
A Quadtree Approach to Parallel Image Processing

by

Hany S. Saleeb

B.S. Electrical Engineering and Computer Science 1993
Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements for

the degree of

Masters of Engineering

January 12, 1995

© Massachusetts Institute of Technology, 1995. All Rights Reserved.

/ . /
A uthor

Ele rical Engineering and Computer Science
January 12, 1995

Certified by =..........-
Professor Steve Ward

Elrical gieering and Computer Science
Ax I l l . /Fhesis Supervisor

' I~V
Accepted by

. 'rederic Morgenthaler
Chairman, Department Comiittee on Graduate Theses

Electrical Engineering and Computer Science
MASSACIHUSETTS INS Ui''t:

OF TECHNOLOGY

AUG 1 0 1995

LIBRARIES

Barker E

A Quadtree Approach to Parallel Image Processing

by

Hany S. Saleeb

Submitted to the Department of Electrical Engineering and Com-
puter Science on January 12, 1995, in partial fulfillment of the

requirements for the degree of the Masters of Engineering.

Abstract

This thesis work is intended through a C simulation to show that color image processing
using quadtrees is a task suited to parallel implementation. Also, it explores the strengths
and shortcomings of a mesh prototype system like NuMesh to provide recommendations
for future work. Issues involving storage setup, hardware, parallel algorithms and image
resolution are explored. A balance of hardware, software and systems perspectives is
achieved in order to interrelate the design of an image-oriented application on a mesh
architecture.

Thesis Supervisor: Steve Ward
Title: Professor

Table of Contents

Chapter 1: Introduction ..8

Chapter 2: Background .. 10
Section 2.1: Characteristics of Quadtrees ... 10
Section 2.2: Image representation using quadtrees ...14
Section 2.3: NuMesh .. 16

Section 2.3.1: NuMesh modules .. 17
Section 2.3.2: CFSM Structure .. 17
Section 2.3.3: CFSM Programming .. 18
Section 2.3.4: Comparison With Systolic Arrays18
Section 2.3.5: The NuMesh Programming Environment19

Chapter 3: Implementation of the Simulation ... 20
Section 3.1: Binary arrays .. 20
Section 3.2: Raster images to quadtrees .. 21

Section 3.2.1: Building a quadtree from a raster ..21
Section 3.2.2: Merge .. 26
Section 3.2.3: Execution time .. 29

Section 3.3: Rasters to quadtrees .. 29
Section 3.3.1: Building a raster from a quadtree ..30
Section 3.3.2: Finding a Neighbor .. 33
Section 3.3.3: Execution Time .. 36

Section 3.4: Summary .. 37

Chapter 4: Simulation input and output .. 38
Section 4.1 Input data stream .. 38
Section 4.2 User Options .. 40

Section 4.2.1 Windowing .. 40
Section 4.2.2: Rotation and scaling of the image 43

Section 4.3: Output Examples .. 43
Section 4.4: Color Images .. 46
Section 4.5: Summary .. 47

Chapter 5: Data Retrieval .. 48
Section 5.1: Introduction .. 48
Section 5.2: System Architecture .. 49

Section 5.2.2: Storage Management ... 52
Section 5.3: Issues of parallel processors in real-time applications 53

Section 5.3.1: Parallel Processing and Real-time Control53
Section 5.3.2: Communication of Processors with Image Interface55
Section 5.3.4: Summary .. 57

4

Chapter 6: Parallel Processing of Quadtrees .. 58
Section 6.1: Introduction .. 58
Section 6.2: Pointer-less versus Pointer-based Quadtrees59
Section 6.3: Basic parallel algorithms .. 62
Section 6.4: Building Quadtrees 64

Section 6.4.1: Routing Data .. 66
Section 6.4.2: NuMesh analysis 67

Section 6.5: Summary .. 68

Chapter 7: Conclusion .. 69

A ppendices ...71
Appendix 1: User Interface ... 71
Appendix 2: Simulation .. 74

References .. 92

5

6

List of Figures

Figure 2-1: A quadtree example. a) pixel raster values b) maximal
block representations c) corresponding quadtree..

Figure 2-2: A Checker board spatial data image .. 13
Figure 2-3: The NuMesh Diamond Lattice ... 16
Figure 2-4: The internal module of a NuMesh processor ..17
Figure 3-1: Order of node formations .. 20
Figure 3-2: A quadtree example. a) pixel raster values b) maximal

block representations c) corresponding quadtree ..22
Figure 3-3: Intermediate quadtrees in the process of obtaining

a quadtree for the first half of the first row ... 23
Figure 3-4: The quadtree after processing one full row of pixel data 23
Figure 3-5: The image transformations due to merges ...27
Figure 3-6: Quadtree example. a) binary array representation

b) maximal decomposition c) quadtree representation30
Figure 4-1: a) an 8x8 original image b) the windowed image 41
Figure 4-2: a) a 4x4 image to be shifted by 3 to the right and 1 up.

b) the shifted image represented by the broken lines42
Figure 4-3: An initial image of a sunset given to the user ..44
Figure 4-4: The updated image for the southeastern quadrant44
Figure 4-5: Successive requests for details from the original to

the northwestern to the southeastern quadrants ..45
Figure 4-6: A slightly distorted image of Fantasia ... 46
Figure 5- 1: A proposed image system architecture ... 49
Figure 5-2: Image access times for two and four communication

links respectively .. 51
Figure 5-3: A setup for the NuMesh processor array ... 55
Figure 5-4: Internal architecture of a PE .. 56
Figure 6-1: Indexing: a) row-major b) snake-like c) shuffled row-major 62
Figure 6-2: a) original mesh b) merging pairs of 2x2 ..64

7

List of Tables

Table 3-1: Adjacent (I, 0) 34
Table 3-2: Reflect (I, O) .. 35
Table 6-1: Leaf node counts 61

8

Chapter 1: Introduction

Computer manipulation of images is gaining a great deal of interest and enthusi-
asm. Advances in processor power, networks and communication have helped drive wide-
spread applications in image processing, computer graphics, geographic information
systems, computer vision, robotics, virtual reality and other areas. These advancements
may be aided by new techniques of processing video and spatial data.

Digital image processing is widely used in digital television, video communica-
tions, pattern recognition for compression and enhancement of images, extraction of their
essential parameters and characteristics, transformations of images, filtering, analysis and
estimation. When one wants to perform these algorithms in real time and with a very large
set of data, one must use parallel computing capabilities which usually consist of many
relatively small and simple processing elements (PEs) connected in a regular way by local
connections. A lot of the new research being performed is aimed at taking advantage of a
computer system's hardware for the purposes of parallel manipulations of images and spa-
tial data like rasters. Some examples of such systems are MPP [Batcher 1980], GAPP
[Davis and Thomas 1984], CHIP [Snyder 1982], systolic and wavefront processors. Each
PE can range from a simple 1-bit ALU which performs the local operations on binary pix-
els to complicated 32-bit processors which perform filtering operations and orthogonal
transforms with floating point arithmetic.

Graphic and multi-media user interfaces promote the use of computers for visual-
izing pixmap images. In the fields of scientific modelling, medical imaging and cartogra-
phy there is an urgent need for huge storage capacities, fast access and real-time
interactive visualization of pixmap images.

While processing power and memory capacity double every two years, disk band-
width only increases ten percent per year. Interactive real-time visualization of full color
image data requires a throughput of a few megabytes per second. Parallel input and output
devices are required to access and manipulate at high speed image data distributed on disk
arrays. A high performance high capacity image server should allow users located on local
or even public networks with a set of adequate services for immediate access to images
stored on disks. Basic services include real-time extraction of image parts for panning pur-

9

poses, resampling for zooming in and out, browsing through 3D image cuts and accessing
sequences at the required resolution and speed.

This thesis deals with how color images can be partitioned into extents and decom-
posed through the use of a data structure called quadtrees. It analyzes the performance of
the system according to various parameters such as the size of the image, resolution
requirements, storage facilities and hardware setup. The implementation and tests were
conducted on the NuMesh [Ward et al. 1993] system which is developed under the direc-
tion of Steve Ward of the Computer Architecture Group at MIT's Laboratory for Com-
puter Science. It aims at establishing a flexible yet fast and powerful system for
communication between processors in a mesh based parallel processing system. Algo-
rithms and techniques for image decomposition will be implemented in ways to take
advantage of the hardware's architecture, efficiencies and routing capabilities.

The work will be described in different parts. Chapter 2 will describe some back-
ground information about quadtrees and their uses in existing systems and imaging tech-
niques. It will also describe the NuMesh system for which this work is intended. Chapter 3
will detail the implementation of the decomposition. It will explain ways of obtaining
quadtrees from a set of pixel data points making up a raster image and how to obtain an
image from a quadtree. Also, various criterion for resolution and lossless data compres-
sion will be discussed. Chapter 4 will explain the user interface and options which may be
chosen. How the original image data is stored and the representation of a quadtree in
memory is discussed. Chapter 5 will discuss some of the issues involved in storage facili-
ties and hardware parallel methodology for efficient and time-intensive implementations.
Chapter 6, finally, will try to show the feasibility and practicality of using this implemen-
tation. Some built-in hardware algorithms are described which are used to make the image
decomposition techniques more time efficient and minimizing processor overhead and cal-
culations. Chapter 7 concludes with an overall summary of past chapters and a depiction
of the practicality of image decomposition on mesh architectures.

10

Chapter 2: Background

There are many hierarchical data structures in representing 2D spatial data like
digital images made up of pixels. A very common technique in this area of research is
based on the divide and conquer decomposition known as quadtrees [Samet 1990]. Its uses
have evolved in a number of different fields. One of the many attractive features of
quadtrees is its ability by aggregating data having similar characteristics to save storage
and minimize execution time of the process. These are two aspects which are ideal in
developing any kind of system: speed and memory. Ideally, one would like a design whose
speed is as fast as possible while using as little memory and hardware to achieve the
desired output.

Section 2.1: Characteristics of Quadtrees

The term. quadtree is used to describe a type of hierarchial data structure whose
common property is that it is based on the principle of recursive decomposition of an
image. There are different kinds of quadtrees based on the following:

* type of data being represented
* principle of decomposition
* resolution

Presently, quadtrees are used for point data, areas, surfaces and volumes. The
decomposition may be into equal parts on each level or it may be determined by the input.
The resolution may be fixed beforehand or it may be defined by properties of the data
being used.

An image may be thought of as a collection of image elements. This collection
may be defined in a number of different ways like arrays, lists or trees. Furthermore, subc-
ollections of similar image elements may be grouped together into blocks and such a col-
lection of blocks can as well be represented as arrays, lists or trees. After one decides on a
representation of the image, the procedure to order individual image elements with respect

11

to each other needs to be addressed.

The array is the most common and simplest way of representing an image. For
large images, though, the amount of memory needed for storage may be quite excessive
and a raster representation may be used instead. A raster image is an image with a list of
row data. The image is processed row by row and can be improved by decomposing the
rows into blocks of identically valued pixels.

The simplest and most widespread approach to quadtrees is referred to as region
quadtree [Samel: 1990] which is based on successive subdivision of a bounded image
array into four equal sized quadrants. If all the pixels in each quadrant are not made up of
the same value, it is subdivided into quadrants, subquadrants, etc. This process continues
until blocks are obtained which consist entirely of the same value. This value is the pixel
value. Through a lot of past research in raster and image processing, an image space was a
grey scale depiction made up of pixel values of O's and 's. A zero represented a white
block while a one was a black one. This thesis extends this idea to color images. So, for
the latter part of this document, a pixel value will represent a set of three bytes made up of
red, green and blue components of the color. Some of the examples initially given, for
simplicity, will still use binary scale just to illustrate the concepts and techniques involved
in image decomposition.

Figure 2-1 shows an example of a quadtree representation of a binary raster image.
It represents an 8 x 8 binary array whose pixel values are defined in Figure 2-la.

00000000
UUUUUUUU
00001 1 1 1
00001 1 1 1
0001 1 1 11
001 1 1 1 1 1
001 1 1 1 000 011 1000

1 L

6

11

(a) (1b)

(C)

Figure 2-1: A quadtree example. a) pixel raster values b) maximal
block representations c) corresponding quadtree

12

d -

The resulting blocks (also referred to as nodes) are combined to an image shown in Figure
2-lb. Finally, taking this new block maximal block structure a quadtree is formed. It is of
level 4 ranging from the root node at the top to the third level of leaf nodes.

The tree representation shows a root node which corresponds to the entire array of
pixel values. Each node may have zero or four children. These children may be thought of
as the NW, NE, SW and SE quadrants of the region represented by that node. As can be
seen from Figure 2-1c, the leaf nodes correspond to blocks of uniform homogenous pixel
values where no subdivision is needed. A leaf node is depicted as either a white or black
square depending whether it is a white or black pixel representation A number is labeled
next to each leaf node so the reader may observe the translation from the maximal block
representation to the quadtree one.

The quadtree is a refinement of the array representation of an image which tries to
save storage by taking advantage of some regularity in the image by decomposing the
array into homogenous disjoint blocks centered at some prespecified positions. The
quadtree can be implemented as a list or tree. The list representation facilitates sequential
access but is inefficient for random access to specific image elements. The tree representa-
tion is an attempt to balance the costs of sequential and random access.

A shortcoming of the tree representation of a region quadtree is that a considerable
amount of overhead is associated with it. Each node is in need of additional space for each
of its four children, parent and pixel value. This is a problem arising with a large image
because its quadtree representation may not be fully placed in core memory. One may be
able to use binary image trees which is an alternative decomposition defined in a manner
analogous to the region quadtree except that at each subdivision stage one subdivides the
image into two equal sized parts. In two dimensions, at odd stages, one partitions along the
x coordinate and at even stages along the y coordinate. The binary tree can be used to
reduce overhead since a node needs memory for only two children instead of four. Thus,
its attractiveness increases with higher dimensions since less space is wasted on nil point-
ers to each of the: children of the leaf nodes.

Reducing the overhead costs associated with the use of pointers leads to a consid-
erable amount of interest in pointerless quadtree representation in the form of lists. They
can be grouped into two categories: the first treats the image as a collection of leaf nodes
while the second represents the image in the form of a traversal of the nodes of the
quadtree.

The region quadtree is a variant on the maximal block representation. It requires
the blocks to be separate and have some kind of standard size. The motivation for its use
was a need to produce a systematic means of representing homogenous sections of an
image. Figure 2-l's criterion for homogeneity is that a block of pixels all have the same
pixel value. There are other possibilities. For gray scale or color images, the standard devi-

13

ation of a group of adjacent pixels may need to be below some threshold. Using this crite-
rion, the image array is subdivided into quadrants, subquadrants, subsubquadrants, etc.
until homogenous blocks are obtained. If one thinks that each leaf node contains the mean
gray or color level of its block, the resulting quadtree will then completely specify a piece-
wise approximation of the image where each homogenous block is represented by its
mean. If the threshold is equal to zero then we revert to the case that the pixel values be the
same for a set of adjacent pixels to be reconstructed as one larger block.

The homogeneity criterion can be chosen to guide the subdivision process. It
depends on the type of data represented. This will be a major issue in later parts of this
document as one considers color pixel values and the trade-offs between memory efficient
and distortionless representations of an image.

The example given in Figure 2-1 has the decomposition process based on a stan-
dard size of each pixel representing a square. Theoretically, any geometry may be used. Of
course, if one were using triangles and attempts were made to decompose a square or rect-
angle, the nonsymmetry will pose many problems. Squares were used because of two
basic characteristics. First, squares produce an infinitely repetitive pattern so that it can be
used for images of any size. Images of video or spatial data are intrinsically squares or
rectangles. Second, squares yield a partition which is infinitely decomposable into smaller
subdivisions. This resolves to better resolution of the image.

The major reason for using quadtrees is to reduce the amount of space necessary to
store data by trying to aggregate the largest homogenous blocks possible. This important
quality will allow the reduction of execution time of many operations. Of course,
quadtrees may not be very efficient in all cases. For example, Figure 2-2 shows an exam-

Figure 2-2: A Checker board spatial data image

pie where quadtrees would be a very inefficient means of representing the image. This is
because there are no homogenous blocks which are larger than the leaf nodes. So, if this
were an N x N square, the represented quadtree needs N2 leaf nodes plus all the inner

14

nodes of the quadtrees which are

4
(B + W) x Eq. (2.1)

3

where B is the number of black pixels and W is the number of white ones. On the other
hand, a binary array using 22n bits would be more efficient than a quadtree. Of course, one
is assuming that the an image as in Figure 2-2 is an anomaly and will almost never occur
in a real digital image. Obviously, the amount of space required is a function of the resolu-
tion (the number of levels in the quadtree) and the size of the image (perimeter).

Having a quadtree like the one of a checker board may be inefficient but the num-
ber of nodes in a quadtree corresponds directly to the resolution of the image. This is quite
significant because increasing the image resolution of a quadtree leads to a linear growth
in the number of nodes. This is in contrast to the binary array representation where dou-
bling the resolution leads to quadrupling of the number of pixels.

The number of nodes also affects the execution time of an image decomposition.
Most algorithms that execute on a quadtree representation of an image instead of an array
representation have an execution time proportional to the number of blocks in the image
rather than the number of pixels. This basically means that the use of a quadtree algorithm
in d-dimensions will perform as well as one of a (d-1) dimensional space for an array.

These distinctions between an array and quadtree representations have allowed
this researcher to conclude that the latter is a more suitable technique in image processing
for a parallel system. The characteristic that quadtrees are recursive makes it an easy and
very powerful tool.

Section 2.2: Image representation using quadtrees

The quadtree data structure is commonly used in image coding to decompose an
image into separate spatial regions. Klinger and Dyer [1976] provide a good bibliography
of the history of quadtrees. Their paper reports examples on the degree of compaction of
picture representation which may be achieved with tree encoding. Their experiments show
that tree encoding can produce memory savings. Horowitz and Pavlidis [1976] show how
to segment a picture traversal of a quadtree. They segment the picture by polygonal
boundaries. Tanimoto [1979] discusses distortions which may occur in quadtrees for pic-
tures.

The uses of quadtrees are apparent as well in networking. Zhang et al. [1993]
describe an image-coding technique in which an adaptive quadtree scheme is used to
encode motion compensated difference images. A mechanism was identified within the
encoding process that allows a predetermined level of image quality to be selected by the
user at setup time and then maintained by the encoder. The context which this work was

15

performed is video services especially videophone and videoconferencing. They believe
that quadtrees are quite useful in these applications due to their ability to control the reso-
lution level. If a connection between two servers needs high quality images then more res-
olution will be needed, more data will be processed and the costs will be greater.

Other than in networking applications, quadtrees are useful in compression of
image data. Quadtree decomposition is a simple technique for image representation at dif-
ferent resolution levels. This representation is successfully used in binary image compres-
sion algorithms. Recently, quadtree decomposition has been used as part of image
sequence compression algorithms. For gray level images, it is attractive for a number of
reasons:

* Relative simplicity compared to other methods like DCT-based-coding.
This makes it attractive for applications such as video and HDTV compres-
sions.

* The adaptivity of the decomposition. The decomposition divides the
image into regions with size depending on the activity in the region. The
compression performance is adapted to the various image regions.

* The useful output of the decomposition. The decomposition achieves an
image segmentation which is useful in various applications.

It ought to be quite apparent that quadtrees are an exceptional data structure for
image processing. Many of the intrinsic details of its efficiency and distortion due to com-
pression will be described in the next few chapters. However, it should be noted, that there
is a great deal of work already performed in image processing and it would be quite
invaluable to adhere much of what is already known and developed to parallel systems.
There are clear advantages of this decomposition technique. Systems for video and images
are numerous and quite common in today's highly technological era.

The MIT Media Laboratory, for example, has explored at great length details of
digital video coding. They developed the Cheops imaging system [Bove and Watlington
1994] which is a compact platform for acquiring, processing and displaying images. These
images may be video or movie frames. Observing the hardware and software design in
order to achieve flexible video processing, a number of useful requirements were pin-
pointed:

* The system should be real time.
* The system should be easily programmable.
* The system should be easily upgradeable as technology improves.
* The system should be simple and compact.

The Cheops system uses parallelism in achieving its image coding goals. It takes
advantage of parallelism through individualized processing units which are separate com-
puting elements and multiple stream processors which operate on a single module. These
qualities of parallelism are quite common on many digital systems under development.

16

In recent years, massively parallel processing architectures have shown excellent
performance in different scientific applications and in image and signal processing. In par-
ticular, there exist arrays of identical processors executing the same instruction in each
time unit each operating on its own local data and further equipped with a regular inter-
connection network that allows them to communicate with one another. For example, a
mesh connected array is made up of processors on a square lattice with each processor
able to communicate with its four nearest neighbors. Valuable additions to this basic hard-
ware may exist. Such systems are well suited for problems requiring simultaneous pro-
cessing of very large amounts of data and have several exemplars in the commercial world
including the DAP, MPP, the Connection Machine and MasPar. Another one that is under
development at MIT is the NuMesh system. It is the hardware which this image simulation
is to be used.

Section 2.3: NuMesh

Abstractly, NuMesh [Ward 1993] consists of modules, or nodes, that may be con-
nected together to form a three-dimensional mesh. For example, Figure 2-3 shows a sim-
plified view of a. small mesh of current prototype nodes. This figure depicts each module
as a unit whose peripheral connectors provide signal and power contacts to four immedi-
ate neighbors.

Figure 2-3: The NuMesh Diamond Lattice

Each node in the mesh constitutes a digital subsystem that communicates directly
with each of its neighbors through dedicated signal lines. During each period of the glo-
bally-synchronous clock, one datum may be transferred between each pair of adjacent
modules. Currently, the prototype runs approximately at 1.2 Gbits/second per port; next-

17

!I

I I

generation modules will be clocked faster.

Section 2.3.1: NuMesh modules

The approach in the design of the NuMesh communication substrate involves stan-
dardizing the mechanical, electrical, and logical interconnect among modules that are
arranged in a three-dimensional mesh whose lowest-level communications follow largely
precompiled systolic patterns. The attractiveness of this scheme derives from the separa-
tion of communication and processing components, and the standardization of the inter-
face between them. By making the communications hardware as streamlined and minimal
as possible, and requiring the compiler to do almost all the work for routing data within
the mesh, it should be possible to maintain high-bandwidth, low-latency communications
between the processing nodes distributed throughout the NuMesh.

An idealized NuMesh module is a roughly rectangular solid with edge dimension
on the order of two inches. A node is logically partitioned into two parts: a localprocessor
that implements the node's particular functionality, and a communications finite state
machine (CFSM), replicated in each node, that controls low-level communications and
interface functions. A node's local processor may consist of a CPU, I/O interface, memory
system, or any of the other subsystems out of which traditionally-architected systems are
constructed. A node's CFSM consists of a finite state machine, data paths for inter-node
communication, and an internal interface to the local processor. A typical module is
depicted schematically in Figure 2-4.

To
Neighboring

Nodes

40-

40-

Local Processor

Internal Interface

li. iTo
Neighboring
Nodes

Figure 2-4: The internal module of a NuMesh processor

Section 2.3.2: CFSM Structure

The core of the CFSM control path is a programmable finite state machine. The

18

transition table, held in RAM, is programmed to control all aspects of routing data to other
nodes and interfacing with the local processor. A small amount of additional hardware
reduces the required number of states by providing special-purpose functionality such as
looping counters.

The CFSM data path consists of a number of ports connected through a switching
network allowing data from one port to be routed to another. Most of the ports are for
communication to other CFSMs; however, one port supports CFSM-local processor trans-
fers and allows the CFSM to move data between the processor and the mesh. This port
may be wider than the network ports, and provide out-of-band signals in addition to the
ordinary data path. Optimally, any combination of ports may be read or written on each
clock cycle, but this flexibility may be constrained in a given implementation.

Each CFSM also contains an oscillator to generate the node's clock (the local pro-
cessor has the option of an independent clock), and circuitry to control the phase of the
oscillator. The clocks can be kept globally synchronized by any of a number of methods.
The clock cycle time is constrained by the time necessary to transfer a data word between
adjacent nodes, which can be made quite short because of the prescribed limited distances
between nodes, the point-to-point nature of the links, and the use of synchronous commu-
nications.

Section 2.3.3: CFSM Programming

The transition table of the CFSM is typically programmed to read inputs from var-
ious neighbors or the local processor into port registers and send outputs from various port
registers to other neighbors or the local processor on each clock cycle. It may be thought
of as a programmable pipelined switch.

The CFS:Ms in a mesh, operating synchronously at the frequency of the communi-
cation clock, follow a compiler-generated preprogrammed, systolic communication pat-
tern. The aggregate CFSM circuitry constitutes a distributed switching network that is
customized for each application; its programmability allows this customization to be
highly optimized..

Section 2.3.4: Comparison With Systolic Arrays

Arrays of synchronous processors connected together in fixed interconnection
topologies offer a high performance environment for certain kinds of applications. Code
which can be partitioned into a tightly coupled set of computations exchanging data in
fixed communication patterns fits very well into this model of distributed computing.
Reconfigurable communication paths have not been a part of traditional systolic array
designs. However, the IWarp (iwarp) computer does allow D and 2D mesh connectivity
between computing units. Software technology developed for this kind of environment
may offer a good starting point for further development of compilation technology which

19

predicts and schedules communication in the broader set of topologies and applications
currently being studied in the NuMesh project.

Section 2.3.5: The NuMesh Programming Environment

Previous work on the NuMesh programming environment has centered on a static
programming model. A high performance approach relies on a precise cycle count of the
computation performed on each node's processor to efficiently schedule communication
between the nodes. This work has resulted in the specification of an intermediate language
to which programs written in higher level programming languages can be compiled and
executed on the Numesh.

Language and user interface issues associated with providing the programmer with
an environment in which to develop programs whose dynamic behavior does not depend
on run-time data have also been investigated in some detail. Results include a pictorial
stream-based front end implemented for the development of real time applications such as
digital signal processing for speech and video applications.

A C language interface for writing programs with flow controlled communication
requirements has also been implemented. The user of this system is able to write programs
in a restricted subset of C and produce compiled processing element code as well as binary
executables for CFSMs.

20

Chapter 3: Implementation of the Simulation

The quadtree is an excellent approach to color images because of its hierarchial
nature. However, most images are represented by such methods as binary arrays, rasters,
chain codes or polygons. The criterion for choosing one over the other may be for many
reasons like efficiencies and speed of the hardware. For example, rasters are useful for ras-
ter-like devices like televisions. Therefore, techniques which can switch among these
methods would be of great importance.

The region quadtree for the simulation being implemented is developed on a
pointer-based technique. The details of the image processing simulator will be discussed
including transformations from raster to quadtree and vice versa as well as the merging
criterion.

Section 3.1: Binary arrays

The most common type of image representation is a raster. There are a number of
different ways of transforming a raster to a quadtree. The simplest approach is one which
converts an array to a complete quadtree and then repeated attempts at reducing the size of
the tree through merging is performed. This merging may be quite extreme if it required
that a group of four pixels be of the same uniform color or lenient if they have to be within
some threshold of each other. The transformation to a quadtree may be very inefficient
because many nodes may be created and then deleted due to merging. It is possible that a
computer may run out of memory when employing this algorithm.

One can avoid the creation of nodes by visiting the elements in a specific order. For
example, let the raster pixels be read as depicted in Figure 3-1 la for a 4 x 4 image. This

1 , C L
I L 3 0

3 4 7 8

Q9 i 1 i I I1112 15 16(a.

11 12 15 16(a) --(b)
Figure 3-1: Order of node formations

21

order is known as the Morton Order [Morton 1966]. By using this method, a leaf node is
never created until it is certain to be maximal. This basically means that a situation does
not arise where four leaf nodes require merging to their parent node. For example, leaf
nodes 5, 6, 7 and 8 in Figure 3-lb are all of the same pixel color so no quadtree nodes were
created for them. A parent node representing all four blocks of pixel color black was
formed to span that part of the image.

The array to quadtree algorithm [Samet 1980] examines each pixel in the raster
image only once and in a manner analogous to a preorder tree traversal.

Section 3.2: Raster images to quadtrees

An image may be thought of as a sequential file where the pixel data is defined one
row at a time. From Chapter 2, one may remember that a raster representation constitutes a
list of rows made up of a specified number of pixels. Each row is made up of the pixel val-
ues for the columns in the image under consideration.

With any kind of image processor or user interface, a raster needs to be displayed
and thus there is a need for a method to convert a quadtree back to a row-by-row raster. In
the following few sections, methods are presented for the conversion between quadtrees
and raster images.

Section 3.2.1: Building a quadtree from a raster

The key idea for the raster to quadtree conversion is that at any point, a valid
quadtree exists with all unprocessed pixels to be defaulted to the color white. Thus, as the
quadtree grows, nodes are merged to yield maximal blocks. This contrasts with anther
approach taken by some researchers which makes a complete quadtree with one node per
pixel and then attempts merges. Such an approach is quite wasteful of memory and time.

The main procedure for the raster to quadtree transformation is called raster_to_-
quadtree. It is invoked with a pointer to the first row of data and the width of the image.
The width may be perceived as the number of pixels in each row. Let's assume that the
image has an even number of rows. If this is not true, then a row of white pixels is added
on. The quadtree represents a square image of a side length that is a power of 2. All pixels
added such that this is true are defaulted to be white.

A pixel node is defined as a structure containing nine fields. The first three repre-
sent the values for each of the red, green and blue values of the pixel color. The next five
fields contain pointers to the node's parent and its four children which correspond to the
four quadrants. If a node is a leaf node, then it will have four pointers to the empty (Nil)
element. The last field represents the level of that node in the tree. Leaves are of level 1,
their parents level 2, etc. This is true until one reaches the root node. The complete struc-

22

ture may be defined like

struct NODE {
int pixel_red;

int pixel_green;

int pixel_blue;

struct NODE *parent;

struct NODE *NW;

struct NODE *NE;

struct NODE *SW;

struct NODE *SE;
int Level;

As an example of the application of the algorithm, consider the region given in
Figure 3-2a which is a decomposition of an image into rows. Figure 3-2b is the block
decomposition while Figure 3-2c is the quadtree representation. All nodes resulting from
merging have been labeled with letters and the alphabetical order represents the order in
which the merged nodes have been created.

12345678

17 IX 1 92021 222324

25 26 27 28 29 30 31 32
33 34 35 36 37 38 3940

41 42 43 44 45 46 47 48

49 50 51 51 53 54 55 56
57 58 59 60 61 62 63 (64

A Bl I

F

(a) (b)

(c)

Figure 3-2: A quadtree example. a) pixel raster values b) maximal
block representations c) corresponding quadtree

Figure 3-3 shows the steps in the construction of the quadtree corresponding to the
first four pixels of the first row (pixels 1 through 4). Figure 3-4 shows the tree after the first

23

full row has been processed.

(a) (b)

(e)

(h) (i)

Figure 3-3: Intermediate quadtrees in the process of obtaining
a quadtree for the first half of the first row

Figure 3-4: The quadtree after processing one full row of pixel data

24

(d)

(f)

(C)

The raster_to_quadtree procedure uses a number of different functions. Ones exist
for processing even rows, evenrow, and odd rows, oddrow. Another procedure, add_-
edge_neighbor, locates neighboring nodes on the tree. A function, merge, is responsible
for combining four children of the same pixel color by a single larger block node with the
same color. The reason that one needs to differentiate between even and odd rows is
apparent when merging. Merges are only performed on even rows so as soon as an even
row is processed, an attempt at merging is initiated. The amount of work to process a row
depends on whether an odd numbered or even numbered row is under consideration. Odd
numbered ones (do not require as much work as even ones.

In processing odd numbered rows, the row of pixel nodes are added to the tree
from left to right. As the quadtree is constructed, nonleaf nodes must also be added. Want-
ing to have a valid quadtree after processing each pixel, whenever a nonleaf node is added,
its children are as well added. Their pixel values may be defaulted to white until the cor-
rect ones are processed from the data.

From Figure 3-3, it may have been noticed by the reader that consecutive pixels 2
and 3 in the first row are not placed in the same subtree as the quadtree is developed. This
is because pixel 2 belongs to the northwestern quadrant of the original northwestern quad-
rant while pixel 3 belongs to the northeastern quadrant of the original northwestern quad-
rant. As the tree is developed, a methodology for the location in the tree where pixels need
to be placed is important. Procedure add_edge_neighbor achieves this purpose by travers-
ing the tree until encountering a nearest common ancestor. Once this is achieved, a
descension along the path that is reflected about the axis formed by the common boundary
between the two pixels is performed. An exception to this rule is when the pixel whose
neighbor is sought is currently at the extreme right of the row. Here, the nearest common
ancestor does not exist. In such a case, a nonleaf node is added with its three remaining
children having the color white (Figures 3-3c and 3-3f).

Once the nearest common ancestor and its three children are added, one descends
again along a path reflected about the axis formed by the boundary of the pixel whose
neighbor is needed. During this descent, a leaf node is transformed into a non-leaf one and
four children are added (Figure 3-3g). Finally, the leaf node is colored correctly (Figures
3-3d and 3-3h).

Even numbered rows, on the other hand, require more work because merging will
occur. At each even column of each even row, a check for merging needs to occur. Once a
merge is processed, further checks of merging need to be conducted at higher levels of the
tree. This is done at pixel positions (x 2', y 2J) where

xmod2 = ymod2 = 1 Eq. (3.1)

In this case, if i and j are greater than 1, the maximum number of merges is the
minimum of i and j. For example, in Figure 3-2, pixel 28 would need a maximum of two

25

merges until the quadtree is using the maximal blocks possible.

It should be noted that the implementation described for quadtrees is bottom-up
because it consists upon decisions to merge. In this way, construction is based on the
smallest possible block size in the quadtree. If all the relevant subblocks have been com-
bined into a larger block, then a decision is made whether to combine the larger blocks
into even larger ones. The other approach is called top-bottom where a judgement is first
made as to whether the entire block can be represented as one leaf or whether four sub-
blocks need to be formed. If the block is divided then a decision is made for each subblock
whether it needs to be divided into more subblocks.

The raster_to_quadtree procedure is quite simple. It requires two parameters: a
pointer to the row of data, p, and the number of pixels in each row, width. The pseudocode
is defined as:

RASTER _TO_QUADTREE (pointer p, integer width)

begin

pixel array Q[l:width];

global pointer node Newroot;
pointer node First;

integer I; /* row of data being processed */

Q = Row (p);

First = Create_node(nil, nil, Q[1]);

Oddrow(width, Q, first);
p = Next(p);

I = 2;

First = Evenrow (I, width, null(Next(p)),

Row(p),Add_edge_neighbor(First, 'S', 'White'));

while not(null(p=Next(p))) do

/* Assume even number of rows */
begin

Oddrow(width, Row(p), First);

p = Next(p);

I = I + 2;

First = Evenrow (I, width, null(Next(p)),
Row(p),Addedge neighbor(First, 'S', 'White'));

end;

26

return(Newroot); /*Return the quadtree root*/

end;

Section 3.2.2: Merge

Each iteration of evenrow will call the merge function to check for any possible
combinations of leaf nodes to form larger blocks. In the original implementations of
quadtrees, a merge only occurs if a group of four pixels have the exact same color. The
function accepts a pointer to a node in the tree and two integers representing the row and
column positions of the image data. This may be seen by the following pseudocode.

Merge(integer i, integer j, pointer p)

begin

while ((I mod 2) = 0) and ((J mod 2) = 0)

and pixel_val(child(p, 'NW'))=

pixel val(child(p,'NE'))=

pixel val(child(p,'SW'))=

pixel val(child(p,'SE')) do

/* Since we start with a pixel-sized node,
it is impossible for the four children to

be nonleaf nodes */
begin

I = I/2;

J = J/2;

pixel_val(p) = pixel_val(child(p,'NW'));
free-children(p);

p = father(p);

end;

end;

However, this assumes that the criterion for merging is that the pixel values be
exact. It should be noted that in reality any given pixel value is made up of three integers
representing the red, green and blue components. The above code may be made more
abstract and general if the criterion for merging is defined by some other function. So, a
pointer to a tree node is given to a function which would decide if merging is possible or
not. If the function were defined such that the pixel values of each of the children needs to
be the same to allow merging, we revert back to the above example. However, the crite-
rion for merging may depend on the difference from the mean of each of the pixels. This
allows more versatility and freedom. The more functional and general merging procedure
looks like

27

merge(integer i, integer j, pointer p)

begin

while ((I mod 2) = 0) and ((J mod 2) = 0) and

merging_ok (p)) do

begin

I = I/2;

J = J/2;

pixelval(p) = pixel_val(child(p,'NW'));

free-children(p);
p = father(p);

end;

end;

The question as to what is a suitable merging criterion arises. A simple implemen-
tation is to merge a group of four nodes if each node's pixel value is less than the mean of
the pixels by some threshold value, T. This may be expressed by the following:

I Pixelq-Pixelmean I < Threshold q = {NE, NW, SE, SW}

The problem with this condition is that all levels of the tree will be based on this.
This may not be practically useful. Leaf nodes of a single pixel ought to be merged on less
strenuous needs than higher leveled nodes. These higher leveled nodes represent large
blocks of the image and thus may cause a lot of distortion due to merging. This distortion
results from errors between the merged blocks and the original image. For example, a
group of four nodes having pixel values of 2, 3, 5 and 6 will have a mean of 3.5. If the
threshold is 2, then a larger block of 2 x 2 will be formed with the pixel value of 4. Distor-
tion has arisen due to an alteration of the original pixel values. It should be noted that color
pixels will have three values for red, green and blue and so each one will have to pass the
test in order for merging to occur. Also, it is possible that the threshold value for red be
different than blue.

An example of this criterion for merging is depicted in Figure 3-5. The Ai, Bi and
C i are pixel values.

(Ai+A2)/2 = B1
(A3+A4)/2 = B2 1 2 (Bl+B2)/2 = C

Al-Bi = T1 B1-C = T2
A2-B1 = -T1 B2-C = -T2
A3-B2 = T1
A4Figure 3-5: The = -image transformations due to merges.

Figure 3-5: The image transformations due to merges.

28

,2
A1

A2

A2

1Al

A2

A1

A1

A.3

4A

44

4.3

4

3

4

This thesis improves the basic criterion by first suggesting the use of different
threshold values at each resolution level of the quadtree. Nodes near the leaves will be
judged differently than ones near the root. The procedure to determine the threshold val-
ues will be described below. Let Ti denote the threshold value at level i.

The mean square error (MSE) of the subimage representation by a leaf at quadtree
level i is upper bounded by:

MSE(i) Eq. (3.2)

.i = 1

For further discussion, the following variables are defined: Ni is the number of pix-
els at level i that did not move to level i+1. The probability of finding a pixel at level i for
a 2n x 2n image is

N.
1

P. Eq. (3.3)
1 4n-i

The pixel propagation probability to level 0 (root) is defined as q0 =1. The empiri-
cal probability from level i to level i+1 is defined by

qi= 1 i=O0

qi-l -Pi- =,.., n

So, the total MSE of the reconstructed image is defined by:

n n i
MSEtree = p MSEi < = Pi T 2 Eq. (3.4)

MSEtree < qiTi Eq. (3.5)
i=l

The goal is to achieve a set of threshold values, Ti, that minimize the MSE under a
constraint of a fixed number of leaves. However, the relation between the threshold values
and the MSE is complicated. One will assume that the number of leaves is constant in
order to minimize the MSE.

Let's define the number of leaves in the compressed tree, L, as

29

n
L= 4 -3JPi Eq. (3.6)

i=O i=14

which will simplify the MSE criterion to be:

MSE <ree 1-4 r)Tl + .qi(T-41iT) Eq.(3.7)
i=2

The first term above is greater than zero and if Lqt is defined, the term depends
only on T1 which may be a given paramter of the simulation. So, the MSE is minimized if
the second term is minimized. A very interesting aspect of the above inequality is that the
second term is not positive for i greater than 1

T. <2 1-iT Eq. (3.8)

This is the criterion for threshold selection which is used on the simulation. It
depends on a given parameter T1 that controls the distortion tradeoff. At each level, the
threshold is a factor of 2 less than the previous level. This ought to make sense because the
contribution of the image area represented by a leaf at level i to total distortion is propor-
tional to the size of the area, 4'. The most optimal MSE is obtained if the distortion due to
merging is distributed uniformly among the various levels of the quadtree. So, at higher
levels (closer to the root), distortion is less.

Section 3.2.3: Execution time

The time for the raster to quadtree construction is measured by the number of
nodes visited. Thus, we only need to analyze the amount of time used to find the neighbor-
ing pixel (Add_edge_neighbor) and merge (Merge). The number of nodes visited to find a
neighbor is bounded by four times the number of pixels in the image. The number of
nodes checked for merging is upper bounded when all of the pixels are of the same color.
Samet [Samet 1982] claims that the total number of nodes examined for merging is
bounded by four-thirds the number of pixels (2 2n). This occurs when all of the pixels are
of the exact same color.

Section 3.3: Rasters to quadtrees

Once a quadtree is built, one would like to be able to transform the tree back into a
raster for output purposes. The most obvious method to build a raster representation from

30

a quadtree is to generate an array corresponding to the tree but this method may need a
large amount of memory which may not necessarily be available. In [Samet 1984], a num-
ber of quadtree to raster algorithms are described. All of the algorithms traverse the
quadtree by rows from left to right and visit each quadtree node once for each row that
intersects it.

Figure 3-6a, for example, shows for pixels 1 through 8 of the first row, node A
(Figure 3-6c) is encountered first then nodes B, C, D and E. Each block whether it is black
or white at level x in the tree is visited 2x times. Each visit results in an output of length 2 x

pixels. So, node I) which has color black will cause an output of 2 consecutive pixels of
color black to represent the node.

12345678
9 1011 1213141516
1718192021 222324

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 51 53 54 55 56
5758596061 626364

(a) (b)

R1 R2

A / / J D E K L O P R S

B C F G H I MN

(C)

Figure 3-6: Quadtree example. a) binary array representation
b) maximal decomposition c) quadtree representation

Section 3.3.1: Building a raster from a quadtree

There are two different approaches, similar to generation of a quadtree, called top-
clown and bottom-up to achieve a raster from a quadtree. The top-down algorithm starts at
the root each time it visits a node that participates in a row while a bottom-up algorithm
visits adjacent blocks in a row by the use of neighbor-finding techniques.

Both algorithms make use of a procedure called Find_2D_Block to find the loca-

31

tion of the block containing the segment of the row being output. Its parameters are the
coordinates of the upper left corner of the leftmost pixel of the segment that is to be output
and the coordinates of the lower right corner of a block in the image containing the seg-
ment. Find_2D_Block divides this block recursively until the smallest block which is
made up of a leaf node is obtained. The pseudocode is:

Find_2D_Block(pointer node p, int x, int xfar, int y,

int yfar, int w)

begjin

quadrant Q;

while (node is not a leaf) do

begin

w = w/2;

/* Identify the quadrant of a nonleaf node

that contains a block corresponding to the

segment to be output */

Q = Get_Quadrant (x, xfar-w, y, yfar - w);

xfar = xfar - xf[q]*w;

yfar = yfar - yf[q]*w;

p = child (node p, quadrant q);

end;

end;

The function child basically returns the child of node p which represents the quad-
rant block defined by q. So, if child (p, "NW") were initiated, it would be equivalent to the
C instruction of "p->NW".

In locating a block containing the segment starting at row 0 and column 0 in Figure
3-6a, Find_2D_Block divides the image recursively into blocks having lower right corners
at (8,8), (4,4) andc (2,2). The result is a block representation of node A.

The actual output of the runs is accomplished by a function named Output_Run.
For each leaf node of width x pixels that is part of a specific row, the function outputs a run
of length x of the appropriate color (RGB representation).

The pseudocode for Output_Run looks like:

32

void output_run (int pixel_red, int pixel_green,
int pixelblue, int length)

{

int i = 0, counter = 0;

for (i = 0; i < length; i++) {

counter = counter + 1;

print pixel_values to memory storage

}

If one were to take the top-bottom approach given in Figure 3-6, the Ri's represent
non-leaf nodes. The leaf nodes in Figure 3-6a are labeled in the order they are processed.
For this image, the output for the first row would be W332. This refers to the first pixel
having a white color of length 3 followed by 3 pixels of color black and finally ending
with a pair of white pixels. So, an output function would perform the result for each of the
rows to obtain the raster image. When outputting the first row, the algorithm needs to start
at node RO and visit nodes R1 and A; R1, R4, B; R1, R4, C; R2, D; R2, E. For the second
row, it visits R1,. A; R1, R4, F; R1, R4, G; R2, D; R2, E. This goes on for the rest of the
rows. The total number of nodes visited in this image is 68.

The top-bottom approach visits each segment of each row numerous times starting
at the root of the tree. The bottom-up technique tries to avoid this by using the structure of
the tree to find the successive adjacent blocks. For example, in Figure 3-6, once block B is
output the next node that is visited is one representing block C. It can be located by tra-
versing links corresponding to nodes R4 and C as opposed to R1, R4 and then C with a
top-bottom design.

Using the bottom-up approach to Figure 3-6, the same output will result. However,
the difference arises in the order in which the nodes are encountered. For example, the first
row will come across the nodes as RO, RI, A; Ri, R4, B; R4, C; R4, Ri, RO, R2, D; R2, E;
R2, RO. The last pair signifies that the end of the row has been reached and no neighbor
can be found. The number of nodes encountered here are 96 which may seem to signify
that this approach is inferior to the top-bottom one. In reality though, the opposite is gen-
erally true and this example is an exception. This will be discussed later on.

The total pseudocode for the quadtree to raster (2
n x 2

n) transformation may be
perceived in the following way:

33

Quadtree_to_image (node root, int n)

/* Obtain a 2nx2n image from a quadtree at root */

{

node p = nil;

int diameter, distance, y;

diameter = 2 n;

/* Process each row one at a time */
for (y = 0; y < diameter; y++) {

p = root;

distance = diameter;

/* Find the leftmost block containing row Y */

Find_2d_block (&p, 0, diameter, y, diameter,

&distance);

out_row (p, y, log2 distance);
printf("\n");

Section 3.3.2: Finding a Neighbor

In the bottom-up technique described above, adjacent blocks are found without
reverting back to the tree root and traversing downwards. Given two nodes, X and Y
whose blocks don't overlap, and a direction d, one can define a function adjacent such that
adjacent (X, Y d) is true if there exist two pixels x and y in X and Y respectively such that
either y is adjacent to x in the direction d or y is adjacent to corner d of x. So, two blocks
may be adjacent if they both belong along the same edge or the same vertex.

The neighbor finding technique is not mathematically based. It is based on obtain-
ing a common ancestor between the present node and the neighbor to be found. Neighbor-
ing blocks do not need to be of the same size. If the neighbor is larger, only the part from
the nearest common ancestor is retraced. Otherwise, the neighbor corresponds to a block
of equal size and a pointer to a node of equal size is returned.

Adjacent nodes are found using the Find_2D_Block and Edge_Neighbor proce-
dures. For some node x and an edge e, Edge_Neighbor locates the edge-neighbor for x of
size greater than or equal to x in direction e.

34

If a neighboring block exists, a pointer to its node is returned. If it is a non-leaf
node then procedure Find_2D_Block is used to determine the block that intersects the row
currently being processed (the right most block of A in Figure 3-6 is B for the first row and
F for the second). The pseudocode for Edge_Neighbor looks like:

Edge_neighbor (node p, direction i, node q, int 1)

begin

I = I +1;

if (parent(p)!= NULL) and (adj (direction i,
quadrant p))

/* Find a common ancestor */

Edge_neighbor (parent(p), i, q, 1);

else

q = parent(p);

if (q!= NULL)

if (q not leaf-node) do

begin

q = child(q, reflect(direction i, quadrant));

1 = 1 - 1;

end
end

Edge_Neighbor returns in q the edge neighbor of node p of equal or greater size in
direction i. L denotes the level of the tree at which node p is initially found and the level of
the tree at which node q is ultimately obtained.

The function Adj and the function Reflect aid in the operations needed to obtain the
neighbor. Adj accepts two parameters i and o returning true if quadrant o is adjacent to the
ith edge or vertex of o's block. For example, Adj (west, southwest) is true. The relation can
also be described as true if o is of type i or i is a subset of o. Table 3-1 shows the function-
ality of the Adj procedure.

35

Idirection O=NW O=NE O=SW O=SE

E FALSE TRUE FALSE TRUE

S FALSE FALSE TRUE TRUE

W TRUE FALSE TRUE FALSE

NW TRUE FALSE FALSE FALSE

NE FALSE TRUE FALSE FALSE

SW FALSE FALSE TRUE FALSE

SE FALSE FALSE FALSE TRUE

Reflect (i, o) produces the child type (NW, NE, SW or SE) of the block of equal
size that shares the ith edge of a block having child type value o. For example, Reflect
(North, Southwest) results in Northwest and Reflect (Southwest, Southwest) produces
Northeast. Table 3-2 shows the functionality of the Reflect procedure.

Table 3-2: Reflect (I,O)

I
dIr O = NW O = NE O = SW O = SE

direction

N SW SE NW NE

E NE NW SE SW

S SW SE NW NE

W NE NW SE SW

NW SE SW NE NW

NE SE SW NE NW

SW SE SW NE NW

SE SE SW NE NW

Some analysis of this approach would be of great use. The average number of
nodes that must be visited in locating the nearest common ancestor when seeking an edge
neighbor is no greater than 2. This can be proved by the following: Define a node p at level
i and direction I which may be in any of the 2n-1(2 n-l - 1) locations. The '-1' is because one
of the rows or columns will not have a neighbor in direction I. Of these positions, (2 n-i)20
have their nearest common ancestor at level n, (2 n-i)2 at level n-l, etc. Starting at node
level i, reaching the nearest common ancestor at level j, j-1 nodes must be visited. The
average then is

36

n-i n

a, a, 2n-i2n-J (j -i)

i = Oj = i + 1 Eq. (3.9)
n- 1

i n-i 1)

i=O

which my be simplified [Samet 90] to

+ 6 (n - 1) 2n + 6
2 + (n-)2 +6 <2 Eq. (3.10)

2 -6(2) n +2

Section 3.3.3: Execution Time

The neighbor finding techniques were used to develop a bottom-up method for
reproducing a raster image. It was mentioned before that the bottom-up approach was
more time efficient than the top-bottom one. This claim will be discussed here.

Given a 2n x 2n image with xi blocks of size 2i, the number of nodes visited by the
top-bottom algorithm is

n-l
Top-Bottom: A (n-i)x.2 1 Eq. (3.11)

1
i=O

This is true because for each block of size 2i there are 2i rows, each being visited
once starting at the root of the tree. But each block of size 2i is at a distance n-i nodes from
the root. The above result is quite interesting because it points to the fact that the number
of nodes visited only depends on the number of blocks for a given image and their sizes.

For bottom-up, the analysis is more complicated. The leftmost blocks in an image
require visiting n nodes starting from the root. For each row, the algorithm uses a neighbor
finding technique as discussed earlier. 20 nodes need to be visited to find common ances-
tors at level n, 21 at level n-1, 22 at level n-2, etc. After finding the common ancestor, a tra-
versal of an equal number of nodes needs to be performed to find the neighbor. The
rightmost block has no neighbor. In this case, traversal to the root is performed and then
the realization of a non-existent neighbor is achieved. Each row visits a total number of

37

nodes defined by

n
n+2E ,i2' +n Eq. (3.12)

i=l

which can be simplified to

2n+2_4 Eq. (3.13)

For a 2n x 2n image, the total number of nodes visited will be 2 2n+2- 2n+2. Com-
pared to the original image which is made up of 22n pixels, there is a factor of 4 bound.
This makes sense because any two adjacent nodes have to be within 4 nodes of each other.
So, for the bottom-up approach, the number of nodes visited for a 2n x 2n image made up
of xi blocks of size 2' is

Bottom-Up: xi2j 4 Eq. (3.14)

Comparing the expressions of bottom-up and top-bottom, one can see that the bot-
tom-up approach has little dependence on the resolution of the image, n. When n is greater
than 4, bottom-up performs at a higher level of efficiency when compared to its competi-
tor. As n grows large, the depth of the tree increases and the neighbor finding techniques
become invaluable in saving time.

Section 3.4: Summary

A quadtree implementation for images was discussed here. Descriptions of both
the raster to quadtree and quadtree to raster transformations were described in some detail.
The code written in the C programming language is included in the appendix for curious
researchers and implementors. It should be quite apparent that the quadtree data struc-
ture's divide and conquer decomposition is attractive. An image is a perfect example
where a recursive implementation will take advantage of the parallel architecture on
which this simulator is to be used and implemented.

38

Chapter 4: Simulation input and output

The quadtree may be thought of as a hierarchial data structure. Hierarchial data
structures are useful because of their ability to focus on the interesting subsets of data in a
given image. This focusing results in efficient representations and in improved execution
times.

A user, for example, is able to choose among the four quadrants of the image to
focus on. A analogy is a zooming of a camera in order to take a picture of a specific area of
interest. This simulation allows for zooming in and out which focusses an image into that
part of the picture. For example, if one were given a rough and sketchy picture of the
world then a choice of the North American continent will produce a full display of the
continent showing countries like the United States and Canada. A refocus onto the north-
eastern part of America will show cities found in this part of the United States. This may
go on as long as more resolution or zooming is possible for a given image. This may be
perceived as a geographical information system on a parallel multiprocessor mesh archi-
tecture.

Description of how image data is available and sample user outputs will be
described. This will give some kind of context where quadtree transformations described
in the previous chapter are used.

Section 4.1 Input data stream

The input to the simulation is the pixel data representations of the image under
consideration. For a 256 x 256 pixel image there will be (256)2 pixels defined. Each one
would be made up of three values representing the red, green and blue components. For
the purposes of the simulation it is assumed that each component can be as large as wanted
or needed. This is a generalization to actual hardware implementations which would allow
one byte of 8 bits for each color representation. So, in the latter case, there would be (1
byte) 3 or (256)3 variations of the color for each pixel. Approximately 17 million shades of
the primary colors are allowed. Of course, a large amount of the possibilities would be
indistinguishable from others due to human inability at times to detect slight variations in
the pixel color.

39

In any regard, the issue of the variations of colors will be discussed later. The basic
data may look like a series of values for each pixel. This can be perceived in the following
way:

Pixell_Red Pixell_Green Pixell_Blue

Pixel2_Red Pixel2_Green Pixel2_Blue

Pixel3_Red Pixel3_Green Pixel3_Blue

Pixel4_Red Pixel4_Green Pixel4_Blue

So, for a 256 x 256 image, there will be (256)2 pixel values. If less than that
amount is available, the extra needed pixel values would be assumed to be the color white.
Also, it should be noted that an image needs to be a power of 2 on both dimensions, verti-
cal and horizontal. If this is not the case, the simulation automatically augments the image
to the closest approximation to a square of power 2 dimension and sets the extra pixel
positions to be the color white. For example, an initial image which is defined by 320 x
300 pixels will be simulated as one of 512 x 512. But the image when shown to the user
will still be depicted as one of 320 x 300.

Let's go back to the example of looking at the world map and focusing into inter-
ested areas. The first image of the world will be processed through the quadtree approach
described in the previous chapter. Depending on the user's needs, different parts may be
zoomed in and thus more detail about that specific area is needed. So, a simulation ought
to be able to figure out how to obtain the next stage of detail or resolution for this geo-
graphical viewing system. If one were to take the example of a compact disk, it can be
thought that each segment of the image is defined in a different sector of a given track. For
example, it may be that the most high leveled and general image be found in the first sec-
tor of the first track while its northwest depiction is detailed in the second sector of the first
track and the northeast in the third sector of the first track, etc.

So, given that one is at some parent image, traversal to the image representing one
of the quadrants may be achieved by the following equation:

4 (i-1) +j+ Eq. (4.1)

Given that one is at a parent node represented by i, the node represented by the
child of i in quadrant j is defined above. So, for example, let's assume that the northwest
quadrant is needed when j = 1; northeast when j = 2; southwest when j = 3 and southeast
when j = 4. Initially, the highest leveled image is in sector 1. To obtain the image of the
northeastern quadrant, one would use the image depicted in sector 4(1-1) + 1 + 1 = 2.
Once that image is simulated through a quadtree implementation, choosing the southeast-
ern quadrant would result in depicting the image defined in sector 4(2-1) + 4 + 1 = 9. And

40

this continues for as long as there is more zooming possible in the image. Once the highest
level of detail is achieved, a choice of one of the quadrants for more detail will not result
in anything. For image depictions defined by n levels including the root image, the number
of sectors needed to define each possible detail that may be accessed is

i=levels
E 4 i Eq. (4.2)

i=O

Once one zooms into an image, it is possible to revert back to the parent image.
This would be found in sector position

L 21 Eq. (4.3)

where i is the present sector that is depicted. So, an image at sector 3 would have
its parent at sector 1. Once we revert back to the parent node which has already been rep-
resented using quadtrees, no more effort is wasted in performing this action again.

Section 4.2 User Options

Given an image, the user may choose among a number of options. The basic ones
are made up of the following:

* Focus on the NW quadrant
* Focus on the NE quadrant
* Focus on the SW quadrant
* Focus on the SE quadrant
* Return to parent quadrant
* Exit the simulation

Some of these options were described above in some detail. Examples of these
options will be given in the next section in order to visually understand exactly what is
perceived by the user.

Section 4.2.1 Windowing

One of the more complicated techniques in geographical information retrieval is
windowing. It is a process of extracting a rectangular subsection from an image where the
subsection can cover parts of different quadrants. An algorithm designed to achieve this
effect for a square window of size 2k x 2 at an arbitrary position in a 2n x 2 image that is
represented by a quadtree is described in Rosenfield et al [Rosenfeld 1982]. Simply, the

41

new quadtree is described as the input quadtree is decomposed and relevant blocks are
copied into the new quadtree.

The algorithm proceeds in the following manner. Let's assume that the window
chosen is smaller than the image, k < n.

1) Find the smallest subtree of the input quadtree that contains the window.
2) If the subtree is a leaf node, done. Otherwise, subdivide the window into

four quadrants and reapply steps 1 to 3 for each quadrant.
3) Try to merge the children of the current node.

The time to produce the window is directly related to two factors: the relative posi-
tion of the center of the window with respect to the center of the input quadtree and the
sizes of the blocks in the input quadtree that overlap in the window.

In Figure 4-la, an 8 x 8 image is depicted with 10 leaf nodes; 3 black and 7 white.
A window represented by borders of broken lines is overlaid. Let's call the original image
O and the windowed one W.

(a) Mu)

Figure 4-1: a) an 8x8 original image b) the windowed image

Since W is not contained in a single quadrant of O, we need to subdivide the win-
dow and reapply the algorithm to the four resulting windows: WNE, WNW, WSW and
WSE. Since WNW is not completely part of one quadrant of O, further subdivisions would
occur. The next stage of subdivisions would result in each child being contained in one
node of O. WNE is contained in one node of O and so WNE is made up of a white block.
Wsw is not contained in one node of O so subdivisions are needed. After this, each child
will be made up of one node of O. Finally, WSE is also not contained in one node of O. We
subdivide it and now all its children are made up of nodes of O. Since all the nodes of WSE
are the same color, white, they are merged to form a larger block. The result can be seen in

42

"I·

Figure 4-lb.

Windowing may also be perceived as an intersection request. This is achieved by
treating the image and the window as two distinct images like I1 and 12. So, for window-
ing, I1 is the image from which the window is being extracted and 12 is a black image with
the same dimensions as the window to be extracted. The quadtree representing the result
of the windowing operation has the same dimensions as 12. Each pixel of 12 will have the
same value as its representative in I1.

Once windowing is perfected, a simple extension is a quadtree translation.
Because there is a correspondence between windowing and intersection, translating an
image is analogous to extracting a window that is larger than the input image with a differ-
ent origin from that of the input image. If the image to be translated has its origin at (x, y)
then translating it by deltax and deltay means that the window is a block whose origin is
located at (x - deltax, y - deltay).

Figure 4-:2 gives an example of translation.

. .

mill llllllllll ll··

(a) (b)

Figure 4-2: a) a 4x4 image to be shifted by 3 to the right and 1 up.
b) the shifted image represented by the broken lines

As can be seen, Figure 4-2a shows a 4 x 4 image which is shifted by 3 east and 1
north. Assuming the origin is located at the bottom left corner means that an intersection
of the image with a 4 x 4 window whose origin is located at (-3,-1) is to be conducted.
This window is overlaid in Figure 4-la with broken lines. The quadtree of the translated
image is shown in Figure 4-2b and is shown with broken lines.

43

f····I··

Section 4.2.2: Rotation and scaling of the image

The simplest transformations are those in which the translation distance is a power
of two and is greater than or equal to the width of the largest block in the image, the rota-
tion is a multiple of ninety degrees or the scaling factor is a power of two (doubling or
halving).

In order to make an image depicted by a quadtree one half the original size, a sim-
ple procedure is followed. Create a new root and give the root three children having the
color white and one child that represents the original tree. To make the quadtree twice as
large, choose one of the subtrees like the Northwest to serve as a new root. This eliminates
the remaining three quadrants. This technique is applied recursively for any scale factor
that is a power of two.

Rotations of ninety degrees are quite simple. The goal can be achieved by rear-
ranging the pointers at all levels. The algorithm traverses the tree in a preorder manner and
rotates the pointers at each node. This basically means the following series of actions will
be performed until the leaves are reached.

1) The pixels in the northwestern quadrant of the image become the south-
western quadrant.

2) The pixels in the northeastern quadrant of the image become the north-
western quadrant.

3) The pixels in the southeastern quadrant of the image become the north-
eastern quadrant.

4) The pixels in the southwestern quadrant of the image become the south-
eastern quadrant.

5) Each of the quadrants in its new position appears as if had been locally
rotated clockwise by ninety degrees.

Section 4.3: Output Examples

Some examples of user actions and consequences are given here in order to make
the simulation more concrete. It should be noted that all images are of size 256 x 256 but
may at times be represented in different dimensions. As one may remember, an image is
given initially and the user may choose to concentrate on any of the four quadrants. Given
a user choice of a specific quadrant, a more detailed depiction of that part is produced by
accessing data from some source like a CD-ROM where each sector will have information
about a specific area of the initial image.

The first example, Figure 4-3, is one of the ocean. This is given to the user initially
and a response from the user is expected.

44

Figure 4-3: An initial image of a sunset given to the user

Let's say that the user wants more detail of the bottom right corner of the image.
After choosing this as his option, the updated image, Figure 4-4, is formed.

Figure 4-4: The updated image for the southeastern quadrant

The next example uses an image of Fantasia. The user is given the initial image
and successive inquiries are answered by requests for the northwestern quadrant and then
the southeastern quadrant. We finally have a detailed 256 x 256 image of Mickey Mouse.

45

Figure 4-5: Successive requests for details from the original to
the northwestern to the southeastern quadrants.

There are a couple of important things to take note of in this approach to image
resolution:

46

* Within a given image, quadtree nodes closer to the root will have a
more difficult criterion to merge. This is to allow as little distortion in
higher levels which would affect larger percentages of the image
viewed by the user.

* As the user zooms into different quadrants, the criterion for overall dis-
crepancy for a given image increases. This is to allow better detail and
focus which was the sole reason of zooming in the first place.

Thus, resolution is dependent on the node level within an image as well as the
number of zooms requested. The threshold may be thought of in the following way:

Threshold = f(zoomlevel, nodelevel) Eq. (4.4)

The examples given before only merged if a set of four neighboring pixels were
equivalent in the pixel color. So, there was no distortion whatsoever. Of course, this is at a
price of large memory utilization and time. A more efficient but a slightly distortioned
image may be produced in retrospect. The original image of Fantasia with some distortion
may look like Figure 4-6.

Figure 4-6: A slightly distorted image of Fantasia

Section 4.4: Color Images

The images shown earlier were depicted in grey scale even though they are origi-
nally defined in the red, green and blue spectrum of colors. Images are depicted by tuples
of RGB (red, green and blue) for each pixel. Each pixel is made up of 24 bits to define the
specific color. This may be an excessive amount of memory. One approach is to use a sin-

47

gle value which is similar to the luminosity found on television sets. This component rep-
resents the color image which is a weighted sum of the RGB values with the weights in
decreasing order for G, R and B values. This is in accordance with the color sensitivities
of the human eyesight [Sureschandran and Warter 1993]. The other components, chromi-
nance, can be added with less precision than the luminosity.

So, one can develop a quadtree representation of the three components by a single
weighted value like the luminosity used for televisions. Thus, the weighted sum is the sole
criterion to drive the development of the quadtree. The advantage of this method is that
there is one tree to code.

Some researchers have developed some algorithms for quadtree representations of
images which build three different trees, one each for the R, G and B components. The
merging thresholds for the three colors would be in the same proportion as the noticeable
differences for these colors. Based on Cowlishaw (1985), the merging threshold values
should be in the ratio of 4:1:4 or 4:1:8 for red, green and blue colors. In this method, there
is the overhead of coding three different trees but there is more flexibility in exploiting the
relative sensitivities of the human eye to the three colors. Color components may be
merged better than grey scale images because color images compress much more easily.
'The latter approach, from some simple experimentation, will result in better quality
images with the drawback that it requires a great deal more memory. The simulation
developed has only one tree but allows for different criterion for each color. This feature is
one of the unique characteristics of this work.

Quadtrees implemented for color images are a simple extension for grey scale
ones. It is this reasoning that makes them quite attractive for color image processing on
parallel mesh architectures. Much work has been performed in the area of computer hard-
ware and image processing. This thesis combines and interrelates the seemingly disparate
worlds in order to achieve an inherent relationship which takes advantage of each's quali-
ties and developed algorithms.

Section 4.5: Summary

Some of the simple techniques available to the user were described here. The sim-
ulator has the tradeoff of being quite time efficient or distortionless. The criterion for
threshold which was used is quite similar to the one described in the previous chapter.

The image data ought to be available on some kind of large memory storage facil-
ity like a hard drive or CD-ROM which is to be accessed when needed by the simulator.
The location of the required image data must be available beforehand in the manner of
pointers to memory locations.This application is quite attractive in geographical informa-
tion retrieval systems, virtual reality or space exploration.

48

Chapter 5: Data Retrieval

Up to now, no discussion or elaboration of any hardware, parallelism or even I/O
interface has been dealt with. So far, the actual simulation details have been elaborated in
detail, examples of the functionality have been proposed. Also, some measure of time and
memory utilization have been produced.

Considering that this simulation will be a user friendly system, it needs to perform
in real-time. This basically refers to a reasonable amount of time for images to be imple-
mented as quadtrees and perceived by the user. This chapter will discuss architectural
issues in the design of hardware for real time parallel manipulations of high bandwidth
images.

Section 5.1: Introduction

Graphic and multi-media user interfaces promote the use of computers for visual-
izing pixmap images. In many fields like medical imaging, geographical retrieval systems,
biology and scientific modelling there is an urgent need for a large amount of storage
capacities, fast access and real-time interactive visualization of images.

While processing power and memory capacity approximately double every two
years, disk bandwidth only increases by about ten percent per year [Hersh 1993]. Interac-
tive real-time visualization of full color pixmap image data requires a throughput of two to
ten megabytes per second. Parallel input and output devices are required in order to access
and manipulate, at high speed, image data distributed on a disk like CD-ROM. A high per-
formance high capacity image system should provide processors located on a mesh topo-
logical network with a set of services for immediate access to images stored in memory.
Basic services include real-time extraction of image parts for panning purposes, resam-
pling for zooming in and out, browsing through three dimensional image cuts and access-
ing image sequences at the required resolution and speed.

Previous research dealing with LAN's was focussed on increasing transfer rates
between CPU and disks by using Redundant Arrays of Inexpensive Disks (RAID) [Patter-
son 1988]. Access to disk blocks was parallelized, but block and file management contin-
ued to be handled by a single CPU with limited processing power and memory bandwidth.

49

]In order to access large quantities of image data at a throughput of two to ten megabytes
per second, a multiprocessor multi-disk approach is proposed. In order to ensure high
throughput, image extents are stored on a parallel array of disk nodes. Each disk node may
include one disk node processor, cache memory and one large storage disk. This proposed
architecture offers a low price-performance ratio since it is composed of standard low cost
mass produced components such as processors, memory or disks. The processors in this
case will be the ones developed for the NuMesh computer system at the Computer Archi-
tecture Group at the Massachusetts Institute of Technology.

This chapter will discuss how images can efficiently be distributed among disk
nodes and a proposed system architecture. It will analyze their performance of the system
according to various parameters such as the number of disk nodes, the size of the image
and the communicating capabilities.

Section 5.2: System Architecture

A system developed for image processing is made up of a server interface which
includes the network interface, disk node processors used for disk access and an array of
disks which are connected to the processors, Figure 5-1.

.1.
Image/User

Interface

........... IIIII

Disk node processors

Memory Disks

Figure 5-1: A proposed image system architecture

Image access performance is heavily influenced by the way in which images are
distributed onto a disk array. User workstations like a Sun Sparc generally need rectangu-
lar image files so an image data file is partitioned into rectangular groups. To simplify the

50

file system managing parallel storage of data files on a number of disk nodes, groups are
numbered sequentially from left to right and from top to bottom. The n disk memory
nodes selected for storing an image file are defined from 0 to n-1. The image file data is
mapped sequentially in modulo-n mode to disk nodes.

Subsection 5.2.1: Paralleizing disk node accesses

Of great interest to achieving good real-time behavior for the user is the number of
channels available to the memory disks. A simulated architecture as the one described ear-
lier where the server interface is linked by two or four channels to a number of intercon-
nected channels is researched. To understand parallelism better, the behavior of an
intelligent disk array in which disk node processors execute local processing operations in
combination with disk accesses is analyzed.

For these purposes, a simple simulation using the C programming language and
Matlab was written. It took into account time which is needed to compute the location of
the needed data in the disk array, communication time between server and disk node pro-
cessors, transfer of image through two or four channel links, receipt and assembly of the
image by the server interface.

The following values were used in the simulation:

* Throughput of communication links: 1.6 Mbytes/sec
* Disk transfer rate: 2.4 Mbytes/sec
* Track to track access time: 4 msec

* Average rotation time: 8.3 msec

The simulation was carried out for normal 512 x 512 images, small 128 x 128
images, disk nodes numbering from 1 to 10 and either two or four communication links
between the server interface processor and the disk nodes. Each image used 3 bytes per
pixel to represent the red, green and blue components

Figure 5-2 shows that performance is directly proportional to available communi-
cation bandwidth. With two communication links, using two nodes produces a linear
speedup for accessing images. With four communication links, using four nodes results in
a linear speedup. It seems that the optimal image block size is either 64 x 64 or 128 x 128.

Disk node processors may be idle when image data extraction is occurring. This
need not be the case because they may use their processing power to communicate with
the server interface. Combining disk accesses and local processing operations, paralleliza-
tion becomes very efficient and high speedups can be obtained with a relatively large num-
ber of disk nodes.

51

2 3 4 5 6 7
Number of Disk Nodes

8 9 1C

. .~~~~~~~~~~~~~~~~~~~~~i'.......

128,128~ ~~~~~~~~~~~~~~i"i i2............

3 4 5 6 7 8 9 10
Number of Disk Nodes

: Image access times for two and four communication
links respectively

The major bottleneck in the implementation is the limited communication through-

52

1

1.

a)
E
U/)

U)U)
C.

0.

0.

r

1.8

1.6

1.4

1.2

a) 1
E

0.8
<C

0.6

0.4

0.2

0
2

Figure5-2:

u..

put between disk nodes and image server interface. The other option is to have a large
array of disk nodes in direct memory access to the image server interface. In this case, the
system's bandwidth is only limited by the throughput of the disks and by the processing
ability of a single server interface processor. This approach's bottleneck stems from the
limited ability of the interface to buffer the image data destined to the image server. As the
disk nodes used in the architecture proposed increases, the overall performance will be
much better than the latter one described. This is because the latter's bottleneck will
inhibit a great transfer of data while the proposed will be able to pass the information to
the interface with some delay.

Section 5.2.2: Storage Management

Image and video files require large storage spaces. However, the size is not the
only problem. Video objects are time-based continuous data streams of information. They
must be delivered at a constant rate with bounded delay between source and target in order
to preserve human perception. Continuous data stream handling capabilities are needed to
provide real-time control and synchronization.

In a distributed multiprocessor system, the previous requirements must be
achieved to provide an effective management of concurrent access both to storage devices
and to single image or video files. A strategy for mass storage management is to take into
account both requirements of image coding format:

* Throughput
* Size of media unit

and the qualities of the mass storage devices:

* Capacity
* Transfer rate
* Access time

* Sector size
* Sector placement

An optimal organization of mass storage represents the crucial issue for the real-
ization of large concurrent archives. To achieve effective management, the architecture of
the system has to fit the following requirements:

* Scalability: to cope with the progressive growth of an archive

* Hierarchial structure: to support storage management strategies that exploit
different types of devices in order to achieve short access time and reduce
storage costs

* Adaptability: to operate both in a local and a wide area environment

53

Section 5.3: Issues of parallel processors in real-time applications

In recent years, massively parallel architectures have shown excellent performance
in different scientific applications and image processing. This section will be a simple
overview of the issues that are important in the application of multiple processors per-
forming the same action (SIMD) in the same time unit. In the case of quadtrees, this will
occur when different processors will be in charge of different segments of the image, e.g.
quadrants, or even a single row of raster pixel data. Among the topics to be discussed are
the requirements for effectively utilizing massively parallel processors and possible
approaches to achieve these goals.

Section 5.3.1: Parallel Processing and Real-time Control

Many times, massively parallel processors are deemed as changing compute time
bounded problems into I/O time bounded problems. Actually, though, massively parallel
processors also raise the issues of real time control. A SIMD hardware model emphasizes
translation invariance and locality.

Image processing algorithms are often naturally translation invariant and local.
These qualities are targetted by SIMD machines. However, the following, list of problems
are raised:

* Achieving information transfer bandwidth as fast as the high processing
capability of electronic parallel processors is developed

* Real time control
* Requiring high rates of information transfer even though the amount
exchanged between the SIMD array and external processors is not much

The memory access problem has received considerable attention in past research.
The extreme positions taken are either fully parallel access to external memory resulting
in one extra pin per bit per processor or to have only connections internal to the processor
array. This results in access time to external memory proportional to the number of pro-
cessing elements (PE), x, along the perimeter of the mesh array. Between these extremes
are the bus network solutions such as a mesh-of-tree-like router which has y PE's that are
constructed as branches of a tree to go into a single node. This results in a constant access
time for any processing element. The pin count and the overall access time thus become
proportional to x/y and y where 1 < y < x.

Real time control is important in most cognitive systems. Humans continually
make decisions in real time. In computer systems, the issue raises itself in very high speed
machines because the usual methods of program control dealt by the software is not a
speed bottleneck for slower sequential machines. In visual cognition applications, for
example, where data rates are high, solutions with hardware additions need to be found if

54

the parallel processor is not to be left idle while program changes and decisions are being
performed. The controller ought to be developed with enough adaptability.

A simple controller can be developed as an extension of the Von Neumann
machine. This basically refers to a hierarchial system in which higher levels represent
strategists relative to the lower levels which are the tacticians. If delays are to be avoided
completely, then each step of the implementation by the tactical component must be long
enough for the strategist to be able to devise the next plan. By a similar token, the strate-
gist plan cannot take too long on the part of the tacticians to implement, or be too detailed,
or the strategists will be left idling. These considerations are independent of the require-
ment that the processors not be idle, which is to be regarded as a crucial requirement the
controller must be able to fulfill.

There are two major qualities to this: software is reconfigurable in real time and
dynamic memory management. They are needed to accomplish real time control on the
mesh array of processing elements. Software reconfigurable in real time is needed to
accomplish various levels of program switching and dynamic memory management is
required because access to a large amount of memory is not possible on the mesh of pro-
cessors.

Software that is reconfigurable in real time thus requires both global broadcasting
and dynamic interpretation. Adaptive template matching is an example of dynamic rein-
terpretation. An initial template is applied to the data, the best matched value and its loca-
tions are extracted, using global broadcasting. Then, a new template is cut and passed back
to the controller. The program is changed according to the new template using micro-level
reinterpretation.

Memory management is a method to optimize memory usage. The limited pre-
dictability of memory requirements depending on the program paths followed often needs
the memory management hardware to perform run time allocation and releasing of mem-
ory through symbolic addressing and data address manipulation. Because of the unpredict-
able need for memory, run time allocation and releasing of memory will be performed.
This is the case when a user keeps zooming in and out of various areas of interest. In such
a way, each image has been implemented as a quadtree structure and kept in memory just
in case requests for it are reinitiated. However, as zooming and panning is augmented a
large number of images are kept track of and a lack of memory may occur. In such a situa-
tion, some of the memory allocated for specific images may be released. The criterion for
which ones to release may be similar to the criterion for releasing elements from a cache.
One possible approach is least recently used (LRU) which may mean the highest level
image in memory.

Handling the memory allocation and deallocation in software will not produce
the mesh array of processors to function at its full clock speed. Therefore, a structured or
modularized program is almost impossible since all of the local memory address within
each subroutine is fixed. However, one possible way of alleviating the problem is by hav-

55

ing the software module pre-assign the addresses to local memory within each subroutine,
prior to run-time. This has the disadvantage that the number of memory allocations as a
result of conditional branching must not exceed the total memory available. If there are n
times at which requests for image zooming or panning is performed, then the program has
to make 2n passes so that all the memory addresses that are allocated at each user request
can be assigned.

Section 5.3.2: Communication of Processors with Image Interface

The problem of communication between the processors and the host needs to be
addressed. Extracted information often needs to be exchanged between these units for fur-
ther processing or decision making. For example, when windowing, the needed informa-
tion may only be extracted from some of the processors in the array mesh. An efficient
scheme of broadcasting information between the units is vital.

By providing row/column selectability, information from any row, column, or pro-
cessing element can be sent to the host interface via external buffering. Figure 5-3 gives an
example of this.

Columns I
Global
Control

R
O
W
S

I I

L;

I Pr L

Fp ,VL

1 4

7FL

FI ,VL

... PE

F--L
I P I

I-IjlI §
Figure 5-3: A setup for the NuMesh processor array

The question of what exactly does a processing element (PE) perform and what are
its duties is to be discussed next. Well, let's assume that each one is in charge of a different
segment of the image area and that no two PEs share any common pixels in their calcula-
tions. So, if the mesh array were a 2 x 2 setup of PEs then each one would be responsible
for one quarter of the image block, a 4 x 4 setup then one-sixteenth of the image, etc. In
this way, each PE can essentially develop a quadtree representation for its block of pixel

56

1

[1 I- p L

L
I

data which is then combined with the results obtained by neighbor processors to achieve
an overall quadtree representation of the desired image to be perceived by the user.

For the sake of this discussion, let the threshold criterion be defined in the follow-
ing way.

Max-Min < 2Threshold(Average) Eq. (5.1)

Each PE processes groups of four elements received over two scan lines of the
image and executes the merging criterion on them. Identifying the elements to compress is
easily done in this scheme purely by timing, as the system has completely synchronous
data flow. In case merging is successful, the elements are marked with a new header. If
four elements of appropriate size are not encountered, merging should not be carried out.
However, to keep the data flow timing regular, it is convenient to let the elements pass
through the pipeline in this case too, only making sure that compression is not indicated.

The operations performed inside a PE are additions and subtractions, computation
of the maximum and minimum of four values and table lookup. A typical architecture for
the PE is shown in Figure 5-4.

Figure 5-4: Internal architecture of a PE

Serially, the computation of the maximum and minimum can be done in two differ-
ent ways. One approach is to compute without buffering by using a network of two stages

57

of compare exchange switches which route the input streams towards the maximum and
minimum locations. The other technique is to buffer the four elements beforehand and
making use of simple logic based on the carry results of respective subtractions to identify
the maximum and minimum.

The decoder for the architecture of the PE needs a buffer. This is to allow delay
when the input stream is not merged and the average stream of data will be the output of
the PE. So, if a merge is allowed then the average set of data will be passed; otherwise the
original set of data is going to be used in the image representation.

Section 5.3.4: Summary

Some of the detail dealing with input/output issues in parallelism were dealt in this
chapter. In order to develop a system that may retrieve data from a given memory source,
there are two options: using one processor which has sole control to accesses to memory
but losing any parallelism in the application or using many processors which have to share
retrievals from memory thus causing congestion and bandwidth problems. Ideally, one
would like to use as many processors as possible in order to minimize time and take
advantage of the mesh's hardware capabilities. However, this may be associated with a
robust protocol to deal with memory congestion and contention of data retrieval.

58

Chapter 6: Parallel Processing of Quadtrees

Section 6.1: Introduction

A quadtree is a hierarchial data structure that is useful for storing digital images.
Let's review some of the concepts described in Chapter 2. Given an n x n (n = 2k for some
k) color image, its quadtree representation is a tree of degree four which can be defined in
a top-bottom fashion. The root node of the tree represents the image. If the entire image
has only one value, we label the root node with that value and stop. Otherwise, four
descendants to the root node, representing the four quadrants of the image are added. The
process is then repeated recursively for each of the four nodes. If a block has a single
value, then its corresponding node is a leaf node; otherwise its node has four descendants
which are called the NW, NE, SE and SW representing the northwest, northeast, southeast
and southwest quadrants respectively. The four descendants are called siblings of each
other. A node at level h < k is made up of a square block of size 2 k-h x 2 k-h . For this dis-
cussion, the term node and block will be used interchangeably.

A quadtree can be represented by explicitly storing the tree structure. But the space
required for the pointers from a node to its children is not trivial [Samet and Tam-
minen1985]. Moreover, it may take O(n) steps for a node to access a descendant on a n x n
mesh computer and parallel operations such as accessing neighbors in a given direction
for all nodes can be very difficult. Thus, pointer-based representation may hinder process-
ing on a mesh-connected computer. To keep the data in non-pointer notation, a preorder
traversal of the nodes of the pointer quadtree ought to be performed. Transforming from a
pointer-based quadtree to a pointer-less one is very simple and much of the work already
discussed is valid. The resulting pointer-less representation is usually referred to as a lin-
ear quadtree.

Some parallel algorithms for computing properties of digital images can be found
in [Dyer and Rosenfeld 1981, Stout 1987]. This chapter concerns processing quadtrees on
a mesh computer. Yubin and Rosenfeld [1989] deal with processing of quadtrees for
binary images on a mesh computer. Some of their work is expanded and enhanced in order
to deal with parallel color data images.

This chapter will be divided into a few parts. The first will discuss in more detail
pointer-less versus pointer-based quadtrees. The second deals with some simple parallel

59

algorithms which will be used later on. The third describes the format of a quadtree con-
struction for a parallel quadtree, concurrent neighbor finding techniques and different
techniques for routing data.

Section 6.2: Pointer-less versus Pointer-based Quadtrees

Pointer-less quadtrees, at times, are less memory intensive than their counterpart.
However, this is not true in all cases and this section will explain when and in what cir-
cumstances the pointer-less technique may be a better approach.

A pointer quadtree has two types of nodes: nonleaf and leaf. Non-leaf nodes con-
sist of 2d pointers where d is the dimension of the image with a maximum side length of
2 h. To distinguish between the two types, one bit of memory will be needed. This bit will
be part of the pointer field that points at the node being described rather than in the node
being described. No memory is attributed to the leaf nodes. The number of non-leaf nodes,
where the leaves are L, is

L-1 L
L- < L Eq. (6.1)

2 - 1 2 - 1

Each pointer field only needs to be wide enough to differentiate among the numer-
ous nodes in a particular tree. The possible number is

1 + d x L Eq. (6.2)

The number of bits needed to represent the quadtree is

L d 2d
) 2 x 1+log(Lx d-)) Eq.(6.3)

which is the number of non-leaves * (pointers * (leaf bit + node)).

The linear quadtree would require bits on the order of

Lx (dxh+log(h+ 1)) Eq. (6.4)

In order for a linear quadtree to be more compact than the pointer quadtree, the fol-
lowing relation must hold:

60

Lx (dxh+log(h+l)) < dL x2
2dl

x, +log Lx

Letting m = 2 d and n = 2d -1, L is equivalent to

!Lx(dxh+iog(h+ 1)) 1
L>-x2m Eq. (6.6)

m

As long as the number of leaf nodes, L, is less than or equal to the right side, the
pointer quadtree requires at most as many bits as the linear quadtree. Let's define the value
where the left side equals the right as the critical point.

The number of bits utilized must be an integer so this restriction changes the last
equation to be

n x(dxh+[log(h+ l)-2
L >x x2 Eq. (6.7)

m

Practically, nodes in computer architecture start on byte boundaries. Assuming 8-
bit bytes, let {x} denote 8(roundup(x/8)). This changes relation 6.5 to

L{dxh+ [log(h+ l)1} -2dL){ 2 x/ I+log
2d 1

Lxd 2 Eq.(6.8)
2 _ /I

which using the above values for m and n results in

1 m Iml Ilog o Lm 8/ / l< I8 IMg / L 1 Eq. (6.9)

Finally, using the a simple approximation, the inequality results

n x {dxh+[log(h+)li 8 -2
n m m-x2m Eq. (6.10)

Table 6-1 [Samet 1984] shows the cutoff values for equations 6.5 and 6.10 for

61

2d
d2 -1"

Eq. (6.5)

images whose sizes range from 23 x 23 to 215 x 215. The table also shows the maximum
number of leaf nodes in the quadtree.

Table 6-1: Leaf node counts

Max numberDepth Relation 6.5 Relation 6.10 leavesof leaves

3 24 3 64

4 80 192 256

5 260 192 1024

6 826 192 4096

7 2583 12288 16384

8 7981 12288 65536

9 24431 12288 262144

10 74221 12288 1048576

11 224085 786432 4194304

12 673021 786432 16777216

13 2012390 786432 67108864

14 5994178 786432 268435456

15 17794925 50331648 1073741824

Taking a look at the table, a quadtree of depth 9 must contain at least 12288 leaf
nodes in order for the linear quadtree to be more compact than the corresponding pointer
approach. Since, the maximum number of leaf nodes is 262144, the number of leaf nodes
must be at least 4.7% of the maximum in order for the linear quadtree to be more compact
for images of depth 9.

Putting this in perspective, a simple geographical image from [Scherson 1987]
needed 5266 leaf nodes (2%). Thus, the pointer quadtree requires 12285 8-bit bytes while
the linear quadtree needs 15798 8-bit bytes.

The significance of the comparison of the storage requirements of these alternative
implementations lies in the issue of which approach is more likely to store a larger amount
of quadtree nodes given some specified memory storage size. Of course, the size of the

62

image and the resolution level will affect the number of nodes needed. It ought to be obvi-
ous that near the critical points, the two approaches are equally good. Much research is
being performed now to implement parallel quadtrees in the linear approach but the out-
come is quite uncertain. Believing that positive outcomes of the linear approach may
result, the rest of this chapter will deal with parallel quadtrees in that manner. It should be
remembered that once a simulation or code has been implemented in a pointer format, a
linear quadtree may easily be obtained by an inorder traversal. This is what is done in the
NuMesh simulation. The stored memory nodes for a given image are stored in a pointer-
less manner in order to minimize memory.

Section 6.3: Basic parallel algorithms

Some simple parallel algorithms will be described. Their use will become apparent
in the next section.

Sorting
Given a list of n2 elements on a n x n mesh, assignment of processors ranging

from 0 to n2 -1 is done. The goal is for the elements to be in sorted order with the smallest
in PE position (0,0). There are a number of ways to index the PEs. The most popular ones
are row-major indexing, snake-like indexing and shuffled row-major indexing. If the mesh
were an array of n x n and given a PE with coordinates (r, c) would represent the one
defined by r x n + c, r x n + c' where c' equals c if r is even and n - c - otherwise. If the
binary representation of r and c were rl_l..rlro and cl_l..c1cO then the index of the PE will
be equivalent to rlcl_ 1...rl cl r Oc 0 . Examples of the three indexing schemes are shown in
Figure 6-1.

1 2 3 0 1 12 3 0 1 4 5

4 5 67 7 654 213617
8 910 11 8 9 1011 8 9 1213

2 13 4 5 5 114 113 112 10 14 3 121415

(a) (b) (c)

Figure 6-1: Indexing: a) row-major b) snake-like
c) shuffled row-major

Prefix
Given a sequence of m elements defined as a, a, ..., aml and an associative

operator like '*', the problem is to compute a, a*al, a*al*a 2, ..., a*al* ...*am-. This
problem has been worked on in great detail. If the number of elements, m, were n2 and
they were stored in a row-major sorted order in the array then the prefixes can be com-
puted in O(n) time. A binary tree approach would have a result of O(log n) instead. The

63

algorithm can be altered to obtain parallel prefixes in column-major or shuffled major
sorted order.

Broadcast
Given a sequence of records such that records from the same sequence reside in

consecutive PEs, assume that each sequence has a distinct label. The problem is to pass
information from one record to the rest of the sequence. This can be done by a parallel
algorithm in O(n).

Compression
Many algorithms for mesh architectures are naturally recursive. At each step, the

amount of data decreases by some constant factor. Typically, the number of recursive steps
is O(log a n) where a2 = b > 1 is the constant factor. Define the initial mesh architecture to
be of 2D array of size n x n which is also the size of the image under consideration. If the
recursive step is performed in O(n) time units, the algorithm will take a total time of O(n
loga n) to execute. In order to improve the performance of the algorithm, compression of
the data after each recursive step will be performed to produce a smaller working mesh.
This way, the algorithm will take O(n) time. A problem of size n2 can be solved on a mesh
of size n x n. Define T(n) to be the time for the algorithm to execute and assume that each
recursive step including the compression part is performed in O(n) with the data being
decreased at each step by a factor of b. Then, T(n) = O(n) + T(n/a) - O(n). This compres-
sion may be found in [Hung and Rosenfeld 1986].

Unshuffling
The objective is to get data in processors moved from shuffled row-major order

to row-major indexing. This can be seen in Figure 6-2.

The original data in the PEs are relocated in such a way that they are stored in the
same quadrant from left to right and from top to bottom according to the shuffled row-
major index of the PE in which each element is located. For each horizontal pair of con-
secutive rows, the data in the rows are moved in such a way that successive rows in the
same square become a single row of twice the length. In this way, the entire mesh will be
unshuffled.

The algorithm merges horizontal pairs of m x m squares where the mth merge (1
< m < log n -1) will be processed with the given data, D, and some temporary variable
defined as t in the following way:

1) For the PEs in the right square, move the data from D to t.
2) Move D in the odd rows of the left square m steps to the right. Store the

result in D.
3) Move t in the even rows of the right square m steps to the left. Store the

result in t.

64

4) Move D in both squares to the first m/2 rows.

5) Move t in both squares to the last m/2 rows. Then for these rows, move t
back to D

0 1 4 5 0 1 2 3

2 3 6 7 4 5 6 7

8 9 12 13 8 9 10 11

10 11 14 15 12 13 14 15

(a) (b)

Figure 6-2: a) original mesh b) merging pairs of 2x2

Section 6.4: Building Quadtrees

A quadtree is built by reading the image sequentially. Assume the image is a color
n x n image which is stored in a mesh architecture where one pixel is found per PE. As the
quadtree is being processed, new nodes are created and old ones split or merge depending
on the color of the pixel scanned and the configuration of the tree. This is exactly what was
performed in the earlier description of Chapter 2.

A number of parallel algorithms exist. Dyer and Rosenfeld [1981] developed a
bottom-up approach which builds a quadtree by merging blocks of the same color. Their
work is expanded to allow utilization on a mesh connected processor setup like NuMesh.
The data structure is defined like

Block = (length,row,column,color,leaf) Eq. (6.11)

The row and column represent the position of the block in the image, color is the
color of the block and length is the side length of the homogenous block having pixel
(row,column) as its representative. Lastly, leaf is a boolean to signify whether the block is
a leaf node of the final quadtree or not.

For the purposes of this discussion, each processor (PE) starts off with one pixel in
its initial state. The following algorithm can be generalized with each PE being responsi-
ble for n consecutive pixels of the image as this may be more realistic and practical. For
example, for a 1K x 1K image, it is ridiculous to expect 1 million processors to be utilized
in representing an image into its quadtree representation.

The parallel quadtree building algorithm (QBA) algorithm proposed is as follows:

65

1) Each PE defines a block and initializes the length to 1, the row and column
to its coordinates, color to the pixel color value and flag to be a non-leaf.

2) For each of the sibling blocks of size 2i x 2i where i ranges from 0 to log n:

(2.1) The PE representing a 2i x 2i block initializes a local variable, x, to its
pixel color if the entire block is of a homogenous color; otherwise -1 to
signify that it is a non-leaf.

(2.2) The representatives of the NW, SW and SE blocks send x to the repre-
sentative of the NW block. If the four x's fit the merge criterion, the
change the length field of the NW representative to 2i+ . Otherwise, set
the leaf flag to be true for the four blocks with length 2i.

Hung and Rosenfeld [1989] proposed a different approach which utilizes a number
of the functions described in Section 6.2.

1) Compute the length of pixel runs and the relative position of its constitu-
ents using the Prefix algorithm. Define m to be this value.

2) Broadcast the length of each run to its constituents.

3) Each PE computes the number of pixels that follow it in the same run.
Define this as n.

4) Each PE determines the number of pixels in the maximal block its pixel
can represent. Define this as o.

5) For o and n, each PE determines the number of pixels in the largest
homogenous block its pixel represents.

6) Delete blocks which are contained in blocks of the same color. This is a merg-
ing criterion where the pixels need to be exactly the same. Whatever criterion
may be used instead.

7) Compress the resulting blocks not deleted into PEs in the first rows of the
mesh.

In order to find the maximal set or the perimeter of a block, techniques to find
neighbors would be of great value. The most basic type of neighbor is one with a common
edge. The sequential version to find neighbors in pointer-based quadtrees was described in
Chapter 2.

Define a block, A, that has eastern neighbors of equal or smaller size. Let B be the
topmost eastern neighbor. If one sorts the blocks in (row, column) order where the row and
column will be the coordinates of the representative of the block, then block A will be the
immediate predecessor to block B. B can obtain the needed information from A and passes
this data to the other eastern neighbors of A, if they exist. All the eastern neighbors of A
have the same column number so sort the blocks on (column, row). B will be the first of
the run of eastern neighbors. If A had western neighbors, let C be the topmost western
neighbor. After the first sort, A will be the immediate successor of C in the sorted list and
is able to pass information to it. In the second run, if one sorts on (column + b, row) where
b is the side length of a block, then the second sort will produce a run of western neigh-

66

bors. The north and south neighbors can be found very similarly. For finding the western
neighbors, the procedure looks like:

Parallel Western Neighbor Procedure:
* Sort all blocks using (row, column).
* Each block examines its predecessor. If they have the same row and the

predecessor has an equal or larger size, the block marks itself the leader
and obtains the needed information (color, size, etc.). If they have the
same row but the predecessor is smaller, the block marks itself as 'none'
because it has no western neighbor of equal or greater size.

* Sort using (column, row).
* Each leader passes the information about the common western neighbor

to the rest of the run.

Section 6.4.1: Routing Data

Sorting, in the above procedures, was essentially used for routing purposes. Given
a fast algorithm for sorting, it is usually easy to derive a fast algorithm for routing. This is
because routing data from one PE to another is often trivial if the coordinates of the pro-
cessors have been presorted. For more information about sorting algorithms, see [Leigh-
ton 1992].

Getting the needed data from one PE to another within a reasonable amount of
time is one of the most challenging and important tasks of any large-scale general purpose
parallel machine. This is because the processors comprising a parallel machine need to
communicate with each other in a tightly constrained fashion in order to solve the image
processing application in a realistic fashion. This may be expensive both in terms of the
hardware and time.

Most parallel machines use some form of methodology in order to route data. One
approach is the store-and-forward approach of routing where each data transfer consists of
a packet that moves through a mesh architecture, one PE at a time, until it reaches its final
destination. In general, one piece of data may pass between one node and another at any
given time. Packet switching varies among architectures. Some will permit each node to
only have one packet of data at a time while others will allow packets to pile up.

Another approach to routing data among processors is circuit-switching. This
model of routing establishes and dedicates a specific path from the origin to the destina-
tion so that data may be transmitted as an uninterrupted stream of bits. Of course, it may
not always be possible to establish disjoint paths through the mesh for all messages that
need them and sometimes data will not be allowed to be sent.

Routing algorithms perform well if they route data from some given origins to

67

final destinations as quickly as possible using as small an amount of the network resources
as possible. The degree to which an algorithm achieves a certain level of performance can
be measured in several ways.

In a dynamic approach, the goal is to minimize the latency in sending each mes-
sage to its final PE destination. This basically means that locality needs to be exploited in
the algorithms used. Also, a state where messages can't move any further (deadlock)
needs to be avoided.

It static scenarios, as the NuMesh one, the goal is to minimize the total time it
takes to route all data to their final PE destinations. In static approaches where messages
are dropped in circuit switching, the goal is to maximize the number of data transfers that
successfully reach their destinations within a fixed amount of time. Much work has been
accomplished for solving optimization problems to statically allocate resources on the
NuMesh architecture [Minsky 1993].

Section 6.4.2: NuMesh analysis

The NuMesh architecture is made up processors in a multi-dimensional setup. This
parallel design consists of an array of processing elements (PEs) each connected to its
neighbors. PEs can be enabled in ways such that instructions may be executed separately
on each processor at a given time or information may be shared among a number of pro-
cessors. There is some kind of control unit which dictates the instruction performed and
the processors which are involved.

For this analysis, assume that the layout is two dimensional. If a higher one exists
then a subset of the processors will actually be used. Also, let a color image of dimension
n x n be stored in the mesh, one pixel per PE. If the image is larger than the mesh, say of
size m x m, where m=kn for some integer k, then load k2 n x n subimages into different
locations of the mesh. Build the quadtrees for the subimages separately. Note that further
merging is possible if there is at least a set of four sibling n x n blocks which satisfy the
merging criterion.

The QBA described earlier will produce an O(n) time for completion for an n x n
mesh of processors. Step (2.1) decides whether a PE contains a representative of a 2i x 2i

block. This can be determined by examining the least significant i bits of the binary repre-
sentations of r and c. They must all be zero. In step (2.2), the quadrant of a 2' x 2' block is
determined by the (i+l)st bit of the row number and the column number of its representa-
tive. To be precise, let the two bits be a and b. Then the quadrant is NW, NE, SW and SE if
the value of ab is 00, 01, 10 or 11 respectively. In step (2.2), passing data among the repre-
sentative PEs can be achieved by 0(2') horizontal and vertical shifts; the ith merging step
takes only 0(2') time. Consequently, this quadtree building algorithm can be completed in
O(n) time.

68

The converse of building an image from its quadtree takes very similar time. Given
a quadtree representation of an image on a n x n mesh, the algorithm is simple. Dispatch
each node to a PE according to the location of the upper left comer of the block it repre-
sents. Then, instruct all PEs in the same block of their color by a sequence of horizontal
and vertical shifts. The time required for this algorithm is O(n).

Section 6.5: Summary

This chapter described a number of algorithms for generating and processing
pointerless quadtree for digital images on a mesh architecture like NuMesh. These algo-
rithms portray efficient ways that nodes can be represented and how using shuffled row-
major sorting to index the pixels of the image.

Samet [1985] describes some algorithms that compute geometric properties with-
out finding the neighbors. These algorithms use a data structure called the active border
which keeps track of the state of the processing. But, this approach is very sequential in
nature. Plus, in a mesh architecture, there is no shared memory in which to keep this data
structure.

Many of the techniques utilized in parallel algorithms are quite suitable for image
representations. Approaches for sorting, broadcasting, compressing, etc. are valid tech-
niques in parallel architectures. Parallel processing of quadtrees was implemented in such
a way to take advantage of these opportunities and hardware optimizations which are
inherent on high speed multiprocessors and mesh architectures.

69

Chapter 7: Conclusion

Hierarchial data structures are vital data representation techniques in areas such as
computer graphics, image processing, computational geometry, geographic information
systems, and robotics. There is an urgent need for large storage capacities, fast access and
real-time interactive visualization of images. Through the emergence of workstations,
image processing and GIS techniques for single users may be a great asset. Quadtrees are
a natural data structure to represent digital color images. An attractive characteristic is
their ability to save space. A wide range of operations can be performed on them directly
without having to transform them to the original digital color images. In addition, hierar-
chial data structures allow us to be able to focus on specified local areas since the data rep-
resentation is based on decomposition. A number of key idea about quadtrees are
important to remember:

* The characteristic that quadtrees are recursive makes it an easy and very
powerful tool.

* The number of nodes in a quadtree correspond directly to the resolution of
the image. The level of allowable distortion may be achieved with a larger
sized quadtree representation.

With the emergence of parallel multiprocessor machines, building parallel imple-
mentations of quadtrees has been important. This is especially true on a mesh connected
architecture like NuMesh. There has been some research on parallel algorithms for various
machines which perform neighbor finding, parallel prefix and routing. Some of this work
was extended to deal with a mesh architecture.

This work dealt with image decomposition on mesh architectures and the many
systems issues involved. Because of the growing technological market in parallel and dis-
tributed systems and the natural interdisciplinary effects, this thesis combines a number of
different yet related fields:

* Image Processing
· Geographic Information Systems
· Parallel Data Storage

Parallel Algorithms for Mesh Architectures

70

Issues involving congestion, I/O bandwidth and real-time control were discussed
in detail. In order to develop a system that may retrieve data from a given memory source,
there are two options: using one processor which has sole control to accesses to memory
but losing any parallelism in the application or using many processors which have to share
retrievals from memory thus causing congestion and bandwidth problems. Ideally, one
would like to use as many processors as possible in order to minimize time and take
advantage of the mesh's hardware capabilities. Thus, memory accesses need to be set in a
distributed fashion. This is to minimize time for data to be transmitted to the processors.

Methods of transforming a pixmap or raster file of data into a quadtree representa-
tion and vice versa were formulated. Threshold criterion was discussed in much detail.
There are a couple of important things to take note of in this approach to image resolution:

* Within a given image, quadtree nodes closer to the root will have a more dif-
ficult criterion to merge.

* As the user zooms into different quadrants, the criterion for overall discrep-
ancy for a given image increases.

Storage capacity versus distortion was the key element in formulating a tree repre-
sentation from the original pixel depiction. Given a parallel mesh architecture, software
and algorithms need to take advantage of that. For example, a sequential algorithm that
attempts to locate a sibling may take O(n) time steps but in a parallel system this will pro-
duce large time delays. Realizing that certain algorithms like Prefix, Broadcast and Un-
shuffling are optimized in the hardware, simulation techniques may be adhered for a paral-
lel mesh architecture.

Sample parallel techniques were described for the NuMesh architecture. Given an
n x n 2D mesh of processors, the time to build a quadtree is O(n). This result is also true of
obtaining an image from a quadtree representation. This is quite good compared to past
techniques which would take O(n) just to locate neighboring nodes. The total time
involved will of course depend on the number of processors available in the mesh. As
more processors are utilized more parallelism will result. Each processor will be able to
handle its own distinct subimage of the original image.

To achieve success with a mesh architecture of processors, code must be able to
take advantage of the hardware capabilities. The code should be partitioned into a tightly
coupled set of computations exchanging data in fixed communication patterns. This is
quite true of the code represented in this work for quadtree manipulations. It fits very well
into the model of distributed computing and thus will take advantage of the inherent paral-
lelism of the NuMesh architecture. Real-time image applications are very valuable and a
mesh layout allows a high degree of parallelism and inter-processor communication.

71

Appendices

Appendix 1: User Interface

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

/* Variable Declarations */
#define CHILDREN 4
#define DEPTH 16+4+1
#define MAXSIZE 1024
#define ROWS 256
#define WIDTH 256

/* The node structure */
struct NODE {

int pixelred;
int pixel_green;
int pixel-blue;
struct NODE *parent;
struct NODE *NW;
struct NODE *NE;
struct NODE *SW;
struct NODE *SE;
int LEVEL;

};
typedef struct NODE Node;
typedef Node *node;

/* The visual spectrum for the analysis */
node visual[DEPTH+l];
int maxvalues [DEPTH+l];

/* The level of the visual spectrum we are perceiving */
int level = 1;

/* Output file */
FILE *fptr;

/* The pid number for a child process */
int pidnumber = 0;

72

/* Function Prototypes */
int visual_parent (int);
int visual_child (int, int);
int fork(void);
extern inorder (node);
extern node quadtree;
extern void image_to_quadtree (int *);
extern void quadtree toimagel (node, int);
extern void print_quad_tree(node);
extern int maxvalue;

void main ()
{

int i,j, k, temp;
int stop = 1;
int choice;
int arry[ROWS] [WIDTH][3];
FILE *infile;
int counter = 0;

infile = fopen (".data", "r");

/* Reading in a file made up of a 256 x 256 image */
for (i=0; i < 256; i++)

for (j=0; j < 256; j++)
for (k=0; k < 3; k++) {

fscanf (infile, "%d", &temp);
arry[i][j][k] = temp;}

fclose (infile);

image_to_quadtree (&arry[0][0][0]);
visual[level] = quadtree;

fptr = fopen ("/tmp/output8.pnm", "w");
quadtree to_imagel (visual[level], ceil((loglO (WIDTH)) / 0.30103));
fclose (fptr);
system ("xv /tmp/output8.pnm -geometry 256x256+200+200 ");

maxvalues[level] = maxvalue;

while (!stop) {
printf ("\n\n\nThe Following are your choices in this Visual Exploration: \n");

printf (" 1. Focus on the NW Quadrant\n");
printf (" 2. Focus on the NE Quadrant\n");
printf (" 3. Focus on the SW Quadrant\n");

73

printf (" 4. Focus on the SE Quadrant\n");

printf (" 5. Go up one level\n");

printf (" 6. Exit the VE\n");
printf ("Your choice is: ");

scanf ("%d", &choice);

if (choice == 1)
level = visual_child (level, 1);

quadtree = NULL;
image_to_quadtree (&datal[0][0][0]);

if (choice == 2) {
level = visual_child (level, 2);
quadtree = NULL;
image_to_quadtree (&data2[0] [000]); }

if (choice == 3) {
level = visual_child (level, 3);

quadtree = NULL;
image_to_quadtree (&data3[0][0][0]); }

if (choice == 4) {

level = visual_child (level, 4);
quadtree = NULL;
image_to_quadtree (&data4[0][0][0]); }

visual[level] = quadtree;

if (choice == 5)
if (level != 1) {

level = visual_parent (level);
maxvalue = maxvalues[level];

if (choice == 6) stop = 1;

if (choice != 6)
maxvalues[level] = maxvalue;
fptr = fopen ("outputl.pnm", "w");

quadtree to_imagel (visual[level], 3);
fclose (fptr);
system ("xv outputl.pnm -geometry 256x256+200+ 2 00 ");

print_quad_tree (visual[level]);

/* Finds the jth child of node i; j >=I */

/* NW = 1; NE = 2; SW = 3; SE = 4 */

int visual_child (int i, int j)

74

return (CHILDREN * (i-l) + j + 1);

/* Finds the parent node to node i */
int visualparent (int i)

return ((int) floor((i-2+CHILDREN) / (double)CHILDREN));
I

Appendix 2: Simulation

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#define MAXSIZE 1024
#define ROWS 256
#define WIDTH 256
#define T1 80

/* Max size of raster */
/* Number of Rows of raster */
/* Number of Columns of raster */

/* Parameter needed for merge criterion */

/* The node structure */
struct NODE{

int pixel_red;
int pixel_green;
int pixel_blue;
struct NODE *parent;
struct NODE *NW;
struct NODE *NE;
struct NODE *SW;
struct NODE *SE;
int LEVEL;

);
typedef struct NODE Node;
typedef Node *node; /*

/* The pixel is divided into Red, Green */
/* and blue parameters. */

/* parent node */
/* The four children of a node */

/* hierarchial level of a node in its binary tree */

: pointer to the NODE structure */

/* Function Prototypes */
extern void image_to_quadtree (int *);
void row (int *, int [WIDTH][3], int);
node create_node (node, char *, int, int, int);
void oddrow (int, int [WIDTH][3], node);

75

node evenrow(int, int, int, int [WIDTH][3], node);
node add_edge_neighbor (node, char *, int, int, int);
void merge (int, int, node);
node child (node, char []);
node father (node);
char * opedge (char *);
char * cedge (char *);
char * ccedge (char *);
void printquad_tree(node);
char * opquad (char direction[]);
char * cquad (char direction[]);
char * ccquad (char direction[]);
char * quad (char *, char *);
int adj (char *, char *);
char * reflect (char *, char *);
char * sontype (node);
extern void quadtree to_imagel (node, int);
void find_2d_block (node *, int, int, int, int, int *);
int get_quadrant (int, int, int, int);
void out_row (node, int, int);
void qt_gteq_edge_neighbor2 (node, char *, node *, int *);
void output_run (int, int, int, int);
void inorder (node);
int merging_ok (node, double *, double *, double *);
int find_max(int *:I;

extern FILE *fptr;

node quadtree=NtULL; /*quadtree for the root of the tree
representing the image data. */

extern level; /* level of image interested in */

int xf[4] = {1,0, 1,0);
int yf[4] = { 1, 1, 0, 0);

int maxvalue;

void image_toquadtree (int *data)
/* Construct a quadtree corresponding to the image whose bin representation is contained in a list
of rows, WIDTH pixels wide,pointed at by P. Procedure ADD_EDGE_NEIGHBOR usues global
variable NEWROOT to keep track of the root of the quadtree as it is built in procedures ADD_-
EDGE_NEIGHBOR and CREATE_QNODE. MAXSIZE is the maximum length of a side of an im-
age for which the quadtree can be built and must be a power of two. It is used to enable merging
white nodes at the extreme right and bottom of an image that is not a square and of side length that
is a power of two */

{

int Q[WIDTH][3];
int i, j;

76

node first = NULL;

for (i =0; i<3; i++)
for (j=0; j<WIDTH; j++)
Q[j][il = 0;

maxvalue = find_max (data);

row (data, Q, 0); / get the first row of pixel data */

/* create the first node for tree */
first = create_node (NULL, NULL, Q[0O][0], Q[0][1], Q[0][2]);

oddrow (WIDTH, Q, first); /* create the first row of data */

i= 1;

row (data, Q, i);

i=i+ 1;

/* call evenrow to place the next row in the tree */
first = evenrow (i, WIDTH, (i>ROWS), Q, add_edge_neighbor(first,"S",0,0,0));

/* loop for all the rows left to add into the tree structure */
while (i<ROWS) {

row (data, Q, i);
oddrow (WIDTH, Q, first);
i=i+ l;
row (data, Q, i);
i =il;

first = evenrow (i, WIDTH, (i >= ROWS), Q, add_edge_neighbor(first,"S",0,0,0));

}

void row (int *data, int Q[WIDTH][3], int i)
/* This function obtains a row of data from the array DATA and places

it into the array Q. The row value is defined by the variable I */
{

int counter;

for (counter = 0; counter < WIDTH; counter++)
{

Q[counter][0] =
Q[counter][l] =
Q[counter][2] =

I

*(data + counter*3 + i*WIDTH*3);
*(data + counter*3 + i*WIDTH*3 + 1);
*(data + counter*3 + i*WIDTH*3 + 2);

77

I

node create_node (node root, char *t, int red, int green, int blue)
/* Create a node with color red,green and blue corresponding to child T of node ROOT and return
a pointer to it. When ROOT is nil, the transmitted actual paramter value corresponding to T is nil

and ignored. */

node p =. NULL;

/* allocate a memory node for variable p */
p = (struct NODE *) malloc (sizeof(struct NODE));

/* depending on which child defined by variable T, that subchild
of node ROOT is created */

if (root != NULL) {
if (strcmp (t, "NW") == 0)

root->NW = p;
else if (strcmp (t, "NE") == 0)

root->NE=p;
else if (strcmp (t, "SW") == 0)

root->SW=p;
else if (strcmp (t, "SE") == 0)

root->SE=p; }

/* Created node has parent */
p->parent = root;
p->pixel.red = red;
p->pixel__green = green;
p->pixelblue = blue;
p->LEVEL = 0;

p->NW = NULL;
p->NE = NULL;
p->SE = NULL;
p->SW = NULL;

return p; /* return the created node */

void oddrow (int w, int Q[WIDTH][3], node root)
/* Add an odd-numbered row of width W, represented by Q, to a quadtree whose node ROOT cor-
responds to the first pixel in the row */

int i;

root->pixelred = Q[0][0];

78

root->pixel_green = Q[0][1];
root->pixel_blue = Q[0][2];
root->LEVEL = 0;

/* create a new node for each pixel and add it to the tree */
for (i = 1; i < w; i++) {

root = add_edge_neighbor (root, "E", 0,0,0);
root-->pixel_red = Q[i][0];
root->pixel_green = Q[i][1];
root-->pixel_blue = Q[i][2];

)

node evenrow(int i, int w, int lastrow, int Q [WIDTH][3], node first)
/* Add row I, an even numbered row of width W represented by Q, to a quadtree whose node FIRST
corresponds to the first pixe in the row. During this process, merges of nodes having four sons of
the same color are performed. The value returned is a pointer to the node corresponding to the first
pixel in row I+1 unless row I is the last row (denoted by LASTROW) in which the value returned
is irrelevent. For the last column in the row, merging is attempted for the white nodes at the extreme
right of the image by setting the column to MAXSIZE. For the last row in the image, merging is
attempted for the white nodes at the bottom of the image by setting the row number to MAXSIZE */

int j;
node p,r;

p = first;

if (!lastrow) /* Remember the first node of the next row */
first = add_edge_neighbor (p, "S", 0,0,0);

else
i = MAXSIZE; /* Enable merging white nodes on the bottom of image */

for (j = 0; j <= (w-2); j++) {
r = add_edge_neighbor (p, "E", 0,0,0);
p->pixel_red = Qj][0];
p->pixel_green = QUj][l];
p->pixel_blue = QUj][2];

father(p)->LEVEL = p->LEVEL + 1;

if (((j-)% 2) == 0)
merge (i, j-l, father(p));

p = r;
} /* Don't invoke add_edge_neighbor to the extreme right of the image */

p->pixel_red = Q[WIDTH - 1 [0];
p->pixel_green = Q[WIDTH - 1] [1];

79

p->pixel_blue = Q[WIDTH - 1][2];

/* Merge white nodes at the extreme right of the image */
merge (i, MAXSIZE, father(p));

return (first);

node add_edge_neighbor (node Q, char * direction, int red, int green, int blue)
/* Return a pointer to a node corresponding to the pixel that is adjacent in the direction of DIREC-
TION to the pixel represented by node Q. This is done by finding the nearest common ancestor of
the two nodes and creating one if it does not exist. Whenever a nearest common ancestor or other
nodes are created, the color of all created sons is set to PIXEL. They are later reset to gray, black
or white as appropriate. NEWROOT is used to keep track of the root of the quadtree as it is con-
structed. */

node p;
char sontypeofQ[2];
node up, up2;

if (Q->parent == NULL) { /* Nearest common ancestor does not exist */
p = create_node (NULL, NULL, -1, -1, -);
quadtree = p;
Q->parent = p;
p->pixelred =-1;
p->pixel_green = -1;
p->pixel_blue = -1;
p->LEVEL = Q->LEVEL + I;

strcpy(sontypeofQ, quad(ccedge(direction), opedge(direction)));

/* Depending on which subdivision defined by SONTYPEOFQ, that child
is created and defined by the node Q */

if (strcmp (sontypeofQ, "NW") == 0)
p->.NW = Q;

else if (strcmp (sontypeofQ, "NE") == 0)
p->NE = Q;

else if (strcmp (sontypeofQ, "SW") == 0)
p->SW = Q;

else if (strcmp (sontypeofQ, "SE") == 0)
p->SE = Q;

/* Create 3 children */
create_node (p, opquad(sontypeofQ), red, green, blue);
create_node (p, opquad(reflect(direction,sontypeofQ)), red, green, blue);
return (create_node(p, reflect(direction, sontypeofQ), red, green, blue));

} /* Parent is null ? */

80

/* if parent exists */
else if (adj(direction,sontype(Q)))

p = add_edge_neighbor(father(Q), direction, red, green, blue);
else p = father(Q);

/* Trace a path from the nearest common ancestor to the adjacent node creating
white children and relabeling nonleaf nodes to gray as needed */

if (child (p, reflect(direction,sontype(Q))) == NULL) {
p->pixel_red = -1;
p->pixel_green = -1;
p->pixel_blue = -1;

create_node (p, "NW", red, green, blue);
create_node (p, "NE", red, green, blue);
create_node (p, "SW", red, green, blue);
create_node (p, "SE", red, green, blue);

p->LEVEL = child(p, "NW")->LEVEL + 1;

up2 = p;
while (up2 != quadtree) {

up = up2->parent;
up->LEVEL = up2->LEVEL + 1;
up2 = up;

} /* if child is NULL */

return (child (p,reflect(direction,sontype(Q))));

int merging_ok (node p, double *avg_red, double *avggreen, double *avg_blue)
/* Function to decide whether to merge four children to one parent or not */

double RESOLUTION;

RESOLUTION = (double) pow (2, - level) * (1.0/(p->NW)->LEVEL) * T1;

/* Find the mean of the four children in order to compare each child's relative variation
from the mean */

*avg_red = (child(p, "NW")->pixel_red + child(p, "NE")->pixel_red
+ child(p, "SW")->pixel_red + child(p, "SE")->pixel_red) / 4.0;

*avg green = (child(p, "NW")->pixel_green + child(p, "NE")->pixel_green
+ child(p, "SW")->pixel_green + child(p, "SE")->pixel_green) / 4.0;

*avg_blue = (child(p, "NW")->pixel_blue + child(p, "NE")->pixel_blue

81

+ child(p, "SW")->pixel_blue + child(p, "SE")->pixel_blue) / 4.0;

/* If the relative difference of each pixel from the mean is less than or equal to the desired
resolution value then we may merge. The higher the resolution the less detailed and inac-
curate the image becomes */

if ((child(p, "NW")->pixel_red != -1) && (child(p, "NE")->pixel_red != -1) &&
(child(p, "SW")->pixel_red != -1) && (child(p, "SE")->pixel_red != -1)) {

if ((fabs (*avg_red - child(p, "NW")->pixel_red) <= RESOLUTION) &&
(fabs (*avg_red - child(p, "NE")->pixel_red) <= RESOLUTION) &&
(fabs. (*avg_red - child(p, "SW")->pixel_red) <= RESOLUTION) &&
(fabs (*avg_red - child(p, "SE")->pixel_red) <= RESOLUTION) &&
(fabs (*avg_green - child(p, "NW")->pixel_green) <= RESOLUTION) &&
(fabs (*avg_green - child(p, "NE")->pixel_green) <= RESOLUTION) &&
(fabs (*avg_green - child(p, "SW")->pixel_green) <= RESOLUTION) &&
(fabs (*avg_green - child(p, "SE")->pixel_green) <= RESOLUTION) &&
(fabs (*avg_blue - child(p, "NW")->pixel_blue) <= RESOLUTION) &&
(fabs (*avgblue - child(p, "NE")->pixel_blue) <= RESOLUTION) &&
(fabs (*avg_blue - child(p, "SW")->pixel_blue) <= RESOLUTION) &&
(fabs (*avg_blue - child(p, "SE")->pixel_blue) <= RESOLUTION))

return 1;

else return 0; }
else return 0;

void merge (int i, intj, node p)
/* Attempt to merge a node having four sons of the same color starting with node P at row I and
column J. */

double avg_red = 0.0;
double avg_green = 0.0;
double avg_blue = 0.0;
int keepit = 1;

/* If the children all have the same values then can merge them */
while (((i % 2) == 0) && ((j % 2) == 0) &&

merging_ok (p, &avg_red, &avggreen, &avg_blue) && keepit) {

i = i/2;
j = j/2;

/* The average value of the childrens' pixels is replacing the parent's
old value. This is not to allow extreme values of the childrens' pixels */

p->pixel_red = (int) avg_red;
p->pixel_green = (int) avg_green;
p->pixel_blue = (int) avg_blue;

82

/* Free all the children to this parent due to merging */
free (child(p, "NW"));
free (child(p, "NE"));
free (child(p, "SW"));
free (child(p, "SE"));

/* Make sure all the children of the parent are defined to be nil */
p->NW = NULL;
p->NE = NULL;
p->SE = NULL;
p->SW = NULL;

p = p->parent;

if (merging_ok(p, &avg_red, &avg_green, &avg_blue) && ((j Oc 2) != 0))

j++;
if (p == quadtree)
keepit = 0;

} /* while stmt */

char * opedge (char *direction)
/* This function returns the opposite edge from the DIRECTION edge given */

if (strcmp (direction, "E") == 0)
return "W";

else if (strcmp (direction, "W") == 0)
return "E";

else if (strcmp (direction, "N") == 0)
return "S";

else if (strcmp (direction, "S") == 0)
return "N";

else return "NULL";

char * cedge (char *direction)
/* This function returns the opposite edge from the DIRECTION edge given */

if (strcmp (direction, "N") == 0)
return "E,";

else if (strcmp (direction, "E") == 0)
return "S";

else if (strcmp (direction, "W") == 0)
return "N";

83

else if (strcmp (direction, "S") == 0)
return "W";

else return "NULL";

char * ccedge (char *direction)
/* This function returns the opposite edge from the DIRECTION edge given */

if (strcmp (direction, "N") == 0)
return "W";

else if (strcmp (direction, "E") == 0)
return "N";

else if (strcmp (direction, "W") == 0)
return "S";

else if (strcmp (direction, "S") == 0)
return "E";

else return "NULL";

char * opquad (char direction[])
/* This function returns the opposite quad from the DIRECTION edge given */

if (strcmp (direction, "NW") == 0)
return "SE";

else if (strcmp (direction, "SE") == 0)
return "NW";

else if (strcmp (direction, "NE") == 0)
return "SW";

else if (strcmp (direction, "SW") == 0)
return "NE";

else return "NULL";

char * cquad (char direction[])
/* This function returns the opposite quad from the DIRECTION edge given */

if (strcmp (direction, "NW") == 0)
return "NE";

else if (strcmp (direction, "SE") == 0)
return "SW";

else if (strcmp (direction, "NE") == 0)
return "SE";

else if (strcmp (direction, "SW") == 0)

84

return "NW";
else return "NULL";

}

char * ccquad (char direction[])
/* This function returns the opposite quad from the DIRECTION edge given */

if (strcmp (direction, "NW") == 0)
return "SW";

else if (strcmp (direction, "SE") == 0)
return "NE";

else if (strcmp (direction, "NE") == 0)
return "NW";

else if (strcrnp (direction, "SW") == 0)
return "SE";

else return "NULL";

/* PRINTS tree */
void print_quad_tree(node root)

{

if(root == NULL)
return;

else

{
printf("\npixel = %d %d %d level = %d root = %d parent = %d",
root->pixel_red, root->pixel_green, root->pixel_blue, root->LEVEL,
root, root->parent);
print_quad_tree(root->NW);
print_quad_tree(root->NE);
print_quad_tree(root->SW);
print_quad_tree(root->SE);

char * quad (char *a, char *b)
{

if ((strcmp (a, "E") == 0) && (strcmp (b, "N") == 0))
return "NE";

else if ((strcmp (a, "E") == 0) && (strcmp (b, "S") == 0))
return "SE";

else if ((strcmp (a, "W") == 0) && (strcmp (b, "N") == 0))
return "NW";

85

else if ((strcmp (a, "W") == 0) && (strcmp (b, "S") == 0))
return "SW";

else if ((strcmp (b, "E") == 0) && (strcmp (a, "N") == 0))
return "NE";

else if ((strcmp (b, "E") == 0) && (strcmp (a, "S") == 0))
return "SE";

else if ((strcmp (b, "W") == 0) && (strcmp (a, "N") == 0))
return "NW";

else if ((strcmp (b, "W") == 0) && (strcmp (a, "S") == 0))
return 'SW";

else return '"NULL";

int adj (char *a, char *b)
{

if (((strcrnp (a, "N") == 0) && (strcmp (b, "NW") == 0)) II
((strcmp (a, "N") == 0) && (strcmp (b, "NE") == 0)) 11
((strcmp (a, "E") == 0) && (strcmp (b, "NE") == 0)) II
((strcmp (a, "E") == 0) && (strcmp (b, "SE") == 0)) II
((strcmp (a, "S") == 0) && (strcmp (b, "SE") == 0)) II
((strcmp (a, "S") == 0) && (strcmp (b, "SW") == 0)) 11
((strcrp (a, "W") == 0) && (strcmp (b, "SW") == 0)) II
((strcmnp (a, "W") == 0) && (strcmp (b, "NW") == 0)) II
((strcmp (a, "NW") == 0) && (strcmp (b, "NW") == 0)) II
((strcmp (a, "NE") == 0) && (strcmp (b, "NE") == 0)) II
((strcrnp (a, "SW") == 0) && (strcmp (b, "SW") == 0)) II
((strcmp (a, "SE") == 0) && (strcmp (b, "SE") == 0)))

return 1;

else return 0;

char * reflect (char *a, char *b)
{

if ((strcmp (a, "N") == 0) && (strcmp (b, "NW") == 0))
return "SW";

else if ((strcmp (a, "N") == 0) && (strcmp (b, "NE") == 0))
return "SE";

else if ((strcmp (a, "N") == 0) && (strcmp (b, "SW") == 0))
return "NX";

else if ((strcmp (a, "N") == 0) && (strcmp (b, "SE") == 0))
return "NE";

else if ((strcmp (a, "E") == 0) && (strcmp (b, "NW") == 0))
return "NE"';

else if ((strcmp (a, "E") == 0) && (strcmp (b, "NE") == 0))
return "NVW" ;

else if ((strcmp (a, "E") == 0) && (strcmp (b, "SW") == 0))
return "SE";

86

else if ((strcmp (a, "E") == 0) && (strcmp (b, "SE") == 0))
return "SW";

else if ((strcmp (a, "S") == 0) && (strcmp (b, "NW") == 0))
return "SW";

else if ((strcmp (a, "S") == 0) && (strcmp (b, "NE") == 0))
return "SE";

else if ((strcmp (a, "S") == 0) && (strcmp (b, "SW") == 0))
return "NW";

else if ((strcmp (a, "S") == 0) && (strcmp (b, "SE") == 0))
return "NE";

else if ((strcmp (a, "W") == 0) && (strcmp (b, "NW") == 0))
return "NE";

else if ((strcmp (a, "W") == 0) && (strcmp (b, "NE") == 0))
return "NW";

else if ((strcmp (a, "W") == 0) && (strcmp (b, "SW") == 0))
return "SE";

else if ((strcmp (a, "W") == 0) && (strcmp (b, "SE") == 0))
return "S,,";

else if ((strcmp (a, "NW") == 0) && (strcmp (b, "NW") == 0))
return "SE";

else if ((strcmp (a, "NW") == 0) && (strcmp (b, "NE") == 0))
return "ST";

else if ((strcmp (a, "NW") == 0) && (strcmp (b, "SW") == 0))
return "NE";

else if ((strcmp (a, "NW") == 0) && (strcmp (b, "SE") == 0))
return "NW";

else if ((strcmp (a, "NE") == 0) && (strcmp (b, "NW") == 0))
return "SE";

else if ((strcmp (a, "NE") == 0) && (strcmp (b, "NE") == 0))
return "SW";

else if ((strcmp (a, "NE") == 0) && (strcmp (b, "SW") == 0))
return "NE";

else if ((strcmp (a, "NE") == 0) && (strcmp (b, "SE") == 0))
return "NW";

else if ((strcmp (a, "SW") == 0) && (strcmp (b, "NW") == 0))
return "SE";

else if ((strcrnp (a, "SW") == 0) && (strcmp (b, "NE") == 0))
return "SW";

else if ((strcmp (a, "SW") == 0) && (strcmp (b, "SW") == 0))
return "NE";

else if ((strcmp (a, "SW") == 0) && (strcmp (b, "SE") == 0))
return "NW";

else if ((strcmp (a, "SE") == 0) && (strcmp (b, "NW") == 0))
return "SE"';

else if ((strcrnp (a, "SE") == 0) && (strcmp (b, "NE") == 0))
return "SW";

else if ((strcmp (a, "SE") == 0) && (strcmp (b, "SW") == 0))
return "NE";

else if ((sl:rcmnp (a, "SE") == 0) && (strcmp (b, "SE") == 0))
return "N "';

87

else return "NULL";
I

char * sontype (node p)
{

if (child (father(p), "NW") == p) {
return "NW"; printf ("\n"); }

else if (child (father(p), "NE") == p) {
return "NE"; printf ("2\n");

else if (child (father(p), "SW") == p) {
return "SW"; printf ("3\n");

else if (child (father(p), "SE") == p) {
return "SE"; printf ("4\n"); }

else
return "NULL";

node father (node child)
/* Returns a pointer to the parent of CHILD. */

return (child->parent);

node child (node fither, char whichchild[2])
/* Returns a pointer to one of the children of PARENT specified by WHICHCHILD */

if (strcmp (whichchild, "NW") == 0)
return (father->NW);

else if (strcmp (whichchild, "NE") == 0)
return (father->NE);

else if (strcmp (whichchild, "SW") == 0)
return (father->SW);

else if (strcmp (whichchild, "SE") == 0)
return (father->SE);

else return NULL;

void quadtree to_image (node root, int level)
/* Output image representation of 2Alevel x 2Alevel picture corresponding to the quadtree rooted at
node ROOT. For each row, the leftmost block is located by starting from ROOT and then visiting
in sequence the blocks comprising the row by ascending and descending the appropriate links in the
tree using neighbor finding. */

88

node p = NULL;
int diameter, distance, y;

diameter = (int) pow(2, level);

fprintf (fptr, "P3\n");
fprintf (fptr, "%d %d\n", WIDTH, ROWS);
fprintf (fptr, "%d\n", maxvalue);

for (y = 0; y < diameter; y++) {
/* Process the rows in sequence one row ata time */

p = oot;
distance = diameter;

/* Find the leftmost block containing row Y */
find_2dblock (&p, 0, diameter, y, diameter, &distance);
out_row (p, y, ceil((loglO (distance)) / 0.30103));
printf("\n");

void out_row (node p, int row, int 1)

node q = NULL;
int dist;
int total = 0;
dist = (int) pow(2, 1);

do {

output_run (p->pixel_red, p->pixel_green, p->pixel_blue, dist);
total += dist;

/* Find the leftmost adjacent block containing row ROW */
1 = p-->LEVEL;
qt_gteq_edge_neighbor2 (p, "E", &q, &l);
dist = (int) pow(2,1);

if (q != NULL) {
if (q->pixel_red == -1) /* a non-leaf node */

find_2d_block (&q, 0, dist, row, row + dist - (row % dist), &dist);
else dist = (int) pow(2,q->LEVEL);

p=q;

while (p != NULL);

89

void find_2dblock (node *p, int x, int xfar, int y, int yfar, int *w)
/* P points to a node corresponding to a block of width W having its lower right corner at (XFAR,
YFAR). Find the smallest block in P containing the pixel whose upper left corner is at (X, Y). If P
is non-gray, then return the values of P, W, and FAR; otherwise repeat the procedure for the son
that contains (X,'Y). */

int q;

while ((*p)->pixel_red == -1) {

*w = (*w)/2;
q = getquadrant(x, xfar- (*w), y, yfar - (*w));

xfar = xfar - xf[q] * (*w);
yfar = yfar - yf[q] * (*w);

if (q == 0)
*p = child(*p, "NW");

else if(q == 1)
*p = child(*p, "NE");

else if (q == 2)
*p := child(*p, "SW");

else if (q == 3)
*p = child(*p, "SE");

int get_quadrant (int x, int xcenter, int y, int ycenter)
/* Find the quadrant of the block rooted at (XCENTER, YCENTER) that contains (X,Y). The origin
is assumed to be at the NW-most pixel of the image */

if (x < xcenter) {
if (y < ycenter)

return O;

else return 2; }
else if (y < ycenter)

return 1;

else return 3;
}

90

I

void output_run (int pixelred, int pixelgreen, int pixel_blue, int length)
/* Outputs the pixel value of PIXEL for a length of LENGTH */

int i = 0;
static int counter = 0;

for (i = 0; i < length; i++) {
counter = counter + 1;

fprintf (fptr, "%d %d %d ", pixelred, pixel_green, pixel_blue);
if ((counter % 5) == 0)

fprintf (fptr,"\n");

void qt_gteq_edge_neighbor2 (node p, char *i, node *q, int *1)
/* Return in Q the edge-neighbor of node P, of size greater than or equal to P, in direction I. L de-
notes the level of the tree at which node P is initially found and the level of the tree at which node
Q is ultimately found. If such a node does not exist, then return NIL. */

* 1=* 1+ 1;

if (p->parent != NULL)
if (adj(i, sontype(p))) {

/* Find a common ancestor */
qt_gteq_edge_neighbor2 (p->parent, i , q, 1); }

else
*q = p->parent;

else
*q = p-:>parent;

/* Follow the reflected path to locate the neighbor */
if (*q != NULL)

if ((*q)->pixel_red == -1)
{ *q = child((*q), reflect(i, sontype(p)));

*1 = *1 - 1;

void inorder (node root)

if (root != NULL)

91

inorder (root->NW);
if (root->pixel_red != -1)

printf ("%d %d %d \n", root->pixel_red, root->pixel_green, root->pixel_blue);
inorder (root->NE);
inorder (root->SW);
inorder (root->SE);

intfind_max(int *data_input)
/* FIND POSITION OF MAXIMUM DATA ITEM */

int i, j;
int max = -1;

for (i = 0 ; i< ROWS ; i++)
for (j = 0; j < WIDTH*3; j++) {

if (*(data_input + j + WIDTH*i*3) > max)
max = *(data_input + j + WIDTH*i*3);

I
return max;

92

References

Atallah M., Graph problems on a mesh-connected processor array, Journal Association of
Computing Machinery. 31, 1984.

Batcher V., Design of massively parallel processors, IEEE Transactions on Computers, C-
28, 1980.

Bove M. and Watlington J., Cheops: A reconfigurable dataflow system for video process-
ing, IEEE Transactions on Circuits and Systems for Video Technology, 1994.

Cowlishaw M., Fundamental requirements for picture representation, Proceedings of the
SID, Vol. 2612, 1985.

Davis R. and Thomas D., Systolic array chip matches the pace of high speed processing,
Electronic Design. Oct.,1984.

Dyer C. and Rosenfeld A., Parallel image processing by memory-augmented cellular
automata, IEEE Transactions on Pattern Analysis Machine Intelligence PAMI-3, 1981.

Gersch R., Benefits of an image parallelfile system, SPIE Vol. 1968,1988.

Holroyd A., Raster GIS, Computers and Geosciences, Vol. 18 No. 4, 1992.

Horowitz S. and Pavlidis T., Picture segmentation by a tree traversal algorithm, ACM
Vol. 23, April 1976.

Hung Y. and Rosenfeld A., Parallel processing of linear quadtrees on a mesh connected
computer, Journal of Parallel and Distributed Computing 7, 1989.

Hung Y. and Rosenfeld A., Processing border codes on a mesh-connected computer, TR-
227 Center for Automation Research University of Maryland College Park, 1986.

Ibarra 0. and Kim M., Quadtree building algorithms on a SIMD hypercube, Proceedings
of the 6th International Parallel Processing, 1992.

Klinger A. and Dyer C., Experiments on picture representation using regular decomposi-
tion, Computer Graphics and Image Processing, Vol 5., March 1976.

93

Klinger A. and Rhodes M., Organization and access of image data by areas, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 1, 1979.

Leighton F., Introduction to Parallel Algorithms and Architectures: Arrays, Trees and
Hypercubes, Morgan Kaufman Publishers, San Mateo CA, 1992.

Morton G., A computer oriented geodetic database and a new technique in file sequenc-
ing, IBM Ltd. Ottawa Canada, 1966.

Minsky M., Scheduled routing for the NuMesh, Masters Thesis, MIT, 1993.

Patterson D. et al, A case for inexpensive disks (RAID), Proceedings of ACM SIGMOD
Conference, 1988.

Rosenfeld A. at el, Application of hierarchial data structures to geographical information
systems, TR-1197 University of Maryland College Park, 1982.

Samet H., Region Representation: Quadtrees for boundary codes, Communications of the
ACM 23, 3 1980.

Samet H., Distance transform for images represented by quadtrees, IEEE Transactions on
Pattern Analysis and Machine Intelligence 4, 3 1982.

Samet H., Algorithms for the conversion of quadtrees to rasters, Computer Vision, Graph-
ics and Image Processing 26, 1 1984.

Samet H., Applications of spatial data structures, Addison-Wesley Publishing Co., 1990.

Samet H. and Tamminen M., Computing geometric properties of images represented by
linear quadtrees, IEEE Transactions on Pattern Analysis and Machine Intelligence.
PAMI-7, 1985.

Scherson D., Data structures and the time complexity of ray tracing, Visual Computing 3,
4 1987.

Shankar R. and Ranka S., Hypercube algorithms for operations on quadtrees, Pattern Rec-
ognition, Vol. 25 No. 7, 1992.

Snyder L., Introduction to configurable highly parallel computer, IEEE Computer Maga-
zine, Jan 1982.

Stout Q., Supporting divide-and-conquer algorithms for image processing, Journal of Par-

94

allel and Distributed Computing 4, 1987.

Sureshandran S. and Warter P., Algorithms and architectures for real-time image compres-
sion using a feature visibility criterion, IEEE International Conference on Systems, Man
and Cybernetics, Vol. 2, 1993.

Tanimoto S., Pictorial feature distortion in a pyramid, Computing Graphics and Image
Processing, Vol. 5, 1976.

Tanimoto S., Image transmission with gross information first, Computer Graphics and
Image Processing 9, 1 1979.

Ward S. et al, The NuMesh: A modular, scalable communications substrate, Proceedings
of the International Conference on Supercomputing, 1993.

Yang S., Efficient parallel neighbor finding, Journal of Information Science, Vol. 9 No. 1,
1993.

Zhang X. at al, Adaptive quadtree coding of motion-compensated image sequences for use
on the broadband ISDN, IEEE Transactions on Circuits and Systems for Video Technol-
ogy, Vol. 3, No. 3, June 1993.

95

