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Introduction 
Conformance monitoring is a core task in Air 

Traffic Control (ATC) operations to determine 
whether aircraft are adhering to assigned 
trajectories. This is important for many reasons, 
including to ensure that tactical collision avoidance 
maneuvers are properly executed; strategic conflict 
detection & resolution schemes are valid and 
security around sensitive locations is maintained. 

In today’s ATC environment, controllers 
monitor for conformance via radar systems that 
primarily provide positional information. As a 
result, non-conformance criteria are generally based 
on positional deviations from the assigned 
trajectory [1] or penetration of restricted airspace 
such as the No Transgression Zone (NTZ) on PRM 
approaches [2]. Future ATC surveillance systems 
such as Automatic Dependant Surveillance (ADS) 
should provide access to additional aircraft state 
information which could be used for more effective 
conformance monitoring. However, at present there 
is a lack of clear rationale for which states should 
be surveilled and how they would be used to enable 
conformance monitoring to be performed at a level 
appropriate for future operational requirements. 

This paper describes a framework for this 
purpose that poses the conformance monitoring task 
as a model-based fault detection problem.  

Conformance Monitoring as Fault 
Detection 

The conformance monitoring task can be 
posed as a classic fault detection problem where 
non-conforming behavior of an aircraft is 
considered a “fault”. Fault Detection and Isolation 

(FDI) techniques can be employed to determine if 
observable aircraft states are consistent with normal 
(i.e. conforming) or abnormal (i.e. non-conforming) 
behavior. 

Model-Based Fault Detection 
Among the various strategies used in fault 

detection theory, model-based techniques have 
generally proven most capable [3,4]. Figure 1 
shows the conceptual structure of a typical model-
based fault detection scheme. 
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Figure 1: Model-Based Fault Detection Concept 

 
A model of the actual system being monitored 

is used to develop the expected behavior given the 
command input and other knowledge of the system. 
The difference between the expected behavior 
based on the model and that of the actual system 
observed through a measurement system is 
quantified in a residual. The residual should be 
generated in such a way that the larger the 
difference between the observed and expected 
behaviors, the larger is the residual. 

The decision-making function is then required 
to determine whether a fault exists or not based on 
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the characteristics of the residual. In the simplest 
form of decision-making, a fault is declared if the 
residual exceeds some pre-determined threshold. 
Although more sophisticated techniques are 
commonly employed to minimize false alarms (e.g. 
residual filtering, statistical and fuzzy decision 
making, pattern recognition, etc.), they all generally 
require some form of threshold test to declare the 
existence of a fault. However, since the model 
cannot provide a perfectly accurate and complete 
representation of the processes occurring in the 
actual system, challenges exist to distinguish effects 
observed in the residual due to modeling 
uncertainty from those due to real faulty/non-
conforming behavior. Signal detection theory can 
be used to set thresholds based on false 
alarm/missed detection performance goals. 

After a determination of non-conformance has 
been made, fault isolation techniques can be used to 
determine where the fault may have occurred. This 
also has potentially useful applications in context of 
conformance monitoring for “intent inferencing” to 
help determine potential reasons for non-
conformance. 

Model-Based Conformance Monitoring 
Figure 2 presents the ATC conformance 

monitoring task in the model-based fault detection 
structure. The “Conformance Basis” block at the 
left is analogous to the command input and 
represents the baseline against which the 
conformance is monitored. The Conformance Basis 
is typically the currently-active set of clearances 
which are communicated to the flight crew of each 
aircraft.  

Ideally, the flight crew receives the clearances 
and makes appropriate inputs to the aircraft systems 
(flight automation or manual control) to manage the 
aircraft trajectory in a manner consistent with the 
active Conformance Basis. These “Real World” 
processes are shown by the upper box in Figure 2. 
The “Conformance Monitoring Functions” block at 
the right receives observable real world states from 
surveillance systems and determines if the observed 
behavior is consistent with the expected behavior 
using FDI-inspired techniques of residual 
generation, decision-making and intent inferencing. 
The expectation is based on some “Conformance 
Monitoring Model” of the real world shown in the 
lower box. 
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Figure 2: Model-Based Conformance Monitoring Concept 
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Conformance Monitoring Analysis 
Framework 

In order to analyze the influence of different 
state surveillance environments on the conformance 
monitoring task, a Conformance Monitoring 
Analysis Framework has been developed using the 
model-based conformance monitoring concept.  In 
order to help describe different surveillance 
environments, a general Surveillance State Vector, 
X(t) has been defined [5] which supplements the 
traditional dynamic states of position, velocity and 
acceleration with “intent” states defining the future 
trajectory of the aircraft through current target, 
planned trajectory and destination states: 
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This structure is consistent with the way intent 
states influence the dynamic states in the 
operational environment. Current target states are 
generated by the autopilot or manual control input 
to which the aircraft control systems are driven (e.g. 
autopilot target heading), while the higher level 
trajectory functions (performed by the FMS or 
pilot) generate future target states to manage the 
aircraft trajectory to the ultimate destination. 

The Surveillance State Vector and model-
based conformance monitoring concepts are 
integrated in the Conformance Monitoring  
Analysis Framework shown in Figure 3. The 
elements are discussed in more detail below.  

Conformance Basis 
The Conformance Basis can exist at the 

various defined levels of the intent state, including 
the current target state level (e.g. assigned heading, 
altitude or speed); trajectory level (e.g. Flight Plan, 
Standard Instrument Departure [SID] or Standard 
Terminal Arrival [STAR]); destination level (e.g. 
fly direct to airport A) or at some less structured 
level (e.g. descend at pilot’s discretion). 

Real World Representation 
In Figure 3 the “Real World” processes are 

represented by the key elements which are involved 
in executing the clearance or other instructions 
forming the communicated Conformance Basis. 
This is modeled as a classical feedback control 
representation of the aircraft control system 
supplemented with upstream flight crew and aircraft 
intent components. Each element in the 
representation generates appropriate control system 
target states for the downstream elements as shown 
by the downward arrows to the surveillance block, 
together with arrows defining characteristics of the 
modeled elements themselves. The surveillance 
block provides real world state observations to the 
Conformance Monitoring Functions block at the 
right.  

Using this representation, it is possible to 
examine not only the effects on conformance 
monitoring of improved surveillance of the 
traditional dynamic states such as position, but also 
the effect of other states that help define the 
behavior at different points in the control 
representation, such as those shown by the 
downward arrows. The surveillance block of Figure 
3 is represented slightly differently than in the 
general case of Figure 2 to illustrate this point more 
clearly. 

Conformance Monitoring Model (CMM) 
Conceptually, the states surveilled from the 

real world can be used to help populate the 
appropriate Conformance Monitoring Model 
elements which may mirror those that exist in the 
real world, as shown in Figure 3.  There are many 
potential forms that the Conformance Monitoring 
Model could take, for example it could be a simple 
“mental model” of expected behavior in a 
controller’s mind [6] or a more explicit functional 
model implemented in a decision support tool. 
These latter types could exist at many different 
levels, for example as a high-fidelity model of the 
specific aircraft and environments being monitored 
or a simple point-mass model that captures only 
very general aircraft behaviors.   
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Figure 3: Conformance Monitoring Analysis Framework 

 

One of the greatest challenges in this 
application is the development of the Conformance 
Monitoring Model at an appropriate level, i.e. with 
sufficient fidelity to undertake effective 
conformance monitoring, but not so detailed that 
modeling uncertainty and sampling issues introduce 
too much noise into the residual. 

Observer-based approaches have commonly 
been used in fault detection applications to generate 
the expected behaviors (e.g. the maximum 
likelihood estimate from a Kalman filter [7]), but 
they require accurate mathematical models to be 
developed of the monitored system and noise 
sources. While the aircraft dynamic components 
can be modeled relatively well, the presence of 
unknown disturbances and the human control 
elements can lead to uncertainties in the model and 
sub-optimal estimates being output from the 
observer.  

The pilot and flight automation elements in 
this problem are fundamentally different in 
character from the dynamic components, lending 
themselves more to real-time, simulation-based 
modeling approaches. Although models of the 

various elements and noise characteristics are still 
required, engineering simulations of the key 
processes are often easier to implement.  

Nevertheless, significant modeling uncertainty 
limits the performance of all the aforementioned 
‘quantitative’ residual generation approaches. 
Under conditions where this exists, ‘qualitative’ 
techniques can be employed as well which only 
require the use of declarative (i.e. heuristic) 
information such as the sign, rate of change or 
relative magnitudes of observed variables. This 
approach to residual generation is relatively new 
and many investigations are currently underway, 
utilizing novel techniques such as fuzzy logic and 
machine learning [8]. 

In the conformance monitoring application, 
quantitative and qualitative residual generation 
techniques can be employed in parallel to take 
advantage of their complementary features. The 
qualitative notion of the signs and rates of change 
of observed states for an aircraft expected to be 
adhering to a certain Conformance Basis can be 
used in parallel with a quantitative technique that 
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would otherwise suffer unduly from modeling 
uncertainty. 

Conformance Monitoring Functions 
Residual Generation 
The residual generation scheme should utilize 

as many states as required (or are available) to build 
up the best measure that describes whether the 
aircraft being monitored is behaving in a 
conforming fashion.  One approach to this process 
is proposed here in terms of a “Conformance 
Residual”, CR, defined as: 

n

xxWF
= CR

CMMobsx −∑
  Eqn. 2 

 

where x is a useful observed state, WFx is a 
weighting factor for each state, xobs is the observed 
value for each state, xCMM is the expected value of 
the state from the Conformance Monitoring Model 
(annotated as CMM) and n is  the total number of 
states used to define the Conformance Residual. 

Thus, the state components of CR add to the 
total in proportion to the magnitude of the 
difference between the observed and expected 
conformance behavior.  

The weighting functions are used to normalize 
each state component to acceptable conforming 
behavior limits (i.e. a ‘qualitative’ technique) and to 
reflect each state’s relative importance. The concept 
of placing limits on acceptable deviations from 
assigned values is already well established. For 
example, the Required Navigation Performance 
specifications [9] define cross-track containment 
limits within which an aircraft must remain for 95% 
of the time to be RNP-compliant. As such, an 
aircraft’s RNP level or surveilled Actual Navigation 
Performance (ANP) is a reasonable basis for 
normalizing an aircraft’s cross-track position. 
Under this assumption, a cross-track weighting 
function would be the reciprocal of the RNP or 
ANP value. The philosophy of using 95% 
confidence containment limits as the basis for 
developing weighting functions can also be used for 
other states that might be observable. A weighting 
function that is the reciprocal of a suitable range 

defining the 95% confidence containment interval 
(annotated as ∆xlimit) is then appropriate. 

The overall normalization of CR is desirable so 
that a comparison can be made between 
surveillance environments where differing amounts 
of state information may be available. This is 
achieved by simply dividing the sum of the various 
weighted components by the number of components 
used in the summation. As an example, the 
Conformance Residual for an environment 
containing surveilled position (from which cross-
track position, L, can be determined), track angle 
(ψ), roll angle (φ) and track target state (ψT) 
information would be: 

 

4

















∆

−
+

∆
−

+
∆

−−

limitT

TobsT

limit

CMMobs

limit

CMMobsCMMobs CMM

 +
spec RNP
L L

= CR
ψ

ψψ

φ
φφ

ψ
ψψ

 

Eqn. 3 
 
It should be noted that other approaches to 

determining the Conformance Residual could also 
be used, which will be investigated in future work.  
For example a vector residual could be defined 
where each component of the vector is the 
difference between the observed and expected  
values of a state. 

 

Decision-Making 
Once the residual has been generated, the 

decision making process involves a determination 
of whether the residual behavior is characteristic of 
a conforming aircraft or not. The techniques used 
for this will depend on the metrics of interest (e.g. 
tradeoff of speed vs. accuracy of decision). Given 
the form of the Conformance Residual in Eqn. 3 
with 95% confidence level as the normalization 
basis, a CR value of 1 implies that the average state 
deviation is at the 95% confidence level, presuming 
that the Conformance Monitoring Model is accurate 
and the 95% confidence state containment limits 
have been set appropriately. For example, in an 
environment where only position is used to 
establish conformance, CR < 1 implies an aircraft 
within its RNP containment limit, CR = 1 implies it 
is right at its containment limit, while CR > 1 
implies it has exceeded its containment limit.   
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Hence, CR = 1 takes on special significance as 
the boundary between likely conforming/non-
conforming residual characteristics and, as such, is 
a suitable initial place for the decision-making 
threshold. However, if higher decision confidence is 
required or there is significant uncertainty in either 
the Conformance Monitoring Model or 95% 
confidence containment parameters, different 
threshold placements may be required.  

 

Intent Inferencing 
In the event of non-conformance, fault 

isolation techniques can then be employed to help 
perform intent inferencing, i.e. inferring what the 
aircraft is doing given that it is not following the 
intended conformance basis. This can be achieved 
by running alternate Conformance Bases or 
Conformance Monitoring Models (e.g. to represent 
different aircraft operating modes) until the residual 
is minimized. Even if the real behavior cannot be 
accurately determined, this approach enables certain 
behaviors to be excluded or a set of possible 
behaviors to be identified.  

Case Study: Lateral Conformance 
Scenario Example 

In order to investigate the utility of the 
proposed Conformance Monitoring Analysis 
Framework, the approach was used to analyze 
conformance monitoring under different 
surveillance environments for several scenarios 
where an aircraft was expected to be tracking a 
lateral trajectory.  

Scenario Conformance Basis 
The lateral Conformance Basis in this scenario 

was defined by three fixes that created a simple 
two-leg flight plan as shown in Figure 4. Leg track 
angle targets for this assumed trajectory can be 
calculated at the appropriate points using standard 
spherical-Earth navigation equations [10]. The 
transition at Fix 2 was assumed to be of a ‘fly-by’ 
type, implying a filleting of the lateral trajectory at 
the leg transition point. 
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Figure 4: Scenario Lateral Conformance Basis 

 
It was assumed that no other constraints 

existed other than to track the defined lateral 
trajectory (i.e. there were no tactical operations 
such as lateral offsets, holds, etc.). Speed was 
assumed constant at 300 kts. 

A suitable version of the Surveillance State 
Vector for this scenario is given by Eqn. 4: 
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Real World Representation 
In this case study, the real world was simulated 

through a relatively high fidelity Simulink® model. 
The pilot intent model was limited to a simple pass-
through of the relevant scenario trajectory. Aircraft 
intent was modeled as a block yielding the current 
track target by implementing the spherical Earth 
navigation equations on the defined trajectory. A 
three-loop (roll angle; track angle and cross-track 
error) area navigation control system model with 
the objective to minimize the cross-track position 
error [11] was used with realistic noise 
characteristics injected. This control system 
simulation was coupled to a simple point mass 
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dynamic model with typical commercial aircraft roll 
characteristics prescribed (5º/sec roll-in/roll-out, 25º 
maximum roll angle). The noise characteristics and 
gains in the control system were determined by 
comparing simulation output to archived data for an 
advanced FMS-equipped commercial aircraft. 

For this case study, the surveillance systems 
were not explicitly modeled, so the aircraft states of 
position; track angle, roll angle and track target 
states were passed directly through to the residual 
generation scheme. 

The resulting Simulink® real world model was 
programmed to fly the appropriate test scenario to 
generate observed states. 

Conformance Monitoring Model (CMM) 
A simple quantitative Conformance 

Monitoring Model was assumed which defined the 
expectations of how the position, track angle, roll 
angle and track target states of a point mass model 
would evolve along the defined lateral conformance 
basis if no disturbances or system noise were 
present.  The point mass model flew directly along 
the legs of the defined trajectory at a constant speed 
until a standard rate turn of 1.5°/sec was required to 
be initiated to accomplish the leg transition and next 
track target defined in the scenario. The roll angle 
required to achieve this rate of heading change was 
calculated to give the CMM roll state. 

Residual Generation & Decision-Making 
Conformance Residuals were generated 

according to the form proposed in Eqn. 3. Observed 
states, xobs, from the Simulink® real world 
representation for each test scenario were compared 
to those from the Conformance Monitoring Model, 
xCMM.  The ∆xlimit parameters used as the reciprocal 
of each state weighting factor are given in Table 1. 

Table 1: 95% Confidence State Containment 
Limits used in Conformance Residual 

Parameter Assumed value 
RNP spec 0.5 nm 

∆ψlimit 5 degs 
∆φlimit 10 degs 

∆ψTlimit 10 degs 
 

An RNP 0.5 specification was assumed and the 
95% confidence intervals on the other states were 
estimated enabling a simple decision-making 
threshold of CR < 1 representing conformance and 
CR > 1 representing non-conformance to be used. 

Analysis of Test Scenarios 
Three different scenarios were tested in this 

case study as illustrated in Figure 5: 

• Scenario 1: Conforming aircraft 
• Scenario 2: Non-conforming aircraft 

(failure to transition at Fix 2) 
• Scenario 3: Ambiguous aircraft (60 

second late transition at Fix 2) 
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Figure 5: Case Study Test Scenarios 

 
Scenarios 1 & 2: Conforming & Non-

conforming Behaviors 
Figure 6 illustrates the ground tracks, track 

angle, roll angle and track target states respectively 
for the Conformance Monitoring Model (CMM) 
and the observed states from the scenarios of 
conforming and non-conforming aircraft. The right 
side of the figure also details the individual residual 
on each state (i.e. the difference between the state 
value observed in the scenario from the Simulink® 
real world model and the expected state value from 
the CMM, | xobs - xCMM |). Conformance Residuals 
were calculated using different state combinations 
(position only; position & track angle; position, 
track angle & roll angle; position & track target) 
and are presented in Figure 7.
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Figure 6: Scenarios 1 & 2 State Behaviors (left) & State Residuals (right) 
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Figure 7: Scenarios 1 & 2 Conformance Residuals Using Different State Combinations
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Assuming that non-conformance is declared 
when the Conformance Residual exceeds unity, 
some interesting insights can be gained from the 
analysis. The different behaviors of the 
Conformance Residuals for the two scenarios can 
be clearly seen in Figure 7: the Conformance 
Residual for the conforming case remains below 
unity while that for non-conforming case increases 
rapidly above unity when the expected turn is not 
made. Detailed examination of the Conformance 
Residual plots reveals that the inclusion of relevant 
higher order states enables faster detection of non-
conforming behavior compared to when position 
alone is used. In this scenario, the CMM predicted 
the leg transition to start at 485 secs: with position 
only, the non-conformance was detected (CR > 1) 
at 23 sec after the predicted start of transition; with 
position & track angle it was detected after 8 sec; 
with position, track angle & roll angle it was 
detected at 4 sec and with position & track target it 
was detected within 1 sec. 

In this example, the inclusion of the higher 
order states was providing more evidence regarding 
the behavior of the aircraft in the Conformance 
Residual. However, the results imply several 
corollaries which impact how Conformance 
Residuals should be generated and analyzed. 
Assuming that speed of detection of non-
conformance is an effective performance metric, the 
Conformance Residual only performs better when it 
is provided with relevant states. While the inclusion 
of higher order dynamic states improves the time-
to-detection performance of the Conformance 
Residuals, they add increasing amounts of noise 
(easily observable in the position, track angle & roll 
angle Conformance Residual of Figure 7) which 
increases the potential for false alarms. As such, 
care is required in the selection of the states to be 
included in the Conformance Residual to ensure 
BOTH good time-to-detection and insensitivity to 
false alarms. 

Analysis of the benefits of access to the track 
target state raises additional questions. Although in 
this example the non-conformance could be 
detected within 1 sec when this state was included 
in the Conformance Residual and without the noise 
associated with high order dynamic states, it is most 

effective when the time of transition initiation is 
well-known. This may not be the case in general 
since unknown pilot- and/or FMS logic-induced 
lags may be present. The Conformance Monitoring 
Analysis Framework enables these issues to be 
studied and future work will begin to address them. 

 

Scenario 3: Ambiguous Behavior 
Figure 8 illustrates the ground tracks, track 

angle, roll angle and track target states for the 
CMM and the observed behaviors for Scenario 3: 
an aircraft turning late at Fix 2. As before, the right 
hand side of the figure details the residuals for each 
state. Conformance Residuals were calculated using 
the same state combinations as before and are 
presented in Figure 9. In this case, the Conformance 
Residuals increase when the transition fails to occur 
at the expected time and then gradually reduce as 
the turn is made. 

These results provide further evidence for the 
findings discussed for Scenarios 1 & 2 in terms of 
the benefits and disadvantages of various state 
combinations. The importance of timing is 
highlighted again here in the behavior of the higher 
order residuals of Figure 8. The double spike in the 
roll angle residual, for example, is caused by the 
failure to make the turn at the expected time (first 
spike) and then making the turn late when the 
CMM is not predicting one (second spike). Future 
work will investigate when it is appropriate to give 
‘credit’ in the Conformance Residual for correct 
(but late or early) behaviors using correlation 
techniques to correct out timing ambiguity. 

Although the analysis performed here is based 
on relatively simple models, it is clear that this 
approach could provide a basis for investigating the 
impact of different state environments on the 
conformance monitoring task, for example to 
determine which states should be included in future 
datalink messages [e.g. 12]. Such a study would be 
required to consider the results in context of how 
accessible and useful each of the required states 
would be. For example, although the current target 
state information may provide significant benefit to 
the conformance monitoring task, such states may 
be difficult or expensive to surveill. 
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Figure 8: Scenario 3 State Behaviors (left) & State Residuals (right) 
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Figure 9: Scenario 3 Conformance Residuals Using Different State Combinations 
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Intent Inferencing 
As an illustration of the proposed approach to 

intent inferencing, a number of alternative intents 
are postulated for the case of the late-turning 
aircraft of case study Scenario 3 discussed above. In 
order to bound the problem, a subset of trajectories 
associated with likely alternate behaviors from that 
expected can be proposed. In general, proposals 
could be based on sensible assumptions, such as: 

• ‘no change’ (i.e. dead-reckoning) 
• ‘historical errors’ (e.g. errors seen in 

historical data for the baseline trajectory, 
such as having waypoints with similar 
names in close proximity) 

• ‘critical errors’ (e.g. errors that could 
have immediate hazardous consequences, 
such as unauthorized flights into very 
busy or sensitive areas) 

• ‘direct-to’ (i.e. by-passing the next fix) 
 

The proposed alternate hypotheses are shown 
in Figure 10, along with the actual Scenario 3 
trajectory flown by the Simulink® real world model. 
The ‘baseline’ trajectory represents the expected 
Conformance Basis for the aircraft. 
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Figure 10: Hypothesized Alternate Trajectories 

 

These alternate trajectories can be tested in 
parallel with the baseline trajectory by running a 
separate CMM for each of the hypothesized 
trajectories to be tested. The resulting Conformance 

Residual for each of these trajectories gives an 
indication of the relative likelihood that the aircraft 
is following that trajectory. In general, the most 
likely hypotheses are those with the smaller 
Conformance Residuals. The Conformance 
Residual corresponding to each of the proposed 
hypothesized trajectories can be determined using 
the available states—Figure 11 assumes position 
and track angle states are available. 
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Figure 11: Conformance Residuals for 
Hypothesized Alternate Trajectories 

 
It is useful to determine some criteria to 

discard hypotheses that are clearly not supported by 
the observed evidence.  In this example, a 
hypothesis discard threshold of CR = 10 was used. 
The ‘direct-to’ hypothesis (that directly connecting 
the initial aircraft position to Fix 3) can be quickly 
eliminated as its Conformance Residual increases 
rapidly, while the other three alternates are initially 
similar and thus still viable hypotheses. When the 
aircraft does not make the turn at the expected 
position (either way), the ‘baseline’ and ‘historical 
error’ trajectory Conformance Residuals increase 
relative to the ‘dead-reckoning’. At this point, the 
highest likelihood is associated with the aircraft 
following close to the ‘dead-reckoning’ trajectory. 
However, when the turn towards Fix 3 is finally 
initiated, the ‘baseline’ trajectory Conformance 
Residual decreases while the ‘dead-reckoning’ and 
‘historical error’ trajectory Conformance Residuals 
increase, indicating a relative shift in the likelihood 
that the trajectory being followed is back towards 
the ‘baseline’. Finally, all trajectories other than 
those close to the ‘baseline’ become highly 
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unlikely. If none of the proposed trajectories result 
in a small enough Conformance Residual, the 
search space of feasible trajectories may need to be 
enlarged or other means of inferring intent initiated. 

Conclusions & Future Work 
Conformance monitoring is of fundamental 

importance to ATC operations and future 
surveillance environments may enable more 
sophisticated procedures to be developed for this 
task. A Conformance Monitoring Analysis 
Framework has been presented which enables 
model-based fault detection and isolation 
techniques to be employed to investigate many 
important issues. The essential concepts of 
Conformance Residual generation; decision-making 
and intent inferencing have been identified and a 
lateral trajectory case study using a very simple 
Conformance Monitoring Model has been used to 
illustrate the promise of this approach for 
investigating different state environments. 
Preliminary results indicate potential improved 
time-to-detection performance associated with 
using relevant higher order states in addition to 
position, but this is at the expense of greater noise 
in the Conformance Residual. Use of intent states 
such as current target states hold promise for rapid 
detection of non-conformance, but introduce other 
challenges associated with timing differences 
between the real world and the Conformance 
Monitoring Model. 

Future work will expand on the framework 
introduced here. Implementation issues such as 
using commercial flight simulators for the real 
world representation, testing higher fidelity 
Conformance Monitoring Models, determining the 
95% state containment limits (e.g. using prior 
observations) and appropriate threshold placement 
for various types of operations will be explored. 
Application to other domains such as vertical and 
temporal will also be considered with the ultimate 
objective of investigating datalink state 
requirements for future ATC operations. 
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