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Abstract

The problem of detecting footsteps using acoustic and seismic sensors is approached from three
different angles in this thesis. First, accelerometer data processing systems are designed to make
footsteps more apparent to a human operator listening to accelerometer recordings. These systems
work by modulating footstep signal energy into the ear's most sensitive frequency bands. Second,
linear predictive modeling is shown to be an effective means to detect footsteps in accelerometer
and microphone data. The time evolution of the third order linear prediction coefficients leads to the
classical binary hypothesis testing framework. Lastly, a new method for blindly estimating the filters
of a SIMO channel is presented. This method is attractive because it allows for a more tractable
performance analysis.
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CHAPTER 1 Introduction

Many applications can be envisioned for a system that is able to detect human activity
in some area. Probably the most obvious application is the detection of intruders in
a secure region. It is often the case that a system capable of detecting pedestrians
is desired. Any system to accomplish this task obviously needs a way to sense the
pedestrian. Acoustic and seismic sensors are capable of measuring pedestrian activity
and are often employed for this task for a number of reasons. Such sensor systems
are inexpensive, passive (do not emit energy), and potentially easily installed.

In the case that the system should alarm only when a pedestrian is present, processing
of the acoustic and seismic signals should make it possible for the system to discrim-
inate footsteps from other acoustic and seismic sources such as highways, railroads,
operating machinery, and trees and bushes swaying in the wind. As for indoor detec-
tion, heating and air conditioning units are a common noise source. The decision to
alarm can be made by a human operator or by a signal processing algorithm. How-
ever, even when the system involves a human operator, signal processing should be
performed to make the task easier and more error-free for the operator.

Discriminating footstep signals from noise sources is a challenging problem to solve
with human operators or software. The footstep signal to noise ratio decreases rapidly
with the distance between the sensors and the pedestrian. In addition, impulsive
noise often looks and sounds like footsteps. Another complication is that footstep
signals can vary greatly from one person to the next as well as one environment to
the next. While this is a challenging problem, with high-performance sensors and
sophisticated signal processing, it is hardly impossible.



A system that is successful in discriminating footsteps from noise sources may also
be extended to solve similarly related problems. For example, it may be possible to
identify a pedestrian based on the recorded footstep signals. In addition, evaluation
of the acoustic and seismic signals produced by a person walking may aid in the
diagnosis of gait-affecting diseases.

1.1 Problems Considered

There are three closely related problems explored in this thesis. One form of a human
operator is a person listening to acoustic and seismic data in order to monitor an area
for footsteps. The first problem is how can acoustic and seismic signals be processed
to aid the listener in footstep detection. While it may seem odd that the operator
is listening to seismic data, the seismic data is actually sampled at 44.1kHz (stan-
dard audio CD sampling rate) and contains significant energy in the audio frequency
range.

There are no constraints on the processing that is performed on the acoustic and
seismic data. The goal is simply to process the data in anyway that will enhance
the listener's ability to detect footsteps and discriminate them from other acoustic
and seismic sources. One issue with this problem is the difficulty in measuring the
performance of processing methods. Performance can only be measured qualitatively
by listening to the original data file and processed data file and comparing the two.

The second problem considered in this thesis is the characterization of footsteps
recorded with acoustic and seismic sensors. In order to discriminate footsteps from
similar acoustic and seismic noise sources, footstep signal feature extraction must
be developed. The extracted features can be employed in a decision rule that states
when the presence of a footstep is declared. A possibly more difficult but similarly
related problem considers using the extracted features to infer qualities of the walker
such as height, weight, or even identity.

Lastly, this thesis looks at the problem of finding alternative methods for blind chan-
nel identification. A method that is computationally inexpensive and allows for a
tractable analysis of performance is desired. Blind channel identification is impor-
tant for footstep detection in that blind channel identification is useful for sensor
fusion. Sensor fusion is the process of combining signals from multiple sensors. Fig-
ure (1-1) depicts a situation in which three accelerometers (seismic sensors) and three
microphones (acoustic sensors) are monitoring an area for footsteps. Blind channel
identification can be used in the process of combining all six signals to produce a
seventh signal that is then processed to determine if an intruder is present.

1.2 Previous Work

The problem of detecting footsteps using acoustic or seismic sensors has been studied
before. In this section, the most relevant published material is discussed.

I Introduction



FIGURE 1-1 : Three acoustic and three seismic sensors monitoring an area for footsteps.

1.2.1 Kurtosis and Cadence

In [8], Succi considers using the kurtosis and the cadence of seismic signals to detect
footsteps. Kurtosis is the degree of peakedness of a distribution and is defined as
a normalized form of the fourth central moment. While there are several flavors of
kurtosis, Succi uses the kurtosis proper denoted f2 and defined by

32- = _4

(2 (1.1)

where pi denotes the i th central moment [9].

For N samples, Succi estimates the kurtosis of the amplitude distribution of a seismic
signal s[n] as

k1 N=l(S[n] - M)4

02 I 2 (1.2)(I EN=i(s[n] - t)2

where p is the sample average of the signal over the range 1 < n < N. This estimate
measures the shape of the signal. Scaling the data has no effect on the estimate.

Since kurtosis is a measure of the peakedness of a distribution, the kurtosis of a
section of data is increased by impulsive events. Succi reasons that kurtosis is a good
indicator of footsteps since footsteps appear as sharp spikes in the data unlike several
seismic noise sources such as wind blowing over the ground or vehicle noise.

Succi computes /2 for overlapping four second sections of the data. He finds that
for each of three recordings, background noise, light passenger vehicle, and heavy
armored personnel carrier, the mean of /2 is approximately 3. Succi reports a mean

1.2 Previous Work



12 of 6 for recordings of footsteps. The variance of 12 is 0.4 for ambient noise, 0.6
for the light passenger vehicle, 1.9 for the armored personnel carrier, and 2.5 for the
footsteps.

Succi's kurtosis method of detecting footsteps essentially reduces the data to a single
parameter that is then used to decide if a walker is present. This method is attractive
because of its simplicity. However, this detection scheme is fairly limited since it
uses only one parameter to characterize four second sections of the signal. A major
problem is that any noise source that generates spikes in the data will be interpreted
as a footstep.

Succi also offers an alternative single parameter footstep detection scheme. Succi
reasons that the cadence of the signal can be used to detect footsteps. Each footstep
produces a spike in the seismic signal. The time between spikes is measured and
used to determine if a walker is present. This detection scheme also has its limita-
tions. One of the most apparent problems is that the success of the cadence detection
scheme is limited by noise sources that generate large amplitude values in the data.

1.2.2 Short-time Fourier Transform Analysis

Houston in [3] takes a somewhat different approach to footstep detection in which
he utilizes the short-time Fourier transform (STFT). Houston's detection scheme fo-
cuses on the periodic arrival of footsteps instead of on the information in individual
footstep signals.

A block diagram summarizing Houston's processing is shown in Figure (1-2). Hous-
ton finds that the 10-40Hz band contains most of the footstep energy and therefore
passes the data through a bandpass filter with these cutoff frequencies. The absolute
value of the signal is then taken before downsampling the signal to a sampling rate
of 40Hz. The STFT of the data is then computed (26 second window, 95% overlap)
and normalized using a split-window 2-pass normalizer (a conventional STFT anal-
ysis algorithm). Figure (1-3) shows the example of a resulting normalized STFT plot
given by Houston.

A set of ad hoc decision rules are applied to the normalized Fourier transform of
each 26 second window of data (one horizontal line in Figure (1-3). The presence of
a walker is declared when the following criteria are met:

1. A primary frequency component must occur in the 0.5 to 3.0 Hz range.

2. The primary frequency component must have a second or third harmonic present.

3. The primary frequency component must be greater than 11 dB over the noise
level and the harmonic greater than 7dB, or vice versa.

Houston shows the results of applying his detection scheme to real footstep data
recorded with seismic sensors in an outdoor environment. He concludes that his
method shows promise but more data sets are needed to fully characterize its perfor-
mance. Houston also mentions a couple of the potential pitfalls associated with his

I Introduction



Seismic Signal

Sampled at 1200Hz

FIGURE 1-2:

STFT STFT Apply
26 sec window Normalization Decision
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Houston's Detection Scheme

Spectroam of Envelope Data -Stadard Walk -6 December Run 3
AP=40 6 D0c W3 K Non Wa% - SpcAMn OwmeAI er t-00-215.6 Sec

rtuyMWA tC

5 6 7 8 9 10 c11
sun,, a
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FIGURE 1-3: An example of the normalized STFT of footstep data given by Houston in [3].

detection scheme. He explains that it is possible for noise sources such as traffic on
nearby roadways to mask the footstep signals. In addition, Houston mentions that
stealthy walking, in which the walker takes soft footsteps, will not be detected with

1.2 Previous Work



his method.

1.2.3 Footstep Feature Extraction for Personal Identification

A problem closely related to footstep detection is that of using footstep signatures for
identification purposes. In [7], Shoji considers using peak frequencies generated by
a mel-cepstrum analysis, the time between successive footsteps, and samples of the
spectrum envelope to identify walkers.

Mel-Cepstrum Analysis

Shoji applies a type of mel-cepstrum analysis to the footstep data to generate an
amplitude versus frequency plot. The example plot given in [7] is shown in Figure (1-
4(a)). Each curve in the plot corresponds to a different walker. The peak frequencies
of the curves are used as feature parameters. For example, a plot given in [7] showing
the fourth and fifth peak frequencies generated from multiple sections of the data for
each of the five walkers is presented in Figure (1-4(b)). In this plot, subject C is the
only subject that can be clearly discriminated from the others.

I

(a) (b)

FIGURE 1-4: Mel-Cepstrum Analysis (from [7]). (a) Amplitude vs. Frequency Plot. (b) Fourth
and fifth peak frequencies generated from multiple sections of the data for each of
the five walkers.

Walking Intervals

The second feature parameter Shoji considers is the time between footsteps. The
time between footsteps is measured by estimating the pitch using an autocorrelation
method. A figure given by Shoji in [7] is shown in Figure (1-5). This figure shows
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the distribution of the measured walking intervals for five subjects.
subject B is easily discriminated from the others.

0.55
To* is"c)

In this plot, only

FIGURE 1-5: Distribution of walking intervals for five subjects (from [7]).

Envelope of the Footstep Spectrum

Lastly, Shoji considers using information in the envelope of the footstep spectrum to
identify walkers. In [7] Shoji gives Figure (1-6) to illustrate the differences in the
envelope of the footstep spectrum across different subjects. A vector of samples of
the footstep spectrum envelope is computed and used to characterize footstep signals.

rque"nc IMA
00

FIGURE 1-6: Envelope of the footstep spectrum for five subjects (from [7]).
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The frequencies from the mel-cepstrum analysis, the walking interval times, and
the samples of the footstep spectrum envelope are combined in a vector. Vector
quantization is then used to cluster the parameters. This allows all three sources
of information - the mel-cepstrum frequencies, the walking interval times, and the
footstep spectrum envelope - to be simultaneously used to make a decision on the
walker's identity.

1.3 Outline of the Thesis

This thesis explores the general problem of using acoustic and seismic sensors to
detect footsteps. However, each chapter in the thesis considers a different aspect
of the problem. Chapter 2 looks at digital processing that can help a human opera-
tor detect footsteps when listening to sensor data. More specifically, the short-time
Fourier transform (STFT) is used to analyze accelerometer data (an accelerometer is
a type of seismic sensor). The idea is that since the accelerometer data is sampled
at 44.1kHz (CD quality sampling rate), the footsteps can be heard when playing the
data through a speaker. With the use of STFT analysis, accelerometer data processing
can be developed to make the footsteps more easily detected by the listener.

In Chapter 3, linear predictive analysis is considered for the automatic detection of
footsteps in accelerometer and microphone data. Windowed sections of the sensor
data are used to compute linear prediction coefficients. The feasibility of using the
coefficients of a linear prediction model to discriminate footsteps from noise artifacts
in the data is established.

Lastly, Chapter 4 explains the least squares solution to blind channel identification.
Chapter 4 also investigates an alternative method to perform blind channel identifi-
cation. This alternative method is attractive because it allows for a recursive solu-
tion. Additionally, this alternative method was motivated by the potential for a more
tractable performance analysis.

1 Introduction



CHAPTER 2 Digital Processing to Aid the
Listener in Footstep Detection

A person walking through a room generates both acoustic and seismic vibrations
mostly due to footsteps. These vibrations can be recorded with microphones and
accelerometers, respectively. These recorded signals can be monitored to detect the
presence of an intruder. This chapter presents digital processing that can be per-
formed on the recorded signals in order to make the footsteps more apparent to a
human listener.

2.1 The Data

The data discussed in this chapter was collected by placing a microphone and ac-
celerometer in the center of a room. A person then walked in a circle (approximate
diameter of 6 feet) around the sensors. Two data sets were recorded: one in which the
person walked "regularly" and another in which the person walking tried to make a
minimal amount of noise. The two data sets are identified as "regular" and "stealthy."
The recorded data was digitized at 16 bits with a 44.1 kHz sampling rate.

2.2 Motivation for Processing

Figure (2-1) shows two standards for equal loudness contours for listening in free
sound fields. The solid contours are the most recent standards. As can be seen from
these contours, the human ear is more sensitive to sounds near 3kHz than sounds at



lower or higher frequencies. The contours in Figure (2-1) were produced by testing
subjects 18-25 years of age with normal hearing.

31.5 63 125 250 500 1000 2000

Frequency [Hz]
4000 8000 16000

FIGURE 2-1: The ISO 226:2003 equal loudness contours shown as solid curves.
tours represent the previous standard, ISO 226:1987.

The dashed con-

Considering this filtering performed by the ear, it makes sense that moving the recorded
data from low-sensitivity frequency ranges to high-sensitivity frequency ranges could
aid the listener in detecting footsteps. The processing discussed in this chapter is
based on this idea.

2.3 Digital Processing

2.3.1 Noise Removal

Before shifting low-sensitivity frequency ranges to high-sensitivity ranges, an at-
tempt at noise removal should be made. The most common sources of noise in an
indoor environment are the heating and cooling systems and the electrical noise in
the sensor. Both of these noise sources are stationary over sufficiently short time
intervals. The first step in removing the noise is to examine the frequency content of
the data. At frequencies where the noise power is significantly greater than the signal
(footstep) power, the data should be attenuated. The frequency content of the noise
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can be estimated by performing spectral analysis on data recorded in the absence
of footsteps. The frequency content of the footsteps can be estimated by using the
short-time Fourier transform (STFT) on sections of data that are known to contain
footsteps.

The STFT of a section of accelerometer data containing a footstep can be seen in
Figure (2-2). The STFT was taken by windowing the data with a Hamming window
of length 200 samples. The windowed segments overlapped 150 samples and the
1,024 point Fast Fourier Transform was used. From the figure, it is apparent that a
footstep consists of two components. The first contains a wide range of frequency
content in a short amount of time. The second component contains frequency content
mostly in the range of 6-16kHz and spread over about 60 milliseconds. Considering
the time-frequency nature of these two components as well as a time separation of
about 100 milliseconds, it seems likely that the first component is the heel touching
down and the second component is the foot coming to a halt against the floor.

0.05 0.1 0.15
Time (s)

0.2 0.25

FIGURE 2-2: Short-time Fourier Transform of a Section of
step

Accelerometer Data Containing a Foot-

Since the noise is mostly stationary, spectral analysis can be used to determine its fre-
quency content. The curve labeled "pre-filtered" in Figure (2-3) is the power spectral
density estimate of the noise computed from a section of the data absent of footsteps.
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This estimate is computed using Welch's method. More specifically, a Hamming
window of length 500 samples is used to compute modified periodograms. An over-
lap of 250 is used and the resulting periodograms are averaged to obtain the power
spectral density estimate.

As can be seen from this estimate, the noise is fairly evenly distributed over the entire
frequency range (0-22.05kHz) except for a spike at low frequencies. In filtering out
the noise, there is a fundamental tradeoff between removing the noise and altering
the signal of interest. Considering the frequency content of the footstep and as well
as that of the noise, it makes sense to attenuate the data in the range from 0 to 500
Hz, since this is where the spike in the noise is located. The noise spectrum after
applying a 10 0 th order FIR high-pass filter with cut-off frequency at about 500Hz to
the data is labeled "post-filtered" in Figure (2-3).
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FIGURE 2-3: Noise Power Spectral Density Estimate Computed using Welch's Method

It is also important to consider the effect that this high-pass filter has on the footstep
component of the data. The second component of the footstep, which is located
above 6kHz, is not affected by the filtering. The first component, which contains
energy below 500Hz, is affected by the noise removal filtering. However, as can be
seen in Figure (2-3), 0-500Hz is a small fraction of the frequency range spanned by
the first component. Thus, attenuating the 0-500Hz portion does not have a drastic
effect on the first component of the footstep.
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2.3.2 First Method: Shifting 11.025-22.05kHz Band Down in Frequency

The first approach to make the footsteps more distinct to the listener is to simply
take the 11.025-22.05kHz section of the data and shift it down into the 0-11.025kHz
range. This operation is shown in Figure(2-4). HPF and LPF denote high-pass filter
and low-pass filter, respectively. The cosine used in the frequency shifting has an
amplitude of 2 since multiplication by a cosine shifts a signal's spectrum as well as
scales it by ½. The 0-11.025kHz band of the output signal contains the superposition
of the input signal's 0-11.025kHz and 11.025-22.05kHz bands. The output signal is
band-limited to 11.025kHz.

2 cos(3u)

FIGURE 2-4: First Method Processing: Shifting of the 11.025-22.05kHz band down to 0-
11.025kHz.

The original accelerometer data file, as well as the processed data file are available
for comparison [1]. The actual implementation of the processing in Figure (2-4)
can be found in Appendix A. The processing in Figure (2-4) was also applied to
the accelerometer data recorded with a "stealthy" walker. The original recording
of the stealthy walker as well as the processed recording are also available [1]. A
description of the files available from [1] is given in Appendix B.

Listening to the data files before and after processing reveals that the processing of
the "regular" walking had a noticeable affect on the recording. It is quite possible
that for most listeners this processing can make the detection of footsteps easier. A
noticeable affect is also heard in the "stealthy" case. However, in this case it seems
that the processing does not make the footsteps significantly easier to detect.

2.3.3 Second Method: Placing High Footstep Energy in the Most Sensitive Frequency Range

The second approach involves taking frequency bands with high footstep energy and
shifting them to the frequencies that are most sensitive to the ear. As can be seen in
Figure (2-1), 1-6kHz is a region of high-sensitivity for the human ear. Figure (2-2)
shows the two components of the footstep signal. The first component is spread fairly
evenly over the entire frequency range while the second component is mostly in the
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range of 6-16kHz. Figure (2-5) shows the STFT of a "stealthy" footstep. As can be
seen in this figure, the first component of the footstep is nearly eliminated but the
second component still has a strong presence. Therefore, it seems the 6-16kHz band
contains significant footstep energy regardless of the type of walking. Thus, it seems
plausible that shifting this band into the high-sensitivity 1-6kHz region could aid the
listener in detecting footsteps.

x 10

0.1 0.2 0.3 0.4 0.5
Time

FIGURE 2-5: STFT of a "Stealthy" Footstep

A linear scaling of the frequency axis cannot be used to pack the 6-16kHz band into
the 1-6kHz band since this would result in expansion of the data in the time domain.
In order to pack the 10kHz band into the 5kHz space, the 10kHz band is decomposed
into two 5kHz pieces. These two components are then both placed in the 1-6kHz
region.

The system that performs this processing is shown in Figure (2-6). The top signal
path generates g[n], which contains the input signal's 6-11 lkHz content located at
1-6kHz. The bottom signal path generates v[n], which contains the input signal's
11-16kHz content located at 1-6kHz. The output is the sum of the input signal, g[n]
and v[n].

An implementation of the processing shown in Figure (2-6) can be found in Appendix
A. Accelerometer data files demonstrating the affect of this processing are available
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[1]. Listening to these files reveals that the footsteps are noticeably more distinct in
the processed files for both regular and stealthy walking.

2 cos( 22 5 rn)

FIGURE 2-6: Second Method Processing: Frequencies with high footstep energy are shifted to the
frequencies most sensitive to the ear.
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2.4 Summary

This chapter explains how equal loudness curves for the human ear can be used to
design data processing systems to enhance an operator's ability to detect footsteps
when listening to accelerometer data. Two different methods are proposed for mak-
ing footsteps in accelerometer data more distinct to the listener. The first method of
processing simply shifts the 11-22kHz frequency band of the data down in frequency.
This makes footstep energy originally located in the higher frequencies more easily
heard. The second method of processing takes the high energy components of the
footstep signal and shifts them into the ear's most sensitive frequency band. Be-
fore applying either method to accelerometer data, the noise is first reduced using a
high-pass filter. The design of this high-pass filter is also discussed in this chapter.

2 Digital Processing to Aid the Listener in Footstep Detection
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CHAPTER 3 Linear Predictive Modeling to
Identify Footsteps

Linear prediction can be used to identify footsteps in accelerometer and microphone
recordings. Sections of the data are used to compute the coefficients of a linear pre-
diction filter. Footstep signals in the data show up as changes in the filter coefficients.
The values the coefficients take on over time can be used to discriminate a person
walking from some other type of acoustic or seismic source. This chapter begins
with a description of the linear predictive model as well as how the filter coefficients
are computed.

3.1 Linear Prediction Background

Forward prediction, a well studied problem in time series analysis, considers the
problem of predicting the future value of a stationary discrete-time stochastic process,
given a collection of past sample values of the process. For example, a pth order
predictor uses the sample values s [n - 1], s [n - 2], ..., s [n - p] to estimate s [n]. In
general, the predictor can be written as some function f(.) of the given sample values
s[n - 1], s[n - 2], ... ,s[n - p] as follows:

&[n] = f (s[n - 1], s[n - 2],..., s[n - p]). (3.1)

A common simplification is to restrict f(.) to be a linear function of the past sample
values, i.e.



p

k=1

(3.2)

The problem is then referred to as forward linear prediction [2].

There exists a deterministic version of the forward linear prediction problem and this
is the linear prediction modeling that is used in this chapter. This problem can be
framed as follows:

Deterministic Linear Prediction Problem Statement

Given a finite-duration signal s [n], choose the filter coefficients al, a2, ..., ap in Fig-
ure (3-1) such that the total energy in the output signal, E (e[n]) 2, is minimized.

e [n]

FIGURE 3-1: Linear Prediction Model

In Figure (3-1), 9[n], the output of the predictor filter, is the linear estimate of s[n]
based on the past p values of s[n]. The filter coefficients are chosen to minimize the
total energy in the prediction error signal. Assuming s[n] is a finite-duration signal
defined for 0 < n < N, the prediction error signal energy can be written as

SE s[n] - aks[n - k].
n=0 k=1

(3.3)

The error signal energy can be minimized by differentiating with respect to each
coefficient and setting the resulting equations to zero.

ae N

ai E-2
n=0O

=0
(sn]

p
- Eaks[n - k] s[n - i]

k=1

i = 1,2,...,p. (3.4)
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This set of equations can be rearranged to obtain

N p N

E E aks[n - k]s[n - i] = E s[n]s[n - i] i = 1, 2,..., p. (3.5)
n=0 k=1 n=0

Defining the deterministic autocorrelation as

OO

s [m] = 1 s[n + m]s[n] (3.6)
n=-oo

allows the set of p equations to be rewritten as

p

ak ss[i - k] = ss [i] i = 1,2, ...,p. (3.7)
k=1

These equations yield the predictor filter coefficients and are known as the Yule-
Walker or Autocorrelation Normal Equations.

The predictor filter coefficients are often used to represent the signal s [n] by a finite
number of parameters. This may be better understood by considering the relation-
ship between linear prediction and all-pole modeling, a form of parametric signal
modeling.

In all-pole modeling, a signal is modeled as the impulse response of a linear time-
invariant (LTI) system with p finite poles. This is depicted in Figure (3-2(a)). The
parameters bk determine the locations of the system's poles.

In order to simplify the math, the bk's are often determined by considering the in-
verse problem shown in Figure (3-2(b)). With this approach, the bk's can found by
minimizing the total energy in the signal g[n] - 6[n]. If s[n] is causal, i.e. s[n] = 0
for n < 0, it turns out minimizing g [n] - 6[n] results in Equations (3.7) and bk = ak
for k = 1, 2, ...p. Thus, the linear predictor coefficients can also be interpreted as
parameters used to model s [n] as the impulse response of a pth order all-pole system.

When modeling a signal using linear prediction or all-pole modeling, the model order
p must be chosen. Regardless whether the problem is framed as linear prediction or
all-pole modeling, the most direct approach to choosing the order is to use the linear
prediction coefficients or all-pole model parameters as the ak's in Figure (3-1) and
examine the prediction error energy for various model orders. This can be done by
plotting the prediction error energy for the pth order model

00 P 2
Sp = s [sn] - E f)si[n - k]. (3.8)

n=-vm k=1

versus the model order p. Note that the prediction error energy for the 0t h order
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FIGURE 3-2: (a) All-Pole Signal Model. (b) Inverse of the All-Pole System.

model, go, is just the total energy in the signal being modeled, E (s [n]) 2. If the linear
predictive or all-pole is a perfect model for s [n] then the energy in the prediction error
will go to zero for some p. It is often the case that there is some value of p above
which increasing p has little or no effect on the prediction error energy. This value of
p is considered an efficient choice for the model order [6].

3.2 Linear Predictive Modeling of Footstep Data

In this chapter, the same accelerometer and microphone data discussed in Chapter
2 is used to explore the idea of using linear predictive modeling to detect footsteps.
Both the "regular" data set and the "stealthy" data set are discussed in this chapter.
As mentioned in Chapter 2, the regular data set was produced by walking in a circle
around the microphone and accelerometer while the stealthy data set corresponds to
the walker trying to walk softly producing as small a footstep signal as possible. This
section discusses a method for removing noise in the data as well as how the data is
broken into sections by windowing. In addition, this section looks at model order,
an important variable that must be chosen before calculating the linear prediction
coefficients for a signal.

3.2.1 Microphone Data Noise Removal

Noise removal for the accelerometer data can be performed with high-pass filtering
and is discussed in Chapter 2. The high-pass filter is chosen by comparing the noise
power spectral density and the power spectral density of a section of data containing
a footstep. The high-pass filter cut-off frequency is chosen such that the data are at-
tenuated at frequencies where the noise power spectral density is significantly greater
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than the footstep power spectral density.

Noise reduction should also be performed on the microphone data before applying
linear predictive modeling for footstep detection. Accelerometer data noise removal
uses a high-pass filter since most of the accelerometer noise energy is at low frequen-
cies. The same is true for the microphone data noise and therefore, a high-pass filter
is also used for microphone noise removal. However, a different approach is taken to
design the noise removal filter for the microphone data.

The noise sections of the accelerometer data before high-pass filtering, i.e the sec-
tions of the pre-filtered data absent of footsteps, are not well modeled by linear pre-
diction. That is, for all model orders p the linear prediction error signal, the output
signal in Figure (3-1), always has energy that is a significant portion of the modeled
signal's total energy, E(s[n]) 2 . This is not the case for microphone data. A section
of noisy microphone data is shown in the top pane of Figure (3-3) Using this section
of noise, the prediction error energy for various model orders p is plotted in dB in
Figure (3-3).
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FIGURE 3-3: Top: Section of microphone data absent of footsteps. Bottom: Prediction error en-
ergy corresponding to data section.

As can be seen in Figure (3-3), the first order model produces error energy 40dB
below the total noise section energy (the zeroth order error energy). The reason for
such great performance with just a first order model can be understood by looking
at the time domain plot of the noisy section of data as well as the first order model
coefficient. For the first order model, al = 1. This means the overall system from
microphone noise to linear prediction error can be described by the system function
H(z) = 1 - z - 1 or difference equation y[n] - x[n] - x[n - 1]. This system is
shown in Figure (3-4) and is a simple differentiator or high-pass filter. This filter
makes sense after realizing that the energy in the microphone noise shown in Figure
(3-3) is mainly due to low frequency components at approximately 5Hz. A simple
high-pass filter such as that shown in Figure (3-4) will strongly attenuate these low
frequency components. The ability of the system in Figure (3-4) to decrease noise
energy suggests that microphone noise could be reduced by passing the microphone
data through this system.

The system shown in Figure (3-4) decreases the noise energy but at the same time
alters the footstep signals. This system is an effective method of noise reduction
only if it removes enough noise to outweigh its effects on the footstep signals. The
two signals in Figure (3-5) demonstrate the effect the noise removal filtering has on
microphone data. The top signal is the pre-filtered microphone data and the bottom
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FIGURE 3-4: Microphone Noise Reduction System

signal is the same data post-filtering. At least from a visual perspective, the suggested
noise removal filtering is a success in that the footsteps are much more apparent after
filtering.

0 0.5 1 1.5 2 2.5 3
Time [seconds]

FIGURE 3-5: Microphone data noise reduction. Top: Before filtering. Bottom: After filtering.
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3.2.2 Sectioning Data Using a Sliding Window

A sliding window is used to apply linear predictive modeling to the data. The linear
prediction coefficients are computed for each windowed section of data. The idea is
that footsteps can be detected by monitoring the coefficients as they are computed
for each section of data. A footstep is declared if the coefficients take on values
characteristic of a footstep, or if the trajectory of the coefficients is characteristic of
a footstep. There are two parameters that affect the windowing of the data. These
parameters are shown in Figure (3-6). Values need to be chosen for the window
length, L, as well as the amount of overlap between subsequent windows, M. In
addition, the order p of the linear predictive model computed for each section of data
needs to be chosen.

Time [seconds]

FIGURE 3-6: Linear predictive model coefficients are computed for windowed sections of the data.
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3.2.3 Model Order

A good first step to exploring linear prediction for footstep detection is to examine
for various model orders how well a linear predictive model can model a footstep
signal. This is done by looking at the prediction error energy. Figure (3-7) shows
the prediction error energy plotted versus the model order for a 7, 000 sample section
of the accelerometer data. The 7,000 sample section of data is just long enough to
include one footstep. As seen in Figure (3-7), the most significant drops in error
energy occur when p increases from 1 to 3. In addition, the plot shows that when
modeling this entire footstep with linear prediction, near best possible performance
is attained with a model order of 16. This means that only small gains are made by
increasing the model order beyond 16 when characterizing this footstep with linear
prediction coefficients.

Model Order

FIGURE 3-7: Prediction Error Energy vs. Model Order for Accelerometer Footstep

Figure (3-8) shows the prediction error energy plotted versus model order for a sec-
tion of microphone data just long enough to include one footstep. According to this
plot, p = 3 could be considered an efficient choice for model order when modeling a
footstep in microphone data.

In Figure (3-7) one could also argue that p = 3 is an efficient choice for model order
since the largest drops in error energy occur when going from p = 1 to p = 3. Using
a third order linear predictive model has the added advantage that the coefficients
can be viewed as a vector in three-dimensional space. It is for this reason that in this
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FIGURE 3-8: Prediction Error Energy vs. Model Order for Microphone Footstep

chapter a third order model is primarily used for analysis of the accelerometer and
microphone data.

3.3 Visualizing Accelerometer Footsteps in Three-Dimensional Coefficient Space

The third order linear predictive model has the advantage that the movement of its
coefficients over time can be easily visualized in three-dimensional space. In this sec-
tion, a third order linear predictive model is used to analyze accelerometer footstep
signals. Several issues, such as window length effects and consistency of coefficient
behavior across different footsteps, are considered. First, the regular footsteps are
analyzed and then the differences between the linear prediction results seen in the
regular and stealthy footsteps are discussed. All accelerometer data considered in
this section have been filtered for noise reduction using the high-pass filter discussed
in Chapter 2.

3.3.1 Identifying First and Second Footstep Components in Coefficient Space

An accelerometer recording of a footstep is shown in Figure (3-9). In Chapter 2, two
components of a footstep signal could be seen in the short-time Fourier transform
plots. These two components can also be seen in Figure (3-9). The part of the
footstep signal referred to as the "first component" in Chapter 2, is shown in black.
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The "second component" is shown in blue. The noise regions are shown in red. The
edges of the regions in Figure (3-9) were chosen simply by examining the recording
visually and noting approximately where the behavior of the signal transitioned.

0.06
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0.02

2000 4000 6000 8000 10000
Sample Number

12000 14000 16000

FIGURE 3-9: Accelerometer Recording of a Single Footstep

As can be seen in Figure (3-9), the footstep is about 7,000 samples long (160ms).
Figure (3-10) shows how the prediction coefficients change as a 1,000 sample long
window slides over the data with an overlap of 900 samples. When the window over-
laps the region in Figure (3-9) colored in black, the resulting coefficients are plotted
as black circles. Likewise, when the window overlaps the blue region in Figure (3-9),
the coefficients are plotted as blue asterisks. The same goes for coefficients plotted
as red diamonds.

Since the window is 1,000 samples long and there are approximately 2,200 samples
between the first and second components, the resolution in the time domain is fine
enough that the two components of the footstep can by analyzed individually in co-
efficient space. The coefficient plot shows significant separation in space among the
three regions - noise, first and second footstep components. As the window slides
along the data, the trajectory of the corresponding prediction coefficients can be fol-
lowed. In some parts of the plot, the direction the coefficients move as the window
slides in the direction of increasing time is indicated with arrowheads.

Before the window overlaps the footstep, the model coefficients are being computed
from noise and the corresponding coefficients form a "noise" cluster consisting of
the red diamonds in the figure. As the window slides far enough along in time that
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FIGURE 3-10: Identification of first and second footstep components in coefficient space.

the first component of the footstep signal is included, the coefficients move rapidly
to a new cluster consisting of the black circles. Once the window slides far enough
that it leaves the first component of the footstep, the coefficients move close to the
noise cluster. As the window approaches and overlaps more of the second footstep
component, the coefficients tend away from the noise cluster. The maximum distance
from the noise cluster is achieved when the window fully covers the second footstep
component. As the window leaves the second footstep component the coefficients
head back to the noise cluster.

3.3.2 Window Length Effects

The window used to generate Figure (3-10) is 1,000 samples long. Similar plots can
be created using longer windows to see the effect window length has on the parameter
values and their trajectories. The same footstep seen in Figure (3-9), is used to create
Figure (3-11). Three different window lengths are used: L = 1000, 5000, and 10000.
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The corresponding overlaps are M = 900, 4900, and 9900, respectively.
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FIGURE 3-11: Multiple window lengths on the same footstep.

Several interesting patterns can be seen in Figure (3-11). First, regardless of window
size, each curve traces out a path consisting of three main regions - noise, first foot-
step component, and second footstep component. In the figure, these three regions
are labeled. In addition, the direction the coefficients move as the window slides
over the first and second components is indicated with arrows. It can also be seen
that when the window is small enough, the coefficients move close to the noise region
in between the first and second footstep component regions. On the other extreme,
when the window is large enough that it can cover both footstep components at the
same time, a new cluster is formed. This new cluster is circled on the L = 10000
curve.

The finer resolution in time associated with a shorter window shows up in the figure
in other ways. First, a shorter window causes the coefficients to traverse a longer
round-trip path as the window slides past a footstep. As can be seen in the figure,
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the L = 1000 curve's three regions (noise, first and second footstep components) are
more spread out in space than the regions associated with the longer windows. As
the window length increases, the path the coefficients take in three-dimensional space
gets tighter. This can be understood by realizing that the time-dependent activity of
the signal can be better resolved with a smaller window. The longer the window,
the more samples are used in computing each set of coefficients. Therefore, a longer
window results in averaging the signal's behavior over more samples.

The finer time resolution of a shorter window also shows up in the noise cluster. A
longer window yields a more tightly clustered noise region. Again, this makes sense
when considering that a longer window means computing model coefficients that are
averaged over longer sections of data. How tightly clustered the noise coefficients are
in space can be measured in the following way. Each data point in the noise cluster
corresponds to a vector of prediction coefficients,a [ a, a2 a 3 ] T. If there are
N sets of coefficients in the noise cluster, ax, a2 , ..., aN, then the center of the noise
cluster can be computed as

N

a ai. (3.9)
i= 1

The square distance from the center of the noise cluster is averaged over all coeffi-
cient vectors in the noise cluster. This average is denoted as V and serves as measure
of how tightly clustered a set of coefficients is.

N
V = Z ja -_112 (3.10)

i= 1

In Figure (3-12), V is computed for a section of data absent of footsteps. The window
length is varied from 1000 to 10000 samples. Regardless of window length, as a
window slides across the data, coefficients are generated every 100 samples. N, the
number of coefficient vectors generated is constant at 500 for all window sizes. As
expected, in Figure (3-12) the chosen metric for parameter clustering, V, decreases
as the window length increases.

3.3.3 Consistency of Coefficient Behavior Across Different Footsteps

Also of interest is how similar the coefficient paths are for different footsteps. The
coefficients are computed as a window of length L = 5000 slides over three different
regular footsteps. These coefficients are plotted in Figure (3-13). As can be seen in
the figure, the noise sections of all three footstep signals produce coefficients in a
single tight cluster. In addition, the coefficient paths for all three footsteps have sim-
ilar shapes. For all three footsteps, as the window overlaps the first component, the
coefficients move to the area of the plot labeled "first component." As the window
slides farther along in time and leaves the first component of the footsteps and be-
gins to overlap more of the second component, the coefficients move into the region
labeled "second component." The coefficients move back to the noise cluster as the
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FIGURE 3-12: For various window lengths, V is computed from a section of data absent of footsteps.

window slides past the second component of the footsteps.

Although the two regions in three-dimensional space containing the coefficients for
the first and second components are not as small as the noise cluster, they are a
significant distance away from each other and from the noise cluster. With a large
number of footstep recordings, a probabilistic model describing the location of the
noise and the first and second component clusters could be created. This treatment
leads naturally to the classical binary hypothesis testing problem. One hypothesis
would be the absence of a footstep while the second hypothesis would be the presence
of a footstep. Three regions in three-dimensional coefficient space could be defined:

Ro = Noise

R1 = First Component

R2 = Second Component.

The hypothesis testing decision rule would be based on these regions. A footstep
is declared when the movement of coefficients from Ro to R1 to R2 is observed.
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FIGURE 3-13: A comparison of coefficient paths for three different footsteps. Window size of L =
5000.

The tradeoff between low probability of false alarm and high probability of detection
would be seen in selecting the size of the regions R0 , R 1, and R2.

3.3.4 Linear Prediction Applied to Stealthy Footsteps

A second set of accelerometer data, the stealthy data set, was recorded in which
the walker tried to minimize the amount of footstep signal produced while taking
footsteps. As mentioned in Chapter 2, a stealthy footstep tends to have the same basic
structure of a regular footstep. That is, the stealthy footstep contains first and second
footstep components similar to those seen in the regular footsteps. In both data sets,
the first component is narrow in time and evenly distributed over all frequencies while
the second component is spread out more in time and fills a frequency band of around
8kHz.
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Figure (3-14) shows regular and stealthy footsteps. From this time domain plot,
two main differences can be seen in the regular and stealthy footsteps. First, the
time between the first and second components is greater for the stealthy footstep.
Second for the stealthy footstep, the ratio of second footstep component energy to
first footstep component energy is larger.
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FIG U RE 3-14: Accelerometer Footstep Data. Top: Regular Walking Style. Bottom: Stealthy Walk-
ing Style.

These differences, particularly the increased relative energy in the second footstep
component, can be seen in a plot of the third order linear prediction coefficients. Fig-
ure (3-15) plots the coefficient values as a 3, 000 sample long window slides over a
regular footstep (black asterisks) and a stealthy footstep (blue diamonds). The coeffi-
cient values corresponding to the first and second components and the noise sections
of the regular footstep are labeled with arrows. The coefficients from the noise sec-
tions of both the regular and stealthy footsteps form a single cluster. However, the
coefficient path for the stealthy footstep is of a different shape than the path for the
regular footstep. From Figure (3-15) it is difficult to tell whether the stealthy footstep
path contains distinct first and second footstep clusters similar to those found in the
coefficient path for the regular footstep.

3.3 Visualizing Accelerometer Footsteps in Three-Dimensional Coefficient Space
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FIGURE 3-15: Comparison of regular and stealthy footstep linear prediction coefficient paths. Re-
gions of the regular footstep are labeled with arrows.

Figure (3-16) shows a time domain plot of the stealthy footstep used to generate
Figure (3-15). The first and second components as well as the noise sections are
shown in different colors. Figure (3-17) shows the coefficient path that corresponds
to sliding a 3000 sample long window across the stealthy footstep. When any portion
of the window overlaps the first component, the resulting coefficients are plotted in
red in Figure (3-17). Likewise, coefficients computed from sections overlapping the
second component are plotted in blue in Figure (3-17). All other coefficients are
plotted in black.
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FIGURE 3-16: Stealthy footstep recorded with accelerometer.
second component in blue.

First component is shown in red,
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FIG U R E 3-17: Coefficient path for stealthy accelerometer footstep.

These plots reveal exactly how the first component affects the parameter path. The
first component simply generates a small parameter cluster situated on the path formed
by the second component. As the window slides across the second component, the
coefficients trace out an arc and end up a considerable distance from the noise cluster
before turning around and returning to the noise cluster. The tight cluster of coeffi-
cients corresponding to the first component as well as the large arc produced by the
second component could be exploited in a binary hypothesis testing framework used
for the detection of stealthy footsteps.

3.4 Microphone Footsteps in Three-Dimensional Linear Prediction Coefficient Space

The previous section studies the behavior of linear prediction coefficients computed
from accelerometer recordings of footsteps. As mentioned previously, two data sets,
regular and stealthy, were recorded with a single sensor unit consisting of both an

3 Linear Predictive Modeling to Identify Footsteps



accelerometer and a microphone. This section explores the behavior of third or-
der linear prediction coefficients computed from footstep sections of the microphone
data. Both regular and stealthy data sets are examined in this section. Data sets are
pre-filtered with the noise reducing filter discussed in Section (3.2.1).

3.4.1 Microphone Recordings of Regular Footsteps

Figure (3-18) shows time domain plots of three different regular footsteps recorded
with a microphone. The separation of distinct first and second components seen in
the accelerometer footsteps is not apparent in the plots of the microphone footsteps.
From the time domain plots, it appears the microphone footsteps start with a large
spike in amplitude followed by smaller amplitude activity that dies off after about
7000 samples (160ms).
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FIGURE 3-18: Three different regular microphone footsteps.
are shown in Figure (3-19)

The corresponding coefficient paths

A window of length 8000 samples is passed over the three sections of microphone
data shown in Figure (3-18). The linear prediction coefficients are generated every
100 samples and the resulting coefficient paths are plotted in Figure (3-19(a)). At the
end of this section, the reason for using an 8000 sample window is discussed. Figure
(3-19(b)) is a rotated view of the coefficient paths. The arrowheads in Figure (3-
19(a)) indicate the direction corresponding to increasing time. As can be seen in the
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plots, windows that have not yet reached the main spike in the footsteps produce co-
efficients that are tightly clustered. As the window slides along in time and overlaps
the main spike, the coefficients for all three footsteps jump to the region labeled P1 in
the plots. When the window finally leaves the main spike, the coefficients jump back
close to where they started out. The coefficients, however, do not return to the tight
cluster where they started out. Instead, the coefficients exhibit significant drifting as
the windows slide over the later parts of the data sections in Figure (3-18).

It appears the coefficients may not return to a tight noise cluster in between footsteps
as was the case for the accelerometer data. The coefficient path for the section of
data shown in Figure (3-20) is used to understand the behavior of the coefficients
produced from noise as well as the behavior of coefficients in between footsteps.

An 8000 sample long window is passed over the data in Figure (3-20). The coefficient
path (without markers for data points) is shown in Figure (3-21). The first thing to
notice about the coefficient path is the noise cluster. As the window slides over
the noise and approached the first footstep, the coefficients leave the noise cluster.
The coefficients jump to the area labeled "first step main spike" when the window
advances far enough along in time to overlap the first footstep's main spike. Once the
window leaves the first step's main spike, the coefficients move back in the direction
from which they came. Although the coefficients tend toward the noise cluster, they
never actually get there before the window begins sliding over the second footstep.

As evidenced by the plot, the coefficients do not return to the noise cluster between
footsteps. This behavior can be understood by taking a close look at the footsteps
in Figure (3-20). The spikes seen in Figure (3-20) do not mark the beginning of the
footstep signals. The footstep signals actually begin before these spikes which is not
the case for the accelerometer footstep recordings. The microphone footstep signals
are longer in time than the accelerometer footstep signals. As a result, by the time the
first footstep in Figure (3-20) has died off, the second footstep signal is starting. As
the window slides over the late part of the first step, the coefficients drift toward the
noise cluster. The window begins to overlap the beginnings of the second step before
the coefficients reach the noise cluster causing them to drift in a different direction.

The speed of sound is generally much higher in solids than in gases. For example, the
speed of sound in air is 343 m/s (at 200 C) while it is roughly 3100 m/s in concrete
[4]. Additionally, the walls in a room produce reflections of acoustic signals but are
less likely to affect seismic signals. The slower speed of sound in air along with
acoustic reflections causes the acoustic impulse response to be longer in time than
the seismic impulse response.

The longer duration footstep signals in the microphone data can be explained by the
acoustic impulse response being longer than the seismic impulse response. Addition-
ally, the longer impulse response for the acoustic case may be the reason separate first
and second footstep components are not as clear in the microphone data. A longer
acoustic impulse response means the first footstep component decays more slowly.
A sufficiently long acoustic impulse response results in overlap between the first and
second footstep components.

3 Linear Predictive Modeling to Identify Footsteps
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FIGURE 3-19: Linear prediction coefficient paths for three regular footsteps recorded with a micro-
phone. Plots (a) and (b) are different views of the same data.
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of microphone data used to investigate coefficient behavior between foot-

As a window slides over a series of footsteps, the coefficients produced from the sam-
ples between the main footstep spikes tend to drift over a large area. In addition, this
drifting is not very regular across different steps. Therefore, an algorithm designed to
detect footsteps in microphone data may perform best by looking for the large move-
ment of coefficients associated with the main spikes of the footsteps. For example, a
decision rule for declaring the presence of footsteps could be based on region Pi1 in
Figure (3-19(a)). The presence of some n consecutive coefficient vectors in region
P1 may be a suitable basis for declaring the presence of footsteps.

Window Length

In the linear prediction analysis of regular microphone footsteps discussed above, a
window length of 8000 samples is used. The reason for choosing 8000 samples is
because this length gives tight main spike clustering and consistent coefficient paths
across different footsteps. The method used to choose the window length was to plot
and examine the coefficient paths for several window lengths.

Figure (3-22) shows the coefficient paths produced from the three footsteps seen in
Figure (3-18) using a window length of 3000 samples. As can be seen in Figure
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FIGURE 3-21 Coefficient path produced from the data section in Figure (3-20).

(3-22), smaller windows do not produce main spike clustering as tight as that seen in
the coefficient paths produced using the 8000 sample window. In addition, smaller
windows yield more irregular movement of coefficients computed from the samples
between subsequent footsteps' main spikes.

If the window length is increased too far, the window overlaps significant portions
of subsequent footsteps. This means long windows do not have the ability to resolve
single footsteps. Without the ability to resolve single footsteps, the movement to
and from region P1 in Figure (3-19(a)) will not be seen. A window length of 8000
samples is found to be a good compromise between consistently tight main spike
clusters and fine time resolution.

3.4.2 Microphone Recordings of Stealthy Footsteps

This section examines the behavior of the coefficient paths for stealthy footsteps
recorded with a microphone. The coefficient paths for approximately 20 stealthy
footsteps were examined. Figure (3-23) is representative of the majority of these
20 footsteps. Figure (3-23) plots the coefficient path for one of the data sections in
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FIGURE 3-22: Coefficient paths generated from data sections in Figure (3-19)

using L = 3000 sample long window.

Figure (3-18) as well as the coefficient path for a data section containing a stealthy
footstep. The stealthy coefficient path, shown in red, does not contain the large jump
in coefficient values associated with a footstep's main spike as is seen in the regular
footstep coefficient path. The majority of the examined 20 stealthy footstep paths
are located in the same region in three dimensional coefficient space as the stealthy
path shown in Figure (3-23). However, no clear pattern is apparent among these
coefficient paths. Of the 20 stealthy footsteps that were examined, a few were rather
large in amplitude. The coefficient paths for these stronger signals closely resembled
the coefficient paths for the regular footsteps.
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FIGURE 3-23: Comparison of regular and stealthy footstep coefficient paths for microphone data.

The largest amplitude footstep signals in the stealthy data set stand a very good
chance of being detected by an algorithm designed to detect regular footsteps. How-
ever, since the majority of the stealthy footsteps do not yield consistent coefficient
paths, designing an algorithm to detect stealthy footsteps looks to be more challeng-
ing.

3.5 Summary

This chapter considers linear predictive modeling of accelerometer and microphone
data for footstep detection. First, the chapter explains linear prediction for determin-
istic signals as well as how linear prediction can be applied to windowed segments of
data. The analysis of footstep coefficient paths generated from the regular accelerom-
eter data shows substantial promise for using third order linear prediction coefficients
to detect footsteps in accelerometer data.

The stealthy accelerometer data set is used to investigate how stealthy walking would
affect the footstep coefficient paths. It is apparent that stealthy footsteps produce

3.5 Summary



significantly different coefficient paths than the regular footsteps. Nevertheless, there
is consistency among these stealthy coefficient paths. From the plots of the stealthy
coefficient paths, it seems likely that an algorithm could be designed to successfully
identify stealthy footsteps in accelerometer data.

Microphone footstep data is also considered in this chapter. Before applying linear
predictive modeling to the microphone data, a method of noise reduction is presented.
From the analysis in this chapter, it seems that using linear predictive modeling to
detect footsteps is more difficult for microphone data than for accelerometer data.
Nevertheless, the analysis in this chapter suggest that a footstep detection scheme
for microphone data is possible. However, examination of the coefficient paths pro-
duced from stealthy microphone data provides little hope for using linear prediction
coefficients to detect these weaker signals.

3 Linear Predictive Modeling to Identify Footsteps



CHAPTER 4 Blind Channel Identification
using Least Squares

4.1 SIMO Channel

A single-input multiple-output (SIMO) channel consisting of q linear time-invariant
(LTI) filters is shown in Figure 4-1. The channel outputs, yz [n], are formed by adding
noise to the outputs of the LTI filters. Each LTI filter is characterized by its impulse
response, hi [n].



h ,[n] y [n]

w,[n]

A>\h2 [n]
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Y2 [n]-2
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Sh/n] yq[n]

w [n]

FIGURE 4-1: SIMO Channel
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FIGURE 4-2: Six sensors measuring footsteps.

This SIMO channel can be used to model multiple sensors capturing the same signal,
x[n]. The method by which each sensor captures x[n] is modeled as an LTI filter.
Background and sensor noises can be modeled as random noise processes, wi [n].
For example, Figure (4-2) depicts a total of six sensors recording footsteps. A SIMO
channel with q = 6 LTI filters can be used to model the scenario in this figure. The
footstep signal is modeled as z [n], the acoustic and seismic transfer functions from
footstep to sensor are modeled as the six LTI filters, and the ambient noise in the
room along with sensor electronic noise can be modeled as wi [n] for each sensor.

Blind channel identification refers to using the outputs, yi[n] for 1 < i < q, to
determine the filter impulse responses, hi [n] for 1 < i < q, without knowledge of
the input signal, x[n].

4.2 Least Squares Algorithm

In the absence of noise, for any 1 < i, j < q,

yi * hj = (x * hi) * hj = (x * hj) * hi = yj * hi. (4.1)

For a finite window of data, Equation (4.1) can be written in matrix form as

Yi[N]hj = Yj[N]hi (4.2)

where Yi [N] and hi are defined below.

4.2 Least Squares Algorithm



Syi[K] yi[K + 1] ... y [2K]
Yi[N] = yi[K + 1] yi[K + 2] .. y[2K + 1] (4.3)

yi[N- K] yi[N- K + 1] -. yi [N]

Sh[K]1
hi = (4.4)

h [0]
N is the last sample number in the window of data while K is the maximum order of
all of the LTI filters. Equation (4.2) can be written for each possible pairing of filters
in the channel. All of these equations can then be written in block matrix form with
all of the terms brought to the left side:

Yh = 0. (4.5)

For example, with three filters (q = 3) Equation (4.5) would be written as

2[N] -Y 1[N] 0 hil
Y3 [N] 0 -YI [N] h2 = 0. (4.6)
0 Y 2 [N] -Y 1 [N]J ha3

With noise added to the output of the LTI filters, Y will be full column rank and
there will be no solution to Equation (4.5) except h = (0). In this noisy case, the
one approach to estimating the channel coefficients is to minimize j Yh I such that

h I|h = 1. That is, the estimate for the channel, h, is given by the right singular
vector associated with the minimum singular value of the matrix Y. This method for
estimating the channel has received significant attention. The asymptotic (large N)
performance of the channel estimate has been derived for the case where the noise
processes, wi [n], are i.i.d. zero mean Guassian random processes [5].

4.3 Alternative Estimate: Pinning a Channel Coefficient

An alternative approach can be taken to estimate the channel from Equation (4.5).
When trying to find the best channel estimate, lh, in the least squares sense, a con-
straint must be placed on h to avoid the degenerate solution h = 0. The approach
discussed in the previous section uses the constraint that I hl = 1. However, a dif-
ferent constraint could be used to keep h from going to 0. The first element of h
could be "pinned" to 1. This allows Equation (4.5) to be rewritten in the canonical
least squares form, Ak = b. Denoting the ith column of Y as yi, we have

Y h = 0 (4.7)

4 Blind Channel Identification using Least Squares



1 Y2 "'" Yq(K+1)

1

h [K- 1]

h1 [0]

ha

= 0. (4.8)

Equation (4.8) can be rearranged to give

.I . Y Iq(K+1)Y12 Y(K
i hl[K - 1]"

hi[0]
- h2

fiq

[-1 ] (4.9)

We can define the reduced matrices in Equation (4.9) as follows: Yred is the result
of removing the first column from the matrix Y and hred is the result of removing
the first element from h. We can then write Equation(4.9) as Yredhred -Yl.
The least squares solution to Equation (4.9) is fired = -(YredT Yred)-1 rdY1.

To obtain the channel estimate, we append a 1 to the beginning of the vector hred.
Since any solution to the original problem (Equation (4.5)) remains a solution when
scaled, we normalize the least square estimate to have unit magnitude. This allows
easy comparison to the singular value decomposition (SVD) solution.

In Equation (4.8), the first element of h is pinned to one. However, the choice of
element to pin is arbitrary. Any one of the elements of h could be pinned to 1.
However, it is conceivable that a problem may occur if the actual value of the element
being pinned to 1 is very small.

4.4 Comparison of the SVD and Pinning Channel Estimation Methods

We refer to the two methods to estimate the channel from Equation (4.5) as the SVD
method and the pinning method. For some data matrices, Y, these two methods yield
the same h. However, this is not always the case. To measure the performance of a
channel estimate, we use the sum of the squared errors:

W h T h
(h -- T, -[ ) (h - 1-h-•) (4.10)

We compared the performance of these two channel estimation methods by comput-

4.4 Comparison of the SVD and Pinning Channel Estimation Methods



100

10
- 2

10 -4
0 10

C 1

3 1o0

C,~10

10- 10

1 - 12

-10 10-8 10-6 10-4 10-2
10 10 10 10 10

Noise Variance

FIGURE 4-3: Performance Comparison of SVD and Pinning Methods

ing Equation (4.10) for a particular two-output channel. The input signal, x[n], was
zero mean white Gaussian noise with variance, ax2 - 1. The noise processes, wi [n],
were zero mean i.i.d. Gaussian processes. N, the length of the data window was
1000. For each noise variance, we repeated the experiment 10 times to obtain the
sample mean of Equation (4.10). The sample mean of Equation (4.10) plotted ver-
sus noise variance as well as the particular filter coefficients used in this experiment
can be seen in Figure (4-3). As can be seen in Figure (4-3), the two methods show
comparable performance until a noise variance of around 10- 3. At this point, the
performances begin to diverge and the SVD method is clearly more accurate. It is
important to note that hi [3], the coefficient that is being pinned to 1 actually is 1 in
this case.

A second plot is shown in Figure (4-4) in which hi [3] = 0.1. As can be seen in this
plot, the SVD method starts outperforming the pinning method at a smaller noise
variance, roughly 10-6. Therefore, we can see that how close the pinned element

4 Blind Channel Identification using Least Squares



100

Co0LC 10-5S10-
C,,

0
E

10- 10

10-10 108 10-6 10-4  10-2
Noise Variance

FIGURE 4-4: Performance Comparison of SVD and Pinning Methods with hi [K] = 0.1

actual is to 1, has an effect on the performance of the pinning method.

While the SVD method outperforms the pinning method for large enough noise vari-
ance, there are some reasons to consider the pinning method. Since the pinning
method allows Equation (4.5) to be cast into the least squares form AR = b, re-
cursive least squares can be applied to the problem of estimating the channel. With
recursive least squares, we can recursively update the channel estimate for each new
data point. That is, we can write the channel estimate based on output data up to time
k as

h(k) = h(k- 1) + f. (4.11)

Where f is a vector function of the output data at time k and the previous channel
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estimate, h(k - 1).

The pinning method also allows for a more tractable analysis of the probability den-
sity function (PDF) of the channel estimate as compared to the PDF analysis asso-
ciated with the SVD method. However, the derivation of the PDF of the channel
estimate is still a challenging problem even for the pinning method. Some of the
issues that arise when deriving the PDF can be seen in the example given in the next
section.

4.5 Deriving the Distribution of the Channel Estimate

In this example, we consider a two-output channel that consists of single tap filters.
We derive the PDF of the channel estimate. The second element of h is pinned to
one and therefore deterministic. Thus, the PDF of the channel estimate consists of the
PDF of the estimate of the first filter's single tap, hi [0]. For this example, Equation
(4.5) reduces to

Y2 -Y1 l[] = 0. (4.12)

ISI
Where yi = [yi[o] y41] ... y[NJT . It follows that the least squares solution
is

2T1
hi [0] = Y2TY (4.13)

Y2 T 2'

Equation (4.13) may be better understood by rewriting it as

h[0] ~-•o=o(h2[O]x[n] + w2 [n]) (h1 [O]x[n] + wi [n]) (4.14)
E=o(h2[0]x[n] + w2[n])2

With Gaussian x[n], wi[n], and w2 [n], if o2 is the variance of x[n] and u2 is the
variance of w2 [n], then the denominator of Equation (4.14) divided by

o 2 = h2[0]202 2 (4.15)

is a chi-squared random variable with N + 1 degrees of freedom. A chi-squared
random variable with n degrees of freedom is the sum of n independent squared
Gaussian random variables each with mean 0 and variance 1.

The numerator, for sufficiently large N, can be approximated as a Gaussian ran-
dom variable. Therefore, the channel estimate can be approximated as the ratio of a
Gaussian random variable and a chi-squared random variable. However, deriving the
PDF of this ratio is complicated by the strong correlation between the numerator and
denominator due to the presence of x [n] in both.

4 Blind Channel Identification using Least Squares



A new random variable hi [0] can be defined by the following equation

hi [0] h2 [0] 2hi hi0] [0]h2[0X +h [0]. (4.16)
0 h±[010.2 + U2

a

The constant in Equation (4.16) is defined as a. Since hi [0] and hi [0] are related by
a constant offset, the PDF of hi [0] is obtained by shifting the PDF of hi [0] by a.

An expression for h, [0] can be obtained by subtracting a from ih [0]:

Y2TY1hi [0] = y2T aY
y2TY2y2T yl-- ay2)

y2TY2

Defining (Yl - ay2) as Yn yields

hi [0] = 2Tyn (4.17)
Y2 T 2'

The random vectors Y2 and yn are jointly Gaussian. In addition they are uncorre-
lated:

E[y 2YnT] = E[y2 (yl - ay 2 )T]
= E[y 2 Y1 T ] - aE[y 2Y2T]h i[0]h2[010. x [0) 0x
= hi[0]h 2[0]0 I- hi[0]h2 [0]2 2 [0])2  +  W2)I(h2 [0]) O'2
= 0.

Thus, Y2 and yn are independent.

The mean of Yn is 0 since the mean of Yl and the mean Y2 are both 0. This along with
the independence of Y2 and yn means the numerator and denominator of Equation
(4.17) are uncorrelated:

E[y 2Tyn] = E[y 2 T]E[yn]

= 0

E[(y 2Ty 2)(y 2Tyn)] = E[y 2 Ty 2Y2T]E[yn]

=0

= E[y2 Ty 2]E[y2 Tyn].

Although the numerator and denominator of Equation (4.17) are uncorrelated, they
are not jointly Gaussian and they are not independent. However, in deriving the PDF
of hi [0], independence is assumed. At the end of the derivation, histograms are used

4.5 Deriving the Distribution of the Channel Estimate



to show that this approximation is reasonable.

The numerator in Equation (4.17), y2Tyn, is the sum of N + 1 independent random
variables. In deriving the PDF of hi [0], y2Tyn, is approximated as a Gaussian ran-
dom variable. The random variable y2 yn is zero mean. Using the independence of
Y2 and yn and the properties of the trace, the variance can be calculated as

var(yTyn) = E[yT ynyT Y22 [2 YnnY2

= E[trace(yTynyT Y2)]
= E[trace(yyy 2y 2)]
= trace(E[ynyT ]E[y2yT])

{ [0]2 , + w )U 2 [0]2 , x 2) - (h, [0]h 2 [0]Or)2 }(N +1)--{h,[O]2o-22 + O-W1
2

o-num

T o

For sufficiently large N, y2 Yn/unum is a zero mean, unit variance Gaussian random
variable.

As given in Equation (4.15), the denominator of Equation (4.17), y 2 TY2 , when di-
vided by h2 [0]2x 2 + U 2 is a chi-squared random variable with N + 1 degrees of

freedom. If h2 [0]2 , 2 is defined as U 2 , then the random variablefreedom. If h2[02 - + aW2 ay2,

O-2
h2 h[O] (4.18)

Onum

for large N has the distribution of a zero mean, unit variance random variable divided
by a chi-squared random variable with N + 1 degrees of freedom. The Gaussian and
chi-squared random variables in this ratio are uncorrelated but may not be indepen-
dent. However, in this derivation, the distribution of the random variable in Equation
(4.18) is approximated as the ratio of two independent random variables. Since a
name for this distribution could not be found in the literature, a random variable that
is the ratio of a zero mean, unit variance random variable and an independent chi-
squared random variable with n degrees of freedom from here on will be referred
to as an R(n) random variable with n degrees of freedom and an associated R(n)
distribution.

Figure (4-5(a)) shows estimates of the PDF for R(5), R(10), and R(20). These
estimates were formed by sampling random number generators and computing his-
tograms. Figure (4-5(b)) plots the variance of the distribution of R(n) for n from 3
to 30.

Simulations are performed in which histograms are generated in order to examine
how well the distribution of hi [0] matches the distribution of an R random variable
scaled by Unum/o-2 . The following parameter values are used in the simulations:
hi [0] = 0.8, h2[0] = 0.5, ao = 1, 21 = ,2 = 0.02. The histograms are computed
by sampling from random number generators 50,000 times. Figure (4-6) shows the
results of the simulations. The black lines represent PDFs of the scaled R distribution

4 Blind Channel Identification using Least Squares
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FIGURE 4-5: The R distribution. (a) PDF estimates of R(5), R(10), and R(20). (b) Variance of
the distribution of R(n) for n from 3 to 30.

estimated from histograms. The blue bar graphs are histograms of h1 [0]. Four plots
are shown for N - 3, 10, 30, 100. As can be seen from the plots, the match between
the distribution for hi [0] and the scaled R distribution improves as N increases. Ad-
ditionally, Figure (4-6(a)) shows that the distributions match well even at low values
of N.
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FIGURE 4-6: Histogram plots comparing the estimated probability density for hi [0] and an R ran-
dom variable scaled by "-L . (a) N + 1 = 3 (b) N + 1 = 10 (c) N + 1 = 30 (d)

1 Y2

N + I = 100.

There are two factors that can potentially keep hi [0] from being exactly an R(n)
random variable scaled by Unum/0, 2 . First, the R(n) random variable is the ratio

of independent random variables where as hi [0] is the ratio of uncorrelated random
variables. Second, the numerator in Equation (4.17), y'Yn, scaled by 1/-num ap-
proaches the distribution of a zero mean, unit variance, Gaussian random variable for
large N. However, for smaller values of N this approximation may break down.

Figure (4-7) compares the histograms of yTyn/num to the PDF of a zero mean,

unit variance Gaussian random variable for the same values of N used in Figure (4-
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6). As can be seen in Figure (4-7), the distribution for yTYn/unurn for small N has
more probability mass at small absolute values, less mass at intermediate values and
thicker tails than the Gaussian. On the other hand, Figure (4-6) shows the opposite

effect in the approximation of the density of h(N) [0] with an R(N) random variable
for small N. It is concluded that the lack of independence of the numerator and
the denominator of Equation (4.17) is the dominant effect in the discrepancy in the
approximation for small N. All effects are alleviated and the approximation becomes
quite good for even modest values of N, say N -= 30.
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An approximate distribution for hi [0] can be obtained from the approximate distri-
bution for hi [0]. The random variable hi [0] can be written in terms of N as

anum (419

h N)[0] a + 02R(N + 1) (4.19)
Y2

where R(N) is a random variable with an R distribution with N degrees of freedom.

R has N + 1 degrees of freedom in Equation (4.19) since the random variable h(N) [0]
involves data of length N + 1, i.e. yi [0], ...yi [N] for i = 1, 2. The random variable
hN) [0] has mean

mean(hN) [0]) = a

hi[0]h2[0]O'x
h 2[0]U + U(2

and approximate variance

var(hg)[0]) = num2var(R(N +1))
vY2 )Eh1[012  1Ow (hi[0]h 2 [0]o-) 2

h2 [02  +2 -(h2 [0]2  2 )2 (N + 1)var(R(N + 1)).
+2[0]2 2 +[]9 U22

For the parameters in the simulation,

mean(hN) [0]) 1.48

var(hN) [0]) 1.85(N + 1)R(N + 1).

(4.20)

4.6 Summary

In the first section of this chapter, the SIMO channel is presented. Additionally, the
use of the SIMO channel to model multiple sensors measuring the same signal is
explained with the example in Figure (4-2). Section 2 explains the least squares al-
gorithm to estimate the channel impulse responses blindly, i.e. with knowledge of
the output signals but no knowledge of the input signal. This algorithm, termed the
SVD algorithm, yields the right singular vector of a matrix as the channel estimate
which makes analyzing the performance of the channel estimate difficult. In the next
section, an alternative method to blindly estimate the channel, the pinning method,
is presented. This pinning method does not perform as well as the SVD algorithm
at low signal to noise ratio (SNR). However, the pinning method has a couple of
advantages over the SVD method. First, the pinning method allows for a recursive
estimation of the channel. Second, the pinning method yields a more tractable per-
formance analysis of the channel estimate. The last section of this chapter carries

4 Blind Channel Identification using Least Squares



out the analysis of the performance of the pinning method for the case of a SIMO
channel with two, single tap filters.

4.6 Summary
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CHAPTER 5 Conclusion

This thesis considers the general problem of detecting footsteps with acoustic and
seismic sensors. Each of the three main chapters looks at a different aspect of this
problem. Chapter 2 explains two signal processing systems to help a human opera-
tor detect footsteps when listening to accelerometer data. Chapter 3 establishes the
feasibility of using linear prediction coefficients for automatic footstep detection in
accelerometer and microphone data. Lastly, Chapter 4 explains a modification to the
least squares method for blind channel identification.

5.1 Digital Processing to Aid the Listener in Footstep Detection

The second chapter of this thesis considers two signal processing systems to help a
human operator recognize footsteps when listening to accelerometer data. The inspi-
ration for designing these two systems comes from comparing spectrograms of the
accelerometer data to equal loudness curves for the human ear. The equal loudness
curves show the relative sensitivity of the human ear for sounds of various frequen-
cies. The spectrograms show that a significant portion of the total footstep signal
energy is located at frequencies to which the ear is not very sensitive. The two sys-
tems presented in Chapter 2 essentially move the footstep signal energy from low-
sensitivity frequency ranges to high-sensitivity frequency ranges. Listening to data
files before and after the footstep enhancing processing proves that the processing
systems make the footsteps significantly easier to recognize. However, the perfor-
mance of these systems is difficult to quantify. These before and after data files are
made available to the reader through [1].



5.2 Linear Predictive Modeling to Identify Footsteps

In Chapter 3, linear predictive modeling is shown to be a feasible means for detect-
ing footsteps in accelerometer and microphone data. Plotting the third order linear
prediction coefficients for windowed sections of data shows the time evolution of
the coefficients in three-dimensional coefficient space. As the window slides over
footstep signals, the coefficients move between separable regions in space. The pres-
ence of this distinctive signature demonstrates the feasibility of using well-known
hypothesis testing procedures to produce a footstep detection system with quantifi-
able detection and false alarm probabilities. Much more data would be needed to
further develop such a system.

5.3 Blind Channel Identification Using Least Squares

Chapter 4 explains how multiple sensors capturing the same signal can be modeled
as a single-input, multi-output (SIMO) channel. The SVD method for blindly esti-
mating the channels is explained. The difficult performance analysis associated with
the SVD method motivates the pinning method developed here. The SVD method
outperforms the pinning method at low signal to noise ratio. However, the pinning
method has a performance analysis that is more tractable than the analysis for the
SVD method. This analysis is demonstrated by deriving the distribution for the chan-
nel estimate is derived for a channel consisting of two, single-tap filters.

5 Conclusion



APPENDIX A Digital Processing
Implementations in MATLAB

A.1 Method 1 Processing

function output=methodl(input)
% This MATLAB function is an implementation
% of the first method of processing designed
% to aid the listener in detecting footsteps
% (Chapter2). The 0-11.025kHz range of the
% output signal contains the superposition of
% the input signal's 0-11.025kHz and 11.025
% -22.05kHz bands. The output does not contain
% any energy beynod 11.025kHz. Input is a
% column vector.

% The FIR1 function was used to design FIR
% filters via the windowing method.

% Highpass filter the input to obtain
% 11.025-22.05kHz band.
highhalf=filter(firl(300,0.5,'high'),1,input);

% Create vector of cosine values.



% n=1:length(input);
cos_vec=2*cos(0.5*pi*n);

% Shift by multiplying by cosine vector.
highhalfshifted=cos_vec'.*high_half;

% Sum contains the desired output in the
% 0-11.025kHz range but undesired content
% at higher frequencies.
sum=highhalf_shifted+input;

% Lowpass filter to remove undesired content.
output=filter(firl(300,0.5)1,,sum);

A.2 Method 2 Processing

% function output=method2(input)
% This MATLAB function is an implementation of
% the second method of processing designed to
% aid the listener in detecting footsteps
% (Chapter2). The 1-6kHz range of the output
% signal contains the superposition of the
% input signal's 6-11kHz and 11-16kHz bands.
% The output does not contain any energy outside
% of the 1-6kHz bands. Input is a column vector.
%

% The FIR1 function was used to design FIR
% filters via the windowing method.

% 6-11kHz band of input.
c=firl(300,[6/22.05 11/22.05]);
six_to_ll=filter(c,1,input);

% 11-16kHz band of input.
d=firl(300,[11/22.05 16/22.05]);
elev_to_16=filter(d,1,input);

% Create a vector of cosine values.
n=1:length(input); cos_vect=cos(pi*(5/22.05)*n);

% Shift the 6-11kHz band down to 1-6kHz.
a=firl(50,9/22.05);
six_to_11_sh=filter(a,1,cosvect'.*sixto_11);

% Shift the 11-16kHz band down to 1-6kHz.

A Digital Processing Implementations in MATLAB



cosvect=cos(pi*(10/22.05)*n);

b=firl(50,12/22.05);

elev_to_16_sh=filter(b,1,cos_vect'.*elev_to_16);

% The output is the sum.

output = elevto_16_sh + sixtollsh;

A.2 Method 2 Processing
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APPENDIX B Available Data Files

Several data files discussed in Chapter 2 can be found at
[1]. The following is a description of each of the files.

Original Regular Accelerometer.wav
The pre-processed recording of regular walking.

Original Stealthy Accelerometer.wav
The pre-processed recording of stealthy walking.

Method 1 Regular Accelerometer.wav
The recording of regular walking processed with the first method discussed in Chap-
ter 2.

Method 1 Stealthy Accelerometer.wav
The recording of stealthy walking processed with the first method discussed in Chap-
ter 2.

Method 2 Regular Accelerometer.wav
The recording of regular walking processed with the second method discussed in
Chapter 2.

Method 2 Stealthy Accelereometer.wav
The recording of stealthy walking processed with the second method discussed in



Chapter 2.

B Available Data Files
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