
MATLAB*P 2.0: A unified parallel MATLAB
Ron Choy, Alan Edelman

Laboratory for Computer Science,
Massachusetts Institute of Technology,

Cambridge, MA 02139
Email: cly@mit.edu, edelman@math.mit.edu

Abstract— MATLAB [?] is one of the most widely used mathe-
matical computing environments in technical computing. It is an
interactive environment that provides high performance compu-
tational routines and an easy-to-use, C-like scripting language.
Mathworks, the company that develops MATLAB, currently does
not provide a version of MATLAB that can utilize parallel
computing [?]. This has led to academic and commercial efforts
outside Mathworks to build a parallel MATLAB, using a variety
of approaches. In a survey [?], 26 parallel MATLAB projects
utilizing four different approaches have been identified.

MATLAB*P [?] is one of the 26 projects. It makes use of the
backend support approach. This approach provides parallelism
to MATLAB programs by relaying MATLAB commands to a
parallel backend. The main difference between MATLAB*P and
other projects that make use of the same approach is in its focus.
MATLAB*P aims to provide a user-friendly supercomputing en-
vironment in which parallelism is achieved transparently through
the use of objected oriented programming features in MATLAB.
One advantage of this approach is that existing scripts can be
run in parallel with no or minimal modifications.

This paper describes MATLAB*P 2.0, which is a complete
rewrite of MATLAB*P. This new version brings together the
backend support approach with embarrassingly parallel and
MPI approaches to provide the first complete parallel MATLAB
framework.

I. BACKGROUND

MATLAB [?] is one of the most widely used tools in
scientific and technical computing. It started in 1970s as
an interactive interface to EISPACK [?] and LINPACK [?],
a set of eigenvalue and linear system solution routines. It
has since grown to a feature rich product utilizing modern
numerical libraries like ATLAS [?] and FFTW [?], and with
toolboxes in a number of application areas, for example,
financial mathematics, neural networks, and control theory. It
has a built-in interpreted language that is similar to C and
HPF, and the flexible matrix indexing makes it very suitable
for programming matrix problems. It is a very useful tool to
a wide audience. For example, it comes in very handy as a
matrix calculator for simple problems, because of its easy-to-
use command syntax. Its strong graphical capabilities makes it
a good data analysis tool. Also researchers have been known
to build very complex systems using MATLAB scripts.

Because of its roots in serial numerical libraries, MATLAB
has always been a serial program. However, as modern en-
gineering and simulation problems become more and more
complex, space and computing time requirements for solutions
skyrocketed, and a serial MATLAB is no longer able to
handle them. Compared to similar software like Maple and

Mathematica, MATLAB is known to have a larger number
of users. For example, at MIT, MATLAB is the dominant
computing software used by the student body.

The above factors sparked a lot of interest in creating a
parallel MATLAB. In a recent survey [?], 26 different parallel
MATLAB projects have been identified. These projects vary
in their scope: some are one-man projects that provide basic
embarrassingly parallel capabilities to MATLAB; some are
university or government lab research projects; while some
are commercial products that enables the use of MATLAB in
product development. Also their approaches to making MAT-
LAB parallel are different: some compile MATLAB script
into parallel native code; some provide a parallel backend
to MATLAB, using MATLAB as a graphical frontend; and
some others coordinate multiple MATLAB processes to work
in parallel. These projects also vary widely in their status:
some are now defunct and exist only in Google web cache,
while some are entering their second or third revision.

II. MATLAB*P 2.0 OVERVIEW

MATLAB*P 2.0 is a parallel MATLAB using the backend
support approach, aimed at widespread circulation among a
general audience. In order to achieve this, we took ideas
from the approaches used by other software found in the
survey. For example, theembarrassingly parallelapproach
allow simplistic, yet useful, division of work into multiple
MATLAB sessions. Themessage passingapproach, which is
a superset of the embarrassingly parallel approach, allows finer
control between the MATLAB sessions.

In order to make MATLAB*P useful for a wider range
of audience, these other approaches are incorporated into the
system as well.

A. Structure of MATLAB*P 2.0 system

MATLAB*P 2.0 is a complete rewrite of MATLAB*P in
C++. The code is organized in a way to ensure easy extension
of the software.

The server itself is divided in four self-contained parts:
1) Client Connection Manager

Client Connection Manager is responsible for communi-
cations with the client. It provides functions for reading
commands and arguments from the client and sending
the results back to the client. It is only used in the head
server process.

2) Server Connection Manager

Manager
Package

Matrix
Manager

Server
Manager

Client
Manager

PBLAS FFTW ScaLAPACK

Matrix 1

Matrix 2

Matrix 3

............

Client

Proxy

Server #0

#1
Server Server

#2
Server
#3

Server
#4

..........

.....................

Fig. 1. Structure of MATLAB*P 2.0

Server Connection Manager takes care of commucation
between server processes. It mainly controls broadcast-
ing of commands and arguments from head process to
the slave processes, and collection of results and error
codes. Also it provides rank and size information to the
processes.

3) Package Manager
Package Manager is responsible for maintaining a list
of available packages and functions provided by them.
When initiated by the server process, Package Manager
will also perform the actual call to the functions.

4) Matrix Manager
Matrix Manager contains all the functions needed to
create, delete and change the matrices on the server pro-
cesses. It maintains a mapping from client-side matrix
identifiers to actual matrices on the server. It is also
responsible for performing garbage collection.

This organization offers great advantages. First of all, de-
bugging is made easier because bugs are localized and thus
are much easier to track down. Also, this compartmentized
approach allows easier extension of the server. For example,
the basic Server Connection Manager makes use of MPI
(Message Passing Interface) as the means of communication
between server processes. However, one could write a Server
Connection Manager that uses PVM (Parallel Virtual Machine)
instead. As long as the new version implements all the public
functions in the class, no change is needed in any other part
of the code.

Similar extensions can be made to Client Connection Man-
ager as well. The basic Client Connection Manager uses TCP
socket. An interesting replacement would be to make a Client
Connection Manager that act as an interface to a language like
C++ or Java.

III. F EATURES OFMATLAB*P 2.0

A. Parallelism through Polymophism - *p

The key to the system lies in the *p variable. It is an
object of layout class in MATLAB. Through the use of the
*p variable, matrices that are distributed on the server could
be created. For example,

X = randn(8192*p,8192);

The above creates a row distributed, 8192 x 8192 normally
distributed random matrix on the server. X is a handle to
the distributed matrix, identified by MATLAB as addense
class object. By overloading randn and many other built-in
functions in MATLAB, we are able to tie in the parallel
support transparent to the user. This is calledparallelism
through polymorphism

e = eig(X);

The command computes the eigenvalues of X by calling
the appropriate ScaLAPACK routines, and store the result in a
matrix e, which resides on the server. The result is not returned
to the client unless explicitly requested, to reduce data traffic.

E = pp2matlab(e);

This command returns the result to MATLAB.
The use of the *p variable along with overloaded MATLAB

routines enable existing MATLAB scripts to be reused. For
example,

function H = hilb(n)

J = 1:n;
J = J(ones(n,1),:);
I = J’;
E = ones(n,n);
H = E./(I+J-1);

The above is the built-in MATLAB routine to construct a
Hilbert matrix. Because the operators in the routine (colon,
ones, subsasgn, transpose, rdivide, +, -) are overloaded to work
with *p, typing

H = hilb(16384*p)

would create a 16384 by 16384 Hilbert matrix on the server.
By exploiting MATLAB’s object-oriented features in this way,
many existing scripts would run in parallel under MATLAB*P
without any modification.

B. Data Parallel/Embarassingly Parallel Operations

One of the goals of the project is to make the software to be
useful to as wide an audience as possible. In order to achieve
this, we found that it would be fruitful to combine other
parallel MATLAB approaches into MATLAB*P, to provide
a unified parallel MATLAB framework.

In conjuction with Parry Husbands, we developed a pro-
totype implementation of a MultiMATLAB-like, distributed
MATLAB package in MATLAB*P, which we call the
PPEngine. With this package and associated m-files, we can
run multiple MATLAB processes on the backend and evaluate
MATLAB functions in parallel on dense matrices.

The system works by starting up MATLAB engine instances
on each node through calls to the MATLAB engine interface.
From that point on, MATLAB commands can be relayed to
the MATLAB engine.

Examples of the usage of the PPEngine system:

>> % Example 1
>> a = 1:100*p;
>> b = mm(’chi2rnd’,a);

The first example creates a distributed matrix of length 100,
then fill it with random values from the chi-square distribution
through calls to the function chi2rnd from MATLAB statistics
toolbox.

>> % Example 2
>> a = rand(100,100*p);
>> b = rand(100,100*p);
>> c = mm(’plus’,a,b);

This example creates two column distributed matrices of
size 100x100, adds them, and puts the result in another matrix.
This is the slow way of doing the equivalent of:

>> a = rand(100,100*p);
>> b = rand(100,100*p);
>> c = a+b;

Besides providing embarrassingly parallel capabilities like
in the above examples, we are also interested in integrating
MPI-like functionalities into the system. We do so by making
use of the MatlabMPI [?] package. This package has the ad-
vantage of being written in pure MATLAB code, so integrating
simply means making calls to this package through PPEngine.

>> % Example 3
>> piapprox = mmmpi(’cpi’,100);

This example calls cpi.m with 100. This calls a MAT-
LAB version of the popular pi-finding routine distributed
with MPICH, cpi.c. All the MPI calls are simulated within
MATLAB through MatlabMPI.

C. Complex Number Support

MATLAB*P 1.0 only supports real matrices. In the new
version complex number support is added. This is particularly
important for FFT routines and eigenvalue routines.

Adding this support is the main reason why it is necessary
to rewrite the code from scratch. Interaction between real and
complex matrices, and hooks for complex number routine calls
to numerical libraries are extremely error prone if they were
to be added on top of MATLAB*P 1.0.

Fig. 2. ppspy on 1024x1024 matrix on eight nodes

Fig. 3. ppsurf on the 1024x1024 ’peaks’ matrix

D. Visualization Package

This visualization package was written by Bruning, Hol-
loway and Sulejmanpasic, under supervision of Ron Choy, as
a term project for the class 6.338/18.337 - Applied Parallel
Computing at MIT. It has since then been merged into the
main MATLAB*P source.

This package addsspy, surf, and meshroutines to MAT-
LAB*P. This enable visualization of very large matrices. The
rendering is done in parallel, using the Mesa OpenGL library.

Figure??, ??, ?? shows the routines in action.
All three routines allow zooming into a portion of the

matrix. Also, ppsurf and ppmesh allow changing of the camera
angle, just as supported in MATLAB.

E. Two-dimensional Block Cyclic Distribution

MATLAB*P 1.0 supports row and column distribution
of dense matrices. These distributions assign a block on
contiguous row/column of a matrix to successive processes.

Fig. 4. ppmesh on the 1024x1024 ’peaks’ matrix

Each process receives only one block of the matrix. These
distribution suffers from load balancing issues.

A good example that illustrate the load balancing problem
is Gaussian elimiination. Recall the Gaussian elimiation al-
gorithm solves a square linear system by ’zeroing out’ the
subdiagonal entries.

for i = 1:n
for j = i+1:n

A(j,i:n) = A(j,i:n) -
A(i,i:n)*A(j,i)/A(i,i);

end
end

The algorithm proceeds column by column from left to
right. For column distribution, as the algorithm go past the
columns stored in process i, process 0, . . . , i will be idle for
the rest of the computation. Row distribution suffers from a
similar deficiency.

Two-dimensional block cyclic distribution avoid this prob-
lem by ’dealing out’ blocks of the matrix to the processes in
a cyclic fashion. This is illustrated in figure??. The figure
shows the two-dimensional block cyclic distribution for four
processes in a 2x2 grid. This way all processes remains busy
throughout the computation, thus achieving load balancing.
Furthermore, this approach carries the additional advantages
of allowing BLAS level-2 and BLAS level-3 operations on
local blocks. A detailed discussion of the advantages of
two dimensional block cyclic distribution can be found in
Dongarra, Van De Geijn and Walker [?].

IV. B ENCHMARKS

We compare the performance of MATLAB*P, MATLAB,
and ScaLAPACK on a Beowulf cluster running Linux.

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Fig. 5. Two-dimensional block cyclic distribution

500 1000 1500 2000 2500 3000 3500 4000 4500
0

20

40

60

80

100

120

Matrix size

T
im

e
(s

ec
)

Matrix Multiplication Timing

MATLAB*P
MATLAB
ScaLAPACK

Fig. 6. Matrix multiplication timing results

A. Test Platform

• Beowulf cluster with 9 nodes (2 nodes are used in the
tests).

• Dual-processor nodes, each with two 1.533GHz Athlon
MP processors.

• 1GB DDR RAM on each node. No swapping occurred
during benchmarks.

• Fast ethernet (100Mbps/sec) interconnect. Intel Etherfast
410T switch.

• Linux 2.4.18-4smp

B. Timing Results

See graphs of matrix multiplication timing results and linear
system solve timing results.

C. Interpretation

1) MATLAB*P and MATLAB: From the results, MAT-
LAB*P on 4 processors begin to outperform MATLAB on
single processor when the problem size is 2048 and upward.
This shows that for smaller problems, one should use plain
MATLAB instead of MATLAB*P. When the problem size is
large, MATLAB*P offers two advantages:

• Better performance
• Distributed memory, enabling larger problems to fit in

memory.

And all these come at close to zero effort on the user’s part,
once the system is installed and configured.

500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

15

20

25

30

35

40

45

50

Matrix size

T
im

e
(s

ec
)

Linear System Solution Timing

MATLAB*P
MATLAB
ScaLAPACK

Fig. 7. Linear system solve timing results

2) MATLAB*P and ScaLAPACK:Comparing the timing
results of MATLAB*P and ScaLAPACK, we see that ScaLA-
PACK is always faster than MATLAB*P, although the gap
narrows at larger problem size. This should be obvious from
the fact that MATLAB*P uses ScaLAPACK for matrix multi-
plication and linear system solution.

The difference in the timing results come from both over-
head incurred by MATLAB*P and the design of the bench-
mark itself:

• Timing for MATLAB*P is done inside MATLAB, using
tic/toc on the MATLAB call. The MATLAB call includes
memory allocation and matrix copying on the server side.
Timing for ScaLAPACK is done in C++ using clock(),
and only the actual computation routine is timed.

• There is a messaging overhead from the MATLAB client
to the server. As the MATLAB call yields multiple calls
to the server, this messaging overhead is multiplied.

• In linear system solution, ScaLAPACK overwrites the
input matrix. In MATLAB*P, in order to mimic standard
MATLAB behaviour, the input matrix is copied into
another matrix which is used in the ScaLAPACK call.
This incurred additional overhead.

V. FUTURE WORK

A. Further work on unified framework

Work could be done to improve on the portability and
generality of the data parallel operation. Currently there are
certain restrictions on the type and size of inputs to the data
parallel mode that only exists because of technical difficulties.

Also, example applications that demonstrate the power of
this unified framework should be found.

B. Sparse Matrix Routines

Because of time constraints, sparse matrix routines are not
included in the release of MATLAB*P 2.0. If there is sufficient
interest they will be added.

C. MATLAB*P on Grids of Beowulfs

Recently there has been a surge on interest in Beowulf-class
supercomputers. Beowulfs are clusters of machines made from
commodity-off-the-shelf (COTS) hardware. Example of COTS
hardware includes 80x86 processors, DDR memory, and IDE
hard drives.

The advantage of Beowulfs over traditional supercomputers
like SGI Origin or IBM SP2 is that Beowulfs are much
cheaper to build and maintain. For example, a Beowulf with 18
processors (1.533GHz) and 9GB RAM costs around $15000
at time of writing. On the other hand, a Sun Enterprise
250 Server, with 2 processors and 2GB RAM, costs around
$16000. As Beowulfs generally run open source operating
systems like Linux, the software cost is also cut substantially.

Along with the popularity of Beowulfs, there has also been
rising interest in the concept of computational grids [?]. Its fo-
cus is on large-scale resource sharing, namely, resource sharing
among geographically distributed individuals and institutions.
The resources shared could be applications, databases, archival
storage devices, visualization devices, scientific instruments, or
CPU cycles. One of the most popular software that implements
the Grid architecture is the Globus Toolkit [?].

We are interested in combining the above two very popular
ideas, to see how MATLAB*P would run on a Grid of
Beowulfs. Both of these projects failed. Both of them failed at
the point of setting up a working MPICH-G2 on the clusters.
In order to have MATLAB*P run on the grid, it is necessary
to build it upon a special, Grid-aware version of MPI. All
the Beowulf clusters we used have private networks, meaning
only designated ‘front end’ nodes are exposed to the outside
world, while the other nodes are all hidden and form its own
network. This caused MPICH-G2 to fail, because the MPI
processes started up by MPICH-G2 were located in different
private networks and were unable to contact one another.

This is very unfortunate, because we believe that Grids
of Beowulf clusters is a very powerful and cost-effective
architecture. When we turned to the Globus discussion mailing
list for help, we were told that this could be achieved by mak-
ing MPICH-G2 aware of local MPI implementations in each
Beowulf cluster and making use of them, but documentations
on this setup is scarce and we were unable to proceed with
this approach.

D. Parallel MATLAB Toolbox

One problem with the current state of MATLAB*P 2.0 is the
difficulty in setting up the softare. MATLAB*P 2.0 depends
on a number of established libraries for communication and
computational routines: BLACS, MPI, PBLAS, ScaLAPACK,
PARPACK, FFTW and SPRNG. Unless the system MAT-
LAB*P 2.0 is running on already has these libraries up and
running, installing MATLAB*P 2.0 would often be a painful
process of tracking down bugs in the installation of libraries
totally unfamiliar to the user.

A solution to this problem is to port the entire code into
MATLAB scripts. This is best demonstrated by MatlabMPI,
which implements basic MPI routines entirely in MATLAB
scripts. There are several advantages to this approach.

1) Portability: First of all, the software would run where
MATLAB runs. And because MATLAB is a commercial
product by Mathworks, it is tested extensively to ensure
its portability. By building the software upon MATLAB,
we would be able to take advantage of this extensive
testing.

2) Easy to install: Installing a system made up of MAT-
LAB scripts would require no compilation. Just set the
MATLAB path correctly and the system should be ready.

MatlabMPI is a good example that illustrates the strong
points of this approach. Because MATLAB*P is MPI-based,
there have been discussions of porting MATLAB*P to a
purely MATLAB script code base, using MatlabMPI as the
underlying communication layer.

If this were to be pursued, the resulting MATLAB*P would
consist of a group of MATLAB processes working together.
In addition to developing the equivalent of the current MAT-
LAB*P code in MATLAB scripts, we have identified the fol-
lowing additional functionalities that have to be implemented:

1) Supporting libraries: One of the strong points of MAT-
LAB*P is the leverage of established, high-performance
parallel numerical libraries. In moving towards a purely
MATLAB code base, since these libraries do not exist
in MATLAB, those functions they provide will have to
be implemented by ourselves. This means that all or
part of ScaLAPACK, PARPACK, and FFTW have to be
implemented in MATLAB, debugged and maintained.
Also as MATLAB scripts are interpreted instead of
compiled, they do not get compiler optimization which
optimizes memory access patterns and cache usage.
Thus the resulting code would be slower.

2) MPI routines: MatlabMPI supports only basic MPI rou-
tines like Send, Recv, Size and Rank. As MATLAB*P
utilizes more advanced features like Reduce and Scat-
ter/Gather, they have to be implemented.

These alone would increase the size of the code base
dramatically and make code maintenance harder than before,
despite the move to MATLAB scripts, which is supposed to
be easier to write and understand. Yet still, it is interesting
to investigate whether this approach would yield a better
MATLAB*P.

