
Stochastic Methods for Modeling Hydrodynamics of Dilute Gases

By

Tristan J. Hayeck

B.S., Mechanical Engineering (2006)

Massachusetts Institute of Technology

Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the
Requirements for the Degree of Bachelor of Science in Mechanical Engineering at

Massachusetts Institute of Technology

May 12, 2006

© 2006 Tristan J. Hayeck
All rights reserved

The author hereby grants to MIT permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole or in part in any medium now

known or hereafter created

Signature of Author
DepSarent of Mechanical Engineering

May 12, 2006

Certified by ...
~---f Nicolas Hadjiconstantinou

\ _-.Associate Professor of Mechanical Engineering
Thesis Supervisor

Accepted by
John H. Lienhard V

Chairman, Undergraduate Thesis Committee

MASSACHUSE-TIS INSUE
OF TECHNOLOGY

AUG 2 2006 ARCHIVES

LIBRARIES

2

Stochastic Methods for Modeling Hydrodynamics of Dilute Gases

By

Tristan J. Hayeck

Submitted to the Department of Mechanical Engineering
May 12, 2006 in partial fulfillment of the requirements for the Degree of Bachelor of

Science at Massachusetts Institute of Technology in Mechanical Engineering

Abstract

When modeling small scale sub-micron gas flows, continuum methods, i.e. Navier Stokes
equations, no longer apply. Molecular Dynamics (MD) approaches are then more
appropriate. For dilute gases, where particles travel in straight lines for the
overwhelming majority of the time, MD methods are inefficient compared to kinetic
theory approaches because they require the explicit calculation of each particle's
trajectory. An effective way to model the hydrodynamics of dilute gases is a stochastic
particle method known as Direct Simulation Monte Carlo (DSMC). In DSMC the motion
and collision of particles are decoupled to increase computational efficiency.

The purpose of this thesis is to evaluate a variant of the DSMC algorithm, in which
particles have discrete velocities. The most important modification to the DSMC
algorithm is the treatment of collisions between particles with discrete velocities in a way
which ensures strict conservation of momentum and energy. To achieve that an
algorithm that finds all possible pairs of discrete post-collision velocities given a pair of
discrete pre-collision velocities was developed and coded. Two important discretization
ingredients were introduced: the number of discrete velocities and the maximum discrete
velocity allowed.

A number of simulations were performed to compare the discrete DSMC (IDSMC) and
the regular DSMC method. Our results show that the difference between the two
methods is small when the allowed discrete velocity spectrum extends to high speeds. In
this case the error is fairly insensitive to the number of discrete velocities used. On the
other hand, when the maximum velocity allowed is small compared to the most probably
particle speed (approximately equivalent to the speed of sound), large errors are observed
(in our case up to 450% in the stress).

Thesis Supervisor: Nicolas Hadjiconstantinou

Title: Associate Professor of Mechanical Engineering

3

1. Introduction

Complex physical systems are usually analyzed using computational methods. In

statistical mechanics where large numbers of degrees of freedom are typically involved,

stochastic methods are common because they are typically more efficient than their

deterministic counterparts. This thesis focuses on a stochastic particle simulation method

for dilute gases. Such a method is necessary because for the small-scale gaseous flows of

interest here continuum, such as the Navier-Stokes description fail.

One of the most frequently used methods for modeling small scale gaseous

hydrodynamics is the Direct Simulation Monte Carlo (DSMC) method. DSMC is an

efficient Molecular Dynamics (MD) method; however, instead of calculating the

trajectory of each individual particle as in MD, in DSMC interactions (collisions)

between particles are treated in a stochastic manner.

In this thesis, we study the dynamics of discrete gases, i.e. gases whose molecular

velocities are limited to discrete values. We are particularly interested in how these gases

differ from "real" gases whose velocities are, of course, continuous. To study these

gases, we developed an integer version of the DSMC algorithm (to be described later).

One of the most important modifications required is the development of an algorithm for

processing collisions between particles, since post-collision velocities need to lie in the

set of discrete values but also be such that momentum and energy are conserved.

In the next section, we give an introduction to dilute gases and DSMC. Section 3

discusses the discrete-velocity DSMC, or Integer DSMC (IDSMC), studied for this

thesis; the algorithm used to generate integer post-collision velocities is explained in

4

detail. In section 4, the computational results are presented. The final section (section 5)

presents our conclusions.

2. Dilute Gases and DSMC

A gaseous system can be considered as dilute if the relative distance between

particles is large compared to the diameter of the particles:

d << V/N (1)

Here d is the diameter of the particles, V is the volume of the gas, and N is the number of

particles. 1

The computational efficiency of the system is increased by using representative

particles that correspond to a certain effective number of particles. The particles in the

system are considered to be hard spheres; this is a good approximation because particles

in dilute gas travel in straight lines for the vast majority of the time and the only

interaction occurs during collisions. This behavior leads to the definition of the mean

A2= (2)
,f2Nrd2

free path which is the average distance traveled by a particle between collisions. 2

This behavior also lends itself naturally to a simulation process where particles

can be moved in straight lines without having to numerically integrate their equations of

motion as is done in MD. For simulating a dilute system, DSMC is more efficient than

MD; the computational effort scales with N instead of N2 because the DSMC method

Alejandro L. Garcia, Numerical methods for physics / Alejandro L. Garcia. Upper Saddle River, N.J.:
Prentice Hall, (2000) 341.

2 Alejandro L. Garcia, Numerical methods for physics / Aleiandro L. Garcia. Upper Saddle River, N.J.:
Prentice Hall, (2000) 346.

decouples the collisions from the motion of particles. Time and space are discretized; the

system advances with time steps of size At ,and in space the system is separated into cells

of size Ax which are used for processing particle collisions. The magnitudes of these

discretization ingredients need to remain small for accuracy. If the time step is too large,

the particles will be allowed to travel large distances without colliding, leading to

physically large transport. Collision pairs are selected from the same cell, thus if the cell

sizes are too large, the randomly selected collision pairs may not represent a realistic

collision since collision partners they are far apart.3

2.1 DSMC Algorithm

The DSMC can be thought of in terms of four basic functions: moving the

particles over a set time step without collisions, appropriately applying boundary

conditions of the system, organizing particles into cells, and applying collisions at the

correct rate.

The initial velocity for each particle is determined from the Maxwell-Boltzman

distribution; then the particles can go through the first step, moving with their initial

velocity in a straight path over a time step of At. Next boundary conditions are

considered; the model used in this thesis uses diffuse walls. Other boundary conditions

are possible such as periodic boundaries, specular surfaces, and thermal walls.4 The

3 Nicolas Hadjiconstantinou, "Dilute Gases and DSMC," Introduction to Modeling and Simulation, 2006,
<http://stellar.mit.edu/S/course/3/sp06/3.021J/materials.html> 7.

Francis J. Alexander Alejandro L. Garcia, 'The Direct Simulation Monte Carlo Method," Computers in
Physics Vol 11 no 6.,(1997):589.

6

diffuse walls in this thesis move in their plane and with opposite velocities, in other

words they simulate a Couette flow.

The collision step begins by selecting the appropriate number of collision

candidate pairs as predicted by the gas collision rate. To avoid collisions between

particles that are far apart, the system is divided into spatial cells and only particles

within the same cell can collide.

Two different particles within the same cell are chosen at random and the

collision is processed based on selection criteria which state that particles with higher

relative velocity are more likely to collide. More specifically, once particles have been

selected, their relative velocity is analyzed to determine if they will collide. For the hard

sphere model, the probability of collision between two particles is proportional to their

relative speeds, ie: 5

P I- v ;i-vI (3)
co0l1icj) rN,-I n"iIVm -n

Here the i and j indexes indicate the different particles and Nc is the number of particles

in a given cell. Explicit computation of the double summation in the denominator of

equation 3 is computationally intensive. Instead, there is an acceptance rejection

algorithm is used.

5 Francis J. Alexander Alejandro L. Garcia, 'The Direct Simulation Monte Carlo Method," Computers in
Physics Vol 11 no 6.,(1997):590.

7

More specifically a random number r is chosen and the collision is accepted if: 6

r < (4)
Vr,ilax

Here, vi- vj is the relative velocity between two particles that have been randomly

selected, and vr,max is defined as the maximum relative velocity between two particles in a

given cell. Rather than taking the computational power to determine Vr,max within a cell at

a given time step, vr.max is assigned a reasonable high value at the beginning of the

simulation. If a larger relative velocity between particles is encountered during the

simulation, vr,max is updated to this value. Due to the fact that a number of collisions will

be rejected by this acceptance-rejection algorithm, the number of possible collision

partners is chosen to be larger by the ratio of accepted collisions to total collision

candidates. More details can be found in reference 4.

3. The Integer DSMC Algorithm

Here we briefly describe the modifications required for creating an integer DSMC

method (IDSMC). One of the most important aspects of the simulation is that it must

conserve energy and momentum. Rounding the velocities from a continuous spectrum

would typically lead to lack of conservation. For this reason, post-collision velocities are

selected from a table that is calculated at the simulation onset. Conservation of

6 Francis J. Alexander and Alejandro L. Garcia, "The Direct Simulation Monte Carlo Method," Computers
in Physics Vol 11 no 6.,(1997):590.

8

momentum states that the velocity of the center of mass of the two particles remains

constant before and after collisions: 7

2)=, = (5) +

The stars denote post-collision properties. Conservation of energy requires that the

magnitude of relative velocity is not changed by the collision, i.e.: 8

V = v i - I-vj=IV -V;I = V (6)

For a given pair of particles that have been identified as colliding, the possible

integer post-collision velocities must be determined. Determination of the possible pairs

of discrete velocities satisfying (5) and (6) is a complex task. One of the most efficient

approaches, and the one adopted here, is to construct a table which contains all possible

post-collision velocities for a given pair of pre-collision velocities. This table is

constructed at the beginning of the simulation and is essentially a multi-dimensional array

which is indexed by the (integer) x, y, and z components of the relative pre-collision

velocities. Working only with the relative pre-collision velocity is possible because as

shown by equations (5) and (6), a collision modifies the direction of the relative

velocities while the magnitude of the relative velocity and the center-of-mass velocity are

conserved.

The discrete values of relative velocity in each direction are defined as i* 6,

where i ranges from -Nv to Nv, and Nv is an integer. The maximum relative velocity

7 Alejandro L. Garcia, Numerical methods for physics / Alejandro L. Garcia. Upper Saddle River, N.J.:
Prentice Hall, (2000) 358.

8 Alejandro L. Garcia, Numerical methods for physics / Alejandro L. Garcia. Upper Saddle River, N.J.:
Prentice Hall, (2000) 358.

9

considered (in each direction) is Nv* 5 = Av, . can thus be thought of as the velocity

increment or step between discrete values. The introduction of a maximum velocity is a

discretization effect which introduces some error. (In fact, the error introduced will be

investigated below). This form of discretization is introduced in order to make the

number of discrete velocities finite and thus make the simulation tractable. Taking

advantage of symmetry, we work with Nv >0. Negative relative velocities can easily be

obtained from the pre-computed table by switching the appropriate relative component

signs. The possible pairs of post-collision velocities are found by checking all possible

combinations (using nested loops) in the reference frame of one of the particles. The

post-collision velocity range searched in every direction can be determined by the

following simple argument.

The maximum post-collision velocity, v*m,, can be determined from the

maximum relative velocity. Conservation of momentum requires that:

v = . +-v (7)
-cm 2 r

V = V,, -- V

To determine v *max, the maximum v*,cm and the maximum v*r must be determined. The

maximum relative velocity in the x, y, and z directions has already been defined as

Nv* 6 . A bond for each component of vcm is .5* a *Nv since we are considering the

system from the reference frame particle one. The maximum V*r magnitude is given by:

IV r.max I J -.. max + V.max + V =,.max = M a N. (8)

Plugging equation 8 back into equation 7 we get:

10

* I ~·Jj[(9v~r, M AVmax [11+ A(

4. Results

To study the effect of discrete particle velocities we simulated a Couette flow

(two infinite parallel walls moving in opposite directions). The wall velocities were set

to 250 m/s. The physical domain was divided into 50 cells with 105 particles per cell

and the simulation was evolved until steady state was observed. Gaseous Argon was

simulated by taking the molecular mass m=6.63* 10-26 kg and a molecular diameter

d=3.66* 10' 0°m. The system size was sufficiently larger than the mean free path, leading

to collision dominated particle dynamics.

In all cases, the data was collected at steady state and the respective velocity and

shear values for each cell were averaged over 1000 time steps. The percent differences

between the DSMC and IDSMC results are normalized by the DSMC results. The shear

stress is reported as a mean over the 50 spatial cells.

For one set of data the step size, 65, is left constant (37.5m/s) while Nv, the number

of velocities in the multi-dimensional array is varied between 10 and 40; for Nv = 10 the

maximum real velocity represented is 370m/s and for Nv = 40 the maximum velocity

represented is 1500m/s. For the second set of data the maximum velocity, Mr, is kept

constant (1500m/s), while Nv varies. When Nv =10, =150 m/s, while when Nv = 40,

= 37.5m/s. The value of 1500 m/s was arbitrarily chosen, but is considered a

reasonable value because it is several times larger than the speed of sound (340m/s).

11

Below is a plot of the velocity profile for Mr =1500m/s.

250

200

150

100

50

0

-50

-100

-150

-200

-250

Velocity Profiles: Constant Maximum Velocity (Mr) = 1500m/s

0 5 10 15 20 25 30 35 40 45 50

Position (cell)

Figure 1: The above plot shows the velocity profiles with mutli dimensional array sizes ranging
from Nv = 40 to Nv = 10 in increments of 10; Mr remains constant at 1500m/s.

The uncertainty in flow velocity measurement is approximately 17.3m/s for all

simulations.

E.

0

12

To further illustrate the results of figure 1, the percent differences between the

velocities for different Nv values are plotted below.

Percent Difference: Constant Maximum Velocity (Mr) = 1500m/s
I I I I - T - i

- Nv= 40
x Nv= 30
+ Nv= 20

l Nv= 10

+

E -+ i Ffi [++
jTC1~~L~~--~·I7-ql~~~U-CJL]~-~!~- ~ fx

f] ++~*~~ [I
-10

I I I I I II I

0 5 10 15 20 25
Position (cell)

30 35 40 45

Figure 2: Percent difference between DSMC velocity profiles and IDSMC results for different N,.
The values around cell 25 rise steeply because the DSMC velocity approach zero.

The sharp increase close to cell 25 is because the flow velocity (which is used for

normalizing) is close to zero in cell 25.

15

10

.-0

a)
C
a)

o

a)
a)

5

0

-5

50

·-

I

13

Below is the plot of shear profiles for constant Mr.

-1.53

-1.535

-1.54

-1.545

-1.55

-1.555

-1.56

-1 ~r-,
0

x 10 4 Shear Profiles: Constant Maximum Velocity (Mr)= 1500m/s

5 10 15 20 25 30 35 40 45 50
Position (cell)

Figure3: Shear stress profiles are plotted above. IDSMC results are shown for constant Mr.

The mean shear values for the respective Nv values from 40 to 10 are: -1.54333e4

Pa, -1.5467e4 Pa, -1.5461e4 Pa, and -1.5588e4 Pa while for the DSMC the mean shear is-

1.541 le4 Pa. The uncertainties of the shear values for different three dimensional array

sizes from 40 to 10 are: 5.07 Pa, 4.18 Pa, 5.57 Pa, and 3.80 Pa respectively, while for the

DSMC the uncertainty is 5.07 Pa.

a,

C"

14

The next set of data being considered is when step size, 6, is kept constant at

37.5m/s and Nv is varied from 10 to 40 in increments of 10.

Velocity Profiles: Constant Step Size (delta) = 37.5

E

.o
a)

0 5 10 15 20 25 30 35 40 45 50
Position (cell)

Figure 4: The velocity profiles for the different multi-dimensional array sizes, Nv, with constant

step size, 6 = 37.5 were compared to DSMC data.

The velocity uncertainties for the different Nv values of 40 to 10 are: 17.28, 17.17,

15.50, and 10.23 m/s respectively, while for the DSMC model the uncertainty is 17.30

m/s.

15

As above, the percent difference between the flow velocities in each cell for

IDSMC simulations and the DSMC simulation were determined to demonstrate the effect

of changing the size of Nv while leaving 6 constant at 37.5m/s.

450

400

350

300

250

200

150

100

Percent Difference: Constant Step Size (delta) = 37.5

E[

Dr, w

DEl

[] []mmd°oooo~romc

+ Nv= 40
x Nv = 30

+ Nv= 20
O Nv= 10K

F

4_#~~:c- +++++++--tttftt+ttfS ++++++++++t3

1 - I I I I I I

5 10 15 20 25 30 35 40 45 50
Position (cell)

Figure 5: Percent difference between DSMC data and the different Nv values at constant 85.
Spikes can be observed in the plots around cell 25 because the flow velocity is close to zero in cell
25.

0

a)

oC
a)

Ca
a_

50

0

-50
0

--

EJIEZO q]E:PF1]E%

I

F

16

The shear profiles for the constant data sets are plotted below in figure 6.

Shear Profiles: Constant Step Size (delta) = 37.5

++ +++---H-F-± 4-I+-V'-++-I-+-'-4--+-H-++++++-H-+-H--W--h ---

-

]ZLI70001~70LL~hLLLWWDWDWDWWZZI

0 5 10 15 20 25 30 35 40 45 50
Position (cell)

Figure6: Shear profiles over the 50 cells for the different Nv values at constant 3 compared to
DSMC.

The uncertainties of the shear values for different Nv values of 40 to 10 are: 5.07

Pa, 6.49 Pa, 6.13 Pa, and 4.08 Pa respectively at constant 3, while for the continuous

DSMC model the uncertainty is 5.07 Pa. The mean shear values for Nv values of 40 to 10

are: -1.5433e4 Pa, -1.612e4 Pa, -2.4857e4 Pa, and -8.2634e4 Pa, while for the continuous

DSMC model the mean shear is-1.541 1e4 Pa.

x 104
- r- T I I I I

.1. ... -I- .I- l lr L -' I- .- -- * r 11 , .1.Ir -I 1 1 - - "I .1L .I -I - 1. I- .1. I- . - . . . - . .-L I, -. . I. .Ir . -

-1

-2

-3

-4

a-

a)

v,
-5

-6

Nv= 40
Nv = 30

+ Nv= 20
[] Nv= 10

-- Continuous DSMC Results

-7

-C

X XX X XX XX X XX XX X XX XX XX XX X XX XX X XX XX X XX

r

t

t-

I

k
F-I L]T: = []E.-IIE :IIF

-8

17

5. Conclusion

For constant maximum velocity, Mr = 1500m/s, Nv did not appear to play as

significant a role as when remained constant. For the constant Mr data sets the

maximum percent difference for mean shear was 1.1% at N, = 10. Conversely, when

6 remained constant the percent difference between the mean shear values for Nv = 30,

20, and 10 are 4.6%, 61.3 %, and 436.2% respectively.

Similar conclusions can be drawn by comparing velocity profiles. The slopes of

the velocity profiles appear almost identical for Mr constant and large (figure 1). In

contrast, the velocity profiles in figure 4 are very different. The maximum percent error

observed for the constant Mr data sets is around 10% which occurs near cell 25 where the

velocity values are approaching zero (refer to figure 2). This percent difference appears

reasonable and IDSMC can still be considered accurate. The maximum percent

difference in figure 5 is, close to 450%, meaning that IDSMC is inaccurate for low Mr.

These results are expected and can be explained by noting that when Mr is small

the model does not adequately cover the complete spectrum of possible velocities. In

other words, for an accurate result the largest possible relative velocity (and hence also

particle velocity) must be sufficiently large (of the order of a few times the speed of

sound). Provided this condition is satisfied, the spacing between discrete values appears

to have a small effect for the collision dominated simulations we have performed.

18

References

Francis J. Alexander and Alejandro L. Garcia, "The Direct Simulation Monte Carlo

Method," Computers in Physics Vol I 1 no 6.,(1997):.

Alejandro L. Garcia, Numerical methods for physics / Alejandro L. Garcia. Upper

Saddle River, N.J.: Prentice Hall, (2000).

Nicolas Hadjiconstantinou, "Dilute Gases and DSMC," Introduction to Modeling and

Simulation, 2006, <http://stellar.mit.edu/S/course/3/spO6/3.021J/materials.html>.

19

Appendix:

Below is a copy of the C++ code for the algorithm that generates the post-collision

velocities for the simulation.

#include<vector>
#include<iostream>
#include<cmath>
#include"array3d.h"//3dArray Library from Lowell

//www.cppreference.com

using namespace std;

void CollisionTableGeneratorNew (int rangeV, int rangeDeltaV,
Array3d<vector<vector<int> > >& CollisionTable)

{

int vlxPrime = 0;
int vlyPrime = 0;
int vlzPrime = 0;
int v2xPrime = 0;
int v2yPrime = 0;
int v2zPrime = 0;

int deltaVx = 0;
int deltaVy = 0;
int deltaVz = 0;

vector <int> velocities;
velocities.resize(6 , 0);

//Array3d<vector<vector<int> > > CollisionTable(l+rangeDeltaV*2,

l+rangeDeltaV*2, l+rangeDeltaV*2);//no longer (3,3,)

//display variables

// int range=3;
//int NumVectors=O;

//series of 6 nested loops, loops go through the range of all
discrete values for new velocities with all possibilities of initial
deltaV values this first establishes conservation of momentum

//after conservation of momentum is established conservation of
energy is checked

for (int il = -rangeV; il <= rangeV; il++) //loop that goes
through range of all vlxPrime values

cout<<endl<<"IndexValue =icout<<endl<<'IIndexvalue = "<<i1<<";";

// int v2xStart;

20

//if(il < 0)

// v2xStart=-il;
//}
//else
//{
//v2xStart=0;
//}

for (int jl = 0; jl <= rangeDeltaV; jl++) //loop that
goes through range of all deltaVx values

vlxPrime = il;

deltaVx = jl;

v2xPrime = deltaVx - vlxPrime;

for (int i2 = -rangeV; i2 <= rangeV; i2++) //loop
that goes through range of all vlxPrime values

for (int j2 = 0; j2 <= rangeDeltaV; j2++)

//loop that goes through range of all deltaVx values

vlyPrime = i2;

deltaVy = j2;
v2yPrime = deltaVy - vlyPrime;

for (int i3 = -rangeV; i3 <=
rangeV; i3++) //loop that goes through range of all vlxPrime values

for (int j3 = 0; j3 <=

rangeDeltaV; j3++) //loop that goes through range of all deltaVx values

vlzPrime = i3;

deltaVz = j3;
v2zPrime = deltaVz -

vlzPrime;

//Now Check
Conservation of Energy

int EnergyIn = (
(deltaVx)*(deltaVx) + (deltaVy)*(deltaVy) + (deltaVz)*(deltaVz));

int EnergyOut =
(vlxPrime-v2xPrime)*(vlxPrime-v2xPrime) + (vlyPrime-
v2yPrime)*(vlyPrime-v2yPrime) + (vlzPrime-v2zPrime)*(vlzPrime-v2zPrime)

velocities[0] =
vlxPrime;

velocities[1] =
vlyPrime;

velocities[2] =
vlzPrime;

velocities[3]
v2xPrime;

21

velocities [4]

v2yPrime;

velocities [5]

v2zPrime;

//cout<<velocities[3]<<"value recorded!"<<endl;

//vlxPrime,
vlyPrime, vlzPrime, v2xPrime, v2yPrime, v2zPrime

int stop;
stop=O;
/*
if (il== &&

jl!=O)

stop=l;

*/
/*
if (il==O)// &&

jl==O)

int vecSize;
vecSize =

CollisionTable(jl+rangeDeltaV, j2+rangeDeltaV, j3+rangeDeltaV).size();

for (int index
= 0; index<vecSize; index++)

{

vlxProxy;

vlyProxy;

vlzProxy;

v2xProxy;

v2yProxy;

v2zProxy;

int

int

int

int

int

int

v2xProxy=CollisionTable (jl+rangeDeltaV,
j3+rangeDeltaV).at(index).at(0);

v2yProxy=CollisionTable (jl+rangeDeltaV,
j3+rangeDeltaV).at(index).at(l);

v2zProxy=CollisionTable (jl+rangeDeltaV,
j3+rangeDeltaV).at(index).at(2);

vlxProxy=CollisionTable (jl+rangeDeltaV,
j3+rangeDeltaV).at(index).at(3);

j2+rangeDeltaV,

j2+rangeDeltaV,

j2+rangeDeltaV,

j2+rangeDeltaV,

22

vlyProxy=CollisionTable (jl+rangeDeltaV, j2+rangeDeltaV,
j3+rangeDeltaV).at(index).at(4);

vlzProxy=CollisionTable (jl+rangeDeltaV, j2+rangeDeltaV,
j3+rangeDeltaV).at(index).at(5);

if

(vlxPrime==vlxProxy && vlyPrime==vlyProxy && vlzPrime==vlzProxy &&
v2xPrime==v2xProxy && v2yPrime==v2yProxy && v2zPrime==v2zProxy)

stop=1;

*/

if (EnergyIn
EnergyOut && stop ==O)

//cout<<"discrete set found
at("<<deltaVx<<","<<deltaVy<<","<<deltaVz<<")"<<endl;

CollisionTable
(deltaVx, deltaVy, deltaVz).push_back(velocities);

//cout<<"entry
in Collisition is "<<CollisionTable (deltaVx+rangeDeltaV,
deltaVy+rangeDeltaV, deltaVz+rangeDeltaV).at(0).at(3)<<endl;

//double check
Energy and Momentum!

int Ein;
int Eout;
int xMomIn;
int yMomIn;
int zMomIn;
int xMomOut;
int yMomOut;
int zMomOut;

Ein=
(deltaVx)*(deltaVx) + (deltaVy)*(deltaVy) + (deltaVz)*(deltaVz));

Eout=
vlxPrime*vlxPrime +vlyPrime*vlyPrime + vlzPrime*vlzPrime +
v2xPrime*v2xPrime + v2yPrime*v2yPrime +v2zPrime*v2zPrime;

xMomIn=
deltaVx;

yMomIn=
deltaVy;

23

zMomln=
de:LtaVz;

xMomOut=vlxPrime+v2xPrime;

yMomOut=vlyPrime+v2yPrime;

zMomOut=vlzPrime+v2zPrime;

if (Ein!=Eout)

cout<<endl<<"Energy is not Conserved!"<<endl<<"Energy In =
"<<Ein<<endl<<"Energy Out = "<<Eout;

if(xMomIn !=
xomOut I yMomIn != yMomOut zMomIn != zMomOut

cout<<endl<<"Energy is not Conserved!"<<endl<<"Energy In =
"<<Ein<<endl<<"Energy Out = "<<Eout;

// dis
play

//display
/*
int NumVectors;

int range;

int kl;
int k2;
int k3;
kl =0;

k2 =1;

k3 =0;

range = rangeV;

/*
cout<<endl<<"Number of Vecttors at location: ";

24

NumVectors = CollisionTable(kl+range, k2+range,
k3+range).size();

cout<<NumVectors;

cout<<endl;
for (int k4 = 0; k4 <= NumVectors-1; k4++)

{
cout<<endl;
cout<<"vl Prime = (" <<CollisionTable(kl+range, k2+range,

k3+range).at(k4).at(0);
cout<<", " <<CollisionTable(kl+range, k2+range,

k3+range).at(k4).at(1);
cout<<", " <<CollisionTable(kl+range, k2+range,

k3+range).at(k4).at(2);
cout<<")" <<endl<<"v2 Prime = " <<CollisionTable(kl+range,

k2-range, k3+range).at(k4).at(3);
cout<<", " <<CollisionTable(kl+range, k2+range,

k3+range).at(k4).at(4);
cout<<", " <<CollisionTable(kl+range, k2+range,

k3+range).at(k4).at(5);
cout<<")";
cout<<endl;

*/

for (int kl = -range; kl <= range; kl++)

for int k2 = -range; k2 <= range; k2++)

for (int k2 = -range; k2 <= range; k3++)

//cout<<endl;
//cout<<"vectors at

("<<kl<<","<<k2<<","<<k3<<")"<<endl;
NumVectors = CollisionTable(kl+range, k2+range,

k3+range).size();
//cout<<"Number of Vectors of

vectors:"<<NumVectors<<endl;

for (int k4 = 0; k4 <= NumVectors-1; k4++)

if (kl==l && k2==2 && k3==3)

cout<<endl<<"vl Prime = ("
<<CollisionTable(kl+range, k2+range, k3+range).at(k4).at(0);

cout<<", " <<CollisionTable(kl+range,
k2+range, k3+range).at(k4).at(1);

cout<<", " <<CollisionTable(kl+range,
k2+range, k3+range).at(k4).at(2);

cout<<") v2x Prime = ("
<<CollisionTable(kl+range, k2+range, k3+range).at(k4).at(3);

cout<<", " <<CollisionTable(kl+range,
k2+range, k3+range).at(k4).at(4);

25

cout<<", " <<CollisionTable(kl+range,
k2+range, k3+range).at(k4).at(5);

cout<<") ";

<<Table(il+range,

<<Table (il+range,

<<Table (il+range,

<<Table(il+range,

<<Table(il+range,

i2+range,

i2+range,

i2+range,

i2+range,

i2+range,

I

// cout<<"xl Prime
i3+range).at(i4) .at(l);

//cout<<"xl Prime = "
i3+range).at(i4).at(2);

//cout<<"xl Prime = "
i3+range).at(i4).at(3);

//cout<<"xl Prime ="
i3+range).at(i4).at(4);

//cout<<"xl Prime = "
i3+range) .at(i4).at(5);

cout<<endl;

cout<<endl;
*/return;

return;
}

