
The ICoN Integrated Communication and

Navigation Protocol for Underwater Acoustic

Networks
by

Rupesh R. Kanthan

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

© Rupesh R. Kanthan, MMV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author ..
"Departfent of Electrical Engineering and Computer Science

September 1, 2005

Certified by

(rofes Eof ctrical Egire ring
Joel Schindall

and Computer Science
rTlesis Supervisor

Accepted by. .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

BARKER

A;lUS I TI I I I U I .
OF TECHNOLOGY

AUG 14 2006

LIBRARIES

2

The ICoN Integrated Communication and Navigation

Protocol for Underwater Acoustic Networks

by

Rupesh R. Kanthan

Submitted to the Department of Electrical Engineering and Computer Science
on September 1, 2005, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The deployment of autonomous underwater devices has increased dramatically in the
last several years, presenting a strong and growing need for a network protocol to
mediate acoustic communications between devices. This network protocol must also
provide an infrastructure for acoustic navigation, while ensuring that provisions for
communication and navigation do not interfere with each other. To approach this
difficult problem, we begin with a discussion of the limitations of traditional net-
working protocols when subjected to the complexities introduced by the underwater
acoustic environment. We then present ICoN, a proposed network protocol, designed
to integrate acoustic communication and navigation and optimized to operate in the
low-bandwidth, high-loss underwater environment. A working description of ICoN
and a discussion of its features are followed by analysis of the protocol through simu-
lation, indicating its potential for improved performance over traditional networking
protocols. The simulation results are reinforced through real-world experimental vali-
dation of ICoN, which, though limited, appears to confirm the effectiveness of the new
protocol. We conclude with possible future extensions to ICoN, discussing various
methods that might increase its potency in dealing with more demanding underwater
acoustic applications.

Index Terms: acoustic communications, ad-hoc networks, baseline navigation,
network protocol, underwater networks, wireless networks

Thesis Supervisor: Joel Schindall
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

Special thanks to Dr. Anthony A. Aponick for inspiring and setting in motion the col-

laboration between industry and academia that made this work possible, and guiding

its progress as a tireless consultant for the two years this project underwent develop-

ment.

Special thanks to Lee Freitag, who served as our direct analog at WHOI through

the development of this project and the major facilitator of all real-world testing, as

well as the architect of the modems that this project was instigated by.

Thanks to Dr. Thomas Swean, ONR, for enabling the funding for the final year

of the project, and empowering the Woods Hole-MIT link that gave the project

application and purpose.

5

6

Contents

1 Introduction 15

2 Related History 17

2.1 Point-to-Point Topology . 17

2.2 Master-Slave Architecture . 18

2.3 Wired Networks . 20

2.4 Wireless Networks . 22

2.5 Acoustic Properties of Water . 25

3 The ICoN Protocol 27

3.1 High-Level Behavior System Concept 29

3.2 Message Prioritization . 30

3.2.1 Selective Handshaking . 30

3.2.2 Packet Loss Scenarios and Network Recovery 32

3.3 Weighted Probabilistic Transmit . 35

3.3.1 Queue Weighting . 35

3.3.2 Exponential Delay Curve . 36

3.3.3 Convergence . 39

3.4 Active Queue Management . 40

3.4.1 Sorting . 40

3.4.2 Excitation . 40

3.4.3 Filtering . 42

3.5 Learning and Adaptive Algorithms 43

7

3.5.1 EWMA Curve Damping System

3.5.2 Critical Zone Backoff Routine

3.6 Combined Protocol Analysis .

4 Implementation

4.1 Historical Development .

4.2 Protocol Implementation .

5 Results and Evaluation

5.1 Testing and Evaluation Methodology

5.2 Model-Based Predictions

5.3 Simulation Results and Evaluation .

5.4 Real-World Validation

6 Future Expansion

6.1 Explicit Awareness of Neighbors . . .

6.2 Cooperative Navigation

6.3 Network Mapping

6.4 Power Control, Ad-Hoc Subgrouping

6.5 Burst-Transmit Throttling

7 Conclusion

A Figures

B Protocol Code

8

43

45

47

49

49

51

53

53

54

55

60

69

69

70

71

72

72

73

75

79

.

List of Figures

2-1 Illustration of "hidden terminal" problem. Nodes A and B can hear

one another, as can B and C. However, A cannot hear C, as it is a

terminal that is hidden from A. Thus, C may transmit, not knowing

A is curently transmitting and cause a collison. 22

2-2 RTS-CTS-data-ACK handshaking sequence. 23

3-1 Conceptual situation involving three different classes of AUVs. Each

AUV is equipped with acoustic transducers allowing it to communicate

with the others. Additionally, all types of mobile AUVs use the same

transducers to conduct periodic navigation pings to determine their

locations from multiple navigation transponders. 28

3-2 Timing diagram for timeout periods. One TT is given by the traveltime

m etric. 33

3-3 Exponential Delay Curve. Note the operating points of two nodes, and

the direction in which they will most likely move along the curve in

the near future. 37

5-1 Successes and collisions in a fixed interval test using "Control" proto-

col. Note the congestion collapse as sending rates increase, and the

reduction effect of collisions on successes. 56

5-2 Successes and collisions in a fixed interval test using ICoN. Note the

attempt of ICoN to follow the generation curve initially, until it levels

off, without a congestion collapse. Collisions also do not detract from

successes, due to retransmit. 56

9

5-3 Percentage of transmissions resulting in a collision for "Control" pro-

tocol for various traffic rates . 58

5-4 Percentage of transmissions resulting in a collision for ICoN for various

traffic rates. 58

5-5 Percentage of attempted messages successfully delivered by "Control"

protocol for various traffic rates. 59

5-6 Percentage of attempted messages successfully delivered by ICoN for

various traffic rates. 59

5-7 Line graph showing measured quantities of events over fixed interval

tests. The number of generated messages is the independent variable,

and increases linearly across various test runs. Note that the number

of RTS messags sent is initially higher than the number of messages

generated, since some generated messages require more than one RTS

if the initial RTS collides with another RTS. Eventually, the number

of generated messages surpasses the number of RTS messages sent,

as the network approaches capacity. This is indicative of messages

accumulating in nodes' queues. The number of collisions and packet

losses remain low, with both gently increasing as traffic levels increase. 61

5-8 Percentage of generated messages successfully acknowledged in vali-

dation testing for various traffic rates. This value begins uniformly

high, until message generation outpaces the capacity of the network,

at which point there is a roll-off. ICoN's EDC system prevents the de-

crease from being sharp, and even helps the network catch up as traffic

levels approach high quantities. These percentages can be improved

by tuning the EDC's parameters. 63

10

5-9 Percentage of attempted messages successfully acknowledged in val-

idataion testing for various traffic rates. Note that this percentage

starts and stays high, never sinking below 60 percent, and averaging

just below 70 percent. The gradual decrease across the tests shows

signs of recovery as traffic levels approach high quantities, due to the

EDC. Once again, by tuning the EDC's parameters, this can likely be

flattened out. 64

5-10 Percentage of collided messages of messages attempted in validation

testing for various traffic rates. As expected, at low traffic rates, col-

lisions are highly unlikely due to the sparseness of RTS messages. As

the density of RTS messages increases, there is an increase in collisions,

but that percentage increase appears logarithmic, instead of linear with

respect to traffic rates. The percentage of time wasted due to collisions

remains below 15 percent, averaging just below 10 percent. 65

5-11 Percentage of lost messages of messages that were successfully hand-

shaked in validation testing for various traffic rates. These are cases

where the RTS and CTS messages have been successful, but the main

data packet or acknowledgment gets lost due to acoustic anomalies.

Regardless of traffic rate, this percentage of lost packets remains fairly

constant with only slight variation. This is expected, as the physics

of the link layer are independent of traffic rates. The measured per-

centage is generally confined between 20 and 30 percent, and averages

around 25 percent. 66

A-1 System state diagram. 76

A-2 Block diagram of interaction of protocol instances with each other and

with their respective nodes, for different message types. 77

A-3 Software flowchart. This presents a useful guide for implementation. . 78

11

12

List of Tables

3.1 The four message types of ICoN and relevant properties of each. . . . 30

3.2 Possible weighting values for sample network. Modifications to these

suggested weights dramatically change the behavior of the network. . 36

13

14

Chapter 1

Introduction

The last decade has seen a dramatic increase in the requirement for underwater

devices with the ability to exchange information. Historically, such communication

links were limited to point-to-point transmission via acoustic modems, such as oil

rigs communicating with a shore facility, or deep sea sensors passing messages to

dedicated surface buoys for RF transmission to a base station. Today's applications

are growing far more numerous, with the desire for small devices to perform tasks

like oceanographic monitoring, ship hull inspection, deep-sea bottom mapping, and

defense-related countermine warfare. These devices may be stationary, utilizing active

or passive sensors and transmitting information via acoustic modems to a central

location only when necessary. On the other end of the spectrum, devices may be

mobile, actively collecting information at high speeds and emitting data acoustically

at regular intervals.

With the property of motion, devices must be able to navigate in their environ-

ment, especially those designed to operate autonomously. Underwater, where GPS

is unavailable, devices typically use active sonar navigation, emitting pings against

transponders located at known coordinates in order to triangulate their own positions.

The communication and navigation systems both share the acoustic channel, posing

a large arbitration challenge to such devices. As both communication and navigation

are conceptually independent and encompass their own set of requirements, a method

of arbitration between the two independent systems must be created to allow them

15

to function dependently, a handicap not experienced by any network to date[10].

Furthermore, the underwater environment introduces unfavorable physical proper-

ties that affect network operation, most specifically high latency and low bandwidth.

With acoustic transmissions that travel 200,000 times slower than typical wireless net-

works and baud rates as much as 1,250,000 times less than typical wired LANs, even

the simplest of traditional networking techniques become difficult or impossible to

accomplish. Network-layer protocol overhead must be kept to an extreme minimum,

and simple retransmit on packet loss is inadvisable. Collisions must be infrequent,

but rapidly detected in order for the network to quickly recover without wasting pre-

cious time. Navigation information must be provided to devices frequently enough

to prevent crashes or loss, but without damaging communication signals in transit.

These communication signals are nontrivial, often taking the form of mission-critical

commands, or extended data packets representing imaging data, which may burden

the acoustic channel for many seconds. The network protocol must have a mechanism

for analyzing message types, so it may selectively discard packets that are non-critical,

but must guarantee the receipt of messages that are essential to the mission.

The proposed integrated communication and navigation protocol, termed ICoN

(Integrated Communication and Navigation), seeks to lessen or eliminate these chal-

lenges in the underwater environment for both stationary and mobile devices equipped

with acoustic modems. Rather than requiring point-to-point or centralized polling

systems, ICoN abstracts any arbitrary collection of nodes as a network and gives

it a decentralized topology, based on fully asynchronous communication. With the

introduction of generic nodes and links, and elimination of synchronous behavioral re-

quirements, a resilient network layer can be constructed, incorporating a rudimentary

adaptive behavior system which can also serve as a base for more intelligent ad-hoc

structures in the future.

16

Chapter 2

Related History

The field of underwater acoustic communications is not new. Several communication

topologies have been used, with their behavior dictated by their application. Before

exploring the application-nonspecific protocol presented in this paper, it is useful to

review existing architectures and constituent link types, discuss their strengths and

weaknesses, and examine the useful technologies each employs that contributed to

the features contained in the ICoN protocol.

2.1 Point-to-Point Topology

The first step towards the design of any network is the implementation of robust

point-to-point links[1]. Early applications of underwater acoustic modems functioned

in this strictly two-node, single-link manner. In these systems, nodes are each as-

signed a unique ID. To communicate, Node A simply sends an acoustic transmission

into the water via its attached modem, with an embedded field containing the ID

of its destination, Node B. In fixed-location applications, both nodes typically use

directional phased arrays to maximize the energy amplitude in the direction of their

known destinations. If the destination modem detects that the packet is addressed

to it, it passes the message along to the connected node.

This process is implemented in a number of different ways, dependent on the

listening method of the modem. Depending on the configuration, all modems might

17

pick up all messages they detect and pass them to their attached nodes, leaving it

up to a higher layer to decide which messages to listen to. Other modems only pass

messages with their own ID to the node. Modems optimized for power consumption

may rely on an introductory transmission with embedded destination information to

determine if the packet is for them, before turning on a more sensitive, power-intensive

receiver.

In this paper we will assume that all modems are sensitive to all packets they

detect, passing all of them to the protocol-implementation firmware. The protocol-

implementation firmware decides which messages to pass to a node. For simplicity,

we will refer to a node device (which may be a sensor unit, autonomous vehicle, or

manned craft), the protocol firmware, and the attached modem collectively as a node.

Most existing bilateral point-to-point systems, have no safeguards to ensure that

messages do not collide. As water is a linear medium, messages can pass through one

another and continue towards their destination, retaining their original waveform.

However, if portions of two messages, regardless of intended destination, reach the

listening node at the same time, both messages interfere and are unintelligible to the

listening node. A node also has an inability to hear incoming transmissions if it is

currently in the process of broadcasting a message, similar in effect to half-duplex

systems. Given the limited communication load required of simple two-node systems,

and a tendency toward unidirectional information flow, collisions are generally not an

issue. However, composing a multi-node network out of unregulated point-to-point

links is unadvisable due to the rapidly-increasing probability of message collision.

2.2 Master-Slave Architecture

Topologies consisting of multiple nodes are frequently organized in a master-slave ar-

chitecture. In this arrangement, one node is chosen to be the master, which typically

doubles as the node that relays information to a base station via directed acous-

tic modems or above-surface RF transmitters. As with point-to-point architectures,

nodes are given ID numbers, with the master node typically assigned an ID of 0.

18

Such an architecture can easily take advantage of a time division multiplexing

(TDM) scheme where time is broken down into n slots, where n is the number of

slave nodes in the system. However, instead of giving each node a long slot where

it can either send its whole transmission or remain silent and waste network time, a

more efficient master-slave based system uses round-robin polling, where the master

sends a brief data request packet (DRQ) to the network, indexed sequentially across

all n slave nodes. When a node receives a DRQ encoded with its own ID number,

it now has authorization to use the shared acoustic channel to immediately transmit

any desired data to the master node. When the master node is satisfied it has received

all the expected data, either by internal means, or a timeout, it sends a DRQ to the

next slave node in sequence.

No possibility of a collision exists in this architecture, as the master has complete

control of when any node in the system sends a transmission, provided the master

initiates this polling routine correctly. There are several drawbacks, however. As

the number of nodes increases, but the chance of a typical node having data to send

remains low, a large percentage of time is wasted polling nodes that have no data to

report. The master node, if it is a remote buoy, consumes power continuously in an

idle network. Most critically, the dependence on a master node creates a single point

of failure that can render the whole network useless should the master malfunction

or be cut off from the network.

In a stationary sensor net, this may simply demand a maintenance team to replace

the buoy, which is likely an acceptable shutdown period for this application. However,

this round-robin polling scheme is used in many mobile situations as well, where

multiple autonomous underwater vehicles (AUVs) may be rapidly combing an area,

conducting joint missions. Should the central master node be disrupted, even for

a brief time, the dependent slave AUVs can fail their mission, which could mean

consequences ranging from missing a target, to crashing into a ship's hull or seabed

causing destruction of the AUV.

In addition to being a simple central-point-of-failure matter, forcing a central

master control node greatly limits possible network topologies, and restricts mission

19

capabilities. A sensor net, if each node was given the power to decide when to

transmit, could be scalable to very large n. Mobile nodes could function at very

large n as well, but also be given more intelligent network-level behaviors, such as the

ability to issue directions directly to other nodes on demand.

A master-centric topology also limits the physical extent of a network, forcing all

nodes to lie within the master's acoustic transmit range. Several master nodes could

be used to blanket a large region, but it is not clear how master nodes would arbitrate

which master polled which slave nodes in the network, especially if the slave nodes

were mobile, without the very complex algorithms that are common to devices such

as cell phone towers. Systems that have solved this problem use tremendous amounts

of overhead to arbitrate the handoff of slaves from one master to another, taking

advantage of the high bandwidth available to them, a methodology not practical in

the low bandwidth underwater environment.

In a mission where several unmanned underwater vehicles (UUVs) wished to co-

operatively inspect the hull of a large tanker for possible leaks and commit repairs,

a master node would need to follow the team around the ship ensuring no UUV fell

into its acoustic shadow, also limiting the UUV team to all work together in only one

area. If the UUVs could communicate freely with each other, multiple teams could

work simultaneously on different parts of the ship, with a freedom to wander. The

ability for each node in a network to initiate communications on its own accord is the

most important fundamental in nearly every network we use today, making it very

likely that it will be proven vital to the evolution of the underwater acoustic network.

2.3 Wired Networks

In the course of developing a protocol to handle the underwater dilemma, it is im-

portant to not only examine existing network topologies, but also the properties of

the node-to-node links themselves. Though the underwater environment prompts a

wireless network, important developments in wired networks led to many techniques

used in wireless networks today.

20

The first evolution of wired multiple-node networks relevant to the underwater

network issue is the token-ring network, which is a direct analogue to the round-robin

master-slave polling architecture. This network has the same disadvantages of the

master-slave system in that a token is passed around the network, used to choose the

next node to transmit sequentially, and thus the network does not scale well for large

n. In this configuration, there exists no central master node that handles arbitration,

and thus no central point of failure. However, the token ring assumes a wired network

where a token could never get lost by falling out of the wire, a situation that would

be very common in the high-loss acoustic environment. Also, a token ring assumes

a predictable topology where each node can hear the previous node in the sequence,

something not guaranteed in an acoustic network where nodes may be mobile.

The solution to the sequential-waste problem is the Ethernet, where messages

could be generated by any node at any time, and simply dumped into the ether, a

wire that is shared and listened to by every node in the network. This is exactly how

the water functions for an acoustic network. All nodes monitor the Ethernet, and

when a packet comes by that has their destination ID, they read the packet from the

Ethernet, otherwise the packet is ignored[15, 5, 16].

The arbitration involved in the multiple-source problem is handled by the Carrier

Sense Multiple Access/Collision Detect (CSMA/CD) protocol. As messages travel

across an Ethernet at the speed of electrons through copper, each other node on the

Ethernet can tell almost instantly when the Ethernet is busy; this is the ability to

Carrier Sense. With CS, the chance of a node transmitting while another node is also

doing so is tremendously reduced.

If it so happens that two nodes decide to transmit at exactly the same time,

each of the transmitting nodes will almost instantly hear each other on the Ethernet;

this is the ability to Collision Detect. Upon detecting the other node's transmission

through CD, each node stops transmission, waits a random interval, and tries to send

the packet again. In a high-bandwidth Ethernet line, the collision avoidance feature

of CS and the ability to recover through CD are enough to provide a fast, simple, yet

resilient network.

21

Figure 2-1: Illustration of "hidden terminal" problem. Nodes A and B can hear one
another, as can B and C. However, A cannot hear C, as it is a terminal that is hidden
from A. Thus, C may transmit, not knowing A is curently transmitting and cause a
collison.

However, these simple tools assume a wired network where every node can hear

every other, regardless of distance. As soon as we remove the range-independent

Ethernet and replace it with a loss-prone, range-dependent medium, the ability to

reliably CS or CD is lost.

2.4 Wireless Networks

The biggest challenge faced by the designers of wireless protocols like 802.11 was the

CS problem, manifested in a scenario known as hidden terminal. Consider nodes A,

B, and C in Figure 2-1. These nodes are arranged in a straight line, with A and B

barely in range of each other, and B and C barely in range of each other. Thus, A

and C are not in range of each other. In an Ethernet network, if A transmitted to

B, C would hear A's transmission on the line. However, in wireless, where ranges are

limited, when A transmits to B, C does not hear the transmission; it is the hidden

terminal. Thus, C's CS ability is lost, and, seeing the channel is free, decides to send

a transmission to B as well. Both the signals from A and C reach B at the same time,

a collision results, and both messages are lost[4].

Worse still, neither A nor C realize their packets were disrupted by each other,

22

RTS

CTS

Source Destination
Node Data Packet Node

Figure 2-2: RTS-CTS-data-ACK handshaking sequence.

because the two nodes cannot hear each other. Thus, the ability to CD is also

compromised. With both arbitration devices that are used in Ethernet disabled,

wireless networks have to rely on an alternative system to carrier sense and collision

detect virtually[3].

The solution is a message-based protocol that employs a sequential handshaking

scheme between nodes that wish to transfer information. The four relevant packets

are Request to Send (RTS), Clear to Send (CTS), Data (DAT), and Acknowledgement

(ACK) [4].

To illustrate this handshaking scheme, consider nodes A through D in Figure 2-1.

These nodes are arranged in a straight line with each sequential pair just within range

of each other, such that concurrent transmissions from both neighbors of a node will

interfere and be lost. Node B wishes to transmit a packet to Node C.

Node B begins by sending a brief RTS packet with C's address as its destination.

As we are dealing with wireless, the packet is broadcast omnidirectionally from an

antenna, and will be heard by both A and C (but not D, which is out of range). Upon

hearing the RTS destined for C, Node A realizes Node B's intention to eventually

transmit a data packet to Node C, and Node A silently considers the channel reserved

by B for its use.

Node C receives the RTS packet, decodes that it is meant for it, and in response,

23

sends a CTS packet encoded with B as its destination. Node D and B (but not A)

hear this packet. Node D responds in the same manner as A, silently considering the

channel reserved by C for its use.

Node B, retrieving C's CTS, realizes the opening handshake of the protocol is

complete, and B and C now have the channel reserved, which is known to all nodes

within range of either B or C due to the RTS and CTS packets. B is free to transmit

the intended data packet to C, and the DAT packet is sent, containing all the infor-

mation B wishes to transmit to C in the first place. This packet can theoretically be

as long as B wishes, because the channel is safely reserved for its use, but in reality,

packets are typically limited to a timeout period to help recovery in the chance of

failure, as will be detailed later. When the packet is complete, A and C sense that

the transmission is no longer taking place, through either silence, or a final checksum

visible in the packet. A knows the transmission is complete and B no longer has the

channel reserved, but sets a short timer and waits for the final handshaking packet,

ACK, to finish its work, for the benefit of node D.

C, on completion of reception of the DAT packet, generates and broadcasts the

final of the four packets, the ACK packet, encoded for B's destination. This ACK is

simply used by B to know that C received the whole DAT packet successfully, and it

was not disrupted by environmental or other factors. B's job is done and the cycle

is complete. D receives the ACK packet as well, which indicates to D that the cycle

has completed, and C no longer has the channel reserved. Thus, the network is now

silent, no node believes another node has the channel reserved, and any node can now

send an RTS packet to reserve the channel for use to transmit to any other node.

Utilizing this message-based handshaking protocol, all but the most rare conflicts

are handled in a well-arbitrated manner. To deal with lost packets, as the air is a

lossy medium, each node sets timeout values at each phase of the handshaking cycle.

If an expected message is not heard in an acceptable period of time, the message is

presumed lost, and depending on which node detected a loss, a node might resend a

message, assume the channel now free, or consider its cycle reset and try again at a

later time. The combination of a set of timeout timers and the handshaking protocol

24

yield a virtual CS system, and an ability to recover from failure without CD[7].

2.5 Acoustic Properties of Water

An underwater acoustic network is closely related to in-air wireless networks. As with

wireless, the abilities to CS and CD do not exist. Contemporary wireless protocols like

802.11 take many liberties in how aggressively they send packets, pumping packets

rapidly and backing off when they detects high loss rates. They are able to use this

scheme because when a packet is lost, the cost to retransmit it is very low; at bitrates

as high as 11mbps a lost packet can be resent almost instantly. In addition, losses

and hidden terminal situations can be detected in fractions of a second due to the

extremely low latency afforded by transmitting EM signals at speeds close to that of

light, over relatively short distances.

Limitations of sound propagation in water limit today's acoustic modems to speeds

as low as 80 baud, making their data throughput over 1,250,000 times slower than

Ethernet networks, and nearly 140,000 slower than wireless 802.11b. Underwater, the

speed of sound is typically around 1,500 m/s, which is roughly 200,000 times slower

than EM signals in wireless networks. With the diminished baud rates underwater

and the tremendous increase in latency, lost packets are much more wasteful to the

network, and recovery is not as easy as simply retransmitting packets until they get

through.

These difficulties are representative of an ideal, pristine water environment. In

reality, active bodies of water are far more hostile places for acoustic transmissions.

Seabed surfaces are always irregular, building underwater sandbars and holes through

natural wave activity. This multifaceted bottom acts as a reflector to acoustic signals

like sets of dispersed mirrors, bouncing messages off different planes towards the

destination node with different delays. This is a phenomenon known as multipath,

and in addition to being a serious link-layer issue, multipath and other reflection-type

anomalies can disrupt the careful timing required by many networks[18, 17, 11].

Wired and electromagnetic networks can occasionally suffer catastrophic effects

25

that disrupt their operation, such as shorting an Ethernet cable, or severe sunspot

activity for in-air. But for underwater acoustic networks, a catastrophic effect is

as common as a passing motorboat. Underwater networks must be prepared for

frequent and total disruptions to all communications, due to other uncontrollable

acoustic factors in the environment, and also exhibit the ability to rapidly recover

and resume normal operation.

Perhaps even worse are the intrinsic salinity and temperature limitations of bodies

of water. Gradual salinity gradients across a near-shore network can cause a variation

in the speed of sound from one end of a network to the other, leading to unpredictable

latencies and fouled timing calculations. The largest barrier to acoustic communi-

cations is the thermocline, a sharp boundary existing in all bodies of water between

deep, cold water and warmer surface water. The thermocline is essentially impenetra-

ble by acoustic communications, effectively cutting all nodes above the thermocline

from those that venture just below it. Nodes that are disconnected from the net-

work in such a manner must be prepared to weather the failure, but achieve a quick

recovery as soon as contact is reestablished.

A protocol to handle communications underwater must be message-based to deal

with the CS/CD issue in the same manner achieved with wireless, but many changes

must be made to not only solve the problems of high latency and low bandwidth, but

ideally function as a behavior system as well, with parameters that can be tailored

to specific networks to optimize network goals.

The ICoN network protocol is designed for networks that are organized to solve

a problem cooperatively. The protocol provides handles to allow network adminis-

trators, either human or automated, to optimize performance by tweaking goals like

fairness, throughput, and fault-tolerance.

26

Chapter 3

The ICoN Protocol

The core principle of the ICoN protocol is fairness among all nodes participating in the

network. Networks are assumed to be directed towards a cooperative task, though

nodes are not likely homogenous. By this, we mean that each node has it's own

communication and navigation requirements, which are all different among nodes of

different configurations, mission types, and manufacturers. In this type of cooperative

network, it is in every node's best interest to supply all other nodes with its required

bandwidth and navigation pings, because the success of the cooperative mission likely

depends on the success of every other node.

To avoid adding an excessive amount of overhead and thus reducing the already

limited bandwidth available underwater, the philosophy of the ICoN protocol is in-

telligence over individual utilization. The prime value of the proposed protocol is

not in pumping large amounts of data from one point to another, but in allowing

a large number of varied nodes to accomplish their missions, accommodating their

diverse requirements in a cooperative network infrastructure. Therefore, it is imper-

ative that sending schemes be very conservative. The real value of the system comes

from intelligent learning algorithms that each node can use to independently develop

its perception of the network, rather than repetitive, aggressive probing.

27

Sw mmer

Hovering Craft

Bottom Crawler

Figure 3-1: Conceptual situation involving three different classes of AUVs. Each AUV
is equipped with acoustic transducers allowing it to communicate with the others.
Additionally, all types of mobile AUVs use the same transducers to conduct periodic
navigation pings to determine their locations from multiple navigation transponders.

28

3.1 High-Level Behavior System Concept

As an example, we will examine a hypothetical autonomous network attempting to

examine a ship's hull underwater without the need to dry-dock, consisting of fast-

moving survey AUVs, slower detailed-imaging AUVs, and repair AUVs. The survey

AUVs, due to their speed, require navigation data every few seconds and thus need

to emit an active sonar ping frequently, or they might crash into the ship's hull.

They scan the ship's hull rapidly, detecting possible damage points as quickly as

possible, and sending messages to the awaiting imaging AUVs to take a closer look at

those suspect locations. Upon receiving an inspection request from a survey AUV, an

imaging AUV spends time scanning the area more closely, and, depending on whether

the anomaly is a clump of barnacles or a patch of rust, may dispatch a command to

a repair AUV to come and effect the repairs. At the conclusion of the job, the repair

AUV might send a confirmation to a shore base that a repair was executed at that

certain location.

From this example, we quickly see three different levels of requirements in both

communication and navigation from different classes of nodes. The survey AUV's

navigation ping requests take a high priority in the network, to prevent the rapidly

moving AUVs from crashing. The messages indicating possible damage points are

less critical. Some may be false alarms, and in any event, the missed points can

always be picked up again on later sweeps, when a different imaging AUV is nearby

to investigate the location. However, once a damage point has been confirmed by an

imaging AUV, it is very important that a repair command be dutifully serviced by

a repair AUV, since these are not false alarms but definite positive matches. The

concept of different message types and priorities are the central basis of the behavior

system of this protocol.

29

STA Status Message
DAT Unspecified Data

Low Optional
Medium Yes

Table 3.1: The four message types of ICoN and relevant properties of each.

3.2 Message Prioritization

There are a total of four user-visible message types that are introduced in this pro-

tocol. A Command (CMD) is a mission-critical directive message issued by a node

or control station to another node to instruct it to carry out a task, change internal

parameters, or change its otherwise preprogrammed operation. A Ping (PNG) is an

instruction issued by a node to its own modem to emanate a navigation ping to re-

trieve current location data. A Status (STA) is a special data packet issued from one

node to another node or control center to carry periodic vital signs, location data, or

current sensor readings. A fourth generic Data (DAT) packet contains all other types

of messages that do not fit into these three categories. Most typical missions consist

of the previous three message types, unless the necessity to transmit large amounts

of data is present.

In addition to the user-visible message types, there are three handshaking packet

types that are utilized internally by the protocol. Those packets are the Request to

Send (RTS), Clear to Send (CTS), and Acknowledgment (ACK) packets.

3.2.1 Selective Handshaking

There are two main effects of using four different message types in the protocol, the

first involving handshaking, the second involving weighting. Each message, based on

its type, employs a certain rule that governs its delivery.

Each of the four message types is handshaked differently. A CMD, which typically

carries mission-critical commands to nodes to begin mandatory operations is given

the highest priority. Because of this, the rule surrounding a CMD packet is that it

30

Type [Expansion Priority Ack
CMD Command Highest Yes
PNG Navigation Ping High No

must be successfully acknowledged by its destination. If it is found that the packet

is impossible to deliver, the source node must be explicitly notified that the packet

has not reached its destination after a predetermined number of retransmit efforts.

To precede the actual CMD packet, an RTS and CTS are shared by the source

node and destination node. Once the channel has successfully been reserved by this

opening handshake, the CMD packet is transmitted. To ensure that the CMD has

been successfully delivered, the destination node must reply with an ACK packet.

The STA packet is reserved to carry typical periodic status information returned

by a node. For stationary nodes this may include salinity and temperature sen-

sor readings, ambient seismic noise, gas concentration data, and other information

encoded into a single string. For AUVs, the string may hold location and depth in-

formation, search pattern data, and other vital internals. UUVs may return mission

progress data and diagnostic information. This message type is non-critical and also

subject to staleness. The rules for a STA message state that the older a status mes-

sage is, the more likely it is to be no longer relevant, and a newer status message is

always preferred over an old one.

As such, a status message does not need to be explicitly acknowledged, but an

ACK option enables the capability to help combat hidden-terminal scenarios in net-

works where the netsize is close to the maximum range of modems. A sending modem

does not need to explicitly inform its attached node that a status message was not

successfully transmitted.

The PNG packet is a special packet. It is not represented by a string, as the other

three packet types are. A PNG is a very brief chirp emanated by a modem that is

meant to be received by a device known as a transponder. A transponder is simply

a repeater device that responds to a chirp with its own chirp. Each mobile node

in the field is programmed with the known GPS locations of the field transponders

prior to the start of a mission. By listening for the response chirps from each of

these transponders and measuring time-of-flight intervals, each node can triangulate

its own GPS-relative location based on the stored transponder GPS data.

A PNG is very short even compared to an RTS, represented by two momentary

31

clicks, leaving only the amount of time they take to propagate across the network as

their relevant delay. As such, the RTS-CTS scheme is wasteful and unwise, and a

PNG is transmitted without any handshaking scheme. Other nodes treat a received

PNG as if it was an instantaneous RTS-CTS-data-ACK sequence, leaving the channel

immediately free once more. A PNG, by nature, does not require an ACK, but only

the response chirps from the transponders in the network.

By setting up different selective handshaking rules in this network protocol, sig-

nificantly less time and bandwidth are wasted on less critical packets, while more

effort is expended ensuring that the critical packets, the CMD packets, get through

the network.

A DAT packet is given an intermediate priority between a CMD and a STA,

because it is unknown how critical the unspecified data payload is to a mission. As

a rule, DAT packets must be followed by an ACK, due to the likelihood that a DAT

packet is a part of a sequential train of packets that represent a large file or constant

data stream. Encoded in each RTS-CTS-data-ACK set is a sequence number. In

this manner, each ACK can be correlated with its associated DAT packet. This aids

both the source and destination nodes in determining which packets in the sequence

were lost, and how to reorder the packets at the destination end, should they be

reprioritized and resequenced in the network.

3.2.2 Packet Loss Scenarios and Network Recovery

There are a number of different scenarios that may take place depending on which

messages, if any, are lost. The system depends on nodes to timeout, that is, reset

themselves to a starting state if a handshaking error occurs in the network. Thus, if

a node is expecting a certain handshaking packet to inform the node that the channel

is now free and the packet does not arrive in a reasonable time, the node can resume

normal operation instead of deadlocking.

If an RTS packet does not make it to its destination, the destination node cannot

respond with a CTS packet. Most nodes in the network will not detect anything,

and will pretend the channel is still clear, allowing them to send their own RTS.

32

RTS for C RTS for C

1 TT CTS for B CTS for B

A B 0
1 TT Date for C Data for C C TT

I TT ACK for B ACK for B 1 TT

LL_

Figure 3-2: Timing diagram for timeout periods. One TT is given by the traveltime
metric.

Those nodes that did hear the failed RTS, if they do not hear a data packet in a

certain time, will experience a timeout, and consider the RTS as being a failed RTS.

Then, they are free to transmit their own RTS. The source node, not hearing a CTS

within the timeout period, will assume its RTS attempt failed and reset its internal

timers, retrying the RTS at a later time. The recommended timeout metric is derived

from the traveltime across a network, given by equation (3.1), where netsize is the

maximum span of one hop in a network, and spsound is the speed of sound in water

of the specific mission environment. This allows for the maximum time it could take

for an expected message to arrive at a node from the maximum distance in a network,

plus a little extra for anomalies resultant from the water. All actual timeout periods

should be a multiple of traveltime.

traveltime = netsize/spsound * 1.2 (3.1)

If the CTS packet is lost, the initial source node will assume its RTS attempt

failed, reset its internal timers, and retry the RTS at a later time. The nodes that

did not hear the RTS or CTS will proceed as normal, assuming the channel is free,

transmitting their own RTS messages when they see fit. Nodes that heard either an

RTS but not the CTS will expect a data packet after two traveltimes. If they do not

see a data packet, they assume they simply missed it, and conservatively wait another

traveltime, allowing the ACK to do its job in case the data packet was successful.

33

Nodes that heard only the CTS packet will wait for two traveltime periods, allow-

ing time for the CTS to get back to the initial source node and the data packet to

return to the initial destination node. If no ACK is heard from the initial destination

node, it is assumed that the initial source did not hear the CTS, the following data

packet was lost, or the ACK simply did not make it to our node in question. The

channel is then free, regardless of what occurred.

In this situation, an optimization choice is available to the users of the network.

One option is to be conservative, and now that the two timeout periods have passed,

perhaps the handshaking failed and we can now send an RTS, or the data packet

made it successfully and now that the channel is free, we can send an RTS. The other

option is to assume that the handshaking was successful but the data packet may or

may not have made it to its destination. Since the channel is already reserved, we can

wait two extra traveltime periods to allow the two communicating nodes to attempt

an immediate retransmit of the data. This intelligent retransmit scheme saves the

overhead of extra RTS and CTS packets later, when the packet is scheduled to be sent

again. In our implementation, we have chosen the conservative route for simplicity,

leaving the option of intelligent retransmit for later developers.

A lost data packet will result in timeouts for all listening nodes, and will prevent

the destination node from ever replying to the source node with an ACK. In this

situation, depending on the intelligent retransmit option, the source node will either

resend the data packet, or will also timeout and retry the data packet at a later time.

A lost ACK packet, depending on the intelligent retransmit option, will result

in an immediate retransmit by the source node of the data packet, or will cause the

source node to timeout and resend the data packet later. Other nodes in the network,

based on whether they heard the data packet or happened to see the ACK packet, will

either see the transaction as timed out, one traveltime period after seeing the data

packet, or will see the ACK packet and determine the handshaking process completed

gracefully.

As we can see, no matter where a packet may be lost in the whole handshaking

routine, the network can always return to an idle state where everyone is given the

34

chance to send their own RTS; this shows a 100 percent ability for any node at any

given time to recover from a packet-loss failure.

3.3 Weighted Probabilistic Transmit

The ICoN protocol was designed with a core requirement to use minimal amounts

of overhead in order to conserve as much bandwidth as possible, since bandwidth is

very expensive at the low bitrates that water allows. As a result, unlike most other

ad-hoc protocols, ICoN uses a number of algorithms to maximize overall network per-

formance cooperatively. These algorithms are entirely encapsulated within each node,

without the need for inter-node coordination messages, to save as much bandwidth as

possible for user-desired transmissions. The most important arbitration system used

by ICoN is a system designed expressly for this protocol termed Weighted Probabilis-

tic Transmit (WPT). The WPT system determines how likely a node is to transmit

at any given time when the channel is free. By ensuring that nodes with more critical

messages are more likely to transmit than nodes with less critical messages, the WPT

system performs inter-node arbitration as well as maintains fairness across all nodes

in a common network.

3.3.1 Queue Weighting

The basis for ICoN's WPT algorithm is queue weighting. Each node continuously

maintains an internal priority queue of all messages the node wishes to output via its

acoustic modem. When a node wishes to send a new message, the protocol adds this

new message to its priority queue. As detailed in table 3.1, there are four distinct

message types. Associated with each of these message types is a base weight, shown

in table 3.2. The CMD has the highest weight, followed by PNG, DAT, and STA.

As messages are added to the node's priority queue, the weights of all messages in

the queue are continuously summed to yield the queue's total weight, or tweight. In

addition, the queue is periodically sorted to ensure the queue is constantly ordered

with the message with highest weight first, decreasing as we proceed through the

35

Message Type] Sample weight

CMD 12
PNG 8
DAT 6
STA 5

Table 3.2: Possible weighting values for sample network. Modifications to these
suggested weights dramatically change the behavior of the network.

messages stored in the queue.

3.3.2 Exponential Delay Curve

To ensure messages do not collide, the network as a whole must minimize the chances

that two nodes will transmit messages at approximately the same time. If each node

were to transmit its RTS messages as soon as it detected the channel was free, via

timeout or a received ACK, there is a high likelihood that two RTS messages would

collide with each other. To solve this issue, ICoN's arbitration mechanism is based

on a variable length delay calculated individually by each node, which decides how

long after the node detects the channel has gone silent does the node actually begin

transmitting its RTS. By attempting to maximize the chance that any two nodes will

have different delay values, the chance of RTS collision is minimized.

A node's delay parameter is derived from an exponential function known as the

Exponential Delay Curve (EDC). The EDC exponential coefficient is derived from the

specific weights given to each of the four message types, the size of the network, the

baud rate, and the length of an RTS packet, and is thus, implementation-dependent.

A sample EDC function is given in equation (3.2), where rand is a random value from

-1 to 1, rtslen is the length of an RTS message in bits, and bitrate is the bitrate of a

typical modem in the network.

delay = 10 * exp(-0.015 * tweight) + rand * (rtslen/bitrate + traveltime) (3.2)

36

12

8

4

0

Exponential Delay Curve (EDC)

max delay i
mean delay

min delay --

likely to wait

- ikly to send next-

0 20 40 60 80 100 120 140

tweight

Figure 3-3: Exponential Delay Curve. Note the operating points of two nodes, and
the direction in which they will most likely move along the curve in the near future.

37

The EDC sets upper and lower limits as well. It ensures that at the minimum

possible total queue weight (one STA message pending), the delay is no greater than

a maximum tolerable value, based on acceptable latency of the network. At the other

end of the spectrum, if a node is heavily burdened with messages, the mean of delay

should be no less than the amount of time it takes for a message to traverse the

network plus the length of an RTS message at the operational bitrate.

The curve is tailored with the observation that typical acoustic networks operate

at the less busy end of the graph with high probability, with the probability of existing

at any given operating point decreasing as tweight increases. In normal operation,

the majority of nodes in a network typically have very few messages queued for

transmission. The exponential decrease of the EDC creates maximum separation

between nodes of low tweight, where each node is probabilistically most likely to

reside, while keeping within the aforementioned delay curve maximum and minimum

parameters. As nodes queue more messages, their transmit delay value decreases.

Thus, a node with a higher priority message type will typically transmit before a

node with a low priority message type, and a node with more queued messages will

likely transmit before a node with fewer queued messages.

To ensure proper operation in situations where all nodes have a typical transmis-

sion load, such as in a static sensor net, the curve is not a hard parameter, but a

probabilistic distribution. Each time the desired delay is calculated, a randomization

algorithm chooses a delay time in a window surrounding its tweight's place on the

curve. This window spans a region above and below the point on the curve by the

length of an RTS divided by the bitrate, plus the specific network's maximum travel

time. This ensures that there is enough variation each time that delay values are

calculated, that two nodes with the same queue contents (and thus same operating

point on the delay curve) will likely be able to choose delays far enough from each

other that an RTS generated by one node can reach the other before it sends its own

RTS.

The EDC faithfully maximizes the difference in delay before the RTS transmis-

sion for the region where nodes are probabilistically likely to lie densely, while still

38

maintaining a high degree of separation for the sparse distribution of nodes where

they are less likely to operate. As we will see later, the EDC is not a fixed curve,

and molds itself over the time of the network's operation to best fit emerging traffic

pattern trends in real-time.

3.3.3 Convergence

A node's tweight is the independent parameter that determines where on the EDC a

node is currently operating. A high tweight yields a low RTS-transmit delay, while a

low tweight results in a longer delay. The reason for this architecture is based upon

a cooperative network model. It is assumed that all nodes in a network are directed

towards a common goal. In this manner, it is critical to afford nodes with more

messages, and more critical messages, a higher probability of being the next node to

transmit, versus nodes with fewer messages or less critical messages.

A node with a high tweight will wait a short delay, and then transmit a message,

while the nodes with lower tweight stand by. Once the node with the highest tweight

has successfully transmitted its message, it now has one fewer message in its queue,

and thus, experiences a reduction in tweight equivalent to the weight of the transmit-

ted message. Since each node works on a priority queue, this transmitted message is

the queued message with the greatest weight for that node, making the decrease in

tweight for that node likely to be significant.

As a result, the operating point on the EDC for that node shifts towards a lower

tweight, and thus higher delay. The nodes that have been standing by, waiting for the

node with greater tweight to transmit will either stay at their operating point on the

EDC, or, if more messages have been queued while waiting, will shift on their own

EDCs towards a higher tweight, and a lower delay. As messages are sent by the nodes

with the lowest delay, and queued by the nodes with the highest delay, all nodes will

tend to converge on a region on the EDC, as shown in Figure 3-3.

If this convergence happens successfully, it indicates that each node in the network

is in equilibrium, with each of their transmission necessities adequately fulfilled by

the network. This ability is adjustable by tailoring the weighting of each of the four

39

message types and how the queue manages the messages it contains, and is generally

achievable in most network-traffic patterns.

3.4 Active Queue Management

The Active Queue Management (AQM) system is the second major innovation intro-

duced in the ICoN protocol, and greatly affects the operation of the WPT algorithm.

AQM provides a standardized way for a node to deal with its internal priority queue,

and assures the queue conforms to a number of standards that WPT assumes for

correct operation.

AQM enforces three major algorithms on the node's queue, in addition to main-

taining invariants like tweight. These algorithms, like the rest of ICoN, are easily

customizable for any desired network, with quickly modifiable basic parameters, and

extended options to allow for optimizations in networks where traffic patterns are

consistent or predictable.

3.4.1 Sorting

To maintain the priority queue structure of the queue, it must remain sorted with

messages of the highest weight first, and lowest weight last. As such, a simple sorting

algorithm is run periodically that keeps this invariant true. Being a queue structure,

the first message is removed and given to the protocol for processing upon dequeue.

New messages are added to the end of the queue upon enqueue. After each enqueue

operation, the queue is sorted to install the newly added element in the proper location

within the priority queue.

3.4.2 Excitation

To prevent message-starvation, and to combat staleness, an algorithm known as exci-

tation is run periodically. As some message types, such as STA messages, are generally

ranked with a lower weight than CMD messages, if a steady stream of CMD messages

40

is added to a queue, an STA may never reach the head of the priority queue within a

node, and thus never be transmitted. In a similar fashion, as multiple CMD messages

are added to the queue, depending on the implementation of the sorting algorithm,

the most recent CMD messages might always be transmitted, neglecting older CMD

messages that might be critical to the mission. In this scenario, CMD reordering also

becomes an issue in missions where the sequence of messages is important.

In the network as a whole, a node with a low tweight as compared to the rest of

the nodes in the network, will never get a chance to transmit, since its tweight will

consistently be lower than the tweight of each other node. The lesser node's delay will

always be higher than all other nodes, and its attempts to reserve the acoustic channel

will always be beaten by the others. Likewise, any one node that can maintain a high

tweight will have a monopoly on the acoustic channel, starving other nodes until they

are backlogged enough to present a greater tweight.

The excitation algorithm alleviates most of these issues, promoting fairness across

the network as a whole. Periodically, at an interval that can be configured for individ-

ual node types, the excitation algorithm examines the whole queue, and increases the

weight of messages still waiting in the queue by a multiplier. In this manner, older

messages will increase in weight, bringing forward in the queue and increasing their

probability of being sent. A backlogged CMD message, for example, will therefore

be moved toward the head of the priority queue, at the expense of more recent CMD

messages. STA messages, if starved in the queue by CMD messages, will increase in

weight and move forward in the priority queue, eventually jumping ahead of CMD

messages in the queue. Nodes that have been starved for a short time will experi-

ence a cumulative increase in tweight, and be able to transmit, even in the presence

of nodes with consistently high tweight, that would otherwise starve the more quiet

nodes in the network[8].

The excitation algorithm allows customization of both the interval that determines

how often it is run, and the multipliers that are individually set for each of the four

message types. Modifying these four multipliers quickly changes the behavior of

networks where enough traffic exists to allow queues to consistently contain pending

41

messages. However, care must be taken not to make the multiplier values too high or

the excitation interval too short, such that all nodes in a network quickly accelerate

along the WPT curve and end up operating in the high-congestion region, where

all delay values are low and spaced close together, increasing the chance of collision.

The parameters should be chosen such that nodes in normal operation should, with

high probability, operate towards the low-congestion region of the WPT, allowing for

maximum separation of delay values per node.

3.4.3 Filtering

The third major algorithm in ICoN's AQM is filtering. As a consequence of excitation,

it is probable that a node that generates large numbers of status messages or rapidly

occurring pings can obtain very large tweight values, though its messages are non-

critical, and, due to the nature of STA and PNG messages, likely outdated. Thus, a

major feature of AQM is the ability for a node to scan its queue, and ensure that at

any given time, there is only one STA and one PNG message present. Since an STA

string typically contains the most recent diagnostic or sensor data being reported by

a node, it only makes sense to transmit the latest STA in the queue. In a similar

manner, any PNG will return the current location information of a node, making

multiple queued PNG messages redundant[6, 13, 9].

However, merely searching the queue for the most recently timestamped STA and

PNG messages and eliminating the remaining STA and PNG messages is not quite

correct. Continually replacing STA and PNG messages with newer ones knocks out

messages affected by the excitation algorithm, inserting fresh, new messages with the

standard low base weight. To correctly ensure that a STA or PNG message in a busy

queue is able to properly increase in weight so it can be sent out, old STA and PNG

messages are eliminated from the queue through filtering, and their weight transferred

to the new, fresh STA and PNG messages, replacing their default low weight values.

This effectively means each node keeps only one weight value each for STA and PNG

messages as a whole, representing one STA and PNG message each.

In more application-specific situations, the filtering algorithm may be used to deal

42

with CMD and DAT packets as well, based on node purpose and design. The filtering

algorithm can be modified by changing the rate at which filtering occurs, though since

it is a maintenance algorithm rather than a state-changing algorithm, it should be

run frequently, or be event-driven on every enqueuing of STA and PNG messages.

3.5 Learning and Adaptive Algorithms

The ICoN protocol contains a number of algorithms that learn based on network

traffic patterns and adapt the previously described systems to optimize bandwidth

utilization and throughput. These algorithms have the greatest effect in networks

where traffic patterns are consistent and predictable. In networks where traffic pat-

terns are constantly changing or erratic, the algorithms simply have no effect. One

major algorithm handles scenarios where very little traffic exists in the network and

the other functions when traffic is exceptionally high.

3.5.1 EWMA Curve Damping System

In networks where very little traffic exists, for example, in small sensor nets where

each node is programmed to transmit a sensor reading once every minute in a round-

robin fashion, a great deal of time is wasted using the EDC feature of this protocol.

Given the low tweight of a node with only one STA message in its queue, each node

will wait a long delay period before sending the message. This period is, as described

earlier, dependent on the parameters chosen for the EDC system by the node designer,

and can be made to be small. However, a designer may not be able to predict the

right values for the EDC system in networks that are event driven, or incorporate

nodes that may turn on and off at certain times. In these situations, where few nodes

are transmitting at wide intervals, we would like the nodes to simply transmit their

data as soon as possible, after a minimal random delay.

To accomplish this without specifically tailoring the EDC parameters to a tighter

delay curve, the EWMA Curve Damping System (CDS) continually modifies the EDC

function based on an estimated weighted moving average of network traffic frequency.

43

An internal parameter is maintained in each node that measures the last delay time

recorded from the network; that is, the time between when the network was detected

as going silent and the next detected transmission (which may be from the node

itself). This value is averaged into an EWMA on each detected transmission cycle,

yielding the average delay that the most busy nodes are running on in the recent past

of the network. As with any EWMA, the EWMA weight multiplication parameter

can be configured to make the CDS learn either faster or slower (deciding how recent

the recent past is).

If the EWMA is high in relation to the node's operating point on the EDC, it

indicates that the majority of nodes are operating at a consistently high delay value

on the EDC. Since no nodes are operating at regions of shorter delay on the EDC, the

majority of delay variation provided by the EDC is wasted, and a more shallow curve

is called for. The CDS, based on the EWMA parameter it keeps and the current

parameters of the EDC, determines a multiplication coefficient (in this case, smaller

than 1) for the EDC system and applies it to the delay curve. By doing so, the EDC

is made more shallow and less eccentric, reducing the unnecessarily high delay values

applied by the unmodified EDC. As long as the randomization algorithm present in

WPT is not modified, WPT will continue to provide enough variation around the

EDC operating point (due to the rtslen/bitrate + travel time term) to minimize the

probability of RTS collision. Following this model, we have eliminated most of the

unnecessary latency created by the EDC, without diminishing our already established

ability to avoid RTS collision.

The multiplication coefficient generated by the CDS can be either greater than

or less than one, allowing the CDS to make the EDC either more or less eccentric,

causing damping at low traffic patterns, and better delay separation in busy traf-

fic patterns. Threshold levels are recommended in the latter case to guard against

possibly extraordinarily long delay periods.

Due to the nature of EWMA, a network that has been operating in a stable traffic

pattern for some time, and thus, operating with a CDS optimized EDC, will function

sub-optimally the moment that the traffic pattern changes to a different pattern. If

44

the change is momentary, when the network returns to the old stable pattern, the

EDC will remain at its optimal point. However, if the network changes to a new stable

pattern, it will take several cycles for the EWMA to catch up, and allow the CDS to

optimize the EDC to the new traffic pattern. Basing the CDS on an EWMA makes

the network particularly resilient to temporary shifts, perhaps due to a new AUV

wandering across an existing sensor net, but guarantees that the CDS will always

adapt if a new stable pattern is desired.

3.5.2 Critical Zone Backoff Routine

The greatest difficulty facing the EDC system occurs when a large number of nodes

build up a large number of messages to send, that is, have a high tweight, thus

operating at a very low delay point on the EDC. This situation generally occurs

when outgoing message volumes are high for most nodes in the network. However,

this scenario poses a larger conceptual problem for the network in general, that is,

the acoustic network only has a certain amount of bandwidth as a whole. If the sum

of the desired outgoing traffic for all nodes in the network exceeds the network's total

bandwidth, evidently the network will eventually fail.

Though this assumption must hold for the network over an extended length of

time, it is conceivable that for a short period of time, more traffic than available

bandwidth might be generated, and queues in a large number of nodes might back

up, such as when a potential target wanders into a sensor net.

One option for handling such a problem is to give queues ample capacity to allow

a large number of messages to back up in the queue, and adjust the EDC to be steeper

to increase separation in delay values even at the low-delay region of the EDC. Then,

we simply wait for each node's queue to slowly drain, once the object has passed.

However, where it is impossible to project the maximum quantity a queue should

hold, or when the administrators of a network wish to retrieve only a sample of

the excessive amount of data, a backoff routine has been devised to deal with these

situations, similar in concept to congestion avoidance systems employed by high-end

network routers today.

45

A node, by observing current traffic patterns, can easily get a feel for how busy

other nodes are, by taking the same EWMA from the CDS, which quantifies the

average delay time on the EDC where most nodes are operating, and comparing it

to its own EDC. If the EWMA representing the observed delay values is very low, it

indicates that at least one node is in a high-congestion region in the network. If the

nodes own EDC is also operating at a region where the delay is comparably low, both

nodes are at high congestion and are competing against each other for the channel.

As this delay value gets smaller and smaller, we approach a region on the EDC known

as the critical zone, where the difference in delay between nodes is small enough that

RTS messages now have a high probability of collision.

By using this method, any node can detect whether it and at least one other node

are both in that critical zone. To ensure that messages continue to get through, the

nodes can increase the eccentricity of their EDC, as presented before, to increase the

difference in delay, or either node can choose to activate the backoff routine. The

critical zone detection algorithm periodically checks the delay EWMA, and compares

it to its own calculated delay from the point on the EDC where it is operating due

to its tweight. If its tweight is high, and both its own delay and the EWMA are very

close together, the routine is activated.

The backoff routine scans the node's own queue, and begins eliminating unnec-

essary messages that are queued. As with all other algorithms, the manner of this

paring can be customized. As a basic rule in the philosophy of ICoN, it is most im-

portant that any CMD and PNG messages be given the maximum chance to survive

and be delivered. Thus, a simple solution is to wipe all STA and DAT messages from

the queue. This can be done in multiple phases, depending on tweight, where first

one type of message is wiped from the queue, and if necessary, the other is removed

as well. Many implementations are possible, depending on the type and purpose of

the node.

Depending on whether both nodes or one node trigger this algorithm, either both

nodes will return to a considerate level of operation in the network and traffic will

resume as normal, or one node will backoff and the other, suddenly seeing that other

46

nodes have eased their delay, will be free to transmit all its data at its existing delay

derived from the EDC and its full tweight.

There are two ways to view this situation. One perception is that fairness has

been violated. One or more nodes sacrificed their pending messages for the good of

the network, and by doing so, a few nodes suddenly think the network is no longer

very busy, and opportunistically take the liberty to send all their data. A second

perception is best exemplified by a sensor network, where a potential target object

triggers massive amounts of communication in the network, but it is only necessary

for a small amount of that data to reach the network administration body. Many of

the messages are redundant, indicating that a node has detected the same target that

all other nodes also have. In this case, it is not only acceptable, but even preferable,

for the majority of the nodes to drop their detection messages, promoting messages

from only a sample of nodes to be successful. However, in networks where fairness is

essential, the critical zone backoff routine should be disabled, and a better solution

must be found to coordinate fairness between all nodes in the network.

3.6 Combined Protocol Analysis

The aggregate effects of different message types and prioritization, the WPT system,

and the AQM system yield a stable network protocol that correctly deals with both

communication and navigation messages in a best-effort probabilistic manner. Simple

wireless-like handshaking handles the most basic transport-layer issues, while the

philosophy of the WPT and AQM systems not only provide a method for minimizing

RTS collision, but a whole behavior system for each node in a network.

The system works best when networks are cooperative, since nodes are designed

to observe and anticipate the actions of nodes they can hear, each being courteous

of each other as the network continues to develop. To allow optimizations in cooper-

ative networks, many parameters can be easily adjusted in each algorithm, yielding

infinitely customizable behavior patterns.

As a very basic methodology that comes from working in a low-bandwidth, high-

47

latency environment, the ICoN protocol uses neither probing nor detection messages

to find the status of the network around it, nor nearest neighbor lists that are fre-

quently maintained by ad-hoc networks by these means. Each node is self-contained in

its traffic-detection abilities, utilizing only one-ended, passive techniques for network

evaluation.

By integrating learning and adaptive algorithms, the core WPT system can be

easily optimized for any network where traffic is relatively consistent, as most networks

are. Furthermore, ICoN has the ability to adjust to any changes in general traffic

patterns, without any need to reprogram or redeploy nodes. Small variations do not

affect the operation of the protocol, due to long-history EWMA dependencies.

The ICoN protocol suffers limitations when congestion in the network is high

and every node wishes to transmit a large amount of data. A backoff scheme has

been introduced to combat this situation, however, there is no way to solve this

problem while keeping traffic detection algorithms one-ended and fully passive. Work

being done to increase bitrates for acoustic modems would tremendously reduce these

limitations, in addition to providing other benefits, like greatly reduced probability

of RTS collision. Shorter handshaking messages translate directly to tighter delay

windows, making delay separation between nodes far more probabilistically likely,

yielding much more robust operation of this protocol.

48

Chapter 4

Implementation

4.1 Historical Development

The history of the development of the ICoN protocol dates back to October 2003,

shortly after AUV Fest 2003, held in August 2003 in Keyport, WA. Hosted by NUTEC

(National UUV Test and Evaluation Center) at NUWC (Naval Undersea Warfare

Center), and supported by ONR (Office of Naval Research) and NAVSEA (Naval Sea

Systems Command), part of AUV Fest 2003 was to demonstrate the interoperability

of AUVs of multiple types and manufacturers to accomplish a joint naval mission.

The specific task was underwater mine detection and neutralization, funded as part of

ONR's Very Shallow Water/Surf Zone Mine Counter-Measures Program. (VSW/SZ

MCM).

The architecture used a central control node, employing round-robin polling. The

individual AUVs communicated synchronously, using the polling scheme to arbitrate

their communications to avoid collision. However, the AUVs used asynchronous navi-

gation, broadcasting pings whenever they required a location fix. Watching navigation

pings repeatedly collide with in-flight communications led to the realization that an

arbitration scheme was necessary that incorporated both communication and nav-

igation into a unified asynchronous protocol. In addition, the new protocol would

have to support a broader concept of a network with an arbitrary number of nodes,

instead of being a point-to-point system. Finally, the very low bandwidth available to

49

acoustic modems, combined with the high loss rates incurred whenever a disturbance

occurred in the water, made it vital that overhead remain low, and recovery times be

fast.

A collaboration between WHOI (Woods Hole Oceanographic Institution) and MIT

was formed in December 2004, with the protocol issue delegated to MIT as part of

the VSW/SZ MCM program, with WHOI focusing on underwater acoustic modem

design. The partnership was orchestrated as a year-long investigation, with prelimi-

nary studies beginning in January 2004, and formal investigation beginning in June

2004.

The initial plan was to devise a protocol that would instantly overlay the existing

transport layer, allowing implementation as a black-boxed translator layer between

the AUV hardware and the acoustic modems. The first prototype of the protocol was

dubbed the protocol implementation box, and was a single-board 586-based computer

with serial RS-232 input and output. The PI box would simply be inserted in the

serial link between any AUV and acoustic modem.

As the protocol developed, it became clear that this middle-of-the-road tactic

was inefficient, and the protocol should take one of two forms. The first was to

integrate the protocol into the AUV software, as an onboard API to interact with

the modem. The second was to integrate it into the modem firmware, seamlessly

joining the protocol and transport layers. As it was not feasible to modify the modem

firmware, the first option was chosen, allowing the synergy of having easy handles into

the protocol software to ease debugging, and provide greater operational visibility to

the development environment.

In its current incarnation, the protocol software is a C++ based library, able to

be placed in any AUV's code, though a full rewrite will eventually be required to

clean up the heavy prototyping. The API offers function calls to send and receive

all four types of messages over the network, clearly abstracting the barrier between

application-level code and protocol-level arbitration, but also including cross-layer

handles to monitor current protocol status and performance.

50

4.2 Protocol Implementation

The ICoN protocol is best implemented as integrated firmware onboard an acoustic

modem to ensure that the network layer protocol cannot be decoupled from the

transport layer mechanism. If this coupling is not enforced, any node can simply

start transmitting data on the transport layer, disrupting all legitimate handshaking

occurring on a network, leading to unfairness and starvation. As with the Internet,

it is necessary to transmit all data utilizing some sort of protocol to ensure that the

invariants that other nodes expect remain constant.

For first-run purposes, however, the protocol was implemented as a C++ library

that runs on the node's onboard processor, rather than on the attached modem. To

interact with the modem, the node was required to call protocol library functions.

These functions allowed the capability to send each of the four message types, check

to see if an incoming message has arrived, and to retrieve an arrived message.

As such, ICoN functioned as a clean API for the modem, in addition to being

a network protocol, hiding all transport layer issues of the modem from the node.

The abstraction barrier resulted in a situation similar to placing the protocol on the

modem as firmware, because the details were hidden to the node of what was actually

being transferred between the onboard library and the modem.

The protocol library commanded the modem to send messages via a serial link.

The ICoN library handled all queuing, dequeuing, handshaking, and protocol algo-

rithms. When it was time to physically send a message, a string was sent over the

serial link to the modem and immediately dispatched to the network. Incoming net-

work traffic was passed directly to the protocol library by the modem via the serial

link, and was processed by the library.

The only limitation to this architecture was the capability of the node. Ideally,

in this setup, a node would be designed with a multithreaded processor, with one

thread explicitly assigned to a main function in the protocol implementation. This

main function would continuously monitor the serial link, while running the protocol

algorithms based on runtime timers, and calling library functions when events needed

51

to occur. On non-threading processors, the library is used in a polling configuration,

where a catch-all function is called periodically by the single thread of the node's

program. Via setting and checking delays and timers, the protocol is allowed to

operate as desired, provided the protocol is polled frequently enough.

Since the serial port of a node is a physical hardware device and, therefore, hard-

ware dependent, a virtual class needed to be created to abstract the send and receive

functions of the port, specifically SendString(, IsString(, and GetString(. The man-

ufacturer of the node is responsible for subclassing this virtual class, providing these

three methods to the protocol library.

For simulation testing, a simulator was created in Java, and given a graphical user

interface. Through a Java Native Interface layer, the Java simulator application is

able to create as many instances of a node with attached protocol as desired, and

allow those nodes to engage in artificial network traffic. The simulator mimics the

water environment, functioning as an intermediary between all nodes. By faithfully

reproducing propagation delays and collision effects, network traffic was effectively

modeled for an acoustic environment for the initial troubleshooting of the ICoN pro-

tocol.

The final phase of evaluation involved a mobile testbench, equipped with three

acoustic modems. The testbench used real acoustic modems in a true body of water,

attempting to ascertain the effectiveness of this protocol in the everyday physical

environment.

52

Chapter 5

Results and Evaluation

5.1 Testing and Evaluation Methodology

To rapidly collect a large amount of data regarding the performance of the ICoN

protocol, a C++ based testbench was created in addition to the Java simulator, with

a greater ability to vary individual component parameters. The C++ simulator chose

random positions for each node created, taking into account pairwise travel times, as

well as hidden terminal situations. Travel time jitter and random blackouts were also

added to the simulation, as was random message loss. In addition, timing glitches

were randomly inserted, to allow two pairs of nodes to effectively handshake across

each other for dedicated access to the channel at the same time. This tested the ability

of ICoN to recover from such situations that are bound to occur in the unpredictable

underwater environment.

A four-node topology was organized, equipped with a centralized message-generation

utility that randomly dispatched indexed messages to the four nodes, at various aver-

age rates. Messages in the system were tagged as the simulation progressed, indicating

whether they successfully reached their destination node, or whether some phase of

the handshaking cycle experienced a collision and was disrupted. The remainder of

generated messages that went untagged were either dropped by the protocol due to

staleness, or backed up in the nodes' queues due to inadequate sending bandwidth.

A second Control protocol was created to serve as a benchmark for the ICoN

53

system. The Control was equipped in the way that a decentralized acoustic network

would be with today's existing technology, but without ICoN. Instead of using ICoN's

four-stage handshaking, the Control set a random transmit timer for each message,

and sent the desired message when the timer expired, with no overhead. Nodes

hearing the beginning of a message held off their desired transmissions, until they

determined that the current transmission ended.

Both ICoN and the benchmark protocol were subjected to varying average traffic

rates dispatched to each node. Success and collision data was output to file for anal-

ysis. For greater detail on individual interactions, the Java simulator was consulted

and frequently used to revise the operation of ICoN.

5.2 Model-Based Predictions

Initially, predictions based on simplified models of network traffic determined that at

low sending rates, both the Control protocol and ICoN should perform similarly. Long

delays between message generation would give each protocol plenty of time to send

messages as they appeared, without messages accumulating in queues, though ICoN

would add a significant latency to each message due to the EDC. This would make

the Control protocol more optimal because messages are sent at once, eliminating the

danger of messages going stale while waiting for the delay timer in ICoN's queue. At

very low rates, the probability of collision is near zero, making the Control protocol

safe.

As traffic rates increased for each node, there would be a period where the Control

protocol would perform better than ICoN, when messages began building up in ICoN's

queue, due to the imposed delay latency by the protocol. The Control protocol would

not experience this queue buildup, and would pump messages out faster, resulting in

a larger number of successfully delivered messages at the end of the trial. At these

rates, probability of collision is likely low enough to only be a minimal factor.

As the delay between generated messages continued to diminish, traffic rates in-

creased to the point where collisions started to affect the performance of the Control

54

protocol. From this point onwards, ICoN should perform significantly better in terms

of collision avoidance than the Control protocol, due to its arbitration scheme, even

though the delay inserted by ICoN will cause it to attempt to send far fewer messages

than the Control during the fixed time interval.

5.3 Simulation Results and Evaluation

Extensive validation through simulation exposed some properties not identified though

model-based prediction. As expected, at low sending rates, both the Control protocol

and ICoN performed comparably, though the effect of collisions on the Control pro-

tocol was underestimated. This led to a modestly better performance (20 percent)

of ICoN over the Control protocol at sparse sending rates, translating to roughly

one message per node every 45 seconds, equivalently one message for the four node

network every 11 seconds.

As sending rates increased, the number of messages delivered successfully to the

destination node gently increased for both protocols, with ICoN steadily increasing

its percentage lead over the Control protocol (peaking at 30 percent) for the number

of successful messages per total generated messages.

The gentle increase for the Control protocol was resultant of two factors; the

difficulty of sending packets due to an exponentially increasing chance of collision,

and the sheer number of packets being generated with a dumb chance of success. To

a point, the slim probability of each message getting through allows the number of

successful messages transmitted using the Control protocol to increase as the number

of messages generated increases exponentially, despite growing numbers of collisions,

before congestion collapse occurs.

The gentle increase in ICoN initially follows the message generation curve as it

begins to rise. As the protocol overhead introduced by the delay catches up with the

frequency at which ICoN can transmit, the success curve diverges from the message

generation curve. Since ICoN has reached a ceiling due to its overhead, one would

expect it to level off; however, due to the ability to slide down the EDC as traffic

55

Control: Number of Successes, Collisions, and Generated Messages over Fixed Interval

45 42 39 36 33 30 27 24 21 18 15 12 9
message generated every x seconds (each node)

-- success -e- colision - generated

180

160

140

120

100
E

0

80

.60 r

40

20

Figure 5-1: Successes and collisions in a fixed interval test using "Control" protocol.
Note the congestion collapse as sending rates increase, and the reduction effect of

collisions on successes.

ICoN: Number of Successes, Collisions, and Generated Messages over Fixed Interval

- - - -- - - - - - - - - - -. 180

160

140

120

100
E

80

60

-~ 40

20

39 36 33 30 27 24 21

message generated every x seconds (each node)

- success - collision -+- generated

18 15 12 9

Figure 5-2: Successes and collisions in a fixed interval test using ICoN. Note the

attempt of ICoN to follow the generation curve initially, until it levels off, without a

congestion collapse. Collisions also do not detract from successes, due to retransmit.

56

45 42

increases, ICoN continues to steadily deliver increasing numbers of packets as more

messages are generated, with modest but constant gains. The remaining generated

messages that do not result in collisions or successful transmissions are simply backing

up in each node's queue, destined to be sent when traffic slows down, or to be dropped

by the node due to excessive traffic being detected.

All packets were considered high-priority in the simulation testing to observe the

most mission-critical application of such a network, and the critical-point backoff

routine was disabled, to see how poorly ICoN would fare in such a situation. As

the sending rate reached the maximum imposed by the simulation and heavy queue

congestion began burdening ICoN, this percentage lead declined, but maintained a

reasonable percentage lead (15 percent) over the Control protocol even when all nodes

had passed the critical point where ICoN was predicted to break down.

The Control protocol, as expected, flooded the channel with collisions as sending

rates increased, though sheer volume of transmissions allowed it to successfully push a

fair number of successful messages through. The rate of successes followed the afore-

mentioned gentle increasing trend, before suffering a rapidly decreasing breakdown,

as the number of collisions in the fixed interval of time increases exponentially, to

nearly 90 percent of all messages generated.

In contrast, ICoN maintains a fairly steady number of successful transmissions,

regardless of message generation rates. This is largely due to the ability of ICoN to

avoid collisions using its four-way handshaking, and eliminate the hidden terminal

problem. Ideally, ICoN should experience no collisions at all, but the simulator's

random blackouts and timing glitches force handshaking messages to disappear and

become reordered, and collisions to appear. ICoN manages to keep its response

to this phenomenon steady, and more importantly, low (below 20 percent) for any

transmission rate. Though at high transmission rates messages begin backing up in

nodes' queues, a user can always be sure that a large percentage of messages that

are actually transmitted are getting through, and little channel time is wasted by

collisions.

The largest impact of ICoN is demonstrated by the profile of messages that are

57

Control: % Collided Packets over Fixed Interval

percentage of packets experiencing a collision
0 10 20 30 40 50 60

45

42

39

o36

33

30

27

* 24

21

18

E
15

12

9

70 80 90 100

Percentage of transmissions resulting in a collision
traffic rates.

for "Control" protocol

0 10 20

45

42

39

o 36

33

30

fr27

j24*

21

15

12

9

ICoN: % Collided Packets over Fixed Interval

percentage of packets experiencing a collision
30 40 50 60 70 80 90 100

Figure 5-4: Percentage of
traffic rates.

transmissions resulting in a collision for ICoN for various

58

Figure 5-3:
for various

Z ", , % --

Control: % Successfully Delivered Messages of Messages Attempted

percentage among broadcasted messages successfUlly received by destination

0 10 20 30 40 50 60 70

Figure 5-5: Percentage of attempted messages successfully delivered by "Control"
protocol for various traffic rates.

ICoN: % Successfully Delivered Messages of Messages Attempted

percentage among broadcasted messages successfuly received by destination

0 10 20 30 40 50 60 70

45

42

39

S36

30

S27

a24

21

18

E
15

12

80 90 100

Figure 5-6: Percentage of attempted messages successfully delivered by ICoN
various traffic rates.

59

80 90 100

45

42

39

36

33

30

27

24

21

15

12

9

for

smaaassmI FE

r7 --- 7-, 7

IJ 4

OR 09ayra Wm

actually attempted to be sent across the network, in contrast to the messages that are

simply generated and queued in a node. This percentage of attempted messages di-

rectly translates to the number of messages that an unacknowledged protocol will lose

forever, and the amount of time in a network wasted by resending collided messages

in an acknowledged network.

These test results indicate the ICoN protocol may lead to a roughly two-thirds

increase in the percentage of successes per attempted transmissions, integrated across

all sampled transmission rates. While this percentage deteriorates rapidly for the

Control protocol, ICoN's percentage of success begins at 90 percent (15 percent higher

than the Control) for very sparse traffic rates, and remains above 75 percent for all

tested attempted transmission rates.

Though ICoN shows a significant improvement over the Control protocol for mes-

sages delivered successfully, there is a caveat in the statistics. The Control protocol is

meant to replicate systems in use today. In this case, not only does the Control pro-

tocol not include the EDC, WPT, and other algorithms used in ICoN, but it does not

employ retransmit either. Should the Control protocol be enabled with retransmit

capability, it is likely that there would be improvements in its successful transmission

statistics, but not in its ability to avoid collision. In addition, some of the retransmits

might yield further collisions as well. The previously presented data should be viewed

with this retransmit issue in consideration when choosing a protocol.

5.4 Real-World Validation

The ICoN system was validated in the field on 19 August 2005 off the coast of Fal-

mouth, MA. The test setup consisted of three nodes, each equipped with a message

generation module and the ICoN protocol, connected to an acoustic modem and an

acoustic transducer. The acoustic hardware was provided by WHOI's Acoustic Com-

munications Laboratory. The transducers were suspended 20 feet deep in the water

column, and placed at various distances from each other at WHOI's facility.

Each of the three nodes was subjected to a test pattern that consisted of 7-

60

Validation: Measured Quantities over Fixed interval Test Runs at Varying Traffic Levels

70

s0

60

40

30
E

20

10

0

-o ------ -------- - - -

- -

6 12 16 24 30 36 42 48 54 60

total number of messages generated In network over fixed Intenral

-*- Generated - a-- RTS sent 4-- Collision --- Lost - -- Acknowtedged

Figure 5-7: Line graph showing measured quantities of events over fixed interval tests.
The number of generated messages is the independent variable, and increases linearly
across various test runs. Note that the number of RTS messags sent is initially higher
than the number of messages generated, since some generated messages require more
than one RTS if the initial RTS collides with another RTS. Eventually, the number
of generated messages surpasses the number of RTS messages sent, as the network
approaches capacity. This is indicative of messages accumulating in nodes' queues.
The number of collisions and packet losses remain low, with both gently increasing
as traffic levels increase.

61

minute long tests, each subsequent test at greater traffic rates. Minimally, each

node generated only two messages during the test interval, or roughly one every 200

seconds. At the highest traffic level, each node generated 20 messages during the

test interval, or roughly one every 20 seconds. This maximum value was chosen to

correspond with the maximum safe transmit rate of the acoustic modem's power

system.

Each node generated its own log file of all messages it sent, received, and detected

in passing. The log files were then parsed and analyzed, looking for RTS messages

sent, CTS messages received, and ACK messages received.

Results were generally as expected. The number of acknowledged messages ini-

tially attempted to keep up with the number of messages generated, rounding off

as traffic rates increased, eventually reaching a steady value. The quantity of RTS

messages began higher than the number of messages generated, since each gener-

ated message might require more than one RTS if that RTS gets collided or lost.

Eventually, the number of generated messages outpaces the number of RTS messages

that the network has capacity for. Both the number of collisions and message losses

remained low, with gradual increases detected in each.

As network traffic reached their highest levels, a slight change in network operation

was observed. As the EDC began operating in higher-congestion regions, the delay

applied to RTS messages decreased, allowing more to be sent more frequently. This

led to an increase in acknowledged packets as well, though not a significant increase in

collisions or losses. This phenomenon indicates that the EDC's parameters were not

optimally tuned to the traffic patterns in the network, since the EDC should yield a

continual increase in acknowledged packets though all traffic rates. However, though

not optimally tuned, the EDC did have its intended effect in facilitating a gradual

increase in successful transmissions as congestion increases at high congestion levels,

instead of leading to a congestion collapse.

Percentage analysis of specific message characteristics yielded results of generally

the same shape as simulation results. Success rates of generated messages begin high,

rolling off as the rate of generation surpassed the capacity of the network. The effect

62

6

12

18

'~24

S36

42
S

48

54

60

Validation: % Successfully Acknowledged Messages of Messages Generated

percentage among generated messages successfully acknowledged by destination

0 10 20 30 40 s0 60 70 80 90 100

~i '| * <

Figure 5-8: Percentage of generated messages successfully acknowledged in validation
testing for various traffic rates. This value begins uniformly high, until message
generation outpaces the capacity of the network, at which point there is a roll-off.
ICoN's EDC system prevents the decrease from being sharp, and even helps the
network catch up as traffic levels approach high quantities. These percentages can be
improved by tuning the EDC's parameters.

of the EDC is seen at high traffic rates, as messages build up in each node's queue,

pushing the node's operating point along the EDC, and forcing more messages to be

sent.

Success rates of messages that eventually manifest themselves as an RTS remained

high, as in simulation, though at slightly lower percentages. These percentages re-

mained consistent across all traffic rates with a slight decline, and then an EDC-

facilitated recovery. Optimally, EDC parameters should be tuned such that this

percentage holds constant, instead of showing a decline and recovery.

As the most important effect of ICoN, through all traffic rates, collisions remained

low. As traffic rates increase, the probability of RTS collisions increase as well.

However, though traffic rates increased linearly through the tests, collision rates did

not increase linearly, but logarithmically instead. This shows optimistic promise for

nodes of higher transmit frequency or networks with greater numbers of nodes.

63

.... 4 -

0 10

6

12

S24

30

36

42

S48

54

60

Validation: % Successfully Acknowledged Messages of Messages Attempted

percentage among attempted messages successfully acknowledged by destination
20 30 40 50 60 70 80 90 100

Figure 5-9: Percentage of attempted messages successfully acknowledged in vali-
dataion testing for various traffic rates. Note that this percentage starts and stays
high, never sinking below 60 percent, and averaging just below 70 percent. The grad-
ual decrease across the tests shows signs
quantities, due to the EDC. Once again,
likely be flattened out.

of recovery as traffic levels approach high
by tuning the EDC's parameters, this can

64

_i1~_L~ L-T

Y~,,~K~1~1_I II
~ .-. I~_IS__--.- -,--- -------.,.....

________ K ________ I ________
__]

[I I

Validation: % Collided Messages of Messages Attempted

percentage among attempted messages resulting in a collision

0 10 20 30 40 50 60 70

6

12

'~2t

s30

c 36
'-

3 42

.!48

54

60

s0 90 100

Figure 5-10: Percentage of collided messages of messages attempted in validation
testing for various traffic rates. As expected, at low traffic rates, collisions are highly
unlikely due to the sparseness of RTS messages. As the density of RTS messages
increases, there is an increase in collisions, but that percentage increase appears
logarithmic, instead of linear with respect to traffic rates. The percentage of time
wasted due to collisions remains below 15 percent, averaging just below 10 percent.

65

........ -

Validation: % Messages Lost of Messages Successfully Handshaked

percentage among handshaked messages lost in transmission
0 10 20 30 40 50 60 70 80 90 100

12,

S18

24 __ _1

30

m" 38 ________

* 42

t;48

54 __________

60 ____

Figure 5-11: Percentage of lost messages of messages that were successfully hand-
shaked in validation testing for various traffic rates. These are cases where the RTS
and CTS messages have been successful, but the main data packet or acknowledgment
gets lost due to acoustic anomalies. Regardless of traffic rate, this percentage of lost
packets remains fairly constant with only slight variation. This is expected, as the
physics of the link layer are independent of traffic rates. The measured percentage is
generally confined between 20 and 30 percent, and averages around 25 percent.

Loss rates were defined as transactions that handshaked properly, but in which the

message was never acknowledged. The interacting nodes had control of the channel,

but due to environmental factors affecting acoustic transmission properties, the data

or ack packet was not delivered. In these cases, the message was likely attempted again

later, but a loss was recorded anyway for statistics purposes. Since environmental

factors and link-layer effects are independent of protocol operation, node quantity,

and traffic rates, this percentage remained relatively constant across all tests and

traffic rates.

Through this validation using real off-the-shelf modems in a non-controlled body

of water, ICoN has demonstrated its ability to function dutifully as a viable commu-

nication and navigation protocol for real-world applications. The resultant validation

data, by being in line with simulated data, indicates that ICoN's systems and al-

66

gorithms do indeed function as they were designed, facilitating the operation of a

decentralized asynchronous network.

67

68

Chapter 6

Future Expansion

The ICoN protocol is designed specifically to work well in today's underwater acoustic

environment, and makes many sacrifices to keep protocol overhead as low as possible.

The guiding philosophy is to ensure that all operation is single-ended, with all nodes

passively monitoring the traffic in the acoustic channel, and making decisions based

on what they detect.

However, if the bandwidth of underwater acoustic modems can be increased, the

capability of the network rises, making significant enhancements possible. With in-

creased bandwidth, overhead can increase, allowing nodes to probe for traffic, keep

lists of neighbors, and take advantage of power-throttling technologies by using inter-

node protocol packets that are more efficient at giving each node a correct picture of

current network traffic as a whole.

The techniques presented in the following sections of this chapter may have great

potential to increase the efficiency and effectiveness of underwater acoustic networks

of the future, should the transport layer become faster and more reliable, an almost

certain consequence of further research and development.

6.1 Explicit Awareness of Neighbors

Ad-hoc networks frequently optimize sending and retransmit schemes using continu-

ally updated nearest-neighbor lists. Each node periodically sends a probing message

69

to see which nodes around it are reachable and thus respond. By doing this on a reg-

ular basis, nodes always keep a table of all nodes that are their immediate neighbors.

In single-hop networks, by knowing which nodes are currently reachable from

itself, nodes rarely waste time transmitting to a node that is out of range. Nodes can

enqueue messages and hold them for nodes that are currently unreachable, and, once

they determine that the destination node is now nearby, transmit the relevant data

to that node.

Even more powerful is the ability to do routing and message redirection. Taking

the probing message idea one step further, if a node embeds its own nearest neighbor

list in the probe message, the immediate neighbors of that node know not only that the

sending node is an immediate neighbor, but also what nodes are immediate neighbors

of that node. By keeping a table of each immediate neighbors' neighbors, it is possible

for every node to quickly derive a path to every other reachable node in the network,

and, with a simple algorithm, determine the shortest such path. This makes it possible

to relay messages from node to node, to reach destination nodes otherwise unreachable

from the source node. Many other benefits are also afforded to a system that can

keep track of neighbors and paths.

6.2 Cooperative Navigation

Currently, every node in a network that possesses the ability to navigate must emit

active sonar pings off pre-located transponders in order to triangulate its location. As

the number of nodes in a network increases, it is likely that soon, all available network

bandwidth will be used solely to obtain navigation data from each node's active sonar

pings. This is evidently an unacceptable situation, unless the only purpose of these

nodes is to know where they are[14].

To function adequately on networks with large numbers of nodes, it is possible

for nodes to navigate cooperatively off each other. Some nodes would need to remain

stationary, with knowledge of their own location, analogous to the baseline naviga-

tion transponders of today. When faced with a navigation request by another node,

70

the stationary nodes would transmit a brief packet with their own location and a

timestamp of exactly when the message was sent out.

By receiving three such messages, any node can use the location data and times-

tamp values to triangulate its own position. In this manner, each node needs to emit

a ping barely strong enough to be reached by the closest three nodes, regardless of

whether they are stationary or mobile nodes. From the data, the network continu-

ally passes navigation information through it, updating all parts of itself frequently

enough to be correct with a reasonable level of probability[12].

Nodes can even be used as stationary beacons, broadcasting their location and a

timestamp for everyone to hear. As long as any regular node hears three beacons,

it can determine its own location. The only caveat to this system is that precise

clock synchronization is needed network-wide. If this requirement is possible, and

if nodes can reduce the volume of their pings to reach only the nearest nodes, it

becomes possible for very large networks of mobile nodes to successfully navigate

without monopolizing the channel.

6.3 Network Mapping

With the infrastructure provided by an ad-hoc cooperative navigation scheme, nodes

could even construct internal maps of all nodes that are nearby in the network. With

increased bandwidth, it becomes cheap for a node to encode its own position in every

packet it sends. Combining this feature with reachable-neighbor lists, a node in the

network could construct a spatial map of every node in the entire network.

Node designers could use this ability in many ways, depending on the special

application of their nodes. A sensor net could be self-repairing, should any node

be damaged. Fleets of AUVs could automatically coordinate with each other in

mapping operations, forming their own adaptive spatial nets based on their own

internal knowledge, without explicit commands from a command center. For power-

conserving networks, the ability to form internal maps is vital for transmission power

throttling.

71

6.4 Power Control, Ad-Hoc Subgrouping

As determined by previous ad-hoc network research, the lowest-power path between

two nodes is not a direct path between them, but a sum of short possible hops between

the two nodes. With internal maps, nodes can calculate power levels and determine

the lowest-power paths to each possible destination node[2].

Perhaps even more powerful is the idea of ad-hoc subgrouping. With the ability

for a node to throttle its power to be just strong enough to reach its desired destina-

tion, and an internal map of all nodes in the network, networks can form subgroups

consisting of clusters of nodes that happen to be close to one another. Since commu-

nication messages are now quieter, each group can communicate independently, with

multiple groups each communicating within themselves simultaneously. This greatly

increases the effective bandwidth of such a network.

Furthermore, the idea of subgrouping implicitly creates a hierarchy in such net-

works. This leads to powerful network communication techniques, including multi-

cast. The foundation for such self-organizing hierarchies is the ability to cooperatively

navigate, form internal maps, and throttle a node's transmission power.

6.5 Burst-Transmit Throttling

Today's acoustic modems are already equipped with channel-diagnostic tools, which,

upon reception of each transmission, quantify the integrity of the link with the source

of the message. Keeping EWMAs of data quality factors, along with a nearest neigh-

bor list can lead to power control optimizations. When the link quality with a neigh-

bor node is poor, a node may choose to send packets sparsely, just often enough to

probe the channel to check for changes in link quality. This saves a node from send-

ing consistent high-intensity transmissions in order to overcome the poor link quality,

conserving otherwise wasted power. When the link quality is good, a node can pump

data at high bitrates, bursting data over the link at full speed. As the channel is

likely cleaner, lower transmit power is needed, yielding the best efficiency per bit.

72

Chapter 7

Conclusion

Simulation testing comparing the ICoN protocol to the performance of decentralized

networks using technology available today, and validation of its performance through

real-world evaluation, demonstrates that ICoN achieves marked increase in network

capability. Unlike other arbitration schemes, ICoN wastes no bandwidth on network-

probing or inter-node status-sharing messages, and is fully single-ended, encapsulated

in each node, using only passive means to monitor network traffic.

Despite the lack of status-sharing messages, ICoN is able to consolidate the most

important information about local network traffic through indirect means. ICoN

then plugs this sensed data into a number of algorithms that determine not only how

a node decides to send messages, but also how it should manage its own internal

message-handling resources.

Furthermore, ICoN serves as a rudimentary behavior system, setting message

type priorities, and modifying the transmission profiles of nodes to better serve their

specialized use. This behavior system and ICoN's algorithms are taken a step further,

incorporating learning and adaptive algorithms to allow nodes to optimize themselves

in real time within a changing network, and maintain stability in networks with a

wildly changing environment.

ICoN is highly customizable, giving users access to a wide variety of parameters

that, when changed, lead to very different behavior patterns, thus allowing the end

user to manually optimize the performance of ICoN in networks where traffic patterns

73

are well known and predictable.

Limited ICoN testing in the underwater environment appears to validate ICoN's

ability to perform as intended in the application for which it is designed. ICoN

provides a clean interface to real-world hardware, showing itself integrable in today's

modern systems.

Most importantly, the protocol is suitable for both stationary and mobile nodes,

which is where ICoN gets its signature feature: the first network protocol that com-

bines two independent systems, communication and navigation, in an asynchronous,

decentralized arbitration scheme that allows both systems to use a shared communi-

cation medium cooperatively.

74

Appendix A

Figures

75

snd pi-hear RTSor CTS--

Ene Esique
henr AC o rar-ACear ACK r tOmeuut-

hear ACK or timCout

hear ACK or timst

time"u
Waing for CTS

hear RTS or CTS

hear CTS. snd DATA hear ACK or timout

kite

W-ing for ACK

Figure A-1: System state diagram.

76

Beachsid6
Control

(or AUV)

Beachside
control

Status

Beachside
(or AUV)

Mcr-Modem

Beachside
Mcro-modem

RTS

CS

Command

ACK

rs

CTS

status

ACK

AUV
Micro-Modemn

AUV
MiAcro-Modem

-Vmen

AUV

AUV

Command

Status

Pingg
Transponer \F AUUavigationMrM-Modern Ping

Respons.

Figure A-2: Block diagram of interaction of protocol instances with each other and
with their respective nodes, for different message types.

77

Common J

yes

In+oing f yr

Re- m gssn to - -

Timeute Reenwep1Stwyes Yes

is tiWait for Momea ge r CIing Pas t ing
Fgue A3: Softe Tas pnd t tanspode fo inmnat to

< fapmserespsp-?nodo

>mos? Yes+ #s

-n no no

wftRfor CTS " "rr yg C ranmNtMWssar -- ai o A jnmon"ACK? yO

Figure A-3: Software flowchart. This presents a useful guide for implementation.

78

Appendix B

Protocol Code

The source code for the prototype ICoN protocol implementation can be found at

"http://web.mit.edu/rkanthan/ICoN/".

Alternatively, a copy of the source code can be obtained by emailing the primary

author at "rkanthanAalum.mit.edu".

79

80

Bibliography

[1] H. Balakrishnan. Single-link communication , 6.829 computer networks lecture

notes. Technical report, Massachusetts Institute of Technology, 2002.

[2] H. Balakrishnan. Wide-area unicast routing, 6.829 computer networks lecture

notes. Technical report, Massachusetts Institute of Technology, 2002.

[3] H. Balakrishnan, Venkat Padmanabhan, Srinivasan Seshan, and Randy H. Katz.

A comparison of mechanisms for improving tcp performance over wireless links.

IEEE/ACM Transactions on Networking, December 1997.

[4] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. Macaw: A media access

protocol for wireless lans. In Proc. ACM SIGCOMM, pages 212-215, London,

U.K., September 1994.

[5] D. Clark. Design philosophy of the darpa internet protocols. In Proc. ACM

SIGCOMM, pages 106-114, Stanford, CA, August 1988.

[6] D. Clark and W. Feng. Explicit allocation of best-effort packet delivery service.

IEEE/A CM Transactions on Networking, 6(4):362-373, August 1998.

[7] D. Clark and D. Tennenhouse. Architectural consideration for a new generation

of protocols. In Proc. A CM SIGCOMM, Philadelphia, PA, September 1990.

[8] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing

algorithm. Internetworking: Research and Experience, 1(1):3-26, 1990.

[9] S. Floyd and V. Jacobson. Random early detection gateways for congestion

avoidance. IEEE/A CM Transactions on Networking, 1(4):397-413, August 1993.

81

[10] L. Freitag, M. Johnson, M. Grund, S. Singh, and J. Preisig. Integrated acoustic

communication and navigation for multiple uuvs. In Proc. Oceans 2001, pages

2065-2070, Honolulu, HI, 2001.

[11] L. Freitag, M. Stojanovic, S. Singh, and M. Johnson. Analysis of channel effects

on direct-sequence and frequency-hopped spread-spectrum acoustic communica-

tion. IEEE Journal of Oceanic Engineering, 26(4):586-593, October 2001.

[12] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scal-

able and robust communication paradigm for sensor networks. In Proc. ACM

MOBICOM, Boston, MA, August 2000.

[13] V. Jacobson and M. Karels. Congestion avoidance and control. In Proc. ACM

SIGCOMM, Stanford, CA, August 1998.

[14] J. Li, C. Blake, D. De Couto, H. Lee, and R. Morris. Capacity of wireless ad hoc

networks. In Proc. ACM MOBICOM, Rome, Italy, July 2001.

[15] Robert M. Metcalfe and David R. Boggs. Ethernet: Distributed packet switching

for local computer networks. Communications of the ACM, 19(7):395-404, July

1976.

[16] V. Paxson. End-to-end routing behavior in the internet. IEEE/ACM Transac-

tions on Networking, 5(5):601-615, October 1997.

[17] M. Stojanovic and L. Freitag. Hypothesis-feedback equalization for direct-

sequence spread-spectrum underwater communications. In Proc. Oceans 2000,

volume 1, pages 123-128, Providence, RI, 2000.

[18] M. Stojanovic and L. Freitag. Multiuser undersea acoustic communications in

the presence of multipath propagation. In Proc. Oceans 2001, pages 2165-2169,

Honolulu, HI, 2001.

82

