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Abstract

Discrete arrays of underdamped Josephson junctions can be used as oscillators and tran-
sistors for superconducting electronic applications. Both devices require that the system
be biased in the flux-flow regime of its current-voltage characteristic. We present measure-
ments and models for the performance of these devices. We find that the presence of a
superconducting ground plane improves all of the device parameters except the transresis-
tance. We further refined the devices by connecting two arrays in series. Magnetic coupling
between adjacent loops of this array has a significant influence on the dynamics. A theo-
retical treatment shows that the coupling causes splitting of Fiske steps, zero-field steps,
and flux-flow steps. Since we are considering device applications, our measurements focus
on the splitting of the flux-flow step. This configuration produces steps at higher voltage
levels with improved transresistances, but with degraded output resistance. The power and
bandwidth are relatively unaffected. Inductively coupled arrays may be promising for some
applications, but the dynamics must be more thoroughly investigated before this potential
can be realized.
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Chapter 1

Introduction

The Josephson junction is the fundamental element of superconducting electronics, playing

much the same role as the transistor in semiconductor electronics. A thorough understand-

ing of the Josephson junction's characteristics and performance is crucial to the development

of superconducting electronics. Already, SQUIDs (superconducting quantum interference

devices) have made an impact on medical technology, and single Josephson junctions are

used as high-quality voltage standards. Long Josephson junctions (junctions with lengths

larger than the magnetic field penetration depth, Aj) have been studied extensively, and

can perform as both transistors and oscillators. However, devices made from long junctions

have clear limitations, which can be overcome by using parallel arrays of short junctions

instead.

To make our devices, we connect 54 short, underdamped junctions in parallel. A bias

current is passed equally through each junction, and the DC voltage, equal to the average

voltage across each junction, is measured across the row. This output voltage changes in

the presence of a uniform DC magnetic field, applied by passing a current through a control

wire aligned to the edge of the array.

Since two input currents result in an output voltage, the array can be thought of as

the magnetic analog of the field-effect transistor (FET). In the field-effect transistor, a gate

votage produces carriers (electrons or holes), and the drain-source bias voltage causes the
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carriers to flow. The ratio of the resulting output current to the input gate voltage is called

the transconductance. This is the key performance parameter of the FET. In long arrays

of Josephson junctions, the control current produces a magnetic field which penetrates the

array in discrete bundles called vortices. These can be thought of as "carriers". A bias

current causes the vortices to move, resulting in an output voltage. Thus the device is

called a vortex-flow transistor (VFT). The ratio of the output voltage to the input current

is the transresistance. This is the parameter we wish to optimize for the VFT.

Overdamped junctions function well as transistors. Overdamped long junctions have

shown transresistances of about 0.2 [1, 2], while discrete arrays have been fabricated

with transresistances of 0.43 [3]. Underdamped junctions operate quite differently, but

may also offer promising device characteristics. Long underdamped junctions have exhibited

transresistances of the order of 0.01 Q [4]. Parallel arrays of underdamped junctions compete

with these devices, operating with transresistances of about 1.8 Q [6].

Because the DC output voltage of a Josephson junction or a Josephson junction array is

proportional to the frequency of an AC current in the system, they can be used as current-

controlled oscillators. Underdamped arrays are well suited to this application, due to the

particular dynamics of the system. Both long junctions and parallel arrays operate in the

gigahertz regime with power levels of only nanowatts [5, 6]. The output impedence levels of

such oscillators should be around 50Q for optimal matching to other circuits. The reported

impedence levels of long Josephson junctions are less than 1, while parallel arrays offer an

improved output impedence of about 10 [6].

The power levels of both continuous and discrete junction oscillators can be increased

by placing several devices in series. Numerous studies done on stacked Josephson junctions

[10, 13, 14] confirm this. It has also been shown that inductive and capacitive coupling

between the junctions further complicates the dynamics of the stacked system, resulting in

a unique IV characteristic. Although stacking of long Josephson junctions improves power

levels, the coupling of a DC magnetic field into the system becomes increasingly difficult.

In contrast, coupling magnetic fields into discrete arrays is straightforward, since they have

a planar geometry. In addition, voltage probes can be easily placed along any row of a
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discrete array, whereas the fabrication of stacked junctions with voltage probes along the

middle layers is still a challenging problem.

In the following chapters, we will discuss some of the first measurements of discrete,

inductively coupled arrays. We will compare these results with measurements of single

arrays. We will present physical and mathematical models of the systems, which characterize

important features of our data well.
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Chapter 2

Background

2.1 Single Junction RSJ model

Superconducting devices based on the tunneling of superelectrons (Cooper pairs) are gen-

erally referred to as Josephson devices. An SIS (superconductor-insulator-supercondutor)

Josephson junction is depicted in Fig. 2-1. In a superconducting material, all of the paired

electrons behave coherently and can therefore be described by a single macroscopic wave-

function, AI. The magnitude of this wave-function decays exponentially in the insulating

region. However, if the insulator is thin enough, there will be some overlap of the wave-

functions from the two superconductors. Associated with this overlap is a tunneling current,

predicted by Brian Josephson in 1962. It can be shown [15] that, in the absence of any

scalar or vector potentials, the supercurrent depends on the difference between the phases

of the macroscopic wave functions in the two superconductors

Js = J, sin(01 - 02) (2.1)

J, is the critical current density of the junction, and it decays exponentially with the

thickness of the insulator. In the presence of a magnetic field, the form of the above

equation remains the same if we instead use the gauge-invariant phase difference

J, = J, sin(+) (2.2)
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, -= ]- 2 - o A(r,t) dl (2.3)

Figure 2-1: Josephson tunnel junction.

With the approximation that the current and phase are uniform over the cross-section

of the junction, we can derive the lumped-element current-phase relation [15]

i = I sin (t) (2.4)

It can also be shown that a time-dependent phase difference results in a voltage across the

junction [16]

d =- (2.5)
dt o

In equation 2.4, we see that the superconducting current does not exceed I. However,

excess current can be passed through the junction via single, normal-electron tunneling.

The geometry of the device also suggests that AC currents will be capacitavely conducted.

The SIS Josephson junction is often modeled as a simple parallel connection of these

three current-conducting channels. This is referred to as the Resistively-Shunted-Junction

(RSJ) model, and is presented in Fig. 2-2.

For a junction driven by a DC current source, Kirchoff's current law requires that

v cdvi = Isin++ dC (2.6)R, dt

15
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Figure 2-2: Resistively-Shunted Junction (RSJ) model of Josephson junction.

Writing the voltage in terms of phase differences. this becomes

i = I sin + - do + C d (2.7)
2rR dt 2R t2(2.7)

For the resistance, R, we usually use the normal-state resistance, Rn, of the junction. When

the junction voltage is below the superconducting gap voltage, 2A/e (sometimes called the

sub-gap region), the current and voltage do not have a simple linear relationship. An

approximate resistance, Rsg, is sometimes used for R when the junction operates in the

regime.

Even this simple model of the Josephson junction results in a non-linear differential

equation in which is difficult to solve. However. it has been noted that this system is

described by the same equations as the damped, driven pendulum. In hopes of gaining some

physical insight, the two systems are often compared. Pursuing this analogy, we re-write

the dynamical equation:

1 1 i 
0 a + + CL-sin = CL (2.8)R,C CLj ICLj

where L = 2o

For small phase differences, such that sin k ( X, the equation can be satisfied by solutions
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of the form ¢ = est for s such that

s2RC i [ 1 1/ (2.9)

Then the homogeneous solution for +(t) is:

(t) = e-t[Alef V t + A2 e -V8t] (2.10)

The homogeneous solution will be a decaying, oscillating function for < 1 (that is, for

R 2 C/L > 1/4), and will be a smoothly decaying exponential for 6 > 1. Therefore, the

quantity R 2 C/LJ _ / is used to identify the degree of damping in the system, and is

called the Stewart-McCumber parameter [17, 18]. In mechanics, the degree of damping in

an oscillating system is customarily described in terms of a quality factor, Q. This is related

to the Stewart-McCumber parameter by Q2 = POc/2.

2.2 Sine-Gordon Equation for Parallel Arrays

Parallel arrays of Josephson junctions, as depicted in Fig. 2-3, are sensitive to applied

magnetic fields. Consider, first, the case of a continuous perfectly conducting loop. In

response to an applied flux, this system generates a mesh current, I m , to expel the flux.

The inductance of the loop, L, characterizes this response: LI m = -app. This is also

true of a superconducting loop if it is initially cooled to its superconducting state in zero

field. In contrast, a superconducting loop which is broken by one or more tunnel barriers

allows the field to penetrate the loop through the tunnel barriers. Even when cooled to the

superconducting state in no initial field, this system is described by: LIm = m -_ app,

where 4m is the flux threading the loop. If the mutual inductance between all pairs of loops

in an N-junction array is included, the equation becomes

N-1
Li,j im = $ - app (2.11)

i=l

where napp is the applied flux per loop (cell) of the array and is assumed to be uniform.

17
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Figure 2-3: Parallel array of Josephson junctions. The phase difference across a junction is

labeled j. Circulating currents in each loop are marked I.

The flux through the loop is also related to the circulating currents through the phase

of the macroscopic wave-function. The flux through one loop of the array determines the

phase differences across the bordering junctions by

_ _ - 1
I' = 2= (j+l - j) + nj (2.12)

where nj is an arbitrary integer, Oj is the gauge-invariant phase difference across junction

j, and the field is applied in the direction indicated in Fig. 2-3. This relationship is found

using the supercurrent equation and the definition of the gauge-invariant phase difference

[15]. The addition of the nj arises from the fact that the phase of the macroscopic wave

function can only be defined modulo 2r. Equations 2.11 can be combined with 2.12, giving

1 1 1 N-1

-(app + nnio) = 2'(j+ -O j) - - Lij (2.13)
i=l

Note that equation 2.13 is invariant under a change of the applied flux per unit cell by an

integer number of flux quanta, since nj is a free parameter. This is characteristic of all

equations describing parallel arrays of Josephson junctions. In these discrete systems, it is

therefore convenient to define a normalized field parameter, f = app/4o, which is called

the frustration.

18
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Kirchoff's current laws indicate that the difference between the mesh currents is just the

sum of the bias current and the junction current. Using the RSJ model and the Josephson

relation, we find

I -Ij 1 = Ib + Ic sin j + 2R d + C d 2 (2.14)
.7 7-1 2rR, dt 2r dt2

where Rn has been used for the junction resistance, and Ib is the bias current. This can

be combined with equation 2.13 to give an equation in I only. For the simple case where

only self-inductances are included ('i Li,j I m = LjjIj = LsIjm), this gives the discrete

sine-Gordon equation

Aj[j+l + j- - 2j] - 2rA(nj - n) - j - j = sind j + b (2.15)
Ic

The time has been normalized to rj = 1/wj _- o/2IRn- We have also used Ai =

4o/27rIL = L/L 8 and P = R2C/Lj. The current-voltage characteristic for a current-

biased, N-junction array can be found by solving the above equation, with the following

boundary conditions

AJ[02 - 1 2r(nl +f)] - - 1 = sin 1 + I (2.16)
I,

A[4N-1 - ON - 27r(nN-1 + f)] -c -- x = sin qX + I (2.17)

To solve this system of equations, especially if all inductances are included, it is helpful

to write the equations in matrix form. We define L as the inductance matrix, normalized

to L,, M as a loop-sum operator (with built-in boundary conditions), and 0 as the phase

vector. The equations can now be written as

A2 MTL-l[27r(n - f) - M4] = I + sin 4 + 3b0 + q$. (2.18)

Thus we have an ordinary differential equation describing the evolution of the phases across

an N-junction array. Since n is an arbitrary integer, this system is invariant under integral

changes in f.

19



01
c)

co

junction number

Figure 2-4: Phase distribution across a parallel array of 54 junctions. A vortex is in the

center of the array. Points mark the value of the phase at each junction, and the solid line

represents the arctan approximation. The steeper curve is the result for A2 = 3, while the

second was calculated using A2 = 30.

2.3 Numerical Analysis

2.3.1 Static Behavior

To fully characterize the 1D array, it is helpful to examine its static properties in the

presence of a magnetic field. In this case, the time-derivatives of the phases vanish, and the

system of equations becomes

A MTL-1[27r(n - f) - m = - + sin +. (2.19)

A solution can be found by using a quasi-Newton-Raphson method. We find that this

system supports a special type of solution, called a vortex. In a one-dimensional array,

a vortex is characterized by the phase distribution shown in Fig. 2-4. A long Josephson
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junction supports a similar distribution. In the long junction case, however, an analytic

expression for this phase solution is possible [19]. The discrete version of the expression, is

given by

j 4 arctan [exp (i j] (2.20)

where j is the center of the vortex. The solid line in Fig. 2-4 shows that this agrees well

with simulations. We also see that the final phase configuration depends on the value of

AJ. As AJ is increased, the vortex becomes more spread out across the array. Thus A is

referred to as the penetration depth. For very large AJ (small L,), an entire vortex does

not fit into the array.

Figure 2-5: Phase distribution

in the center of the array, and

35 40 45 50

across an array of 54 junctions, for f = 0.1. The vortex is

A- = 3.i

When a magnetic field is applied, the phase distribution begins to change at the edges of

the array (Fig. 2-5). Thus current, given by Ij = I sin O4j, flows through the edge junctions.

Magnetic flux also begins to penetrate the edges of the array, subject to the condition

21
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A = o(Oj - Oj+1)/27r. The current and flux profiles of a single vortex in a small external

field appear in Fig. 2-6 and Fig. 2-7. The total amount of flux associated with the presence

of a vortex can be found by calculating the area under the flux curve in Fig. 2-7. We find

that, for values of Aj small enough to fit a vortex in the array, the total flux is always equal

to 4o, or one flux quantum.

o

a

E
o

c

Ui

0 5 10 15 20 25 30 35 40 45 50
junction number

Figure 2-6: Current distribution across an array of 54 junctions, for

in the center of the array, and A = 3.

f = 0.1. The vortex is

Associated with current and flux in an array are electric and magnetic energies. In the

quasi-static limit, the energy stored in our system can be written in terms of the terminal

variables, voltage and current

W = Jivdt (2.21)

In this limit, we can use a lumped-element circuit model of the system to estimate its

internal energy. The electric energy stored in the superconducting channel of a single

22



0 5 10 15 20 25 30 35 40 45 50
junction number

Figure 2-7: Flux distribution across an array of 54 junctions, for f = 0.1. The vortex is in

the center of the array, and A] = 3.

Josephson junction is calculated by writing

i = IC sin b (2.22)

v: = 2 do (2.23)
21r dt

Substituting into the integral gives

We= (I sin >) 2 oat dt= 2 (1 cosqr) (2.24)

The magnetic energy due to a circulating current, im , in a single loop of the array is

calculated by writing the voltage as: v = di/dt. Then, for the simple case of self-inductance

only,

Wm = Jimd = JimL, di = L.(Im)2 (2.25)

The sum of We and Wm over the array gives the internal energy of the system. We can use

this calculation to determine the value of the applied magnetic field at which it becomes

23



energetically favorable for a vortex to exist in the system (see Appendix A). This is called

the thermodynamic critical field, HC1. In a continuous long Josephson junction, this field

was estimated to be HC1 = 2o/(X72 AJhp), where h is the thickness of the tunnel barrier

[20, 15]. The long Josephson junction can be modeled as a discrete array (see Appendix

B), and the critical field translates into HC1 = 24o/(por 2AJp2). In terms of the frustration,

the long Josephson junction model gives fl = 2/(7r2A). Fig. 2-8 compares this estimate

to the static calculation of fcl (AJ). For this calculation, the long Josephson junction model

works well.

0.25

0.2

o 0.15

0.1

0.05

0 0.5 1
1/Lambda

1.5

Figure 2-8: Critical field for a discrete array of 54

of static simulations. The solid line represents an

junction model.

junctions. The points mark the result

approximation obtained from the long

24
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2.3.2 Dynamic Behavior

A solution to the full dynamic equation 2.18 can be found numerically. The continuous

time derivatives are discretized, and the solution is advanced in small increments of time.

Several methods have been devoloped to solve the problem. Our simulations [21] use the

fourth-order Runge-Kutta scheme. Fig. 2-10 shows a simulated current-voltage curve of

54 junctions connected in parallel, and Fig. 2-9 shows the characteristic for 9 junctions in

parallel. Steps appear in both iv's, where, for a particular voltage value, there is a steep

rise in current. These structures are also present in our experimental data.

5
VNg

Figure 2-9: Simulated current-voltage characteristic

parameters used were = 445 and A = 2.87.

for an array of nine junctions. The

Using the Josephson relation, we can write the voltage position of a resonance in terms of

the average frequency of the juncion phases (w = q). These resonant frequencies can then be

calculated using a linear instability analysis of the junction phases [22]. A similar approach

has also been used in long Josephson junctions to predict Fiske modes [23], zero-field steps

25
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Figure 2-10: Simulated current-voltage characteristic for an array of 54 junctions. The

parameters used were / = 445 and A2 = 2.87.

[24], and the Eck step [25].

To find the resonances of this system, consider the simple case of large junction resistance

(no damping) and include only self-inductances. Without normalizing time, equation 2.15

becomes

A2[ j+1 + qj-1 - 2j] - CLj = sin Oj + ± (2.26)

The boundary conditions are

AJ[ 2 - )1 + 27r(n1n+ f )] - CLi = sin +1 l+ (2.27)

AJ[4N-1 -N - 2 7r(nN-1 + f)]- CLj4 = sin ON + (2.28)

We can also satisfy the boundary conditions by defining the phases of artificial junctions at

the ends of the array such that

0o = 1 + 2rf (2.29)
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ON+1 = PN - 2rf (2.30)

Then equation 2.26 holds for all N junctions, and the boundary conditions are given above.

We approximate that the phase can be written as the sum of a known linear function

(in time and space) and a very small unknown function in time and space.

j = >°) + Uj (2.31)

The known functions, O(°), must satisfy both the dynamical equation, 2.26, and the bound-

ary conditions, 2.30. We require that (O) > Uj so that sin qOj sin °(O) + uj cos ) When

this is substituted into equation 2.26, the result is an equation in uj,

qj 3+ Cos j - L c[Uj+l + Uj_ - 2j] = 0 (2.32)CLJ i L.C

Since O(°) alone must satisfy the boundary conditions, uj must satisfy

Uo = U1 (2.33)

UN = UN+1 (2.34)

We will look for periodic solutions of these small perturbations in phase. When the

periodic solutions become unstable, we expect a resonance to occur. Although Uj is a finite

function, we can treat it mathematically as an infinite, periodic function, as long as we use

the correct boundary conditions (above). Thus we can write uj as a Fourier series.

N-I r j l1I2
Uj = E Am cos mr N (2.35)

m=0O

The shifted cosine function satisfies the boundary conditions and the orthogonality condition

E cos cos 1 - 6 m,n (2.36)
j= N 2

Substituting the Fourier series into equation 2.32 and applying the orthogonality condition,

we obtain
N-1

.. 2 N8E [Am-mn + Amwm 2 m,n] (2.37)
m=O

-CL E Am cos [ (j- cos () cos m(j - 1/2)
CL m=0 j=1 N l
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where

Wm = L sin2 ( me ) (2.38)
L,C 2N/

If we include the coupling between adjacent loops of the array, the form of equation 2.38

remains unchanged. In this case, equation 2.38, becomes

2 Mmlr Ffmlr)]
Wm sin ( ) [1 + Mh cs ( )] (2.39)

where Mh is the ratio of the coupling between adjacent loops and the self-inductance, and

equation 2.39 is given to first order in Mh.

At this point it is clear that the solutions for uj and its resonant frequencies depend

on the choice of the solution ¢0°) . For the special case of f = 0, the function =4
°) = Wt

satisfies equation 2.26 and the boundary conditions. This choice also reduces equation 2.38

to a Mathieu equation.

An, + n + coswt = 0 (2.40)

The equation is linear, but is not easily solved because the coefficient of An is time-

dependent. It is often referred to as a parametric excitation, since it acts as a periodic

variation of the natural frequency, w,. Because the frequency w is determined, cos wt can

be treated as a driving term.

1
, +- A, = -A CL cos wt (2.41)

We can now look for resonances through an interation method. Consider the quantity

E = 1/(LJC) to be a small parameter. We will proceed by solving equation 2.40 for = 0

to obtain a first approximation to the solution, A( °) The difference between solution A(°)

and An will be of order c. A( °) will then be used on the right-hand side of equation 2.41 to

obtain a more accurate estimate, A( 1). For e = 0, we have

A(°) = a cosw, t (2.42)

Then the next order equation is

A +wnA(l =CL coswtcos wnt (2.43)
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When the driving frequency on the right-hand side is equal to the free frequency on the

left side, we expect the solution for A( ) to become unbounded and a resonance to occur.

Writing cos wt cos w,,t = cos(w + w, )t + cos(w - w, )t, we can see that a resonance is possible

at the frequencies: w±wn = w,, or w = 2wn. Using the Josephson relation in equation 2.38,

this means that steps are expected in the iv at the voltages

VZFS = L-4 sin M) [1 + IMhI cos (2.44)
7 VrL-,c I (W2)] N

These steps have, in fact, been observed, and are called zero-field steps (ZFS).

Obtaining possible resonance frequencies of uj is straightforward in the f = 0 case, since

the solution (°o) has no spacial dependence. However, both the Fiske steps and the Eck step

appear in the regime f > 0. In this case, calculation of the possible resonances becomes

much more complex. The traditional calculation of Fiske resonances begins by writing the

phase differences, j, in equation 2.26 as the sum of a known solution, O°) and a small

perturbation, uj. The solution b° 0) is a traveling wave of the form Og0) = at - kpj, where
3 1U ~U UICU·1

kp = 2rf and w = 2rV/o. Then equation 2.26 becomes

A1[uj+I + uj1 - 2uj] - CLj = sin(0°) + uj) +l (2.45)

In the past, this equation has been over-simplified by writing sin(o(°) + u;) ~ sin ). The

resonances are then calculated by treating sin &O) as a driving term. However, the approx-

imation is incorrect since the left side of equation 2.45 is first-order in uj, while the right

side is only zeroth order. Initial attempts to correctly derive the Fiske resonances and the

Eck step are presented in reference [32]. In the parameter regime where the traveling wave

solution for O0) is appropriate, the authors find that resonances are possible at frequencies

w m win, where Wm is given by equation 2.38.

To verify that our measurements will be in this parameter regime, we can plot the phase

solutions obtained from simulations and compare this to the postulated basic solution,

(0) = wt-kpj. For A' = 2.87 and P = 445, the simulations are presented in Figures 2-11, 2-

12, and 2-13. In the time domain, it is clear that the phase can be treated as the sum of a

linear function and a small perturbation. As expected, the slope of the linearization matches
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the average voltage. The spacial distribution is more complicated, although the slope of the

linear fit does match the expected wavelength of the basic solution, (° ). It is possible, then,

that this solution will suffice to predict resonances. However, in this pararmeter regime,

the theory should be compared carefully with measurements and simulations. We expect

resonances at w W,, and the Fiske steps to appear at voltages

VFS = -ir
7r V7C7cIsin ( ) [1 + Mhl cos ( )] (2.46)

0.1 0.15 0.2 0.25
VNg

0.3 0.35 0.4 0.45

Figure 2-11: Simulated current-voltage characteristic for an array of

parameters used were = 445 and A} = 2.87. A point is marked on one
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Figure 2-12: The phase evolution of a single junction.
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Figure 2-13: Distribution of the phases across the entire array, at a single point in time.
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In an array where the number of junctions is large, a single Eck step appears, as in

Fig. 2-10. A mathematical analysis for this resonance has not yet been formulated, although

physical arguments suggest that the dispersion relation is the same as for Fiske steps. The

application of a magnetic field to the system causes a vortex array to penetrate, with

periodicity f. A bias current causes the vortex array to move, and the changing flux at the

end of the array is measured as a DC voltage. Since the system is very long and has finite

damping, we do not expect reflections at one end of the array to reach the other. Thus,

both O(?) and uj will have traveling wave solutions, with the same wavelength, kp = 27rf. If

uj is now written as a sum of traveling waves, an equation similar to 2.38 will be obtained,

with the characteristic frequency

w2- L sin2(7rf) (2.47)
LsC

This translates into a voltage

VE - Isin(zrf)l [1 + IMhl cos(27rf)] (2.48)

This is also referred to as a flux-flow step, since it originates from a moving vortex array,

traveling with maximum phase velocity, w(k).

Using a linear analysis, we calculated resonant frequencies of the system which, as

shown in reference [26], closely match experimental results. It turns out that Fiske steps

appear at frequencies which can be predicted by completely neglecting the non-linear term

of equation 2.26. Physically, this amounts to modeling the Josephson junction array as a

simple linear system which has the same natural frequencies. The circuit model, depicted in

Fig. 2-14, is that of a lossless TEM transmission line. Comparing this with the RSJ model

of a single junction, we see that both the resistive channel and the Josephson channel

are neglected. The capacitive impedence of the junction must be much smaller than the

impedences associated with R and Lj. Using the transmission line circuit, we can write

an equation relating the voltages at adjacent nodes, which is similar in form to the phase

equation 2.26. For self-inductances only, we have:

Vn+, + Vn_- - 2V, - L.CVT = 0 (2.49)
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The transmission line analysis yields the same dispersion relation as that given above.

Again, the resonant frequencies depend on wavelength. The boundary conditions are im-

plemented by placing an infinite load at the output of the transmission line. It is then

possible to find the poles of the imput impedence, Zi,. According to system theory, the

pole of a network function (such as Zi,) is a natural frequency of the corresponding output

network variable (V). We find that the poles of Zi, occur at NO = mr, where = kmp.

This is the same condition found using the Fiske mode analysis.

M _ _

___ IE

rM 

- _ _

Figure 2-14: Lossless TEM transmission line: lumped element circuit model.

2.4 Inductively Coupled Arrays

In addition to one-dimensional arrays of junctions, we are also interested in the behavior of

two such arrays connected in series. This circuit is depicted in Fig. 2-15. We can simulate

the full dynamics (Fig. 2-16) and obtain an IV curve for the array in the presence of a

magnetic field. Again, the distinguishing features are steps in the current-voltage curve.

Comparing Fig. 2-16 to the one-dimensional array IV (for N=54), we see that there are

now two steps. with two characteristic voltages. This splitting is also predicted by a linear

instability analysis, as was done for the single array.

This system is governed by a similar set of equations. The gauge-invariant phase differ-
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Ib

1

2

Figure 2-15: Circuit model of inductively coupled array. The junction phases are designated

oj,l in the top row of the array, and in the bottom row they are Oj,2. The mutual inductance

between two horizontally adjacent cells of the array is MhL,. Likewise. MtLS and MdL,

are the inductances of vertically and diagonally adjacent cells, respectively.

ences across the junctions must satisfy

j,1 - j-l,1 = 2 nj-l, + ,) (2.50)

j+-l,--j,1 - 27 nJl + , (2.51)

j-, 2 (2.52)

j+,2 -j,2 (r nj,2 + ) (2.53)

The total flux through each loop of the array, and jm2, must equal the sum of the

applied flux and the induced flux. Including only nearest-neighbor inductances.

4( = app + LsIl2 + hLs(Ij_ll - Ij2+l,l) + MvLsIj2 + MdLs(Im 1 , 2 + Ij+l2) (2.54)

A similar equation applies for jm2. We have defined the inductive coupling between two

horizontally adjacent loops to be MhLs . The coupling between vertically adjacent loops is

iML, and the coupling between two diagonally opposite loops is MdL,. Kirchoff's current
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Figure 2-16: Simulated current-voltage characteristic for an inductively

54x2 junctions. The parameters used were /3 = 445 and A2 = 2.87.

coupled array of

laws can be used to relate the mesh currents to the junction currents. For the case of no

bias current,

IJ,1 = ,1 j-,1 = Isin j,1 + C j,j" Ii 2r (2.55)

Combining these governing equations, we can write an equation for each row in terms of

the phases. To simplify the notation we define,

)j,1 - j (2.56)

(2.57)

Then the equation for the first row becomes

A2(Oj+1 + ,j-1 - 20j)- CLjj - MCLjb1

-MhCLj(j+ + j-1) - MdCLJ(bj+l + j-1)

= sin Oj + Mh(sin Oj+1 + sin qj-1) + My sin bj + Md(sin ;j+l + sin j-1 )
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A similar equation holds for the second row. The boundary conditions are defined as in the

last section,

o = 1 + 2/rf (2.59)

io = 1 + 27rf (2.60)

ON+1 = N - 27rf (2.61)

bN+1 = bN - 27rf (2.62)

Again, we write Oj and Obj as sums of a known solution and small perturbations around

that function.

X (= ) + U3 (2.63)

,j = (0) + vj (2.64)

Since both ! °o) and I(o) must satisfy both the dynamical equation 2.59 and the boundary

conditions 2.62, the equation for the small perturbations becomes

AJ(uj+ 1 + uj_ 1 - 2uj) - CLjii) - MvCLjij = j cos (o) + Mvvj cos J(0) (2.65)

A(vj+ 1 + Vj_ - 2vj) - CLJji - MvCLjdj = vj cos (0) + M Uj CosO(°) (2.66)

For the sake of simplicity, we temporarily neglect Mh and Md. The effect of Mv is now

clear. If we set M, = 0, the equations become uncoupled, and replicate equation 2.32. The

boundary conditioins are

uo = u1 (2.67)

vo = vl (2.68)

UN+1 = UN (2.69)

VN+1 = VN (2.70)

Then we expand uj and vj as discrete Fourier series.

uj = E Am cos mr N (2.71)

m=0 [
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To investigate the ZFS, we let f = 0 and

the equations become

An [w+1cost] +

Bn 2[w + cos t] +n + iCJ1 osuL 

An + MvCLJB + MvBn coswt = 0

Bn + MvCLjAn + MAn coswt = 0

where, as before,

W2 -4 sin2 ( n)
n LsC 2N)

(2.76)

The equations can be uncoupled by defining the normal coordinates

An + Bn
Xn =

2
(2.77)

(2.78)
2

Adding equations 2.75 and 2.75 gives and equation for x, while subtracting 2.75 from 2.75

yields and equation for y.

n + n ( 1 + Mv

'f. + 1- nMD ) 

=-Xn(C cos wt

=-Yn (CL) cos wt

We now have two uncoupled Mathieu equations. Note that the characteristic frequencies

on the left side are not the same. Following the analysis of the previous section, define

Xn° ) = x COS Wt = -(a + b) cosnt

Y(O) = y cos ,t = 1(a- b)coswnt

(2.81)

(2.82)

We obtain the resonance condition for the coordinate Xn

1 1)/
2

w= 2Wn 1 + M, (2.83)
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The resonance condition for the Yn coordinate is

1 ) 1/2
w = 2 1 M2wy (2.84)

Thus the system has two possible resonance frequencies. If we include all nearest-neighbor

inductances, to first order, the resonances happen at

= sin (ff) [l + (Mh + Mdl)cos (-) - M] (2.85)

The frequency w+ corresponds to a resonance in the x-coordinate. Note that, for An = Bn,

y = 0, and only w+ is possible. This is called the symmetric mode, since the small oscillations

uj and vj are in phase. For An = -Bn, the small oscillations are out of phase, and the

frequency w_ is the that of the anti-symmetric mode.

This analysis predicts the frequencies of the ZFS in inductively coupled arrays and

predicts that each zero-field step observed in the single array will now be split into two

steps. As in the single array, Fiske resonances are expected at half the value of these

frequencies, and the number of Fiske steps will double. Also, for large N, we see two Eck

steps, corresponding to the two characteristic frequencies. The voltages of the Eck steps

are now expected to be

VE± - I sin(7rf)[l + (IMh + Mdl) cos(27rf) + IMvl] (2.86)
We will later compare this prediction to our experimental results.

We will later compare this prediction to our experimental results.
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Chapter 3

Experiments

3.1 Samples and Diagnostics

Arrays of underdamped Nb-NbO-Nb Josephson junctions were fabricated at HYPRES, Inc.

[27]. This process offers junction current densities, J, of 100-1000A/cm 2 . Junctions can

be designed as small as 3mx3 3m, and have a specific capacitance of 38fF/m 2. The

junction characteristics and array inductances can be measured using a series of diagnostic

procedures developed by van der Zant et al. [8]. This requires that a nine-junction parallel

array be placed on every chip. The array has leads placed at one edge and at the center,

as in Fig. 3-1.

The normal-state resistance of a single junction can be obtained by measuring the array

resistance. Current is injected at the center, and voltage is measured across the leads at the

edge. The array normal-state resistance is taken from the slope in the region after switching,

and is ideally measured as close as possible to the critical temperature of niobium. The

junction resistance is then approximately: Rn = NRn,,aray. The IRn product is a constant

at a given temperature, and can be estimated from the Ambegaokar-Baratoff [28] relation:

I(T) = 0.86(rA(T)/2eR) tanh(A(T)/2kBT). At T = 0, IR = 1.9mV. Thus, we can

use Rn to confirm the value of the critical current density.

Measurements of the Fiske modes in an array provide values for Mh and for the product
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Figure 3-1: Parallel array of Josephson junctions. to be used for diagnostics.

LsC. Fiske modes appear as steps in the current-voltage characteristics when a magnetic

field is applied, and aire most clearly observed when .\J > 2. Fig. 3-2 shows measurements

of a nine-junction array at T=4.2 K. As discussed in section 2.3.2, steps are expected at

voltages of

( [ + hi (-)] (3.1)

where V, = oI/(7r vL/C) and m = 1, 2 .., N - 1. The measured voltages of each Fiske mode

are plotted against the above Vm expression to obtain values for Vo and Mh. Fig. 3-3 shows

the data and fit.

The self-inductance, L,, can be determined from a measurement of the array critical

current, ,aray, as a function of applied field. This method is based on static solutions for

IC in a long Josephson junction with current injected at one edge. Owen and Scalapino

[29, 30] found that, near zero field, the relationship is linear and depends on the Josephson

penetration depth. A. In discrete arrays with current injected at the edge, a similar

relation can be expected. In fact, when the long Josephson junction is modeled as a discrete

array (see Appendix B), the slope calculated by Owen and Scalapino translates into: a =

AIc.array/Af = 4rA2 l/N, where we normalize Ic,array to NI,. Simulations have been used

to find the exact relationship for discrete systems. When N = 9 and A2 < 9, van der
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Figure 3-2: Measurement of N=9 array. The steps in the IV are called Fiske modes.

Zant et al. found that a = A2 /[1.43(1 - 2IMhl)]. Since Ma is found from the Fiske mode

measurement, the slope of It(f) near f = 0 determines A2 . Given the junction critical

current, I, the value of Aj can be used to find L. In Fig. 3-4, we plot the measured

critical current values of the same array, and estimate a. The Fiske mode analysis also

determines the product of LSC, so that the capacitance can be calculated.
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Figure 3-3: Voltage values of the Fiske steps versus mode number, m. The solid line is the

fitted model.
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6

frustration

Figure 3-4: Critical current vs. frustration for a nine-junction array. Current is injected at

the edge of the array. The dotted line represents a fit to the linear portion of the array, and

has slope a = 2.512.
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The characteristics common to all of the devices measured are sumarized in table 3.1.

Sample Characteristics

Critical Current Density

Junction Area

Critical Current

Normal-state Resistance

Capacitance

Loop Area

Josephson Inductance

McCumber Parameter

JC = 89 A/cm 2

A = 8 -m
2

I = 6.3 pA

R = 275 Q

C = 300 fF

Al = 50 m 2

Lj = 51pH

pc = 445

Table 3.1: Sample Characteristics, T=4.2 K

Each of the devices on the chip can be subjected to a magnetic field through coupling to

a superconducting control wire. The amount of magnetic flux supplied to the device, app,

depends on the strength of the mutual inductive coupling, Mctrl, and on the current in the

control wire, /ctrl. Writing the frustration in terms of the control current, this becomes:

Mctrlictrf=
4to

(3.2)

3.2 Characteristics of Long Arrays

We have designed and measured arrays of 54 Josephson junctions, connected in parallel by

superconducting Nb wires. A bias current, Ib, is applied uniformly to each junction through

the use of resistors, and the voltage is measured with superconducting leads at the edge of

the array. The control wire runs parallel to the edge of the array and is about 800 nm above

it.

The magnetic field from Itrl injects vortices into the array. The bias current causes

the vortices to move, thereby producing a voltage across the array, V, proportional to the
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vortex velocity. For a fixed Ictrl, increasing Ib causes an increase in velocity, until the

limiting electromagnetic phase velocity in the array is reached. At this point, increasing b

further does not move the voltage beyond VE, the Eck voltage. Thus there is a steep rise

in the current, as shown in Fig. 3-5. For sufficiently high Ib, the voltage jumps to the gap

voltage, Vg.

80

60

40

1-

.3

0

tB0
U

20

n
v0 0.05 0.1 0.15

voltage

Figure 3-5: Measurements of an N=54 an

control currents (frustrations), at T = 7 K.

0.2 0.25 0.3 0.35

(mV)

ray. IV curves were taken for several different

When Ib is held constant and Ictrl is increased (Fig. 3-6), VE initially increases due to

the higher density of injected vortices. However, as the data shows, VE is periodic in Ictrl,

with period Iper. The lighter line in Fig. 3-6 shows the curve:

VE = sin
V -_ __ i ( Mc "rlctrl) (33)

This is taken from the linear analysis discussed in section 2.3.2, and equation 3.2 has been
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Figure 3-6: Measurements of an N=54 array. The array is biased at Ib = 40 mA, and the

control current is swept between Itrl = 0 - 0.5 mA. The lighter line represents the fitted

model, with VE,max = 0.27 mV and Iper = 0.47 mA.
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used for the frustration. We see that the period can be used to find Mctrl. At 4.2K,

our samples show a period of Iper = 0.45 mA, implying Mctrl = 4.6 pH. We have used the

diagnostic techniques described in section 3.1 to determine that L, = 16 pH and C = 300 fF.

This gives a VE,max of 0.3 mV, which corresponds well with the measured value of 0.27 mV.

Note that, for very small applied magnetic field, no Eck step appears at all. We can ap-

proximate the field value at which the Eck step appears by the thermodynamic critical field,

discussed in section 2.3.1. Then the threshold, fl = 2/ir2Aj, will vary with temperature

since Aj is temperature dependent.

3.3 1D Array Flux Flow Devices

From equations 3.3 and 3.2, we see that the array may be used as a current-controlled

voltage source. The device is biased at Ib, with input current Ictrl and output voltage VE.

When used in this manner, the device is often called a vortex-flow transistor (VFT). It is the

magnetic analog of a field-effect transistor (FET), in which two control voltages produce

an output current. In a FET, the transconductance is the key performance parameter.

Likewise, in a VFT, the transresistance is the parameter we wish to optimize. The I-V

characteristic is shown in Fig. 3-6.

The maximum output voltage is inversely proportional to V/(sC. The transresistance is

defined as rm = Vout/Iin. For our VFT, we approximate rm = OVE/Olctrl, which increases

as Mctrl//LC increases. Although the value of rm depends on the operating point, we can

obtain an upper limit by fitting the derivative of equation 3.3 to the derivative of our data.

For the data shown in Fig. 3-6, we obtain a maximum transresistance of about 1.75R. The

gain of our VFT can be defined as G = Iut/Iin. The output current depends on the load,

and the gain is reduced to G = rm/RL, where RL is the load resistance. Then, to obtain

G > 1, we are limited to RL < rm. The output resistance, r, is given by the slope of V(Ib)

as the voltage approaches VE. From Fig. 3-5, at f=0.5 r = 0.31 R. This parameter affects

the operating range of the transistor and should be as small as possible.

The threshold current can be approximated from the critical field. Using equation 3.2,
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we have

Ith = (3.4)
Mctrl

Using fl = 2/(7r2AJ), Ith reduces to

4 L
Ith = -AJ MI = 47.4 A (3.5)

7 Mctri

which closely matches the measured value of 50 A.

This underdamped array may also be used as a current-controlled oscillator. The con-

trol current determines VE, which, according to the Josephson relation, corresponds to a

frequency, v = VE/4o. For a given bias current, then, the frequency of the oscillator can

be continuously tuned using Ictrl. For our device, VE ranges from 0 to 0.27mV, giving a

bandwidth of 130 GHz. As Figure 15 shows, the Eck step is quite steep. Thus there is a

wide tolerence in the bias current value ( 30/pA) which which is needed to produce a sin-

gle output frequency. There is not yet an expression for either the linewidth of the output

power or its AC amplitude. Based on the linewidth of a single junction oscillator, however,

[6, 9], we expect the array linewidth to be proportional to ro

47rkBT r o
b = fN - 0 (3.6)

VE/Imax (3.6)

The output impedence can be estimated by modeling the junction array as a transmission

line, giving Zo = v/L/C - 10 R. The maximum attainable power, P = VE,maxlE,max is

about 8 nW.

Our simple models suggest that we can improve the output voltage and maximum power

by decreasing L, and C. We also expect higher voltages and possibly smaller linewidths

from two arrays connected in series. In the following sections, we discuss configurations

which address both of these issues.

3.4 Effects of Superconducting Ground Plane

In order to improve the device parameters, we placed the same arrays of Josephson junctions

about 200 nm above a superconducting ground plane. We expected this configuration to

increase the output power levels of the device by decreasing the value of LS.
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Our diagnostic measurements indicate that the effective self-inductance in the presence

of a ground plane, L'ff , is lower than L. by a factor of about 3.7 at 4.2 K. Measurements of

1per show that Mctrl is also reduced by a factor of approximately 4.4 at 4.2 K. In addition,

we have observed that, in the presence of a ground plane, the effective inductances increase

with temperature. Fig. 3-7 shows L' ff and Mff vs. temperature._ ctrl V.tmeaue

0

5

4

I
3

c'a

2

1

4 4.5 5 5.5 6
Temperature (K)

6.5 7 7.5

Figure 3-7: Self-Inductance measurements versus temperature. The data from the array

above a ground plane is represented by circles, and the data for the array with no ground

plane is marked with x's.

We can account for the temperature dependence of LS using a very simple model. Instead

of calculating the inductance of a thin superconducting loop above a thin ground plane, we

estimate the inductance of two thin superconducting strips, with lengths equal to the inside

perimeter of our loop. The superconducting loop of our circuit is so close to the ground

plane that this transmission line model gives numbers which are quite close to our actual

measurements. Fig. 3-8 shows the model and indicates how the dimensions are derived from
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our mask designs. For penetration depths, A, comparable to the strip thickness, b, the DC

self-inductance of the transmission line is [15]

L = I (h2 + 2 ) (3.7)

where

A(T) = A (3.8)
V1 - (T/Tc)4

In niobium. Ao = 85nm and Tc = 9.25 K. To test our model, we plot the measured inductance

versus (A(T)/Ao) 2. We fit the model to the data by varying the slope and the intercept of

the line given by equation 3.7. The result, shown in Fig. 3-9, gives values of h = 505 nm

and A, = 89.5 nm. In Fig. 3-10, we plot both the data and the model inductances versus

temperature, showing that the model works well.

Transmission
Mask Design Line

1. b
VD

I h
. .10- /~0 /.01. 

-* l=4(p-2w) 

Figure 3-8: Transmission line model for calculating the self-inductance of a single loop of

the array. In our mask designs, we have the following dimensions: b = 0.1 jIm, w = 3 m,

p = 10pm. Although the structure is not completely planar, we approximate that h 

0.5 m.
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f(T)

Figure 3-9: Self-inductance measurements for array on a ground plane. The inductance is

plotted versus f(T) = 1/[1 - (T/T,) 4 ] = A2/A2. The solid line represents the model, and

requires h = 505 nm and A, = 89.5 nm.
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Figure 3-10: Self-inductance measurements for array on ground plane. The solid line rep-

resents the model.
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We can again use a simple model to calculate the inductive coupling between a loop

of our circuit and the control wire providing a magnetic field. As sketched in Fig. 3-11,

the control wire is treated as an infinite and infinitely thin perfectly conducting line. The

ground plane is treated as an infinite, perfectly conducting plane with a skin depth, A(T).

The loop is also comprised of thin wires. Calculation of the inductance gives

Meff= I oP n d2 - n 2 + (d + h + (T)) 2 (3.9)
47r d2 (d + h + (T))2

Fig. 3-12 shows that this provides a good estimate for the magnitude of the inductive

coupling, Mllctrl, but does not sufficiently account for the influence of changing temperature.

control wire

§7d|
P

ground

Figure 3-11: Geometric configuration for modeling the control line inductance.
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Figure 3-12: Control line inductance versus temperature. The solid line represents the

model.
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The change in LS has a clear effect on the transistor characteristics of the device. Equa-

tion (1) predicts that VE will double for Leff = L/4. This is almost exactly what we

observe, as shown in Fig. 3-13. The period of VE has increased by a factor of about four,

which corresponds to the decreased effective coupling, Mctrl/ 4. The transresistance, which

is proportional to Mctrl/ sJ, is half as large as before.

0.6

0.4

0.2

n
v0 0.5 1 1.5 2 2.5

Ictrl (mA)

Figure 3-13: IV characteristic of 54-junction arrays at T = 4.2 K and constant Ib.

The higher output voltage levels also improve the performance of the oscillator. The

bandwidth is twice as large, and the maximum power has more than doubled. This is

because the current levels are also much higher, as seen in the V(Ib) characteristics of

Fig. 3-14. Here, the curves for several different control current values are presented. (Note

that data points after the switch to the gap voltage are not included). Near VE, the slopes

become quite steep, and the decreased ro gives much narrower linewidths.
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Figure 3-14: IV characteristic of 54-junction arrays at T = 4.2 K and several different values

of Ictrl (or f).
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The presence of a superconducting ground plane reduces all inductance values and intro-

duces a temperature dependencs to the inductances. The presence of the superconducting

ground plane improves all of the Measurements of the devices show steeper Eck steps at

higher voltage and current levels. As a result, all of the device parameters except the tran-

sresistance are improved, indicating that a ground plane should only be used for oscillator

applications. We have successfully modeled these trends in our data, and we can use this

knowledge to further optimize the device performance.

Device Parameters

Parameter Single Array Single Array Coupled Arrays

no gnd-plane on gnd-plane on gnd-plane

VE,max (mV) 0.27 0.5 0.91

rm () 1.75 0.53 1.5

ro () 0.62 <0.1 3.3

Ith (mA) 0.05 0.09 0.1

Iper (mA) 0.45 2.0 2.0

B (GHz) 130 240 240

P (nW) 8 35 29

Table 3.2: Device Parameters, T=4.2 K
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3.5 Inductively Coupled Arrays

Additional output voltage is obtained by connecting two arrays of 54 Josephson junctions

in series. The control wire is now placed along both edges of the device and is again 500 nm

above it. Voltage leads at the edge of the arrays make it possible to measure the voltage

across both rows or across a single row. This structure is illustrated in Fig. 3-15.

Ib

1

2

Mh -

Figure 3-15: Circuit diagram of the inductively coupled array.

As discussed in section 2.3.2, we expect to see two Eck steps due to

coupling. The perturbation analysis predicts

cI~~~~~~~~ + g n 7 ) | 1VE± = It= sin('f)l[1 + (Mh + Mdl)cos(2'f) ± IM[I]

the inductive

(3.10)

where VE+ corresponds to in-phase oscillations of the rows and V/E- corresponds to out-of-

phase oscillations.

Measurements confirm that there are two resonant modes in the system. Fig. 3-16 shows

the voltage across each row of a 54x2 array when current is uniformly injected. Two steps

clearly appear in the iv when the voltage is measured across a single row. Across both
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Figure 3-16: Measurements of an inductively coupled array, N=54x2, on a ground plane.

The solid curve represents the voltage measured across the top row, while the dotted line

is the voltage across the bottom row. The measurements are taken at 7.2 K and f = 0.1.

rows, we again see the two steps at twice the voltage, Fig. 3-17. The steps across both

rows are not as sharp, since the voltages across each row are not quite the same, as shown

in Fig. 3-16. In Fig. 3-18, we plot the voltage positions of the steps versus frustration.

The model seems to work best near f = 0.5. As expected, the values of Mh and Mv are

approximately the same, while Md is about half as large.

At low temperatures, the experimental results are somewhat more perplexing. Fig. 3-

19 shows the iv curves at 4.2K for several different values of the frustration. The size of

the splitting is significantly smaller, indicating that the coupling ratio, M, decreases with

temperature for devices on a ground plane. As the current is steadily increased, a step first
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Figure 3-17: Measurements of an inductively coupled array, N=54x2, on a ground plane.

The voltage is measured across both rows at 7.2 K and f = 0.1.

appears at VE+. Continuing to increase the current, the voltage makes a jump to VE-. This

behavior was not seen in either simulations or measurements of shorter inductively coupled

arrays (N=9x2). We are still investigating the possibility that it is an experimental artifact.

The presence of two characteristic frequencies in this system makes it attractive for

device applications. As an oscillator, the device has two possible frequencies. However, the

power that can be coupled from the device is expected to be different for each mode. In

the anti-symmetric mode, the voltage amplitudes of the small oscillations are out of phase.

Thus, the corresponding superposed AC electric fields should give no power output. In the

symmetric mode, the small oscillations are in phase. In this case, the AC electric fields

add, and the amplitude is expected to be large at resonance. As in the single array, the
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Figure 3-18: The measured voltages of both steps versus frustration, for an array of N=54x2.

This data was taken across one row of an array, at T = 7.0 K. The solid line shows the

fitted model, with My = 0.12 and Mh + Md = 0.18.

frequencies can be tuned with a control current and are stable for a relatively wide range of

bias currents. The bandwidth is approximately the same as for the single array. The power

decreases slightly due to a decrease in IE. A large rise in the output resistance causes the

linewidth, given by equation 3.6, to increase. However, this expression for the linewidth was

derived from the thermal fluctuations in a resistive element. It is not clear, yet, whether

phase locking between the two rows acts to reduce the linewidth.

At low temperatures, where the splitting is negligible, the array can be used as a tran-

sistor. The output voltage is twice that of a single array. Differences in the transfer

characteristics of all three devices can be seen clearly in Fig. 3-20, where their transistor
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Figure 3-19: Measurements of an N=54x2 array above a ground plane, at T = 4.2 K.

curves are presented. The currents are normalized to Iper, the values of which are given

in Table I. The period of the coupled arrays is the same as that of the single array on the

ground-plane. Since the output voltages are larger, rm increases.

Use of the inductively coupled devices depends on further devolopment of our models.

However, the match between the theory and measurements is not as good as in our previous

devices, and more work is needed to fully understand the dynamics of this system.
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current (mA)

Figure 3-20: Transistor measurements of the N=54xl arrays, on and off the ground plane,

and of the N=54x2 array.

64

0



Chapter 4

Conclusions

4.1 Summary

We have measured the device characteristics of arrays of underdamped Josephson junctions

connected in parallel. We demonstrated that it is possible to model the performance of these

devices and thus optimize their parameters for specific applications. Our models indicate

that study of these systems may also lead to important insights on the motion of soltions

in discrete lattices.

We were able to enhance device performance by manipulating the inductances of single

arrays. We used a superconducting ground plane to lower the inductance values, which

improved all of the parameters except the transresistance. Thus the ground plane should

be used in the design of oscillators and should be omitted when the array is to be used as

a transistor. Our models suggest that the devices can also be improved by using smaller

junctions or junctions with lower capacitances.

We attempted to further refine the devices by connecting two arrays in series. This

configuration achieved higher voltage levels and transresistances, but the output resistance

was degraded. The power and bandwidth were relatively unaffected. We also observed a

splitting of the flux-flow step, due to magnetic coupling in the system. The splitting was

predicted mathematically and compared with our measurements.
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4.2 Continuing and Future Work

The dynamics of inductively coupled arrays must be more carefully studied before their

potential as devices can be fully realized. We have already observed splitting of the resonant

steps in smaller arrays, and are currently investigating these systems. We are also interested

in characterizing the effects of temperature on the mode splitting and relative stability.

A complete characterization of the oscillator performance must include AC measure-

ments. A particularly important parameter is the linewidth of the output radiation. It has

been suggested that the linewidth in inductively coupled arrays may be decreased by phase

locking effects, although no measurements are yet available to confirm this. It will also be

necessary to compare the AC power output of a single array, with and without a ground

plane, to that of each mode in the inductively coupled system.
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Appendix A

Calculation of Critical Field

We want to determine the value of the applied magnetic field at which it becomes energeti-

cally favorable for a vortex to exist in the system. Consider, then, two states of the system:

an array with a vortex and an array with no vortex. It is possible to have a transition

between the states when they are in equilibrium. By definition, the total entropy of the

two states is maximized in equilibrium. This implies that the Gibbs Free energies must be

equal. We will therefore obtain expressions for the Gibbs free energy of each state.

The transition between a vortex and a no-vortex state occurs without generation of

heat, and is called a second-order phase transition. This fact simplifies the expression of

the Gibbs free energy to [15]

G(iH,T) = G(O, T) - W (A.1)

where G(O, T) is the Gibbs free energy in the absence of applied electromagnetic fields, and

1W is the co-energy of the system. Define the two states:

G1 (H,T) = array with vortex present (A.2)

G°(H, T) = array without vortex

then:

G1(Hl, T) = G1(0, T) - W1 (A.3)

G°(H, T) = G°(O, T) - IV° (A.4)
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If we assume that GI(0, T) G°(O, T), then

G1(H, T) - G0(H, T) = fV-0 - wl (A.5)

Therefore, G1 = Go when WT1 = O°. If we assume that the system is linear, we can simply

calculate the electromagnetic energies of the two states. When these are equal, we will say

that it is energetically favorable for a vortex to exist in the system.

The electromagnetic energy is calculated in terms of circuit variables of the system. This

approach is correct if two additional assumptions are allowed: (1) that, on an arbitrary

surface surrounding the circuit, the fields are electro-quasi-static, and (2) that, on this

surface, OD/Ot - 0 [31]. Then the total electomagnetic energy is:

dw = v dq + i dt (A.6)

In section 2.3.1, the result for a single junction is given:

W = 2° (1-cos 2j) + 2-(I7)2 (A.7)

For the simple case of self-inductance only,

I = 2rL (j - j+ - 2rf) (A.8)

Then, for the entire array,

N E L N-1
W = EJ Z(1 - cos Xi) + 2JLJ E (i+l - i - 2rf)2 (A.9)

i=l i=l

where

Ej I (A.10)
2r

The static solutions for b discussed in section 2.3.1 can now be used to find the electro-

magnetic energy as a function of frustration. We plot W°(f) and Wl(f) for given values of

EJ and L. The point at which the energies of the two states are equal defines the phase

transition, and is called the critical frustration, fl.
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Appendix B

Long Josephson Junction Model

Long Josephson junctions are characterized by lengths much larger than the magnetic field

penetration depth, A. Since these systems have been studied extensively, it is useful to

compare their behavior and parameters with those of the discrete arrays. We will focus on

those parameters which are used for diagnostics in our discrete arrays.

We are primarily interested in the slope and intercept of the linear fit shown in Fig. 3-4.

This is because Owen and Scalapino [29] have done analytical calculations relating these

parameters to the Josephson penetration depth and the thermodynamic critical field. They

found that, while the junction is still in the Meissner state, the maximum critical current

is given by

Imax = -(Ho - IHe) (B.1)
27r

He is the externally applied field, and Ho is the maximum value of the external field for

which the Meissner solution is valid. Converting H and I to MKSA, and normalizing the

current, we obtain
max 2w
I(O) I( 0 ) (Ho - IHeI) (B.2)

Fig. B-i compares the dimensions of the long junction with the parallel array, and

Table B.1 gives the approximations that we will use to convert from one system to the

other. To use the results of Owen and Scalapino on a discrete system, we write w - p and
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It(O) - NIc(O). Then equation B.2 becomes

Imax (H - Hel (B.3)
NI, NI,

The field is converted to frustration by 4o = Bp2.

Imax 2 - f) (B.4)NI popNI, (ff)

We now replace the quantity 4,/21rIc by the Josephson inductance, L, and approximate

that Ls, ILp. Finally, the normalized current measured in a discrete system is

I:M = Li) j(fo- f) (B.5)NI, L, Nj

In discrete arrays, we measure the maximum critical current in the region near f = 0

(while the system is still in the Meissner state). For this measurement, current is injected

at the edge of the array, imitating the current injection in long junctions. The slope of the

linear region in Fig. 3-4 gives us an estimate of the inductance ratio, Lj/Ls. The intercept,

fo, is the field value at which the Meissner solution is no longer valid. It has been shown

that this field is related to the critical field value, fl, at which the presence of a vortex in

the system is thermodynamically favored [30]. The two fields are different by a factor of 2/r,

and are given in Table B.1. In Fig. 2-8, we compare this estimate of fl with simulations

of our discrete system to demonstrate the efficacy of the long Josephson junction model.
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Figure B-i: Dimensions of the Long Josephson Junction versus the Discrete Array.

Long Junction . Parallel Array

h p

w P

Aj Ajp

IJ(0) NI(O)
2w LJ 4

Ho = rAo 

= 7Fr23j7ht . fo Aj

Table B.1: Conversion table for dimensions and parameters.
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Discrete Underdamped Vortex Flow Devices
A. E. Duwel, H. S. J. van der Zant, T. P. Orlando

Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract- Vortex flow devices consisting of dis-
crete arrays of underdamped Josephson junctions have
been fabricated and measured. These devices and
their long, continuous junction counterparts are based
on the ability to magnetically control the Eck voltage
in an underdamped system. We find that both tran-
sistor and oscillator parameters are improved by plac-
ing the arrays above a superconducting ground plane
and by connecting two arrays in series. We developed
models for the device behavior which numerically nu-
merically account for the measured parameters. Our
models also suggest that junctions with smaller capac-
itances will further improve the device parameters.

I. INTRODUCTION

Parallel arrays of Josephson junctions behave, in many
ways, like long, continuous junctions. Both structures
may be used as superconducting circuit elements, such
as transistors, oscillators, phase shifters, and amplifiers.
These systems also serve as valuable models for high tem-
perature superconducting devices.

Josephson junctions can be designed to operate in two
different regimes. These are distinguished by the value
of the McCumber parameter, 0/c. Overdamped junctions,
where L < 1, have been studied and function well as
superconducting transistors. Transistors made from long,
overdamped junctions have shown gains of about 10 and
transresistances of about 0.22 [1], [2]. Parallel arrays of
Josephson junctions have been fabricated with gains of
about 1.2 and transresistances of 0.43g [3].

Although underdamped junctions (&c > 1) exhibit more
complicated dynamics, they also offer promising device
characteristics. Long, underdamped junctions have been
designed as transistors and as oscillators. Transresis-
tances of the order of 0.01 Q [4] and available output power
levels of about 20 nW at 260 GHz [51 have been achieved.
However, the output impedence levels are less than 1 .
Parallel arrays of underdamped junctions compete with

Manuscript received October 16, 1994.
A. E. Duwel., e-mail duwel(inut.edu.
This work was conducted Iuder the auspices of the Consortium

for Superconducting Electronics with the partial support of the Ad-
vanced Research Projects Agency (MDA 972-90-C-0021) and Na-
tional Science Foundation Graduate Research Fellowships.

these devices, operating with transresistances of about
1.8f, expected power levels of about 10nW, and out-
put impedences of the order of 10 [6]. In this paper, we
discuss the operation of the underdamped array as a vor-
tex flow device and present simple models for its output
parameters. We have also measured two variations on the
underdamped array, and we show that, in both systems,
the device parameters are improved.

II. SAMPLES

Samples were fabricated with a Nb trilayer process. l

All of the devices which we discuss are on the same chip,
and their physical parameters are measured at a temper-
ature of 4.2K. Each Josephson junction has an area of
8 JAm

2 and a capacitance, C, of 300fF. We measured the
normal-state resistance, R,, to be about 275fi. Taking
the I R, product to be 1.75 mV at 4.2 K, we find that the
critical current, I = 6.4 A. This gives a value for the
Josephson inductance, LJ = o/2irI, of 51 pH. The Mc-
Cumber parameter, 3,c = R2 C/ L, is about 445 at 4.2 K,
indicating that the junctions are highly underdamped.

Each of the devices on the chip can be subjected to
a magnetic field through coupling to a superconducting
control wire. The amount of magnetic flux supplied to
the device, 4app, depends on the strength of the mutual
inductive coupling, Mfctri, and can be written as

Ictrl Mctrl

$0 (1)

where Ictrl is the amount of current in the control wire,
and we have normalized the applied flux to one flux quan-
tum, 0o.

III. UNDERDAMPED VORTEX FLOW DEVICE

Figure I shows a schematic of the vortex flow device,
which consists of 54 Josephson junctions, connected in
parallel by superconducting Nb wires. A bias current,
Ib, is applied uniformly to each junction, and the voltage
is measured with superconducting leads at one end of the
array. The control current providing a magnetic field runs

Hypres, xIc. Ehnsford, NY 10523
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Fig. 1. A schematic drawing of the vortex flow device.

parallel to the edge of the array and is about 500 nm abe
it.

The magnetic field from I,,C injects vortices into the
ray. The bias current causes the vortices to move, there
producing a voltage across the array, V, proportional
the vortex velocity. For a fixed Itri, increasing lb cau
an increase in velocity, until the limiting electromagne
phase velocity in the array is reached. At this point,
creasing lb further does not move the voltage beyond I
the Eck voltage [7]. Thus there is a steep rise in 1
current, as shown in Fig. 2. For sufficiently high lb, 
voltage jumps to the gap voltage, V.

When lb is held constant and Ict,l is increased, VE i
tially increases due to the higher density of injected v
tices. However, as the inset shows, VE is periodic in ,
with period Iper, which reflects the fact that the prop
ties of an array are periodic in magnetic field. The ligh
line in the inset is the result of a linear analysis for VE
and is given by

$o .. rapp
VE = I sin( ) 

7rV/7= N-I

where L, is the self inductance of a single loop (cell) in
array, and N - I is the number of cells in the array.:
value of L, is determined from the diagnostic meth
described in reference [8]. For this sample, L, is 16 pi

From equations (1) and (2), we see that the array r
be used as a current-controlled voltage source. The
vice is biased at lb, with input current Ics and c
put voltage VE. The maximum output voltage is
versely proportional to V / and the transresistai
rm = AVE/OIlrl, increases as Mctrl /LC increa
The transresistance depends on the operating point
can be obtained graphically by taking the slope of
tangent to the VE(ICt,r) curve. For VE zt 0.75VE,
we obtain rm = 1.752. The threshold current,
cussed in detail in reference [6], can be modeled s
ply as: Ih = 3.6I cLjv-77. For this device, we h
Ith = 0.05mA, which matches the theory well. The l
put resistance, ro, is given by the slope of V(lb) as
voltage approaches VE. This parameter affects the ol

V (mV)

Fig. 2. Current vs. voltage curves of Josephson junction array at
4.2K. VE is the Eck voltage and V9 is the gap voltage. The inset
figure compares the transistor characteristic to theory.

in ting range of the transistor and should be as small as
VE, possible.

the the This underdamped array may also be used as a current-
controlled oscillator. The control current determines VE,
which, according to the Josephson relation, corresponds to
a frequency, v = VE/'o. For our device, VE ranges from 0

'or- to 0.27 mV, giving a bandwidth of 130 GHz. Based on the
t'ri' linewidth of a single junction oscillator [6], [9], we expect
per- the array linewidth to be proportional to ro. The output
Lter impedence can be estimated by modeling the junction ar-
[61 ray as a transmission line, giving Zo = / 7 :-- 10 

The maximum attainable power, P = VE,maxlE,ma:, is
about 8nW. A summary of these device parameters is

(2) given in Table I.

the Our simple models suggest that we can improve the
The output voltage and maximum power by decreasing L, and
ods C. We also expect higher voltages and possibly smaller

linewidths from two arrays connected in series. In the fol-
may lowing sections, we discuss configurations which address

both of these issues.
de-
nut-

in-
ice, TABLE I

DEVICE PARAMETERS (T=4.2K)

and Parameter Single Array Single Array Coupled Arrays
the no gnd-plane on gnd-plane on gnd-plane
flax,
dis- VEma (mV) 0.27 0.5 0.91

r () 1.75 0.53 1.5
;im- ro () 0.62 <0.1 3.3
have lih (mA) 0.05 0.09 0.1
)ut- /per (A) 0.45 2.0 2.0
the B (GHz) 130 240 240

P (nW) 8 35 29
per-
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Fig. 3. Current vs. voltage curves of Josephson junction array
above & superconducting ground plane. Measurements are at 4.2K
and various Icltr. The inset figure shows the I-V for the device when
biased as a transistor.

IV. DEVICES ON GROUND PLANE

In order to lower L,, we placed the same array of
Josephson junctions about 200 nm above a superconduct-
ing ground plane. Our diagnostic measurements indicate
that the effective inductance in the presence of a ground
plane, Lefg, is lower than L, by a factor of about four.

This change in L, has a clear effect on the transis-
tor characteristics of the device. Equation (1) predicts
that VE will double for L,t = L,/4. This is almost ex-
actly what we observe, as shown in the inset of Fig. 3.
As expected, Ith is also approximately twice as large.
The period of VE has increased by a factor of about
four, which corresponds to a decreased effective coupling,
Mef = Mctri/4 - The transresistance, which is propor-
tional to Mctrl/v/T, is half as large as before. We can
quantitatively account for the smaller mutual and self-
inductances by modeling the control line as an infinitely
long wire. each cell of the array as a square loop, and the
ground plane as an infinite, perfectly conducting sheet.

The higher output voltage levels also improve the per-
formance of the oscillator. The bandwidth is twice as
large, and the maximum power has more than doubled.
This is because the current levels are also much higher, as
seen in the V(/1) characteristics of Fig. 3. Here, the curves
for several different control current values are presented.
(Note that data points after the switch to the gap volt-
age are not included). Near VE, the slopes become quite
steep, and the decreased r gives narrower linewidths.

The presence of the superconducting ground plane im-
proves all of the device parameters except the transresis-
tance. We have successfully modeled these trends in our
data, and we can use this knowledge to fuirther optimize
the device performance.

b

i let L IC. I

Fig. 4. Schematic of two arrays connected in series.

V. COUPLED DEVICE ON GROUND PLANE

Additional output voltage is obtained by connecting
two arrays of 54 Josephson junctions in series. The con-
trol wire is now placed along both edges of the device and
is again 500 nm above it. This structure also lies above a
superconducting ground plane and is illustrated in Fig. 4.

At 4.2 K, the V(Ib) curves for this device look similar
to the single array on the ground plane. However, there is
a much more gradual rise in the current near VE, result-
ing in higher output resistances. The voltage across the
coupled arrays is twice that of the single array, which is
the expected result of placing two equal voltages in series.

Differences in the transfer characteristics of all three
devices can be seen clearly in Fig. 5, where their transistor
curves are presented. The currents are normalized to 'per,

the values of which are given in Table I. The period of the
coupled arrays is the same as that of the single array on
the ground-plane. Since the output voltages are larger,
rm increases.

Despite the higher voltage levels, the frequency of the
Josephson oscillations does not change, and the band-
width is the same. The power decreases slightly due to
a decrease in IE. The large rise in the output resistance
causes the linewidth to increase. This change in ro implies
that these arrays are dynamically more complex than our
previous structures.

Inductively coupled arrays are the discrete version of
long, continuous stacked Josephson junctions. In the
stacked junctions, two Eck voltages have been predicted
and observed [10]-(12], corresponding to two limiting elec-
tromagnetic phase velocities. A simple analysis of the
discrete system predicts

VEI,E2 = Isin( 4'P)11 M7rIvE2 N-I .'"")[ ~ (3)

where M is the strength of the coupling between adja-
cent cells of the two arrays, and we have neglected other
coupling effects for simplicity. The result is that there
are now two modes of oscillation. In the antisymmetric
mode. the corresponding junctions in each row oscillate
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coupled aays: on gnd-plane

single array: on gnd-plane

single ara: no gnd-plne

/\~~~~~~
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0.0 0.5

'ctl/per
1.0

Fig. 5. Transistor characteristics of each device at 4.2K. The cur-
rents are scaled to the current interval of one period, .per.

with equal amplitude but out of phase, and the charac-
teristic frequency (or voltage, El) is higher than in the
single array. In the symmetric mode, the rows oscillate in
phase, and the characteristic frequency is lower.

Two voltages are visible in our V(^) curves at tem-
peratures above about 6 K, but do not appear at 4.2 K.
Fitting equation (3) to data taken at 7.2 K required that
M 0.5L,. Based on measurements of the nearest-
neighbor coupling in a single array [8], this value is higher
than we expected. By including other nearest-neighbor in-
ductances, the value of M used in the fits is lowered. How-
ever, the match between the theory and measurements is
not as good as in our previous devices, and more work is
needed to fully understand the dynamics of this system.

VI. CONCLUSION

We have measured the device characteristics of arrays
of underdamped Josephson junctions connected in par-
allel. We demonstrated that it is possible to model the
performance of these devices and thus optimize their pa-
rameters for specific applications. This was achieved by
manipulating the inductances of single arrays. We used
a superconducting ground plane to lower the inductance
values, which improved all of the parameters except the
transresistance. It is clear from our models that the de-
vices can also be improved by using smaller junctions or
junctions with lower capacitances. In addition to opti-
mizing the device parameters, a study of the noise perfor-
mance of these devices must still be conducted.

We attempted to further refine the device parameters
by connecting two arrays in series. This configuration
achieved higher voltage levels and transresistances, but
the output resistance was degraded. The power and band-
width were relatively unaffected. These inductively cou-
pled arrays may be promising for some applications, but
the dynamics must be more carefully studied before this
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