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Abstract— With the increasing miniaturization of transistors,
wire delays are becoming a dominant factor in microprocessor
performance. To address this issue, a number of emerging
architectures contain replicated processing units with software-
exposed communication between one unit and another (e.g.,
Raw, SmartMemories, TRIPS). However, for their use to be
widespread, it will be necesary to develop a common machine
language to allow programmers to express an algorithm in a way
that can be efficiently mapped across these architectures.

We propose a new common machine language for grid-based
software-exposed architectures: StreamIt. StreamIt is a high-level
programming language with explicit support for streaming com-
putation. Unlike sequential programs with obscured dependence
information and complex communication patterns, a stream
program is naturally written as a set of concurrent filters with
regular steady-state communication. The language imposes a
hierarchical structure on the stream graph that enables novel
representations and optimizations within the StreamIt compiler.

We have implemented a fully functional compiler that par-
allelizes StreamIt applications for Raw, including several load-
balancing transformations. Though StreamIt exposes the paral-
lelism and communication patterns of stream programs, analysis
is needed to adapt a stream program to a software-exposed
processor. We describe a partitioning algorithm that employs
fission and fusion transformations to adjust the granularity of
a stream graph, a layout algorithm that maps a stream graph
to a given network topology, and a scheduling strategy that
generates a fine-grained static communication pattern for each
computational element. Using the cycle-accurate Raw simulator,
we demonstrate that the StreamIt compiler can automatically
map a high-level stream abstraction to Raw. We consider this
work to be a first step towards a portable programming model
for communication-exposed architectures.

I. INTRODUCTION

A common machine language is an essential abstraction
that allows programmers to express an algorithm in a way
that can be efficiently executed on a variety of architectures.
The key properties of a common machine language (CML)
are: 1) it abstracts away the idiosyncratic differences between
one architecture and another so that a programmer doesn’t
have to worry about them, and 2) it encapsulates the common
properties of the architectures such that a compiler for any
given target can still produce an efficient executable.

For von-Neumann architectures, the canonical CML is C:
instructions consist of basic arithmetic operations, executed
sequentially, which operate on either local variables or values
drawn from a global block of memory. C has been imple-
mented efficiently on a wide range of architectures, and it

saves the programmer from having to adapt to each kind of
register layout, cache configuration, and instruction set.

However, recent years have seen the emergence of a class
of grid-based architectures [1], [2], [3] for which the von-
Neumann model no longer holds, and for which C is no
longer an adequate CML. The design of these processors is
fundamentally different in that they are conscious of wire
delays–instead of just arithmetic computations–as the bar-
riers to performance. Accordingly, grid-based architectures
support fine-grained, reconfigurable communication between
replicated processing units. Rather than a single instruction
stream with a monolithic memory, these machines contain
multiple instruction streams with distributed memory banks.

Though C can still be used to write efficient programs on
these machines, doing so either requires architecture-specific
directives or a very smart compiler that can extract the
parallelism and communication from the C semantics. Both
of these options renders C obsolete as a CML, since it fails
to hide the architectural details from the programmer and it
imposes abstractions which are a mismatch for the domain.

To bridge this gap, we propose a new common machine
language for grid-based processors: StreamIt. The StreamIt
language makes explicit the large-scale parallelism and regular
communication patterns that these architectures were designed
to exploit. A program is represented not as a monolithic
memory and instruction stream, but rather as a composition of
autonomous filters, each of which contains its own memory
and can only communicate with its immediate neighbors via
high-bandwidth data channels. In addition, StreamIt provides
a low-bandwidth messaging system that filters can use for
non-local communication. We believe that StreamIt abstracts
away the variations in grid-based processors while encapsu-
lating their common properties, thereby enabling compilers to
efficiently map a single source program to a variety of modern
processors.

II. STREAMING APPLICATION DOMAIN

The applications that make use of a stream abstraction
are diverse, with targets ranging from embedded devices, to
consumer desktops, to high-performance servers. Examples
include systems such as the Click modular router [4] and the
Spectrumware software radio [5], [6]; specifications such as
the Bluetooth communications protocol [7], the GSM Vocoder
[8], and the AMPS cellular base station [9]; and almost any ap-
plication developed with Microsoft’s DirectShow library [10],



Real Network’s RealSDK [11] or Lincoln Lab’s Polymorphous
Computing Architecture [12].

We have identified a number of properties that are common
to such applications–enough so as to characterize them as
belonging to a distinct class of programs, which we will
refer to as streaming applications. We believe that the salient
characteristics of a streaming application are as follows:

1) Large streams of data. Perhaps the most fundamental
aspect of a streaming application is that it operates on
a large (or virtually infinite) sequence of data items,
hereafter referred to as a data stream. Data streams
generally enter the program from some external source,
and each data item is processed for a limited time before
being discarded. This is in contrast to scientific codes,
which manipulate a fixed input set with a large degree
of data reuse.

2) Independent stream filters. Conceptually, a streaming
computation represents a sequence of transformations
on the data streams in the program. We will refer to the
basic unit of this transformation as a filter: an operation
that–on each execution step–reads one or more items
from an input stream, performs some computation, and
writes one or more items to an output stream. Filters
are generally independent and self-contained, without
references to global variables or other filters. A stream
program is the composition of filters into a stream graph,
in which the outputs of some filters are connected to the
inputs of others.

3) A stable computation pattern. The structure of the stream
graph is generally constant during the steady-state oper-
ation of a stream program. That is, a certain set of filters
are repeatedly applied in a regular, predictable order to
produce an output stream that is a given function of the
input stream.

4) Occasional modification of stream structure. Even
though each arrangement of filters is executed for a
long time, there are still dynamic modifications to the
stream graph that occur on occasion. For instance, if a
wireless network interface is experiencing high noise on
an input channel, it might react by adding some filters
to clean up the signal; a software radio re-initializes
a portion of the stream graph when a user switches
from AM to FM. Sometimes, these re-initializations are
synchronized with some data in the stream–for instance,
when a network protocol changes from Bluetooth to
802.11 at a certain point of a transmission. There is
typically an enumerable number of configurations that
the stream graph can adopt in any one program, such that
all of the possible arrangements of filters are known at
compile time.

5) Occasional out-of-stream communication. In addition to
the high-volume data streams passing from one filter
to another, filters also communicate small amounts of
control information on an infrequent and irregular basis.
Examples include changing the volume on a cell phone,
printing an error message to a screen, or changing a
coefficient in an upstream FIR filter.

6) High performance expectations. Often there are real-
time constraints that must be satisfied by streaming
applications; thus, efficiency (in terms of both latency
and throughput) is of primary concern. Additionally,
many embedded applications are intended for mobile
environments where power consumption, memory re-
quirements, and code size are also important.

III. LANGUAGE OVERVIEW

StreamIt includes stream-specific abstractions and represen-
tations that are designed to improve programmer productivity
for the domain of programs described above. In this paper, we
present StreamIt in legal Java syntax1. Using Java has many
advantages, including programmer familiarity, availability of
compiler frameworks and a robust language specification.
However, the resulting syntax can be cumbersome, and in the
future we plan to develop a cleaner and more abstract syntax
that is designed specifically for stream programs.

A. Filters

The basic unit of computation in StreamIt is the Filter. An
example of a Filter is the FIRFilter, shown in Figure 1. The
central aspect of a filter is the work function, which describes
the filter’s most fine grained execution step in the steady state.
Within the work function, a filter can communicate with
neighboring blocks using the input and output channels,
which are FIFO queues declared as fields in the Filter base
class. These high-volume channels support the three intuitive
operations: 1) pop() removes an item from the end of the
channel and returns its value, 2) peek( � ) returns the value of
the item � spaces from the end of the channel without removing
it, and 3) push( � ) writes � to the front of the channel. The
argument � is passed by value; if it is an object, a separate
copy is enqueued on the channel.

A major restriction of StreamIt 1.0 is that it requires filters
to have static input and output rates. That is, the number
of items peeked, popped, and pushed by each filter must be
constant from one invocation of the work function to the next.
In fact, as described below, the input and output rates must
be declared in the filter’s init function. If a filter violates
the declared rates, StreamIt throws a runtime error and the
subsequent behavior of the program is undefined. We plan
to support dynamically changing rates in a future version of
StreamIt.

Each Filter also contains an init function, which is called
at initialization time. The init function serves two purposes.
Firstly, it is for the user to establish the initial state of the filter.
For example, the FIRFilter records weights, the coefficients
that it should use for filtering. A filter can also push, pop, and
peek items from within the init function if it needs to set
up some initial state on its channels, although this usually is
not necessary. A user should instantiate a filter by using its
constructor, and the init function will be called implicitly
with the same arguments that were passed to the constructor.

1However, for the sake of brevity, the code fragments in this document are
sometimes lacking modifiers or methods that would be needed to make them
strictly legal Java.



class FIRFilter extends Filter {
   float[] weights;
   int N;

   void init(float[] weights) {
      setInput(Float.TYPE); setOutput(Float.TYPE);
      setPush(N); setPop(1); setPeek(N); 
      this.weights = weights;
      this.N = weights.length;
   }

   void work() {
      float sum = 0;
      for (int i=0; i<N; i++) 
         sum += input.peek(i)*weights[i];
      input.pop();
      output.push(sum);
   }
}

class Main extends Pipeline {
   void init() {
      add(new DataSource());
      add(new FIRFilter(N));
      add(new Display());
   }
}

Fig. 1. An FIR filter in StreamIt.
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Fig. 2. Stream structures supported by StreamIt.

The second purpose of the init function is to specify the
filter’s I/O types and data rates to the StreamIt compiler. The
types are specified with calls to setInput and setOutput,
while the rates are specified with calls to setPush, setPop,
and setPeek. The setPeek call can be ommitted if the
peek count is the same as the pop count.

B. Connecting Filters

StreamIt provides three constructs for composing filters into
a communicating network: Pipeline, SplitJoin, and Feedback-
Loop (see Figure 2). Each structure specifies a pre-defined
way of connecting filters into a single-input, single-output
block, which we will henceforth refer to as a “stream”. That
is, a stream is any instance of a Filter, Pipeline, SplitJoin,
or FeedbackLoop. Every StreamIt program is a hierarchical
composition of these stream structures.

The Pipeline construct is for building a sequence of streams.
Like a Filter, a Pipeline has an init function that is called
upon its instantiation. Within init, component streams are
added to the Pipeline via successive calls to add. For ex-
ample, in the AudioEcho in Figure 3, the init function
adds four streams to the Pipeline: an AudioSource, an

class Delay extends Filter {
  void init(int delay) {
    setInput(Float.TYPE); setOutput(Float.TYPE);
    setPush(1); setPop(1);
    for (int i=0; i<delay; i++)
      output.push(0);
  }
  void work() { output.push(input.pop()); }
}

class EchoEffect extends SplitJoin {
  void init() {
    setSplitter(Duplicate());
    add(new Delay(100));
    add(new Delay(0));
    setJoiner(RoundRobin());
  }
}

class AudioEcho extends Pipeline {
  void init() {
    add(new AudioSource());
    add(new EchoEffect());
    add(new Adder());
    add(new Speaker());
  }
}

Fig. 3. An echo effect in StreamIt.

class Fibonnacci extends FeedbackLoop {
  void init() {
    setDelay(2);
    setJoiner(RoundRobin(0,1));
    setBody(new Filter() {
       void init() {
         setInput(Integer.TYPE); 
         setOutput(Integer.TYPE);
         setPush(1); setPop(1); setPeek(2);
       }
       void work() {
          output.push(input.peek(0)+input.peek(1));
          input.pop();
       }
    });
    setSplitter(Duplicate());
  }

  int initPath(int index) {
    return index;
  }
}

Fig. 4. A FeedbackLoop version of Fibonnacci.

EchoEffect, an Adder, and a Speaker. This sequence
of statements automatically connects these four streams in
the order specified. Thus, there is no work function in a
Pipeline, as the component streams fully specify the behavior.
The channel types and data rates are also implicit from the
connections.

Each of the stream constructs can either be executed on
its own, or embedded in an enclosing stream structure. The
AudioEcho can execute independently, since the first com-
ponent consumes no items and the last component produces
no items. However, the EchoEffect must be used as a
component, since the first stream inputs items and the last
stream outputs items. When a stream is embedded in another
construct, the first and last components of the stream are
implicitly connected to the stream’s neighbors in the parent
construct.

The SplitJoin construct is used to specify independent
parallel streams that diverge from a common splitter and
merge into a common joiner. As in a Pipeline, the components
of a SplitJoin are specified with successive calls to add
from the init function. For example, the EchoEffect in
Figure 3 adds two streams that run in parallel, each of which
is a Delay filter.



The splitter specifies how items from the input of the
SplitJoin are distributed to the parallel components. For sim-
plicity, we allow only compiler-defined splitters, of which
there are three types: 1) Duplicate, which replicates each
data item and sends a copy to each parallel stream, 2)
RoundRobin( ��� , ��� , ����� , ���

	
, which sends the first ��� data items

to the stream that was added first, the next � � data items to
the stream that was added second, and so on, and 3) Null,
which means that none of the parallel components require any
input, and there are no input items to split. If the weights
are ommitted from a RoundRobin, then they are assumed to
be equal to one for each stream. Note that RoundRobin can
function as an exclusive selector if one or more of the weights
are zero.

Likewise, the joiner is used to indicate how the outputs
of the parallel streams should be interleaved on the output
channel of the SplitJoin. There are two kinds of joiners: 1)
RoundRobin, whose function is analogous to a RoundRobin
splitter, and 2) Null, which means that none of the parallel
components produce any output, and there are no output
items to join. The splitter and joiner types are specified with
calls to setSplitter and setJoiner, respectively. The
EchoEffect uses a Duplicate splitter so that each item
appears both directly and as an echo; it uses a RoundRobin
joiner to interleave the immediate signals with the delayed
ones. In AudioEcho, an Adder is used to combine each
pair of interleaved signals.

The FeedbackLoop construct provides a way to create
cycles in the stream graph. The Fibonacci stream in Figure
4 illustrates the use of this construct. Each FeedbackLoop
contains: 1) a body stream, which is the block around which a
backwards “feedback path” is being created, 2) a loop stream,
which can perform some computation along the feedback path,
3) a splitter, which distributes data between the feedback path
and the output channel at the bottom of the loop, and 4) a
joiner, which merges items between the feedback path and
the input channel at the top of the loop. These components
are specified from within the init function via calls to
setBody, setLoop, setSplitter, and setJoiner,
respectively. The splitters and joiners can be any of those
for SplitJoin, except for Null. The call to setLoop can be
ommitted if no computation is performed along the feedback
path.

The FeedbackLoop has a special semantics when the stream
is first starting to run. Since there are no items on the
feedback path at first, the stream instead inputs items from
an initPath function defined by the FeedbackLoop; given
an index � , initPath provides the � ’th initial input for the
feedback joiner. With a call to setDelay from within the
init function, the user can specify how many items should
be calculated with initPath before the joiner looks for data
items from the feedback channel.

Detailed informaiton of the language can be found in [13].
We have written many programs to understand the scope and
limitations of the language. For example, we have written
multiple versions of matrix multiply kernels, sorting algo-
rithms, FIR filters and FFT filters in StreamIt. We have also
implemented many applications such as a Cyclic Redundancy

Checker, an FM Radio with an Equalizer, a Reed Solomon
Decoder for HDTV, a Vocoder [14], a Radar Array Front
End [12], a GSM Decoder [8], and the physical layer of the
3GPP Radio Assess Protocol [15]. We plan to incorporate the
knowlege and insight grained from developing these applica-
tions to the next version of StreamIt.

IV. COMPILING STREAMIT TO RAW

The StreamIt language aims to be portable across
communication-exposed machines. StreamIt exposes the par-
allelism and communication of streaming applications without
depending on the topology or granularity of the underlying ar-
chitecture. We have implemented a fully-functional prototype
of the StreamIt compiler for Raw [2], a tiled architecture with
fine-grained, programmable communication between proces-
sors. However, the compiler employs three general techniques
that can be applied to compile StreamIt to machines other than
Raw: 1) partitioning, which adjusts the granularity of a stream
graph to match that of a given target, 2) layout, which maps a
partitioned stream graph to a given network topology, and 3)
scheduling, which generates a fine-grained static communica-
tion pattern for each computational element. We consider this
work to be a first step towards a portable programming model
for communication-exposed architectures.

The front end is built on top of KOPI, an open-source
compiler infrastructure for Java [16]; we use KOPI as our
infrastructure because StreamIt has evolved from a Java-based
syntax. We translate the StreamIt syntax into the KOPI syntax
tree, and then construct the StreamIt IR (SIR) that encapsulates
the hierarchical stream graph. Since the structure of the graph
might be parameterized, we propagate constants and expand
each stream construct to a static structure of known extent.
At this point, we can calculate an execution schedule for the
nodes of the stream graph.

The StreamIt compiler is composed of the following stages
that are specific for communication-exposed architectures:
stream graph scheduling, stream graph partitioning, layout,
and communication scheduling. The next four sections provide
a brief overview of these phases. For a detailed explanation
see [17], [18], [19].

A. Stream Graph Scheduling

The automatic scheduling of the stream graph is one of
the primary benefits that StreamIt offers, and the subtleties
of scheduling and buffer management are evident throughout
the phases of the compiler described below. The scheduling
is complicated by StreamIt’s support for the peek operation,
which implies that some programs require a separate schedule
for initialization and for the steady state. The steady state
schedule must be periodic–that is, its execution must preserve
the number of live items on each channel in the graph (since
otherwise a buffer would grow without bound.) A separate
initialization schedule is needed if there is a filter with 
�������

���
 , by the following reasoning. If the initialization schedule
were also periodic, then after each firing it would return the
graph to its initial configuration, in which there were zero live
items on each channel. But a filter with 
��������
���
 leaves




������� 
���
 (a positive number) of items on its input channel
after every firing, and thus could not be part of this periodic
schedule. Therefore, the initialization schedule is separate, and
non-periodic.

In the StreamIt compiler, the initialization schedule is con-
structed via symbolic execution of the stream graph, until each
filter has at least 
������� 
���
 items on its input channel. For
the steady state schedule, there are many tradeoffs between
code size, buffer size, and latency, and we are developing
techniques to optimize different metrics [20]. Currently, we
use a simple hierarchical scheduler that constructs a Single
Appearance Schedule (SAS) [21] for each filter. We plan to
develop better scheduling heuristics in the future [19]. A SAS
is a schedule where each node appears exactly once in the
loop nest denoting the execution order. We construct one
such loop nest for each hierarchical stream construct, such
that each component is executed a set number of times for
every execution of its parent. In later sections, we refer to the
“multiplicity” of a filter as the number of times that it executes
in one steady state execution of the entire stream graph.

B. Stream Graph Partitioning

StreamIt provides the filter construct as the basic abstract
unit of autonomous stream computation. The programmer
should decide the boundaries of each filter according to what
is most natural for the algorithm under consideration. While
one could envision each filter running on a separate machine
in a parallel system, StreamIt hides the granularity of the target
machine from the programmer. Thus, it is the responsibility
of the compiler to adapt the granularity of the stream graph
for efficient execution on a particular architecture.

We use the word partitioning to refer to the process of
dividing a stream program into a set of balanced computation
units. Given that a maximum of

�
computation units can be

supported, the partitioning stage transforms a stream graph
into a set of no more than

�
filters, each of which performs

approximately the same amount of work during the execution
of the program. Following this stage, each filter can be run on
a separate processor to obtain a load-balanced executable.

Our partitioner employs a set of fusion, fission, and re-
ordering transformations to incrementally adjust the stream
graph to the desired granularity. To achieve load balancing, the
compiler estimates the number of instructions that are executed
by each filter in one steady-state cycle of the entire program;
then, computationally intensive filters can be split, and less
demanding filters can be fused. Currently, a simple greedy
algorithm is used to automatically select the targets of fusion
and fission, based on the estimate of the work in each node.

For example, in the case of the Radar application, the
original stream graph (Figure 5) contains 52 filters. These
filters have unbalanced amounts of computation, as evidenced
by the execution trace in Figure 7(a). The partitioner fuses
all of the pipelines in the graph, and then fuses the bottom
4-way splitjoin into a 2-way splitjoin, yielding the stream
graph in Figure 6. As illustrated by the execution trace
in Figure 7(b), the partitioned graph has much better load
balancing. In the following sections, we describe in more detail
the transformations utilized by the partitioner.
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Fig. 5. Stream graph of the original 12x4 Radar application.
The 12x4 Radar application has 12 channels and 4 beams;
it is the largest version that fits onto 64 tiles without filter
fusion.
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Fig. 6. Stream graph of the load-balanced 12x4 Radar
application. Vertical fusion is applied to collapse each
pipeline into a single filter, and horizontal fusion is used to
transform the 4-way splitjoin into a 2-way splitjoin. Figure 7
shows the benefit of these transformations.

1) Fusion Transformations: Filter fusion is a transforma-
tion whereby several adjacent filters are combined into one.
Fusion can be applied to decrease the granularity of a stream
graph so that an application will fit on a given target, or
to improve load balancing by merging small filters so that
there is space for larger filters to be split. Analogous to loop
fusion in the scientific domain, filter fusion can enable other
optimizations by merging the control flow graphs of adjacent
nodes, thereby shortening the live ranges of variables and
allowing independent instructions to be reordered.



KEY

Blocked on send or receiveUseful work Unused tile

(a) Original (runs on 64 tiles).
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Fig. 7. Execution traces for the (a) original and (b) partitioned
versions of the Radar application. The � axis denotes time, and
the � axis denotes the processor. Dark bands indicate periods where
processors are blocked waiting to receive an input or send an output;
light regions indicate periods of useful work. The thin stripes in
the light regions represent pipeline stalls. Our partitioning algorithm
decreases the granularity of the graph from 53 unbalanced tiles
(original) to 15 balanced tiles (partitioned). The throughput of the
partitioned graph is 2.3 times higher than the original.

2) Fission Transformations: Filter fission is the analog of
parallelization in the streaming domain. It can be applied to
increase the granularity of a stream graph to utilize unused
processor resources, or to break up a computationally intensive
node for improved load balancing.

3) Reordering Transformations: There are a multitude of
ways to reorder the elements of a stream graph so as to
facilitate fission and fusion transformations. For instance,
neighboring splitters and joiners with matching weights can
be eliminated a splitjoin construct can be divided into a
hierarchical set of splitjoins to enable a finer granularity of
fusion and identical stateless filters can be pushed through a

splitter or joiner node if the weights are adjusted accordingly.
4) Automatic Partitioning: In order to drive the partitioning

process, we have implemented a simple greedy algorithm that
performs well on most applications. The algorithm analyzes
the work function of each filter and estimates the number
of cycles required to execute it. In the case where there
are fewer filters than tiles, the partitioner considers the fil-
ters in decreasing order of their computational requirements
and attempts to split them using the filter fission algorithm
described above. If the stream graph contains more nodes
than the target architecture, then the partitioner works in the
opposite direction and repeatedly fuses the least demanding
stream construct until the graph will fit on the target.

Despite its simplicity, this greedy strategy works well in
practice because most applications have many more filters
than can fit on the target architecture; since there is a long
sequence of fusion operations, it is easy to compensate from
a short-sighted greedy decision. However, we can construct
cases in which a greedy strategy will fail. For instance,
graphs with wildly unbalanced filters will require fission of
some components and fusion of others; also, some graphs
have complex symmetries where fusion or fission will not be
beneficial unless applied uniformly to each component of the
graph. We are working on improved partitioning algorithms
that take these measures into account.

C. Layout

The goal of the layout phase is to assign nodes in the stream
graph to computation nodes in the target architecture while
minimizing the communication and synchronization present
in the final layout. The layout assigns exactly one node in
the stream graph to one computation node in the target. The
layout phase assumes that the given stream graph will fit onto
the computation fabric of the target and that the filters are load
balanced. These requirements are satisfied by the partitioning
phase described above.

The layout phase of the StreamIt compiler is implemented
using simulated annealing [22]. We choose simulated anneal-
ing for its combination of performance and flexibility. To
adapt the layout phase for a given architecture, we supply the
simulated annealing algorithm with three architecture-specific
parameters: a cost function, a perturbation function, and the
set of legal layouts. To change the compiler to target one tiled
architecture instead of another, these parameters should require
only minor modifications.

The cost function should accurately measure the added
communication and synchronization generated by mapping the
stream graph to the communication model of the target. Due
to the static qualities of StreamIt, the compiler can provide
the layout phase with exact knowledge of the communication
properties of the stream graph. The terms of the cost function
can include the counts of how many items travel over each
channel during an execution of the steady state. Furthermore,
with knowledge of the routing algorithm, the cost function can
infer the intermediate hops for each channel. For architectures
with non-uniform communication, the cost of certain hops
might be weighted more than others. In general, the cost
function can be tailored to suit a given architecture.



lines of # of constructs in the program # of filters in the
Benchmark Description code filters pipelines splitjoins feedbackloops expanded graph

FIR 64 tap FIR 125 5 1 0 0 132
Radar Radar array front-end [12] 549 8 3 6 0 52
Radio FM Radio with an equalizer 525 14 6 4 0 26
Sort 32 element Bitonic Sort 419 4 5 6 0 242
FFT 64 element FFT 200 3 3 2 0 24
Filterbank 8 channel Filterbank 650 9 3 1 1 51
GSM GSM Decoder 2261 26 11 7 2 46
Vocoder 28 channel Vocoder [14] 1964 55 8 12 1 101
3GPP 3GPP Radio Access Protocol [15] 1087 16 10 18 0 48

TABLE I

APPLICATION CHARACTERISTICS.

250 MHz Raw processor C on a 2.2 GHz
Benchmark StreamIt on 16 tiles C on a single tile Intel Pentium IV

Utilization
# of tiles

used MFLOPS
Throughput

(per 10 � cycles)
Throughput

(per 10 � cycles)
Throughput

(per 10 � cycles)

FIR 84% 14 815 1188.1 293.5 445.6
Radar 79% 16 1,231 0.52 app. too large 0.041
Radio 73% 16 421 53.9 8.85 14.1
Sort 64% 16 N/A 2,664.4 225.6 239.4
FFT 42% 16 182 2,141.9 468.9 448.5
Filterbank 41% 16 644 256.4 8.9 7.0
GSM 23% 16 N/A 80.9 app. too large 7.76
Vocoder 17% 15 118 8.74 app. too large 3.35
3GPP 18% 16 44 119.6 17.3 65.7

TABLE II

PERFORMANCE RESULTS.

Phase ordering between stream graph parttioning and layout
can lead to suboptimal results. We plan to develop a unified
approach for partitioning and layout in the future.

D. Communication Scheduler

With the nodes of the stream graph assigned to computation
nodes of the target, the next phase of the compiler must
map the communication explicit in the stream graph to the
interconnect of the target. This is the task of the commu-
nication scheduler. The communication scheduler maps the
infinite FIFO abstraction of the stream channels to the limited
resources of the target. Its goal is to avoid deadlock and
starvation while utilizing the parallelism explicit in the stream
graph.

The exact implementation of the communication scheduler
is tied to the communication model of the target. The simplest
mapping would occur for targets implementing an end-to-
end, infinite FIFO abstraction, in which the scheduler needs
only to determine the sender and receiver of each data item.
This information is easily calculated from the weights of the
splitters and joiners. As the communication model becomes
more constrained, the communication scheduler becomes more
complex, requiring analysis of the stream graph. For targets
implementing a finite, blocking nearest-neighbor communi-
cation model, the exact ordering of tile execution must be
specified.

Due to the static nature of StreamIt, the compiler can stati-
cally orchestrate the communication resources. As described in
Section IV, we create an initialization schedule and a steady-
state schedule that fully describe the execution of the stream
graph. The schedules can give us an order for execution of the

graph if necessary. One can generate orderings to minimize
buffer length, maximize parallelism, or minimize latency.

Deadlock must be carefully avoided in the communication
scheduler. Each architecture requires a different deadlock
avoidance mechanism and we will not go into a detailed
explanation of deadlock here. In general, deadlock occurs
when there is a circular dependence on resources. A circular
dependence can surface in the stream graph or in the routing
pattern of the layout. If the architecture does not provide
sufficient buffering, the scheduler must serialize all potentially
deadlocking dependencies.

E. Preliminary Results

We evaluate the StreamIt compiler for the set of applications
shown in Table I; our results appear in Table II.

For each application, we compare the throughput of
StreamIt with a hand-written C program, running the latter
on either a single tile of Raw or on a Pentium IV. For Radio,
GSM, and Vocoder, the C source code was obtained from
a third party; in other cases, we wrote a C implementation
following a reference algorithm. For each benchmark, we show
MFLOPS (which is N/A for integer applications), processor
utilization (the percentage of time that an occupied tile is not
blocked on a send or receive), and throughput. We also show
the performance of the C code, which is not available for C
programs that did not fit onto a single Raw tile (Radar, GSM,
and Vocoder). Figures 8 and 9 illustrate the speedups obtained
by StreamIt compared to the C implementations2.

2FFT and Filterbank perform better on a Raw tile than on the Pentium 4.
This could be because Raw’s single-issue processor has a larger data cache
and a shorter processor pipeline.
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Fig. 8. StreamIt throughput on a 16-tile Raw machine,
normalized to throughput of hand-written C running on a
single Raw tile.
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Fig. 9. Throughput of StreamIt code running on 16 tiles and C
code running on a single tile, normalized to throughput of C code
on a Pentium IV.

The results are encouraging. In many cases, the StreamIt
compiler obtains good processor utilization–over 60% for four
benchmarks and over 40% for two additional ones. For GSM,
parallelism is limited by a feedbackloop that sequentializes
much of the application. Vocoder is hindered by our work
estimation phase, which has yet to accurately model the cost
of library calls such as sin and tan; this impacts the
partitioning algorithm and thus the load balancing. 3GPP also
has difficulties with load balancing, in part because our current
implementation fuses all the children of a stream construct at
once.

StreamIt performs respectably compared to the C imple-
mentations, although there is room for improvement. The aim
of StreamIt is to provide a higher level of abstraction than C
without sacrificing performance. Our current implementation
has taken a large step towards this goal. For instance, the
synchronization removal optimization improves the throughput
of 3GPP by a factor of 1.8 on 16 tiles (and by a factor of
2.5 on 64 tiles.) Also, our partitioner can be very effective–
as illustrated in Figure 7, partitioning the Radar application
improves performance by a factor of 2.3 even though it
executes on less than one third of the tiles.

The StreamIt optimization framework is far from complete,
and the numbers presented here represent a first step rather
than an upper bound on our performance. We are actively
implementing aggressive inter-node optimizations and more
sophisticated partitioning strategies that will bring us closer
to achieving linear speedups for programs with abundant
parallelism.
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