm does not allow the use of C - C1 channels when some conditions hold, one

of which is that the message arrives at the node through a C1 channel. A definition

such as 3.7 is most appropriate in such cases.

In order to make Theorem 3.2 valid and still maintain C x N as the domain of the routing

function we need to impose one constraint on R. Given a routing function R : C x N - CP,

a channel subset C1 and a routing subfunction R 1 : C x N - Ci', Theorem 2 is valid if

R(c, n) n Cj 0 (c, n) E C x N (3.8)

In other words, R is defined in such a way that it is never possible for a message to be

forced to use only C - C1 channels after a certain point in its course. If this provision is

met, the pathological case described above will be avoided.

. .1 .

Chapter 4

Adaptive Routing

This chapter presents an adaptive routing algorithm with a minimum number of virtual

channels. This algorithm does not have fault-handling capabilities. We name this algorithm

Adaptive Routing (AR) as opposed to Reliable Adaptive Routing (RAR) which will be

presented in the next chapter. This particular choice of presentation was made because an

incremental approach is easier to organize and easier to be understood and appreciated by

the reader.

4.1 Informal Description

AR needs two virtual channels per physical channel to ensure that there will be no deadlocks.

AR is minimally adaptive: A message can only make steps that will bring it closer to its

destination (productive). Unproductive steps (misrouting) are not allowed.

One of the two virtual channels is the Adaptive channel and the other is the Dimension-

Ordered channel. When a message gets injected into the network, it starts to route on

the Adaptive channels. AR can assign any free productive Adaptive channel as a possible

next step. A virtual channel is considered free if it is currently not allocated to a message.

If there are no free Adaptive channels AR assigns the unique Dimension-Ordered virtual

channel that corresponds to the current position of the message and its destination. This

unique Dimension-Ordered virtual channel is the same one as the one that would be assigned

by a pure Dimension-Ordered routing function given the current message position and the

message destination. If after the next hop there are free Adaptive channels, the message

switches back to them.

A Dimension-Ordered routing function routes messages in strict dimension order: In every

dimension d a message is routed along that dimension until it reaches a node whose address

37

.111

38 CHAPTER 4. ADAPTIVE ROUTING

/ / 6

i7

(a) (b)

Figure 4.1: Minimally Adaptive Vs. Dimension-Ordered Path.

in dimension d matches the address of the message destination in the same dimension. If the

addresses match, then the packet continues to route in the next lower dimension d - t, t > 0
where the current channel address and the destination address differ.

Figure 4.1 contrasts a minimally adaptive vs. a dimension-ordered message path in a

3-dimensional mesh. The order of dimensions in this case is {x,y,z}.

Dimension-Ordered Routing even with a single virtual channel per physical channel (as-

suming that the network is not toroidal and there are no wraparound paths) has been

proven to be deadlock-free [DS87].

Figure 4.2 shows an example of a message path under AR. The message starts to route

on Adaptive channels when it enters the network. It follows an adaptive minimal path. At

some point in the path, no free Adaptive channels were available and AR started assigning

Dimension-Ordered channels. While routing on Dimension-Ordered channels, the message

had to match the x address of its destination before routing on the y dimension. Later in the
course, Adaptive channels became available again, and the message reached its destination

on Adaptive channels. Figure 4.3 shows a flowchart of the routing algorithm.

AR is deadlock-free. There are cyclic dependencies among the Adaptive channels. Yet,

AR does not let a message block while waiting for an Adaptive channel to become free.

The routing function assigns a Dimension-Ordered channel instead. There are no cyclic
dependencies among Dimension-Ordered channels. As a result, messages can block on such

channels without the risk of forming a deadlocked configuration.

A

/ f-

I

11

I

I

I /
PI

I

f · J J

i _ / / I
1

J

I

Adaptive Channels

I daptive I a_- nDimension-Orderedchannels

I

Figure 4.2: Example of a Path Under Adaptive Routing.

Figure 4.3: Flowchart of Adaptive Routing

4.1. INFORMAL DESCRIPTION 39

1 11i1

40 CHAPTER 4. ADAPTIVE ROUTING

4.2 Formal Description

This section will apply the definitions and the theorems of the previous chapter on AR and

give a formal proof that the algorithm is deadlock-free.

4.2.1 Notation

Let x be an n-digit radix-k number. x will be represented as n-lxn-2 ... Xi+li ... 1X0

where xi < k, Vi E [0, n - 1]. xi will denote the ith digit of x. Numbers in such a format

will be used to indicate addresses in a kary n-cube interconnection network.

The following notation will be used:

p(n.)
ci iinteger
caii integer
cdi i integer
free(cai)

Any node in a k-ary n-cube, where x is the node adress (n-digit
radix-k number.)
The consuming (processor) channel associated with node n,.
Any virtual channel.
An Adaptive virtual channel.
A Dimension-Ordered virtual channel.
1 if channel cai is not allocated to a message, 0 otherwise.

The subscript i of Adaptive and Dimension-Ordered channels ca, d}i can be partitioned

in a number of the form drfx where:

d the dimension of the channel.
r the direction of the channel (1 increasing, 0 decreasing.)
f productive routing indicator (k- 1- d for increasing channels, and Xd for decreasing

channels.)
x the network address of the channel source node (n-digit radix-k number.)

Figure 4.4 shows the channel subscripts for all channels cdr7 r in a 4-ary 2-cube.

4.2.2 Defining R and R1

Channel sets C1 and C are defined as follows:

C = {cdi, Vi}

C = {Ci, Vi} = cd, Vi} U {cai, Vi}

C - C = {cai, Vi}

(4.1)

(4.2)

(4.3)

C is the set of all virtual channels in the network. C1 contains only the Dimension-Ordered

channels and C - C1 contains only the Adaptive channels.

4.2. FORMAL DESCRIPTION

00303

00202

00101

Figure 4.4: Assignment of subscripts to channels in a 4-ary 2-cube.

Let R1: C x N C1 be the function given by the following definition:

Rl(cddrf, n) =

p(ni)
CddOr[f -][-(-l)rkd]

cdd'l[k- -xdl -,-(-1)(k-]

Cddo[xd,][x-(-l)kd]

Rl(cadrf., nj) =

p(nj)
Cddl[k- l-$d,][-(-)rkd]
Cdd'o[,][x-(-1)rkd]

if Vm, [z- (-l)rkd]m = jm
if [- (-l)rkdId id
if (Vm > d', [- (-1)Tkd]m

if (Vm > d', [- (-l)rkdlm

if Vm, [x -(- 1)rkd]m = jm
if (Vm > d', [z - (-1)kd]m
if (Vm > d', [x - (-l1)kd]m

= jm) AdP < jd'
= jm) A:dl > id'

= jm) A [x - (-)rkd]d' < d'
= jm) A [X - (-l)rkdId > id'

For clarity purposes, the definition of R 1 has been broken in two parts: The first part

defines R 1 on domain C1 x N while the second defines it on (C - C1) x N. The union
of the two domains is C x N. Function R 1 is nothing but the widely used dimension-
ordered routing function. This particular routing function routes in decreasing dimension

(4.4)

41

I :111

42 CHAPTER 4. ADAPTIVE ROUTING

order. This definition is very similar to the one which Dally [DS87] defines, but here it is

augmented to accomodate bidirectional channels.

Assertion 4.1 The Channel Dependency Graph of routing function R1 is acyclic.

Proof It is evident from Equation 4.4 that R 1 always assigns a virtual channel with a

decreasing subscript. More formally:

Vci,cj E C1,Vnc E N: 3R(ci, nc) = cj i > j. (4.5)

Therefore, the Channel Dependency Graph is acyciic.

Let us consider a k-ary n-cube and a routing function Ra: C x N - (C - Ci)P given by

the following definition:

Ra(cdrfr, nj) = cadlflx : free(cadrlIflr) = 1) (4.6)

The subscript dr'f'x' is given by the following equations:

d' E {0,1,...,n-1} A [-(-l)rkd]d', jd' (4.7)

r d=d
rT = o d' d A [- (-1)rkd]d' > jd' (4.8)

1 d' d A [x-(--1)rkd]d,<jd,

f-1 d=d
f' = zd' d' d A [x- (-1)rkd]d, > jd (4.9)

k k- - Xd d' d A [x - (-l)rkd]d, < id'

x' = [x-(-1)rkd] (4.10)

It is important to note that Ra can assign a set of possible channels for the next step in

the message route. A selection function S : (C - C1)P - C- C 1 will have to be applied

to pick the single virtual channel on which the message will be routed next. S can be

deterministic or stochastic and is of limited importance. In certain cases it is possible to

have Ra = 0. This means that all the adaptive channels cai for some i are allocated to

other messages.

Although the definition looks complicated, Ra is nothing but a minimal adaptive routing

function. Equation 4.7 simply says that any channel can be assigned as a possible next step

as long as it moves the message closer to its destination.

4.3. FACTS ABOUT R AND R1

We are now ready to define routing function R: C x N - CP.

V(c, n) E C x N R(c, n)= Ri(c, n)U Ra(c, n) (4.11)

Note that R 1 is a subfunction of R by the definition of Chapter 3.

4.3 Facts about R and R1

This section states and proves certain facts about functions R and R 1 that will be used to

prove that routing function R is deadlock-free.

Assertion 4.2 Let cddlf_ and cddofl,l be two Dimension-Ordered channels. There can be

no indirect dependency from cddlf, on CddOf'z,.

This assertion merely claims that there can be no indirect dependencies between two chan-

nels of the same dimension and opposite directions. If such a dependency exists, then this

means that at least one of the intermediate adaptive (C - C1) steps overshot the destination

along the d dimension. More formally:

Proof Suppose that there exists an indirect dependency from channel cddlfx on channel

cddOf'z'. Let cam,, cam2,.. ., cam, be k intermediate adaptive channels. Moreover, let ng be

the message destination. We have:

cam = S(Ra(cddlf., ng)) (4.12)

cam2 = S(Ra(cam,,ng)) (4.13)

ca,,3 = S(Ra(cam,2,n,)) (4.14)

cam = S(Ra(cam,,_,, n,)) (4.15)

cddof,', = R1(camk, ng) (4.16)

Since cddlf, is a channel of positive direction, we know that:

zd < gd

43

(4.17)

CHAPTER 4. ADAPTIVE ROUTING

By directly applying definition 4.6 on cddlfp and the subsequent adaptive channels, we

see that the following must be true:

dst(cam,)d < gd (4.18)

If the intermediate adaptive channels belong to different dimensions than d, then we see

by 4.6 through 4.10 that this won't affect the dth digit of the destination node of each

channel. Therefore the above equation holds. If on the other hand there are intermediate
adaptive steps along the d dimension, then according to 4.6 through 4.10 this will increase

the destination address by tkd where t is the number of steps along dimension d. In other

words the dth digit of the destination will be increased by t radix-k units. In such a case

the inequality may be converted to at most an equality: dst(camk)d = gd. Yet, this does

not happen because if it did, the address of the destination along the d dimension would

be matched and 4.4 cannot assign a dimension d channel as a possible next step route.

Therefore 4.18 is valid in all the cases.

Since 4.18 is true, definition 4.4 will assign a channel Cdd7 rf'z with r=l. A channel

cddof ,x cannot be assigned by routing function R 1 and therefore no dependency may exist

from cddlfp and cddof'',.

By symmetry arguments, the following assertion is also true:

Assertion 4.3 Let Cddofl and cddlf,,' be two Dimension-Ordered channels. There can be

no indirect dependency from cddofr on cddlf '',

We can consolidate Assertion 4.2 and 4.3 into the following statement:

Assertion 4.4 Let cddrf: and cddfr' be two Dimension-Ordered channels. There can be

no indirect dependency from cddrfl, on cddrf'.r

Assertion 4.5 There is an indirect dependency from cddlf on cddlf'x' if and only if Xd <

Xd.

Proof If we proceed exactly the same way as we did for Assertion 4.2, then we have:

z + kd <I' = d < d. (4.19)

[0

44

4.3. FACTS ABOUT R AND R1

We also need to show the inverse. Let cddlfx and ddlf'x, be two Dimension-Ordered

channels such that xd < xd. Let g dst(cddlfx,'). Without loss of generality let us assume

that:
(4.20)

There exist adaptive channels such that:

caOl[k-1-(x+k)o][x+kO]

Caol[k- -(2x+2ko)o] [x+2kO]

call[k-1-(x+kl)l][x+(go -xo)kO+kl]

call I[k-1 - (x+2k)][+(go -o)k °+2k 1]

Call[k-l-(+(9g -x)k)l][x+(go -o)kO +(g -xl)kl]

Cadl[k-l--(x+kd)][X+(go- o)kO +(gl -x)k1 +'+(gd-l -zd-l)kd-- +kd]

Cadl[k-l-(x+2kd)d][x+(go-xo)kO+(gl -x1)kl +"'+(gd-1 -Xd-l)kd-1 +2kd]

Cadl[k-1 -(x+(gd-Xd+l)kd)dI+(gO-X0)kO+ . +(gd_1-zXd-1)kd- +(gd-Xd+l)kd]

Ca[n-l]l[k-l-(+kn-l)nl][z+(go-zo)kO +..+(g,,2 -x-_2)kn-2 +kn-1]

ca[n-1]1[k-1-(X+2kn-1)n-][x+(go -xo)k 0 +..+(gn-2 xn)kn-2+2kn-]

ca[n-1]l[k-l-(X+(gn-Z1 -n- +l)k n- 1) - l][x+(9o- - o) ko+- + (gn -i-cn-l)k n- 1]

Cddlf'$x

= S(R(cdlfx, ng))

- S(R([], n,))

= S(R([I], ng))

= S(R([-], n9))

= S(R([-], n))

S(R([-], n))

= S(R([.], ng))

: S(R([-], ng))

S(R([-], nj~ .21)

- S(R([-], ng))

- S(R([-], n,))

= S(R([-], ng))

= S(R([-], ng0.22)

In the above equations the running symbol [.] which appears in each equation refers to the
left hand side of the previous equation. It is important to note that this particular choice
of adaptive channels for the intermediate steps does not match the destination address

45

Vi E O,n- 11 xi <gi

I .111

46 CHAPTER 4. ADAPTIVE ROUTING

along the d dimension (equation 4.21) so that the indirect dependency between cddlf. and

cddl',' may exist as indicated by equation 4.22 given our particular choice for the message

destination. Therefore Xd < d, constitutes both a necessary and sufficient condition for an

indirect dependency.

Using the same method, we can also prove the following statement:

Assertion 4.6 There is an indirect dependency from cddofx on cddof'l,' if and only if Xd >
IXd.

Assertion 4.7 If there is an indirect dependency from cddrf, on cdd,rf,x, and d' 5! d then

d' < d.

Proof Let cddfx and cdd,f,, be two Dimension-Ordered channels such that there is an

indirect dependency from cddrfx on cddrl,f,'. Let ng be the message destination. We know

that cddf was the result of applying R 1 on a channel ci such that dst(ci) = x, and the

message destination ng:

Rl(ci, ng) = cddrfx (4.23)

From definition 4.4 we draw the conclusion that:

Vd" > d gd",, = d,, (4.24)

In such a case equations 4.6 through 4.10 won't assign a channel of dimension d" > d.

Let caj be the last Adaptive channel used before cdd,rf'x,. It must be that src(caj)d,, =

gd" Vd" > d. Application of R 1 on (caj, ng) will therefore yield cddf,_, with d' < d if d'

is to be different from d. o

4.4 Proving Freedom from Deadlock

We have a rich set of facts about routing functions R and R 1. These facts can help us prove

in a couple of steps that routing function R is deadlock-free.

Assertion 4.8 Let cddrfx,cddl'r'f'' E C1 be two Dimension-Ordered channels. If there

ezists an indirect dependency from cddrf to cddr'f '' then it must be that drfx > d'r'f'z'.

4.4. PROVING FREEDOM FROM DEADLOCK

Proof There are two distinct cases. If d # d' then from Assertion 4.7 we have d' < d.

Therefore drfx > d'r'f'x'.

Now let us assume that r = 1. From Assertion 4.4 we know that r' = r. If d = d' then

from Assertion 4.5 we have the following:

Xd < Xd (4.25)

-Zd > -Xi (4.26)

k-l-xd > k-l-xd (4.27)
f > f' (4.28)

drfx > d'r'f'x' (4.29)

If r = 0 on the other hand (using Assertion 4.6):

Xd > Xd (4.30)

f > f' (4.31)
drfx > d'r'f'z' (4.32)

And the proof is complete.

Finally we come to our conclusion:

Assertion 4.9 Routing function R is deadlock-free.

Proof Let cdi, cdj E C1 be two Dimension-Ordered channels. If there is a direct depen-

dency from cdi to cdj then from Assertion 4.1 we know that i < j. If on the other hand

there is an indirect dependency from cdi to cdj then from Assertion 4.8 we know that i < j.

Therefore if there exists any dependency either direct or indirect from cdi to cdj it is true

that i < j. Therefore, there are no cycles in the Extended Channel Dependency Graph of

function R and by Theorem 3.2 R is deadlock-free.

Before completing the proof we must make sure that condition 3.8 we have set is true:

Rn C = (R1U Ra) n C = C1 $ 0 (4.33)

This completes the proof. o

47

48 CHAPTER 4. ADAPTIVE ROUTING

4.5 Summary

In this chapter we have formally defined a fully adaptive routing function R. R needs two

virtual channels per physical channel, one Adaptive and one Dimension-Ordered. R makes

messages follow minimally adaptive paths towards their destination. If Adaptive channels

are not available at some step due to network contention, R will assign a Dimension-Ordered

channel as the unique next step route. If Adaptive channels become free, then R will resume

assigning Adaptive channels. We have stated and proven a number of facts about R which

led us to the conclusion that R is deadlock-free by directly applying Duato's Theorem (3.2).

R is not fault-tolerant. In the next chapter we will augment R with the capability to
handle a single non-transient fault at a time anywhere in the network. A lot of the facts

stated in this chapter will be used and exploited in the rest of this document.

I ;111

Chapter 5

Reliable Adaptive Routing

This chapter augments Adaptive Routing and enables it to handle a single link failure

anywhere in the network, even along the edges. To achieve this, we need to introduce

one more virtual channel per physical channel: The Fault-Handling channel. We call the

resulting routing algorithm Reliable Adaptive Routing. The first section will discuss the

particular fault model assumed in the design of the algorithm. Next, an informal description

of the algorithm will be given along with routing examples. Then, the algorithm will be

formally defined and finally a proof of deadlock-freedom will be presented.

5.1 Fault Model

Our fault model is based on the following assumptions:

* We consider as fault a link failure anywhere in the network. A fault can be detected

by using parity or any other error detecting code on the wires of each physical link in

the network.

* Faults are non-transient. This means that as soon as a parity error is detected on a

link, the link is flagged as faulty(O). If the parity error is transient and goes away, the

link status is not reset to 1. A link can only be returned to service through human

intervention using a dedicated diagnostic port. Such an action does not disrupt the

rest of the system.

* There can be only one fault at a time.

Adaptive Routing as presented in the previous chapter cannot always assign a next step

route in the presence of faults that conform to this model. Figure 5.1 shows two examples

of such faults.

49

CHAPTER 5. RELIABLE ADAPTIVE ROUTING

Y
A

4

l dh-'

I=1
l q

I ld
FThiA

hir

F 1

hA

'-4
l 1

I
h

I

l

x

Figure 5.1: Faults that cannot be handled by Adaptive Routing.

In both cases, the destination of the path is indicated by a white dot. In the first case, a

message has reached the y address of its destination through Adaptive channels and proceeds

to reach the x address too through either Adaptive or Dimension-Ordered channels. There

is a broken link in the way. Since R is a minimal adaptive function, the dotted path cannot

be allocated and there is no way that this particular message will reach the destination. In

such a case if c is the current virtual channel and n is the message destination, we have:

R(c, n) = 0 (5.1)

In the second example equation 5.1 will hold as well if the single eligible Adaptive channel

that departs from node A (the y+ channel) is busy.

In both cases we see that R clearly needs to be augmented with the ability to assign paths

such as the dotted paths shown in figure 5.1.

5.2 Informal Description

This section will give an informal description of Reliable Adaptive Routing. RAR is almost

the same with Adaptive Routing. The only difference is that RAR provides an extra class

of virtual channels to accomodate paths such as the dotted paths of Figure 5.1.

5.2.1 Examples

First, we will describe RAR through some examples. The following examples assume that

the dimension order assumed by routing function R1 (4.4) is {x,y}. In other words x is

I14�

I ;11

50

5.2. INFORMAL DESCRIPTION

dimension 1 and y is dimension 0. Figure 5.2(a) shows an example of routing around a

fault that occurs along the x dimension. In such a case, when the message is in node A,

RAR will assign the dotted Fault-Handling channel and allow the message to take a non-

minimal side step. After the side step has been taken, the message can continue to use

Dimension-Ordered or Adaptive channels as it did before. In this case, the side step was

taken along the y dimension. Since this constitutes a misrouting step, we know that it has to

be reversed in the future. As we can see from Figure 5.2(a), this step is reversed just before

the message reaches its destination. Reversing the misrouting step does not introduce any

extra dependencies among C1 channels. Reversing the step involves a step from an x channel

to a y channel. Such a dependency already exists in the Extended Channel Dependency

Graph of routing function R. This is the rationale behind allowing the message to use

Dimension-Ordered channels after it has used the Fault-Handling channel: No additional

dependencies are created and therefore no deadlock is introduced.

Case (b) is very similar to case (a) in that the message can continue to use Dimension-

Ordered channels after routing on a Fault-Handling channel without introducing extra de-

pendencies.

On the other hand, when the fault occurs along the y dimension as shown in Figure

5.2(c)(d) things are different. In this case the misrouting step has to occur along the x

dimension which is a higher dimension than the one we are currently routing on. If this

misrouting step is reversed on Dimension-Ordered channels, then additional dependencies

must be added to the Extended Channel Dependency Graph from Dimension-Ordered y

channels to Dimension-Ordered x channels. Such an action introduces potential deadlocks.

5.2.2 The Algorithm

An informal definition of Reliable Adaptive Routing follows:

1. First find a free and non-faulty Adaptive channel which brings the message closer to

its destination.

2. If such a channel is not found, find the unique Dimension-Ordered channel that cor-

responds to the current channel position of the message and its destination.

3. If the unique Dimension-Ordered channel is not available due to a fault, then find a

productive Fault-Handling Channel.

51

CHAPTER 5. RELIABLE ADAPTIVE ROUTING

II
()

x

4

i
'4

4

4

Hl
I hi

Il

h f l d

:2

I-'

II

(

Fl

Figure 5.2: Faults handled by Reliable Adaptive Routing.

I

E

52

!

5.3. FORMAL DEFINITION

4. If a productive Fault-Handling channel is not available because the destination address

only differs in a single dimension from the current address then if the unmatched

dimension is different from dimension 0 do the following steps:

(a) Route on an unproductive Fault-Handling channel along a dimension lower from

the single unmatched dimension at this time.

(b) Resume routing from step 1.

If on the other hand, the unmatched dimension is 0 execute the following steps:

(a) Route on an unproductive Fault-Handling channel along dimension 1.

(b) Route on productive Fault-Handling channels along dimension 0 until the address

of the destination in dimension 0 is reached.

(c) Route on the Fault-Handling channel along dimension 1 which will bring the

message to its final destination.

The algorithm described above is capable of assigning channels that form the message

paths shown in Figure 5.2. We see that RAR can bypass a fault even if the fault occurs

along the edges of the network. A flowchart of the Reliable Adaptive Routing algorithm is

shown in Figure 5.3.

5.3 Formal Definition

This section presents a formal definition of the routing algorithm that has been described

in the previous section.

5.3.1 Notation

The notation of section 4.2.1 will be used along with the following additions:

cfi A Fault-Handling virtual channel.
valid(ci) 1 if channel ci is in service, 0 if it is faulty.

5.3.2 Defining R and R2

Proof of deadlock freedom will be based again on Theorem 3.2. We need to redefine routing

function R and define a routing subfunction R2 with range C2 so that the requirements of

53

RELIABLE ADAPTIVE ROUTING

Figure 5.3: Flowchart of Reliable Adaptive Routing

I ,1.11

54 CHAPTER 5.

5.3. FORMAL DEFINITION

the theorem are satisfied. Channel sets C2 and C are defined as follows:

C2 = {cdi Vi} U {cfi, Vi}

C = {ci, Vi} = {cdi, Vi} U {cai, Vi} U {cfi, Vi}

C - C2 = cai, Vi}

(5.2)

(5.3)

(5.4)

C is again the set of all virtual channels in the network. C2 contains the Dimension-

Ordered channels and the Fault Handling channels. C - C2 contains only the Adaptive

channels.

The Fault-Handling channels must be included in channel subset C2 because subset C2

must be connected for Theorem 3.2 to be valid.

Let R 1 be the function defined in 4.4. Routing function R 2 will be defined on two

disjoint domains for reasons of clarity and simplicity. Let ca, d}drfx indicate an Adaptive

or Dimension-Ordered channel. R 2 defined on such channels is given by the following

definition:

Cf r(f ,d}'c'lncfd ' l') if 3c E R 1 : valid (c) = 1
otherwise

Subscripts d', r', f', x' are given by the following equations:

d'=

dp 3dp, dp': [x - (-1)kd]d,d, # J{dp,dp'} A dp dp'
du 3d",d'": [x - (-l)rkd]({d,,,d,,,} # jd",d"'} = d = d"

A 3du: du < d"
1 otherwise

f {I d'
= k-1-Xd'

[Z - (-l)rkd]d, > id'
[X - (-l)rkd]d, < d'

x' = -(-1)rkd (5.1

When R 2 is defined on Fault-Handling channels, it is given by the following definition:

p(ni)
Rl(cddrf, n)

, Cfol[k--1]i-(-1)' kd]
CfOOo[_-(-l)_)kd]

cfnllk-1-_l][[-(-1)rkd]
CflO1[x--(-l)kd]

R2(cfdrfz,nj) =

if Vm, [x - (-1)kd], = jm
[x- (-l)rkd]l -- l 1
I[X - (-1)rkd]l -jil = A o < jo
I[X-(-1)rkdl- jl = 1 A xo>jo
IIx - (-1)'kd] l - j 1 = 1 A o = jo
I[x - (-l)kd], ll = 1 A zo=jo

(5.5)

(5.6)

(5.7)

A x1 < j
A x > jl

(5.9)

55

8)

56 CHAPTER 5. RELIABLE ADAPTIVE ROUTING

Figure 5.4: Undesirable minimal step

Let Ra2 be a minimal adaptive routing function much like the one defined in 4.6 through

4.10. One difference between Ra and Ra2 is shown in the following equation.

Ra2(c{a, d, f}drf, nj) = {cai: cai E Ra(c{a, d}drf7 x, nj), valid(cai) = 1} (5.10)

It simply says that the minimal adaptive function Ra2 can only pick channels that are not

faulty. Except for this trivial constraint, there is an additional one which stems from the

fact that misrouting steps are now possible: If no further constraints are imposed to the
minimal adaptive routing function, then an undesirable situation may occur just after a

misrouting step. This is illustrated in Figure 5.4.

Suppose that a message misroutes due to a fault because the address of its current channel
differs from the destination address in only one dimension. When the head of the message

reaches node B, then the minimal adaptive routing function as defined in Equations 4.6

through 4.10 and Equation 5.10 may immediately reverse the misrouting step and direct

the message back to node A (node D in the Figure indicates the message destination.).

This is clearly undesirable. We therefore need to place extra restrictions on the minimal

adaptive routing function so that misrouting steps are not immediately reversed. We can

formulate this as follows: The minimal adaptive routing function Ra2 may not assign a next

step channel of the same dimension but opposite direction when the message reaches the

node from Fault-Handling channels. More formally:

Ra2(cfdrf, nj) = Ra(c{a, d}drf, nj) - {caf,[.-(-l)r]kd} (5.11)

where f' is given by the following equation:

0X{ k-1~d r1 0(5.12)f, { d -X-d F= i

l il.

5.4. FACTS ABOUT RELIABLE ADAPTIVE ROUTING

Now that we have all the routing subfunctions of R we are one step away from the

definition of Reliable Adaptive Routing:

V(c, n) E C x N R(c, n) = R2(c, n) U Ra2(C, n) (5.13)

From the definitions of R 2 and Ra2 it is evident that defining a routing function on domain

C x N instead of N x N has been necessary for defining Reliable Adaptive Routing without

resorting to other non-elegant schemes that would allow us to provide the routing function

with some sort of memory. Reliable Adaptive Routing makes use of the fact that an incoming

message comes in from Fault-Handling channels. The next step assignment depends on the

channel kind of an incoming message. Yet, RAR does not require modification of the

header or any other message state. The routing decision as can be seen from the previous

definitions depends only on local information. Never does the routing decision depend on a

past routing event. This greatly simplifies the implementation of the algorithm and reduces

system complexity.

5.4 Facts About Reliable Adaptive Routing

Before proceeding with the proof of deadlock freedom it is worthwhile to examine the

properties of the Fault-Handling channels that are added to the C1 channel subset. Clearly,

the Fault-Handling channels form an independent virtual network on top of the Adaptive

and the Dimension-Ordered virtual networks that already exist. Yet, we do not wish to

adopt this point of view for two reasons:

1. Not all Fault-Handling channels are actually used by the routing algorithm. There is

one Fault-Handling channel per physical channel. Yet, the Fault-Handling channels

that can actually be assigned by the routing algorithm are very limited, given that

there can be only one fault at a time.

2. The Fault-Handling channels must be viewed as an addition to the Dimension-Ordered

virtual network for restoring connectivity. This is the only approach that will allow

us to use Duato's theorem to justify the claim that Reliable Adaptive Routing is
deadlock-free.

The location and number of Fault-Handling channels depends directly on the location of

the fault within the network. We are exploring this issue in the following sections.

57

58 CHAPTER 5. RELIABLE ADAPTIVE ROUTING

U] 3[2

Figure 5.5: Addition of Fault[Handling channels when a fault occurs along a dimension
d $ 0. This figure shows the two-dimensional case when the fault occurs along dimension
1.

5.4.1 Fault Along a Dimension d 0

Reliable Adaptive Routing will put into service a maximum of 4d Fault-Handling channels

if we assume that dimension numbering starts from 0. This can be seen in Figure 5.5

for two dimensions and Figure 5.6 for three dimensions. We must note that only Fault-

Handling channels of dimension d' < d may be assigned by the routing algorithm and for

this reason the number of Fault-Handling channels differs in Figures 5.6 (a) and (b). As

was mentioned before, the rationale behind this restriction is that when a misrouting step

occurs along a low dimension, this misrouting step can later be reversed without violating

the order of dimensions and therefore without adding extra dependencies to the Extended

Channel Dependency Graph. The number of added Fault-Handling channels is limited

because Reliable Adaptive Routing only assigns Fault-Handling channels on the first step

that a message is taking after a fault has affected regular channel assignment.

5.4.2 Fault Along Dimension 0

When a fault occurs along Dimension 0, then according to RAR only dimension 0 and

dimension 1 Fault-Handling channels are assigned. Figure 5.7 shows the Fault-Handling

I ,1.11

5.5. PROOF OF DEADLOCK FREEDOM

(a) (b)

K(2)

Figure 5.6: Addition of Fault-Handling channels when a fault occurs along a dimension
d O0. This figure shows the three-dimensional case when the fault occurs along dimensions
2 and 1.

channels that are put into service in such a case. In this case the number of Fault-Handling

channels that are added does not depend on the network dimension but only on the network

radix k. The total number of added Fault-Handling channels is 12 + 4(k - 2). Applying this

formula to Figure 5.7 where k = 6 we see that we have a total of 28 added Fault-Handling

channels.

Understanding the location and number of the Fault-Handling channels that are added

to restore connectivity to the C1 channel subset is essential to to our approach of proving

that Reliable Adaptive Routing is deadlock-free.

5.5 Proof of Deadlock Freedom

Without loss of generality and for purposes of simplicity, we will restrict ourselves to two

dimensions x (dimension 1) and y (dimension 0). In a subsequent section an argument will

be given that extends the proof to an arbitrary number of dimensions. Two different cases

may arise when a fault occurs. Reliable Adaptive Routing treats differently the case when

a fault occurs on an x channel from the case of a fault along the y dimension. The following

two sections will treat each case separately.

59

7 nlb

CHAPTER 5. RELIABLE ADAPTIVE ROUTING

Y (0)

x (1)

Figure 5.7: Addition of Fault-Handling channels when a fault occurs along dimension 0

60

5.5. PROOF OF DEADLOCK FREEDOM

Figure 5.8: Addition of Fault-Handling channels when a fault occurs along the x dimension

5.5.1 Fault along the x dimension

This case is shown in Figure 5.8. The four Fault-Handling channels that have been added

to restore connectivity are shown with dotted arrows.

In this case the physical link which carries Dimension-Ordered virtual channels 2P and

2N goes down because a parity error was detected on the lines. Reliable Adaptive Routing

restores connectivity in the C1 channel subset by putting to use Fault-Handling channels

2PA, 2PB, 2NA, 2NB. The proof that the addition of the Fault-Handling channels preserves

the fact that the algorithm is deadlock-free is based on a study of the Channel Dependency

Graph. The following observation will be helpful in order to simplify our analysis:

Observation 5.1 If there exist any cycles in the Channel Dependency Graph after the

addition of Fault-Handling channels when a fault occurs along the x dimension, these cycles

do not contain any nodes that correspond to Dimension-Ordered y channels.

Discussion There are no direct nor indirect dependencies from any Dimension-Ordered

y channel to any Dimension-Ordered x channel before the occurrence of the fault. This can

be seen from Equation 4.4 and Assertion 4.7. Moreover, the addition of Fault-Handling

channels does not alter the dependency arrows that depart from each Dimension-Ordered y

channel in the Channel Dependency Graph. There are three things that we need to consider
to see why the above statement is true.

61

62 CHAPTER 5. RELIABLE ADAPTIVE ROUTING

1. When a fault occurs along the x dimension, the routing algorithm continues not to

allow a message to use a Dimension-Ordered x channel after it has used a Dimension-

Ordered y channel. This means that a fault does not add any new dependencies

between Dimension-Ordered y channels and Dimension-Ordered x channels.

2. When a fault occurs along the x dimension, the routing algorithm does not create a de-

pendency between any Dimension-Ordered y channel and a Fault-Handling Channel.

A message may not use a Fault-Handling Channel after it has used a Dimension-

Ordered y channel. If a message is allowed to use a Dimension-Ordered y channel

under Reliable Adaptive Routing, it follows that the message has reached the x di-

mension of its destination. In such a case, RAR will never assign an x channel as a

possible next step, and the message won't perceive that there is fault somewhere on

an x channel. It follows that the message will never use a Fault-Handling channel.

Therefore, no dependency may exist between a Dimension-Ordered y channel and a

Fault-Handling channel when there is a fault along the x dimension.

3. When a fault occurs along the x dimension, the routing algorithm does not create

any new dependencies between Dimension-Ordered y channels. The argument is the

same as in the previous clause: If a message uses a Dimension-Ordered y channel, it

won't ever perceive that there is a fault in the network. Therefore, Reliable Adaptive

Routing will create the same dependencies it would create in the fault-free case.

The above three clauses establish the conclusion that a fault along the x dimension and

the corresponding addition of Fault-Handling channel nodes and some extra dependencies

in the CDG does not cause the addition of extra dependencies that depart from Dimension-

Ordered y channels. Therefore, if the addition of new nodes and new dependencies in the

Channel Dependency Graph causes the formation of cycles, these cycles will not involve

nodes that correspond to Dimension-Ordered y channels, since any path that initiates from

a Dimension-Ordered y channel is cycle-free exactly as in the fault-free case.

Observation 5.1 justifies the omission of Dimension-Ordered y channels from the study of

the Channel Dependency Graph. Figure 5.9 displays a part of the Channel Dependency

Graph that corresponds to Figure 5.8 before the occurrence of the fault. Dimension-Ordered

y channels have been omitted.

Remarks on the CDG

The following notation is used in Figure 5.9:

I .111

5.5. PROOF OF DEADLOCK FREEDOM

Figure 5.9: Condensed form of the Channel Dependency Graph before the occurrence of a
fault. This CDG corresponds to the situation depicted in Figure 5.8 before the occurrence of
the fault along the x dimension. The gray ovals represent channel sets. The Figure displays
only the subgraph that corresponds to positive channels.

XF The x address of the fault. In Figure 5.8, this is the x address of the source node of

channel 2P.

C,(x =, <, > A) The set of all x Dimension-Ordered channels with x-address x =, <, > A.

If the Dimension-Ordered y channels are removed from the CDG as we have done in

Figure 5.9, the directed graph can be partitioned in two disjoint half-graphs. This can be

easily seen be invoking Equation 4.4 and Assertion 4.4: AR does not create dependencies

neither direct nor indirect between channels of the same dimension but of different direction.
We conclude that the CDG involving only x Dimension-Ordered channels is the union of

two completely disjoint directed graphs, the former having as nodes all positive direction

channels (from left to right) and the latter having as nodes all negative direction channels

(from right to left). Figure 5.9 depicts the subgraph that contains all positive direction

channels. We will focus our attention on the positive subgraph since one can apply the

exact same analysis on the negative subgraph using symmetry arguments.

The gray ovals represent channel sets and the notation used fully characterizes the con-

tents of each set. The Channel Dependency Graph in its condensed form has only one node

that corresponds to individual virtual channels (5P, 6P, 2P). The rest of the channels are

collapsed into channel subsets. Each subset is itself an acyclic directed graph. The arrows

that depart from each subset represent direct and indirect dependencies of channels in the

subset on other channels in other subsets. The arrows that arrive at each subset repre-

63

�clLI�

CHAPTER 5. RELIABLE ADAPTIVE ROUTING

sent dependencies from channels that belong to other subsets on channels in the particular

subset. Each arrow represents more than one dependencies.

Figure 5.9 has been drawn by direct application of Assertion 4.5.

Restructuring the CDG due to a Fault

The key to proving that the algorithm is deadlock-free in this case is understanding exactly

the restructuring that takes place in the CDG of Figure 5.9 when the fault occurs and

channel 2P goes down. We can identify immediately two things that will change:

1. Node 2P must be deleted from the Channel Dependency Graph.

2. Two nodes that correspond to the Fault-Handling channels 2PA, 2PB must be added

to the Channel Dependency Graph.

Two important questions remain to be answered:

1. Which dependency arrows arrive at nodes 2PA, 2PB?

2. Which dependency arrows depart from nodes 2PA, 2PB?

In other words how do we connect these two added nodes to the rest of the graph.

We will address the first question with the following Observation:

Observation 5.2 The source nodes of the arrows that arrive to each of the nodes 2PA and

2PB in the restructured Channel Dependency Graph form each a subset of the source nodes
of the arrows that arrive at 2P in the original Channel Dependency Graph.

Discussion We can see that easily if we consider a Dimension-Ordered z channel cl which

did not depend on 2P neither through a direct nor through an indirect dependency. By

Assertion 4.7 then:

x(c) > x(2P) = XF (5.14)

The dependencies that depart from c by the same Assertion, arrive at channels c such

that x(c) > XF. There is no fault associated with that portion of the network, since

our fault model allows only a single fault at a time and this fault has occurred already at

x = XF. Therefore, RAR won't ever assign a Fault-Handling channel as a possible next

step route. No dependencies can exist between c, and any Fault-Handling channel, and

64

5.5. PROOF OF DEADLOCK FREEDOM

therefore no dependencies can exist between cx and 2PA or cr and 2PB. The bottom line of

this observation is that no new dependencies are introduced from other nodes in the CDG

on nodes 2PA and 2PB other than a subset of the original dependencies that arrive at node

2P.

It is worthwhile to note that not all the dependencies that arrive at node 2P are transferred

to each of the nodes 2PA and 2PB. There can be no dependency between channels 5P and

2PA in Figure 5.8. Such a dependency would imply a non-minimal step in the course of a

message. Yet, there is an original dependency between channels 5P and 2P according to

Assertion 4.5. No rigorous discussion of this fact will be presented since it is not necessary

for the development of the proof.

We will address the second question with another observation:

Observation 5.3 Let cx be a Dimension-Ordered x channel. If there exists a dependency

from 2PA or 2PB on c, then x(c,)> x(2PA, 2PB).

Discussion Let us focus on the positive subgraph of Figure 5.9. All messages that perceive

the fault at XF have not matched yet the address of their destination along x. More

specifically since all the x channels shown are positive we see that the z address of the

current channel for such messages is smaller than the x address of their destination. When

messages are redirected because of a fault to channels 2PA and 2PB we still have:

x(2PA, 2PB) < j (5.15)

for nj being a destination node of such a message. After the redirection on the Fault-

Handling channels, messages revert to plain Adaptive Routing which is minimal. Successive

applications of routing function R on 2PA, 2PB and on the successive outcomes of such

computations will only increase the x address of the next step channel or leave it unchanged.

Therefore if channel c$ is the result of such a computation then z(2PA, 2PB) < x(c) < j,.

It is worthwhile again to note that the inverse of the previous observation does not

hold: Let c, be a channel such that x(c,) > x(2PA). This does not mean that there is

a dependency from 2PA on cx. As an example, we can consider channels 2PA and 4P in

Figure 5.8. If there was such a dependency, that would imply that backtracking would

occur on C2 channels and this is not allowed by the algorithm.

Since we have determined how the nodes 2PA and 2PB are to be connected to the rest of
the graph, we are now ready to construct the restructured Channel Dependency Graph after
the occurrence of the fault. It is shown in Figure 5.10. It is obvious from the figure that

65

66 CHAPTER 5. RELIABLE ADAPTIVE ROUTING

Figure 5.10: The restructured Channel Dependency Graph after the occurrence of a fault
along the x dimension.

this restructuring has not introduced any cycles. More specifically: Comparing Figures 5.9

and 5.10 we conclude that Figure 5.10 can be constructed from Figure 5.9 in three simple

steps. We are going to examine these steps and show that none of those may produce a

cycle in the graph. The steps are illustrated in Figure 5.11.

1. Node 2P is split into two nodes 2PA and 2PB. Everything else stays the same. Each

one of the nodes 2PA and 2PB inherits all the arrows that were arriving at node 2P

before the occurence of the fault. Moreover, each node inherits all the arrows that

were departing from node 2P before the occurence of the fault. This action does not

introduce any cycles to the graph. Suppose that a cycle was actually introduced. This

cycle could not contain both nodes 2PA and 2PB because there are no dependency

arrows between these two nodes. Without loss of generality, let us assume that this

cycle contains node 2PA. Such a cycle cannot exist because if it did, it would also exist

before splitting node 2P since node 2PA inherits all arriving and departing arrows and

everything else stays the same.

2. The next step involves removing some dependencies from the arrow clusters that arrive

and depart from nodes 2PA and 2PB. This issue was discussed in Observation 5.2 and

5.3. Obviously, removing dependencies cannot introduce cycles.

3. The third and final step involves adding an arrow cluster from channels 2PA and 2PB

to channel subset C,(x = XF) - {2P} according to Observation 5.3. Such an action

does not produce a cycle. The case is symmetric and without loss of generality we can

I ''.

5.5. PROOF OF DEADLOCK FREEDOM

WA

NI V

p3*

NI
V

-6
-9-q

STUN nMn

Figure 5.11: Restructuring the Extended Channel Dependency Graph in 3 steps

focus on possible cycles that contain node 2PA. There are three possible ways that a

cycle can be formed by adding an arrow cluster from 2PA to Cx(x = XF) - {2P}:

(a) A cycle that contains 2PA and Cx(x = XF) - {2P).

(b) A cycle that contains 2PA, C(x = XF) - {2P} and C,(x < XF).

(c) Finally, a cycle that contains 2PA, Cx(x = XF) - {2P}, C(x < XF) and

Cx(x > XF)

Application of Assertion 4.7 for cases (b) and (c) and application of Assertion 4.7 and

Observation 5.2 for case (a) establishes the conclusion that none of the possible cycles

may actually exist.

The above discussion has established the following assertion:

Assertion 5.1 A fault along the x dimension and the resulting addition of Fault-Handling
channels by Reliable Adaptive Routing does not introduce any cycles to the Extended Channel

Dependency Graph.

67

�cL-----,
_fI--- I--- I

-

,,~~~~~~~~~~~~~~I

1�1- --NI
f-

I------~
f

m

"I

I

X-I

CHAPTER 5. RELIABLE ADAPTIVE ROUTING

5.5.2 Fault along the y dimension

The Fault-Handling channels that are added by Reliable Adaptive Routing to restore con-

nectivity in this case are shown in Figure 5.7. The proof of deadlock freedom in this case

exploits the fact that faults are non-transient and that messages cannot revert back to

Dimension-Ordered channels when a Fault-Handling channel has been used.

Assertion 5.2 A fault along the y dimension and the resulting addition of Fault-Handling

channels by Reliable Adaptive Routing does not introduce any cycles to the Extended Channel
Dependency Graph.

Proof Let us add one more digit at the most significant position of the Dimension-Ordered

channel subscripts: The full subscript now of a Dimension-Ordered channel is tdrfx where

t = 1 and the drfx part remains as defined in previous sections. The position of the fault

along the y axis divides the xy plane into two parts: The West Half Plane is the part that

lies to the west of the fault and the East Half Plane is the part that lies to the east of the
fault. For Fault-Handling channels we are employing a subscript of the same format tdrfx

where t = 0 and where d instead of indicating channel dimension it is used as follows:

d = 3 if the channel is a West Half Plane x- channel
d = 3 if the channel is an East Half Plane x+ channel
d = 2 if the channel is a y channel
d = 1 if the channel is a West Half Plane x+ channel
d = 1 if the channel is an East Half Plane x- channel

The remaining digits of the subscript rfx do not change. Digit d of the subscript of the

added Fault-Handling channels is shown in Figure 5.12. It is easy to verify from Equation

5.9 that R will assign next step channels that have a decreasing subscript. Therefore the

Extended Channel Dependency Graph is acyclic and by Theorem 3.2 R is deadlock-free

when a fault occurs along the y dimension. 0

5.5.3 Proving Deadlock Freedom In Two Dimensions

Assertion 5.3 Reliable Adaptive Routing in two dimensions is deadlock-free.

68

69
5.5. PROOF OF DEADLOCK FREEDOM

Y (O)

x (1)

Figure 5.12: dth digit of Fault-Handling channel subscripts

____�·1_1___�_

70 CHAPTER 5. RELIABLE ADAPTIVE ROUTING

Proof Assertions 5.1 and 5.2 indicate that when a non-transient fault occurs either along

the x dimension or along the y dimension, no cycles are introduced to the Extended Channel

Dependency Graph. Therefore by Theorem 3.2 Reliable Adaptive Routing is deadlock-free

in two dimensions.

5.6 Extending the Proof to Arbitrary Dimensions

It is very easy to extend the proof of deadlock freedom to a k-ary n-cube with n > 2. In

this section we will provide a detailed sketch of such a proof.

5.6.1 Fault Along Dimension n - 1.

In this case, the Channel Dependency Graph before the Fault can be modeled exactly

as that of Figure 5.9. The only difference is that all the nodes now are not channels of

dimension x but of dimension n - 1. The CDG after the fault is very similar to the one in

Figure 5.10. The only difference is that channel 2P is not split into two separate nodes, but

into 2(n - 1) nodes. The discussion related to the steps necessary to restructure the CDG

does not change at all, except for the fact that node 2P has been split into more than two

nodes. We conclude that there are no cycles in the Channel Dependency Graph.

5.6.2 Fault Along Dimension d such that 0 < d < n -1

This is a trivial case. In this case only Fault-Handling channels of dimension d' < d can be

added to the C1 channel subset. The CDG in this case can be derived from the CDG of

the previous case by rotating the dimensions, and removing a finite number of nodes and

arrows. No cycle can be introduced this way.

5.6.3 Fault Along Dimension 0

This case presents no difference at all from the two-dimensional case. Reliable Adaptive

Routing only adds Fault-Handling channels on the plane spanned by dimensions 0 and 1.

5.6.4 Proving Deadock Freedom in n Dimensions

We can formulate the previous discussion in the following Assertion:

I .111

5.7. SUMMARY

Assertion 5.4 Reliable Adaptive Routing in a k-ary n-cube without wraparound connec-

tions is deadlock-free.

5.7 Summary

This section has presented Reliable Adaptive Routing, an adaptive routing algorithm for

k-ary n-cubes without wraparound connections that can tolerate a fault anywhere in the

network, even along the edges. RAR needs three virtual channels per physical channel:

One Adaptive, one Dimension-Ordered and one Fault-Handling. The routing decision under

RAR needs only consider local information. It does not depend on any past routing decision

except for the fact that a message currently uses Fault-Handling channels. As a result RAR

is easy to implement in a real system and does not require message header modification.

Reliable Adaptive Routing is provably deadlock-free.

71

Chapter 6

The Virtual Channel Dependency
Analyzer

This chapter describes the Virtual Channel Dependency Analyzer (VCDA), a software tool

that helps the designer of a wormhole routing algorithm visualize the dependencies among

virtual channels, and also verify that a certain routing algorithm is deadlock-free. VCDA is

particularly designed for the Reliable Adaptive Routing algorithm presented in chapter 5.

Additional functionality can easily be built into it so that it can work with any wormhole

routing algorithm with a small number of virtual channels. The main engine of the Analyzer

is written in C. Certain parts (such as the graphical user interface and the graph drawing

modules are written in Tcl [Ous94] and use Tk Toolkit widgets.

6.1 Functional Description

The Virtual Channel Dependency Analyzer can perform the following tasks:

1. It creates and displays graphically a structure that represents a 4 by 4 mesh. It

displays address and port status information on each network node.

2. It creates and displays graphically a structure that represents the Extended Channel

Dependency Graph (chapter 5) that corresponds to Reliable Adaptive Routing. The

Extended Dependency Graph includes all the direct and indirect dependencies among

the Dimension-Ordered channels of the 4 by 4 mesh. The program can be instructed

to display the direct dependencies only, so that the diference between the two types

of dependencies can be visualized.

72

I Hl l

6.2. A SAMPLE SESSION WITH VCDA

3. The program can be instructed to search for cycles in the Extended Dependency

Graph. If it does not find any cycles, it informs the user that the algorithm is

deadlock-free. On the other hand, if it succeeds in finding a cycle, it displays the

cycle graphically.

4. The user is able to specify a particular fault location by filling out the fault position in

a dedicated dialog box. The program marks the link specified as faulty. The user can

then instruct the program to display the Fault-Handling channels (chapter 5) that

are put into use by RAR. Moreover, the user can obtain a dependency graph that

includes only the dependencies that concern Fault-Handling channels. This feature

is quite useful for visualization of the alternative paths that are available around a

faulty link. The user can then launch again the cycle-search feature and verify that

the algorithm is deadlock-free in the presence of faults.

5. Finally, the program can run an exhaustive analysis where it verifies that the algorithm

is deadlock-free for all possible fault positions.

6.2 A Sample Session with VCDA

This section essentially constitutes a tutorial on using the Analyzer.

6.2.1 Program Manager

As soon as the program is launched from the command line, it displays the Program

Manager window shown in Figure 6.1. All features of the tool are enabled from this window.

The commands are grouped according to their functionality.

6.2.2 Building and Displaying the Network

The user must first click on the Build Network button. This button enables a C procedure

that builds the network data structure. When the structure is built, a Tcl script is invoked

which creates a window and graphs the network. This window is shown in Figure 6.2. The

white dots on both sides of each link, represent the port status flag associated with each

link within each node. White indicates a functional link whereas red indicates a faulty link.

In Figure 6.2 all links are functional since we have not specified any faults.

�II__

73

74 CHAPTER 6. THE VIRTUAL CHANNEL DEPENDENCY ANALYZER

Figure 6.1: The VCDA Program Manager.

The Display Network command can be invoked at any time during the session after the

Create Network command has been run. This command simply reproduces the network

graph of Figure 6.2 without recreating the underlying network structure.

6.2.3 Creating the Dependency Graph

The next step is to click on the Create All Dependencies button. This action invokes a series

of routines and scripts that create the Extended Channel Dependency Graph and display

it on the screen as shown in Figure 6.3. In the same fashion, the Display All Dependencies

command can be invoked at any time after the Create All Dependencies command has been

run. It reproduces the graph without rebuilding the underlying structure.

The Display Direct Dependencies command may also be invoked after creating all the

dependencies. The effect of this command is a graph of the direct dependencies only. This

graph is shown in Figure 6.4. Comparing Figures 6.3 and 6.4 can be helpful in visualizing

the difference between direct and indirect dependencies.

6.2.4 Looking for Deadlocks

Clicking on the Look for Deadlocks button enables the cycle-search algorithm. VCDA.almost

immediately notifies the user that the analysis is complete and prompts him or her to click

I "I1

6.2. A SAMPLE SESSION WITH VCDA 75

Figure 6.2: The VCDA Network Window.

I 'I

76 CHAPTER 6. THE VIRTUAL CHANNEL DEPENDENCY ANALYZER

Figure 6.3: The Extended Channel Dependency Graph as displayed by the VCDA.

6.2. A SAMPLE SESSION WITH VCDA

Figure 6.4: The Direct Channel Dependency Graph as displayed by the VCDA.

- - -

'.. I . . ., ..

77

78 CHAPTER 6. THE VIRTUAL CHANNEL DEPENDENCY ANALYZER

Figure 6.5: Notification that the algorithm is deadlock-free.

Table 6.1: Correspondence between port numbers and link positions.

on the Results button. If the program did not find any cycles, it will display the notice

shown in Figure 6.5. Otherwise, it will display a window such as the one in Figure 6.6

where it will draw the cycle that was found. This information can help the user understand

the nature of deadlocks and redesign the routing algorithm.

6.2.5 Placing Faults

The Fault Analysis is actually the most interesting part of the tool. After the user has

verified that the fault-free version of the algorithm is deadlock-free, he or she should enter

the fault analysis stage. Clicking on the Fault Placement button pops the dialog box of

Figure 6.7. The three numbers shown in the dialog box uniquely identify a link in the

network. The correspondence between port number and link position is shown in Table 6.1.

As soon as a fault location is specified, the user must rerun the Create Network and the

Create All Dependencies commands. The network structure needs to be updated to reflect
the faulty link information. Moreover, the dependency graph must also be updated to reflect

the addition of Fault-Handling channels and corresponding dependencies. When there is a

fault specified, the Create Network command also displays the Fault-Handling channels that

are put into use by the routing algorithm. Figure 6.8 shows the Fault-Handling channels for

fault location (1,1,1) and Figure 6.9 shows the Fault-Handling channels for fault location

(1,1,3). It is interesting to observe the similarity between figures 6.8 and 5.5 and figures 6.9

and 5.7.

Port Number Link Position
0 x-
1 z+

2 Y

3 Y+

6.2. A SAMPLE SESSION WITH VCDA 79

Figure 6.6: The VCDA displays a cycle in the Extended Channel Dependency Graph.

I ! 11

80 CHAPTER 6. THE VIRTUAL CHANNEL DEPENDENCY ANALYZER

Figure 6.7: The Fault Placement dialog box.

Clicking on the Display FH Dependencies button produces the graphs shown in Fig-
ures 6.10 and 6.11 respectively. These graphs display the dependencies that involve Fault-

Handling channels. Fault-Handling channels are depicted as red arrows placed in parallel

with the blue arrows which represent the Dimension-Ordered channels that share the same

physical link. These figures have been used by the author to validate the observations and

assertions presented in chapter 5.

After going through this step, the user can reinvoke the cycle-search feature, and verify

that Reliable Adaptive Routing is deadlock-free in the presence of faults.

6.3 VCDA Internals

This section constitutes a brief overview of the tool implementation.

6.3.1 Object Representation

The most important data structure that is created and maintained by the Analyzer, is the

Channel Dependency Graph (CDG). The CDG is an array of structures of the type defined

below:

typedef struct _vcnode {
int valid; /* Channel used */

int xaddr; /* Source x address */

int yaddr; /* Source y address */

int port; /* port number */

int type; /* 0 do, 1 fh */

int color; /* for cycle search */

int depindex; /* number of dependencies */

struct _vcnode *deps[TOTALVCS]; /* Dependency array */

6.3. VCDA INTERNALS

Figure 6.8: Fault-Handling channels added due to a fault along the x dimension. The fault
position is (1,1,1).

81

CHAPTER 6. THE VIRTUAL CHANNEL DEPENDENCY ANALYZER

Figure 6.9: Fault-Handling channels added due to a fault along the y dimension. The fault
position is (1,1,3).

I .:111

82

6.3. VCDA INTERNALS

Figure 6.10: Dependencies involving Fault-Handling channels for a fault along the x dimen-
sion. The fault position is (1,1,1).

83

THE VIRTUAL CHANNEL DEPENDENCY ANALYZER

Figure 6.11: Dependencies involving Fault-Handling channels for a fault along the y dimen-
sion. The fault position is (1,1,3).

84 CHAPTER 6.

--- .. .- , , . ; -.

6.3. VCDA INTERNALS 85

} vcnode;

This structure represents each virtual channel as a node in the channel dependency graph.

The valid field is necessary so that Dimension-Ordered virtual channels can be invalidated

and Fault-Handling channels be put in use in case of a fault.

The next three fields are self-explanatory. They: uniquely identify the position of the

virtual channel in the network. The type field distinguishes between Dimension-Ordered

and Fault-Handling channels. The color field is used by the cycle-search algorithm and will

be decribed in a following section. The depindez field keeps a count of the number of the

dependencies that depart from the particular virtual channel. Finally, the deps field is an

array of pointers to other virtual channel structures. These pointers represent the direct

and indirect dependencies that depart from each virtual channel.

When the program is launched, an array of all the virtual channels is created. When the

user presses the Create All Dependencies button, the program exhaustively cycles through

the virtual channels and creates all possible dependencies using the Reliable Adaptive Rout-

ing algorithm described in chapter 5. Dependencies are created by the following function:

void createdependency(vcl, vc2)

vcnode *vcl;

vcnode *vc2;

int alreadyindep;

int i;

alreadyindep=O;

if ((vcl!=NULL) && (vc2!=NULL)){

if ((vci->valid) && (vc2->valid))(

for (i=O; i<(vcl->dep_index); i++){

if ((vcl->deps[i]) == vc2)

alreadyindep=l;

if (!already_in_dep){

vci->depsCi]= vc2;

(vcl->dep_index)++;

CHAPTER 6. THE VIRTUAL CHANNEL DEPENDENCY ANALYZER

}
}

The function avoids duplicate dependecies by first checking whether the dependency that
is about to create already exists. Finally upon exiting, it increments the dependency count.

6.3.2 The Cycle-Search Algorithm

The cycle-search algorithm loops through all the valid virtual channels and invokes the

following recursive function on each one:

int isthereacycle(vc)

vcnode *vc;

{
int i;

if((vc->color)==1)

return(l);

(vc->color) = 1;

for (i=O; i<(vc->dep_index); i++) {

if (is_there_a_cycle(vc->deps i]))

return(l);

}

(vc->color) = O;

return(O);

}

Virtual channels are initialized to have color 0. The above function essentially traverses

the dependency tree of each virtual channel and marks with color 1 the nodes it has visited.
If it finds a node of color 1, this means that the particular node has been traversed twice,
and therefore there is a cycle. If it fails to find a cycle, it changes the color of the nodes

back to 0.

86

6.3. VCDA INTERNALS

6.3.3 Interfacing Tcl and C

Tcl and Tk widgets [Ous94] have been used to construct the graphical user interface of

Figure 6.1 as well as all the network and channel dependency graphs. Tcl is invoked within

C functions in the following way:

First, a Tcl interpreter is created using the following command:

TclInterp *interp;

interp = TclCreateInterp();

Then, the Tcl application main window [Ous94] is created in the following way:

TkWindow mainWindow;

mainWindow = TkCreateMainWindow(interp, display, "Network", "Tk");

A Tcl script can be evaluated using the interpreter that was previously created in the

main application window using the following code line:

TclEvalFile(interp, "network.tcl");

Multiple Tcl interpreters can be instantiated by a single C application. In fact, each

button in the Program Manager of Figure 6.1 instantiates a new interpreter and runs a
dedicated script.

One-way communication between the C application and Tcl has been implemented using

string passing. As a concrete example, the C function that draws the channel dependency

graph loops through all the virtual channels and each time it finds two channels linked by

a dependency executes the following lines:

sprintf (Tclcommand, "makedep d d 'Yd .d Y.d d \"V.s\"",

xl,yi,pi,x2,y2,p2, color);

Tcl_Eval(interp, Tclcommand);

In this case make-dep is a Tcl procedure which was defined in a Tcl script that was

evaluated with interp sometime in the past. Given two virtual channels in terms of x

address, y address, and port number it computes x,y coordinates for a spline curve that

connects them. These spline curves are the arrows that represent the channel dependencies

in the graphs.

87

I :111

88 CHAPTER 6. THE VIRTUAL CHANNEL DEPENDENCY ANALYZER

Communication from Tcl to C must also be implemented. As an example consider the

dialog box where the user specifies the fault position. The fault coordinates are Tcl variables

and C must be enabled to access them. This achieved by the following line:

TclLinkVar(interp, "xf", (char *) xf, TCLLINKINT);

In this way, variable f is common to both environments.

The final piece of the interface is registering C functions as Tcl procedures. This is

extensively used in the implementation of the Program Manager, where clicking on a button

invokes an underlying C function registered as a Tcl procedure. This can be done as follows:

Tcl_CreateCommand(interp, "CreateNetwork", CreateAndDisplayNetwork,

(ClientData) NULL, (TclCmdDeleteProc *) NULL);

In this example, CreateAndDisplayNetwork is a regular C function, which is registered as

Tcl procedure CreateNetwork. Additional Tcl code is necessary to bind the Tcl procedure

to a specific button.

In general, the interface between the two environments is easy, straighforward and works

really well. All the above functions are defined in em tcl.h and tk.h. These files must be

included in the C code. Finally the code must be compiled with the -tcl and -Itk flags.

6.4 Future Work

Currently, the Virtual Channel Dependency Analyzer only implements the Reliable Adap-

tive Routing algorithm of chapter 5. The routing algorithm portion can be made sufficiently

programmable so that it can work with any mesh wormhole routing algorithm. The main

difficulty is how to represent more than two virtual channels on the channel dependency

graph. Right now, each Fault-Handling channel is drawn as an arrow parallel to the arrow

that represents the Dimension-Ordered channel that shares the same physical link. This

method helps in the visualization of the algorithm since each virtual channel is drawn at

its true location within the network. On the other hand, this scheme does not scale for a

large number of virtual channels. It will produce cluttered and indecipherable diagrams.

The ultimate goal is to make the tool available to the parallel computer routing community

if and when these problems are solved.

6.5. SUMMARY 89

6.5 Summary

This chapter has described the Virtual Channel Dependency Analyzer, a software tool that

aids in the visualization of Reliable Adaptive Routing especially in the presence of faults.

Moreover, it includes a feature that checks for dependency cycles. This essentially proves

deadlock-freedom by directly applying Theorem 3.2. The VCDA has been used to provide

independent verification of the Reliable Adaptive Routing algorithm.

I .111

Chapter 7

Implementation Issues

This chapter presents an implementation of Reliable Adaptive Routing in two dimensions.

This routing logic is used in the MIT Reliable Router [DDH+94b] [DDH+94a], a high

performance routing chip for two-dimensional meshes. The routing logic presented in this

chapter is a big block of combinational logic that computes the next step route based on

current message position, destination address and output virtual channel availability. For

reasons that will be explained later, we call this block of combinational logic the Optimistic

Router.

The Optimistic Router has been designed to support five virtual channels instead of the

three that are required by Reliable Adaptive Routing. We add one more virtual channel

to the adaptive pool to be used as an extra lane [Dal92]. Moreover, we add one more

Dimension-Ordered virtual channel to implement two separate message priorities. Message

priorities are essential in a message-driven computer for software deadlock avoidance.

The Optimistic Router assumes that there is a processor input/ output interface on each

network node for message injection and consumption. Moreover, it also assumes that there

is a serial diagnostic interface which may also inject and consume messages. This interface

can be useful for system testing and diagnostics.

7.1 Input and Output Specification

The Optimistic Router needs the following information to make a routing decision:

90

7.1. INPUT AND OUTPUT SPECIFICATION

0

1

2
3
4
5
6
7

8
9

Message needs to route to x- dimension
Message needs to route to x+ dimension
Message needs to route to y- dimension
Message needs to route to y+ dimension
Message needs to route to the processor
Message needs to route to the diagnostic interface
Message priority
Message is one hop from destination
Message is one hop from destination in the x dimension
Message is on a fault handling channel

Table 7.1: Routing Problem Decomposition

7.1.1 Routing Problem

The Routing Problem (rp[9:0]) is a 10-bit value that indicates all the possible directions that

the message can route to move closer to its destination. The Routing Problem also includes

bits that indicate whether the message should exit the network and be directed to either the

processor or the diagnostic interface, mesage priority and whether message distance from

destination along dimension 1 (in this case) is equal to one. This information is used by

the Fault-Handling computation as can be seen from Equation 5.9. The full decomposition

of the Routing Problem is shown in Table 7.1.

The need for bits 0 through 5 is obvious and does not require further explanation. Bit

6 (priority) is necessary because the particular implementation of the routing algorithm

supports message priorities. Messages that have different priority (0, 1) use a different set

of Dimension-Ordered virtual channels but they share the same pool of adaptive channels.

Bit 7 is used to direct a message to a neighboring processor instead of its original recipient.

When a message is received on a Fault-Handling channel (as indicated by bit 9), it is only

one hop away from its destination, and the link that leads it to its original destination is

down, then it is consumed by the local processor. This is illustrated in Figure 7.1. Bits 8

and 9 are both used by the routing algorithm to determine whether a message must use

Fault-Handling channels throughout the rest of its course.

The Routing Problem is generated by another piece of combinational logic which essen-

tially compares the header of the incoming message with the local address. This scheme

implies that the header of each message carries the absolute address of the message, desti-

nation. An alternative approach could be to use relative addressing: The header of each

Explanation

91

Bit

I 11

92 CHAPTER 7. IMPLEMENTATION ISSUES

MeeeIsfi Coneumel Oreignal
l ghbor Node Rigp

Figure 7.1: Routing a message to the neighboring node instead of the original recipient.

Table 7.2: Virtual channel avaliability information.

message carries the current offset of the message from the destination location. When the

message is routed along a certain dimension, the corresponding offset is decremented by

one. The absolute scheme was prefered over the relative one because it conforms with one

important requirement we set back in Chapter 2: Intermediate nodes should not modify

the header of a message. The contrary would prohibit an end-to-end error-correcting layer

that would also include message headers.

7.1.2 Output Virtual Channel Availability Information

The Optimistic Router also needs as an input a 30-bit quantity (free[29:0]) which rep-

resents the state of each output virtual channel (allocated / not allocated). Five bits are

necessary to represent the virtual channels of each port including the processor and the

diagnostic. A 1 in free[x] means that virtual channel z is not currently allocated to a mes-

sage. Table 7.2 shows how the bits are divided among the six ports. Table 7.3 shows how

the free bits are distributed among the virtual channels within a single port.

The free [29:0] flags are implemented as a bank of RS-latches. Each latch is set when the

corresponding virtual channel is allocated to a message head, and is reset when the tail flit

x- Virtual Channels
x+ Virtual Channels
y- Virtual Channels
y+ Virtual Channels
Processor Virtual Channels
Diagnostic Virtual Channels

free [4:0]
free [9:5]
free [14:10]
free [19:15]
free (24:20]
free [29:25]

7.1. INPUT AND OUTPUT SPECIFICATION

Table 7.3: Virtual channel bit assignment within a single port.

Table 7.4: Correspondence between port-status bit and link positions.

of the message leaves the node and releases the virtual channel.

7.1.3 Port Status Information

The routing decision also needs information regarding the status (faulty / operational)

of each one of the four physical links (x-,x+,y-,y+). The Optimistic Router assumes

that the processor and the diagnostic links are always operational. A 4-bit quantity

(port-status[3:0]) is used to denote with 1 an operational link, and with 0 a faulty link.

Table 7.4 shows the correspondence between port status bits and link positions.

7.1.4 Routing Answer

The output of the Optimistic Router is a 12-bit quantity (routing.answer [11:0]). The first

five bits indicate the output virtual channel in fully decoded form, and the next six bits

indicate the output port in decoded form as well. The full decomposition of the routing

answer is shown in Table 7.5.

Bit Position Virtual Channel
0 Adaptive Channel 0
1 Adaptive Channel 1

2 Dimension-Ordered Channel, Priority 0
3 Dimension-Ordered Channel, Priority 1
4 Fault-Handling Channel

Port status bit Link Position
0 s-
1 x+

2 Y-
3 Y+

93

I .111

94 CHAPTER 7. IMPLEMENTATION ISSUES

Table 7.5: Routing Answer Decomposition

7.2 Optimizing Circuit Latency

The high clock frequency of the Reliable Router chip (100 MHz) places tight requirements

on the latency through the Optimistic Router. In order for a clock frequency of 100 MHz

to be achieved, the total delay for the routing computation must be well below 10 ns.

Techniques such as computation parallelization and preprocessing of output virtual channel

availability information have helped bring the latency down to the desirable level.

7.2.1 Parallel Computations

Although the flowchart of Figure 5.3 depicts RAR as a serial computation, we have decided

to parallelize it as much as possible. Figure 7.2 shows the gross organization of the Opti-

mistic Router. The inputs are broadcast to each of the five computation modules shown.

Note that port status information is not broadcast to the processor and diagnostic module.

Port status only includes information pertinent to the x-, x+, y-, y+ links. Each module

independently computes a routing answer. A multiplexer selects the final answer based on

the failure or success of each computation to produce an answer. The logic circuit will be

described in more detail in section 7.3.

7.2.2 Preprocessing Output Virtual Channel Availability Information

The Reliable Adaptive Routing algorithm as shown in the flowchart of Figure 5.3 imposes

a prioritization among the five virtual channels of each port. Let free[4:0] be the avalable/

non-available flags that describe the virtual channels of an output port as shown in Table

7.3. We can make the following observations:

Bit Field Explanation
[4:0] Output virtual channel

5 Output Controller x-
6 Output Controller x+
7 Output Controller y-
8 Output Controller y+
9 Processor Output

10 Diagnostic Output
11 Priority

7.2. OPTIMIZING CIRCUIT LATENCY

Free

Port
Status

Routing
Problem

Routing
Answer

Figure 7.2: Parallel computations in the Optimistic Router.

1. If any of the two available Adaptive virtual channels is free, then the algorithm will

never pick a Dimension-Ordered channel. Therefore, we can employ preprocessing

logic to set the corresponding free bits (free[3:2]) to zero when either free[l] or free[O]

are set. We cannot do the same for the Fault-Handling channel. It is possible for

RAR to pick a Fault-Handling channel when there are free Adaptive channels: When

there is a fault along the y dimension, all messages that use Fault-Handling channels

cannot switch back to the other classes.

2. If both Adaptive channels are free, then we can employ deterministic preprocessing

logic that picks one among the two. No such prioritisation logic can be employed

for the two Dimension-Ordered channels since they are used by messages of different

priority.

The two observations above can lead to an encoding scheme for the free bits (free[4:0]) of

each output port as shown in Table 7.6.

The processor and diagnostic output ports also have five virtual channels. These virtual

channels do not have the meaning thet they have within each port. They are simply used

as five different lanes with equal properties. In this case we can employ prioritisation logic

that picks in a deterministic fashion only one out of the free virtual channels. Such an

encoding is shown in Table 7.7.

Preprocessing the output virtual channel state has yielded two main benefits:

First, the Optimistic Router circuit has been simplified and made faster. Necessary

computation for the routing decision has been pushed back and removed from the critical

path. The total silicon area has been reduced. The Reliable Router has a total of 30 copies

95

I .JJI

CHAPTER 7. IMPLEMENTATION ISSUES

Table 7.6: Encoding of free bits within each network port.

Table 7.7: Encoding of free bits within the processor and diagnostic ports.

96

free[4:0] Encoded free[4:0]
00000 00000
Oxxxl 00001
Oxxl0 00010
00100 00100
01000 01000
01100 01100
10000 10000
lxxxl 10001
1xxlO 10010
10100 10100
11000 11000
11100 11100

free[4:0] Encoded free[4:0]
00000 00000
xxxxl 00001
xxxl0 00010
xx100 00100
x1000 01000
10000 10000

7.3. LOGIC CIRCUIT SCHEMATICS

of the Optimistic Router logic. There is one copy for each input virtual channel so that

the routing logic is not a shared resource. In this fashion, an extra level of arbitration

and serialization is removed and performance is increased. By factoring out the channel

prioritization logic, gains in silicon area are substantial because there is a multiplicative

factor of 30 involved.

Second, channel prioritization has made possible the exhaustive validation of the Opti-

mistic Router logic circuit. Channel prioritization has reduced the total input state space of

the logic by a huge factor. More specifically, free[29:0] can have a total of 230 = 1.0737 x 109

different values if it is not encoded. If the encodings of Tables 7.6 and 7.7 are performed,

free[29:0] may take a total of 124 x 62 = 746496 different values. This reduces the number of

iterations required to check the circuit exhaustively by a factor of about 1438. It currently

takes about 18 hours of computation on a relatively unloaded Sparcstation 10 to validate

the Optimistic Router. Without channel prioritization, exhaustive validation would take

about 2.95 years! Alternative validation methods (i.e. randomized inputs) would have to

be sought in such a case.

7.3 Logic Circuit Schematics

The exact schematics of the Optimistic Router have been included in appendix A. Figure

7.3 shows a block diagram of the logic.

Each one of the four blocks contains necessary logic to compute an output port number

and an output virtual channel based on the routing problem, the port status and the
free virtual channels at that time. We can make the following observations regarding the

circuitry external to these blocks:

1. If the processor or the diagnostic port is the output port, the other three computations
are invalidated. The reason that this invalidation is necessary is to force the virtual

channel output of the three blocks to be zero, so that the final multiplexing can be

implemented by a simple 4-wise OR.

2. Success of the Adaptive or Dimension-Ordered computation may invalidate the Fault-

Handling computation. This is consistent with the flowchart of Figure 5.3.

3. Success of the Fault-Handling computation may invalidate the Dimension-Ordered

and the Adaptive computation. This happens when a fault along the y dimension has

forced the use of Fault-Handling channels only throughout the rest of the message
course.

97

98 CHAPTER 7. IMPLEMENTATION ISSUES

I
I
I

II
I

Figure 7.3: Block Diagram of Optimistic Router logic circuit.

I 111

7.4. LOGIC SIMULATION AND VALIDATION

4. There is no invalidation of the Dimension-Ordered computation by the Adaptive com-

putation although this seems necessary from the definition of Reliable Adaptive Rout-

ing. The Adaptive computation has already priority over the Dimension-Ordered

computation through the free channel state encoding of Table 7.6.

For detailed schematics, the reader is encouraged to refer to appendix A.

7.4 Logic Simulation and Validation

The Optimistic Router schematics have been exhaustively validated. Gate-level Verilog

code has been extracted from the schematics of appendix A. A wrapper in Verilog has been

written which performs the following tasks:

1. It instantiates a Verilog module which contains the extracted schematics.

2. It contains a high-level procedural description of the Reliable Adaptive Routing algo-

rithm.

3. It generates all possible input vectors for rp[9:0], free[29:0], and port-status[3:0].

4. It iterates through all the possible values of the above inputs. There is a total of

6.569164 x 108 such iterations.

5. During each iteration, it compares the routing answer from the extracted schematics

with the routing answer from the procedural description. If it finds a mismatch, it
stops and prints relevant state.

Figure 7.4 shows the validation process in a flowchart form. The Verilog code which

performs the validation has been included in Appendix B.

The Verilog code has been compiled to C using the Chronologic Verilog compiler (VCS).

The resulting C code has been compiled using the GNU optimizing compiler (gcc -03). The

complete run requires approximately 18 hours of computation on a Sparcstation 10. Since

there is substantial coarse grain parallelism, the validation process has been partitioned

in three independent parts and has been run on different machines simultaneously. The

schematics have successfully passed the validation stage.

99

100 CHAPTER 7. IMPLEMENTATION ISSUES

Figure 7.4: Schematic validation process

Exit and Print
Inputs
and Differing Outputs

7.5. DETERMINING CIRCUIT DELAY

Table 7.8: Optimistic Router rise and fall delays across all process corners.

7.5 Determining Circuit Delay

The Optimistic Router critical path has been simulated using the Hspice circuit simulator.

A load consisting of a single 2x inverter per output was used for the simulation. The device

models used are the ones for the hp26 1 3-metal layer process. Table 7.8 and Figure 7.5

summarize the results of the simulation across all process corners. The rise and fall delays

are measured from when the input achieves 10% of its final value until the output achieves

90% of its final value. An input rise and fall time of 0.5 ns has been assumed. The Hspice

driver and the netlist used in these experiments have been included in appendix C.

The critical path simulated has been determined as the path that goes through the largest

number of logic gates between input and output. It is necessary to note that inputs free[29:0]

and port-status[3:0] do not enter the critical path. The architectural design of the Reliable

Router [DDH+94a] pushes the stabilization of these inputs well into the previous cycle. As

can be seen from the results, the routing computation needs slightly more than half a clock

cycle even in the slowest possible process corner.

7.6 Circuit Layout

The circuit has been laid out using hand placement and routing of standard library cells.

Cell instantiation, placement and routing have been done using relevant database calls

accessible through the SKILL language and environment. The layout of the circuit is shown

in Figure 7.6. It has 10 rows of standard cells, each 472 A wide. The figure shows the silicon

area allocated to each of the separate computations of Figure 7.2. Table 7.9 summarizes

the physical characteristics of the circuit.

Process Corner Rise Delay (ns) Fall Delay (ns)
Nominal 4.01 1.37
Fast Speed 2.99 1.03
Slow Speed 6.79 2.25
Fast N Slow P 3.92 1.40
Slow N Fast P 3.76 1.34

101

CHAPTER 7.

.lp11.1tC ~6t31 M3616 cu

I-

P -r .366"

3,13U6111 11. $1 P61C CUe

61. -1

I

IMPLEMENTATION ISSUES

WIIUISIIC 6l11. taHI 1311 coC

. i -

5.6. -. -
3.6 -

l. AAAa6 AM~aiaA - - --

1.6 -

.8.6 l

I.5,

* WOtPitI mmC rat g MI I AL P 66Ca1

a 163.tm a.

3.-11I..e -

1.i6

3.53

6.. -
see." -

Ir 1 itE

ll.,t

. law6..

WI"?l'.

II.-

£I.

ti OP ing mM 1ge. 51 3 a r sT s com

II11g.111S

hUhRt 55

Figure 7.5: Hspice transient analyses of the Optimistic Router critical path across all process
corners. The first plot of each of the five diagrams shows a square wave input with rise and
fall times equal to 5ns. The second plot of each diagram is the response of the Optimistic
Router. Each diagram corresponds to the process corner indicated by its title.

I .111

102

I.

3.1 =

I .

..
.... " .

I

I

7-
I
.

. ,,

....
= I .

.... ' .
-

.

. l----

,.W I .W'-'
rl.. . i I n ..

. . . ran' ' A_ X ran C�-LIIl ~

1. 1

....

.· u

Y·LL .. . · · · · | -· . a YI-L

- w ,--.....

: = = = I =

l .r'IIIC ,-... - .

' |.@

1. .

I '
·. r

I··. ·�I
I
a ---- :

1.8:

... i -..
·

I

I

_......'^
I

i
...

l r- l I
.|@

"."i
... o

r.z
. *.

I l

I

I!

II I.

7.6. CIRCUIT LAYOUT

Final Multiplexing
Area: 96760 h2

Figure 7.6: Optimistic Router layout

1808

1 472 X I

103

I :lJi

104 CHAPTER 7. IMPLEMENTATION ISSUES

Table 7.9: Optimistic Router physical characteristics.

Table 7.10: Extracted layout rise and fall delays across all process corners.

7.6.1 Determining Latency Using Extracted Layout

Critical path Hspice circuit simulation has been run again on a netlist produced from

the extracted circuit layout. These results are slightly more accurate because the netlist

includes interconnect capacitances and exact values for device source and drain parasitic

capacitances. The input rise and fall time was again assumed to be 0.5 ns and the output

load is a 2x inverter. The results are summarized in Table 7.10. As expected, there is

minimum deviation from the schematic results of Table 7.8.

7.7 Layout Verification

The circuit layout has been verified using Cadence DIVA for both Design Rule Checking

(DRC) and Layout vs. Schematics (LVS). DRC has been checked using the MOSIS A-

based design rules [MC80]. The LVS part of the verification involves extracting a textual

netlist from both the schematic view and the extracted layout view. Then DIVA checks for

matching nets, devices and parameters. DIVA has a number of advanced features including

full device permutability.

The Optimistic Router has passed both stages of layout verification.

Number of transistors 734
Number of nfets 367
Number of pfets 367
Heighth (A) 1,808
Width (A) 472
Area (2) 853,376

Process Corner Rise Delay (ns) Fall Delay (ns)
Nominal 3.67 1.63
Fast Speed 2.78 1.29
Slow Speed 6.00 2.60
Fast N Slow P 3.53 1.58
Slow N Fast P 3.34 1.57

7.8. SUMMARY 105

7.8 Summary

This chapter has presented the logic and physical design of the Optimistic Router, a block

of combinational logic that implements Reliable Adaptive Routing. The Optimistic Router

is part of the Reliable Router chip, a high-performance network switching element. The

design has undergone exhaustive logic simulation. The delay of the circuit has been fully

characterized across all process corners. Finally, the circuit has been laid out in silicon and

has passed the necessary verification steps.

I II

Chapter 8

The Big Picture

An adaptive and fault-tolerant routing algorithm is a necessary but not sufficient ingredient

for the construction of a reliable and high-performance multicomputer interconnection net-

work. This chapter briefly describes how Reliable Adaptive Routing fits into the Reliable

Router chip. The Reliable Router (RR) is a high-performance network switching element

targetted to two-dimensional mesh topologies. It is designed to run at 100 MHz. The

Reliable Router uses Reliable Adaptive Routing coupled with the Unique Token Protocol

[Den91] to increase both performance and reliability. The RR can handle a single non-

transient node or link failure anywhere in the network without interruption of service. The

first section of this chapter briefly describes the architecture of the chip.

Reliable Adaptive Routing cannot handle by itself a fault in the network at all times.

A retransmission protocol is also necessary to ensure message delivery when a message

(worm) is cut in half as a result of a link fault. The second section of the chapter describes

the Unique Token Protocol, an efficient retransmission and duplicate detection mechanism

which uses network buffer storage to keep duplicate copies of messages.

8.1 Brief Architectural Description

The top level organization of the Reliable Router is shown in Figure 8.1. There is one Input

Controller and one Output Controller for every direction. Moreover, there is a processor

input/output and a diagnostic input/output. Communication between an input and an

output controller occurs through a crossbar switch. The switch is a full crossbar and allows

each input controller to connect to every output controller. Non-adaptive routing systems

that implement more restrictive routing algorithms do not need a full crossbar switch.

106

8.1. BRIEF ARCHITECTURAL DESCRIPTION

I.. INO~

IN1

E11
IJ-

PROCIN

DIAIN

Figure 8.1: Organization of the Reliable Router.

The architecture of the chip is more accurately depicted by Figure 8.2. The input and

output controller that correspond to a given network direction have been grouped into

a block called a Port. The system consists of six ports including the processor and the

diagnostic. The four ports that correspond to the four network directions are bidirectional.

The processor and the diagnostic ports use separate unidirectional pins for inputs and

outputs. The crossbar switch has been distributed among the six ports. Each port contains

a six-way multiplexer. This multiplexer allows the outputs of all six input controllers to be

connected to each one of the six output controllers, thus ensuring full connectivity.

Each input controller includes five FIFO buffers for each one of the five virtual channels

that are implemented. Moreover, it includes five copies of the Optimistic Router logic,

one per virtual channel. Once a message reaches an input port, the head flit is fed into

the corresponding Optimistic Router, and the data flits are stored in the corresponding

FIFO. The Optimistic Router will decide which output port and output virtual channel the
incoming message is going to arbitrate for. The multiplexers of Figure 8.2 are controlled

by arbiters that serialize the requests for the same output controller. This is the reason

that we call the routing logic Optimistic: Even though it can produce an answer in terms

of an output port and an output virtual channel, it is not certain whether the message will
actually get to that port during the next cycle because other messages from other ports
may want to go there too. Each arbiter makes a randomized decision among the messages

that request the same output controller.

107

CROSSBAR
SWITCH

--EH

-EEI
--EH

-CH]
--1EE

CHAPTER 8. THE BIG PICTURE

Ports

Figure 8.2: Architecture and rough floorplan of the Reliable Router chip.

I Ill

108

U

Port4

U

U

-

II
I_

II
�

I_

'I I*

--3 1

r

--�

I

I

I

I

8.2. THE UNIQUE TOKEN PROTOCOL 109

A B C

3.
A B C

A B C
_ jl _ _

_~ PACKET 0 TOKEN

Figure 8.3: Buffering and forwarding under the UTP.

8.2 The Unique Token Protocol

Adaptive routing by itself is not enough to solve the reliability problem. Routing around

faulty links cannot guarantee delivery of messages that are half-way transmitted through

the physical channel at the tome the fault occurs. End-to-end protocols may solve the re-

liability problem when coupled with adaptive routing, but require extra overhead and the

necessary resources do not scale linearly with the size of the machine [Den91]. For this rea-

son, the Reliable Router uses link-level retransmission in combination with a unique-token

protocol (UTP) [Den91] to guarantee fault-tolerant exactly-once delivery of all packets in

the network. This link-level protocol offers significant advantages over end-to-end protocols

because it does not require acknowledgment packets and does not keep copies for possible

retransmissions at the packet source. In this way, effective network bandwidth is increased

and storage requirements at the nodes decrease. Moreover, the protocol reduces the amount

of storage required at the destination nodes for duplicate message detection. These prop-

erties allow the protocol resources to scale linearly with the number of network nodes as

opposed to end-to-end protocols.

An example of packet forwarding under the UTP is shown in Figure 8.3 where source

node A sends a packet to destination node C. The packet is buffered and forwarded through

switching node B. The process must ensure that at least two copies exist in the path between

110 CHAPTER 8. THE BIG PICTURE

g TOKEN Unique
* TOKEN repca
m PACKET

Figure 8.4: Fault Handling under the UTP.

the source node and the destination node at all times. This can be achieved by first copying

the packet forward one node, and then allowing the release of the storage in the rearmost

node as shown in Figure 8.3. When the packet is first injected into the network, a token is

injected right behind the packet. The invariant that no copies of the packet exist behind

the token is always preserved. Packet copying and token passing are carried out exactly

as shown in Figure 8.3. Note that although multiple copies of the packet are kept in the

network, every node receives a packet only once. Thus, in the absence of faults, the arrival

of the token at the destination implies that the packet has been delivered exactly once. For

simplicity, the UTP was described at the packet level only. The Reliable Router implements

the UTP at the flit level, and the protocol is a bit more involved.

8.2.1 Fault Handling

When a node in the network fails, communication between the advance and rear copies of

the packet may be severed. Each copy now must make its way to the destination without

knowing the fate of the other copy. When packets arrive at the destination they must be
marked in such a way so that the destination knows that it needs to look for duplicates.

For this reason, two types of tokens are defined: Unique, and Replica. If the network needs

to use multiple paths while forwarding the packet, the token is changed to type Replica for

all copies of the packet. After the token is changed, forwarding proceeds in the usual way

of always keeping two copies of the packet per path.

Such an example is shown in Figure 8.4. Due to a faulty link, communication between

the two copies of the packet has been broken. As a result, each copy changes its token to

I .111

_

· M
X

3. Et

8.3. SUMMARY

Replica, or generates a Replica token and proceeds to the destination using different paths.

When the destination receives a packet with a Replica token, it knows that it should be

looking for duplicates. This scheme is based on the assumption that packets have unique

identifiers so that duplicates can be detected and eliminated.

8.2.2 Flit-Level Implementation of the UTP

The actual implementation of the Unique Token Protocol occurs at the flit level rather than

at the packet level. A long packet may span a number of nodes. The flit-level UTP guaran-

tees that each flit of the packet has a copy for retransmission purposes in the neighboring

node. A snapshot of a packet in flight under the flit-level UTP is shown in Figure 8.5. The

figure shows a packet that consists of one head flit, seven data flits, and one tail flit. There

are a number of things to notice from that figure:

1. There exists a second copy of every data or tail flit in the preceding node.

2. There is only one copy of the token flit. There exist no flits of the specific packet

behind its token.

3. The head flit is stored at the head of the flit queue in every node spanned by the

packet. It is deallocated only when the token flit leaves the node.

Every node needs a copy of the head flit to ensure retransmission of the partial packet

when a link fails after only part of a packet has been transmitted to the next node. The

head flit is used to encapsulate the partial packet in the regular packet format and send

it to the destination through an alternate route. The head flit of the trailing piece of a

partial packet is tagged as a special kind of head flit - in the Reliable Router terminology

it is called a head:restart flit as opposed to a head:original flit. This is necessary for the

destination to reconstruct the original packet. It is also assumed that the tail flit of each

packet contains the length of the message in flits. Given two partial pieces of a packet, the

packet length and the the relative order of the two pieces, the destination can reconstruct

unambiguously the original packet.

8.3 Summary

This chapter has briefly covered some system design issues for a routing chip that uses

Reliable Adaptive Routing. First, a top level architectural description of such a switching

111

112 CHAPTER 8. THE BIG PICTURE

Figure 8.5: The UTP at the flit-level.

element has been presented. Second, a retransmission protocol necessary for guaranteed

message delivery -s been desribed and explained.

1l

Chapter 9

Conclusion

Adaptive routing has been extensively studied. It has been concluded that it is ideally suited

for multicomputer networks because it can take advantage of the rich connectivity of such

topologies [Nga89]. Researchers have amassed simulation results that indicate that adaptive

routing can increase interconnection network performance. The benefits of adaptive routing

are especially profound for non-uniform traffic patterns. The ability of adaptive routing to

assign multiple paths between each source and destination pair can diffuse hot spot traffic

and achieve better utilization of the network bisection bandwidth.

There are two main disadvantages with adaptive routing. The first is that it introduces

significant complexity to the design and implementation of the network switching element.

Such complexity is introduced by the need for virtual channels for deadlock prevention, more

complicated combinational routing logic, and the need for a full crossbar switch connecting

each input port with each output port. Virtual channels are probably the most expensive

(in terms of circuit area and latency) not only because of the extra flit memory required

but also because of various arbitration layers necessary for the management and allocation

of shared resources. Adaptive routing can significantly increase system cycle time and

system silicon area compared to simpler routing schemes. Increased cycle time is one of the

main reasons that we do not find adaptive routing in commercial multicomputers [Dua94b].

Unfortunately there are no widely accepted benchmarks for multicomputer interconnection

networks. As a result, multicomputer manufacturers advertise their machines using peak

values (peak throughput and minimum switching node latency.) The increased cycle time of

adaptive routing increases the minimum switching node delay although it may also decrease

the average message latency and standard deviation. As long as manufacturers advertise

their machines with peak values, we will probably not see adaptive routing being used in

commercial multicomputers.

113

I .111

114 CHAPTER 9. CONCLUSION

Yet, trends in VLSI technology will benefit adaptive routing in the long run [Cas94].

Continuous decreases in the minimum mask feature size (2A) make possible to fit more and

more transistors in a single silicon die. As a result, the extra area required for adaptive

routing and virtual channels will soon be available at negligible cost. The fact that most

routing chips are pad limited due to a large number of I/O pins also contributes to the

argument of free silicon area.

Another effect of decreasing MOS transistor channel length is the reduction of the carrier

transit time across the channel. This will increase the speed of future logic gates. In a few

years, the speed of routing chips won't be limited by the delay of the routing logic. It will

be limited by how fast on-chip circuitry can drive package pins and external interconnection

wires. Unfortunately the speed of external wiring does not follow the dramatic increase in

device speed. In such a case, the extra delay required by adaptive routing logic and virtual

channel management will also be available at negligible cost.

The second disadvantage of adaptive routing is the significant design time involved. The

designer of an adaptive routing chip is faced with the daunting task of selecting an adap-

tive routing algorithm to implement. Oblivious router designers do not face such a task.

Dimension-Ordered routing is well studied, well understood and very easy to implement.

A number of hardware implementations of Dimension-Ordered routing are available for de-

signers to use as a valuable reference. Although numerous adaptive algorithms have been

proposed in the literature none of these have been extensively studied and understood.

Adaptive algorithms only exist in the form of numerous computer simulators which have

different and inconsistent assumptions regarding traffic patterns, size of node buffering,

deadlock resolution, packet size, cycle time, result presentation etc. The task of picking the

right adaptive routing algorithm to implement in hardware can be both difficult and time

consuming. Hardware design time can depend greatly on the underlying routing algorithm.

Design complexity is the main reason that there are no adaptive routing chips today.

The main contribution of this work is that it fills the existing gap between algorithm

design and hardware implementation. This thesis has proposed Reliable Adaptive Routing,

a fully adaptive algorithm that can also handle a single fault at a time. RAR has been

designed with hardware implementation in mind. It is not optimal in that it does not allow

the maximum possibe routing freedom given the resources that it requires [Dua94a]. Yet,

it can be easily implemented in hardware without significant increases in chip area and

system latency. A proof-of-concept implementation ranging from gate-level schematics to

silicon layout has been presented and discussed. The proposed implementation does not

require significant chip area although it supports five separate virtual channels. A channel

9.1. FUTURE WORK

state predecoding scheme (chapter 7) has helped reduce the gate count and circuit area.

Moreover, the proposed implementation does not add considerably to the total system

latency. Extensive lookahead techniques (chapter 7) have helped reduce the circuit delay to

acceptable levels. Finally, a top level system design that utilizes Reliable Adaptive Routing

is briefly presented.

The author hopes that this work will motivate further attempts to implement adaptive

routing in hardware by suggesting a simple and easy fully adaptive algorithm geared to

hardware implementation and also by presenting to a full extent a circuit realisation.

9.1 Future Work

All performance evaluations of adaptive routing have relied on software simulators. The

Reliable Router chip will act as an excellent research vehicle in helping us understand the

performance of adaptive routing on real hardware. The Reliable Router has a number of

features that can help us run a number of interesting experiments comparing adaptive and

oblivious routing.

The chip allows the user to turn off adaptive routing and use the adaptive virtual channels
as if they were Dimension-Ordered channels. This feature enables a fair comparison of the

two routing schemes on real hardware, something that has never been done before.

Moreover, the Reliable Router allows the user to control the number of virtual channels

that are actually used. in the network. This feature enables a number of interesting exper-

iments which will relate the number of virtual channels in the network with the resulting

performance. Experiments measuring incremental performance gained by the addition of

adaptive channels vs. Dimension-Ordered channels can also be easily set up. Such experi-

ments have never before been run on real hardware.

115

Appendix

Circuit Schematics

116

11

A

I Ii

Figure A.1: Top level schematic

117

C
C

J
,0

-dCC

c

a,
E
0
a)

I

I G

0

i

i

Q)
-Z

CQ
-s0

_~,E

i

I -

APPENDIX A. CIRCUIT SCHEMATICS

Figure A.2: Adaptive and Dimension-Ordered computation

I :JI

118

Figure A.3: Fault-Handling computation

119

0o

0
_ U

Q I
n C

;

-C-

- C_
- 3.C
C I

L-

0

I

5
tM

I
I

C

j

0

I

II

II

E
_

i

A. CIRCUIT SCHEMATICS

120 APPENDIX A. CIRCUIT SCHEMATICS

C

a,
a
M

E0-E
o

c¢

U

-4- 0:)C

U O

(1)

o. ()-n0g

0- 0
L-

n1

I

o

i

ii

I

Figure A.4: Processor and Diagnostic computation

-

w _

.

f _

Appendix B

Verilog Schematic Validation
Wrapper

'timescale ns / lops

module test;

wire solved;

wire [11:0] ranswer;

wire [29:0] free;

reg [3:0] portstatus;

reg [9:0] rp;

optrouter top(ranswer[11:0], solved, free[29:O],

portstatus[3:0], rp[9:O]);

// Comprehensive testing of the entire optimistic router.

// Try to cover the whole design space.

// Possible channel status:

reg [4:0] pcs [11:0];

reg [4:0] pfree, dfree;

initial

begin
pcs[0] = 5'bOOOO0;

121

APPENDIX B. VERILOG SCHEMATIC VALIDATION WRAPPER

pcs[1] = 5'b00001;

pcs[2] = 5'b00010;

pcs[3] = 5'b00100;

pcs[4] = 5'bO1000;

pcs[5] = 5'b01100;

pcs[6] = 5'blOOO0;

pcs[7] = 5'blOOO1;

pcs[8] = 5'blOO10;

pcs[9] = 5'blO00;

pcs[10] = 5'bllOO0;

pcs[ll] = 5'blllOO;

end

// Possible procfree values:

reg [4:0] ppf [5:0];

initial

begin

ppf[0] =5'b00000;

ppf [1] =5'bOOOO1;

ppf [2] =5'bOOOO10;

ppf [3]=5'b00100;

ppf[4]=5'bO1000;

ppf[5]=5'bl0000;

end

// Possible diag_free values:

reg [4:0] pdf [5:0];

initial

begin

pdf [0] =5'bOOOO0;

pdf[1] =5'bOOOO1;

pdf [2] =5'bOOO00010;

pdf [3 =5'bOO100;

pdf [4] =5'bOO1000;

pdf [5]=5'blOOOO0;

end

122

123

reg [4:0] port3, port2, portl, portO;

// Now do the actual assignment of free bits:

assign free[29:0]={pfree,dfree,port3,port2,portl,portO} &

{1O'bllllllllll,portstatus[3],portstatus[3],

portstatus[3],portstatus[3],portstatus[3],

portstatus[2],portstatus[2],portstatus[2],

portstatus[2] ,portstatus[2],

portstatus [l] ,portstatus[1],

portstatus [1] ,portstatus [1] ,portstatus[],

portstatus [0] ,portstatus [0] ,portstatus [0],

portstatus [0] ,portstatus [0] };

wire [3:0] adO, adl, doO, dol, fhfree;

wire [4:0] procfree, diagfree;

wire priority;

assign adO={free[15] ,free[10] ,free[5] ,free[O]};

assign adl={free[16],free[11],free[6] ,free[1]};

assign doO={free[17],free [12,fr ee[12],fr eefree[2]};

assign dol={free[18],free[13],free[8 ,free[8],free[3]};

assign fhfree={free[19] ,free[14] ,free[9] ,free[4]};

assign procfree[4:0]=free[24:20];

assign diagfree[4:0]=free[29:25];

assign priority=rp[6];

// Possible routing problems:

reg [7:0] prp7O [19:0];

initial
begin

prp7O[0] = 8'bOO00010000;

prp70[1] = 8'bOOOOOOO1;

prp70[2] = 8'bOO0000OO10;

prp70[3] = 8'bOOOOO100;

124

prp70O [4]

prp70 [5]

prp70 [6]

prp70 [7]

prp7O [8]

prp70O [9]

prp70 [10]

prp70 [11]

prp70 [12]

prp70 [13]

prp70[14]

prp70 [15]

prp7O [16]

prp70 [17]

prp70 [18]

prp70 [19]

APPENDIX B. VERILOG SCHEMATIC VALIDATION WRAPPER

= 8'b00001000;

= 8'bOOOO1001;

= 8'bOOOOO010;

= 8'b00000110;

= 8'bOOOOO101;

= 8'b00100000;

= 8'bOllOOOO0;

= 8'bO1010000;

= 8'bO1000001;

= 8'bO1000010;

= 8'bOlOOO0;

= 8'b01001000;

= 8'bOO001001;

= 8'bO1001010;

= 8'b01000110;

= 8'bO1000101;

end

reg [1:0] prp98 [3:0];

initial

begin

prp98 [0] =2'bOO;

prp98[1]=2'bOl;

prp98[2]=2'blO;

prp98[3]=2'bll;

end

// Possible port status:

reg [3:0] pps [10:0];

initial

begin

pps [O

pps [1]

= 4'bllll;

= 4'blllO;

I .111

125

pps[2] = 4'bllO1;

pps[3] = 4'b1011;
pps[4] = 4'bOlll;

pps[S] = 4'bOOll;

ppsC6] = 4'bOO101;

pps[7] = 4'bOllO;

ppsC8] = 4'blOOl;

ppsC9] = 4'blOlO;

pps[1O] = 4'bllOO;

end

integer iO, il, i2, i3, irp70, irp98, ips, ipf, idf, count;

integer total, statespace, antipode;

initial

total=O;

reg adsuccess, do_success, fh, productiveroute, killallothers;

reg [3:01 dorp;

reg [11:0O canswer;

reg c_solved;

reg stopint;

// This is the main test loop:

initial

begin

// Channel status state space (527076 cases)

for (iO=O;iO<=il;iOiO=iO)

begin

$display("iO= Yd", iO);

portO=pcs iO];

for (il=O;il<=1;il=il+l)

begin

$display(" il= Yd", il);

porti=pcs ii];

for (i2=O;i2<=11;i2=i2+1)

I .1.11

126 APPENDIX B. VERILOG SCHEMATIC VALIDATION WRAPPER

begin

$display(" i2= .d", i2);

port2=pcs 1i2];

for (i3=O;i3<=1;i3=i3+1)

begin

$display(" i3= %d", i3);

port3=pcs Ci31];

for (ipf=O;ipf<=5;ipf=ipf+l)

begin

pfree=ppf ipf];

for(idf=O;idf<=; idf=idf+1)

begin

dfree=pdf idf];

// Port status state space (11 cases)

for (ips=O;ips<=1O;ips=ips+l)

begin

portstatus=pps [ips];

// Routing problem state space (80 cases)

for (irp70=O;irp7O<=19;irp70=irp70+I)

begin

rp[7:0O = prp70O[irp7];

if (!(((rp[3:O0 == 4'biOOi) && (portstatus[3:0] == 4'bOllO)) 11

((rp[3:0] = 4'bO101) && (portstatus[3:0] == 4'bOl01)) I

((rp[3:0] == 4'bOllO) && (portstatus[3:0] == 4'biOOl)) I

((rp[3:0 = 4'bO101) && (portstatus[3:0 == 4'blOiO))))

begin

for (irp98=0;irp98<=3;irp98=irp98+1)

begin

rp [9:8]1=prp98 [irp98;

#30; // Wait for inputs to settle.

// Initialize some state;

127

csolved=O;

c_answer[1ll:01]=11'bO;

dorp[3:0]=rp;

// Set the dimension-ordered routing problem.

if (Irp[l:O])

do_rp[3:0]={2'bO,rp[l:O]};

// Set some flags

adsuccess=l(rp[3:0] & (adl[3:0] adO[3:O]) & portstatus[3:01);

dosuccess=l (dorp[3:0] & port_status[3:0]);

productiveroute=(lI(portstatus3: rp3:0&rp])) 11 (rp[3:0]==4'bOOO0);

killallothers=(rp[5] 1[rp[4] 11 (rp[9 & (productiveroute)));

fh=((~dosuccess) & (adsuccess) & (killallothers))

(rp [9 & rp[8] & (killallothers));

// ROUTING ALGORITHM IMPLEMENTATION

// First set the priority bit.

c_answerC[1]=rp[6];

// First check for diagnostic:

if (rp[5] && (rp[3:0] == 4'bOOO))

begin

canswer[4:0=diagfree;

if (Idiagfree[4:0])

begin

canswer[10] =1;

csolved=l;

end

end // end checking for diagnostic

// Now check for processor:

if (rp[4])

begin

canswer[4:0=proc_free;

if (Iprocfree[4:0])

begin

I I11

128 APPENDIX B. VERILOG SCHEMATIC VALIDATION WRAPPER

canswer [9] =1;

csolved=l;

end

end //end checking for processor

// Check whether we should route to the neignbor.

if (rp[9] & (productiveroute))

begin

canswer[4:0]=procfree;

if (Iprocfree[4:0])

begin

canswer[9]=1;

csolved=l;

end

end //end checking for neighbor routing

// Check for fault-handling

if (fh)

begin

canswer[41=1;

// Check for non-minimal fh first

if (productiveroute)

begin

stopint = 0;

count = 3;

while ((stopint != 1) && (count>=O))

begin

if (count I 2 == 0)

ant ipode = count +

else

1;

antipode = count - 1;

if (portstatus[count] && rp[count] && rp[antipode])

begin

canswer[S+count] = fhfree[count]; //oc assignment

//canswer[4]=1; // ovc assignment

csolved=fhfree[count];

stopint = 1;

129

end

count = count-l;

end //while

end //if (productiveroute)

// Now check for minimal fh

else

begin

count = 3;

stopint = 0;

while ((stopint != 1) && (count>=O))

begin

if (rp count] & fhfree[count] &portstatus[count])

begin

canswer[5+count] = 1; //oc assignment

//canswer[4]=1; //ovc assignment

csolved=1;

stopint = 1;

end

if ((csolved==I) && (rp[3:2] !== 2'bOO) &&

((canswer[5]==l) (canswer[6]==1)))

begin

c_solved=0;

canswer[6:5] = 2'bOO;

stopint=0;

end

count = count-l;

end //while

end // else (productiveroute)

end // if (fh)

// Now check for adaptive channels

if (('fh) & (killallothers))
begin

// First try the adaptive channels. y has priority over x.

stopint=0;

count = 3;

while ((count>=O) && (stopint ==0))

I II

130 APPENDIX B. VERILOG SCHEMATIC VALIDATION WRAPPER

begin

if (portstatus[count] && (adO[count] I I adl[count]) &&

rp[count])

begin

canswer [5+count]=1;

canswer[4:0] = {3'bO,adl[count],adO[count]};

csolved=l;

stopint=l;

end

count = count-l;

end // ad while loop

// Now try the dimension ordered channels if the

// adaptive channels have failed.

if (!adsuccess)

begin

// Reset some state

stopint=O;

count=O;

// Check for priority 1

if (priority)

begin

while ((count<=3) && (stopint==O))

begin

if (portstatus[count] && (dol[count]) &&

dorp[count])

begin

canswer[5+count]=1;

canswer[4:0] = {l'bO,dol[count],3'bO};

csolved=l;

stopint=l;

end

count = count+1;

end // dol while loop

end // checking for priority 1

// Check for priority 0

131

if (!priority)

begin

while ((count<=3) && (stopint==O))

begin

if (portstatus[count] && (doO[count]) &&

dorp[count])

begin

canswer[5+count]=1;

canswer[4:0] = {2'bO,doO[count],2'bO};

csolved=l;

stopint=l;

end

count = count+l;

end // doO while loop

end // checking for priority 1

end // if (!adsuccess)

end // if ((-fh) & (killallothers))

// Now do the comparisons:

if ((csolved !== solved) II

(canswer[11:O] !== ranswer[11:O]))

begin

$display("Error !!!!!!!!!!");

$display("csolved=/.b, solved=%b", c_solved, solved);

$display("coc=Y.b, oc=%/b", canswer[10:5], ranswer[10:5]);

$display("covc=%b, ovc=b.b", canswer[4:0], ranswer[4:0]);

$display("cpri=Y.b, pri=Y.b", canswer[11], ranswer[11]);

$display(" ");

$display("Inputs:");

$display(" ");

$display("routing problem=%b", rp [9:0]);

$display("port status=/.b", portstatus [3:0]);

$display("adO=%b", adO);

$display("adl=.b", adl);

$display("doO=b", doO);

132 APPENDIX B. VERILOG SCHEMATIC VALIDATION WRAPPER

$display("dol=.b", dol);

$display("fhfree=%/b", fhfree);

$display("procfree=%.b", procfree);

$display("diagfree=%b" , diagfree);

$display(" ");

$display("---------------------------------);

$display(" ");

$stop;
end

end //irp98
end //big if

end //irp70
end // ips

end //idf
end //ipf

end //i3
end //i2

end //il

end //iO

end // main initial

endmodule

I 'I 11

Appendix C

Hspice Decks

C.1 Wrapping Deck and Input Generation

* Optimistic Router- Nominal Corner

.include '/projects/abacus/lib/hspice/hp26/Nominal.model'

.include 'netlist'

.options post nolist nomod

vdd vdd gnd 3.3v

Vportstatus3 portstatus3 0 vdd

Vportstatus2 portstatus2 0 vdd

Vportstatusl portstatusl 0 vdd

VportstatusO portstatusO 0 vdd

Vrp9 rp9 0 0

Vrp8 rp8 0 0

Vrp7 rp7 0 0

Vrp6 rp6 0 0

VrpS rp5 0 0

Vrp4 rp4 0 PWL(On 3.3v 20n 3.3v 20.5n Ov 40n Ov 40.Sn 3.3v)

Vrp3 rp3 0 0

Vrp2 rp2 0 0

Vrpl rpl 0 0

VrpO rpO 0 PWL(On Ov 20n Ov 20.5n 3.3v 40n 3.3v 40.5n Ov)

133

APPENDIX C. HSPICE DECKS

free29

free28

free27

free26

free25

free24

free23

free22

free21

free20

O O0

O O0

O O0

O O0

O O0

O O0
O O0

O O0

O O0
O O0

freel9 0 0

free18 0 0
freel7 0 0

free16 0 0

freelS 0 0

freel4 0 0
free13 0 0

free12 0 0

freell 0 0

freelO 0 0

free9

free8

free7

free6

free5

free4

free3

free2

freel

freeO

O O0
O O0
O O0

O O0

O O0

0 vdd

O O0

0 vdd

O O0
O O0

.trans .5ns 60ns

.end

Vfree29

Vfree28

Vfree27

Vfree26

Vfree25

Vfree24

Vfree23

Vfree22

Vfree2l

Vfree20

Vfreel9

Vfreei8

Vfreel7

Vfreel6

VfreelS

Vfreel4

Vfreel3

Vfreel2

Vfreell

VfreelO

Vfree9

Vfree8

Vfree7

Vfree6

Vfree5

Vfree4

Vfree3

Vfree2

Vfreel

VfreeO

I I'll

134

C.2. OPTIMISTIC ROUTER NETLIST 135

C.2 Optimistic Router Netlist

* HSPICE Netlist:

* Block: testrouter
* Netlist Time: Tue Dec 13 00:00:44 EST 1994

* GLOBAL Net Declarations

.global gnd vdd

* MODEL Declarations

* Sub-Circuit Netlist:
*

* Block: inv
* Last Time Saved: Jun 21 12:06:20 1994

.subckt inv a y

mxl y a vdd vdd pmos w=8e-06 o1=e-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mxO y a gnd gnd nmos w=4e-06 1=1e-06 as=le-ll ad=le-ll ps=9e-06 pd=9e-06

.ends inv

* Sub-Circuit Netlist:

*
* Block: nor3

* Last Time Saved: Aug 2 13:09:10 1994

.subckt nor3 a b c y

mxS netl20 a vdd vdd pmos v=1.2e-05 1=1e-06 as=3e-11 ad=3e-11 ps=1.7e-05

+pd=1.7e-05

mx3 y c net17 vdd pmos w=1.2e-05 1=le-06 as=3e-11 ad=3e-11 ps=1.7e-05

I .111

136 APPENDIX C. HSPICE DECKS

+pd=1.7e-05
mx4 net117 b neti20 vdd pmos w=1.2e-05 1=1e-06 as=3e-11 ad=3e-11 ps=1.7e-05

+pd=1.7e-05

mx2 y c gnd gnd nmos w=4e-06 1=1e-06 as=le-ll ad=le-ll ps=9e-06 pd=9e-06

mxl y b gnd gnd nmos w=4e-06 1=1e-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

mxO y a gnd gnd nmos =4e-06 1=le-06 as=le-11 ad=le-ll ps=9e-06 pd=9e-06

.ends nor3

* Sub-Circuit Netlist:

* Block: inv3x

* Last Time Saved: Jun 17 10:54:44 1994

.subckt inv3x a y

mxp8 y a vdd vdd pmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mxl y a vdd vdd pmos w=8e-06 1=1e-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=l.3e-05

mxplO y a vdd vdd pmos w=8e-06 1=1e-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mxnll y a gnd gnd nmos w=4e-06 1=1e-06 as=le-ll ad=le-ll ps=9e-06 pd=9e-06

mxn9 y a gnd gnd nmos w=4e-06 1=1e-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

mxO y a gnd gnd nmos w=4e-06 1=1e-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

.ends inv3x

* Sub-Circuit Netlist:

* Block: buffer

* Last Time Saved: Aug 16 11:41:24 1994

.subckt buffer a y

xill netS y inv3x

xil a netS inv

.ends buffer

* Sub-Circuit Netlist:

C.2. OPTIMISTIC ROUTER NETLIST 137

* Block: or2

* Last Time Saved: Aug 22 10:54:42 1994

.subckt or2 a b y

mxnl6 net99 a gnd gnd nmos w=4e-06 1=1e-06 as=le-11 ad=le-ll ps=9e-06 pd=9e-06

mxnl7 net99 b gnd gnd nmos w=4e-06 l=le-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

mxp15 net99 b net118 vdd pmos w=8e-06 l=le-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

mxp14 net118 a vdd vdd pmos w=8e-06 1=1e-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

xi13 net99 y inv

.ends or2

* Sub-Circuit Netlist:

*
* Block: nand2

* Last Time Saved: Aug 2 13:09:33 1994

.subckt nand2 a b y

mx3 y a vdd vdd pmos w=8e-06 l=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx2 y b vdd vdd pmos w=8e-06 l=le-06 as=2e-11 ad=2e-11 ps=1.3e-0S pd=1.3e-05

mxn6 y a net9 gnd nmos w=8e-06 l=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mxO net9 b gnd gnd nmos w=8e-06 1=ie-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

.ends nand2

* Sub-Circuit Netlist:

* Block: nand3

* Last Time Saved: Aug 2 13:09:23 1994

.subckt nand3 a b c y

mxS y a vdd vdd pmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx4 y b vdd vdd pmos w=8e-06 l=le-06 as=2e-1i ad=2e-11 ps=1.3e-05 pd=1.3e-05

138 APPENDIX C. HSPICE DECKS

mx3 y c vdd vdd pmos w=8e-06 1=1e-06 as=2e-li ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx2 y a netl7 gnd nmos w=1.2e-05 1=1e-06 as=3e-11 ad=3e-11 ps=1.7e-05

+pd=1.7e-05

mxl netl7 b net14 gnd nmos w=1.2e-05 l=le-06 as=3e-11 ad-3e-11 ps=1.7e-05

+pd=1.7e-05

mxO net14 c grind gnd nmos w.2e-05 1=1e-06 as=3e-11 ad=3e-11 ps=1.7e-05

+pd=1.7e-05

.ends nand3

* Sub-Circuit Netlist:
*

* Block: nor2

* Last Time Saved: Aug 21 15:33:39 1994

.subckt nor2 a b y

mx3 netlOS a vdd vdd pmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

mx2 y b netlO5 vdd pmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

mx y b gnd gnd nmos w=2e-06 1=le-06 as=Se-12 ad=5e-12 ps=7e-06 pd=7e-06

mxO y a gnd gnd nmos w=2e-06 1=le-06 as=S5e-12 ad=S5e-12 ps=7e-06 pd=7e-06

.ends nor2

* Sub-Circuit Netlist:

* Block: and2

* Last Time Saved: Nov 3 17:16:16 1993

.subckt and2 a b y

mx5 y net235 gnd gnd nmos w=2e-06 1=1e-06 as=5e-12 ad=Se-12 ps=7e-06 pd=7e-06

mx2 net235 a net240 gnd nmos w=4e-06 1=1e-06 as=le-11 ad=le-ll ps=9e-06

+pd=9e-06

mx3 net240 b gnd gnd nmos w=4e-06 1=1e-06 as=le-11 ad=le-ll ps=9e-06 pd=9e-06

mx4 y net235 vdd vdd pmos w=2e-06 l=1e-06 as=Se-12 ad=5Se-12 ps=7e-06 pd=7e-06

mxi net235 b vdd vdd pmos w=4e-06 1=le-06 as=le-ll ad=le-ll ps=9e-06 pd=9e-06

mxO net235 a vdd vdd pmos w=4e-06 1=1e-06 as=le-ll ad=le-ll ps=9e-06 pd=9e-06

I .1.11

C.2. OPTIMISTIC ROUTER NETLIST

.ends and2

* Sub-Circuit Netlist:
*

* Block: aoil2

* Last Time Saved: May 26 19:41:22 1994

.subckt aoi12 a b c y

mxp5 y b netil vdd pmos w=1.6e-05 1=le-06 as=4e-11 ad=4e-11 ps=2.1e-05

+pd=2.le-05

mxp4 y a netli vdd pmos w=1.6e-05 1=le-06 as=4e-11 ad=4e-11 ps=2.1e-05

+pd=2.le-05

mxp3 netli c vdd vdd pmos w=1.6e-05 1=le-06 as=4e-11 ad=4e-11 ps=2.1e-05

+pd=2.le-05

mxn2 y c gnd gnd nmos w=2e-06 1=le-06 as=5e-12 ad=Se-12 ps=7e-06 pd=7e-06

mxnl net2 b gnd gnd nmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

mxnO y a net20 gnd nmos w=8e-06 1=e-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

.ends aoi12

* Sub-Circuit Netlist:

* Block: nand5

* Last Time Saved: Aug 3 15:23:38 1994

$$$$$$$$*$$$$$**$******$*************************************
.subckt nandS a b c d e y

mxpl7 y e vdd vdd pmos w=8e-06 1=1e-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx8 y d vdd vdd pmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx7 y c vdd vdd pmos w=8e-06 1=1e-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx6 y b vdd vdd pmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx5 y a vdd vdd pmos w=8e-06 1=1le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mxn18 net376 e gnd gnd nmos w=4e-06 l=le-06 as=le-ll ad=le-11 ps=9e-06

+pd=9e-06

mx3 y a net295 gnd nmos w=4e-06 1=1e-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

139

140 APPENDIX C. HSPICE DECKS

mx2 net295 b net302 gnd nmos w=4e-06 1=1e-06 as=le-11 ad=le-11 ps=9e-06

+pd=9e-06

mxi net302 c net301 gnd nmos w=4e-06 1=1e-06 as=le-ll ad=le-11 ps=9e-06

+pd=9e-06

mxO net301 d net376 gnd nmos w=4e-06 1=1e-06 as=le-ii ad=le-11 ps=9e-06

+pd=9e-06

.ends nandS

* Sub-Circuit Netlist:

* Block: prdiagcalc

* Last Time Saved: Jun 7 13:56:28 1994

.subckt prdiagcalc diag_free4 diagfree3 diagfree2 diagfreel diagfreeO

+diagnostic killall noproductiveroute pdvc4 pdvc3 pdvc2 pdvcl pdvcO

+procfree4 procfree3 procfree2 procfreei procfreeO processor rp9 rpS rp4

xi34 netS516 rp5 net5554 nor2

xi193 prvc3 diagvc3 pdvc3 and2

xi192 prvc2 diagvc2 pdvc2 and2

xi191 prvcl diagvcl pdvcl and2

xii90 prvcO diagvcO pdvcO and2

xi31 rpS net5535 inv

xiO rp9 noproductiveroute rp4 netSS16 aoi12

xi22 diagvc4 diagvc3 diagvc2 diag_vci diagvcO diagnostic nandS

xi2i prvc4 prvc3 prvc2 prvcl pr_vcO processor nandS

xill procfreeO net5554 pr_vcO nand2

xi16 diagfree4 rp5 diagvc4 nand2

xi5 diagfree3 rpS diag_vc3 nand2

xi14 diagfree2 rp5 diagvc2 nand2

xi13 diagfreel rp5 diagvcl nand2

xi9 procfree2 net5554 prvc2 nand2

xi7 procfree4 netSS54 prvc4 nand2

xi8 procfree3 net5554 prvc3 nand2

xilO procfreel net5554 prvcl nand2

xi12 diagfreeO rp5 diagvcO nand2

xi32 prvc4 diagvc4 pdvc4 nand2

xi2 netS516 net5535 killall nand2

I . 11

C.2. OPTIMISTIC ROUTER NETLIST

.ends prdiagcalc

* Sub-Circuit Netlist:

* Block: or3

* Last Time Saved: Nov 5 12:57:50 1993

.subckt or3 a b c y

xi12 a b c net99 nor3

xi13 net99 y inv

.ends or3

* Sub-Circuit Netlist:

* Block: and3

* Last Time Saved: Nov 5 10:46:25 1993

.subckt and3 a b c y

xi12 net154 y inv

xill a b c net154 nand3

.ends and3

* Sub-Circuit Netlist:

* Block: nand4

* Last Time Saved: Aug 2 17:06:09 1994

.subckt nand4 a b c d y

mx8 y d vdd vdd pmos w=8e-06 l=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx7 y c vdd vdd pmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx6 y b vdd vdd pmos w=8e-06 l=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx5 y a vdd vdd pmos w=8e-06 l=le-06 as=2e-11 ad=2e-11 ps=1.3e-05 pd=1.3e-05

mx3 y a net295 gnd nmos w=1.2e-05 l=le-06 as=3e-11 ad=3e-11 ps=1.7e-05

+pd=1.7e-05

mx2 net295 b net302 gnd nmos w=1.2e-05 l=1e-06 as=3e-11 ad=3e-11 ps=1.7e-05

+pd=1.7e-05

141

I :111

142 APPENDIX C. HSPICE DECKS

mxl net302 c net301 gnd nmos w=1.2e-05 1=1e-06 as=3e-11 ad=3e-11 ps=1.7e-05
+pd=1.7e-05

mxO net301 d gnd gnd nmos w=1.2e-05 1=1e-06 as=3e-11 ad=3e-11 ps=1.7e-05

+pd=1.7e-05

.ends nand4

* Sub-Circuit Netlist:
*

* Block: and4

* Last Time Saved: Nov 5 11:33:29 1993

.subckt and4 a b c d y

xi15 net204 y inv

xi14 a b c d net204 nand4

.ends and4

* Sub-Circuit Netlist:
*

* Block: faultcalc
* Last Time Saved: Jun 9 16:25:32 1994

.subckt faultcalc ad_success do_success fh_free3 fh_free2 fh_freel fhfreeO

+fh_oc3 fh_oc2 fhocl fh_ocO killaddo noproductiveroute portstatus3

+portstatus2 portstatusl portstatusO prdiag rp9 rp8 rp3 rp2 rpl rpO

xi80 adsuccess dosuccess prdiag net674 or3

xi57 net674 net714 killaddo nand2

xi27 fh_freeO net683 net707 nonminimalfhO and3

xi26 portstatus3 net698 fh_free3 nonminimalfh3 and3
xi28 fhfreel net683 portstatusl nonminimalfhl and3
xi25 net705 net698 fh_free2 nonminimalfh2 and3
xi29 rpl rpO net698 or2
xi8l rp3 rp2 net683 or2
xi38 prdiag net5813 inv
xi32 productiveroute noproductiveroute inv

xi23 portstatusl net707 inv

xi24 portstatus3 net705 inv

xil8 pr3 pr2 pri prO productiveroute nand4

C.2. OPTIMISTIC ROUTER NETLIST

xi113 rp3 portstatus3 pr3 nand2

xil12 rp2 port-status2 pr2 nand2

xilll rpi portstatusl pri nand2

xillO rpO portstatusO prO nand2

xiO rp3 rp2 net726 nor2

xil rpl rpO net724 nor2

xi2 net726 net724 net727 nor2

xi303 noproductiveroute nonminimalfh3 killaddo net7330 nand3

xi302 noproductiveroute nonminimalfh2 killaddo net7331 nand3

xi301 noproductiveroute nonminimalfhi killaddo net7332 nand3

xi300 noproductiveroute nonminimalfhO killaddo net7333 nand3

xi58 net5813 rp9 rp8 net714 nand3

xi313 productiveroute minimalfh3 killaddo net6770 nand3

xi312 productiveroute minimalfh2 killaddo net6771 nand3

xi311 productiveroute minimalfhl killaddo net6772 nand3

xi310 productiveroute minimalfhO killaddo net6773 nand3

xi6 portstatus2 fh_free2 rp2 net737 nand3

xiS port-status3 fh_free3 rp3 net753 nand3

xi3 net727 rp8 rp9 net75O nand3

xi333 net7330 net6770 fhoc3 and2

xi332 net7331 net6771 fhoc2 and2

xi331 net7332 net6772 fhocl and2

xi330 net7333 net6773 fhocO and2

xi9 net753 net737 net752 and2

xilO net750 net752 net760 and2

xi7 net760 portstatusl fhfreel rpi minimalfhi and4

xi8 net760 port-statusO fh_freeO rpO minimalfhO and4

xi16 net753 minimalfh3 inv

xi17 net737 minimalfh2 inv
.ends fault_calc

* Sub-Circuit Netlist:

* Block: nor4

* Last Time Saved: Aug 3 14:22:34 1994

.subckt nor4 a b c d y

mxp9 net3 a vdd vdd pmos w=8e-06 l=le-06 as=2e-11 ad=2e-11 ps=1.3e-05

143

I .111

144 APPENDIX C. HSPICE DECKS

+pd=1.3e-05

mx5 net159 b net3 vdd pmos w=8e-06 1=Ie-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

mx3 y d netl56 vdd pmos w=8e-06 1=le-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

mx4 netl56 c netlS9 vdd pmos w=8e-06 1=1e-06 as=2e-11 ad=2e-11 ps=1.3e-05

+pd=1.3e-05

mxn8 y a gnd gnd nmos w=4e-06 1=le-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

mx2 y d gnd gnd nmos w=4e-06 1=le-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

mx1 y c gnd gnd nmos w=4e-06 l=le-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

mxO y b gnd gnd nmos w=4e-06 l=le-06 as=le-11 ad=le-11 ps=9e-06 pd=9e-06

.ends nor4

* Sub-Circuit Netlist:

* Block: or4

* Last Time Saved: Nov 5 12:59:48 1993

.subckt or4 a b c d y

xil2 a b c d net99 nor4

xil3 net99 y inv

.ends or4

* Sub-Circuit Netlist:

*

* Block: addocalc
* Last Time Saved: Jun 5 20:10:58 1994

.subckt addo_calc adO3 adO2 adOl adOO adl3 ad12 adll adlO ad_success addooc3

+addooc2 addoocl addoocO addoxvci3 addoxvci2 addoxvcil addo_x_vciO
+addoyvci3 addoyvci2 addoyvcil addoyvciO doO3 doO2 doOl doOO dol3 doi2

+doll dolO dosuccess fault portstatus3 portstatus2 portstatusl

+portstatusO prdiag priority rp3 rp2 rpl rpO

xi331 net5572 tmp net5541 rpl net5570 addoocl nand5

xi330 net5572 tmp net5541 rpO net5570 addoocO nandS

xi341 net5572 net5546 rp3 net5570 addooc3 nand4

xi340 net5572 net5546 rp2 net5570 addooc2 nand4

C.2. OPTIMISTIC ROUTER NETLIST

xi303 tmp xvcipr3 net5572 netS570 addoxvci3 nand4

xi302 tmp xvcipr2 netS572 netS570 addoxvci2 nand4

xi301 tmp xvcipri net5572 net570 addoxvcil nand4

xi300 tmp xvciprO net5572 net5570 addoxvciO nand4

xi421 net5574 rp3 portstatus3 psdo3 nand3

xi420 net5574 rp2 portstatus2 psdo2 nand3

xi483 net5570 net5572 yvcipr3 addoyvci3 nand3

xi482 net5570 net5572 yvcipr2 addoyvci2 nand3

xi481 netS570 net5572 yvci.pri addoyvcii nand3

xi480 netS570 net5572 yvciprO addoyvciO nand3

xi37 adirp3 adlrp2 adirpi adirpO net5557 nand4

xi44 psdo3 psdo2 psdol psdoO dosuccess nand4

xi38 adOrp3 adOrp2 adOrpi adOrpO net5536 nand4

xi29 xvcipr3 xvcipr2 xvcipri xvciprO net5541 or4

xi28 yvcipr3 yvcipr2 yvci.pri yvciprO net5546 or4

xi273 doirpi doirpO xvcipr3 nand2

xi272 doOrpi doOrpO xvcipr2 nand2

xi271 adlrpl adlrpO xvcipri nand2

xi270 adOrpl adOrpO xvciprO nand2

xi263 dolrp3 dolrp2 yvcipr3 nand2

xi262 doOrp3 doOrp2 yvcipr2 nand2

xi261 adirp3 adirp2 yvciprl nand2

xi260 adOrp3 adOrp2 y.vciprO nand2

xi141 dlgi dolfinall inv

xi140 digO dolfinalO inv

xi131 dOgl doOfinall inv

xii30 dOgO doOfinalO inv

xi39 net5557 net5536 adsuccess or2

xi9 rpl rpO netS573 or2

xi121 net5573 dg3 dolfinal3 nor2

xi120 net5573 dg2 dolfinal2 nor2

xiiOi net5573 dOg3 doOfinal3 nor2

xiiOO net5573 dOg2 doOfinal2 nor2

xi49 prdiag net5572 inv

xiSO fault net5570 inv
xi4i net5573 net5574 inv

xi35 net5546 tmp inv

xi7 priority net5578 inv

145

I ..11I

146 APPENDIX C. HSPICE DECKS

xi431 rpl portstatusl psdol nand2
xi430 rpO portstatusO psdoO nand2

xi183 rp3 adO3 adOrp3 nand2

xi182 rp2 adO2 adOrp2 nand2

xil8l rpi adOl adOrpl nand2

xil80 rpO adOO adOrpO nand2

xil73 rp3 adl3 adlrp3 nand2

xil72 rp2 ad12 adlrp2 nand2

xil7l rpl adll adlrpl nand2

xil70 rpO adlO adlrpO nand2

xil63 dolfinal3 rp3 dolrp3 nand2

xil62 dolfinal2 rp2 dolrp2 nand2

xil6l dolfinall rpl dolrpl nand2

xil60 dolfinalO rpO dolrpO nand2

xil53 doOfinal3 rp3 doOrp3 nand2

xilS2 doOfinal2 rp2 doOrp2 nand2

xil5l doOfinall rpl doOrpl nand2

xilSO doOfinalO rpO doOrpO nand2

xi63 priority dol3 dlg3 nand2

xi62 priority do12 dlg2 nand2

xi61 priority doll dlgl nand2

xi60 priority dolO dlgO nand2

xi53 doO3 net5578 dOg3 nand2

xi52 doO2 net5578 dOg2 nand2

xi51 doOl net5578 dOgl nand2

x9 doOO net5578 dOgO nand2

.ends addo_calc

* Sub-Circuit Netlist:
*

* Block: optrouter

* Last Time Saved: Jun 6 20:38:27 1994

.subckt optrouter free29 free28 free27 free26 free25 free24 free23 free22

+free2l free20 free19 freel8 freel7 freel6 freel5 freel4 freel3 free12 freell
+freelO free9 free8 free7 free6 free5 free4 free3 free2 freel freeO

+portstatus3 portstatus2 portstatusl portstatusO ranswerll ransierl0

C.2. OPTIMISTIC ROUTER NETLIST 147

+ranswer9 ranswer8 ranswer7 ranswer6 ranswer5 ranswer4 ranswer3

+ranswer2 ranswerl ranswerO rp9 rp8 rp7 rp6 rp5 rp4 rp3 rp2 rpl rpO solved

xi28 ranswer10 ranswer9 ranswer8 net2S19 nor3

xi29 ranswer7 ranswer6 ranswerS net2509 nor3

xi27 rp6 ranswerll buffer

xi26 net2545 pdvc4 ranswer4 or2

xi30 net2519 net2509 solved nand2

xlO net25220 net25440 ranswer8 nand2

xl net25221 net25441 ranswer7 nand2

x12 net25222 net25442 ranswer6 nand2

xi20 net25223 net25443 ranswer5 nand2

xi243 net25550 net25560 pdvc3 ranswer3 nand3

xi242 net25551 net25561 pdvc2 ranswer2 nand3

xi241 net25552 net25562 pdvcl ranswerl nand3

xi240 net25553 net25563 pdvcO ranswerO nand3

xi21 free29 free28 free27 free26 free25 ranswer0l net2536 net2532 pdvc4

+pd.vc3 pdvc2 pdvcl pdvcO free24 free23 free22 free21 free20 ranswer9 rp9

+rp5 rp4 prdiagcalc
x13 net2542 net2541 free19 freel4 free9 free4 net25440 net25441 net25442

+net25443 net2545 net2532 portstatus3 portstatus2 portstatusl portstatusO

+net2536 rp9 rp8 rp3 rp2 rpl rpO fault-calc

xi19 freel5 freelO freeS freeO free16 freell free6 freel net2542 net25220

+net25221 net25222 net25223 net25560 net25561 net25562 net25563 net25550

+net25551 net25552 net25553 free17 free12 free7 free2 free18 free13 free8

+free3 net2541 net2545 portstatus3 portstatus2 portstatusl portstatusO

+net2536 rp6 rp3 rp2 rpl rpO addocalc

.ends optrouter

* Main Circuit Netlist:

* Block: test.router

* Last Time Saved: Dec 12 23:56:32 1994

xi211 ranswerill netiOO inv

xi210 ranswerl0 netiOl inv

x14 ranswer9 net02 inv

x15 ranswer8 netlO3 inv

x16 ranswer7 netlO4 inv

x17 ranswer6 n18 inv

I .1.11

148 APPENDIX C. HSPICE DECKS

x19 ranswer5 net106 inv

x20 ranswer4 netlO7 inv

xlO ranswer3 netlO8 inv

xll ranswer2 net0l9 inv

x12 ranswerl netlO1O inv

xi20 ranswerO netlOll inv

xil solved neti2 inv

xiO free29 free28 free27 free26 free25 free24 free23 free22 free2i free20

+free19 free18 free17 freei6 freelS free14 free13 free12 freell freelO free9

+free8 free7 free6 freeS free4 free3 free2 freel freeO portstatus3

+portstatus2 portstatusl portstatusO ranswerll ranswerlO ranswer9

+ranswer8 ranswer7 ranswer6 ranswer5 ranswer4 ranswer3 ranswer2

+ranswerl ranswerO rp9 rp8 rp7 rp6 rp5 rp4 rp3 rp2 rpi rpO solved optrouter

Bibliography

[AGSY94] James D. Allen, Patrick T. Gaughan, David E. Schimmel, and Sudhakar Yala-

manchili. Ariadne - an adaptive router for fault-tolerant multicomputers. In

Proceedings of the 21st International Symposium on Computer Architecture,
pages 278-288, 1994.

[BC93] Rajendra V. Boppana and Suresh Chalasani. A comparison of adaptive worm-

hole routing algorithms. In Proceedings of the 20th International Symposium

on Computer Architecture, pages 351-360, 1993.

[BC94] Rajendra V. Boppana and Suresh Chalasani. Fault-tolerant routing with non-

adaptive wormhole algorithms in mesh networks. In Proceedings of Supercom-

puting '94, pages 693-702, November 1994.

[Cas94] Dan Cassiday. Slow [routers] with features or fast and simple? Panel Discussion

during the 1st International Parallel Computer Routing and Communication

Workshop, May 1994.

[Chi93] Andrew A. Chien. A cost and speed model for k-ary n-cube wormhole routers.

In Proceedings of Hot Interconnects '93, August 1993.

[CK92] Andrew A. Chien and Jae H. Kim. Planar adaptive routing: Low-cost adap-

tive networks for multiprocessors. In Proceedings of the 19th International

Symposium on Computer Architecture, pages 268-277, 1992.

[DA93] William J. Dally and Hiromichi Aoki. Deadlock-free adaptive routing in multi-

computer networks using virtual channels. IEEE Transactions on Parallel and

Distributed Systems, 4(4):466-475, April 1993.

[Da90] William J. Daily. Network and processor architecture for message-driven com-

puters. In Suaya and Birtwhistle, editors, VLSI and Parallel Computation.

Morgan Kaufmann, 1990.

149

BIBLIOGRAPHY

[Da192]

[Da93]

[DDH+94a]

[DDH+94b]

William J. Daily. Virtual-channel flow control. IEEE Transactions on Parallel

and Distributed Systems, 3(2):194-205, March 1992.

William J. Dally. A universal parallel computer architecture. New Generation

Computing, 11:227-249, June 1993.

William J. Daily, Larry Dennison, David Harris, Kinhong Kan, and Thucydides

Xanthopoulos. Architecture and implementation of the reliable router. In

Proceedings of Hot Interconnects 1994, 1994.

William J. Dally, Larry R. Dennison, David Harris, Kinhong Kan, and Thucy-

dides Xanthopoulos. The reliable router: A reliable and high-performance

communication substrate for parallel computers. In Proceedings of the 1st In-

ternational Parallel Computer Routing and Communication Workshop, pages

241-255. Springer-Verlag, 1994.

[Den91] Larry R. Dennison. Reliable interconnection networks for parallel comput-

ers. Technical Report AI-TR 1294, MIT Artificial Intelligence Laboratory, 545

Tech. Sq., Canbridge MA 02139, October 1991.

[DFK+92] William J. Dally, J.A. Stuart Fiske, John S. Keen, Richard A. Lethin,

Michael D. Noakes, Peter R. Nuth, Roy E. Davison, and Gregory A. Fyler.

The Message-Driven Processor: A multicomputer processing node with effi-

cient mechanisms. IEEE Micro, 12(2):23-39, April 1992.

Jose Duato and Pedro L6pez. Performance evaluation of adaptive routing algo-

rithms for k-ary n-cubes. In Proceedings of the 1st International Parallel Com-
puter Routing and Communication Workshop, pages 45-59. Springer-Verlag,
1994.

William J. Dally and Charles L. Seitz. Deadlock-free message routing in mul-

tiprocessor interconnection networks. IEEE Transactions on Computers, C-

36(5):547-53, May 1987.

[Dua91] Jose Duato. On the design of deadlock-free adaptive routing algorithms for

multicomputers: Design methodologies. In Proceedings of PARLE 91, pages

390-405. Springer-Verlag, June 1991.

[DL94]

[DS87]

I 111

150

