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ABSTRACT

This thesis considers the orographically induced high pressure
ridge that appears in the sea-level pressure field on the windward
side of mountain ranges. The outstanding characteristic of these
synoptic-scale ridges is their persistence. Many appear to be
in a steady-state, even though the broad-scale flow in which they
are embedded is changing. ’

Iwo distinctly different types of pressure ridges form to the
east of the Appalachian Mountains. This investigation is limited
to the type of ridge associated with a shallow, cold airflow topped
by a strong low-level inversion. Previously proposed theories of
the pressure ridge assume there is no inversion present. Hence,
they are not applicable to this type of ridge. ’

A detailed synoptic study is made of one pressure ridge case.
It is found that there are two kinds of pressure ridges with low-level
inversions. It is shown that these two ridges have fundamentally
different airflows. In the first, called the corner ridge, the
cold air flows over the mountains. In the second, called the
wedge ridge, the cold air is blocked by an adverse pressure gradient
and forced to flow parallel to the mountains.

The available radiosonde data is insufficient to resolve
variations in the inversion height. Therefore, a method, which
assumes the existence of an inversion discontinuity, is used in
order to obtain the inversion heights from the synoptic surface
stations. In addition, frictionless dynamic trajectories are used
to estimate the cold airflow trajectories. From these two techniques
the variation of the inversion along the cold airflow is found. It
is concluded that the pressure ridge is only a reflection in the
sea-level pressure field of changes in the inversion height.



In order to explain the observed features of this cold airflow,
it is concluded that, in addition to the inversion height, the
pressure gradient above the inversion, the coriolis force, surface
friction, and mixing of warm and cold air are all important physical
factors in the cold airflow.

Thesis Supervisor: Frederick Sanders
Title: Professor
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Section 1. Introduction

The lee-side pressure trough is a well-known orographically
induced phenomenon. A similar, but less familiar, orographic phenomenon,
however, is the wiﬁdward—side pressure ridge. The goal of this thesis
is to increase the understanding of this phenomenon.

The pressure ridge is a phenomenon worthy of attention for the
following reasons. First, it is a common and widespread phenomenon
(see Section 2). |

Second, the pressure ridge is often accompanied by unpredictable
bad weather, at léast along the east coast of the United States. The
results of a case study presented in Section 6 suggest that even the
present six-layer primitive equation model does not predict this bad
weather 24 hours in advance. Hence, from a weather forecasting
viewpoint, further knowledge of the pressufe ridge ié desirable.

Third, this ridge is associated with several little understood
atmospheric phenomena: the foehn, 'back-door" cold fronts, and one type
of east-coast cyclogenesis. A better understanding of the ridge should
also help explain these phenomena.

To the author's knowledge, no observational study of the upper-
air condi;ions associated with the pressure ridge has even been made.
This research provides such a synoptic study by analyzing in detail

pressure ridges that form to the east of the Appalachian Mountains.



Section 2. Description and climatology of the pressure ridge

2.1 Examples of ridges

In this paper the pressure ridge is defined as a stationary,
anticyclonic curvature of the sea-level isobars such that along a
line perpendicular to the mountains there is a pressure maximum on the
windward slopes. Possibly, for a very weak case, instead of a pressure
maximum only a changg of gradient would occur. Such cases have not been
considered in this investigation.

An example of an orographic pressure ridge is given in Figure la
(taken from Malberg, 1967). In this figure, a pressure ridge in the sea-
level pressure field extends along the windward (south) side of the Alps.
In faét, there is even a pressure ridge east of the Apennine Mountains in
Italy. The most remarkable feature of this example is the very strong
pressure difference across the Alps to the north ofbthe orographic ridge.
This difference corresponds at ifs strongest place to a geostrophic wind
of 100 m/sec. The formation of a ridge is almost always associated with
such an increased pressure difference across a mountain range.

Figure 1b gives the ground elevation and sea-level pressure as a
function of distance along a line perpendicular to the Alps—1line AA' in
Figure 1;, The pressure ridge appears as a maximum in the sea-level
pressure on the windward slopes.

Figure 1b discloses that the rapid pressure drop mentioned above
is limited mainly to the region where the terrain is highest. Even if the
1000-meter pressure field is the same as the sea-level field, the

pressure drop still oceurs within the mountain and, hence, is physically
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10
meaningless at this level. This drop is meteorologically significant

only if it is still present above the top of the mountain range. In
this thesis it is shown that for one type of ridge, the gradient does
extend above the top.-

Figure 2a illustrétes an orographic pressure ridge to the east
of the Appalachian Mountains. This pressure ridge extends from Virginia
to Connecticut. In general, the ridge line lies parallel to the crest
of the Appalachians between the coast and the mountain crest.

The pressure ridge in this case has two distinct shapes. In the
northern part of the analysis afea, the isobars forming the ridge make
a sharp "corner." In the southern part, the isobars are shaped like a
"wedge." It is shown in Section 4 that this difference in shape in the
sea~level pressure field reflects fundamentally different airflow
patterns aloft. Henceforth, in this paper these ridges are called the
corner ridge and the wedge ridge.

The terrain elevation and sea-level pressuré along two lines
perpendicular to the Appalachians is given in Figure 2b. The actual
path of these lines is given in Figure 2a. (Station call letters, as
given in Figure 2b, are used throughout this paper. Appendix B gives
the station_locations corresponding to these call letters.) Along both
lines the‘sea—level pressure has a maximum on the windward slope with

a sharp drop in pressure across the mountains.

2.2 Climatology of the pressure ridge
The importance of a phenomenon depends, in part, on its frequency
of occurrence and its global extent. To the author's knowledge, no such

climatological study of the pressure ridge has ever been made. Some
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pertinent data is, however, found in the literature.

The presence of pressure ridges around the Alps has been well
documented at least since Erk (1886) described the formation of a ridge
in his account of a strong foehn. This association between the ridge
and the foehn is now well-established. In fact, in the Alps the ridge
is known as the "foehn's knee" (Streiff-Becker, 1942). The ridge can
form on either side of the Alps, dépending upon the direction of the
large-scale flow (see, for instance, Defant, 1951). Ridges form on the
north side of the Alps about once a week with no seasonal variation
(Exner, 1905b). On the south side ridges develop less frequently with
a maximum in late winter or spring. Because of this asymmetry of
frequency, Bullrich (1941) found a ridge north of the Alps in a mean
eleven-year sea-level pressure field.

Information on pressure ridges associated with mountains other
than the Alps is very limited. In fact, Malberg (1967) is the only
investigator; to the author's knowledge, to describe explicitly the
formation of pressure ridges around other mountain ranges. He illustrates
orographic ridges associated with the Greenland Icecap, the Rocky
Mountains, the Andes, the Coast Range in western Canada, and the central
Asiatic mountains.

The ;uthor has found in the literature examples of ridges around
still other mountain ranges. However, in all of these examples the
pressure ridge was just an incidental feature of the phenomena being
coﬁsidéred. In fact, several of the investigators did not even point

out the presence of the pressure ridge in their illustrations.
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In the pressure analyses of Little (1931), ridges appear on the

windward side of the Sierra Nevadas in California. Watts (1945) and
Garnier (1958) show pressure ridges associated with the New Zealand
Alps (see Figure 8). Arakawa (1968) describes a windward ridge
associated with strong orographic winds in Japan. Spinnangr and
Johansen (1954) point out ridges on the north side of the Scandinavian
Mountains. Defant (1951) gives an example for the south side of‘these
mountains. In Scorer (1952) a pressure ridge can also be seen to the
east of mountains in Spain.

The only references to ridges east of the Appalachian Mountains
are in connection with secondary cyclogenesis. Austin (1941) suggested
that there are two typeé of east-coast cyclogenesis. Miller (1946)
verified the existence of these two types from_detailed surface analyses.
One type (Type A) develops in a stationary front situated approximately
along the Gulf Stream. The other type (Type B) forms to the east of
the Appalaéhian pressure ridge.

Since the orographic ridge precedes Type B cyclogenesis, the ridge
is probably conducive to cyclogenesis. In spite of the global extent of
the pressure ridge, it is surprising how little evidence there is in the
literature that Type B cyclogenesis occurs in other parts of the world.
The only cyclone that appears to have features similar to Type B is the
"Skagerak" cyclone that forms at the southwestern end of the
Scandinavian Mountains (J. Bjerknes and H. Solberg, 1922). Clearly, the
global distribution of Type B cyclogenesis should be investigated further.

The discussion in Sections 2.1 and 2.2 contains all the synoptic

and statistical information about the pressure ridge that the author has
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uncovered in the literature. Several conclusions can be drawn from

this discussion. (1) The orograpﬁic ridge occurs frequently in many
parts of the world. (2) The pressure ridge always forms on the
windward side of mountains and is accompanied by an intensification

of the pressure gradient across the mountains. (3) Pressure ridges
can occur no matter what the orientation of the mountain range and, in

fact, are able to form on either side of the same mountain range.

2.3 Statistics of Appalachian pressure ridges
Statistics of ridges appearing along the East Coast of the United

States from 1965 through 1967 were compiled using Daily Weather Maps

(United States Environméntal Data Service) as the data source. The
ridges were subjectively identified in accordance with the definition
in Section 2.1. The results are given in Table 1. (Table 2 contains
a list of the strongest cases from October, 1964 to April, 1968.)
Ridges occurred on the average about three times per month. They were
most frequent in January, February, and March (five per month) and
least frequent in April through September (two per month). There was
a large variation in size, duration and intensity. In general, the
ridges were much stronger in winter than in summer. Many were
accompani;d by low ceilings, fog, drizzle and rain. The average
duration for the cases listed in Table 2 was 30 hours. Ridges also
appeared west of the Appalachians. However, these ridges were not

included in the statistics in Table 1.
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2.4 Synoptic patterns producing Appalachian pressure ridges

Two types of synoptic patterns accounted for most of the ridges
in the above survey. The first pattern, consisting initially of a cold
high in eastern Canada and an intensifying midwestern cyclone, is
illustrated in Figure 3. Figure 3a shows a cyclone moving east-
northeastward across the Midwest. East of the center a warm front
separates cold Canadian air from warm tropical air. According to the
classical model of cyclone development (Bjerkness and Solberg, 1922),
the warm front should move northward. However, twelve hours later
(Figure 3b) the warm front east of the Appalachians has actually
pushed southward. Coincident with this push was the formation of a
pressure ridge to the north of the front.

Such southwérd frontal movements, contrary to the motion expected
from the classical cyclone model, occur frequently along the East Coast
and are called "back-door" cold fronts. They are aiways associated with
ridge formation (Wexler, 1951). In Figure 3d one can see that the
primary cyclone has occluded over the Great Lakes. A secondary low is
forming off the coast. Twelve hours after Figure 3d, this secondary
low has completely taken over the circulation from the primary cyclone.
This secondary development is a typical example of Type B cyclogenesis.

The ;econd type of pattern producing a ridge is illustrated in
Figure 4. As the large high pressure area covering the eastern half of
the United States in Figure 4a moved eastward, a ridge developed on the
eéstern side of the Appalachians and a trough on the western side
(Figure 4b).

In Figure 4c cyclogenesis has occurred east of the ridge off the
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Virginia coast. This second type of pattern can often be found 18

north of cyclones developing in the Gulf of Mexico.

The troughs that form in this type of pattern are very similar
to troughs associated with the foehn. Studies of several cases showed
that temperatures were indeed warmer in the trough than elsewhere,
although the difference was not usually more than 10°F. However,
unlike the foehn, no strong winds were reported.

The pressure ridges associated with these two types of synoptic
patterns behave similarly on the windward side. Differences occur only
on the lee side. For this reason, it is assumed in what follows that
the dynamic explanation for the formation of the ridge does not depend
on which synoptic pattern produced it.

The subsequent historieé of ridges differ markedly from case to
case. In some cases, the ridges dissipate as secondary cyclogenesis
takes place. For the second type of pattern,.often the ridge dissipates
as the Gulf of Mexico cyclone intensifies and moves inland. More
rarely, a low center forms in the trough and becomes the primary
cyclone. Sometimes in the first type of pattern the pressure falls of
the primary cyclone penetrate across the mountains, destroying the ridge.

A common type of development is the enlargement of a
ridge until it extends along the entire East Coast. An example of such

an extensive ridge is given in Figure 5.

2.5 Restriction of investigation to pressure fidges with low-level
inversions

A brief study of a number of ridges revealed that the more
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extensive ridge does not have the same structure as the ridge shown

in Figures 1 through 4. First of all, the smaller ridge has a strong
low-level inversion, while this ridge does not. Second, this larger
ridge is accompanied by fair weather. The smaller ridge usually is
characterized by low ceilings and precipitation. Third, there is
usually a pronounced stationary ridge at 500 mb over the larger
ridge at the surface. Such a ridge does not occur with the smaller
ridge. Fourth, the smaller ridge is completely stationary while the
larger ridge sometimes moves eastward away from the mountains which
prdduced it.

Of the two sizes of ridges, the smaller ridge is the more
important since it is associated with unpredictable weather and
phenomena like the foehn. Only the smaller ridge is considered in

this thesis in order to reduce the scope of this investigation.
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Section 3. Previously proposed theories of the pressure ridge

3.1 Introduction

In the previous section, the observational and climatological
aspects of the pressure ridge were considered. In this section,
four theories attempting to explain the pressure ridge are given.
these four theories are the only previously proposed explanations

" known to the author.

3.2 Exner's theory

Exner (1905a) attributed the pressure ridge to an increase in
dynamic pressure produce& by low~level aiFflow encountering a mountain
range. To support this contention, Exner visualized placing a
mountain suddenly in a uniform airflow. He then calculated the pressure
difference that developed across the mountain immediately afterwards.
His results showed a dynamic pressure increase that could account for
the ridge. However, Schmidt (1910) argued justifiably that the
pressure ridge is a steady-state phenomenon. Using a steady-state
assumption, Schmidt calculated that the dynamic pressure increase
should be two orders of magnitude smaller than the pressure increase
actually observed. This finding indicates that the pressure ridge
cannot be attributed to the dynamic pressure.

In the synoptic investigation presented in Section 4, a hydro-
statically consistent airflow pattern associated with the pressure ridge

is. proposed. Since this airflow configuration is supported by
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radiosonde data, the results of this synoptic investigation support
the conclusion that dynamic pressure effects cannot account for the

ridge.

3.3 The non-adiabatic theory of v. Ficker and Trabert
Since observations of the free atmosphere were not available,
v. Ficker (1908) and Trabert (1908a) assumed that at some level not too
far above the mountain top, the atmosphere is no longer perturbed. Hence,
at this level the pressure and temperature remain constant along a
line perpendicular to the mountain range. Beneath the undisturbed
level they visualized the two-dimensional flow given in Figure 6. In
this flow pattern, they.assumed that air parcels ascend the windward
slope moist—-adiabatically and descend the lee slope dry-adiabatically
as a foehn. Such a flow produces in a column beneath the undisturbed
.level a higher mean temperature on the lee slopes than on the windward
slopes. This mean temperature difference is reflected in the sea-level
pressure field as a drop in pressure from the windward to the lee side.
The above proposal can explain the sharp pressure drop across
the mountains, but cannot explain the increase in pressure as the
air approaches the mountains. Trabert (1908b) proposed that this
increase resulted from a cooling of the mean temperature of the air
column as a consequence of reduced incoming radiation and evaporation
of precipitation. This latter explanation appears to be physically
unrealistic since a net cooling would be difficult to achieve in a
column whe;e large amounts of latent are being released into the upper

portion from condensation.



CROSS SECTION PERPENDICULAR TO MOUNTAIN RANGE

/— undisturbed level

T T~

A
>

streamlines

N
>

>

Figure 6. Idealized airflow over a mountain

23



24
3.4 Ekman's vorticity theory

Ekman (1932) proposed that the pressure ridge is a consequence of
changes in the vertical vorticity of an airstream. Bjerknes and
Solberg (1933), Holmboe, Forsyth, and Gustin (1945) and others have
elaborated upon this idea. This theory postulates the two-dimensional
flow pattern given in Figure 6. A column of air from the surface
to the undisturbed level shrinks as it goes over the mountain and
then returns to its original depth on the lee side. This change in
the column is accompanied by horizontal divergence on the windward
slope and convergence on the lee slope. The vorticity equation
states that divergence contributes to a decrease in the vorticity
and vice versa for convergence. In natural coordinates, the vorticity
is equal to a term involving the curvature of the streamline plus
a term involving the lateral shear. Since the flow is two-dimensional
the velocity componeﬁt perpendicular to the mountains must have zero
shear in the direction along the mountain. Therefore, except in the
special case of flow parallel to the mountain, the lateral shear
term of the vorticity must be zero. Consequently, any vorticity change
is reflected only in a change in the curvature of the airstream. It
follows that for the airflow in Figure 6, there is anticyclonic
curvature on the windward side of the mountain and cyclonic on the
lee side.

Next, Ekman proposed that the flow could be treated as geostrophic.
Accordingiy, the isobars would have the same curvature as the streamlines;
i.e., the pattern of a corner ridge. This theory appears to provide

a reasonable explanation of a pressure ridge.



3.5 Queney's theory

Queney (1948) calculates the airflow over mountains of widely
differing dimensions. 1In each case the atmosphere upstream of the
mountain is assumed to have a velocity and lapse rate which are constant
with height. In addition, a stably stratified lapse rate of temperature
is chosen. Queney's Figure 3 gives the results for the obstacle
closest in dimension to the Appalachian Mountains. These results show
a distinct windward ridge in the sea-~level pressure field.

Queney's treatment is almost wholly mathematical. Unfortunately,
he does not give a clear physical interpretation of his results.
Moreover, the author is unable to deduce any simple explanation from
his results. Still, since Queney's results are derived from the basic
meteorological equations, the fact that a pressure ridge is predicted
is significant. Hence, Queney's theory has been included as a possible

explanation.

3.6 Need for observational verification of assumed airflows

Except for Exner's explanation, which has been eliminated, each
of the above-mentioned theories depends upon a prescribed airflow
pattern. However, all of these theories were advanced before upper-air
data became routinely available. For this reason investigators had to
postulate the conditions aloft without corroborating observational
evidence. To the author's knowledge, no observational studies have
determined the actual upper-air conditions associated with the pressure

ridge. Section 4 attempts to reveal, through a synoptic study of the

25
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Appalachian pressure ridge, these unknown conditions. The applicability
of the previously assumed airflows are then evaluated from the results

of this study.
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Section 4. Case Study

4.1 Choice of case>

The ridges in Table 2 were examined and the strongest case with
good surface and upper-air data coverage along with type B cyclogenesis
was chosen. Although cases of this intensity occur only about twice
a year, it was assumed that an extreme case would bring out most

clearly the significant features of the pressure ridge.

4.2 Measurement of pressure

The pressure ridge represents an increase of pressure on the
order of 3 mb from the éoast to the ridge line along an axis
perpendicular to the mountains. Because of the small pressure
differences between stations, the reliability of the pressure
measurements should be considered. |

In general, pressures were reported to an accuracy of 0.1 mb.
However, the accuracy of pressure measurements is affected by
instrumental errors (such as drift and sticking), micrometeorological
pressure changes, observation errors, and the effects of the wind
pressure on the building housing the barometer (Baldit, 1929). Hence,
overall accuracy is probably more nearly +0.5 mb. Since this is an
order of magnitude smaller than the accuracy needed to establish the
ridge, observational accuracy is sufficient. A few statioms reported
pressures that consistently disagreed with nearby stations. These
pressures were checked against analyses during periods before the

ridge developed and after it dissipated. If the differences still
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existed, corrections were applied. These corrections are listed in

Appendix A.

Because of the relative inaccuracy of pressures reported from
ships, special efforts were made to improve these measurements. Ships
which could be followed for several days were singled out and given
more weight in the analyses than other ships. Each of these ships
was given a single pressure correction based upon differences
found in regions where the pressure field is known more reliably.

Improvements in the analysis resulting from these ship corrections
were, unfortunately, not great. This fact, coupled with the sparcity
of ship observations in time and space, made the analyses over the

oceans considerably less reliable than those over land.

4.3 Data sources

The land surface data source was Service A'teletype (the hourly
airways surface observations). The land stations used in this study
are presented in Appendix A. Ship observations were obtained from

Service C teletype and Northern Hemisphere Data Tabulatioms.

Radiosonde observations were taken from the latter source. Available
special soundings were obtained from the original WBAN—Bl forms. Pibal
data was %aken from Service C teletype. However, the amount of pibal
data was limited because of low ceilings in the regions of greatest

interest. Precipitation data came from Hourly Precipitation Totals

(Uﬁited States Environmental Data Service).
In Figures 9 through 16 and Figure 24, analyses of the surface

and 850-mb level are given. The 850-mb level was chosen because the
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ridge is mostly confined below this level. Hence, 850 mb represents

the "undisturbed" state of the atmosphere above the ridge. Inserts on
the 850-mb maps give regions where the ceiling is less than 5000

feet (hatched) and where measurable precipitation occurred within two
hours of the observation time ( shaded).

Although in this paper analyses are presented mostly at twélve—
hour intervals, analyses were actually made every six hours (every
three hours on the 28th). Time cross 3éction;of the hourly weather
conditions at selected stations were used to locate the fronts

accurately.

4.4 Reduction of pressuré to sea level

Errors in the reduction of pressure to sea level are greatest in
mountainous terrain. Since the pressure ridge is an orographic
phenomenon, the ridge can possibly be explained by systematic errors
in the reduction of pressure to sea level. Wild (1901) investigated
this possibility in his study of the Strohg transalpine pressure
gradient associated with the foehn. He reduced station pressures to
several other levels besides sea level in order to study the reduction
errors. He obtained approximately the same pressure gradient at each
level.

A similar test was made in my study of the 26-28 April 1966
case. Where the reduction was upward, the atmospheric lapse rate was
assumed to be dry-adiabatic to the cloud base, and moist-adiabatic

above. Where the reduction was beneath the ground, a moist-adiabatic

lapse rate was assumed. (Appendix A gives station elevations;
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Appendix C gives contours of terrain elevation.) Figure 7 presents

the pressure field reduced to 500 meters by the above method. The
basic features of the pressure ridge still exist at this level. 1In
particular, the sharp gradient across the Appalachians appears as
well as the flow from the east along the coast (although reduced in
strength). According to the results of this technique, the sharp
gradient across the mountains extends above the 1500-meter level. This
level is above the height of all the reporting surface stations.

Several locations in the world have mountain ranges surrounded
by oceans. In these places pressure observations made along the
coast require only minor reduction to sea level. In Figure 8
(taken from Garnier, 1958, Figure 3) a ridge-trough system across
the New Zealand Alps is clearly present. This system cannot be
explained by reduction errors.

All of the above results indicate that the preséure ridge is a

real atmospheric phenomenon.

4.5 Formation of the ridge

27 April, 1966 0000 GMT (Figures 9 and 10)

Cold air from a high in Canada is moving rapidly southward,
particula;ly at 850 mb. A cold front at the edge of this cold air
extends from New York through Illinois. Just to the north of the
front in New York, the first hint of a ridge development can be seen.
South‘of the front, a broad current of warm air is flowing northward,
except just north of a weak frontal system extending across the

southern states. A very weak orographic ridge is present in western
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North Carolina. By 0600 GMT this ridge had disappeared. Low clouds

and precipitation are associated with the southern frontal system,
while the cold front has very little cloudiness.

27 April 1966 1200 GMT (Figures 11 and 12)

The cold front has pushed southward faster to the east of the
mountains than to the west. This difference in speed has resulted
in an S shape to the front— a characteristic of fronts associated
with ridges. Indeed, to the north of the front, a corner ridge has
formed on the windward side of the mountains, and a trough on the
lee side. 1In addition, the pressure gradient across the Appalachians
has increased. A strong current of cold air is flowing westward.
Because of its long fetch over water, the cold air temperature is
equal to the water temperature. (Appendix C gives the water temperature
distribution for this case.) The only exception to the east wind is
a narrow zone along Ehe Appalachian slopes in Virginia. The wind in
this region is blbwing from the northeast, parallel to the mountain
range and perpendicular to the isobars. This narrow zone is a character-
istic of the pressure ridge in this area.

The frontal system to the south has moved northward and is
merging with the cold front. Low clouds and precipitation are
widespread west of the Appalachians but are confined to the two frontal
zones to the east.

At the surface the cold air has continued moving southward,
especially from New York to Virginia. However, the 850 mb pattern

has directed the cold air at 850 mb toward the east, rather than
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toward the south. This differential movement of cold air produced
a low-level inversion from New York to Virginia.

28 April 1966 0000 GMT (Figures 13 and 14)

‘The twb fronts have completely merged. Between the Appalachians
and the coast the front is moving southward, while to the west it is
moving northward. This differential movement has made the S shape
more pronounced. The S shape of the front can even be seen at the
southern edge of the low cloud distribution. Over the ocean the
front is stationary. Ship data indicates that it has stalled along
the northern edge of the Gulf Stream.

Diurnal temperature changes in the cold air have been reduced
by low clouds and preciﬁitation mostly confined to north of the
front. Hence, a temperature contrast of around 30°F has developed
between the cold and warm air. Precipitation is associated with
a region where warm advection at 850 mb is coincideﬁt with positive
vorticity advection at 500 mb. A band of precipitation is located
along the mountains, also.

The corner ridge north of the front has intensified considerably.
The pressure gradient across the mountains is also stronger. In
eastern Pennsylvania the pressure gradient is very flat. This feature
appeared in several other cases and may be the result of the change
iﬁ orientation of the mountain range across this region. Surface
winds in eastern Pennsylvania show no deviation toward the south,
although from Washington, D.C. southward, the zone of winds blowing
parallel to.the mountains has expanded. Because the air of this zone

originated further north (where the water temperature is lower) it

38
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has a slightly colder temperature.

The only station in this zone not reporting north-northeast
winds is ROA which reported southeast winds for the whole period.
Possibly, tﬁis wind direction can be explained by a channeling
effect of the local valley which runs in the same direction as the
reported winds.

Of special interest is the region in West Virginia which has
been labeled "mixed region." Surface winds in this mixed region
are southeast, indicating an air trajectory over the mountains. In
addition, the high ceilings can be explained by a current flowing
down a slope. Temperatures and dew points are about halfway between
those of the warm and coid air. Although the release of latent heat
into air coming over the mountain might explain the higher temperatures,
such a process cannot explain the higher dew point. Hence, the
weather in the mixed region appears to be a mixture of the cold air
to the east and the warm air to the west.

This mixed region could be explained at this particular time by
local meteorological phenomena unassociéted with the pressure ridge.
However, its persistence in this case, and its appearance in other
regions in several of the pressure ridge cases studied suggest that
it is a recurrent phenomenon associated with the pressure ridge.

Two explanations of the mixed region seem plausible: (1) The
cold air coming over the mountains is considerably mixed with the
warm air above. (2) The warmer air along the coast flows over the

colder air next to the mountains and then over the mountains themselves.
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Hence, it is this warmer air that is observed in the mixed region.

No conclusive evidence backing only one of these possibilities has
been found.

28 April 1966 1200 GMT (Figures 15 and 16)

The high to the north has continued to move eastward, while the
low that was over the northern plains has moved northeastward. The
movement of this low has caused the trough west of the mountains to
disappear. However, the strong pressure gradient across the mountains,
as well as the ridge to the east, still remains.

East of the Appalachians, the cold air has continued to move
southward over the land. To the west, the warm front has advanced
northward. The mixed region in West Virginia is still present but
diminished in size. A cold front with a pre-frontal squall-line is
moving into the analysis area from the west.

At 850 mb a broad flow of warm air is flowing northward. As the
primary cyclone moves northeastward, the 850-mb winds are shifting
from the south-southwest to southwest. In the isotherm pattern
there is a cool region between the Appalachians and the coast.

However, even if this cooling is extrapolated linearly to sea level,
it cannot account for the pressure ridge.

There is a suggestion of a weak Type B cyclogenesis off the coast.
However, this cyclone only intensifies slowly in the next 18 hours.

The ridge has changed its character considerably since 0000 GMT.
North of Washington, there is still a corner ridge present. In this

region surface winds are mostly from the east. South of Washington
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a wedge ridge has developed. Here north-northeast to northeast

surface winds extend all the way to the coast.

The major precipitation region is now over Pennsylvania and
Ohio, where warm advection is occurring. West of the Appalachians,
the precipitation seems to be associated with the warm and cold
fronts. To the east of the mountains, precipitation is completely
separated from the front,possibly because the location of the fronmt
at the surface is considerably further south than the region of strong

thermal contrast at 850 mb and above.

4.6 Inversion Height

Figures 17 and 18 show ﬁhe potential temperature as a function
of height at 0000 GMT and 1200 GMT 28 April 1966 for each radiosonde
station. The pressure-height coordinate extends from the surface
to 800 mb, A marked inversion can be seen at almost.all of the stations
in the cold air, while no sharp inversion exists for stations in the
warm air. In the north-south direction, the base of the inversion
slopes upward from the front. In the east-west direction the height
of the inversion has a remarkable variation. Stations along the
coast have inversion bases which are much closer to the ground than
stations ﬁetween the coast and the Appalachians (for instance,
compare WAL and IAD). Moreover, on the west side of the Appalachians
the inversion base is lower again (for instance, compare PIT and
IAD, especially in Figure 18). This same pattern was found not only

at other times in this case, but in other cases as well.
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In order to determine the effects of these changes in the
inversion height on the sea-level pressure field, let us consider
the conditions at WAL and IAD at 1200 GMT 28 April 1966. Figure 16
shows that WAL has a higher 850-mb height than IAD. Figure 15
indicates that IAD has the higher 1000-mb height (assuming the 1000-mb
height field has approximately the same shape as the surface pressure
field). Hence, the 850-1000-mb thickness must be smaller at IAD
than at WAL. Consequently, the 1000-850-mb mean temperature is
lower at IAD.

Consider now the soundings at IAD and WAL given in Figure 18.
Both soundings have approximately the same potential temperature
at 1000 mb and 850 mb. Hence, the lower mean temperature (or,
equivalently, lower mean potential temperature) at IAD noted above is
directly related to the higher inversion over that station. 1In
conclusion, it appears reasonable that the pressure ridge is a
necessary consequence of changes in the inversion height aloft.

Unfortunately, the density of radiosonde stations is too low
to separate distinctly the north-south variation of the inversion
height from the east-west variation by the type of analysis presented
in Figures 17 and 18. Therefore, another type of analysis was
carried out in order to test the above conclusions concerning the
inversion height.

Let us idealize the inversion as a temperature discontinuity,
and assume that between the surface and 850 mb the temperature varies

linearly with height as shown in Figure 19. On the basis of these
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assumptions, a theoretical height of the inversion,f*uv, can be
calculated from observed data, once the lapse rates in the warm and
cold air are assigned.

An examination of Figures 17 and 18 shows that in the region of
the pressure ridge the lapse rate in the cold air is approximately
moist-adiabatic. It is more difficult to choose a single lapse
rate for the warm air, but again moist-adiabatic seems to be the
best approximation. The calculations were based on station pressures
to avoid reduction problems. Station pressures, Pg¢ , were found by
subtracting the altimeter correction from the altimeter setting
for each station (Bellamy, 1944). The observed surface temperature,

T} , and dew point,7;ﬂ , were used as reported. 850 mb temperatures,

50

'ﬁ#p, and heights,*kﬁo, were obtained by interpolation from the analyses.

First, the mean virtual temperature,7} , from the surface to

the 850-mb surface was calculated for each station from the hypsometric

formula

(oK) = oo ~Hs (m)

Ty 21174&&(@y@sa)

(4.1)

where Hs is the station elevation.

In order to find the mean temperature, T , 1t was assumed that

the surface dew point was an adequate measure of the moisture above

—

—
a station. Since this correction from 7} to T is a second-order
correction, this assumption is justified. The equations were as
follows: -—

= - Tv__ _ a93.16
-r ( oc) = /.0+0,6V' 17 (4.2)
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where
3.%0 9.7 Top
r= ex [ 277 oF
P e Top + 273.U6 . (4.3)

The inversion height can be found by straightforward algebraic

manipulations (the derivation is given in Appendix D); the result is
H z
INV B . (4-4)

where

2 s =
C = x“‘“;'”"u’) — ToHy + Taso Heso — (Hose =He) T

(4.5)

B= T, —Taro + G (Hs ~Heso)

Im is the moist adiabatic lapse rate.

The calculated values of Hwv for each radiosonde station are
given in Figures 17 and 18. In the warm regions where an inversion
is not present, H,y» is predicted to be below the ground. Similarly,
in regions to the north where the inversion was above 850 mb, no
inversions are predicted. For stations reporting inversions, Huwv
is generally predicted to be somewhere in the region of sharpest

potential temperature rise with height. There are, however, two
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notable exceptions: GSO and PIT, both in Figure 17. An investigation

traced these discrepancies to a difference of around 1.5 mb between the
reported radiosonde station pressure (which is used in determining the
850-mb height) and the official station pressure (which is used direct-
ly as data for Hw ).

Since many conclusions in this thesis are based upon analyses
of Hw , it is important to establish the probable error of this
method. Only errors in measuring surface pressure are considered.
If the reported station pressure is off by 0.5 mb, then the corresponding
error in the 1000-850-mb thickness is four meters, or equivalently,
a mean temperature error of 0.8°C. In Appendix D, it is shown that
a 0,5°C error in mean teﬁperature results in around a 60 meter error
in Hwv . Hence, the probable error is +100 meters. Since Hw varies
in magnitude from zero meters to 1500 meters, the probable error is
not significant. |

Hw was calculated for each synoptic station in the eastern

United States. Analyses of Hww for the same observation times as
Figures 17 and 18 are given in Figures 20 and 22.

These analyses confirm the conclusions reached on the basis
of the radiosonde data in Figures 17 and 18. Ham intersects the
ground ne;r the location of the front, as one would expect. To the
north, Hww is inclined upward to the north with a slope of 1:300.
Over the water the data suggest that the inversion height contours
pa?allel the front. A very pronounced inversion height maximum
extends along the whole length of the Appalachians. The inversion

height decreases rapidly on the lee side of the Appalachians.
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It is difficult to compare the inversion height with the terrain

elevation in Figures 20 and 22. Such a comparison can be made more
easily in Figures 21 and 23 where the variation of the terrain elevation,
inversion height ( Hiw ), and sea-level pressure along two lines
perpendicular to the Appalachians is given. (Figures 20 and 22
show the location of these lines: ERI to DOV and DAY to HAT.)

In Figures 21 and 23, the sea-level pressure has a maximum on
the windward slopes; i.e., the characteristic feature defining a pressure
ridge. 1In Figure 21 the inversion height on the ERI to DOV line
follows approximately the outline of the ground elevation. The cold
air depth increases toward the mountains at the coast. On the
windward slope the depth is approximately constant, but decreases
at the crest of the mountains. On the lee side there is little
change in the depth. On the line from DAY to HAT the inversion
intersects the ground on both sides of the mountains‘because, as can
be seen in Figure 20, both DAY and HAT are in the warm air. As noted
along the ERI to DOV line, the cold air depth from right to left in
Figure 21 at first increases on the windward side, and then decreases
as the mountain summit is reached.

In Figure 23 the sea-level pressure and inversion height have
some feat;res similar to those noted in Figure 21. The main differences
along the ERI to DOV line are (1) the inversion crest is not over the
mountain crest but is displaced toward the windward side, and (2) the
depth of the cold air decreases significantly on the lee side of the

mountains. The main difference along the DAY to HAT line is that the
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inversion height is lower than twelve hours earlier. In fact, now
it does not extend above the mountain crest at all. Evidently, the
cold air has been blocked by the mountains. Surface data supporting
the conclusion that blocking is occurring is given in Section 4.7.

In Figure 21 the inversion crest is located right over the mountain
crest, while in Figure 23 it is displaced further toward the east. The
author feels that the inversion heights given in Figure 22 and 23
are more reliable than those in Figures 20 and 21 because, as noted above,
there was better agreement between Hw and the radiosonde data at
1200 GMT (Figure 22) than at 0000 GMT (Figure 20). It is felt,
therefore, that the inversion crest in reality is situated to the
east of the mountain crest. However, more accurate observations
are required to verify this observation.

The above cross sections were perpendicular to the mountains.
However, the large-scale flow in a pressure ridge situation makes
an oblique angle to the mountain range (see Figure 13, for instance).
Hence, the cross sections in Figure 21 and 23 cut across the large-
scale flow. For a better understanding of the pressure ridge, a
study of the inversion variations along a trajectory would seem to
be physicglly relevant, since, as a first approximation, the cold air
mass flux should be conserved and temperature changes should be
either adiabatic or moist-adiabatic along a trajectory.

The fundamental problem in using a trajectory technique is how
to determine the actual trajectories. The use of surface observation

undoubtedly would not be satisfactory since surface winds are affected



too much by surface friction to be representative of the cold airflow as
a whole. In addition, upper-air observations are too scarce to be of
any assistance. Since the observational data is inadequate, theoretical

trajectories have been used in this investigation (see Section 4.9).

4.7 Evidence for blbcking of the cold airflow by the mountains

At 1200 GMT the cold air is still flowing over the mountains in
West Virginia where there is a mixed region. However, as shown in
Figure 24, by 1800 GMT this mixed region has moved out of West Virginia.
Warm air is now flowing in from the southwest. Figure 25 presents a
detailed examination of the meteorological conditions in the West
Virginia region (see the insert in Figure 25 for exact area of the
United States covered in this fiéure). In this figure an analysis
of maximum temperatures is given along with 1800 GMT observations
(see Appendix E for details of. the method used to determine the
maximum temperatures).

The sharp contrast in weather across the mountains is brought
out clearly in Figure 25. To the west, ceilings are 5000 ft or more,
temperatures are in the 70's, and there are scattered thunderstorms.
To the east, ceilings are below 1000 ft, temperatures are in the 40's,
and a few places report drizzle. Pilot reports indicate the top of
the overcast is only 4000 feet. Evidently, the warm air flows froﬁ
the west up the mountain slope and then out horizontally over the cold
air. The observed surface temperature decreases by more than 25°F in

less than 60 miles across the mountains east of EKN.

59
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Even though the cold air is blocked to the south, the maximum
temperature analysis indicates that it is still flowing over the
mountains to the north of the highest ground elevations. This fact
is also evident in the 1800 GMT analysis (Figure 24). Evidently,
the height of the mountains is important in determining whether or
not blocking occurs.

Since no cold air is flowing across the mountains into West
Virginia at 1800 GMI, the zone with north-northeast winds east
of the mountains must now extend through the whole depth of the cold
air. There are no available wind observations aloft at 1800 GMT to

verify this conclusion.

4,8 Further development of the ridge

By 1800 GMT (Figure 24), the low off the coast is somewhat more
intense than it was at 1200 GMT. Most of the precipitation along the
east coast has ended by 1800 GMT.

Let us consider the events after 1800 GMTI. The squall line,
which was approaching the mountains at 1800 GMT, very quickly dissipated
when it encountered the cold air. However, the thunders torms did
produce a pressure oscillation on the inversion surface which could be
tracked eastward. As the cold front moved over the pressure ridge
region, it became difficult to follow. Apparently, the cold air
behind the front did not penetrate the even colder air associated with
the ridge. Such a phenomenon has been described by v. Ficker (1926)

in Vienna and Takeuchi (1951) in Japan. Von Ficker called it a
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"masked cold air invasion."
The pressure ridge persisted along the coast after 1800 GMT,
although it slowly weakened. The low clouds persisted east of the

mountains even past 1800 GMT on the 29th.

4.9 Theoretical trajectories of the cold airflow

As noted earlier, it is more physically meaningful to consider
the inversion height variations along a trajectory than along a line
perpendicular to the mountains. In addition, a ﬁrajectory analysis
is useful in the investigation of the orographic blocking of the
cold airflow. For the above reasons, a computer program was developed
which calculates dynamic trajectories.

The change in the position and speed of a parcel are computed
at 20-minute increments by means of the spherical equations of motion.
Given the location and velocity of a parcel, a rough approximation
of the position and velocity of the parcel 20 minutes later is made.
The values at this later position are then used to improve the
rough approximation so that a more accurate final position and
velocity are obtained. (See Appendix F for the details of the
technique.) Uncertainties in the given pressure field, in the given
initial conditions, and in the assumptions made about friction
(discussed below) probably cause much larger departures of the

trajectories from reality, than the accumulation of errors in the
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method employed here.

The initial velocity and position of a parcel has to be assigned
in order to compute the trajectories. Only parcels originating over
the ocean are considered. Initial velocities are assumed to be
geostrophic since friction is much less over the ocean than over
the land. Suuporting this assumption are the observed winds at WAL
which are approximately geostrophic.

The observed sea-level pressure field is used to determine the
pressure gradient force. For convenience, pressure values are
obtained for a latitudinal-longitudinal grid with grid points
spaced every 1° of latitude and 1° of longitude. Pressure values,
which are linearly interpolated in space and time, are taken from
analyses at 3-hour intervals.

Since the pressure field is given rather than predicted, the
calculated dynamic trajectories are diagnostic rather than prognostic.
Trajectories for parcels beginning at 0600 GMT are shown in

Figure 26. Frictionless flow ig assumed. The hatches on the
trajectories are the positions of the parcels at 3-hour intervals.
Since the pressure field was changing continuously, no one time
represents the actual pressure field. However, for reference, some
of the 1200 GMT isobars have been included in Figure 26. Those
parcels originating near the coast are shown as solid lines
(designated A,B,C in Figure 26). Those starting further off-shore
are shown as dashed lines ( designated D through I).

Parcels A,B, and C pass through the ridge region while a corner

ridge is still present. These parcels continue in geostrophic
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DYNAMIC TRAJECTORIES FOR PERIOD 0600  TO IBOOGMT 28APRIL 1966

Figure 26. Case study



balance until they pass the '"cormer" of the corner ridge. At this
point they suddenly start traveling perpendicular to the isobars;
i.e., very ageostrophically. In the new pressure field the parcels
accelerate Both westward and northward. The northward acceleration
produces an anticyclonic curvature in the trajectories. Later, the
parcels approach the direction of the isobars on the lee side. As
the northward velocity of the parcels increases,the coriolis force
component increases toward the east. Hence, this force component
acts . in the opposite direction to the pressure gradient force and,
thus, reduces the acceleration of the parcels that would occur if

only the pressure gradient force were acting,

Parcels D through I are initially flowing toward the Appalachians. -

These parcels arrive in the wedge ridge region after the wedge ridge
has formed. The observed data presented in Section 4.7 suggest

that the parcels are blocked. However, in order to be blocked, the
velocity component of the parcels perpendicular to the mountains must
decelerate to zero. One way to accomplish this deceleration is for
the parcels to encounter an adverse pressure gradient. As can be seen
in Figure 15, parcels coming off the ocean do encounter an adverse
pressure gradient in a wedge ridge situation. However, is the wedge
ridge strong enough to cause blocking?

“Parcels D and E travel to the north of the wedge ridge and thus
still follow the trajectory pattern of A,B, and C. Parcels F and G
are diverted somewhat to the south but still pass over the mountains.
However, parcels H and I curve so that they travel parallel to the

mountain range. Evidently, the wedge ridge is strong enough to block
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the prevailing flow.

4.10 Verification of trajectories

It is difficult to verify these trajectories against actual
wind observations. Not only are wind observations too limited in
space and time, but also the present averaging technique used in
reporting winds is inadequate. In this technique, the radiosaonde
position is recorded every minute ( approximately, every 200 meters
of ascent). The wind calculated for each minute is a two-minute
average centered on that minute. From this average, the wind speed
and direction at a desired height is found by linear interpolatiom.
Hence, every reported wind is a three-minute ( 600-meter) weighted
average. The strong wind shear between the cold and warm air
is undoubtedly considerably smoothed by this averaging technique.
Because of the shallowness of the cold air, usually only the first
reported level is based upon data taken solely in the cold air.
In fact, for some stations like WAL ( see Figure 32), which has the
base of the inversion at 300 meters, not even the first level is
based solely on cold air data. In future studies of the ridge,
unsmoothed one-minute average winds calculated from the original
WBAN forms should be used.

Another problem encountered was the frequent loss of wind data
at low levels. Probably, the RAWIN equipment lost the balloon
when it changed direction too quickly in the low-level shear. Hence,
some of the potentially useful soundings failed to report low-level

wind data.



One fact is clearly evident, however, from these trajectory
calculations: predicated winds on the lee side of mountains are
substantially higher than the reported winds. In Figure 28, for
instance, the predicated wind near PIT is 43 m/sec at 0720 GMT.

The observed wind in the cold air ( see diagram in the lower left of
Figure 28) is only 10 m/sec. This discrepancy will be considered in

detail in Section 5.6.

4.11 Proposed explanation of the zone of parallel flow next to the
mountains

As noted earlier, south of Washington, D.C., there is a zone of
surface winds parallel to the mountains when a corner ridge is present.
Since cold air is observed on the western side of the mountains, it
seems reasonable to assume that this parallel flow exists only
right at the surface.

One possible explanation of this zone is the change in the
trajectory of an air parcel produced by the change in surface
friction as the parcel moves from the ocean to the land. To test

-4 =

this theory, a friction term of the form F=-pau was included
in the trajectory program. The value assigned to @ was 1.0 sec_l —
which is the order of magnitude necessary to balance forces for a
wind blowing 30° across the isobars at one-half the geostrophic
velocity.

Trajectories computed with friction are given in Figure 27. The
solid lines are the flow without friction and the dashed lines with

friction. The trajectories were started at 0000 GMT 28 April 1966
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DYNAMIC TRAJECTORIES FOR PERIOD 28 APRIL 1966 0000 TO 1200 GMT

Figure 27. Case study



at the coast. The flow was assumed to be initially geostrophic.
Parcel AF travels to the left of parcel ANF but still passes

over the mountains. This direction of travel agrees with the
observed flow in that region. A study of the calculations reveals
that the reason AF does not curve southward is the flat pressure
field in eastern Pennsylvania. AS% becomes zero, the coriolis
force in the y direction counteracts the tendency of AF to turn
southward. Hence, the parcel continues moving toward the west.

C

Parcels B D_, and E_ all curve southward and flow

F> F> °F F

parallel to the mountains, producing a zone of flow parallel to
the mountains. This behavior is similar to that observed in the
cold air. Therefore, these trajectory calculations support the
contention that the zone of parallel winds is caused by the change

in the surface friction.

4,12 The inversion height variation along a cold air trajectory
Figure 28 presents the variation of sea-level pressure and
inversion height along a cold air frictionless trajectory for a
corner ridge. Only one trajectory is discussed here because the
other trajectories havesimilar features.
The path of the trajectory on the earth's surface is given in
the upper left. The parcel begins at 0000 GMT 28 April 1966 at

the coast and crosses the mountains while a corner ridge is still

present on the windward side. The surface map for 0600 GMT has been

included for reference. The sea-level pressure ( at 0600 GMT),
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inversion height ( at 0000 GMT and 1200 GMI) and terrain elevation

along the trajectory are given on the right side of Figure 28.

From east to west, the pressure along the trajectory never rises.

It decreases slowly until about halfway up the windward slope.

A rapid decrease occurs across the mountain crest, followed by

a slower decrease on the lee side. The inversion height at 0000 GMT
and 1200 GMT follows approximately the contours of the mountain.
However, there is a marked thickening of the depth of the cold air
on the windward side. This thickening is followed by a decrease

in the depth which begins even before the inversion crest is reached.
The inversion crest is located to the east of the mountain crest.

On the lee side, the height of the inversion decreases Qery rapidly.
In fact, at 0000 GMT the inversion even intersects the ground.

A discussion of the physics of this cold airflow is given in Section 5.6.
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Section 5. Physical behavior of the cold airflow

5.1 Relevance of previous theories of the pressure ridge

A re-examination of the previously proposed theories of the
pressure ridge reveals that none of these theories postulates a
shallow cold airflow as found in Section 4. In fact, Queney's theory
explicitly excludes any inversion. Hence, none of these theories
is directly applicable in this study. However, the suggested physical
processes of v. Ficker and Trabert (release of latent heat) and Ekman
(coriolis effects) still could be pertinent, in modified form, to the
cold airflow.

In order for Ekman's theory to apply, the depth of the cold air
must decrease on the windward side and increase on the lee side of the
mountains. Unfortunately, in the observed cold airflow the depth
first increases on the windward side and then rapidly narrows as it
flows over the mountain crest onto the lee side. Hence, overall the
behavior of the depth is opposite to that required by Ekman's theory.
Moreover, the trajectory calculations ip Section 4.9 indicate that
one cannot assume geostrophic motions —— another requirement of
Ekman's theory. In conclusion, it appears that Ekman's theory is not
applicable to the pressure ridge being studied here.

Since the pressure ridge is only an easily noticed feature of the
cold airflow, the explanation of the pressure ridge should be found
in the explanation of the cold airflow. This section attempts to

explain the behavior of this airflow.
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5.2 Steady-state assumption

Because of the long duration of the pressure ridge — an average
of 30 hours for those cases in Appendix A — it is presumed that the
cold airflow can be treated as if steady-state. The following
discussion is limited to this steady-state airflow. Unfortunately,
this limitation means that no reason for the formation of the pressure
ridge can be advanced, since the formation itself is non-steady-state.
Still, it is of meteorological significance that a pressure ridge
can be steady-state and stationary under conditions where the large-

scale flow is changing and moving.

5.3 Consequences of compressibility and the release of latent heat
In order to estimate the importance of compressibility and of
condensation, their possible effects on the céld airflow in
Figure 28 are considered. As a measure of this importance, the
effects of these processes on the mean temperature of the surface
to 1700 meter column are calculated. This mean temperature should
provide a good measure since this column is high enough to include
all changes in temperature associated with the cold airflow. In
particular, the theoretical change in mean temperature from the coast
(at 0000 éMT in Figure 28) to the location of the maximum inversion
height (at 0530 GMT) is determined. In the equations below, these
locations are denoted by the superscripts "1" and "2", respectively.
Let us assume, first, that the cold air mass has a dry-adiabatic

lapse rate (This assumption is vital since the argument below only
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holds if conditions have neutral stability. Since the cold air usually
is neutrally stable, no problem should arise.) Under such a condition,
there is no horizontal temperature change under 700 meters as long as
parcels move adiabatically. Consequently, the lower reference level can
be taken as 700 meters instead of sea level. The choice of this level
also avoids the necessity of having to assign a fictitious atmosphere
within the mountain.

Let us divide the mean temperature, i= , of the 700 to 1700 meter

column into the mean temperature of the warm air, T, , and of the cold

air, 52, . The mean temperature of the whole column at any location is
given by T =’___ H)
= 1000~ + (-"’ (5.1)

where H equals the inversion height minus 700 meters. Hence, the

difference in mean temperature between locations 1 and 2 is
(5.2)

— —1 kY
FI_F*= ;.;’;[-'r‘;,i (1000-H') + Ton (H) = Tua (256 -H*) - T4 (H)J
[

If we let

and substitute into Equation (5.2),we get, after algebraic manipulations,
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-H'+4H
+ A:FWA (loofool:* ) @ (5.3)
— H'- 4R
+ AT;A ( -y ) @

The three terms in Equation(5.3) are labeled @, @ and @
so that they can be referred to individually. (:) is the contribution
of the inversion height while (:7 and <:) are the contribution from
changes in the mean temperature of the warm and cold air, respectively.
Since in an incompressible neutral atmosphere A'-l:w‘ and A:T"a would
be zero, (:) and <§> can be viewed as arising from the compressibility
of the atmosphere.

For the flow in Figure 28, QAH = =1000 meters and H' =0 meters.
Equations (5.3) then‘reduces to

F_F . (T T+ ATea (5.4)
]
If at location 1 the temperature is Y (which is also the mean

temperature), then the mean temperature of the cold air at location 2 is

—a ~ .o (%c/m) x 1000 (m)
T = 2L 2 - = V-3 (5.5)

Hence,

AT, = Y- Y+5 = 5%

Since the temperature difference across the inversion is approximately

10°C, from Equation (5.4),
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© @

'7._.,‘_'_7_-1- . (0°c +5°%¢ (5.6)
)
Apparently, the contribution of (:) to the change in mean temperature
is twice that of (:). Thus, the effects of compressibility are not
as important in the cold airflow as changes in the inversion height,
but clearly are not negligible.
The effects of condensation can be calculated approximately

by assuming a moist-adiabatic lapse rate of .5°C/100 m and saturated

conditions in the cold air. Then, Eqﬁation (5.5) becomes

=1 _ 2Y-.oos (%c/m) * 1000(m) Yoac
T 2 - ! (5.7)

and Equation (5.6) becomes

®

_?I— .7:12 lo ¢ .l. 2,( 'C . (5.8)

A comparison of Equation (5.8) with Equation (5.6) shows that condensation
has reduced the magnitude of CD . Thus, for saturated conditions,
the effects of compressibility and condensation offset one another.
Consequently, the inversion height effect, C) , 1s even more
dominant than in unsaturated conditiomns. Since in the case study, the
cold air was saturated, compressibility and the release of latent heat
probably only modify the cold airflow, while the inversion height is of
fundamental importance.

The flow in Figure 28 is associated with a corner ridge. Since
vertical displacements for a wedge ridge are less than for a corner

ridge, compressibility and the release of latent heat should be of
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secondary importance for the wedge ridge, too.

In conclusion, the above results suggest that v. Ficker's and
Trabert's proposals that the release of latent heat is the dominant
physical mechanism of the pressure ridge is not valid for the

Appalachian pressure ridge.

5.4 Importance of the warm air pressure gradient

The warm air pressure gradient at 0000 GMT 28 April 1966
(Figure 14) is equivalent to a geostrophic wind of around 15 m/sec
over most of the east-coast region. Even though this velocity is not
very high, the calculations below suggest that this warm air pressure
gradient is important for the cold airflow.

If B  is the pressure at 700 meters and P, is that at 1700

meters, then the change of pressure at the lower level is given by

' L ! 3 -
h-fe = ..’1__.'_1.."__ - Zi'(f"'r’) (5.9)
[ [ R(T) ,

where z is the difference in height between these levels. If we let
T =280°K, P =830 mb, and Ps = 950 mb in Equation (5.9), we get
- =3
B'-pt = (R'-R*)LIY - 0.4 (F'-T ) (5.10)

’ ¥ 3
From Figure 13 we obtain g - ’7 = - 6.0mb

From Section 5.3 we have approximately

Hence, we find
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PP 2 —68ab + #lmb = =278, (5.11)

(Figure 28 gives

ﬂ'_g‘:-lbnk ,

although such a close agreement with Equation (5.11) may be
fortuitous since Figure 28 gives the 0600 GMT pressure field.)

It is clear from Equation (5.11) that, as already suggested in
Section 4.6, the cold air pressure difference is a necessary
consequence of the warm air pressure gradient and the rise of the
inversion. In conclusion, the warm air pressure gradient must be an
important factor in the flow of the cold air over the Appalachian

Mountains.

5.5 Effects of surface friction, coriolis force, and mixing

The above conclusions were deduced from computations that appear
to be reasonably justified. The importance of surface friction,
coriolis force, and mixing of the warm and cold air masses cannot
be as readily estimated by quantitative arguments.

One would expect friction to be impoftant since the cold air is
not only located next to the ground, but also locatéd over mountainous
terrain, which should increase the surface friction still further.

The trajectory calculations in Section 4.9 show that the component
of the coriolis force in the direction of the initial airflow is
important. Moreover, since the flow is initially geostrophic, the
componént of the coriolis force perpendicular to this direction is

obviously important. However, the existence of the mixed region



suggests that it is important, also.

5.6 Physical behavior of the cold airfloﬁ

Seven pressure ridge cases ( in addition to the case study
presented in Section 4) were analyzed to ascertain which features
brought out in Section 4 are unique to that case and which are
characteristics of pressure ridges in general. ( A list of these
eight cases is given in Table 3.) The schematic diagrams in
Figure 29 and 30 have been prepared from the results of these
eight case studies and from the physical deductions given in this
section. ( Noted that the Appalachian Mountains have an idealized
north-south orientation in these diagrams.) Hence, these diagrams
summarize to a large extent the results of this entire investigation.

In Section 5.3 through 5.5 physical factors have been considered
individually. Here, an attempt is made to explain qualitatively
how these processes interact.

In Section 5.4 it was shown that the warm air pressure gradient
along the trajectory in Figure 28 is strong enough to offset the
low-level increase in pressure associated with the rise in the
inversion height. If this warm air gradient were not present, a
parcel moving along the same path would experience a pressure increase
of around 4 mb between the coast and the inversion crest. The
trajectory calculations in Section 4.9 indicate that a pressure
increase of only about 2 mb is necessary to produce blocking.

Thus, without this warm air gradient, no cold air would pass over

the mountains. Clearly, the cold airflow pattern depends greatly
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Schematic Diagrams of Wedge Ridge
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on the warm airflow paftern above it.

In order for the cold air to surmount the mountains, this
warm air gradient must be strong enough to offset not only the
pressure increase_from the inversion, but also the effects of
the frictional and coriolis forces. Surface friction produces a
force opposite in direction to the flow and, hence, opposes the
flow over the mountains. It was shown in Section 4.9 that the
coriolis force hinders the westward flow of cold air in a cormer
ridge, once the air has passed the ridge line.

Evidently, in order for the cold air to pass over ;he mountains,
it must flow down the warm air gradient. Moreover, since the cold
air strikes the mountain range almost at a right angle, the warm
airflow, which is quasi-geostrophic, should be parallel to the
mountains. Thé eight analyzed cases were examined to confirm these
conclusions. In seven of these cases the cold air did, indeed, flow
down the gradient. The anomolous case ( 12 November 1966) had a
very high inversion ( around 750 mb ) with a cold airflow that was
difficult to interpret. Six out of the seven pertinent cases had
a warm airflow which ran either along the length of the Appalachians,
or at a slight angle as shown in Figure 29. One case ( 24 February
1966) had a flow which crossed the mountains from the east side.

* When the warm air pressure gradient is sufficiently strong,
a corner ridge is present and the cold air passes over the mountains.
If this gradient then weakens, a wedge ridge will appear and block

the flow. This weakening can be accomplished either by a reduction
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in the warm air gradient and/or by a change in direction of this
gradient. Of the eight cases, three had a wedge ridge develop from
a corner ridge. In one of these cases ( 14 February 1970) the wind
direction became almost perpendicular to the mountains as denoted
in Figure 30. In the case study presented in Section 4, the warm
airflow both weakened and veered ( compare Figures 14 and 16).

The remaining case ( 24 January 1965) had no apparent change in the
warm air direction of flow. In this case thé increased pressure

at the surface associated with the wedge ridge formation appeared
to reflect cold air coming down from the north near the surface.

In conclusion, the case studies generally confirm the importance
of the warm air pressure gradient.

An interesting ramification of the above discussion is the
effect of the height of the mountain crest on the cold airflow. In
order for the cold air to surmount the mountains the inversion
height must increase more for the higher segments of the Appalachians
than for the lower. However, the warm air gradient is approximately
the same for the two regions. Consequently, the increase of the
inversion height that is necessary in order for the air to flow over
the higher segments could be so large that a wedge ridge develops.
In this case, the cold airflow will be blocked for the higher
portions of the mountain range, but not for the lower. Such a
behavior has already been pointed out in Section 4.7.

Consider now a parcel of the cold air streamline given in the

surface diagram of Figure 29. (This streamline is the horizontal
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projection of the flow given by the wind arrows just beneath the
inversion in'the cross section diagram.) Until this parcel reaches
the "corner" of the corner ridge, the increase in the inversion
height offsets the warm air gradient so that there is little pressure
change along a trajectory. As the parcel approaches the inversion
crest, the offsetting effect of the inversion diminishes and the
pressure begins to fall more rapidly along the trajectory. Hence,
the "corner" of the corner ridge is located at the place where the
inversion slope starts diminishing. At the crest itself, the cold
air pressure gradient along the trajectory equals the warm air
gradient. To the west of the crest, the pressure change from the
inversion height augments the warm air gradient, thus intensifying
the cold air gradient. This augmentation accounts for the strong
pressure gradient across the mountains when a ridge is present.

Since this strong cold air gradient extends above the mountain
top, it is meteorologically significant. However, in the case of the
wedge ridge shown in Figure 30, the increased pressure gradient across
the mountains cannot be explained by changes in the inversion
height. In this case, the large mean temperature difference across
the mountain probably intensifies the pressure difference.

However, since this difference would be beneath the mountain top,
it is not meteorologically significant. 1In addition, the method
used in reducing pressure to sea level would exaggerate the observed

pressure difference since the reduction depends upon the observed
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surface temperatures.

The above discussion has dealt with the hydrostatic aspects
of the cold air pressure field. Let us now consider the dynamic
aspects.

Once an air parcel passes the "corner", it accelerates rapidly
in the forward direction. Assuming the flow is two-dimensional, this
velocity increase of the parcel should be reflected in a decrease
of the cold air depth. Figure 28 shows that the cold air depth does,
indeed, start decreasing even before the inversion crest is reached.
As also shown in Figure 28 the trajectory velocity continues to increase
over the mountain crest and onto the lee side. The inversion depth,
in accord with the consefvation of mass flux, also decreases rapidly
from the windward to the lee side. However, the predicted trajectory
velocity ( given in Figure 28) is of hurricane magnitude on the
lee side!

Clearly, something is wrong. The most reasonablé explanation
for these unrealistically high predicted winds is the neglect
of surface friction in the trajectory calculationms.

Althaugh it is difficult to evaluate the effects of surface
friction, ;ts effect should be greatest at the ground. The results
of the.theoretical calculations given in Section 4.1l show a decrease
in velocity of a parcel when friction is included. In fact, for
certain coefficients of linear friction the velocity perpendicular
to the mountains decreases to zero, indicating that the air does not
pass over the mountains at all, but flows southward parallel to

the mountains. Such a zone of parallel flow was found in all eight



cases studied. In Figure 29 the component of the surface winds
perpendicular to the mountains is indicated by the series of arrows
closest to the ground on the windward side.

The importance of surface friction on the cold airflow depends
on how far aloft significant frictiomal influence extends. No
observational data is available to help answer this question.
However, if the frictional influence did not extend to the inversion,
the frictionless trajectories would be valid and hurricane winds
would be observed. The fact that hurricane winds are not found
suggests that significant surface-friction effects do extend to the
inversion. In addition, the observed neutrally stable lapse rates
in the cold air also impiy considerable mixing. Evidently, surface
friction is important throughout the depth of the cold air.

Another possible factor that has to be considered is the change
of the pressure field with height as a consequence of the north-south
temperature gradient in the cold air. Since the trajectories are
most representative of the flow near the inversion, the pressure
field at this level should be used in these calculations instead
of thevsea—level field. A comparison of Figures 7 and 15 shows that
the pressure gradient at 500 meters is approximately one half that
at sea level, although the direction is the same. Even if we assume
that the lee-side winds are also reduced by one half, they are still
considerably higher than the observed winds. Hence, one could argue
that the reduced pressure gradient aloft cannot account for the

observed lower velocities on the lee side. Such an argument is not
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very convincing, however. Clearly, frictionless trajectories based on
the pressure field aloft should be considered in future studies of
cold airflow.

Now let us consider the effect of friction on the inversion
height. As the friction reduces the velocity along a trajectory,
the inversion height has to increase ( provided the flow is two-
dimensional). Thus, friction may account for the increasing inversion
depth ( both at 0000 GMT and 1200 GMT) in Figure 28 as a parcel moves
inland from the coast.

The observed winds on the coast and on the lee side have
approximately the same velocity. If friction were the only factor
'slowing the airflow, the cold air depth at the coast and on the lee
side would be nearly the same. Since the inversion height along
the trajectory decreases considerably from the coast to the lee side,
there must be a 1oss.of cold air along the trajectory. Since the
surface airflow is unable to pass over the mountain, this surface
‘layer could account for the loss of cold air. ( If this loss is
actually significant, then one cannot assume two-dimensional flow
since % ¥ 0 .)

If this surface layer were the only loss of cold air flux
along a trajectory, the temperatures on the windward and lee side
should be approximately equal, even if the release of latent heat is
taken into account. However, some of the eight cases studied had very
marked mixed regions — much stronger than the mixed region brought

out in Section 4.
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One possible reason for the warm air in the mixed region is
mixing of the warm and cold air masses. Such a mixing process would
not only reduce the westward cold air mass flux but also act as a
frictional drag, since the warm air above is not flowing in the same
direction as the cold air.

In Figure 29 this mixing is indicated by circular wind arrows
across the inversion. Since mixing probably is occurring for the
corner ridge, it also should occur for the wedge ridge as well. Hence,
mixing is also indicated in Figure 30.

Although the schematic diagram of the wedge ridge in Figure 30
suggests a two—-dimensional airflow, actually it is impossible for the
wedge ridge to be two-dimensional. When blocking occurs, there is
cold air mass flux at the coast, but no flux at the mountain crest.
Hence, %%; cannot be zero and the airflow cannot be two-dimensional.

In summary, it appears that the warm air pressure gradient, the

coriolis force, surface friction, and mixing of the air masses are

all important factors in the cold airflow.

5.7 The role of the mountain range in the pressure ridge

This, thesis would not be complete without a discussion of the
role of the mountain range in the pressure ridge phenomenon.

The pressure ridge discussed here always appears on the windward
side of mountain ranges. The author is not aware of any similar
phenomenon which is independent of mountains. Therefore, it is
reasonable to assume that the presence of a mountain range is

a necessary requirement for the pressure ridge.



The most obvious effect of the mountain range is to produce
changes in the inversion height. In fact, most of the inversion -
height change on the windward side of the mountains is a result
of changes in the ground elevation rather than cold air depth.

A less obvious effect can be found in the case of the wedge
ridge. In this case, the mountain range allows the warm air to
flow up one slope, separate from the ground and flow out over the
cold air at the surface on the other side. This separation allows
the strong inversion initially present‘to persist. This strong
inversion, in turn, is a fundamental characteristic of the pressure
ridge. Hence, the mountain range is important in maintaining the

inversion.
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Section 6. Prediction of the pressure ridge by the operational six-layer

P.E. model

The interactions of the physical processes of the pressure
ridge are, undoubtedly, too complex for analytic solutions. Numerical
models, therefore, are the only means of studying theoretically the
pressure ridge. Possibly, operational models are already sophisticated
enough to be able to predict the ridge. In order to find out, the
author compared the predicted sea-level pressure of the operational
six-layer P.E. model (see Shuman and Hovermale, 1968) with the actual
sea-level pressure for a recent pressure ridge.situation with
subsequent Type B cyclogenesis.

Figure 3la gives the initial surface conditions prior to the
ridge formation and cyclogenesis. At this time, a stationary front,
extending from North Carolina to New Mexico, separates a warm high
to the.south from a cold high to the north.

In Figure 31b, the.sea—level pressure field, 24 hours later, is
given in solid lines, while the P.E. prediction is in dashed limes. The
location and intensity of the high and the low are fairly well
predicted by the P.E. model. However, the formation of the ridge is
not forecast at all. In addition, the intensity of the trough to the
west of the Appalachians is stronger than predicted. Temperatures
along the east coast were predicted to rise (not shown), possibly from
warmer air flowing into the region from the southeast. In actual fact,

the temperatures fell. Temperatures for the northeastern United States
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averaged about 15°F lower than predicted -- a poor forecast by any
standard.

The P.E. model also did not predict precipitation very well.

One possible reason for this poor prediction is the failure of the
P.E. model to forecast correctly the observed surface conditionms.

This failure would indicate poor predictions of boundary-layer
vertical velocities and, hence, less accurate precipitation forecasts.

Six hours after the analysis time in Figure 31b, Type B
cyclogenesis occurred east of the ridge. The P.E. model also failed
to predict this cyclogenesis.

The results of this one case study suggest that the present
P.E. six-layer operationél model is unable to predict the pressure
ridge and Type B cyclogenesis.

Let us now comnsider, on the basis of the results in Section 5, what
revisions of the P.E. model probably would be necessary in order to
predict the pressure ridge.

It can be reasonbly assumed that the accuracy of the numerical
predictions will increase as the grid spacing is reduced. However, for
economic and operational reasons, the grid spacing should be kept
as large as possible and yet still allow the P.E. model to provide
adequate forecasts. Hence, an important question is: what is the
maximum grid spacing that can resolve the ridge and its essential
characteristics?

The surface analyses in Section 4 indicate that a horizontal grid

spacing of 100 km would resolve the ridge. The present operational
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grid spacing is approximately 400 km. Recent experiments with fine

mesh grids (200 km spacing) have not yet considered any cases of
ridge development (personal communication from Major Howcroft,
Air Weather Service).

In the vertical, a coordinate is used in the P.E. model which
is a constant along the earth's surface (Shuman and Hovermale, 1968).
An approximate spacing of 50 mb between levels should be able to resolve,
for the stronger cases, the increase in the inversion depth as the
air flows inland. However, possibly, such a spacing would not allow
adequate prediction of the wedge ridge where inversion-height changes
are smaller. Hence, a 25-mb spacing in the vertical would seem more
appropriate.

Fortunately, extra grid points have to be added only close to the
ground. Above approximately 850 mb, the present coafse grid mesh
may still be adequate.

Since the lowest 50 mb is now assigned to the boundary layer,
the whole boundary layer concept presently employed would have to be
revised.

The only necessary modification of the basic equations in the P.E.
model is a change in the frictional force term in the equation of
motion. At present, the frictional force is assumed to be a function
of a drag coefficient and the wind velocity squared. The frictiomal
force is set equal to zero except in the boundary layer. Although
this approach may be adequate for handling the effects of surface

friction in the ridge, it eliminates entirely the possibility of
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mixing. In order to include mixing, the frictional force should be

R
(K5

i.e. the turbulence theory approach should be used. Since the

set equal to

vertical grid points have to be close together in order to resolve

the features of the pressure ridge, this approach seems feasible.



Section 7. Significance of this research in explaining phenomena

related to the pressure ridge

7.1 The ridge and the foehn

Because of the well-established association between the ridge
and the foehn, the results of this study may be relevant to an
explanation of the foehn.

The type of pressure ridge investigated in this thesis was
associated with a low-level inversion. To the author's knowledge,
no study has been made to determine if the presence of a low-level
inversion is a necessary condition for a foehn. However, Kuttner
(1939) and Frey (1953) include a low~level inversion on the windward
side of the Alps in their description of the foehn. Hence, there is
some evidence that a pressure ridge similar to the ridge\studied in
this investigation is associated with the foehn. Therefore, the
conclusions of this research may be pertinent to studies of the foehn.

Schweitzer (1953) and Houghton and Kasahara (1968) noted some
analogous characteristics of the foehn and the flow of a one-layer
fluid over a barrier. This flow can be adequately explained by
solving the shallow water equations without any pressure gradient
above the fluid, coriolis force, friction, or mixing. Hence,
Houghton and Kasahara (1968) proceeded to investigate further
ramifications of shallow water theory with these simplifications.
One can infer from the results of this thesis that these four

physical processes will have to be included in a model of the foehn
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before an adequate explanation of the foehn can be advanced.

7.2 The ridge and the bora

Artemova (1962) describes a bora at Novorossiisk which is
associated with a strong inversion aloft (monsoon bora). For this type
of bora, the associated ridge should be the corner type since the cold
air is clearly passing over the mountains. A verification of this

hypothesis was not carried out.

7.3 The ridge and Type B cyclogenesis

Type B cyclogenesis and its accompanying weather have always been
poorly forecast. Conover (1941), for instance, noted that bad weather
often would be in New England before the storm center had been located.
In Section 6 it was noted that Type B cyclogenesis was not predicted by
the P.E. model, and its accompanying weather was poorly forecast.
Hence, there seems to have been little progress over the years.

Probably an improvement could be achieved by ascertaining the
physical processes involved in Type B cyclogenesis. In particular,
its relationship to the pressure ridge should be determined. A brief
discussion on this relationship is given below.

Analyses at three-hour intervals of the 26-28 April 1966 case
showed that the wedge ridge formed before the low center appeared. In
the other seven cases, the wedge ridge either preceded or developed
simultaneously with the secondary low. Evidently, the wedge ridge is

conducive to cyclogenesis. One possible reason for the association is

given below.



98

Supposedly, cyclones frequently form on the lee slopes of
mountain ranges because a current flowing down a slope is conducive
to cyclogenesis. For a pressure ridge, the warm air may behave as if
the inversion were a mountain ( 0i and Sekioka, 1965). TFor a west wind
the warm air descent would begin further to the east when a ridge is
present than when it is not. Hence, with a ridge present, lee-side
cyclogenesis should occur not on the eastern slope of the Appalachians,
but nearer to the coast.

To test this theory a time cross section ( Figure 32) of wind and
potential temperature was made for WAL, the station nearest the low.
Soundings every six hours were available., There was no noticeable
change in the distribution of potential temperature at the time of
cyclogenesis ( at approximately 1200 GMT 28 April 1966). However,
there was a marked windshift from south-southwest to west-northwest at
3000 feet between 1200 GMT and 1800 GMT; i.e., right at the top of
the inversion. This corresponds to a shift from an upslope to a
downslope wind and, hence, corroborates the above theory. Unfortunately,
the other cases studied did not have such a windshift at the time of
cyclogenesis. Hence, the above theory is probably not a correct
explanation of Type B cyclogenesis.

Since the wedge ridge has an intrinsic cyclonic circulation, land
observations in the absence of ship observations may suggest the presence
of a low off the coast, when, in fact, there is no low. Hence, in ridge
situations, ship reports are essential for determining the conditionms

just off the coast.
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Unfortunately, it is not possible from this research to provide an
adequate explanation of Type B cyclogenesis. Clearly, more research

should be devoted to this topic.

7.4 Orographic rainfall

Orography increases precipitation by (1) augmenting condensation
by enhancement of the upward vertical motion and (2) releasing
potential instability through this upward motion. Since the development
of a pressure ridge changes the flow pattern around mountains, it
alters the vertical motion field. This alteration in turn changes the
distribution and intensity of the orographic precipitation. In the
following, only the effects of the ridge on (1) will be discussed.

Figure 33 gives the inversion for a corner ridge as determined
along the frictionless trajectory A in Figure 26. Since the cold
and warm air represent two almost independent regimes, the contributions
of each can be considered separately.

Let us assume that the cnndensed water precipitates immediately to
the ground as it forms, either as drizzle or as coalescence on drops
falling from above. The trajectory velocity multiplied by the terrain
slope is taken as the vertical velocity of the cold air. The depth of
the air comes from the difference between the inversion height and the
terrain. The precipitation rate is given by the vertical motion
multiplied by the depth. The upper part of Figure 33 give the contribu-
tion of the cold air to the precipitation rate— the maximum contribution
is 0.25 mm/hr on the steepest part of the windward slope. The precipitation

rate is negative ( evapoxation ) at the mountain crest and on the lee slopes.
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Figure 33. Contribution of the cold airflow to the rainfall rate




According to these results, this rainfall rate could be important

for a long period of precipitation, while for a short period of
rainfall it would be negligible. However, since trajectory velocities
over-estimate the actual velocity, the precipitation rates given above
are probably also over-estimated. Hence, the cold air contribution to
the orographic precipitation is probably negligible at all times.

The warm air probably ascends the inversion as if the inversion
were the actual mountain (although frictional effects would be
different). Hence, as noted above, for the warm air, the effective
shape of the mountain is different from the actual shape. Since it
is unknown how far aloft qrographic lifting extends, only qualitative
deductions are possible. |

If the warm air flows over the mountains from the east, the
orographically induced warm air precipitation will enhance the cold
air contribution on the eastern slopes of the mountains. Since the
vertical velocity reaches a maximum before the mountain crest, the
heaviest orographic rainfall should occur on the windward slopes.

Over the mountain crest the vertical velocity is negative and no
orographic precipitation should occur. The only confirmation in the
literature. of such a deduction is a study by Spinnangr and Johansen
(1954). They found a distinct band of maximum precipitation well
before the crest of the Norwegian Mountains in a case with a corner
ridge.

If the upper—air flow comes from the west, the orographic

precipitation from the warm air will fall on the western side of the
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mountains. Hence, it is possible to have more orographic precipitation
on the west (lee-side) than on the east ( windward-side) of the
mountains.

An analysis of the rainfall totals from 26-28 April 1966 was

made. Data was taken from Climatological Data ( United States

Environmental Data Service). Any orographic effect was completely
hidden by meso-scale variations in the precipitation pattern. Hence,
no conclusion could be reached as to the validity of the above deductions.
With the wedge ridge the cold air is unable to flow over the
mountains and must flow around. This flow reduces considerably the
vertical motions and, hence, any orographic precipitation in the cold
air. For warm air approaching from the west, orographic precipitation
will occur on the western slope. For warm air approaching from the east,
the inversion surface causes the air to start rising before it gets
to the slope of the mountain. Hence, even stations not in the mountains
are able to get orographically induced rainfall. This fact was first

noted by Bjerknes and Solberg (1921).
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Section 8. Principal conclusions and results

This thesis investigates the orographically induced pressure
ridge which appears in the sea-level pressure field on the windward
side of mountain ranges. It is shown that such ridges are of
global extent. This study concentrates on pressure ridges forming
on the eastern slopes of the Appalachian Mountains.

A statistical compilation reveals that these Appalachian pressure
ridges appear about three times a month and are most pronounced
in winter. The ridges develop when the prevailing flow is from the
east. Many cases are very persistent - lasting at least a day —
and appear to be in a steady-state.

Two types of ridges having different physical behaviors were
isolated in this study. This investigation was limited to those
ridges associated with a shallow cold airflow topped by a low-level
inversion. These ridges are usually accompanied by low ceilings, fog,
and precipitation.

A detailed synoptic study of one case and a less extensive
investigation of seven other cases brought out several features
of the pressure ridge. The most important result of this study was
the distinction between two types of ridges with low-level inversions:
the corner ridge and the wedge ridge ( named after the shape of the
associated isobars). It is concluded that these two ridges have

fundamentally different airflows.as described below.



In the corner ridge, the cold air is able to pass over the
mountains according to the results obtained from a frictionless
dynamic trajectory analysis. The inversion height (above sea
level) along such a trajectory was found to increase from the
ocean inland, reaching a peak over or to the east of the mountain
crest and then rapidly decreasing on the lee side of the mountains.
The cold air depth at first increases near the coast, but begins
to decrease even before the inversion peak is reached. It
decreases very rapidly across the top of the mountains and on the
lee side. On the lee side there is a region ( which has been called
a mixed region in this paper) where temperatures and dew points
are generally half way between those of the cold air to the east
and those of the warm air to the west. 1In édditinn, there is a
zone of flow parallel to the mountains on the windward slopes.

It is proposed that this parallel flow is a result of surface friction.
Figure 29 summarizes the flow associated with the corner ridge.

The trajectory calculations show that a cold air parcel travels
down the warm air pressure gradient above the inversion. However,
there is little change in the sea-level pressure along the trajectory
until the inversion height reaches its peak. It is proposed that the
pressure increase associated with the increase in the inversion
height offsets the warm air gradient above, producing little change
in the sea-level pressure as noted above. On the other side of
the inversion crest, the pressure gradient associated with the

changes in inversion height augments the warm air gradient. It is
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proposed that this augmentation accounts for the observed strong

sea-level pressure gradient across the Appalachians.

In the wedge ridge the cold air parcel coming off the ocean
either does not travel down the warm air gradient or the pressure
gradient associated with the inversion height rise on the windward
slope is greater than the warm air gradient. The trajectory
calculations suggest that the wedge ridge is usually strong enough
to stop the cold air from advancing over the mountains. Hence, the
air is blocked and it flows southward parallel to the mountains.

Four theories of the pressure ridge are known to the author.
These theories assume, however, that no low-level inversion is present.
Hence, none is applicable to this type of flow. In this study
several physical factors were found to be important. The warm air
gradient is of fundamental importance in determining the type of
cold air flow. Evidence is also found which suggests that the
coriolis force, surface friction, and mixing of the warm and cold air
are also important factors.

Several aspects of orographic pressure ridges warrant further
investigation. The lack of sufficient upper—air data in this study
necessitated the use of an indirect method of determining the inversion
height. Since the conclusions of this study are based mainly on
the results of this indirect method, these results should be verified
by direct observations.

Pressure ridges around other mountain ranges should be studied

to determine if they have features similar to the Appalachian ridges.



It is also important to establish if these ridges in other parts
of the world precede cyclogenesis similar to Type B.

Studies of pressure ridges associated with the foehn could
determine if the conclusions of this investigation are also
relevant to the foehn pressure ridge.

0f equal or even greater importance than these synoptic studies
would be theoretical studies of the pressure ridge. Hopefully, this
investigation has been carried far enough to serve as a basis for
such theoretical modeling. Such theoretical models not only could
show whether the conclusions of this investigation are physically
realistic, but also could investigate the non-steady-state motions
of the pressure ridge. In particular, an explanation of why the
pressure ridge forms and what causes Type B cyclogenesis may be
achieved most easilythrough theoretical modeling. It is hoped that
this synoptic investigation will stimulate the development of such

models.
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Number of Pressure Ridges per Month

Month

JAN
FEB
MAR
APRIL
MAY
JUNE
JULY
AUG
SEPT
OCT
NOV
DEC

Average

TABLE

1

East of the Appalachian Mountains

Year
1965 1966 1967 Average
3 4 6 4
4 4 3 4
5 5 7 6
1 4 2 2
0 3 4 2
3 2 4 3
1 2 1 1
2 2 2 2
2 3 1 2
1 3 5 3
2 3 3 3
1 4 4 3
2 3 3.5 3
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TABLE 2

Cases of Strong Ridges

Along the East Coast of the United States

Data Period:

October, 1964 to April, 1968

1965

January 15 - 16
January 23 - 24
February 23 - 25
March 26
September 5
September 28
November 11 -~ 13
December 12 - 1%

1966

January 3
February 23 - 25
February 27 - 28
March 13

March 23 - 24
April 13

April 18 - 20
April 27 - 29
June 13

September 14 - 15
September 19 - 21
December 28 ~ 29

1967

October 7 - 8
December 10 - 12
December 28

1968

January 11 - 13
January 27 - 28
April 22 - 24
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TABLE 3

Pressure Ridge Cases Studied in Detail

o BN e R T N S N

. 23
. 25
. 12
. 13
. 24

28
29
14

January 1965

March 1965

November 1965

December 1965

February 1966

April 1966 (Case described in Section 4)
December 1968

February 1970
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Station Call
Letters

ACK

ALB
BKW
BLF
BNA
BUF
CHO
CHS
CKB
CRW
DAY
DOV
ERI
FNT -
GSO
HAT
HGR
HTS
IAD
JFK
LYH
MGW

NYG
PIT
PKB
PKV
PSK
PWM
ROA
SSM
SSU
WAL

APPENDIX B
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Location

Nantucket, Mass.
Athens, Ga.
Albany, N.Y.
Beckley, W.Va.
Bluefield, W.Va.
Nashville, Tenn.
Buffalo, N.Y.
Charlottesville, Va.
Charleston, S.C.
Clarksburg, W.Va.
Charleston, W.Va.
Dayton, Ohio
Dover, Del.

Erie, Pa.

Flint, Mich.

Greensboro, N.C.
Hatteras, N.C.
Hagerstown, W.Va.
Huntington, W.Va.
Washington, D.C

New York City, N.Y.
Lynchburg, Va.
Morgantown, W. Va.
Mount Forest, Ont., Canada
Martinsburg, W. Va.
Quantico, Va.
Pittsburgh, Pa.
Parkersburg, W. Va.
Pikeville, Ky.
Pulaski, Va.
Portland, Me.
Roanoke, Va.
Sault Ste. Marie, Mich.
White Sulphur Springs, W. Va.
Chincoteague, Va.

(Wallops Island)
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APPENDIX C

ground eievation

—— water temp. isotherms
75 26-28 April 1966 (°F)

Height contours of ground elevation and
sea—-water temperatures for the case study
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APPENDIX D

Derivation of HINV
(see Section 4.6 )
i . ]
T, as used in Section 4.6, is a mean temperature weighted
by the natural logarithm of pressure (denoted by Tllep) in the
discussion below). It is more convenient in the derivation of
H,w for the mean temperature to be an average with respect to height.
It is shown first that these two means differ by a negligible
amount for the height interval considered in this paper.

Let 2, and 2, be the two levels between which the mean temperature

is desired. One gets, by definition,

If we assume a constant lapse rate, Y , then at a height 2

T =T +d(z-2)

and
23
d? _ -L -r'*r(iz"zl)
A o
zZ,

Letting _"[; = T-I ""X('?’-'?’) )

then



AT

=)
T (np A(H"—.;.—,T

Since AT is always much smaller than 7; 4 we have

~ AT _1/4aTY
Lo (1+5]) E "F,“z(-n)
or
w— ~ -7_'
T(hp) 2 Typam)
vy

Using the series expansion of the reciprocal we get
2
. ~ LAT 4 L(AT) ]
Flhap)e TI[1++4T+ z{r’

For the mean temperature as a function of distance
:r—( %) = 'T; + ‘zLAT

2

. = - z) = —_—
s Tlhup) - T(2) 2T,

The larger AT is, the larger is the difference in the two

means. In this investigation, Z2~Z

Since the greatest lapse rate that would normally be observed is

dry-adiabatic, AT would not be greater than 16°C.

T (b)) — T(2) 2 0.9 °c
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is not more than 1600 meters.
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A difference of 0.5°C is generally much less than the observed

mean temperature difference between fairly close stations. For
instance, the difference in mean temperature between WAL and IAD
at 1200 GMT 28 April 1966 is 6.6°C.

The following is the derivation of Equation (4.4). See Figure 19
and the text for the definition of symbols. In addition, the
superscripts U and L refer to the regions above and below the

inversion, respectively.

L (74
1.;_1'"’ (Hipov = He ) + Teso + Twv (Heso "H"“V)
p— p 3
T=

H?S‘o" HS
where
T = T - 8 (Hiw = He)

MY

TI-A‘J‘V = Teso + ¥ (Heg = Hypn, )

Z(Hsro""ls)? = [27;—J‘L(HM-HS)](HINV'HS)
-+ [215” FV“(H;m-Muv)](Htro"Hmv)

Solving for HINV
2
(Xu"YL)Hlnv -+ (27; 4-23"'/4: - 17;5'9 - 28“ H'“ )Huvv

—YLHE - 2T; Hy + 2 Taen Heo + ¥ “Haso = 2(Hag—H,)T = O

¢



Let

Yé-yt
A= 5

B= T, +¥H “Teso - ¥ Hygo
c =V Howo - ¥HH

2 - TSHI +n“0”’35—(”’ﬂ-“;)?
Thus,
AH/:V + Bylyy J'C‘ =0
H AqéOJ
— 8 ~{/g%~4Ac?
Hmv-‘-"
2A
)
L
i A=o, (¥“s<y'=y)

B= Ty ~Tae + ¥ (Hs~-Heeo)
= 4 H:b"”:
C = v (L= h)

and

‘ C
Fim = - "E'

= Ts s + Taco Hom ~ (Hygy ~H, ) T
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Let us now consider the effect of the 0.5°C error in

discussed above. If we let
— ' ——
TaT'+AT,

and assume, as in the text,

_ - AT(I'/‘S‘D-HI)
A H/lw - 8

For IAD at 1200 GMT 28 April 1966

44 -90 + C.005(78-1563)

B =
= —-J]2°c
and thus
- M = 6| meters
AHwy = /12

Hence, an error in

61 meters.

?

T of 0.5°C produces an error in AN, of
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APPENDIX E

Use of Maximum-minimum Temperature Records

The United States Environmental Service publishes records of

daily maximum-minimum temperature readings in Climatological Data.

The density of stations taking maximum-minimum readings is about three
times as great as that of the regular hourly and six-hourly synoptic
network. Hence, these maximum-minimum data will resolve the temperature‘
field of various mesometeorological phenomena which cannot be adequétely
resolved by the Jegs dense observational network. The use of this data
is particularly attractive if temperature contrasts are sharp, such as
across a mountain range.

Nevertheless, this data source has some very clear limitationms.
Because observations are taken only once a day, one has to establish
from the hourly data that the maxima ( or minima) all occurred at
approximately the same time. This requirement usually limits the
use of the data to meso-scale phenomena that last at least 30 hours,
since some observations are taken in the evening and others in the morning.
In the United States stations report the temperature under the date
the thermometer is read. For stations taking maximum temperature
readings in the morning, this pfocedure results in the maximum

temperatures being listed in Climatological Data one day later than they

occur.



APPENDIX F
Equations Used in Trajectory Program
Suppose a parcel is located at Xa ( latitude in degrees) and
Y. (longitude in degrees) traveling at Un (m/sec) toward the
east and Vu (m/sec) toward the north. Let R be the radius of the
earth (= 6.371 x 106 meters), and AT be the time between time steps
in minutes. Subscript n is the number of time steps taken.

Let AT x 600= ST 2958 sy 2958

R C.® R

For the first approximationy

yn+‘ - y" "'(‘XV"

7\,,, = Xu - [(C, x Ua) /Cos( Yuﬂ)J

Let ¥
_ +Y, g . Yt
= -———-""‘2 - Xo= —5
_L2F r
A’x'/ ’g’x and AJ"} = "{J;’g"?: are obtained from the analyzed sea-

level pressure field at point ( Xe , % ).

Then _
AI = fv = .a:-erxsnu(Y.‘)*Vn
ex

Acy = -’PLQ:' '.Ol‘{f?RSIN(%)XL“

Acv,‘: V,‘b{” x TAM( W) x,.)—q—
& 7, )t
A<Vf:-a” KTAH(Yn) s
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Apx = - F » Ua
AFy‘ ~F =V,

where F is the coefficient of linear friction.

The horizontal equation of motion states

Ay= Apy + Ay +Aqgy + Any

so that

Uner * 0.6 x A x AT + Un
Vﬁ*l B O“XAy 2 AT + Vi

Let
o - Una o+ Un

\'/: - Vnu-;"‘l/u

For the second approximation

2
Y+ (g *(VaxAT =600+ Ay = (&T) x18.0)

Yowr =
n+l
s
=5 _ Y+ Yine s
YM - .._—i-—-—-“
1 H
¢ G » AT %60.0 + Ax » (AT) »1%.0)
= -Cy % _
Xusl X z Y X.')
) 5
o’ X
x: = xu: ne)
: ‘ y . —-— -
A,n and A,? are obtained for the new point ( xo ; V-‘J

Ac‘x = _orust xsinv( %I) x U

o=

Ay = —.ol4sE xszy( Yo' ) = U
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and

Agyy

A:x = - Fx U

Ary = “TXP

A = Ame 4% +A<£v: ¢ A’:’:
Ay = Apy * Aey + Aery +Ary

s s 3 s PRSP A
!
Xm-/ : A'H Uesr and V” are then used as the initial conditions

for the next time increments.
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