
Solving a Class of Higher-Order Equations over a Group

Structure

Ştefan ANDREI and Wei-Ngan CHIN
National University of Singapore, CS Programme,

Singapore-MIT Alliance, 3 Science Drive 2, Singapore, 117543.
E-mails: {andrei, chinwn}@comp.nus.edu.sg

Abstract

In recent years, symbolic and constraint-solving techniques
have been making major advances and are continually be-
ing deployed in new business and engineering applications.
A major push behind this trend has been the development
and deployment of sophisticated methods that are able to
comprehend and evaluate important sub-classes of sym-
bolic problems (such as those in polynomial, linear inequal-
ity and finite domains). However, relatively little has been
explored in higher-order domains, such as equations with
unknown functions.

This paper proposes a new symbolic method for solving a
class of higher-order equations with an unknown function
over the complex domain. Our method exploits the closure
property of group structure (for functions) in order to al-
low an equivalent system of equations to be expressed and
solved in the first-order setting.

Our work is an initial step towards the relatively un-
explored realm of higher-order constraint-solving, in gen-
eral; and higher-order equational solving, in particular.
We shall provide some theoretical background for the pro-
posed method, and also prototype an implementation un-
der Mathematica. We hope that our foray will help open
up more sophisticated applications, as well as encourage
work towards new methods for solving higher-order con-
straints.

Keywords: higher-order equation, symbolic computa-
tion, Mathematica

1 Introduction

Looking in [Wolfram(1999)], the (higher order) functional
equations are those in which a function is sought which
is to satisfy certain relations among its values at all
points. For example, we may look for functions satisfying
f(x ∗ y) = f(x) + f(y) and enquire whether the logarithm
function f(x) = log(x) is the only solution (it’s not!). A
special case involves difference equations, that is, equa-
tions comparing f(x) − f(x − 1), for example, with some
expression involving x and f(x). In some ways these are
discrete analogues of differential equations.

In [Kuczma et al(1990)], a functional equation is de-
fined as an equation of the form f(x, y, ...) = 0, where f
contains a finite number of independent variables, known
functions, and unknown functions which are to be solved
for. Many properties of functions can be determined by
studying the types of functional equations they satisfy. For
example, the gamma function Γ(z) satisfies the functional
equations Γ(1 + z) = zΓ(z) and Γ(1 − z) = −zΓ(−z).
When the focus of a functional equation is on continu-
ity of functions and a domain is specified, this becomes a
question of topology. Functions of one variable which sat-
isfy a difference equation will tend to follow patterns set
by ordinary differential equations; naturally functions of
two or more variables behave more like solutions of partial
differential equations.

We refer now to the notion known as constraint solv-
ing. Difficult problems can offer too many choices,
many of which are incompatible, few of which are opti-
mal. Constraints arise in design and configuration, plan-
ning and scheduling, diagnosis and testing, and in many
other contexts. Constraint programming can solve prob-
lems in telecommunications, internet commerce, electron-
ics, bioinformatics, transportation, network management,
supply chain management, and many other fields. Func-
tional equations and constraints are the object of many
recent research.

An example of research effort is Distributed Con-
straint Solving for Functional Logic Programming
([Marin et al(2001)]). They realized a distributed soft-
ware system consisting of a functional logic language in-
terpreter on one machine and a number of constraint
solving engines running on other machines. The inter-
preter is based on an existing (sequential) implementa-
tion of a functional logic language on the computer sys-
tem Mathematica ([Wolfram(1999)]) extended in two di-
rections: the possibility to specify (non-linear) constraints
over real numbers and, secondly, the possibility to specify
OR-parallelism among different clauses of a predicate.

In [Flajolet et al(2001)], the authors dealt with classes
of generating functions implicitly defined by differential
relations, globally referred to as functional equations.
Functional equations arise in well defined combina-

torial contexts and they can lead systematically to
well-defined classes of functions. The Algolib software
(http://algo.inria.fr/libraries/software.html)
allows to specify, generate, enumerate combinatorial
structures, manipulate the associated generating func-
tions, functional equations or recurrences and studying
their asymptotic behaviour.

Our paper deals with relatively unexplored higher-order
(functional) equations. We use mainly the composi-
tion operation, which means the replacing of variables
to other functions. This represents one of the charac-
teristics of symbolic computation. For instance, the pa-
per [Hong(1998)] refers to the the operation of replacing
the variables with polynomials. In fact, we solve the con-
straints by the following form, i.e. determine the function
f : C → C from the functional equation:

h1(x) · (f ◦ f0)(x) + h2(x) · (f ◦ f1)(x) + ... + hn(x) · (f ◦
fn−1)(x) = g(x), where n ≥ 2, hi : C → C, ∀ i = 1, n, g :
C → C with the additional hypothesis that fi : C → C,
∀ i = 1, n are functions which form a group structure.

Generally speaking, the previous functional equation
can be viewed as a linear (higher-order) equation (in

f) of the form
n∑

i=1

Ei(f, x) = g(x), where Ei(f, x) =

hi(x) · (f ◦ fi−1)(x), ∀ i = 1, n.

We assume the reader is familiar with the notions of
algebraic structures, but for the sake of the presentation,
we introduce some notations and definitions. We denote
by C, R, Q and Z, the set of all complex, real, rational and
integer numbers. A−B denotes the set {x ∈ A | x /∈ B}.

The pair (G, ◦) is called a group structure iff the follow-
ing hold: (closure) ∀ x, y ∈ G, x ◦ y ∈ G; (associativity)
∀ x, y, z ∈ G, (x ◦ y) ◦ z = x ◦ (y ◦ z); (identity prop-
erty) there exists e ∈ G (called identity element) so that
x◦e = e◦x = x, ∀ x ∈ G; (inverse property) ∀ x ∈ G, there
exists an x′ ∈ G (the inverse of x) so that x◦x′ = x′◦x = e.
An algebraic structure (for instance, a group) (G, ◦) is
called commutative (or Abelian) iff ∀ x, y ∈ G, x◦y = y◦x.
A group (G, ◦) is called finite iff it has a finite number of
elements, which is also called the order of G. In contrast,
the group (G, ◦) is infinite iff it has an infinite number of
elements. For finite groups, the so called composition table
can be attached. In fact, denoting by G = {x1, x2, ..., xn},
this table is a square matrix An = (aij)1≤i,j≤n, such that
∀ 1 ≤ i, j ≤ n, aij = xk iff xi ◦ xj = xk

Let f : A → B be an arbitrary function. Then f is
injective iff ∀ x1 6= x2 we get f(x1) 6= f(x2); f is surjective
iff ∀ y ∈ B, ∃ x ∈ A so that f(x) = y; f is bijective (one-
to-one correspondence) iff f is injective and surjective.

Two groups (G1, ◦) and (G2, ∗) are said to be isomorphic
(denoted by G1 ' G2) iff there exists a one-to-one corre-
spondence f : G1 → G2 such that f(x ◦ y) = f(x) ∗ f(y),
∀ x, y ∈ G1. A one-to-one correspondence between the
set {1, 2, ..., n} and itself is called a permutation of or-
der n, denoted by σ. Using the representation of a finite
group G with composition table, it is easy to remark that

G is group iff on each raw and each column of the ma-
trix An, there exists exactly one occurrence of an element
from G. In other words, the condition means that every
raw (column) is a permutation of any other raw (column)
([Aschbacher(2000), Suzuki(1986)]).

A basic example of a finite group is the symmetric group
denoted by Σn, which is the group of permutations (or
”under permutation”) of n objects. One very common
type of group is the group of integers modulo n, denoted by
(Zn,⊕) and is defined for every integer n > 1. Considering
the notation q̂ = {m′ | ∃ p ∈ Z,m′ = n · p + q}, then the
elements of Zn are usually denoted by 0̂, 1̂, ..., n̂− 1, and
x⊕ y = (x + y) modn.

Section 2 presents our method which exploits the clo-
sure property of group structure (for functions) in order
to allow an equivalent system of equations to be expressed
and solved in the first-order setting. The main result is
Theorem 2.1, which actually solves the previous higher-
order equation. Section 3 shows a basis for building a
library of groups (of functions) to support our method,
of which an important sub-class is the so-called homo-
graphic functions. Section 4 illustrates the pragmatics of
our method with an implementation under Mathematica
([Wolfram(1999)]). Some general, and a particular exam-
ple, higher-order equation is solved using Mathematica.
Finally, some conclusions are pointed out.

2 Our proposed method

In this section, we present the main result of the paper,
i.e. the solution of the functional equation proposed in the
first section. After that, some particular cases are pointed
out.

Theorem 2.1 Let G = ({f0, f1, ..., fn−1}) be a group,
where f0 = 1C, fi : C → C, i = 1, n, n ≥ 2 and
“◦” denotes function composition. Consider the functions
hi : C → C, i = 1, n and g : C → C. Then the following
equation:

h1 · (f ◦ f0) + h2 · (f ◦ f1) + ... + hn · (f ◦ fn−1) = g

can be solved.

Proof The above functional equation is a short-hand
for (0):

h1(x) · (f ◦ f0)(x) + ... + hn(x) · (f ◦ fn−1)(x) = g(x),
where x ∈ C. We will make the following n− 1 substitu-
tions in (0): x → f1(x), x → f2(x), ..., x → fn−1(x).

The obtained functional equations will be denoted by
(1), (2), ..., (n− 1).

Let us discuss in detail the substitution x → f1(x) (the
others being quite similar). The obtained functional equa-
tion will be:
(1′) h1(f1(x)) · (f ◦ f0 ◦ f1)(x) + h2(f1(x)) · (f ◦ f1◦
◦f1)(x) + ... + hn(f1(x)) · (f ◦ fn−1 ◦ f1)(x) = g(f1(x))

Because G is a finite group, it follows that the elements
f0◦f1, f1◦f1, ..., fn−1◦f1 are different from each other and
are a permutation of the initial group. So, we will denote
by σ1 : G → G the permutation such that σ1(i) = j if and
only if fi ◦ f1 = fj .

Therefore, the previous functional equation can be
rewritten in the following equivalent way:
(1) h1(f1(x)) · (f ◦ fσ1(0))(x)+h2(f1(x)) · (f ◦ fσ1(1))(x)+

+... + hn(f1(x)) · (f ◦ fσ1(n−1))(x) = g(f1(x))

In the same manner, we denote by σ2, ..., σn−1 the
corresponding permutations for the equations (2′), ..., (n−
1′). The obtained functional equations are:
(2) h1(f2(x)) · (f ◦ fσ2(0))(x)+h2(f2(x)) · (f ◦ fσ2(1))(x)+

+... + hn(f2(x)) · (f ◦ fσ2(n−1))(x) = g(f2(x))
. . .

(n− 1) h1(fn−1(x)) · (f ◦ fσn−1(0))(x) + h2(fn−1(x))·
·(f ◦fσn−1(1))(x)+ ...+hn(fn−1(x)) · (f ◦fσn−1(n−1))(x) =
= g(fn−1(x))

Because σ1, σ2, ..., σn−1 are permutations over the set
{0, 1, ..., n− 1}, we can interchange the order of the terms
in the above sums. In this way, we get an n×n functional
equations system in the variables f ◦f0, f ◦f1, ..., f ◦fn−1.
However this is a system with n variables, we actually are
interested only in f ◦ f0 which equals f . We remind that
hi, i = 1, n and g are known functions.

Using the fact that σ is permutation, we reorder the
obtained system to have identical elements in the columns.
So, we get the equivalent system (S):

h1(x) · (f ◦ f0)(x) + h2(x) · (f ◦ f1)(x) + ...
+hn(x) · (f ◦ fn−1)(x) = g(x)

hσ−1
1 (0)+1(f1(x)) · (f ◦ f0)(x) + ...

+hσ−1
1 (n−1)+1(f1(x)) · (f ◦ fn−1)(x) = g(f1(x))

. . .
hσ−1

n−1(0)+1(fn−1(x))·(f ◦ f0)(x) + ...

+hσ−1
n−1(n−1)+1(fn−1(x)) · (f ◦ fn−1)(x) =

= g(fn−1(x))

Before applying the Cramer’s Theorem ([Shilov(1971),
Poole(2003)]), we consider the determinant ∆x of the pre-
vious system (S):

∣∣∣∣∣∣∣∣

h1(x) . . hn(x)
hσ−1

1 (0)+1(f1(x)) . . hσ−1
1 (n−1)+1(f1(x))

. . . .
hσ−1

n−1(0)+1(fn−1(x)) . . hσ−1
n−1(n−1)+1(fn−1(x))

∣∣∣∣∣∣∣∣

If ∆x 6= 0 (0 means the null function, i.e. f(x) = 0,
∀ x ∈ C), then the system (S) is compatible and has
unique solution. According to Cramer’s Rule, we obtain
(f ◦ f0)(x) = f(x) = ∆f0

∆x
, where ∆f0 is obtained from

∆ by replacing the first column with the column of right
hand side of the system (S).

On the contrary, if ∆x equals null function, then accord-
ing to Kronecker-Capelli’s Theorem (known also as Rank

Theorem, [Shilov(1971), Poole(2003)]), a nonzero princi-
pal determinant of rank p (p < n) (denoted by ∆p) will be
found (otherwise, the system is trivial!). If every charac-
teristic determinant (formed from ∆p by adding the right
hand side of (S)) is zero, then (S) is compatible and has
p principal variables, the others n− p variables being sec-
ondary and putted in the right-hand side of (S). In this
case, the set of solutions for f is infinite (i.e. it will depend
on n−p independent parameters). Otherwise (if there ex-
ists at least one nonzero characteristic determinant), then
(S) is incompatible, so there is no solution for this system.

Thus, the proposed functional equation has been solved.

Example 2.1 Here are some examples of important
groups for functional equations:

a) G1 = ({f0, f1}, ◦), where fi : C → C, ∀ i = 0, 1,
f0(x) = x, f1(x) = −x.

b) G2 = ({f0, f1}, ◦), where f0 : C → C, f0(x) = x,
f1 : (C− {0}) → C, f1(x) = 1

x .
c) G3 = ({f0, f1, f2}, ◦), where f0 : C → C, f0(x) = x,

f1 : (C − {0}) → C f1(x) = x−1
x , f2 : (C − {1}) → C,

f2(x) = 1
1−x .

d) G4 = ({f0, f1, f2}, ◦), where f0 : C → C, f0(x) = x,

f1 : (C−{−
√

3
3 }) → C, f1(x) = x+

√
3

1−x
√

3
, f2 : (C−{

√
3

3 }) →
C, f2(x) = x−√3

1+x
√

3
.

e) G5 = ({f0, f1, f2, f3}, ◦), where f0(x) = x, f1(x) =
1
x , f2(x) = −x, f3(x) = − 1

x . The functions fi are defined
as f0, f2 : C → C and f1, f3 : (C− {0}) → C.

f) G6 = ({f0, f1, f2, f3, f4, f5}, ◦), where f0(x) = x,
f1(x) = 1

1−x , f2(x) = x−1
x , f3(x) = 1

x , f4(x) = 1 − x,
f5(x) = x

x−1 . The functions fi are defined as f0, f4 : C →
C, f1, f5 : (C− {1}) → C and f2, f3 : (C− {0}) → C.

g) G7 = ({f0, f1, f2, ..., fn−1}, ◦), where fi(x) = εi · x,
∀ i = 0, n− 1, where εn = 1 (ε = cos 2π

n + i sin 2π
n being

called the complex unity of order n). The functions
are define as: fi : C → C, ∀ i = 0, n− 1.

For 2 and 3 elements, there exists only one group! This
is denoted by Z2, and Z3 respectively ([Aschbacher(2000),
Suzuki(1986)]).

Remark 2.1 a) The groups G1, ..., G5 are commutative.
The composition table for G1 and G2 is (G1 ' G2):

◦ f0 f1

f0 f0 f1

f1 f1 f0

and for G3 and G4 is (G3 ' G4):

◦ f0 f1 f2

f0 f0 f1 f2

f1 f1 f2 f0

f2 f2 f0 f1

b) The group G6 is noncommutative, and has the com-
position table:

◦ f0 f1 f2 f3 f4 f5

f0 f0 f1 f2 f3 f4 f5

f1 f1 f0 f3 f2 f5 f4

f2 f2 f4 f5 f1 f3 f0

f3 f3 f5 f4 f0 f2 f1

f4 f4 f2 f1 f5 f0 f3

f5 f5 f3 f0 f4 f1 f2

The group G6 is isomorphic to Σ3 (i.e. the group of
permutations of order 3).

c) G7 is an example of a commutative group with arbi-
trary number of elements. Its operation can be analytically
defined as fi ◦ fj = f(i+j) mod n, where xmod y means the
positive integer remainder of the division remainder of x to
y. Actually, G7 is isomorphic with the well-known integer
group modulo n (Zn,⊕). Both groups satisfies the equa-
tion xn = 1, ∀ x element in the given groups (1 denotes
the identity element).

d) Depending on the requirements of the functional
equation, the domain/image definitions of functions can be
restricted as: for G1 we can consider fi : Z → Z, i = 0, 1;
for G2 we can consider fi : Z−{0} → Z, i = 0, 1; for G3,
fi : Q−{0, 1} → Q, i = 0, 2; for G4, fi : R−{±

√
3

3 } → R,
i = 0, 2; for G5, fi : Q − {0} → Q, i = 0, 3; for G6,
fi : Q− {0, 1} → Q, i = 0, 5.

We now show a general method for construction new
groups from smaller existing groups. This problem is a
converse of ([Eick et al(2002)]), where the subgroups are
computed from finite solvable groups.

Definition 2.1 Given (G1, ◦) and (G2, ◦) two groups
whose elements are functions, we denote:

G1 ¯ G2 = {f | ∃ f1 ∈ G1, ∃ f2 ∈ G2 such that f =
f1 ◦ f2 or f = f2 ◦ f1}

Given (G1, ◦) and (G2, ◦) two groups whose elements are
functions, let us consider the following condition:

(C) ∀ f1 ∈ G1 ∪ G2, ∀ f2 ∈ G1 ¯ G2 then f1 ◦ f2

∈ G1 ¯G2

Theorem 2.2 Let (G1, ◦) and (G2, ◦) be two groups
whose elements are functions. Then (G1¯G2, ◦) is a group
if and only if the condition (C) holds.

Proof (if) Only the closure property and the inverse
property for (G1¯G2, ◦) need to be proved (i.e. the other
properties stand from the hypothesis).

If g ∈ G1 ¯ G2, then there exist f1 ∈ G1 and f2 ∈ G2

such that g = f1 ◦ f2 (or g = f2 ◦ f1). Without loss of
generality, we take into consideration only the first case.
Let g′ = f−1

2 ◦ f−1
1 , where f−1

1 and f−1
2 are the inverse

functions in G1, and G2, respectively. According to Def-
inition 2.1, it follows that g′ ∈ G1 ¯ G2. It can be easily
seen, using associativity, that g◦g′ = (f1◦(f2◦f−1

2)◦f−1
1)

= 1 and g′◦g = (f−1
2 ◦(f−1

1 ◦f1)◦f2) = 1, where 1 denotes
the identity element.

We come back to the closure property for (G1 ¯G2, ◦).
Let f12 and f34 be two arbitrary elements belonging to
G1 ¯ G2. Then there exist f1, f3 ∈ G1, f2, f4 ∈ G2 so
that f12 = f1 ◦ f2 (or f12 = f2 ◦ f1) and f34 = f3 ◦ f4

(or f34 = f4 ◦ f3). Without loss of generality, we take into
consideration only the first case. So, we get f12◦f34 = f1◦
f2 ◦f3 ◦f4. According to Definition 2.1, f3 ◦f4 ∈ G1¯G2.
Because (C) holds, then f2 ◦ (f3 ◦f4) ∈ G1¯G2, and, as a
consequence, f1 ◦ (f2 ◦ (f3 ◦ f4)) ∈ G1 ¯G2. So, it results
that (G1 ¯G2, ◦) is a group.

(only if) The proof is simply based on the inclusion
G1∪G2 ⊆ G1¯G2 and the closure property of (G1¯G2, ◦).

In the following, we come with some discussion about
the special case when the “target” group (G1 ¯ G2, ◦) is
commutative.

Theorem 2.3 Let (G1, ◦) and (G2, ◦) be two groups
whose elements are functions. If (G1 ¯ G2, ◦) is a com-
mutative algebraic structure, then (G1¯G2, ◦) is a group.

Proof For simplicity, we prove only the closure property
for (G1 ¯ G2, ◦), the other properties can be done like in
the proof of Theorem 2.2.

Let f12 and f34 be two arbitrary elements belonging to
G1 ¯ G2. Then there exist f1, f3 ∈ G1, f2, f4 ∈ G2 so
that f12 = f1 ◦ f2 (or f12 = f2 ◦ f1) and f34 = f3 ◦ f4

(or f34 = f4 ◦ f3). Without loss of generality, we take into
consideration only the first case. We get f12◦f34 = f1◦f2◦
f3 ◦ f4, and applying the commutativity and associativity,
we obtain f12 ◦ f34 = (f1 ◦ f3) ◦ (f2 ◦ f4). Because of
the closure properties of G1 and G2, it follows f12 ◦ f34 ∈
G1 ¯G2. So, (G1 ¯G2, ◦) is a group.

As a notation, we introduce Gn1 ¯ Gn2 ¯ ... ¯ Gnk
as

(...((Gn1 ¯ Gn2) ¯ Gn3) ¯ ... ¯ Gnk
), where k > 2 is a

nonnegative integer number.

Corollary 2.1 Let Gni = ({f i
0, f

i
1, f

i
2, ..., f

i
ni−1}, ◦) where

f i
j(x) = εj

i · x, ∀ j = 0, ni − 1, εni
i = 1, i = 1, k, k > 1

(εi = cos 2π
ni

+ i sin 2π
ni

being called the complex unity of
order ni). Then Gn1 ¯Gn2 ¯ ...¯Gnk

is a group.

Proof The proof can be done by induction on k ≥ 2.
For simplicity, we shall do only the base of induction, i.e.
the step k = 2.

We have (f1
i1
◦ f2

i2
)(x) = εi1

1 · f2
i2

(x) = εi1
1 · εi2

2 · x =
εi2
2 ·εi1

1 ·x = εi2
2 ·f1

i1
(x) = (f2

i2
◦f1

i1
)(x), so f1

i1
◦f2

i2
= f2

i2
◦f1

i1
.

According to Theorem 2.2, it follows that Gn1 ¯Gn2 is a
group.

Remark 2.2 According to the notations from Example
2.1 and Corollary 2.1, we have:

1. G5 = G1¯G2 and G6 = G2¯G3. The pair (G2, G3)
satisfy the Theorem 2.2 and the pair (G1, G2) satisfy also
the condition of Theorem 2.3;

2. In general, even if two groups H1 and H2 are commu-
tative, it is not necessary that H1 ¯H2 be a commutative
group. As a (counter)example in this sense, the groups G2

and G3 are commutative, but G2 ¯G3 = G6 isn’t !
3. According to the notations from Corollary 2.1, it

follows that Gn1¯Gn2¯ ...¯Gnk
is a commutative group.

3 Case Study: Groups of Order 3

At the first part of Section 3, we refer to general functions
for the groups of order 3. A necessary theorem for de-
termining the minimum relation needed for determining if
functions f1 and f2 are elements of a group with order 3
can be reviewed:

Theorem 3.1 Let f1, f2 : C → C so that f1 ◦ f2 = 1C

and f1 ◦ f1 = f2. Then f2 ◦ f2 = f1, f2 ◦ f1 = 1C and
G = ({1C, f1, f2}, ◦) is a group.

Proof It can be easily proof that the composition table
for ({1C, f1, f2}, ◦) is:

◦ 1C f1 f2

1C 1C f1 f2

f1 f1 f2 1C

f2 f2 1C f1

Because on each row and column, each element of
the set {1C, f1, f2} occurs exactly once, it follows that
({1C, f1, f2}, ◦) is a group.

As a side remark, the converse of Theorem 3.1 is an ob-
vious result: Let G = ({f0, f1, f2}, ◦) be a group where
fi : C → C, ∀ i = 1, 3. Then one of the functions is
identity, (e.g. f0 = 1C), f1 ◦ f2 = 1C and f1 ◦ f1 = f2.

We continue by determining all the groups with 3 el-
ements, for which each element is a homographic func-
tion. We choose this particular subclass of functions be-
cause it is closed under composition, i.e. the composition
of two homographic functions is a homographic function,
too. This property is useful for the closure property of the
group G (in particular, of order 3).

Definition 3.1 A function is called homographic iff
there exists complex (real) numbers a, b, c, d so that
f : C− {−d

c} → C and f(x) = ax+b
cx+d

Actually, we will find the general form of the homo-
graphic functions f1 and f2 (f0 being identity function).
In fact, this will be a generalisation of the groups G2 and
G3.

The next result is restricted to the set of real numbers.

Theorem 3.2 Let f1 and f2 be two distinct homographic
functions such that f1 ◦ f2 = 1C and f1 ◦ f1 = f2. Then,
we distinguish only two situations:

a) there exists b ∈ R− {0} for which:

f1(x) = bx+b2

−x and f2(x) = −b2

x+b (of course, x /∈
{0,−b});

b) there exist a, b ∈ R and c ∈ R − {0} such that c2 +
c + ab = −1 (and ab ≤ − 3

4) for which f1(x) = x+a
bx+c

and f2(x) = cx−a
−bx+1 .

Proof Without loss of generality, we suppose that the
only possible homographic functions are:

a) f1(x) = x+b1
c1x+d1

, f2(x) = b2
c2x+d2

and b) f1(x) =
x+b1

c1x+d1
, f2(x) = x+b2

c2x+d2

Now, we put the hypothesis conditions and we get for the
two cases:

a) From the first condition, we obtain that if c2 = 0,
then f1 = f2 = −b1 which is not good because f1 and f2

are distinct functions. If c2 6= 0 then d1 = 0, b1c2 = b2c1

and b2 = −b1d2. Checking also the second condition, we
get b1c1 = −1, therefore (by denoting b1 with b) we get
the conclusion of point a).

b) From the first condition, we get b2 = −b1d2, c1 =
−c2d1 and b1c2 = −1. Using also the second condition,
we get 1 + d1 6= 0 (otherwise, we get a wrong result) and
b1c2 = b2c1. therefore d1d2 = 1. Finally, b2 = − b1

d1
, c2 =

− c1
d1

, d2 = 1
d1

and d2
1 +d1 +b1c1 +1 = 0. The discriminant

of the previous quadratic equation must be positive, so
∆ = −4b1c1 − 3 ≥ 0 implies b1c1 ≤ − 3

4 . By renaming
b1, c1, d1 with a, b, c we got the conclusion of point b).
Of course, we have the relations c2 + c + ab = −1 and
ab ≤ − 3

4 .

Remark 3.1 1. The functions determined in Theorem
3.2 are the most general ones related to homographic func-
tions;

2. Taking b = −1 at the point a), we get the group G3;
3. Taking a =

√
3, b = −√3 and c = 1 at the point b),

we get the group G4.

4 Implementation in Mathematica

Mathematica ([Wolfram(1999)]) is one of the most popu-
lar fully integrated environment for technical and symbolic
computing. First released in 1988, it has had a profound
effect on the way computers are used in many technical
and other fields. Mathematica software is able to solve
equations (linear, polynomial, differential, etc), to do im-
age processing, to create graphics, for financial mathemat-
ics, a.s.o.

This powerful software can be used in our paper for
obtaining the final solution. Regarding the main result of
this paper (Theorem 2.1), we denote by X1, X2, ..., XN,
the variables of the obtained linear system of equations
(i.e. (f ◦ f0)(x), (f ◦ f1)(x), ..., (f ◦ fn−1)(x)) and by
b1, b2, ..., bN the right-hand side terms g(x), g(f1(x)),
..., g(fn−1(x)). Moreover, we shall consider a matrix A =
(aij), 1 ≤ i, j ≤ n such as aij = hσ−1

i−1(j−1)+1(fi(x)). Now,
we write a Mathematica program in order to solve the
above system of equations:

eq1 = a11 X1 + a12 X2 + ... + a1N xN == b1

eq2 = a21 X1 + a22 X2 + ... + a2N xN == b2
. . .

eqN = aN1 X1 + aN2 X2 + ... + aNN xN == bN
TheSystem = [eq1, eq2, ..., eqN]
TheVariables = [X1, X2, ..., XN]
Solve[TheSystem, TheVariables]

Of course, in the above program, some equivalent nota-
tions were made, e.g. a11 stands for a11, a1N stands for
a1n, the dots ... will be replaced in a concrete example.
The built-in function Solve attempts to solve an equation
or set of equations for the mentioned (unknown) variables.
Equations are given in the form lhs == rhs, where lhs,
rhs denote left hand-side and right hand-side, respectively.
The space between two identifiers is interpreted as a mul-
tiplication. Simultaneous equations are combined in a list
denoted TheSystem. The list of variables is specified in
TheVariables. We show how Mathematica can be useful
for solving our kind of functional equations. The Math-
ematica evaluation for X1 will corresponds to (f ◦ f0)(x),
which is the required variable.

As mentioned in the first part of our paper, the proposed
functional equation is higher-order because the function f
is required, not the x-values. Mathematica cannot directly
solve our kind of functional equation. However, Mathe-
matica can solve higher-order equation only for differential
equations (i.e. of some classical form).

Example 4.1 Unsuccessful run of Mathematica for the
functional equation:

“Find f : R−{0, 1} → R so that x2 · f(x)+ 2 ·x · f(1−
1
x) = 1

x − x + 1.”

If we model directly with Mathematica and request for it
to be solved:

In:=Solve[x^2*f[x]+2*x*f[1-1/x]==1/x-x+1,f]

we obtain Out = {{}}. Alternatively, adding x as a sec-
ond parameter in the following request:

In:=Solve[x^2*f[x]+2*x*f[1-1/x]==1/x-x+1,f,x]

we get the message “The equations appear to
involve the variables to be solved for in an
essentially non-algebraic way.”.

As shown above, Mathematica cannot be applied di-
rectly. Let us now see how our method can be applied to
solve this class of higher-order equation.

Taking into consideration the group G3 from Example
2.1, we obtain h1(x) ·(f ◦f0)(x)+h2(x) ·(f ◦f1)(x) = g(x),
where h1(x) = x2, h2(x) = 2 · x, and g(x) = 1/x− x + 1.
According to the proof of Theorem 2.1, we can apply the
substitutions x → f1(x) and x → f2(x), so as to get the
following system of equations:{

h1(f1(x))·(f ◦ f1)(x)+h2(f1(x))·(f ◦ f2)(x)=g(f1(x))
h1(f2(x))·(f ◦ f2)(x)+h2(f2(x))·(f ◦ f0)(x)=g(f2(x))

Using the above notations (X1 for (f ◦ f0)(x), a.s.o.), we
can have a Mathematica program in the following:

Example 4.2 Successful run of Mathematica for the
same functional equation is:

In:=
g[x_] = (1/x) - x + 1
h1[x_] = x^2
h2[x_] = 2*x
f0[x_] = x
f1[x_] = 1 - 1/x
f2[x_] = 1/(1 - x)
eq1=h1[f0[x]]*f[f0[x]]+h2[f0[x]]*f[f1[x]]==

g[f0[x]]
eq2 = eq1 /. x -> f1[x]
eq3 = eq1 /. x -> f2[x]
TheSystem=
{Simplify[eq1],Simplify[eq2],
Simplify[eq3]}/.

{f[x]->X1,f[Simplify[f1[x]]]->X2,
f[Simplify[f2[x]]]->X3}

TheVariables = {X1, X2, X3}
Solve[Eliminate[TheSystem,Rest[TheVariables]],

X1]

whose output yields:

Out:={{X1->1/7(4-2/(1-x)^3+6/(1-x)^2-2/(1-x)-
1/x^3-1/x^2+1/x-12x+4x^2)}}

Some explanations are necessary for the previous Math-
ematica program. In Mathematica, a transformation rule
(i.e. substitution) of the form x -> e means that x is
replaced with e in a purely symbolic fashion. Now, to
apply a substitution (rule) to a particular Mathematica
expression (expr), we have to type expr /. rule, where
/. is called the replacement operator. For instance, in our
previous example, eq2 = eq1 /. x -> f1[x] means the
replacement of each occurrence of x from expression eq1
with f1[x].

Next, Simplify[expr] find the simplest form of expr
by applying various standard algebraic transformations.
This helps to normalize our program and we avoided the
need of a composition table for the given group of func-
tions.
Rest[list] returns list with the first element

dropped, therefore the expression Rest[TheVariables]
equals {X2,X3}.

The built-in function Eliminate[eqns,vars] elimi-
nates variables between a set of simultaneous equations.
So, the last command of the previous Mathematica pro-
gram provides in the output only the value of X1, which is
the required result.

With this, we conclude that the function diss-
cussed in Examples 4.1 and 4.2 is f(x) = 1

7 ·(
4− 2

(1−x)3 + 6
(1−x)2 − 2

(1−x) − 1
x3 − 1

x2 + 1
x − 12x + 4x2

)

In the following, we summarize the general algorithm
denoted by (HOSolve) (i.e. from Higher-Order Equational
Solving) for solving our class of higher-order equation.

Algorithm HOSolve:

The Input: The equation
n∑

i=1

Ei(f, x) = g(x), where

Ei(f, x) = hi(x) · (f ◦ fi−1)(x), ∀ i = 1, n and a library of
finite groups with functions;
The Output: The function f which satisfies the above
equation.

We shall present the main steps of the proposed algorithm:
1. read a higher-order equation with unknown f
2. parse it in order to obtain hi (i = 1, n), fi (i =

0, n− 1), and g
3. check if G = {f0, ..., fn−1} belongs to an existing

group (syntactically by matching with the library of finite
functional groups)

4. build TheSystem and TheVariables
5. pass to Mathematica the request associated to the

expression Solve[Eliminate[TheSystem,
Rest[TheVariables]], X1]

6. display the solution to f , as f(x) = ...

5 Conclusions

We have presented a symbolic method for solving a class
of higher-order equations with an unknown function over
the complex domain (or some sub-domain). Our method
(Theorem 2.1) exploits the closure property of group struc-
ture (for functions) in order to allow an equivalent system
of equations to be expressed and solved in the first-order
setting.

In order to support the reasoning of groups, we propose
Theorem 2.2 which contains a sufficient and necessary con-
dition for the construction of new groups out of existing
(sub)groups. This condition forms a basis for building a
library of groups (of functions) to support our method, of
which an important sub-class is the so-called homographic
functions. Theorem 3.2 points out all the groups with 3 el-
ements, for which each element is a homographic function
over the set of real numbers.

Our work is an initial step towards the relatively unex-
plored realm of higher-order constraint-solving, in general;
and higher-order equational solving, in particular. We
have provided some theoretical background for the pro-
posed method, and has also illustrated the pragmatics of
our method with an implementation under Mathematica.
The power of constraint-solving and symbolic computa-
tion has been found to be extremely useful for supporting
many applications ([Wolfram(1999), Marin et al(2001)]).
We hope that our foray will help open up more sophisti-
cated applications, as well as encourage work towards new
methods for solving higher-order constraints.

Some possible future work in this area includes higher-
order inequality and higher-order constraints of non-
complex domain (such as algebraic data structures).

Acknowledgment: Special thanks to Professor Ioan
Tomescu for insightful comments that lead to a much im-
proved paper.

References

[Aschbacher(2000)] M. Aschbacher. Finite Group Theory. Sec-
ond Edition. Cambridge University Press, New York, 2000

[Flajolet et al(2001)] P. Flajolet, and R. Sedgewick. Analytic
Combinatorics: Functional Equations, Rational and Alge-
braic Functions. INRIA, Rapport de recherche, France, 2001

[Eick et al(2002)] B. Eick, and C. R. B. Wright. Computing
Subgroups by Exhibition in Finite Solvable Groups. Journal
of Symbolic Computation. Vol. 33, 2002, pp. 129 - 143

[Hong(1998)] H. Hong. Groebner Basis Under Composition I.
Journal of Symbolic Computation. Vol. 25, 1998, pp. 643-663

[Kuczma et al(1990)] M. Kuczma, B. Choczewski and R. Ger.
Iterative Functional Equations. Cambridge University Press,
England, 1990

[Marin et al(2001)] M. Marin, T. Ida and W. Schreiner. CFLP:
a Mathematica Implementation of a Distributed Constraint
Solving System. The Mathematica Journal. Vol. 8 (2), 2001,
pp. 287-300

[Poole(2003)] D. Poole. Linear Algebra. A Modern Introduc-
tion Brooks/Cole, USA, 2003

[Sedgewick et al(1996)] R. Sedgewick, and P. Flajolet. An In-
troduction to the Analysis of Algorithms Addison Wesley
Publishing Company, New York, USA, 1996

[Shilov(1971)] G.E. Shilov. Linear Algebra. Prentice Hall Inc.,
USA, 1971

[Suzuki(1986)] M. Suzuki. Group Theory. Springer Verlag.
Berlin, Germany, 1986

[Wolfram(1999)] S. Wolfram. The Mathematica Book. Forth
Edition. The Wolfram Medic Inc. Champaign, The Wolfram
Research Company (http://www.wolfram.com/) and Cam-
bridge University Press, Illinois, USA, 1999

