
Raw Fabric Hardware Implementation and

Characterization

by

Albert Sun

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INS1TWT

MASSACHUSETTS INSTITUTE OF TECHNOLOGY OFTECHNY

May 2006 AUG 14 2006

© Albert Sun, MMVI. All rights reserved. LIBRARIES

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author ...
Department of Electrical Engineering and Computer 'Science

A\ May 9, 2006A

Certified by............
Anant Agarwal

Professor
Thesis Supervisor

Accepted by{.- .r

Arthur C. Smith
Chairman, Department Committee on Graduate Students

ARCHNES

2

Raw Fabric Hardware Implementation and Characterization

by

Albert Sun

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The Raw architecture is scalable, improving performance not by pushing the limits
of clock frequency, but by spreading computation across numerous simple, replicated
tiles. The first Raw processors fabricated have 16 RISC processor tiles that share
the workload. The Raw Fabric system extends Raw's scalability by weaving together
multiple 16-tile Raw processors.

The Raw Fabric is a modular and scalable system comprised of two board types:
one to house 4 Raw processors (Processor board) and one to handle communications
(I/O board). The design is modular because it breaks down the system into smaller
parts, and it is scalable because these modules may be combined to create large
Fabrics. The ultimate goal is to produce a Raw Fabric with 16 Processor boards
(equivalently, 64 Raw processors or 1024 tiles), though the current largest Fabric
system includes one Processor board and 3 I/O boards.

This thesis walks through the important design and implementation challenges
and documents how they were solved. The most basic challenge faced was to design
a system flexible enough to accommodate a variety of Fabric sizes. Next, the dis-
tribution of vital signals such as power and clock provides a problem unique to the
Fabric system because of the possible size of the final product. Finally, the astounding
number of signal wires running between boards presents a unique challenge in finding
parts and designing the mechanical aspects. The intent of this thesis is to provide the
reader with an idea of the considerations necessary for designing and implementing a
system of this magnitude and level of flexibility.

Thesis Supervisor: Anant Agarwal
Title: Professor

3

4

Contents

1 Introduction

1.1 The Raw Processor

1.2 The Raw Fabric

1.2.1 Motivation

1.2.2 Design and Implementation

1.2.3 Results

1.3 Thesis Overview

1.4 Collaboration

Challenges

2 Background

2.1 The Raw Processor .

2.1.1 Tiled-Processor Architectures

2.1.2 Compilers .

2.1.3 Inter-tile communication .

2.1.4 Off-Chip Communication .

2.2 The Raw Handheld System .

2.2.1 Functions .

2.2.2 BTL simulation environment

2.2.3 Firmware Development .

3 Design

3.1 Fabric Size. .

3.2 Multiple Boards.. .

5

15

15

16

16

17

19

19

20

21

21

21

22

22

23

24

25

30

30

31

31

31

3.3 I/O

3.4 Board Types

3.4.1 Quad Boards

3.4.2 I/O Boards

3.5 Board Configurations

3.6 Board Connections

4 Design Decisions

4.1 Signal Distribution

4.1.1 Power Distribution

4.1.2 Reset Distribution

4.1.3 Clock Distribution

4.2 Mechanical Considerations

4.2.1 Connections

4.2.2 Heat Sink Board Flex

4.3 Tilability

5 Implementation

5.1 Firmware Development

5.1.1 Programming the I/O Board.

5.1.2 Programming the Quad Board

5.1.3 Firmware Writing

5.2 Memory System

5.2.1 Firmware

5.2.2 Layout

5.2.3 Debugging in Revision 1 . . .

5.2.4 Temporary fixes for running C

5.3 USB Interface

5.3.1 USB Booting

5.3.2 SX2 Configuration

5.3.3 Host Interface

6

32

33

33

34

34

35

39

39

39

41

44

47

47

48

49

53

53

. 5 3

programs

54

54

56

57

58

58

58

59

59

60

60

5.3.4 Future USB Implementation6

6 Lessons Learned 63

6.1 Mechanical Considerations . 63

6.1.1 Unreliable Cables . 63

6.1.2 Retention Bracket Stress . 64

6.2 Schematic Errors . 65

6.3 Design Lessons . 67

6.3.1 Parallel I/O . 67

6.3.2 Active high signaling . 67

6.4 Minor Lessons . 68

6.4.1 2 Weeks Can Easily Become 4 Weeks 68

6.4.2 Backup Often . 68

7 Characterization 69

7.1 Clock Synchronization . 69

7.1.1 Test Setup . 69

7.1.2 R esults . 70

7.2 Reset Propagation . 71

7.2.1 Delay from I/O board to Quad board 72

8 Conclusion 75

8.1 Sum m ary . 75

8.2 Future W ork . 76

8.2.1 Larger Fabrics . 76

8.2.2 Performance Profiling. 76

8.2.3 Parallel Architecture Algorithms Research 76

8.2.4 Large Applications . 77

A Raw Hardware User Guide 79

A.1 Overview 79

A.2 FPGAs............ 79

7

61

A.2.1 Quad Board FPGAs

A.2.2 I/O Board FPGAs

A.3 Programming the Quad Board

A.4 Programming the I/O Board

A.4.1 Parallel Cable IV

A.4.2 USB Cable

A.4.3 CompactFlash SystemACE

A.5 Debug Module. .

A .6 U SB .

A.7 Memory Controller

A.8 Rev 1 Buglist .

A.8.1 South Side bus disconnect

A.8.2 Reset pull-ups

A.8.3 Control line rotation

A.8.4 Criss-crossed yummies.

A.8.5 Bad N-S connection between tiles 31 & 39 . .

A.8.6 Cannot boot from ports 8 and 12

A.8.7 Incorrect yummies from I/O board

A.8.8 Memory controllers on port 13 and 14 produce

A.8.9 Cannot use memory controller on port 11 . . .

A.8.10 Cannot boot from ports 8 and 12

A.8.11 Memory Controller reporting garbage

A.9 Project File System Organization

A.9.1 Revision 2 Hardware Firmware

A .10 Boot Process .

A.10.1 Block RAM Booting

A.10.2 USB Booting

A .11 File Locations .

A.12 DIP switch settings

A.12.1 Quad Board DIP switch settings

. 7 9

. 8 1

. 8 2

. 8 3

. 8 4

. 8 4

. 8 4

. 8 5

. 8 5

. 8 9

. 9 0

. 90

. 9 0

. 9 0

. 9 1

. 9 1

. 9 1

. 9 2

erroneous data 92

. 9 3

. 9 3

. 9 3

. 9 3

. 9 4

. 9 7

. 9 7

. 9 7

. 9 8

. 100

. 100

8

A.12.2 I/O Board DIP switch settings 102

A.13 Port and Tile Numbering . 104

A.14 History . 107

9

10

List of Figures

1-1 Photograph of Implemented Raw Fabric

2-1 Raw Tile and Port Layout .

2-2 Raw Handheld Memory system .

2-3 Raw Handheld Memory Controllers

2-4 Raw Handheld Memory Controller Firmware Block Diagram

2-5 Raw Handheld USB system .

2-6 Raw Handheld USB Firmware PI FPGA Firmware Block Diagram.

3-1

3-2

3-3

3-4

3-5

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

High Level Quad board block diagram

High Level I/O board block diagram

Simplest Raw Fabric system

Raw Fabric with 1 Quad board and 4 I/O boards .

1024 Tile Raw Fabric system

Reset Signal Distribution

Reset Signal Distribution

Clock Signal Synchronization

Connector Stacking Scheme

Retention Bracket Mechanical Design

Tilability of the Quad board

Connector Matchings between Quad and I/O board

Connector Mismatch between Quad and I/O board

5-1 Veribuild Tool Chain Flow

11

20

23

26

26

28

28

29

. 33

. 34

. 35

. 36

. 37

42

43

45

48

49

50

50

51

55

5-2 Raw Handheld Memory Controller Firmware Block Diagram . .

5-3 Fabric USB Boot Path .

6-1 Criss-Crossed Yummies .

7-1 Clock delay between I/O board and Quad board

7-2 Clock delay between I/O board and I/O board, via Quad Board

7-3 Reset Delay from I/O board to Quad board

7-4

7-5

Reset Delay from I/O board to I/O board (via

Reset Signal Width

A-1 I/O and Quad Board Connections

A-2 USI3 LEDs on PCIO and PCI1

A-3 US13 Initialized LED Pattern

A-4 US13 Booting LED Pattern

A-5 US13 LEDs on EXPO and EXP1

A-6 I/O board FPGA corner problematic areas

A-7 Quad Board DIP Switch Positions

A-8 I/O Board DIP Switch Positions

A-9 Single Chip Port and Tile Numbering . . .

A-10 Quad Board Port and Tile Numbering

A-11 Alternate configuration: 4x8 Fabric

A-12 Alternate configuration: 8x4 Fabric

Quad board) 73

74

. 8 3

. 8 7

. 8 7

. 8 8

. 8 9

. 9 2

. 10 1

. 10 2

. 104

. 105

. 106

. 106

12

57

59

66

70

71

. 72

List of Tables

A. 1 Quad Board DIP Switch Clock Originator input select 101

A.2 Quad Board DIP Switch input select 101

A.3 I/O Board DIP Switch Reset signal input select 102

A.4 I/O Board DIP Switch clock input select 102

A.5 I/O Board DIP switch DEBUG signal settings 103

13

14

Chapter 1

Introduction

Interest in parallel architectures has increased steadily as the limits of physics become

more and more constraining at higher clock frequencies. As superscalar microproces-

sors become more and more complicated, the propagation delay of electrons along

wires is becoming a larger and larger constraint. Parallel architectures aim to im-

prove performance not by pushing electrons closer and closer to light-speed, but rather

by spreading the computation across multiple computational units [9].

Raw is one such parallel architecture that was designed and implemented at MIT.

Raw focuses on maintaining the simplicity of the identical individual tiles. This sim-

plicity allows for extremely easy scalability: to increase performance, simply replicate

more tiles. Instead of increasing the complexity of the microprocessor, the software

compilers carry the burden of optimizing the application to the increased number of

computation tiles. In this model, the hardware is fully exposed to the compiler so

that the compiler may make best use of the resources [1].

1.1 The Raw Processor

The Raw processor was designed and implemented at MIT to demonstrate the power

of scalability afforded by the design of the Raw architecture. The processor has 16 tiles

that simultaneously execute Reduced Instruction Set Computer (RISC) instructions.

Each tile has its own register set, instruction cache, and data cache. The processors

15

are modeled after the MIPS 4000 processor with a 5-stage pipeline. These processors

are simple enough that 16 of them fit on a single reasonably-sized die.

Greater detail on the design and implementation of the Raw processor is covered

in Chapter 2: Background.

1.2 The Raw Fabric

This thesis focuses on the design, implementation, and characterization of the hard-

ware in the Raw Fabric system. The Raw Fabric system wires together multiple Raw

processors to produce the equivalent of a larger Raw processor.

1.2.1 Motivation

The motivation behind building the Raw Fabric is two-fold. First, the Fabric provides

a platform to demonstrate the ease and power of scalability in the Raw architecture.

Second, the Fabric provides a test platform on which further research on various

algorithms may be done.

Scalability Goal

The scalability of the Raw architecture involves many factors beyond the simple

argument that computation may be distributed. For example, as the system grows

larger, the memory system may suffer, or the latency of the point-to-point messaging

system (see Section 2.1.4) may become prohibitive. On the hardware front, reset or

clock skew becomes a larger consideration as more tiles are added.

The Raw Fabric provides a hardware implementation of the architecture so that

the strengths and weaknesses of the Raw architecture's scalability may be assessed.

Without a hardware implementation, it is easy to fall into the pitfall of making

unrealistic assumptions.

16

Test Platform Goal

The Raw Fabric will allow researchers to profile the performance of algorithms as

the number of tiles grows larger. Previously, researchers utilizing the Raw processors

could show the performance behavior as the number of tiles increases to as many as

16 tiles. The Raw Fabric will open new doors by increasing this number to as many

as 1024 tiles.

Building this hardware test platform also has advantages over simply simulating

a large processor in software. First, the hardware runs much faster than simulation.

Second, hardware allows for the measurement of variables difficult to measure in

simulation, such as power consumption. Lastly, results from experiments run on

hardware are more credible than in simulation, because the simulator may have some

assumptions that are unrealistic in the physical world.

1.2.2 Design and Implementation Challenges

The design and implementation of the Raw Fabric Hardware system presents a set of

challenges unique to this system.

Modular Design

Chapter 3 discusses the first challenge, how the Raw processors and various other

components would be laid out on one or more boards. As with any difficult decision,

each choice of board layout has its own advantages and disadvantages. A single large

board system has the costly disadvantage of being difficult to repair. However, using

more than one board leads to the need to connect the boards together, which leads to

another gamut of challenges. In the end, the significant repair cost overwhelms the

nuisance introduced by connectors.

Even after the choice of a multiple board design over a single large board, the

actual design of the modular system is still a momentous task. In Section 3.4, the

choice to use two different types of boards - one to house the Raw processors (the

Processor Board) and one to provide I/O (the I/O board) - is justified. Section 3.5

17

provides a glimpse of the considerations required to make the system general enough

such that the I/O board may be attached onto any side of a Processor board.

Power Distribution

There are two major challenges related to power distribution in the Raw Fabric sys-

tem.

One challenge presented by the use of a multiple board system is that each board

needs to be powered somehow. However, using a separate power supply for each

board is infeasible because an inordinate number of supplies would be required.

In addition, power distribution in this system is unique because of the momen-

tous total power requirement. A full 16 Processor Board Fabric contains 64 Raw

processors, which equates to roughly 1280 Watts of power.

Chapter 4 explores these challenges in greater detail and presents our solutions.

Reset Distribution

Just like power distribution, the need for reset distribution arises from the choice to

use multiple boards. Reset distribution is also discussed in greater detail in Chapter

4.

Clock Distribution and Synchronization

Much like power distribution and reset distribution, the need for clock distribution is

attributed to the choice to use multiple boards.

On the other hand, the need for clock synchronization would probably be pressing

whether a single board or multiple board design was chosen, since processors on

opposite ends of the Fabric are likely to be physically distant from one another. This

distance leads to the presence of clock skew, since the clock signal takes time to

traverse the wire to the farther processor. Therefore, a method to synchronize the

clocks being fed to all Raw processors is required.

These issues and their solutions are discussed in Chapter 4.

18

Connectors

The use of multiple boards leads to the very real mechanical considerations of connec-

tors. Our system design presents the unique challenge of creating a very large number

of connections in many different places. Section 4.2.1 describes how the problem of

making the multitude of connections is solved, and it also provides a tour through

the new problems that arose from the solution.

1.2.3 Results

The Raw Fabric system was successfully implemented and characterized. The imple-

mentation of the Fabric is described in Chapter 5. Various key electrical characteris-

tics are highlighted in Chapter 7.

The Raw Fabric system succeeded in providing a test platform for applications to

be run. The implementation also provided many lessons. Chapter 6 explains these

lessons so that one who intends to build a similar hardware system may learn from

our experiences.

Figure 1-1 shows a small Raw Fabric that has been implemented at MIT. The

center board is a Processor board, which houses 4 Raw processors (covered by the 4

prominent orange heat sinks in the picture). The 3 peripheral boards are I/O boards

responsible with communicating with the outside world.

1.3 Thesis Overview

The remaining sections of this thesis are broken down into eight sections. First, Chap-

ter 2 paints the background picture, providing a rough sketch of the Raw processor

and Raw Handheld system history. Next, Chapter 3 outlines the high-level design

goals and overarching design structure of the Raw Fabric. With the design goals in

mind, Chapter 4 describes various trade-offs made in the design of the Fabric system.

Chapter 5 provides the nitty-gritty implementation details in the Raw Fabric hard-

ware. Chapter 6 provides insight into lessons learned from the experience of building

19

*m-y~ rj.~ - - ---.-------- -

Figure 1-1: Photograph of Implemented Raw Fabric

a hardware system of this size. Chapter 7 summarizes a few key electrical character-

istics of the hardware system. Finally, Chapter 8 provides a summary of work done

and a view of future work to ensue.

1.4 Collaboration

The Raw Fabric Hardware project is a collaborative work with Jonathan Eastep,

Jason Miller, and Haydn Nelson. Jonathan Eastep, Haydn Nelson, and I handled

much of the hardware implementation, debugging, and design revisions. Jason Miller

was largely responsible for the initial design of the system, and he provided valuable

advice during the later implementation stages.

20

Chapter 2

Background

This chapter provides a whirlwind tour of the foundation upon which the Raw Fabric

system rests. The intent of this background material is to familiarize the reader

with topics relevant to the Raw Fabric system. This chapter by no means provides

a comprehensive description of the Raw Processor or Raw Handheld System. For

more details on the Raw architecture, please consult The Raw Microprocessor: A

Computational Fabric for Software Circuits and General Purpose Programs [10].

2.1 The Raw Processor

The Raw Processor is a tiled processor developed at MIT in the Computer Architec-

ture Group (CAG).

2.1.1 Tiled-Processor Architectures

As power consumption and wire delay become more and more limiting on today's

superscalar microprocessors, microprocessor architects are faced with the challenge

of finding new approaches to improve performance [9].

The idea behind any tile architecture is replication. Instead of a single extremely

fast processor core, multiple cores distribute the workload.

The possibility of overcoming the power consumption and wire delay hurdles has

21

spurred on many tiled architecture research undertakings, including VIRAM [3] at

UC-Berkeley, Smart Memories [7] at Stanford, TRIPS [8] at UT-Austin, Raw [12]

and SCALE [4] at MIT. The focus of these research initiatves has been to offer better

versatility - ability to run a broader range of applications effectively - rather than

strictly better performance on desktop workloads [9].

2.1.2 Compilers

The Raw system operates under the assumption that there exists a compiler that can

distribute the computation in a manner that maximizes efficiency. Many research

topics have been explored, including work on scheduling [5, 6] and work on memory

management [2]. However, the details of these compilers is beyond the scope of this

thesis.

2.1.3 Inter-tile communication

An important feature of any tile architecture is the availability of communication be-

tween tiles. The tiles require fast communication between tiles in order to coordinate

activities and to share data.

The Raw processor architecture includes four networks: two static networks and

two dynamic networks. The two static networks provide communication between two

static neighboring tiles. On the other hand, the dynamic networks provide commu-

nication between any two tiles (which may be decided at runtime).

All four networks have the form of a grid, where each tile is connected to its north,

east, south, and west neighbors (see Figure 2-1). Tiles on the edge of the board are

connected to ports off the chip, where their neighbors would have been.

Though the previous description is sufficient to understand the design of the Fab-

ric, there are many details needed to actually use the Raw architecture effectively.

These details may be found in in the Raw Specification [11].

22

Raw Tile and
101_02

Tile Tile Tile Tile

Tile Tile 'Tile Tile

Tile Tile Tile Tile

Tile Tile Tile Tile

2.1.4 Off-Chip Communication

This section describes the aspects considered when choosing how the Raw processor

would communicate to the outside world through pins.

Point to Point Interconnection Network Channels

The Raw processor uses point to point interconnection channels to communicate

between tiles and with the outside world. Each tile communicates with up to 4

neighbors 011 4 different networks: 2 static networks, a memory dynamic network,

and a general dynamic network.

Furthermore, the data between each pair of points is transmitted on a parallel

bus. This design decision allows the entire chip to use a single common clock. The

single clock and parallel buses result in a system that is simpler to design, since extra

synchronization and conversion (to/from serial) logic is not required.

Package Limitations

The Raw processor was fabricated using the IBM SA-27E ASIC process, and it was

packaged in a 1657-pin CCGA package. This package has 1080 HSTLI signal pins.

23

04

05

06

07

Figure 2-1:
100

Port Layout
103

15

14

13

12

III I09_10 1 08

Pin Requirements

Unfortunately, the parallel nature of the Raw processor's networks means that many

pins are needed. Each 32-bit port requires the 32 bits for data, and also 2 bits to

encode the network the data resides on, and 3 bits for an acknowledge signal, for each

direction. Given there are 16 ports and 2 direction, approximately (40*16*2) = 1280

pins are required for I/O communication through the package's pins.

Port Multiplexing

Since the pins would not all fit in the package, it was necessary to find a solution to

save a few pins. In the end, the decision was made to multiplex a few of the ports

together. Therefore, two pairs of ports on the north and two on the south (in both

directions) share a 32-bit data bus, as shown in Figure 2-1. This choice degrades the

performance through these ports when both of the ports are being used heavily, but

it maintains a simple, logical design.

Only Three Networks Leave the Chip

In addition, though the Raw processors have 4 networks, the memory dynamic, gen-

eral dynamic, static 1, and static 2, only the first 3 connect off the chip. This is

another pin-saving choice: with 3 networks, 2 wires can encode the ready signal

(00 represents no activity). In addition, we save a pin in the acknowledge signals

(acknowledge signals are not multiplexed, for performance).

2.2 The Raw Handheld System

The Raw Handheld system was the first hardware system designed and built for use

with the Raw processor. The system was designed to show off the capabilities of the

Raw processor. The system's name comes from its original purpose to demonstrate

the applications that could be possible using a Raw processor on a hand-held system.

The system itself is not small enough to be held in a hand.

24

2.2.1 Functions

The handheld system looks and acts much like a modern PC motherboard. The

system's main function is to allow the Raw processor to communicate with the outside

world in a variety of ways. When the handheld system was designed, one of the

most important goals was to allow for maximal expansion and experimentation. The

handheld system's host of functions include, but are not limited to:

1. Memory

2. USB

3. PCI

4. Serial RS-232

5. Audio

6. A/D and D/A converters

7. Keyboard and Mouse

8. Connector for Text-only LCD

The functions that bear the most relevance to the Raw Fabric system are the

Memory and USB subsystems.

Raw Handheld Memory System

The Raw Handheld board has four industry standard 168-pin SDRAM DIMM slots

for system memory. By default, these slots are populated by 512MB sticks, for a total

of 2GB system memory.

Figure 2-2 shows the overall structure of the Raw Handheld memory system. The

DRAM slots are connected to two FPGAs, which in turn are connected to ports 4

through 7 on the Raw processor.

25

15

14

13

12

Figure 2-2: Raw Handheld Memory system
0 1 2 3

0 1 2 3 _4

--- r ---- r ---- r---- FPGA
4 5 6 7 5
-- - r -- Raw | -r-- - A

8 9 10 1

----- r ---- r ----'r ---- FPGA

I I I T T

12 13 14 ' 15 7
I , I

11 10 9 8

The FPGAs must be loaded with firmware that handles memory requests from

Raw and translates them into the protocol the DRAM understands. In other words,

the firmware must implement a memory controller.

Figure 2-3: Raw Handheld Memory Controllers

0

0

e

Tile 4- MEM CTRL 0

Tile + - MEM CTRL 1

* FPGA SD

Raw

RAM

Figure 2-3 shows that there is a memory controller for each port on Raw. Each

memory controller interfaces with one stick of SDRAM. Thus, there are a total of

four memory controllers in the Raw Handheld system.

Figure 2-4 provides a high-level block diagram of a single memory controller. It

26

shows the path data traverses as memory store and load requests are made.

The first 3 blocks provide buffering and clock domain conversion. First, the mem-

ory request arrives at the memory controller from Raw on the memory dynamic

network (mdn). The speed gasket is responsible for sorting data according to net-

work and providing some buffer space for each netowrk. The Network Input Block

(NIB) element of the memory controller reads this data from the speed gasket first-in-

first-out buffer (FIFO). Next, the data is stored in an asynchronous FIFO, in order to

connect from Raw's clock domain to the memory's clock domain. This asynchronous

FIFO allows the memory and Raw to run at different clock frequencies.

The next stop on the data path is the codec block, which handles the decoding

of and encoding to Raw's communication protocol. The header decode unit com-

municates with the SDRAMC unit, which is generates and receives control signals

for the SDRAM. The rest of the logic in the codec unit handles the packaging and

depackaging of data. This processing is necessary because data to and from Raw is

communicated in 8-word packets.

If the memory request was a load, then an 8 data word mdn packet will be sent

back to Raw. When data leaves the codec module, it arrives in an asynchronous

FIFO, which switches clock domain back to Raw's. Next, the data is read into the

Network Output Block (NOB). From the NOB, it passes through the speed gasket

and back into Raw.

Raw Handheld USB System

USB is the method by which the Raw processor interacts with a host computer. In

order to communicate to a host computer, the Raw processor simply sends a static

network, mdn, or gdn message through an off-chip port that is connected to an FPGA

with USB controller firmware. On the Handheld system, sending messages from Raw

to ports 12 through 15 will end up at the host computer.

Figure 2-5 shows the overall structure of the Raw USB system. A USB cable

connects the host computer to the USB Plugin card on the Raw Handheld board.

This plugin board houses the SX2 USB controller, which decodes the USB packets.

27

Figure 2-4: Raw Handheld Memory Controller Firmware Block Diagram
MEM CTRL

CoDECHDR

-- CTRL

SDRAM CTRL
From Raw

32 o 32n

32 SDRAM DATA

32 64 4
T o Rav

32

co z
0 0

Figure 2-5: Raw Handheld USB system

Host

15
USB PCI --

FPGA
14

13
USB Pi

Plugin FPGA
Card 12

0 1 2 3
I I I

0 '1 2 3

4 5 6 7

8 '9 10 '11
--- -r ---- ---------

12 13 14 15

11 10 9 8

28

4

5

6

7

HDR Generatior

33

32

The USB plugin card is connected to the PI FPGA. There is a routing network known

as the "test harness" that sorts packets between the PI and PCI FPGAs (the name

was apparently a temporary name that was never changed). The PI and PCI FPGAs

connect to Raw.

Figure 2-6: Raw Handheld USB Firmware PI FPGA Firmware Block Diagram
To/From PCI FPGA

Reset

GLOBALRESET Module

0 To/From Raw

To/From Plugin Board UB

00

To/From Raw

CLC

PI FPGA

Figure 2-6 provides more detail on the internal organization of the USB firmware

on the PI FPGA. The data that arrives from the host computer through the SX2

plugin board is interpreted and translated into header/data pairs by the USB mod-

ule. The data then passes through a reset module, which picks out special packets

(identifiable through a special header) from the data stream that instructs the PI

FPGA to initiate a reset on the Handheld board. This allows the host computer to

reset the board remotely before streaming in boot code.

Next, an asynchronous barrier connects from USB's clock domain to the test

harness's clock domain. The test harness routes packets so that they arrive at the

correct port on Raw. The speed gasket interfaces with Raw.

29

2.2.2 BTL simulation environment

The BTL simulation environment allows programmers to simulate their code before

running it on hardware. A remarkable feature of the BTL simulation environment is

that it includes an accurate Verilog model of the Raw processor, so the simulation

results execution results match execution results on the hardware.

The BTL simulation environment supports simulation of larger fabrics like the

Raw Fabric system. However, the simulation environment excludes many of the

hardware restrictions present in the Raw Fabric hardware.

2.2.3 Firmware Development

Firmware development in the handheld was performed using the Veribuild suite or-

ganized by David Wentzlaff. Veribuild automates the firmware compilation process

by using GNU Makefiles to describe projects.

This system also allows for modular design of components. The Xilinx XC2V3000

FPGAs chosen were intentionally large, to be able to perform many different tasks.

Modular development allowed firmware development to proceed in an organized, par-

allel manner. For example, the speed gasket and memory controller submodules could

be developed in parallel. Furthermore, the speed gasket, which contains many source

files, could be reused easily in many independent projects whenever interfacing with

Raw. One major advantage of modular design is that when a change to the speed gas-

ket is made, it is automatically made in all of the independent projects that reference

the speed gasket module.

30

Chapter 3

Design

This chapter describes the system design of the Raw Fabric. It addresses high-level

issues considered when first laying out the structure of the system, whereas the next

chapter includes much more specific design considerations that result from design

choices in this chapter.

3.1 Fabric Size

The goal of the Raw Fabric system is to connect multiple Raw processors in such

a way that they emulate the behavior of a single Raw processor with more tiles.

By constructing the equivalent of a 64-tile Raw processor or even a 1024-tile Raw

processor, we are allowed a sneak preview at a future implementation of the Raw

processor. The goal of the Fabric system is to be modular enough to accommodate

Fabric sizes from 64 tiles to 1024 tiles, or equivalently, 4 Raw processors to 64 Raw

processors.

3.2 Multiple Boards

In order to use a Raw processor, it is necessary to mount it on a printed circuit board

(PCB). There are compelling reasons to mount the Raw processors on multiple boards

rather than mounting all of them on a single board.

31

First, the use of multiple boards rather than a single board allows each of the

boards to be smaller in size. The ultimate goal of 1024 tiles requires the use of 64

Raw processors (each Raw processor contains 16 tiles). Mounting 64 processors on

one board would require a prohibitively large board. In addition, since it is expensive

to remove and remount Raw chips, if a smaller board is broken, we only lose the

number of Raw chips on the board. If our design is sufficiently modular, then the

broken board can just be replaced.

The use of multiple boards allows for modularity of design. By breaking down the

design into smaller parts, it is possible to design and debug each part at a time. This

modularity results in shorter debugging times. If there is a problem with one board,

it may be easily replaced by a working board.

Finally, using multiple boards provides flexibility in Fabric size not possible with

a single board. By using multiple boards, it is possible to create Raw Fabrics with

different sizes and shapes by using fewer or more boards. Thus, using multiple boards

allows aspects of the design to be incrementally validated on a smaller Fabric before

attempting to build a larger Fabric.

In the end, we decided that four Raw processors on each board would provide the

correct balance between number of connections needed and physical board size.

3.3 1/O

The Raw Fabric hardware system has many functions beyond simply providing a

place to mount the Raw processors. Most notably, the hardware system must provide

a way for the Raw processors to interact with the outside world. In other words, the

hardware system must provide Input/Output (I/O) channels for the Raw processors.

The hardware system was designed to accommodate many different I/O types in

order to provide versatile functionality. First, the hardware system provides USB

support to communicate with a host computer. Next, the hardware system provides

a memory system, so that the Raw processors may store data in memory without

paying the latency overhead of going to the host. In addition, the hardware system

32

supports PCI slots so that expansion boards may be accessed. Finally, the hardware

system provides an additional expansion connector that provides a wide bus by which

the hardware system may communicate with custom hardware.

3.4 Board Types

In order to enforce modularity, two separate board types exist in the Raw Fabric

hardware system. The Quad boards house the Raw processors, and the I/O boards

provide I/O for the Raw processors.

3.4.1 Quad Boards

The Quad boards, also known as Processor Boards, derive their name from the fact

that there are four Raw processors (for a total of 64 tiles) per board. The Quad boards

contain pads to which the Raw processors are soldered. In addition, they contain

traces that connect neighboring Raw processors such that the tiles are connected

in roughly the same way that Raw processor tiles are wired internally. Figure 3-1

demonstrates what the Quad board looks like schematically.

Figure 3-1: High Level Quad board block diagram

Connectors

RAW RAW

0
0

Config
ConFPGA

RAW RAW

Connectors I

33

3.4.2 I/O Boards

In order to accommodate the large area required by all of the I/O components, a

separate board was introduced for the sole purpose of providing I/O for the Raw

processors. This design allows for debugging the Quad boards and I/O boards sepa-

rately.

Figure 3-2: High Level I/O board block diagram

PCT
FPGA..

n FPGA
Memory

FPGA F
Config
FPGA - - -

FPGA

Figure 3-2 shows the features supported by the I/O board. Specifically, the I/O

board has PCI connectors, memory connectors, and expansion connectors. In addi-

tion, the I/C board has a plug-in connector for a USB plug-in board.

3.5 Board Configurations

The use of modular boards allows for many different board configurations. This

strategy allows us to scale up the size of the Fabric incrementally.

The simplest possible board configuration consists of one Quad board and one

I/O board (see Figure 3-3. The I/O board may be connected to the Quad board on

any of the four sides (North, East, South, West). In fact, the I/O board should be

rotated around to test that the connections on each side of the Quad board function

correctly.

34

Figure 3-3: Simplest Raw Fabric system

D
El ~ffffff~D

Li El

The next logical step up is to add more I/O boards to the system. A system may

contain one Quad board and as many as four I/O boards to allow for maximal I/O

possibilities (see Figure 3-4).

Once the functionality of the simple Fabric board configuration is verified, then

larger board configurations are more likely to work. The next step up is to Fabric

system with two Quad boards. The most important step here is to verify that North-

South tiling and East-West tiling of two Quad boards functions correctly.

After the two Quad board system is verified, arbitrary tiling is theoretically pos-

sible. The software infrastructure prefers square Fabrics (though rectangular Fabrics

should theoretically work), so the logical steps are first a 2 Quad board by 2 Quad

board system. Finally, a 4 Quad board by 4 Quad board system may be constructed,

yielding a total of 1024 tiles in a single Fabric system (see Figure 3-5).

3.6 Board Connections

A drawback of the multiple board design is the need for connections between boards.

The use of connectors is a liability because it is a notorious source of errors.

The use of connectors is particularly costly in the Fabric system because of the

number of connections required. A tile on one Quad board should be able to commu-

nicate with a tile on an adjacent Quad board in exactly the same way it communicates

35

IZI

Figure 3-4: Raw Fabric with 1 Quad board and 4 1/0 boards

LZLIDL
EZ7I
F-I 0 -1 LZ

K
DEIZZLIZI

]zD Zn

DII

36

EIlIZEDDEE

Figure 3-5: 1024 Tile Raw Fabric system

D D Hn DD H :

=I E L 1 E [1U

ElE
1uWE1

UU

x x xn E-

E 0 Do xn

00 x x

DODO DODO DODO 0000

37

with the rest of its neighbors on the same Quad board as itself. As a result, each link

between tiles across two Quad boards requires a 32-bit data bus in each direction,

along with the relevant control signals. In other words, a large number of connections

is required.

Thus, while there are many benefits of using a multiple board, modular design,

there are also disadvantages. Section 4.2.1 delves into greater detail on the choice of

connectors and its ramifications.

38

Chapter 4

Design Decisions

This chapter describes specific design challenges involved in creating a large Fabric

system and the decisions made to resolve them. The challenges faced range from

how to distribute signals reliably to how to prevent the board from bending from

mechanical pressure. The scalability, performance, and reliability of the system were

deemed the most important goals to keep in mind.

4.1 Signal Distribution

The scalability goal of the system provides a challenge to distributing the vital power,

reset, and clock signals to each of the boards. Careful consideration was taken to make

sure that the system would function reliably, no matter how small or large the board

configuration.

4.1.1 Power Distribution

Power distribution presents the challenge of supplying a large amount of power to a

large number of boards. Adequate power supply is a critical issue because some of

the most difficult bugs to track down are power-related. Therefore, heavy emphasis

was put into designing a robust power distribution system.

39

Supplying Power to 32 Boards

Each board in the multiple-board Fabric system must be powered from some source.

Since a Fabric system may contain as many as 32 boards, it is inconvenient to power

each board by its own dedicated power supply, since a user would need to switch on

32 separate power supplies to use the Fabric. In addition, 32 boards would need to

be switched off and switched on in order to perform a hard reboot.

Instead, a power distribution network was introduced to supply power to each

board. In this network, each Quad Board is connected to each of its four neighbors,

and each I/O Board is connected to its neighboring Quad Board. Since the power

signals are non-directional, any board may act as the power "source." This board is

in turn powered by one or more large external power supplies.

This solution allows there to be a single power supply, which is much more conve-

nient. Powering the Fabric on and off involves pressing a single button, and procuring

the supply involves buying only one part.

Supplying Large Amount of Power

The enormous power requirements of 64 Raw processors in a single system presents

a unique challenge to the Raw Fabric system design. The power usage of 64 Raw

processors was estimated at 1280 watts, so it was necessary to design a system that

would accommodate this much power flowing through the system.

First, it was infeasible to distribute the power through the same cables and con-

nectors as the rest of the signals. While this is true in most systems in general, it is

especially relevant in our case because the high signal density (please keep in mind

there are roughly 600 connections between each pair of boards, see Section 4.2.1) cou-

pled with the huge power requirement. Instead, much larger cables and connectors

handle the distribution of power.

However, even the large power cables are limited in the amount of current they

may conduct. Therefore, it was necessary to choose the distribution voltage carefully.

For example, if we were to choose a distribution voltage of 5 V, then the theoretical

40

maximum current running through the cables would be prohibitively high at 256

Amps. On the other hand, an extremely large voltage also leads to safety issues. In

the end, we chose a distribution voltage of 48 V, which allows the current to conform

to the connectors' current threshold rating. To help keep the current low, we also

decided that if building a large Fabric, multiple power supplies would be used so that

one power supply does not need to supply all of the power.

4.1.2 Reset Distribution

The proper design of the reset system is challenging because all of the boards in the

system must receive the same signal, but any FPGA on the I/O board should be able

to initiate a reset. The main challenge comes from the fact that the Fabric system

should be flexible enough to accommodate anywhere from 1 to 16 Processor boards.

The reset signal informs FPGAs and Raw chips to reset their state, so that pro-

grams can execute from a known "clean" state. The reset signal must be propagated

throughout the entire Raw Fabric system. In other words, it should not be possible

for one board to be reset but another board to remain running.

One approach considered might be to have a global reset net that all FPGAs and

Raw chips are connected to, and have them pull down. However, this approach is not

readily scalable, because the external resistor value with which to pull up the signal

changes as more boards are added. Since we are using the same design for each board,

there must be a pull-up resistor on each board. However, the equivalent resistance

of the pull-up decreases with each board added. It is therefore difficult to make one

design that works for a one Quad board system that is also guaranteed to work for a

sixteen Quad board system.

Instead, our reset system is a hierarchical one. First, there is a global reset signal

that runs between each pair of neighboring boards' config FPGAs. Next, the config

FPGA on each board distributes a local board reset signal to all the other components

on the board. Figure 4-1 demonstrates the hierarchical layout of a one Quad board,

one I/O board Raw Fabric system.

41

Figure 4-1: Reset Signal Distribution

GLOBAL RESET

FPGA RAW RAW BOARD RESET

- -FPGA

Config FPGA FPGA Co fig A

FPGA RAW RAW

I/O Board Quad Board

Inter-board Reset

The top-level reset scheme is a directional one. Each quad board receives reset signals

from all four neighboring boards; however, it uses only one of them as its active input.

Our implementation uses DIP switch settings to choose which direction it receives its

input reset signal. When a board is reset, it outputs the reset signals to all neighboring

boards except its active input direction. This scheme allows a configurable path by

which the reset signals are propagated across the Fabric.

Note that the reset propagation is a sequential process: the boards which receive

the reset signal first are reset prior to the subsequent boards. This design allows there

to be reset skew: different parts of the Fabric receive the signal to reset at slightly

different times. This side effect was deemed admissible because there is no pressing

need to have all processors reset at the same time, since the design of the software

system is careful about beginning code execution at the same time.

Intra-board Reset

The reset signals on the Quad boards and I/O boards are handled differently, since

I/O board FPGAs are also allowed to initiate resets whereas the quad boards only

propagate the signal to its neighbors.

42

Quad Boards In the Processor boards, the reset signal that the config FPGA

triggers the board reset. The Raw processors are not allowed to initiate a reset, so

the reset signal is simply initiated by the config FPGA only. Each of the four Raw

processors has its own reset net connected to the config FPGA. This is an active high

signal that uses the HSTLI signaling standard.

I/O Boards On any given I/O board, the reset signal is an active low signal. In

other words, the reset signal normally rests at a high voltage by way of a pull-up

resistor (all FPGAs tristate the pin). Any FPGA wishing to initiate a reset may pull

the reset signal low. The active low choice allows multiple FPGAs to initiate a reset

without bus contention. More importantly for us, this choice allows disconnected

boards or unprogrammed FPGAs to default to a non-resetting state. If the config

FPGA did not receive the reset from the neighboring Quad board, then it propagates

the reset to the neighboring Quad board. The stipulation that the reset did not come

from the neighboring Quad board makes sure that reset signals bouncing back and

forth between the Quad board and I/O board are not possible.

Typical Reset Propagation Path

Figure 4-2: Reset Signal Distribution

GLOBAL RESET

FPGA RAW RAW BOARD RESET

G) FPGA

.9 ~~~~~~~~~~~~~~GI gngg8IIIBINMBBN IIGMNGMN giiNIB00gN ENGGBMB G~nCNN N

Config FPGA FPGA Cotfig GA

FPGA RAW RAW

I/) Board Quad Board

Figure 4-2 illustrates the typical reset signal path. This example will walk through

43

the most common situation that occurs before booting code into the Raw Fabric

system. The numbers in 4-2 match up with the following 5 steps:

1. First, the reset signal is requested by the host computer. This is achieved by

sending a special reset packet to the USB Controller on the I/O board. The FPGA

receives this packet and pulls the board reset signal low.

2. This signal causes all other FPGAs on the I/O board to reset, including the

config FPGA.

3. When the config FPGA is reset, it also asserts a reset to the Quad board it is

connected to.

4. If this Quad board was properly configured to receive the reset signal from the

I/O board, then it will accept the reset signal. (If the Quad board was not configured

to receive the reset signal from that direction, then it simply ignores the signal.)

5. It then resets the Raw processors on the board, and it also propagates the reset

signal to all directions except the direction it received the signal originally (so that

the reset signal isn't being bounced back and forth between the two boards).

6. The neighboring I/O boards are reset, and if the neighboring Quad boards

are configured to receive the reset signal from the correct direction, they will also be

reset.

The reset signal propagates throughout the system until the reset signal is not

received by any more new Quad boards. The reason the reset terminates and does

not bounce forever is because the Quad boards are configured to trigger a reset only

on one side.

4.1.3 Clock Distribution

The clock distribution system was one of the trickiest parts of the Raw Fabric to design

because great care must be taken to ensure that all boards receive a synchronized clock

signal. This synchrony is critical for data to be transmitted correctly.

44

Figure 4-3: Clock Signal Synchronization

Fanout Buffer Cable

CONFIG z +
FPGA -

yCable

4

y

4X

4 FPGAs

C

QUAD
CONFIG

FPGA

1/0 Board Quad Board

Point-to-Point Synchronization

To solve the problem of synchrony between each pair of boards, we employed Digital

Clock Manager (DCM) components available in the Xilinx FPGAs. Using a feedback

loop, we de-skew clocks and make sure the phase is aligned at both locations.

Instead of creating a large feedback loop that creates a loop between two boards,

we essentially fake the clock signal to the destination board. Each clock signal needs

to be replicated using a fanout buffer to produce separate signals for each component,

to minimize capacitance on the clock signal line. These separate signals go to each

FPGA on the I/O board and each Raw chip on the Quad board. In order to produce

a feedback signal for the DCM to lock to, we designate one of the copied clock

signals to go back to the FPGA as the feedback loop. The total wire length of this

loop matches the wire length to the config FPGA on the neighboring board (within

.1 inches). This careful wire length matching ensures that the clock edge on the

destination board occurs at exactly the same time as the clock edge that arrives on

45

the feedback input pin. Using this delay information, the DCM within the FPGA is

able to synchronize the clocks on both boards.

Figure 4-3 depicts the wire length matching scheme in more detail. Note that the

wire length from the I/O config FPGA to all 3 points of interest (A, B, and C) are

the same (z+x+c+y). This is achieved by matching the lengths of each segment. In

particular, notice that we feed the signal across a dummy cable within the board,

with the same length as the inter-board cable, that connects right back to the I/O

board. The trace from the connector back to the clock feedback input pin is again the

same length as the trace on the destination board from the connector to the FPGA

input pin.

This approach is preferred over a single large feedback loop because it is scal-

able. Using this approach, we are able to synchronize an arbitrary number of boards

together. This flexibility would be much harder to achieve by using a single loop

approach.

Clock Propagation Path

The approach for distributing the clock is very similar to the approach for distributing

the global reset signal. Any given quad board may receive its clock input from any of

the four directions, as well as externally from a connector. The Quad board then sends

a synchronized (using the DCM as described in the previous section) clock signal to

all other directions. As with the reset settings, the direction of input is determined

by DIP switches in the current implementation. Any given I/O board may receive

its clock signal from either the Quad board it is connected to or externally from a

connector. If it receives the clock signal externally, then it also outputs the clock to

the Quad board it is connected to; otherwise it does not.

In this scheme, it is possible for any board to be the "root" of the tree. Since the

signals are all synchronized, it does not matter which board acts as the clock source.

46

4.2 Mechanical Considerations

Due to the size of the Fabric System, various mechanical issues become problems that

must be overcome. Many of these aspects were pondered during the original design

of the system, but others were rectified only after board revision.

4.2.1 Connections

The number of data signals presents a unique challenge in the Raw Fabric system.

Because each Raw tile contains a 32-bit port bus out and a 32-bit port bus in, each

side of an 8x8 array (each Raw Processor board houses 64 tiles, please see Section

3.4.1) has (32+32)*8 = 512 data signals. Add in the 5 control signals for each port,

and we have nearly 600 separate wires that must be connected between any two

neighboring boards.

Connectors

The selection of connectors is greatly limited by the signal density that is required to

accommodate the number of signals required. We chose to use specialized MICTOR

Blue Ribbon cables. These cables feature the high density we require. In addition,

the cables feature impedance-matched coaxial signaling, providing high signal quality

and speed.

Even with these extremely dense connectors, we still had to "stack" the connectors

to attain the number of connections required. Figure 4-4 shows the side view of the

connector stacking. There are two sets of connectors: a tall and a short. The short

connectors are closer to the board edge. The idea is that the cable for the short

connectors is installed first; and then the cable for the tall connectors is installed on

top. This arrangement allows us to effectively double the number of wires connected.

Retention

Because of the high density and the previous experience with these cables in the Raw

Handheld system, we designed the board to accommodate a retention mechanism to

47

Figure 4-4: Connector Stacking Scheme

apply constant pressure to the cable. This proved to be an invaluable component to

having a functional system, because unconnected inputs to the Raw processor register

as active. When a cable is not seated properly, data ready signals may be asserted,

injecting spurious data into the processor before it boots.

The retention mechanism we designed involved a small metal bracket to be screwed

on over the cable connection. The retention bracket is screwed in on either side in

mounting holes in the board. Since the specifications of the connector's manufacturer

indicate that pressure should be applied in the middle of the connector, our retention

bracket design was curved such that the middle would receive more pressure. Figure

4-5 shows the mechanical design of the retention brackets.

4.2.2 Heat Sink Board Flex

Despite our efforts to choose the lightest possible heat sink for the Raw Processor

boards, the fact that there are four heat sinks on one board causes the board to sag

in the center.

In effort to combat gravity, in the second revision of the board we introduced a

new method for mounting the board. Instead of using standoff screws directly resting

on the lab bench, we mounted the entire board on a support board. In our case,

our board was made of wood, but other rigid materials were considered and would

likely provide the same support. Standoffs of equal length were placed between the

processor board and the support board, and all heatsink and standoff screws were

48

Figure 4-5: Retention Bracket Mechanical Design

passed straight through. In this manner, the board was held rigidly flat by the screws.

To balance the height and to provide support, this approach was applied to the

I/O boards as well.

4.3 Tilability

In order to limit the number of boards to be designed to two (the I/O board and the

Quad board), some ingenuity was needed to ensure that the two board designs could

be tiled together to produce any Fabric configuration specified in Section 3.5.

Figure 4-6 demonstrates how tilability is achieved among the Quad boards. Note

the arbitrarily labeled connectors between the top two boards. The outer connectors

connect to one another and the inner connectors connect to one another.

However, things become more complicated when we introduce the I/O board. We

would like to use the same I/O board design for all I/O boards surrounding the Quad

boards. However, when we rotate the I/O board to the opposite side, the connectors

become mismatched.

The following example illustrates the difficulty introduced by rotation. Figure 4-7

shows the I/O board connected to a Quad board in the connector naming scheme

49

Figure 4-6: Tilability of the Quad board

6~I zz~z
zz1 Fzz F1Iz

Figure 4-7: Connector Matchings between Quad and I/O board

50

3 4

y

~IIzz
~zzz

zzI lII

LII EII
ll zzz

ll zzz

3
2

2 ZI 1IZ 2
4 IZ 3 l 4

in Figure 4-6. Observe that the connector numbers all line up correctly between the

I/O board and Quad Board. However, when we rotate the I/O board and move it to

the opposite side, we find that the connectors no longer match up. However, we do

find that the black dots, which represent pin 1, do match up in the correct way.

Figure 4-8: Connector Mismatch between Quad and I/O board

I 9 1.

2 1 1 2 4 3
4 3 3 4 2 1

Thankfully, the use of FPGAs on the I/O board partially solves the I/O board

tilability problem. Since the data pins are connected to the Xilinx XC2V3000 FPGAs,

we can simply re-configure the pin assignments to accommodate connecting the I/O

board to any side of the Quad Board. Unfortunately, this choice leads to the need to

having four different versions of all of the firmware.

However, not all signals on the connectors route directly to reconfigurable pins

on the FPGAs on the I/O board. The global clock and reset signals do not route to

the large FPGAs. Even worse, the clock is generated by a fan-out buffer (see Section

4.1.3), so the connection is hard-wired into the board circuitry. For these signals, a

more careful approach allows tilability to still be achieved. Basically, if we mirror

the top connectors (for example, in Figure 4-6, connectors 1 and 2) over a horizontal

line onto the bottom connectors, analogous pin assignments should match up. This

symmetry helps us find a set of pin assignments that allows for the same I/O board

design to be used in the entire Fabric system. This symmetry is difficult to explain

without a figure, but a full explanation is beyond the scope of this document. To fully

appreciate the complexity of the problem, please consult the Raw Fabric Revision 2

schematics (the Revision 1 implementation was incorrect).

51

52

Chapter 5

Implementation

This chapter describes the implementation of the Raw Fabric system in detail. The

purpose of this chapter is to provide the reader with an idea of what is involved in

building a flexible system of this magnitude.

Specifically, the Raw Fabric system makes extensive use of reconfigurable logic

so that boards may be coaxed into taking on a variety of roles. The development

of the logic that resides in the FPGAs is one of the most important portions of the

implementation of the Raw Fabric.

5.1 Firmware Development

The I/O Board uses reconfigurable logic to allow for rapid and flexible development.

The firmware in the FPGAs must be re-programmed each time the Raw Fabric system

is turned on.

5.1.1 Programming the I/O Board

The I/O board FPGAs are programmed through a JTAG chain connecting the five

configurable FPGAs as well as a SystemACE FPGA. Each link on the JTAG chain is

connected only to its predecessor and successor, and the final FPGA connects back

to the beginning of the chain, forming a ring.

53

The firmware may be programmed either through loading a CompactFLASH card

in the slot in the board with appropriate firmware, or by directly connecting a Xilinx

cable to the JTAG header on the board and directly programming specific FPGAs.

5.1.2 Programming the Quad Board

The Quad board's configuration FPGA may be programmed either through JTAG or

by programming the PROM connected to it. The PROM automatically programs the

config FPGA on power-up; however, the firmware may be overwritten by subsequent

JTAG programming. The nice feature of the PROM is that its contents are not erased

when the board is powered off (unlike the config FPGA).

5.1.3 Firmware Writing

Firmware for the Raw Fabric system is developed using Verilog. We have set up a

development platform called veribuild-fabric, similar to the veribuild platform for the

Raw Handheld system. Veribuild's greatest strength is the ease of creating highly

modular code, since it uses a GNU Make structure to include sources.

The Veribuild system automates the creation of firmware. Figure 5-1 shows the

steps between Verilog code to bitfiles, which are programmable into the FPGAs. The

firmware generation is divided into two main stages: synthesis and layout. During

synthesis, a netlist containing wires and nodes is generated from a set of source Verilog

files. In layout, this netlist is converted into a binary file with which FPGAs can be

programmed.

Before compiling the Verilog code, there is an optional Verilog Pre-Processor step.

The Verilog Pre-Processor allows the user to use special tags that extend Verilog's

functionality. For example, the Verilog Pre-Processor has a "for" directive that can

quickly replicate instantiations and declarations, so that numerous copy-and-paste

operations are not required. Please note that Verilog 2001 has since implemented

many of these functions, so the need for the Pre-Processor is perhaps not as great as

it once was.

54

Figure 5-1: Veribuild T
.ucf .v .Vpp

ool Chain Flow

Synthesi4

Layout

55

VPP

.v

Synplicity

.edf

ngdbuild

map

par

bitgen

.bit

Synplicity is a synthesis tool used to compile the Verilog code. The code is trans-

lated from Verilog RTL into a netlist depicting wires and nodes through a 2-step

process consisting of compiling and mapping. At the end of this process, we have a

netlist stored in a .edf file.

After synthesis, the netlist and .ucf file together are used to create a bitfile. First,

the output .edf file from synthesis is then translated into a .ngo file. Other Xilinx

components may also be imported as .ngo components at this point. The .ngo com-

ponents are then mapped to the specific part during the map step. In addition, the

.ucf constraints file is translated into a .pcf file, which are used to let the tools know

what the pin mappings and timing constraints are.

Next, the Place and Route (par) step does the actual wiring of the components.

During the Place step, the logic components are laid out on the FPGA. The placer

optimizes the placement to ensure that timing constraints dictated by a .ucf file are

met. Once the Placer has designated the position of all of the logic, the router

actually connects the signals running between the logical units. In other words, the

placer defines the location of the pieces, and the router wires together the pieces.

After the par stage is finished, its output .11 file is converted into a .bit file in the

bitgen step. The .bit file may then be programmed onto the FPGA as outlined in

Section 5.1.1.

The toolchain flow seems complicated, but a firmware author simply needs to

write the Verilog .v files, include the appropriate files and set the desired flags in the

Makefile, and type make in the command line, and Veribuild takes care of the entire

process. This simplicity allows for rapid firmware development.

5.2 Memory System

The memory system is critical for running any useful programs on the Raw Fabric

system. Though it was possible to write simple assembly programs that did not use

the memory system, any useful programs will require significant use of memory. For

example, any C program needs the memory system to set up its stack and heap.

56

5.2.1 Firmware

Figure 5-2: Raw Handheld Memory Controller Firmware Block Diagram
I MEM CTRL

From Raw

32

To Raw

32

C-'

rb
0-
0

Z

0

CODEC
HDR
CTRL

32 n2

HDR Generat 32

32 3

332

40-
0

SDRAM CTRL

SDRAM DATA

64

The memory controller firmware is based upon the Raw Handheld memory con-

troller firmware. Figure 5-2 is a block diagram of the different functional units within

the memory controller. First, the speed gasket interfaces with the Raw processor.

The data is then placed in a First-In-First-Out (FIFO) queue dubbed the Network

Input Block (NIB) to be processed by the memory controller. The SDRMC module

is a finite state machine (FSM) that retains state information about the memory con-

troller. Finally, the codec block simply translates data into a form that the memory

modules are able to understand.

The most prominent changes to the firmware between the Handheld system and

the Fabric system include support for different size memory modules and the adjust-

ment of the memory initialization and refresh times. Unfortunately, these changes

require a complete firmware recompile every time they are adjusted.

57

0

5.2.2 Layout

The layout configuration of the memory system in the Raw Fabric system is roughly

sketched in the Raw Specification, page 46 [11]). The organization of the memory

system is beyond the scope of this thesis; please refer to the Raw Specification for

further details.

5.2.3 Debugging in Revision 1

Although the specification of the layout dictates either 32 or 16 ports, in actual

implementation the board flex problems (See Section 6.1) prevented all the ports

from functioning. As a result, a great deal of effort was expended in debugging the

memory system in tracking down the root of the errors.

During the debugging process, a suite of memory tests was written in assembly

to test various patterns on various ports. The patterns include all ones, all zeroes,

striping a one across all bits, and writing the address out to memory.

The bugs were found to be both on the Raw-to-memory controller and the memory

controller-to--memory module links. Disturbingly, many of the errors were able to be

temporarily rectified by physically pushing down on the relevant FPGA on the I/O

board. This led to the design changes as outlined in Section 6.1.2.

5.2.4 Temporary fixes for running C programs

Though we could not use a full 16 ports, we were nonetheless able to set up the

memory system such that we could give each tile stack and heap space. This was

achieved by modifying the software system temporarily. Instead of using the default

configuration depicted in the Raw Specification [11], we overrode the configuration

with our own configuration. In our configuration, the ports with known problems

were avoided, and those tiles for which we were writing running code on received a

larger proportion of the total memory in the system. This configuration was a critical

step to our ability to run fully functional C'code on our Raw Fabric system.

58

5.3 USB Interface

The USB interface allows the Raw processors to communicate to an external host

computer. This is vital for any interaction between the Raw processors and the

outside world.

The USB controller was one of the first firmware modules to be implemented for

the system, because it allows us to stream boot code into the Raw processor. Without

the USB connection, the only way to stream boot code would be to manually compile

it in the I/O board FPGA firmware. Unfortunately, this is not a viable long-term

option, since the amount of data that could be stored in the FPGAs is relatively

small.

5.3.1 USB Booting

The USB system can be used to boot the Raw processors. Figure 5-3 shows the path

that boot code traverses. First, the code is compiled on the host machine. The code

is then sent to the USB driver on the host machine. The USB driver communicates

to the SX2 USB controller on the plug-in board via the USB bus. The SX2 USB

Controller is a chip that converts USB packets into parallel data form, and it sits on

a plug-in board off of the Fabric.

Figure 5-3: Fabric USB Boot Path

USB PCI
Host -- -Plugin -- -- Raw

CadFG

The USB plug-in board is connected through a Teradyne connector onto the Raw

Fabric I/O board. There are two USB plug-in board connector headers on the I/O

board, allowing us to accommodate up to two USB plug-in boards per I/O board.

Each USB plug-in board is connected to one of the two PCI FPGAs.

The PCI FPGA is takes the 16-bit data bus from the SX2 chip and packages it

into 32-bit data packets to be transported to the Raw processor. The data packets

59

include not only 32 bits of data, but also a header word that is used for routing the

packet. The packet is introduced into a routing network within the firmware, and at

the other end it reaches the speed gasket, which communicates directly to the Raw

processor. At the end of the speed gasket, the header is dropped and the data is

transmitted directly to the Raw processor. In other words, the routing network's

header word never reaches Raw.

The Raw communication protocol is such that for each data word the Raw pro-

cessor receives, it sends an acknowledge signal (dubbed "Yummy"), indicating it has

received data (see the Raw Specification, page 17 [11]). This protocol is introduced

to throttle data transfer, since the sender knows how many empty queue slots the

recipient has at any point. The yummy signal must be propagated through every

stage of the communication process. However, in order to save USB bus bandwidth,

these yummy signals are bundled together and sent at once. The Raw processor re-

ceives data and sends a yummy for each data word, but the USB controller firmware

tallies these yummy signals and sends a single acknowledge signal back to the host

computer as a single USB packet.

5.3.2 SX2 Configuration

The SX2 chip is used to convert parallel data into packets that adhere to the USB

protocol. The SX2 chip requires configuration, which is achieved by the "USB"

module in the USB firmware. This firmware sends a sequence of commands that

programs the SX2 during power-up.

5.3.3 Host Interface

The USB system makes the host interface possible. The host interface allows the

Raw processors to call common I/O library functions such as println and file I/O

functions. In order to implement this functionality, it was necessary to implement

bi-directional communication over the USB link. In addition, it was necessary to

modify the software infrastructure so that the boot code of the Raw Fabric would

60

know which port the host interface is connected to.

5.3.4 Future USB Implementation

The implementation of multiple USB connections to one Raw Fabric in the future

would be useful to increase the maximum bandwidth possible through the USB con-

nection. This change would allow for increased performance in bandwidth-limited

tasks, such as video streaming.

In addition, different header/data protocols have been explored to improve the

maximum effective bandwidth.

61

62

Chapter 6

Lessons Learned

This chapter describes the most important lessons learned during the course of hard-

ware development for the Raw Fabric. These lessons range from how to build the

physical system to how to design the circuitry, but have one thing in common: they

would have been very useful to us if we had learned them before building the sys-

tem. The aim of this chapter is to give the reader an idea of what pitfalls to avoid if

designing a system similar to the Raw Fabric.

6.1 Mechanical Considerations

The mechan.ical aspect is often overlooked during the design of a hardware system.

We ran into difficulties with the first revision of the board that warranted changes

in the second revision. Though the need for a second revision was not necessitated

by mechanical considerations, many of the changes helped make the second revision

much more robust than the first.

6.1.1 Unreliable Cables

The use of cables to connect two boards adds a significant variable. Our case was

especially severe because we needed to resort to special-purpose, high-density cables.

In addition, we were not using the cables in the manufacturer-recommended fashion.

63

The most prevalent problem we faced was with flaky connections between the

I/O board and the Quad Board. As described in the Section 4.2.1, there are over

500 signals running between the two boards. If any one of these connections is not

connected, then we receive erroneous results. More importantly, if the boot code is

streaming into the Raw Fabric over one of these connections, then the Fabric will be

not boot.

As a result, we needed to use retention brackets, which introduced their own set

of problems. If we were to redesign the system, we would consider reducing the

reliance on wide buses running between boards. A possible implementation might

be to serialize the data and increase the clock frequency of the I/O. Clearly, the

reliability of this design would need to be validated before adopting the design.

6.1.2 Retention Bracket Stress

Our solution of clamping down the cables had the unforeseen side effect of causing the

board to bend. We believe this board flex may have been a factor in the unconnected

FPGA pin phenomenon we observed.

Unconnected FPGA Pins

We suspected that a few of the FPGA pins were not connected to the pads, since some

connections between the FPGA and the connectors and some connections between

the FPGA and the memory DIMM sockets were broken. After careful inspection

of nets that were causing trouble, we found there was a pattern of corner pins of

FPGAs to be more susceptible to problems. Board fabrication experts advised that

pin connection problems on our FPGAs are much more likely to be in the interior of

the FPGA than on the outer corners. Therefore, we conclude that the problem may

have been a combination of manufacturing error as well as flexing of the boards.

64

Changes Made to Improve Connections in Revision 2

In Revision 2, we undertook additional measures to reduce the board stress. We

added stiffener components to combat the board flex, and we are also mounting the

entire board on a stiff backboard. In addition, we added a host of debug tests on

the memory controller side to be performed before we accept the boards as correctly

manufactured.

6.2 Schematic Errors

While the mechanical considerations were not sufficient to warrant a second revision

of the boards, the schematic errors we discovered could only be rectified by undergoing

a board revision.

Criss-Crossed Yummies

As shown in Figure 2-1, the middle top and bottom ports are multiplexed because of

a shortage in pins. However, a schematic error prevented correct functionality.

The yummy signals are acknowledgment signals in the Raw SIB protocol. As

shown in Figure 6-1, the top two middle ports are 1 and 2, whereas the bottom two

middle ports are 9 and 10. Unfortunately, in a design oversight, the port 1 yummy

is hooked up to port 9, and the port 2 yummy is hooked up to port 10, as shown

in Figure 6-1. Instead, port 1 should be connected to port 10 and port 2 should be

connected to port 9.

These multiplexed ports share data pins, and the ready signals are routed correctly,

so the data is transmitted to the correct location. However, the acknowledge signals

go to the wrong tile. This leads to a bug that is difficult to find and difficult to

correct.

65

Figure 6-1: Criss-Crossed Yummies
0 1 2 3

15 4

14 5

13 6

12 7

11 10 9 8

X
0 1 2 3

15 4

14 5

13 6

12 7

11 10 9 8

Unconnected Pins

Pin 39 and pin 40 on connector P19 on the South side of the Quad Board were left

unconnected to the connectors in the first version. This precludes the possibility to

transmit correct data on the south side of the Quad Board.

Incorrectly assigned control pins

The clock, reset and config FPGA-to-config FPGA bus pins were not assigned cor-

rectly. This results in the inability to tile two quad boards with each other. The

error also makes it unsafe to connect the I/O board to the west and south sides of the

Quad Board without modification. We modified our third I/O board slightly so that

output pins would not be driving the same signal, but this was a temporary fix to

test whether I/O boards could be connected to the West and South sides (and they

can).

66

Minor Reset Issues

First, the Board Reset on the I/O board was not connected to the config FPGA.

Therefore, there was no way for all 5 FPGAs to share the same reset line, defeating

the purpose of having a board reset net.

Also, the circuitry on the Quad board did not soften the power-up ringing on the

JTAG programming circuitry, so the PROM on the Quad board does not properly

program the Quad config FPGA on power-up. Instead, it is necessary for the user

to manually depress the JTAG program button on the Quad board every time the

Fabric system is powered on.

6.3 Design Lessons

6.3.1 Parallel I/O

We learned the practical difficulty of implementing a large system using solely parallel

communication. The number of wires running between boards in this system is simply

astounding, and we found the debugging of the connections to be quite tedious. FRom

a debugging standpoint, we would have appreciated a system with fewer connections.

6.3.2 Active high signaling

The problem we found with active high signaling was that in our case unconnected

pins register as active. This choice led to the need to ground any signals we did not

explicitly mean to assert.

Specifically, the there was a need to terminate the ready and acknowledge pins

to the processor to ground if I/O boards do not fully populate the boundary of the

Quad boards. If, instead we had used an active low system, then there would not

have been a need to install the extra hardware on the periphery of the Quad board.

67

6.4 Minor Lessons

This section describes a few minor common-sense lessons learned during the develop-

ment of the Raw Fabric system.

6.4.1 2 Weeks Can Easily Become 4 Weeks

We found that tasks often take twice as long as expected. Fabrication and assembly

often run into unexpected delays, and unexpected bugs can destroy any schedule.

6.4.2 Backup Often

rm -r has happened a few too many times in this project. Use of the CVS repository,

placing code on a periodically backed up file system, and manual backup are all highly

recommended strategies.

68

Chapter 7

Characterization

This chapter characterizes the Raw Fabric system by providing a few electrical mea-

surements taken on the hardware. The most important aspects of a functional Fabric

system include a clock that is synchronized and a reset signal that is distributed

throughout the Fabric, so this chapter walks through measurements to make sure

that the system is performing adequately.

7.1 Clock Synchronization

As described in Section 4.1.3, it is important for us to maintain a synchronized clock

across the entire Fabric so that data may be transmitted and received correctly.

7.1.1 Test Setup

To test the clock delay between an I/O board and a Quad Board, I connected an

Agilent Infiniium oscilloscope to each board using a BNC to mini-BNC cable. The

mini-BNC connector plugs directly into the debug BNC connector on each board.

The firmware loaded in the configuration FPGA on each board selects a signal

out of a variety of possible debug signals using the user-set DIP switches. Each board

was set to output the clock signal after the clock signal input source selection.

This methodology is convenient, but is not necessarily accurate. It is convenient

69

£11111111 - - -

because the BNC cables eliminate the need to probe pins on the FPGA, pins that are

very small and would require one to manually keep the probe in place. However, it is

not necessarily accurate because there may be variation in the way the configuration

FPGA boards are wired. There are no guarantees that the trace lengths to the debug

BNC connector are matched by length like the real clock paths are. In addition, there

are no guarantees that Xilinx's FPGA place and route programs made the internal

routing similar.

7.1.2 Results

Figure 7-1 shows a snapshot of the clock waveforms. The top waveform is the Quad

board clock (supplies the clock signal in this setup) and the bottom waveform is the

I/O board clock. The scale is 10 ns/division horizontally and 2 V/division vertically.

Thus, it is pretty clear that the clock we are distributing has a period of 30 ns (for a

frequency of 33 MHz).

Figure 7-1: Clock delay between I/O board and Quad board

A

A r4

.......-. . .

BxB

The delay from the top waveform to the bottom waveform was measured to be

1.636 ns. Compared to 30 ns, this is a larger delay than we would like, but it is

not large enough to produce errors in the data transmitted. However, we may be in

trouble if we build a large Fabric and each hop adds 1.6 nanoseconds of clock skew.

70

Therefore, I ran a second test of the clock delay from a clock starting from one I/O

board to another, going through the Quad Board. Thus, the clock signal traverses an

extra hop. Surprisingly, I found that the delay was virtually nonexistent, as shown

in Figure 7-2. When measured, the delay was found to be 454 picoseconds.

Figure 7-2: Clock delay between 1/0 board and 1/0 board, via Quad Board

77

B ___~________;_

-- 4 -

Considering the wiring and firmware layout of both I/O

seems that the second test is more accurate than the first.

suggests that clock synchronization across a large Fabric will

boards are identical, it

Therefore, the testing

be feasible.

7.2 Reset Propagation

In section 4.1.2, it was stated that the reset signals do not need to be exactly syn-

chronized, because the software system has its own strategy for starting programs on

tiles at the same time. Although not critically important to the functionality of the

system, the following measurements characterize the delay in the reset signal from

board to board.

71

7.2.1 Delay from I/O board to Quad board

In this test, I measure the delay time between the I/O board's configuration FPGA

reset to the Quad board's configuration FPGA. I chose to use these two points because

they are most easily interfaced with the oscilloscope. This methodology omits a

portion of the reset delay, because typically the reset signal originates from the PCI

FPGA containing the USB firmware (which propagates the reset to the configuration

FPGA).

Figure 7-3 shows the reset signals being triggered on the I/O board and on the

Quad board. The top waveform corresponds to the I/O board's reset signal and the

bottom waveform corresponds to the Quad board's reset signal. As expected, there

is a delay between the I/O board reset and the Quad board reset.

The amount of delay was measured to be 369 ns. This is a rather sizable amount

of delay (roughly 60 Raw cycles at 66 MHz). However, again, this delay is inconse-

quential since the program execution is synchronized in software.

Figure 7-3: Reset Delay from I/O board to Quad board

........ I . ~ " - 41 1 1 1

To extend the reset propagation one step further, I measured the delay between

an I/O board and another I/O board connected to the same Quad board. Thus, the

reset signal originates on one I/O board, travels to one Quad board, and is relayed

to a second I/O board. Figure 7-4 shows the waveforms of the reset signals. The

72

top corresponds to the reset-initiating board and the bottom corresponds to the final

recipient I/O board.

Figure 7-4: Reset Delay from I/O board to I/O board (via Quad board)

Th dea _asmaurdtb 3 ns._ Thus,__ each hop__ th reetpahdd

.nthether hand, t putthedeaynt perspetiveI as s th

- - -- - - -- -- - -- - -

The delay was measured to be 734 ns. Thus, each hop of the reset path adds

approximately 360 ns to the reset delay. In a large Fabric, the originating I/O board

and the board on the opposite corner will be reset at much different times.

On the other hand, to put the delay into perspective, I also measured the full

reset signal's width. In firmware, this reset width is controlled by a (rather large)

global constant that determines the number of cycles the reset should be held. As

shown in Figure 7-5, the reset delay is iconsequential when compared to the amount

of time the reset is asserted. The measurement of the width of the signal was 1.26

seconds. We see that at this time scale, the reset signals of both boards appear to be

simultaneous.

73

Figure 7-5: Reset Signal Width

t
.............

................

Ay T
L J

---- -- ------ =-=4=.=,=.= M0.1- ON t,
t

....

t

............ I

11"11pa 11101h 11 OWN"

..........................

......................... 1,2

BX

74

Chapter 8

Conclusion

This section provides a summary of the completed work described in this thesis and

a discussion of future work that may be explored.

8.1 Summary

This thesis tells the life story of the Raw Fabric Hardware system, from its inception

to its current state.

The Raw Fabric story begins before the Raw Fabric was even designed. Chapter

2 starts the story off by depicting the Raw architecture and the central scalability

features that would be extended by the Raw Fabric system. The chapter also enu-

merates various relevant features of the Raw Fabric's predecessor, the Raw Handheld

system, that would be important for the development of the Raw Fabric.

Chapters 3 and 4 describe the design phase of the Raw Fabric hardware system.

Chapter 3 focuses on the high level system design and leaves the more difficult design

decisions to be explained in Chapter 4. Chapter 4 describes the challenges faced in

distributing signals reliably and the solutions utilized to create a robust system.

Chapter 5 provides details on how the firmware system in the Raw Fabric was

implemented. The majority of the hardware implementation effort centered about

firmware implementation because it was the most time consuming task.

Chapters 6 and 7 move on to the later stages of the Raw Fabric's life. Chapter 6 is

75

a reflection of things that could have been done better had we but known. It provides

useful advice to anyone building a similar system. Finally, Chapter 7 provides a

verification that the system we designed performs the way we designed it to perform.

It shows that the clocks maintain synchronized and the reset is distributed correctly,

providing reinforcement that the system will work as the system scales up.

8.2 Future Work

Despite the amount of work that has been done already, the Raw Fabric is far from

complete. The Raw Fabric is rife with future research opportunities yet to be explored.

8.2.1 Larger Fabrics

At the time of writing this thesis document, the largest Fabric system constructed is

a 64-tile system consisting of four 16-tile Raw processors.

The next natural step is to connect multiple Processor boards together to create

an even larger Raw Fabric system. A few details were overlooked in the first revision

of the board, but with the next batch of boards, the tiling of multiple Processor

boards will be possible. The implementation process should be much smoother in

this second iteration given the experience gained from the first.

8.2.2 Performance Profiling

Now that the test platform has been constructed, performance tests can be run on

it. Performance tests can be used to strengthen the case that the parallel process-

ing nature of Raw architecture is a viable alternative to improving performance by

increasing clock rate.

8.2.3 Parallel Architecture Algorithms Research

In addition, the hardware provides a testbed on which parallel algorithms may be

run. The Raw Fabric system could be used as a tool to help researchers evaluate the

76

performance of their algorithms on real hardware.

8.2.4 Large Applications

Finally, the implementation of the Raw Fabric hardware system means that there

is hardware on which useful applications may be run. These applications could be

used not only to show off the power of Raw's tiled architecture, but also perform

useful computation. For example, there is a continuing effort to run the MPEG-2

algorithm on the Raw Fabric. Once this is complete, the application can be used

both to showcase a functioning Raw Fabric system, but also to encode real video

streams.

77

78

Appendix A

Raw Hardware User Guide

A.1 Overview

This document provides implementation details of the Raw Fabric Hardware. It serves

as a reference for anyone debugging and testing the hardware system.

A.2 FPGAs

A.2.1 Quad Board FPGAs

The Quad Board contains only one FPGA, the configuration FPGA, that must be

programmed. The config FPGA handles the following:

1. Clock Distribution

2. Reset Distribution

3. Test Network Messages

Clock Distribution

In order to distribute the same clock to all processors in the system, the Quad Board

must provide routing to redistribute the signal, as well as PLL logic to keep the signal

synchronized.

79

The Quad Board may be configured to input the clock signal from one of five

choices: North, East, South, West, or External Connector J7. The selection is made

by setting the DIP switch SW1; please refer to Section A.12.1 for the specific settings.

The Quad Board config FPGA outputs the clock signal to a fanout buffer that

copies the clock signal, and from there the clock is distributed to each of its four

neighboring boards.

Reset Distribution

There are two levels of reset in the Raw Fabric system: Global and Board. Both are

active low signals. An external pull-up resistor ensures that if no FPGA is asserting

the reset signal, the reset net is held high.

A global reset signal runs between each pair of config FPGAs in the Fabric system.

The reset is not directional, so either FPGA may initiate a reset.

When a config FPGA receives a reset signal, it may choose to propagate the reset

signal to the rest of its neighbors and to the board. The I/O boards do not propagate

the reset signal if they received it. The DIP switches determine which direction the

board is listening for resets. Section A.12 portrays the DIP switch settings for Rev 2

Hardware.

Test Network Messages

The test network is a debugging framework that allows test messages to be transmit-

ted from a Raw tile during program execution.

The configuration FPGA handles the task of receiving test network messages,

decoding them, and handling them. The test network was added to the Raw chip

design using a one-bit serial protocol to minimize the number of pins required.

In the current (as of 4/25/06) version of the firmware, the configuration FPGA

does not decode the test network messages. There exists test firmware that forwards

the test network signal to the USB FPGA on the I/O board; however, this imple-

mentation only forwards the test messages from one Raw chip. A scalable version of

80

a test network message routing network has been discussed, but the implementation

remains a project for the future.

In the meantime, there are jumper header pins that contain the test network

output. The test network output appears on pin 6 of J2, J20, J5, and J23. With the

Quad Board in its default orientation (North = up), the top right pin of J2 and the

bottom left pin of J20 carry the test network data for the top left and bottom left

Raw chips respectively.

A.2.2 I/O Board FPGAs

The I/O Board contains 5 FPGAs: 1 XC2V250 and 4 XC2V3000 FPGAs. The board

also contains a SystemACE chip that allows a user to load FPGA code from a Com-

pactFlash card into each FPGA on power-up. The order in which the chips appear in

the JTAG chain is: systemACE, config, PCIO, EXPO, EXP1, and PCI1. Geograph-

ically, if the I/O board is oriented in its default orientation with its connectors to

the Quad Board on the right, the FPGAs are ordered PCI1, EXP1, EXPO, and PCIO

from top to bottom. Figure A-1 shows the ordering of the XC2V3000 FPGAs.

config FPGA

The configuration FPGA is the small XC2V250 FPGA responsible for clock and reset

distribution, as well as inter-FPGA control communication. Its code is very similar

to that of the config FPGA on the Quad Board.

PCIO, PCIi FPGAs

The PCI FPGAs are XC2V3000 FPGAs responsible for I/O with the host computer.

The PCI FPGAs have connections to the PCI, USB, and memory busses, as well as

a 20-bit wide bus to each of its two neighboring XC2V3000 FPGAs. At this point,

"PCI" is a bit of a misnomer because the FPGAs no longer implement PCI bus

control. The PCI FPGAs' current primary purpose is to provide USB support.

81

EXPO, EXP1 FPGAs

The EXPansion FPGAs are connected to an expansion connector header. Like the

PCI FPGAs, the EXP FPGAs also have a 20-bit wide bus to each neighboring

XC2V3000 FPGA. The EXP FPGAs' current primary purpose is to communicate

with SDRAM.

Communication with Raw

Figure A-1 shows the connections between the FPGAs on the I/O board with the

Raw processors on the Quad Board. The numbers next to the FPGAs represent the

Port numbers as labeled in the schematics. Each box on the right column represents

a Raw tile on the East boundary of the Quad Board (the East side of the Quad Board

lies on the left side of the board because of the way the Raw chip was designed. The

label in the box is the number of the tile in the Fabric system (as opposed to the

number on the chip). Finally, the numbers next to the Raw tiles are the numbers

of the port in the Raw Fabric system. Please note that these port numbers do not

match up with the Quad Board schematics, but rather with the port numbers of the

simulated 64-tile Raw processor, as described in the Quad Board User Guide.

For example, Port 1 on the PCIO FPGA communicates through Port 14 of the

Quad Board to tile number 55.

A.3 Programming the Quad Board

JTAG programming of the configuration FPGA is achieved by connecting the Xilinx

Parallel Cable IV or USB Cable to J7 on the Quad Board. Please note that the TDO

is connected to TDO and TDI is connected to TDI. Also note that Parallel Cable III

may be incompatible due to voltage level differences.

There are two chips on the JTAG chain: the actual XC2V250 configuration FPGA

and a XC18VO4 PROM that may be used to program the configuration FPGA on

power-up.

82

7 8 7
PCII--

6 9 1

5 10 23 C
EXPI

S 1231

EXPO -- 12 3

2 13 47

1 14 55
PCIO--

0 15 63

Figure A-1: I/O and Quad Board Connections

The XC2V250 configuration has been programmed with the most current

firmware. There is a design bug in revision 1 of the hardware that prevents the

PROM from auto-configuring the FPGA on power-up. The XC2V250 may be

programmed by the PROM by depressing SW3. This bug should be fixed in revision

2 of the Quad Board.

Please note that the No Connects on the PROM may not be tied together. This

information could have saved us a lot of debugging time.

A.4 Programming the I/O Board

The I/O board FPGAs are programmed through a JTAG chain connecting the five

configurable FPGAs as well as a SystemACE FPGA. Each link on the JTAG chain is

connected only to its predecessor and successor, and the final FPGA connects back to

the beginning of the chain, forming a ring. Please see the schematics for more details

on the signal path.

We currently use three different methods to program the JTAG chain: Parallel

Cable, USB Cable, or CompactFlash.

83

A.4.1 Parallel Cable IV

JTAG programming of the configuration FPGA is achieved by connecting the Xilinx

Parallel Cable IV to J1 on the I/O Board. Please note that the TDO is connected

to TDO and TDI is connected to TDI. Also note that Parallel Cable III may be

incompatible due to voltage level differences.

The programming is performed using the Xilinx IMPACT software included when

installing the Xilinx ISE. First, put the software in Configuration Mode. Then, right

click the window and select Initialize Chain... Assign .bit files to each FPGA to be

programmed, then right click and hit Program... to program the FPGA.

Multiple FPGAs may also be programmed in one cycle. First, highlight multiple

multiple FPGAs using ctrl+click or shift+click. Next, press the toolbar button for

programming FPGAs (it is the fifth from the right).

A.4.2 USB Cable

The USB Cable is used very similarly to the Parallel Cable, only there are a few

software drivers required before it may be used. These drivers may be found by

obtaining the latest version of the Xilinx ISE software.

A.4.3 CompactFlash SystemACE

The CompactFlash SystemACE programming method involves writing data onto a

CompactFlash card and inserting it into the slot on the I/O Board. Technically, the

Xilinx literature claims it is Hot-Swappable (don't need to power off the system before

inserting), but it's probably safer to turn off the I/O board before inserting the card.

Programming is achieved by using File Mode on the Xilinx IMPACT software.

There is no "Initialize Chain..." command like there is in Configuration Mode, so the

user needs to know the exact order of the JTAG chain to put the correct code in the

correct FPGA. The order of the chain is: Config, PCO, EXPO, EXP1, PCI1.

The SystemACE system can handle up to 8 different configurations stored on the

same card. The configuration to boot is selected on the I/O board by flipping DIP

84

switches on SW2. On SW2, the first 3 switches select the configuration location to use

(0-7), and the last switch enables whether or not the SystemACE system is enabled

at all.

Once in a while, the SystemACE will fail to boot for no obvious reason. In

these cases, instead of flashing the STAT LED and programming, the ERR LED

lights steadily (when no card is present, the ERR LED blinks on and off). In these

cases, the CompactFlash card needs to be reformatted. This CANNOT be done

on a Windows XP computer, or the card will remain unusable. Formatting with a

Windows 2000 computer has been verified to work; other methods such as using the

mkdosfs program may work as well, but have not been explored.

A.5 Debug Module

Since the I/O board has very few debug pins, we are using a memory debugging

module to access memory bus pins. These pins are hooked up to Agilent logic an-

alyzer headers for easy hookup to the analyzer. In addition, the analyzer contains

configuration files in the RawGroup folder to work with the pin assignment made in

the existing ucf files.

A copy of the pin assignments may be found in /raw-

boards/ioifabric/doc/ucEf-files/mem.debug.ucf. Simply use these pin assignments

rather than the memory bus assignments.

Also, please note that as documented in the mem-debug.ucf file, there are many

pins that do not match up to the assignments in the file. At this point, we are uncer-

tain whether the mislabelling is due to the memory debug module or the schematic

designation.

A.6 USB

The original USB controller firmware was written by Levente Jakab. He has since

left MIT.

85

The US13 firmware interfaces with the USB Plugin Card. The card is currently

in revision 2.1. The blue colored cards are revision 2+; the changes between 2.0 and

2.1 are cosmetic.

The USB Plugin Card contains the Cypress EZ-USB SX2 chip that handles com-

munication in the USB 2.0 protocol. The firmware is designed to interface with this

chip. Using either version 2.0 or 2.1 is fine.

We have soldered on one test header to one of our USB Plugin Cards. It allows

us to connect to an Agilent logic analyzer. Please note that one of the pins is un-

connected, so it always appears as a "0" on the logic analyzer. It is NOT shorted to

ground, so it does not pose a direct hazard.

The first indication that the Plugin Card is working correctly is to look at the

LEDs on the card itself. Under normal operation, there should be two LEDs lighted:

the board power and the USB bus power (top 2 LEDs). The Tx and Rx LEDs should

NOT be lit (bottom 2 LEDs). If they are lit, the USB pins on the FPGA are most

likely unconnected (for example, as in the termination FPGAs). Additionally, please

note that the USB card draws its power from the board; the USB bus provides power

only to light up the LED on the plugin board.

Figure A-2 shows the assignment of the USB module LEDs in PCIO and PCI1.

On power-up, the LEDs in PCIO make a nice symmetric pattern, which serves as

a quick check that the SX2 was configured correctly (see Figure A-3.

After the USB module has been reset by way of Reset Packet from a host machine

(e.g., after trying - successfully or not - to boot code into the Fabric by USB), the

LEDs on PCIO will display the memorable pattern seen in Figure A-4.

86

RAW-CLK
locked sedoraso usb..wl

MCI MC2 MC3

LED6 LED5 LED4

50MH CLK
locked ON

MC4 MC5 MC6

LEDC X LED7

66 MHz CLK
nw-reset init-.reset locked

MC7 MC8 MC9

LED3 LED2 LEDI

PCIO
RAWCLK

ON locked wouresd sb_rewi law-resI

D6 D7 D8 D9 DIO

LED7 LED6 LED5 LED4 LED

50 MHz CLK 66 MHz CLK
init-rese locked locked

1311 D12 D13 D14

LED2 LEDO LED L X

PCII
Note: "X" denotes JTAG programming in progress

Figure A-2: USB LEDs on PCIO and PCI1

RAW .K s

klocke

FEr I lEDl LED4

5ONUh cK MC4I MC5 MC6I _OLEC LED7

r-aws. M MCMC____ MC9I 66MHcti

Figure A-3: USB Initialized LED Pattern

87

RAWCIK

ked ED

50 MHz ClK MC4 MC5 MC6

LEDC X LED7

s6MC7 MC8 IMC9 I 66M~CL.K

ED ED2

PCIO

Figure A-4: USB Booting LED Pattern

88

A.7 Memory Controller

The memory controller was written by Nathan Schnidman.

Note: "X" denotes JTAG programming in progress

Locked2 Lockedl Resetl_N] ON

D15 D16 D17 D18 D19

LED1 LED01 LED2 LED3 X

EXPO

Locked2 Lockedl Reset[_N] ON

D20 D21 D22 D23 D24

LEDI ED ED2 ED3 X

EXPi
Figure A-5: USB LEDs on EXPO and EXPI

Using the memory controller is straightforward. Simply program the memory con-

troller firmware into the relevant FPGA. When the memory controller is functioning

correctly, four LEDs should be lit. Note that this occurs only after reset. Figure A-5

show what the four LEDs represent.

The one issue that we wrestled with was making the refresh and initialization

times correct for the Fabric system, since we are running the Fabric at a measly 33

MHz. This means that the memory should be refreshed more often, in terms of clock

cycles. The file to edit is the sdrmc.v file in the sdrmc folder. There are existing

comments detailing what the values must be set to. Note that the firmware needs to

be changed every time the global clock is changed.

One major quirk of the firmware is the way that the define.v source is handled.

Other firmware files refer to this definitions file for global constants. However, since

we compile the code in a separate directory (in the syn directory), the tools have a

89

difficult time finding the file. The unideal way we have gotten around this problem

is to import the define.v file through a relative path from the synthesis folder. The

upshot is that every time the name of the sources folder is adjusted, all of the files

depending on define.v need to adjust the path of the import.

A.8 Rev 1 Buglist

This section tracks the various hardware bugs discovered in revision 1 of the Raw

Fabric hardware. These busgs should have all been resolved in the second revision.

A.8.1 South Side bus disconnect

Description: There is currently a flaw in the routing for the south side of the Quad

Board that prevents its functionality. Pins 39 and 40 on P19 are not connected to

data pins from Raw.

Fix: This error will be corrected in the next hardware revision.

A.8.2 Reset pull-ups

Description: The pull-up resistors on the reset line in parallel result in a resulting

equivalent resistance that is too low, preventing it from functioning correctly. The

current fix is to use the data lines connecting the config FPGAs between the I/O and

Quad baords instead.

Fix: In the future, a hardware change will be required to fix the erroneous behavior

(probably simply removing the pull-up resistor, R??).

A.8.3 Control line rotation

Description: The current connector pin assignments prevent the I/O board from

being able to be connected on the West and South sides. In these configurations, the

Raw clocks are connected to the FPGA clocks and vice-versa. These are incompatible

90

since the Raw clocks are HSTL-I whereas the FPGA clocks are LVTTL.

Fix: The connector pins have been reassigned for the next revision.

A.8.4 Criss-crossed yummies

Description: To fit all the pins necessary on the Raw chip, the north and south

have the middle 2 ports muxed together (ports 1&2 in the north, and ports 9&10 in

the south). Currently, the yummies are misrouted: port 1 is connected to port 9 and

port 2 is connected to port 10. The correct routing is port 1 to port 10 and port 2 to

port 9.

Fix: The signals will be re-routed in the next revision.

A.8.5 Bad N-S connection between tiles 31 & 39

Description: Please see A-10 to find tiles 31 and 39. The link between these two

Raw tiles is occasionally flaky. The connection from port 11 is ostensibly related to

this bug. We have seen bad behavior from the following nets:

P_A8_C3_4 and PA8_C3_18

on port 11. These nets are usually stuck low.

Fix: The correct pressure must be placed on the Raw chip using the heatsink screws.

Further exploration of this bug may be warranted.

A.8.6 Cannot boot from ports 8 and 12

Description: The data coming from the I/O board when connected to the east side

of the board is corrupted. The nets in question are:

WEST_P17_13, WEST_P17_14, WESTP17_19, WEST_P125,

WEST-PI3_13, WEST_P13_24, WEST-P13_25.

These nets are usually stuck high.

Fix: The problem has been pinpointed on the I/O board side. Pressure must be

applied on the corner of the FPGAs to allow for correct data transfer.

91

A.8.7 Incorrect yummies from I/O board

Description: We have found that the yummies on the majority of the ports going

to Raw are stuck high.

Fix: Uncomment the yummy lines in the .ucf file.

A.8.8 Memory controllers on port 13 and 14 produce erro-

neous data

Description: When EXPO and PCIO are loaded with memory controllers, the

data stored/received from port 13 and 14 is corrupted. Port 13, pin 15 (net:

EXPOMODQ47) is usually stuck high when it should be low, but in a few rare

instances it is stuck low when it should be high. On port 14, a large number of pins

are usually stuck high.

Fix: Apply pressure to the correct corner of the FPGA to temporarily alleviate the

problem. Figure A-6 shows the correct corners to apply pressure to.

Figure A-6: I/O board FPGA corner problematic areas

92

PCI1

EXP1

PCI1

EXP1

A.8.9 Cannot use memory controller on port 11

Description: The memory controller test stalls when running tests on port 11. In

running the External Port tests, the port also fails on a striping one test and the mdn

yummies test.

Fix: The current theory is that the problem is on the Quad Board side. The problem

is related to the Quad Board tile 31-39 connection problem (Please see the Quad Board

Hardware User Guide).

A.8.10 Cannot boot from ports 8 and 12

Description: A few of the nets are stuck high, suggesting a lapse in connection. The

nets in question are:

WEST_P17-13, WEST_P17-14, WEST_P17-19, WEST_P125,

WEST_PI3-13, WEST_P13-24, WEST_P13.25.

Fix: Apply pressure to the bottom right corner of the relevant FPGA (PCI1 or

EXPO). We are going to investigate to see if the same problem exists in the other

I/O Board. Edit: This problem does not exist in the other I/O board.

A.8.11 Memory Controller reporting garbage

Description: In our read-write tests, the memory controller occasionally returns

values with pins stuck high

Fix: This was a problem that exists only on the first I/O board. The second I/O

board was fairly consistent in the memory tests.

A.9 Project File System Organization

The I/O board project files exist in CVS in the /rawboards/io.fabric/ folder. The

Quad board project files exist in CVS in the /rawboards/quad-fabric/ folder.

93

A.9.1 Revision 2 Hardware Firmware

The latest revision 2 firmware is found in the syn-rev2 and src.rev2 folderes. All

firmware in these folders in compiled using veribuildlfabric.

Veribuild-fabric is the successor of the veribuild system created by David Wentzlaff

for compiling firmware.

Advantages of veribuild:

1. Modular design

2. Batch jobs - automation

3. use multiple cagfarms for parallel compilation

4. Integration with CVS

Changes in veribuildlfabric over veribuild:

1. Pure Linux (no more wine!)

2. Newer Xilinx PAR tools

3. Better synthesizer: Synplify's Synplicity replaces Synopsys's FC2

Some of the changes in veribuild-fabric are incompatible with firmware that used

to compile with veribuild. Please check the documentation folder in veribuildifabric

for ideas on how to resolve these differences.

How To Set Up Veribuild-Fabric

1. CVS

2. Code

3. Makefile

4. Compile

CVS cvs -d /projects/raw/cvsroot co veribuildifabric

94

Code

1. Verilog code in srcrev2

2. makefiles and .ucf constraint files in syn-rev2

The reason for separation is that in the Fabric system, any given component may

have many versions of essentially the same firmware. The differences are essentially

just the pin assignments. The underlying code stays the same and goes in the src

folder but the different pin outs are sorted out in syn. The separation of folders allows

more a more organized system.

Makefiles The easiest way to create a Makefile is to simply copy an example and

modify its contents.

A few of the important sections are:

1. Point to veribuildifabric folder

2. Add device flags

3. Add sources (verilog, vpp - verilog pre-processor)

4. Specify command-line flags

5. Specify Makefile commands (rules)

Compile Compile by typing "make" in the folder containing the makefile.

Setting up Veribuild [DEPRECATED]

(Please note: the following is not relevent in the current version of the tools, but is

included here just in case someone wants to try to resurrect veribuild in the future.)

For some reason, Veribuild does not work right out of the box after checking it

out from the CVS. Here are the steps we went through to get it working:

1. Check out Veribuild from CVS.

95

2. Copy .wine from someone else, mess with CHMOD to get proper permissions

(for some reason, the .wine files must not be readable by anyone other than the

owner).

3. Change license file location in veribuild/makefiles/Makefile.license. We changed

it to: export LMLICENSEFILE = 27000©mtlcad.mit.edu

In each project using Veribuild, change the VERIBUILDTOPDIR variable in the

Makefile.

96

A.10 Boot Process

The preferred method of booting is through USB. The Block RAM method is included

here for reference.

1. Block RAM on FPGAs

2. USB

A.10.1 Block RAM Booting

The first method of booting implemented was simply to stream in data from a ROM

in the FPGA. These projects are named "simple-rom" in the firmware archives. For

reference, the shortest possible boot sequence is 5 words long:

Ox00000080

0x701D0337

OxOQECFFFF

Ox00000000

0x00000080

This boot sequence is sent over the static network to boot the tile connected to

the port the code is sent through.

The default simple-rom code we use is a little bit longer because we wanted to

make sure the data gets through the FIFOs (this was probably not necessary, but

history is history).

A.10.2 USB Booting

The I/O board receives booting code from a host computer and sends it over to the

quad board. The correct firmware must be loaded into the PCIO or PCI1 FPGA.

Currently, we boot straight into the code of the program. Thus, a program com-

piled in starsearch will have the boot and program code in one file. The starsearch

97

make infrastructure will generate a *.rbf-?? file, where ?? is the port number to

which it is meant to stream the boot code.

We use a non-standard boot pattern in order to boot from the bottom right corner

of the quad board. In order to boot to the Fabric, make sure to add these lines to

your Makefile:

TILEPATTERN=8x8

RGCCFLAGS -+= -02

MULTISNAKEBOOT=O

SNAKEBOOT_CONFIGFILE = xxx/starbuild/common/intravenousconfigs/

boot/eastbottomstandard.bc

xxx represents the folder in which the starbuild has been checked out.

The resulting binary should be a .rbf-15 file.

In order to boot from USB, first log in to the rawhost connected

to the Fabric. Next, navigate the folder containing the usb code

(rawboards/ioifabric/usb-boot/programs/) in our case. If necessary, compile the

usbiboot-and-read C program. Then, execute usbiboot-and-read rbf-file.rbf-15,

where rbf-file is the name of the rbf file to boot.

Upon booting, the code will first let you know how many packets (words) are in

tthe boot file, then it will scroll through the boot code as it sends it. At the end, our

current standard boot file will says "running test..." at the end of booting. At this

point, the USB is waiting for any messages (Static, MDN, or GDN) to arrive back

out of either port 14 or 15.

Please note that when they arrive, the port numbers are incorrect, since they

match with the handheld system. Thus, if it says port 12, it actually means port 15,

and when it says port 13, it actually means port 14. This can be trivially changed.

A.11 File Locations

The CVS Repository system is used for version control. Please check out

rawboards/quad-fabric/ for Quad Board firmware and documentation and

98

rawboards/io-fabric/ for I/O board firmware and documentation.

The following folders are in active use. All firmware is compiled using

veribuildiabric at this point.

quad-fabric/syn-rev2/

Contains the firmware for the XC2V250 configuration FPGA on the Quad Board.

quad-fabric/doc/

Contains documentation for the Quad Board, including schematics, layout, and some

useful data specification sheets.

io_fabric/doc/

Contains documentation for the I/O Board, including schematics, layout, and this

guide.

io_fabric/src-rev2/

Contains the Verilog code for firmware projects.

io_fabric/synrev2/

Contains the .ucf files (timing constraints + pin assignments) and Makefiles for

firmware projects.

The following folders are deprecated. Most of the firmware was compiled using

veribuild (not veribuild-fabric) and therefore is not compilable anymore (unless we

find some Synopsys DC2 licenses).

quad-f abric/quad-config/

Contains zip file of Xilinx ISE projects for the Quad config firmware.

io_fabric/config/

99

Contains zip file of Xilinx ISE projects for the I/O config firmware.

io...fabric/bit _files

This folder used to serve as a bitfile repository to dump bitfiles so that they were in

a common directory. There was a command at the relevant Makefile rule that would

basically copy the end product bitfile into this directory. The firmware in this folder

is Fabric revi firmware.

iofabric/components, iofabric/fpgas

The oldest firmware folders for the Fabric. The components folder contains the source

code, while the fpgas contains the .ucf files and Makefiles.

io_fabric/src, io_fabric/syn

The firmware folders for the Fabric used before srcrev2 and synrev2. These fold-

ers were replaced by srcrev2 and syn-rev2 rather than keeping the same folders

because the rev2 firmware will be compiled exclusively using veribuildifabric rather

than veribuild (again, because of the expiration of licenses). I wanted to keep these

firmware files intact for people too lazy to run through cvs back-versions.

io_fabric/usbboot

Some simple usb interfacing code that streams rbf files into Raw.

A.12 DIP switch settings

A.12.1 Quad Board DIP switch settings

Figure A-7 and Tables A.1, A.2 describe the dipswitch settings on the Quad Board.

Note that the Quad board is never the reset originator, but may be the clock origi-

nator. The Quad board receives its clock and reset signals from the same direction,

dictated by the SEL DIP settings in Table A.1. The Quad board will treat this di-

rection as an input, and forward the signal to the 3 other directions. Note that if the

clock originator setting is set, then the Quad board will forward the clock to all 4

directions.

100

SW4 1 2 3

o SEL[1:o1

Figure A-7: Quad Board DIP Switch Positions

O Clock Originator
0 No
1 Yes

Table A.1: Quad Board DIP Switch Clock Originator input select

SEL[1:0] Clock and Reset Input Setting
00 North
01 East
10 South
11 West

Table A.2: Quad Board DIP Switch input select

101

A.12.2 I/O Board DIP switch settings

SW3 1 2 3 4 5 6 7 8

DEBG I
DEBUG SELECTr3:01 R SEL1 f:01

Figure A-8: I/O Board DIP Switch Positions

R Value Reset Setting
0 Reset from Off Board
1 Reset from Local Switch

Table A.3: I/O Board DIP Switch Reset signal input select

SEL[1:0] Clock Input Setting
00 33 Mhz Osc Clock
01 External Clock from J3
10 Offboard clock synchronized to DCM
11 Offboard clock synchronized to DCM

Table A.4: I/O Board DIP Switch clock input select

102

Dipswitch Output Signal
0000 Reset after reset selection
0001 undefined
0010 Input reset from Off board
0011 SEL[0]
0100 SEL[1]
0101 R
0110 Local-Reset: Reset Button on board
0111 Clock: after the clock selection logic (BUFGMUX)
1000 Off board clock into the DCM
1001 33 MHz OSC Clock to the DCM
1010 External Clock from J3
1011 undefined
1100 undefined
1101 undefined
1110 undefined
1111 undefined

Table A.5: I/O Board DIP switch DEBUG signal settings

103

A.13 Port and Tile Numbering

Figure A-9 shows the numbering of the tiles on a single Raw chip, if we were to

look down onto the chip on the board. Please pay careful attention to the fact that

physically, East and West are flipped from their expected positions when we're looking

down. They are drawn this way on the diagram to aid in debugging the hardware.

NORTH
3 2 1 0

4

S5
Cn#

6

7

15

14

13

12

8 9 10 11
SOUTH

Figure A-9: Single Chip Port and Tile Numbering

Figure A-10 shows the numbering of the tiles on a single Quad Board. Please note

that the port numbers are different from those of a single Raw chip. It is therefore

important that when referring to a port number it is specified whether the number

is in reference to the entire Quad Board, or in the frame of reference of a single chip.

By default, port references should refer to the number in the entire Quad Board case.

Figures A-11 and A-12 show non-standard configurations for booting through the

south-east port (port 11). These were used for debugging purpose before we could

get the entire 64-tile board booted.

104

3 2 1 0

7 6 5 4

11 10 9 8

15 14 13 12

NORTH
7 6 5 4 3

7 6 5 4

15 14 13 12

23 22 21 20

31 30 29 28

39 38 37 36

47 46 45 44

55 54 53 52

63 62 61 60

16 17 18 19

2 1 0

3 2 1 0

11 10 9 8

19 18 17 16

27 26 25 24

35 34 33 32

43 42 41 40

51 50 49 48

59 58 57 56

20 21 22 23

S O U T H
Figure A-10: Quad Board Port and Tile Numbering

105

8

9

10

11

12

13

14

15

31

30

29

28

27

26

25

24

NORTH
3 2 1 0

4 3 2 1 0 23

5 7 6 5 4 22

6 11 10 9 8 21

7 15 14 13 12 20

8 19 18 17 16 19

9 23 22 21 20 18

10 27 26 25 24 17

11 31 30 29 28 16

12 13 14 15

SOUTH

Figure A-11: Alternate configuration: 4x8 Fabric

NORTH
7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1 0 23

S9 15 14 13 12 11 10 9 8 22 M

10 23 22 21 20 19 18 17 16 21

11 31 30 29 28 27 26 25 24 20

12 13 14 15 16 17 18 19

SOUTH

Figure A-12: Alternate configuration: 8A4 Fabric

106

A.14 History

5/3/06 - I/0 Board sent back to BEMA for blown DC-DC converter

4/26/06 - Quad Board sent back to BEMA for misplacement of rigidizer

4/16/06 - Assembly of 1 I/O board and 1 Quad board (rev 2) complete

1/24/06 - Schematic and Layout for Revision 2 finalized

10/6/05 - Host interface I/0 calls working on Fabric

9/20/05 - Finished testing of I/O Board #3 - connectors all work

9/19/05 - Received I/0 Board #3 from ISI

8/21/05 - Compiled and Ran C Programs

8/2/05 - External Port Tests passed for North side

8/1/05 - Hacked version of port 10, port 11 East memory controller

7/25/05 - Speed Gasket 6 for muxed ports completed

7/11/05 - Discovered I/0 board #2 pin contact problem on memory side

7/11/05 - Finished extensive testing of memory controller

6/23/05 - Received second I/0 board

6/10/05 - Resolved port 8 & 12 booting problem

6/10/05 - Discovered FPGA pin contact problem in PCI1 & EXPO FPGAs

6/9/05 - Extensive Memory controller testing begun

6/8/05 - Identified and characterized criss-crossed yummy issue

6/7/05 - Discovered Raw heat sink issue

6/7/05 - New retention brackets received

6/6/05 - External Port Tests created for debugging board connections

5/30/05 - Extensive low-level hardware debugging begun

5/28/05 - Completed 6-port muxed speed gasket for North & South

5/18/05 - Memory Controller port complete

5/10/05 - Booted all 64 tiles on Raw Fabric

5/7/05 - Remote booting infrastructure completed

5/5/05 - USB boot entire chip through PCIO

5/2/05 - USB booting through port 14 acheived

107

4/25/05 - USB Device recognized by host PC

4/25/05 - I/0 Board User Guide documentation started

4/10/05 - Booting 1 tile

3/14/05 - Quad Board User Guide documentation started

3/13/05 - Clock and Reset distribution between boards working

3/8/05 - Clock Distribution working

3/7/05 - Fixed Quad Board to be able to program FPGA using JTAG

3/3/05 - Test bench set up

3/2/05 - Received 1 I/0 Board and 1 Quad Board from ISI

108

Bibliography

[1] A. Agarwal, S. Amarasinghe, R. Barua, M. Frank, W. Lee, V. Sarkar, D. Srikr-

ishna, and M. Taylor. The raw compiler project. In Proceedings of the Second

SUIF Compiler Workshop, August 1997.

[2] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps: A compiler-managed

memory system for raw machines,.

[3] C. E. Kozyrakis and D. Patterson. A new direction for computer architecture

research. IEEE Computer, September 1997.

[4] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and

K. Asanovic. The vector-thread architecture. In Proceedings of the 31st Inter-

national Symposium on Computer Architecture, 2004.

[5] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarka, and S. Amaraas-

inghe. Space-time scheduling of instruction-level parallelism on a raw machine.

In Proceedings of the Eighth International Conference on Architectural Support

for Programming Languages and Operating Systems, October 1998.

[6] W. Lee, D. Puppin, S. Swenson, and S. Amarasinghe. Convergent scheduling. In

Proceedings of the 35th International Symposium on Microarchitecture, Novem-

ber 2002.

[7] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz. Smart

memories: A modular reconfigurable architecture. In Proceedings of the 27th

International Symposium on Computer Architecture, 2000.

109

[8] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A design space

evaluation of grid processor architectures. In Proceedings of the International

Symposium on Microarchitecture, 2001.

[9] R.M. Rabbah, I. Bratt, K. Asanovic, and A. Agarwal. Versatile tiled-processor

architectures: The raw approach. In Proceedings of the Eight Annual High Per-

formance Embedded Computing Workshop, June 2004.

[10] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoff-

mann, P. Johnson, J. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Schnidman,

V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. The raw microproces-

sor: A computational fabric for software circuits and general purpose programs.

IEEE Micro, 2002.

[11] Michael Taylor.

[12] E. Waigold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,

M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. Baring

it all to software: Raw machines. IEEE Computer, September 1997.

110

