
Piecing

to

Together the Magic Mirror : a Software Framework

Support Distributed, Interactive Applications

by

Diane E. Hirsh

B.A., Boston University (2004)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2006

@ Massachusetts Institute of Technology 2006. All rights reserved.

Author.,,
Program in Media Arts and Sciences

August 4, 2006

Certified by.
Dr. V. Michael Bove Jr.

Principal Research Scientist
MIT Media Laboratory

Thesis Supervisor

Accepted by

Departmental

Andrew B.tippman
Graduate Officer

Committee on Graduate Students

ROTCH

SISsCiidUSETTEINMEE
OF TECHNOLOGY

ISEP 1 4 2006

LIBRARIES

A. A M



2



Piecing Together the Magic Mirror : a Software Framework to Support

Distributed, Interactive Applications

by

Diane E. Hirsh

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on August 4, 2006, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

Developing applications for distributed platforms can be very difficult and complex. We
have developed a software framework to support distributed, interactive, collaborative ap-
plications that run on collections of self-organizing, autonomous computational units. We
have included modules to aid application programmers with the exchange of messages, de-
velopment of fault tolerance, and the aggregation of sensor data from multiple sources. We
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and a distributed simulation application based on the framework. We have demonstrated
the viability of our application by testing it with users.
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Chapter 1

Introduction

The purpose of this thesis is to present a software framework to support distributed, in-

teractive, collaborative applications that run on collections of self-organizing, autonomous

computational units. We have chosen to think in terms of very general mesh network style

distributed computing. Units have no shared clock, no shared memory, and we assume that

latency is unbounded. We have also avoided strict client/server models. We do assume that

we are dealing with IP-enabled computers, but there is no reason that the framework could

not be adopted to run with any network protocol where units can be identified uniquely.

Important benefits of the mesh network model are that distributed nodes can gather more

data and process more information than any single computer could, there is no single point

of failure, and such systems are generally very extensible. However, important drawbacks

are that there is no single point of control, and such systems can be very difficult and subtle

to program and debug.

The purpose of the software framework presented in this thesis is to facilitate the devel-

opment of distributed applications by providing services and software modules that will

reduce the burden on the application programmer. The framework consists of four sets of

services, packaged in three subsystems.

The Messaging subsystem is the basis for all other systems in the framework. It provides a

suite of services to asynchronously exchange messages with other hosts on the network. Its



purpose is to allow the application programmer to deal with messages in an asynchronous,

event-driven manner. This serves to relieve the programmer of the need to handle the

details of sending and receiving data over the network.

The Process Management and Data Backup services, which are contained in the same

software module, provide support for fault tolerance in applications. The purpose of these

systems is to provide services that will help the programmer deal with faulty programs and

systems. The Process Management services enable a host to react to critical hardware or

operating system faults by rebooting itself automatically when applications report critical

errors. The Data Backup services provide a way for applications running on nodes to recover

their state if they are terminated or if the node they are running on is rebooted. Data sent

to the backup server is propagated out to other nodes on the network. When the node

restarts, the backup server gathers backed up data from other nodes on the network, and

makes it available to the application.

The Data Aggregation system has been built to provide support for distributed sensing

and sensor network applications. It provides a service that will produce, distribute, and

gather data on behalf of the application. It provides a set of containers for sensor data, and

an interface where applications can define criteria to associate pieces of data together. Its

purpose is to help the application programmer by providing a pattern for data aggregation,

which the application programmer can fill in with details.

The intended platform for our framework is the smart wall tiles of the Smart Architectural

Surfaces project. The smart wall tiles have been built using handheld computers with

400 MHz XScale processors running the ADS version of debian Linux, version 2.4.7. The

computers have been equipped with a 15" LCD screen, an array of sensors (including a

camera and a microphone), and an 802.11 PCMCIA wireless card. The tiles are mounted

in rails on the wall. Our goal has been to develop an interactive application for the tiles,

where the tiles are able to work together. To build this interactive system, we wanted to

be able to use the data from lots of sensors, together, to understand the intent of the user.

It is also important to be able to dynamically add and remove nodes from the system, and

handle hardware, operating system, and network failures.



Figure 1-1: The tiles are shown running the distributed simulation. There are a number of
instances where pieces of different agents appear across multiple tiles.

The specific application we have developed is a distributed simulation where agents of

various types move around and interact in the system. The tiles work together, so that

the agents are not restricted to a life on any one particular tile. Users interface with the

system using a set of brightly colored balls. Using the ball, users can work together to add

agents of different types to the system, and set up attractions between different types. The

simulation we have built is very simple but serves as a microcosm of the types of systems

that could be built on top of our framework. The possibilities range from simulations of

cars in traffic, to protein folding. We show the tiles, with the simulation running, in figure

1-1.

There are a number frameworks for supporting distributed applications. CORBA [22] and

DCOM [21] are frameworks for creating and using interoperable distributed software com-



ponents in heterogeneous environments. Jini [23] is another system, which relies on Java.

Jini provides a resource look up service and discovery protocol, in addition to a distributed

event model, transaction processing, and resource leasing. The primary difference between

Jini and CORBA and DCOM is that Jini uses the code mobility capabilities of the Java lan-

guage to directly move components around the network, whereas in CORBA and DCOM,

components have predefined interfaces that must be agreed upon ahead of time. Hive [18] is

a system, similar to Jini, which implements applications as an ecology of distributed agents.

Hive agents use local resources and communicate with each other to realize applications.

The difference between Hive and Jini is that Hive provides a separation between code that

is local and trusted, and code that is networked and untrusted. Hive also uses a location

based model, where Jini focuses on services, without regard for location.

The part of our system most related to these frameworks is the messaging subsystem.

Our messaging system is much simpler than these frameworks. On the one hand, it does

not provide support for object-based communication, advertising resources, transaction

processing, etc. On the other hand, it does not impose a particular object model on the

programmer. Our Messaging subsystem is really just a step above TCP - it is a tool to

send and receive messages, which an application could use to implement an object-based

protocol, such as CORBA or DCOM. Our system could not be used to implement Jini,

since our system is not based on Java.

The Data Aggregation portion of our framework is most closely related to the Context

Toolkit, described in [5]. The Context Toolkit is based, conceptually, on the toolkits used

for developing GUIs. In the Context Toolkit, there are a number of abstract objects,

which serve as a conceptual framework for supporting context-aware applications. Context

widgets interface with sensors. Interpreters abstract the information acquired from wid-

gets (translating coordinates into symbolic description, for example) and combine multiple

pieces of context to produce higher-level information. Aggregators gather logically related

information and make the data available within a single software component. Discoverers

are responsible for maintaining a registry of resources available in the environment. In the

paper, they lay out these various objects as a pattern for context-aware applications to



follow, but they do not describe how these objects could or should be implemented. Our

Data Aggregation system implements functionality related to the Context Toolkit's context

widgets, interpreters, and aggregators.

The framework we have created is, by no means, limited to the intended platform or the

application that we ultimately developed. There are many areas of computing where our

framework could apply, including ubiquitous and pervasive computing, context-aware com-

puting, ad hoc networks, sensor networks, and computer-supported collaborative work.

Ubiquitous computing describes a vision for the future of computing, where computation

has moved out of the conventional desktop and into the environment [1]. There is a body of

research in ubiquitous computing systems which overlaps with Computer-Supported Col-

laborative Work, where researchers have sought to create technologies that allow users to

work together. Users interact with such systems (which often take the form of electronic

white boards, with various accoutrements) in the environment, and not with a mouse and

keyboard on a desktop computer. One such system is the Tivoli system [19], which is de-

signed to support small working meetings, where participants work closely together on a

problem or idea. Another such system is the ClearBoard system [14], which aims to allow

users to seamlessly move between a shared workspace and interpersonal space. A more re-

cent system is the Stanford iRoom [15] which is an interactive meeting space where displays

are embedded as part of the physical environment to support meetings.

There is another body of ubiquitous computing literature that has moved towards context-

aware pervasive computing. The premise of such systems is that "enabling devices and

applications to automatically adapt to changes in the surrounding physical and electronic

environments will lead to an enhancement of the user experience," [5]. Context is defined

broadly as "any information that characterizes a situation related to the interaction between

users, applications and the surrounding environment," [5]. Many such systems use location

as the primary context, especially older systems like the PARC Tab system [24]. Other

location-based systems are surveyed in [13]. More ambitious systems, such as the CMU

Aura project [10] seek to provide a sort of personal assistant that can help a user by

discovering resources and presenting information, or by anticipating a user's needs and



taking action. All of this takes place in a very heterogeneous computing environment. Our

work is related to context aware ubiquitous computing because our system of smart wall

tiles exists on the wall of a room, and users interact with the tiles in the environment, rather

than by using a mouse and keyboard.

Ubiquitous computing systems are intimately related to ad hoc networking. An ad hoc

network is "a collection of communication devices that wish to communicate, but have no

fixed infrastructure, and have no pre-determined organization or available links," [20]. In

an ad hoc network, nodes must relay packets for each other, since nodes may not have direct

connectivity with each other. Routing algorithms for ad hoc networks need to be able to

adapt to changes in link connectivity and quality, which may be due to node mobility,

or power consumption constraints. An open problem in ad hoc networking is handling

scalability. As the number of nodes in the network increases, communication protocol

overhead increases. To address the increasing overhead of ad hoc routing protocols, a

hierarchical, multi-level approach may be adopted [4].

Sensor Networks employ a large number of densely deployed sensors, equipped with compu-

tational power, in order to monitor or collect information about some phenomenon [2]. Our

work is related to Sensor Networks, because we are using many cameras, working together,

to track objects in a room. Networks with computationally heavier sensors, such as camera

networks have less stringent networking requirements than other types of sensor networks

with extensive routing overhead, but still must handle a lot of data. To balance the quality

of sensors with their cost and bandwidth needs, a multi-tiered network may be adopted

[16]. A multi-tiered network is a sensor network with different layers, each layer with a dif-

ferent modality. Information from the different layers is combined together to use resources

efficiently, while producing high quality data. An example is a camera network which has

different types of cameras. The lower layer, with more nodes, uses inexpensive, low resolu-

tion cameras, which then activate more expensive, higher quality cameras when something

interesting happens. To conserve resources (bandwidth, power) in sensor networks, nodes

may negotiate with each other before sending data, to ensure that only useful data is sent

when disseminating information [12]. Many sensor networks use compression schemes to



save bandwidth when representing and transmitting data; however, the irregular spatial

distribution of nodes, and irregular sampling times may adversely affect these compression

schemes [9].

The main challenge of Computer Supported Collaborative Work is "enabling people to work

effectively together in teams mediated through computers," [17]. There are many familiar

collaborative systems, such as video-conferencing and electronic meeting rooms [11], and

document authoring and management systems [7]. A framework for building collaborative

visualization applications that runs on collections of PCs is described by Wood et al in

[25]. This framework is limited because it assumes that, at each location, there is a single

user/computer, and it also assumes a centralized server. Our work is related to Computer

Supported Collaborative Work because we have created a system where users in one or more

separate physical locations can create conditions to collaboratively work on a simulation.

In all application areas where computation is distributed, applications must confront the

problem of attaining consensus among all of the participating nodes. The archetypal consen-

sus problem is simply getting a group processes in a distributed system to agree on a value.

Consensus protocols must provide agreement, termination, and non-triviality. The Fischer

consensus impossibility result says that it is impossible to guarantee agreement among a

collection of asynchronous processes, if any of them can fail undetectably [8]. There are

three types of asynchrony to consider: processor asynchrony, where a process can be de-

layed for an arbitrarily long time, while other processes continue to run, communication

asynchrony, where message delivery latency is unbounded, and message order asynchrony,

which means that messages can arrive out of order. Dolev et al [6] extend this work by

identifying the minimum conditions under which consensus can be guaranteed. In addition

to the three types of asynchrony described in [8], they identify two properties that are fa-

vorable for creating consensus: atomic broadcast, where a node can send a message to every

other node, in one time step, and an atomic receive/send where nodes can both receive

messages and send them out again in the same time step. The authors identify exactly

four cases where consensus can be guaranteed, each of which requires at least one type of

synchrony, identified above. Since the Fischer consensus impossibility result was discovered,



many authors have circumvented it, using three main strategies: randomization, stronger

timing assumptions, and failure detectors. In [3], Aspnes describes a number of randomized

protocols for gaining consensus.

There are three main contributions of our work. The first contribution is the implementation

of a method for disseminating and gathering data from a large collection of sensors. The

second is the implementation of a messaging module which serves to free the programmer

from the network model imposed by TCP, while only minimally imposing its own model

on the programmer. The third contribution of our work is the combination of systems for

process management, and data backup/retrieval.

The remainder of this thesis is organized as follows. Chapter 2 describes general patterns

for managing data and control. These are patterns we identified, recurring throughout the

development of the framework and subsequent applications. Chapter 3 describes the three

modules of the framework, including their overall purpose, the application interface, and

their inner workings. Chapter 4 describes the applications built for the system, including the

distributed simulator, distributed ball tracking, distributed input system, and finally, the

interactive simulation application. Chapter 5 describes the user testing that we conducted

to test the application which was developed to demonstrate the viability of the framework.

In chapter 6, we discuss our conclusions and directions for future work.



Chapter 2

Patterns for Managing

Data Flow and Control

This chapter describes a collection of techniques for managing data in distributed applica-

tions. Books and papers on distributed computing focus on formal algorithms and elaborate

middleware. A discussion about simple techniques for handling data and control is lacking

in the literature. Since it is impossible to know what sort of data an application might need

to exchange, we did not roll these patterns into a software module, but we have included a

discussion of them so that others may benefit from our experience. They will be highlighted

in applications where they are used in chapter 4.

In our application, we used TCP enabled Linux computers that communicate with each

other over 802.11 wireless. However, the techniques we discuss here assume only that

all nodes can communicate with each other in some form, and all nodes can be identi-

fied uniquely. Even if communication happens indirectly (by routing the communication

through other nodes, for example), the techniques we describe should still apply, although

modifications might be needed to adopt them for special networking situations.

The applications we aim to support with these techniques are any type of application where

processes running in different locations (generally, without shared memory), need to share



data. Data sharing may take many forms. In the simplest case, one process may simply need

to periodically inform another process of some value or set of values. In a more complex

case, two processes might have a vested interest in, or may even be sharing control of the

state of some object. In this case, the processes will need to constantly inform each other

of each other's actions, and negotiate about what action should be taken next.

2.1 Guaranteeing Agreement

It is impossible to guarantee that nodes will reach agreement in the presence of node failure.

However, even in the absence of node failures, agreement can be very difficult to achieve

when the behavior of the network is unpredictable e.g. dropped packets, delayed packets,

out of order packets. Given this, it is possible, to some extent, to choose the way in which

hosts will disagree. If it is, to some degree, known how the hosts might disagree, it is

possible to manage disagreements by having mechanisms in place for renegotiating when

disagreements arise.

We can minimize disagreements by using as much local information as possible (e.g. local

address, local time, local coordinate frame) and then using intelligence of some sort to

go between the local spaces of different hosts. Using local information aids extensibility.

Mechanisms for reaching global agreement are error-prone, and can take a long time to

resolve themselves. Additionally, having a global system in place ahead of time (for example,

a global coordinate frame) can make it difficult to add new hosts to the system at a later

date.

2.2 Creating Unique Identifiers

It is very important, especially in a distributed application, for everyone to be talking

about the same thing. Things (pieces of data) need to be tagged in some unique way, so

that everyone knows what they are talking about. The alternative is to have only one thing

that everyone is talking about, which simplifies things a great deal.



Throughout the framework and in subsequent applications described in this thesis, the

chosen method for generating globally unique identifiers is to use combinations of locally

available identifiers. For example, a piece of data could be tagged uniquely by a combination

of the address of the originating host, and some id number generated on the originating

host. Our method for generating identifiers assumes that hosts can be uniquely identified in

some way, for example, IP address, MAC address, serial number, GPS coordinates, RFID

tags, or with some other arbitrary scheme. This scheme means that more bits must be

dedicated to identification than may strictly be necessary, but offers the benefit that every

host can generate as many identifiers as it likes without needing to ask anyone else for help

or approval. Unique identifiers can be generated quickly, at the price of a few bytes per

piece of data.

If space is at a premium and time is not, an alternative method for generating identifiers

is to have some pool of numbers shared among all the hosts. Whenever a host needs a

unique identifier, it pulls one out of the pool. This scheme allows identifiers to be very

small, but it provides a myriad of potential headaches. First, it is extraordinarily easy for

two or more hosts to grab the same number at the same time. Assuming that the hosts

all detect this, while sorting out who should get what identifier, someone else might grab

one of the identifiers that they are negotiating about. Using some sort of semaphore-like

scheme (described more below), it can take a long time for the hosts to certify each other's

id numbers. The best bet might be to use some sort of algorithm modelled on the ethernet

access protocol; if two hosts grab the same number at the same time, they both let it go

and try again. It will be more time-consuming, and more bandwidth intensive, to create

the unique identifiers, but will allow them to be small. So, if the identifiers are generated

once, traded often, and bandwidth is expensive, this scheme might make sense.

2.3 Broadcast

One of the simplest methods for transmitting data is to simply tell everyone we know about

everything (broadcast). The main advantages are that it is very simple to program, and



Summary for Broadcast
Programming Complexity: minimal
Book-keeping requirements: none
Bandwidth usage: ......... significant
Handles faults: ............ no
Network assumptions: ..... weak

Advantages:
Easy to throw data away
Disadvantages:
Lack of scalability
Potentially wasted bandwidth
Potentially wasted attention

Figure 2-1: Summary of properties, advantages and disadvantages of broadcast.

there is no book-keeping that needs to be done. The main disadvantages are a lack of

scalability, wasted bandwidth and wasted attention. This technique is most appropriate in

a producer/consumer model, or when every host really has a vested interest in all of the

data being exchanged.

In the absence of true network broadcast, if there is a very large number of hosts, sending

everything to everyone may overload the network. Even if we do not overload the network,

if not everyone on our receiving list cares about our data, we are wasting the time it took to

send it to them, and we are making them spend time filtering the data they are receiving.

In the case where there may be network failures, this scheme provides no way to detect and

respond to these failures - we cannot necessarily be sure that everyone got the data. On

the other hand, we also make no assumptions about the expected latency of the network :

it is okay for the network to be slow. Since we do not expect to hear back, if the host on

the receiving end must throw data away, it is very easy - they do not need to respond to

every piece of data that they see.

2.4 Spewing

Another simple technique for exchanging data is to tell other hosts about all of our data

in a targeted way. The main advantages of this technique are that it is still very simple



Summary for Spewing
Programming Complexity: minimal
Book-keeping requirements: minimal
Bandwidth usage: ......... significant
Handles faults: ............ no
Network assumptions: ..... weak

Advantages:
Easy to throw data away
Disadvantages:
Potentially wasted bandwidth
Potentially wasted attention
No information from receiver end

Figure 2-2: Summary of properties, advantages and disadvantages of spewing.

to program, and the only book-keeping needed is to keep track of where we want to send

the data. The main disadvantages of this technique are potentially wasted bandwidth and

attention (as with broadcast), and no way to detect and react to network failures. As

with broadcast, this is very appropriate in a producer/consumer model. It is also very

appropriate when a potential query for data from a receiver is approximately the same

size as the data to be sent. (Contrast this with using queries, as in section 2.7.) This

technique differs from later techniques in that the sender does not wait for a response from

the receiver.

As with broadcast, in the case of network failures, this scheme does not provide a way to

detect and respond to those failures. On the other hand, it makes no assumptions about

expected latency. Since we do not expect to hear back from our receivers, it is very easy

for the receivers to throw data away without wasting time responding to it.

The catch is that nodes can get into nasty feedback loops with each other, since they are

not communicating about the status on the receiving end. For example, if node A is trying

to give something to node B, but node B doesn't want it, then node B will just give it back

to node A, who will give it back to node B. Of course, you can write safeguards for this (if

you see the same piece of data so many times, ignore it or do something different), but that

increases programming complexity quickly (what if they really do mean to give it back to

each other, and it is not just feedback?), and there are more direct ways that node B could



say "No", with handshaking, as described in 2.5.

2.5 Handshaking

Summary for Handshaking
Programming Complexity: moderate
Book-keeping requirements: minimal
Bandwidth usage: ......... moderate
Handles faults: ............ no
Network assumptions: ..... weak

Advantages:
Information from the receiving end
Disadvantages:
Potentially wasted bandwidth
Potentially wasted attention

Figure 2-3: Summary of properties, advantages and disadvantages of handshaking.

A slightly more complicated, but more flexible technique is to send data to a receiver, who

then sends back a response. The main advantage of this is that it allows the receiver to say

what happened, while still requiring only minimal book-keeping on both ends. The main

disadvantage is that we have now increased the bandwidth usage (by assuming/requiring

acknowledgements and thus doubling the number of messages going back and forth), and

we might still waste bandwidth and attention with unwanted data. The programming

complexity of this technique is moderate. For each piece of data, the sender must send

it, the receiver must receive it and formulate a response, and the sender must receive the

response and react to it.

As with broadcast, in the case of network failures, this scheme does not provide a way to

detect and respond to those failures. On the other hand, it makes no assumptions about

expected latency. The demands on the receiver's attention have become more egregious,

however, than with spewing, as in section 2.4, since receivers are assumed to send some sort

of acknowledgement (although, at this point, there is nothing forcing them to do so.)

Let us consider the scenario from section 2.4, where node A is trying to give some unwanted

thing to node B. Upon receipt, node B can simply send a response to node A saying that it



does not want the data, at which point node A can find something else to do with the data.

To make the book-keeping very simple, node B would send a copy of the data back to node

A, so that node A would not need to maintain a record of the data it originally sent.

2.6 Handshaking with Timeouts

Summary for Handshaking with Timeouts
Programming Complexity: significant
Book-keeping requirements: moderate
Bandwidth usage: ......... moderate
Handles faults: ............ yes
Network assumptions: ..... strong

Advantages:
Information from the receiving end
Handles network and node failures
Disadvantages:
Requires unique identifiers
Potentially wasted bandwidth
Potentially wasted attention

Figure 2-4: Summary of properties, advantages and disadvantages of handshaking with
timeouts.

A more complicated variant of handshaking, as in section 2.5, is to use time-outs to handle

node failure. Although it seems like a simple modification from 2.5, the addition of time-outs

significantly compounds the programming complexity of this technique. In this technique,

the sender sends its data, making a record of the time when it sent it. When the receiver

receives the data, it sends back a response. If the sender does not receive a response, it

takes some other action, such as re-sending the data, or sending the data to someone else.

Although more complicated than plain handshaking, the main advantanges of this technique

are that we have now added vocabulary for nodes to talk about and respond to node and

network failures, and information (most likely) will not get lost, and if it does get lost, it

will at least be accounted for.

This is at the cost of significant programming complexity and increased book-keeping de-

mands. Not only does the sender need to keep records of when it sent what to who, it also



needs to periodically check to see if any of those has timed out. Unique identifiers are no

longer optional - sender and receiver must be talking about the same piece of data. Most

important, handling timeouts can be very tricky. For example, the host on the other end

might not have failed outright - the link might simply have gotten congested so that the

message/response did not get through in time. The receiver must be able to handle the

case when a response comes in for a piece of data that it had previously timed out. We

also make a significant assumption about network latency - we must define how long we

will wait for a response. There are techniques for determining this dynamically, but these

techniques further increase programming complexity.

Let us consider the case where node A is trying to give some piece of data to node B, but

assume, this time, that node B wants it. So, node A sends the data to node B. After a

suitable waiting period, node A does not hear back, and so it sends the data to node C.

However, after clearing a whole pack of messages spewed to it from node D, node B finally

gets and responds to the data from node A. Now, both node B and node C think they have

the one true copy of the data. Now what? We address problems of this type in section 4.1,

when we discuss a simple resolution technique that we employ when duplicate agents arise

in the distributed simulation.

2.7 Queries for specific data

In this moderately simple technique, receivers know what they want, and they know who

to ask for it. The receiver sends a query to the relevant node, who then sends them the

desired data. In this technique, the burden of intelligence is squarely on the receiver, who

must know what to ask for (although, the receiver no longer needs to filter data being sent

to it). The advantage of this technique is that it potentially makes very good use of network

bandwidth, since the receiver will only get exactly what it wants, and so there will be little

wasted bandwidth. The disadvantage is that it potentially makes very poor use of network

bandwidth, since the nodes could end up exchanging double the number of messages. Book-

keeping requirements are minimal; the receiver must be able to identify the thing it wants



Summary for Queries for specific data
Programming Complexity: . minimal
Book-keeping requirements: minimal
Bandwidth usage: ......... minimal
Handles faults: ............ no
Network assumptions: ..... weak

Advantages:
No wasted attention
Disadvantages:
Places burden on the receiver
Bandwidth usage will depend on the situation

Figure 2-5: Summary of properties, advantages and disadvantages of using queries for
specific data.

using its unique identifier, and the sender must know what that means, but no one needs

to keep records about what messages have been sent previously.

This technique is most appropriate for cases when there is a small number of pieces of data

to be requested, and those pieces of data are large when compared with the size of the query

needed to ask for them. It might seem strange that a receiver would know what it wanted,

without actually having what it wanted. We will address a problem of this type in section

4.1, when we discuss what happens when a tile running the simulation encounters an agent

with an unknown type.

2.8 Queries for streams of data

This technique is a bandwidth and attention saving variation of spewing, as described

in section 2.4. In this technique, the receiver gives the sender a set of criteria for the

information it wants to receive. When the sender has new data, it compares the data

against the list of requests it has. If the data matches a request, it sends the data to

the appropriate receiver. This technique makes very good use of network bandwidth since

receivers only get the data they want, and they only have to send one request to get it.

The book-keeping requirements are moderate, since the sender must maintain a list of all

requests. This technique is used extensively in the applications developed in this thesis.



Summary for Queries for streams of data
Programming Complexity: moderate
Book-keeping requirements: moderate
Bandwidth usage: ......... minimal
Handles faults: ............ no
Network assumptions: ..... weak

Advantages:
No wasted attention
Minimal wasted bandwidth
Disadvantages:
Receiver must know what to ask for
Sender must filter data to send

Figure 2-6: Summary of properties, advantages and disadvantages of using queries for
streams of data.

In this technique, the computational burden of filtering is shifted onto the sender. It is

most appropriate when there is a small number of receivers. If there is a large number of

would-be receivers, handling the queries for all of them could cripple a sender, and simple

broadcast, as in section 2.3, might make more sense, especially if true network broadcast

is available, and it is expensive to compute the given criteria. On the other hand, since

sending data over the network is just about the most expensive thing to do in a distributed

system, handling the queries for a large number of hosts might make sense, in the absence

of true network broadcast, if the criteria is easy to compute.

2.9 Keep-alives

In the previous techniques, we were trying to solve a problem of how to get data across

the network, while keeping everyone informed and not compromising the integrity of the

data. Now, we will try to solve a slightly different problem. Here, two hosts are essentially

sharing some piece of information; one host is in possession of the piece of data, the other

host has a vested interest in the piece of data, and the two are trying to coordinate about it.

There are at least two essential cases that might apply. In one case, the host wants to use

some piece of data that another host has possession of, and so it sends periodic messages

saying that it still wants the relevant piece of data. In the other case, one host has a vested



Summary for Keep-alives
Programming Complexity: significant
Book-keeping requirements: significant
Bandwidth usage: ......... moderate
Handles faults: ............ yes
Network assumptions: ..... strong

Advantages:
Interested parties know data is valid
Disadvantages:
Bandwidth overhead for keep-alive messages

Figure 2-7: Summary of properties, advantages and disadvantages of keep-alives.

interest in the data of another host, and the host in possession of the piece of data sends

periodic messages to the vested hosts to let them know that the data is still good.

The primary advantage of using keep-alives is, believe it or not, its simplicity, when com-

pared to the cost of keeping a large number of hosts informed about the whereabouts and

state of some piece of data. Book-keeping for transferring data can get very complex, when

handling unpredictable network behavior. Keep-alives provide a conceptually simple way

for hosts to know if their data is still valid, while tolerating node and network failure.

Although simpler than the logic required to maintain state consistency as data moves around

among many hosts, the programming complexity and book-keeping requirements of this

technique are significant. The sender needs to keep track of who has a vested interest in

what, and when was the last time it told them about it. The receiver needs to keep track,

minimally, of when it last heard about each piece of data. Both the sender and receiver need

to periodically check for time-outs: the sender, so that it can send the appropriate keep-alive

messages, the receiver, so that it can react to any time-outs. Reacting to the time-outs is

the most subtle and complex aspect of this technique. As with handshaking with time-outs,

as described in section 2.6, nodes might not have failed outright and messages might simply

have been delayed. It is necessary to be able to handle the receipt of a keep-alive message

for a piece of data that has already timed out. In addition to the programming and book-

keeping requirements, this technique requires significant bandwidth overhead (although the

degree of the overhead depends on the frequency of the keep-alive messages.)



2.10 Semaphores

Summary for Semaphores
Programming Complexity: significant
Book-keeping requirements: significant
Bandwidth usage: ......... significant
Handles faults: ............ yes
Network assumptions: ..... weak

Advantages:
Can get agreement, eventually
Disadvantages:
Agreement will take a long time
Susceptible to host/network failure

Figure 2-8: Summary of properties, advantages and disadvantages of semaphores.

Now we are trying to solve a problem of how to get everyone to agree. Since we have already

established that we cannot guarantee that everyone will agree, we will simply do our best.

In this technique, a host has something that it wants some number of other hosts to agree

on. The host sends each of them a query, asking if the thing it wants is okay. Then, it waits

for the other hosts to answer. The originating host must not do anything until everyone

else has answered.

The main advantage of this technique is that you can get nodes to agree on a value even-

tually, if only by waiting long enough. The main disadvantage of this technique is that it

can take a long time, especially if there are a lot of hosts. If N hosts try to run the same

algorithm at the same time, there will be N 2 messages flying across the network. Depending

on N, it may or may not choke the network. Furthermore, each host must respond to N

queries, which, depending on N, may or may not take a lot of time.

The programming complexity and book-keeping requirements are moderate. For each piece

of data the host is synchronizing on, it must keep a list of the hosts asked for approval

(or, minimally, the number of hosts asked for approval). The host must also have handlers

in place for any possible response. If the originating host asks if something is okay, and

someone answers "No," there needs to be a reasonable response for that answer. This

technique tolerates unbounded network latency, but if a host goes down, or if a message



gets lost, the whole process will fail to terminate. Using a list, instead of an integer, to

do the book-keeping is favorable, since if a node failure is detected, we can then remove

the affected host from the semaphore, while safeguarding against removing the same host

multiple times from the semaphore. This might happen if we'simply decremented an integer

when detecting a failure, since a single failure might be detected multiple times.

This technique is applied in section 4.3, for the initial negotiation for control of a cursor in

the distributed input system.

2.11 Semaphores with Timeouts

Summary for Semaphores with Timeouts
Programming Complexity: significant
Book-keeping requirements: significant
Bandwidth usage: ......... significant
Handles faults: ............ yes
Network assumptions: ..... moderate

Advantages:
Can get agreement, eventually
Less susceptible to network failures
Disadvantages:
Agreement will take a long time
Susceptible to host failure

Figure 2-9: Summary of properties, advantages and disadvantages of semaphores with time-

outs.

Adding time-outs to the semaphore-style synchronization scheme does not dramatically in-

crease the programming complexity, since the application already needs to poll the semaphore

to find out if it is able to go ahead. Timeouts offer the advantage that they renders the

semaphore-style scheme significantly less susceptible to network failure.

In this technique, the originating host sends a request out to all the other hosts on the

network, asking if something is okay, making a list of the hosts where it sent the requests.

Then, it waits for responses. If, after a certain amount of time, some hosts have not re-

sponded, the originating host asks them again. An important point is that the originating



host cannot timeout the other hosts' approval - it has to wait for them. If the originat-

ing host detects]] a failure of another host, then the other host can be removed from the

semaphore without their approval (presumably). For this technique to work, the originating

host needs a list of the hosts where it sent the requests; an integer is not sufficient.

The reason time-outs do not significantly increase the programming complexity, in this case,

is because it is acceptable for an originating host to receive an answer from the same remote

host twice. So, if the request times out, and is sent again, both requests might go through,

and the host might answer twice. The first time the originating host receives an answer, the

remote host will be removed from the semaphore (assuming they say "yes"). The second

time the originating host receives an answer, the remote host will not be in the semaphore,

and so the originating host will not need to take any action. In this particular case, we can

eliminate a whole class of "what-ifs," and get the benefits of time-outs without the hairy

programming headaches.



Chapter 3

Framework Description

The software framework presented in this thesis consists of four sets of services, in three

subsystems. The Messaging subsystem is the basis for all other systems in the framework.

It provides a suite of services to asynchronously exchange messages with other hosts on the

network. The Process Management and Data Backup services, which are contained in the

same subsystem, provide support for fault tolerance in applications. The Data Aggregation

subsystem provides support for distributed sensing and sensor network applications.

3.1 Messaging Subsystem

The first problem faced by any distributed application is getting data back and forth among

all of the processes participating in the application. The simplest approach is to use UDP,

where the application simply drops packets into the network and hopes that they get where

they are going. UDP offers the benefits of simplicity, but has no guarantees about reliability.

Another approach is to use TCP, which has sophisticated mechanisms for ensuring that

delivery is complete and in order. TCP offers reliability, at the cost of some overhead, in

terms of programming complexity, and bandwidth use. The greatest drawback of TCP,

in the author's opinion, is that TCP draws a very strong, and somewhat arbitrary line

in the sand, between what process is a "sender" and what process is a "receiver." Such



delineations are necessary for TCP to work, but they are, nevertheless, annoying if you are

developing a program that must both be able to send data to lots of other hosts, and receive

data from lots of other hosts. What we want is some way to have the ease of use of UDP,

with the reliability, flow control, and other positive aspects of TCP. We have created such

a system, which we present in this section.

The messaging subsystem is the basis for all other systems in the framework. It facilitates

the exchange of data by providing an object-oriented set of services to send and receive

messages in an event-driven and asynchronous manner. Our system uses TCP with block-

ing I/O, but prevents the application from being delayed by the I/O by using threads. The

messaging subsystem is a collection of six types of objects : Message, Messenger, Message-

Queue, MachineNode, MachineNodeMgr, and Connection.

The main unit of currency in the messaging subsystem is the Message. The Message class

is a container that allows applications to easily tag pieces of data, using six 32 bit integers.

Two of the fields of the Message are the 'type' field and the 'extra' field. The type field is

used by the Messenger for dispatching Messages to the application (to be discussed below).

The extra field is for use by the application to store whatever information it needs. In the

applications developed later in this thesis, the 'extra' field is used extensively for sub-typing.

The payload of a message is a byte array (as opposed to a null-terminated string). The

MessageQueue class is a thread-safe container for Messages, which serves as the interface

between the main Messenger class and the threads that do the sending and receiving.

The Messenger is the main point of contact for the application. It enqueues outgoing mes-

sages for sending, dispatches incoming messages to the application's callbacks, manages the

threads that do the sending and receiving, stores information about hosts on the network,

and manages persistent connection setup / tear-down. The Messenger has, as data mem-

bers, two MessageQueues (one for outgoing messages, one for incoming messages), and a

MachineNodeMgr (to be discussed below).



3.1.1 Primary application interface

When the application has data to send, it packages its data as a Message, and then passes

this Message to the Messenger. The Messenger provides wrapper functions to create and

send messages in various forms. One of the methods allows the application to send data

without ever interacting with the Message class; the application simply passes in the message

payload, the length of the payload, the type, and the desired value of the extra field. The

Messenger also has a method to allow the application to send a message to all known hosts

with a single command. Once the application has passed a Message to the Messenger for

sending, the application does not need to take any further action.

When packaging data as a Message, the application must provide a byte array for the

payload of the message, the length of the payload, the type of message, and the receiver.

The application also has the option of setting other tags in the Message. Each tag provides

an opportunity for multiplexing the messages on the receiving end. The 'extra' field of the

Message is used extensively in the framework and applications for sub-typing.

To receive messages, applications must periodically call Messenger::ProcessMessageso. When

the application calls Messenger::ProcessMessageso, the Messenger iterates through the mes-

sages that have been placed on the incoming queue. The Messenger looks at the type of

each message, and dispatches the message to the appropriate application callback function.

The Messenger provides a callback registry for different types of Messages. Applications

can register callbacks for 20 different types. Predefined message types include : commands,

notifications, queries, and errors. Callback functions take, as arguments, the Message itself,

and any one piece of data which may be provided by the application.

To use the Messenger and its associated services, the application registers callbacks for

its desired types, and then makes repeated calls to Messenger::ProcessMessageso. In the

callbacks, or in between calls to ProcessMessageso, the application passes messages to the

Messenger to send. The structure of a C++ program using the Messenger is shown in figure

3.1.1.



Messenger *messenger;
void callback(Message* message, void* data){

//do work

}
int main(){

messenger = new Messenger;
messenger->RegisterCallback(MESSAGETYPE-NOTIFY, & callback, NULL);

while(true){
messenger->ProcessMessagesO;
//do work

}
}
Figure 3-1: The basic structure of a program using the Messenger and its associated services.

3.1.2 Networking details and persistent connections

There are two main threads created by the Messenger : a main client thread, and a main

server thread. The main client thread polls the outgoing MessageQueue for messages to

send. (It sleeps for a brief period when there are no more messages to send.) When it has

a message to send, it sets up a TCP connection, sends the message, and then tears down

the connection. If the client thread is unable to establish a connection to a remote host and

send the message, it sends an error message to the local server thread. The server thread

waits for incoming connections. When it receives an incoming connection, it accepts one

message, places it on the incoming queue, and then tears down the connection.

This scheme may seem somewhat wasteful, since there is overhead associated with setting

up and tearing down TCP connections. Also, if we have a lot of data for one host, setting

up and tearing down TCP connections breaks TCP's guarantee that data will arrive in

order. If we have a lot of data for one particular host, it might make sense to keep the

connection open to the given host, and send all the available messages before tearing down

the connection. However, this might result in starvation of the other hosts, if messages are

being continuously generated by the application, which is running in another thread. A

solution might be to keep an open connection to all other known hosts on the network for

which we might have data, but consider that, if there are 1000 hosts on the network, it is
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Figure 3-2: The Messenger has two MessageQueues, which serve as the interface between
it and the networking threads that do the sending and receiving (the client and server
threads). Arrows show the flow of data through the Messenger.

not practical to maintain a connection to each, nor does it make very much sense if we only

have occasional data for most of those hosts. It might also make sense to have a separate

thread sending each outgoing message, but this does not solve the problem of having the

overhead of setting up and tearing down TCP connections.

The answer to these problems, adopted in this system, is that the Messenger provides a

service where applications can request a dedicated, persistent connection to other hosts

on the network. To start a connection to another host, the application makes a request

to the Messenger, which then sets up the outgoing connection, sends a special connection

message, and starts a sender thread dedicated to the particular host. The sender thread

polls the outgoing MessageQueue for messages addressed to the host to which it is assigned.
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Figure 3-3: The Messenger has two MessageQueues, which serve as the interface between
it and the networking threads that do the sending and receiving. Here, the sending and
receiving are done both by the main client and server threads, and by auxiliary sender and
receiver threads, which are dedicated to connections with a particular host. Arrows show
the flow of data through the Messenger.

When it finds a message, it sends the message over the connection, and then looks for more

messages. On the receiving end, when the main server thread encounters a request to set

up a persistent connection, it passes this message on to the Messenger. The Messenger then

intercepts this message and sets up a receiver thread that continuously receives messages

from the given connection. The Messenger handles error cases that may arise when the

remote end of a connection (incoming or outgoing) fails. These persistent connections allow

the main client and server thread to stay open for intermittent traffic between hosts, while

providing reliable service for pairs of hosts that exchange a lot of data.

The Connection object encapsulates the details of a TCP connection. It allows the Mes-



senger (or the application, if the application programmer chooses to work at that level) to

send and receive messages symbolically by working in terms of Message objects, rather than

in terms of byte arrays. If the use of threads is inappropriate for a given application, they

may still use the Connection abstraction (in conjunction with the Message abstraction).

3.1.3 Keeping track of other hosts

The MachineNode class is a container for information about hosts on the network. In

the applications we aimed to build, it was necessary for applications to know geometric

information about other hosts. In addition to the address of remote hosts, the MachineNode

contains a description of the remote host's coordinate frame, with respect to the local

coordinate frame. The MachineNode has facilities to: determine if points are inside the

extents of the host, calculate the distance from a point to the nearest extent of the host,

and transform points into and out of the host's coordinate frame.

The MachineNodeMgr is a table of MachineNodes. In addition to fairly mundane tasks,

the MachineNodeMgr provides some higher-level geometric intelligence. It is possible to

search the MachineNodeMgr for nodes by address, or by their geometric relationship to the

local host (e.g. by finding the host closest to a given point). Finally, the MachineNodeMgr

provides thread-safe facilities for adding and removing nodes from the table.

The MachineNodeMgr is used extensively throughout our applications in an unheralded way,

for simply storing information about remote hosts. Geometric information and intelligence

is critically important in the distributed simulation and distributed input systems.

3.2 Data Backup/Retrieval and

Process Management Services

In a distributed application, the failure of a process may not be merely annoying - it may

adversely affect the entire system. It would be nice if programs could restart themselves



without human intervention. Sometimes, when programs fail, it is not necessarily the fault

of the program itself. Programs that run correctly and without faults on one computer may

not run properly on another. Programs that run properly on a freshly rebooted system

may not run on the same system, once it has been running for a few hours or a few days.

Hardware may be unreliable. Programs may be able to detect the failures, or they may just

crash repeatedly. In the case of hardware or operating system corruption or failures, the only

solution may be to reboot the computer. It would be nice if computers rebooted themselves

when something went wrong. And it would be nice if everything that was running when the

system needed to be rebooted, restarted automatically. To address these problems, we have

designed a service that automatically restarts programs that have failed, and automatically

reboots computers when critical failures are detected. We describe this system in detail in

this section.

3.2.1 Process Management

The Process Manager is a piece of software that runs on each host. The Process Manager

receives requests to start and stop programs from a client or host, over the network. If

necessary, the Process Manager will make a request to the operating system to reboot the

computer. There are three cases where the Process Manager will attempt to reboot the

computer: if it receives an explicit request over the network, if a program signals that it has

detected a critical error, and if a program has been restarted too many times. The rationale

for this last case is that the only symptom of some styles of corruption is frequent restarts.

3.2.2 Primary application interface for the Process Manager

To start a program via the Process Manager, the client or application simply sends a message

to the Process Manager, with the appropriate tags, using the name of the program to start

as the payload of the message. The client or application does not need to take any further

action.



Each program that is started via the Process Manager must set the maximum number of

restarts (or, no maximum), and critical error code. The critical error code relates to the

code or status that a program exits with. (In a C or C++ program, calling "exit(1234)"

will cause the program to exit with code 1234. Alternatively, doing "return 1234" inside

mainO will also cause the program to exit with code 1234.) These parameters are set by

sending messages to the Process Manager. (The exact nature of these messages is detailed

in appendix F.)

Once started via the Process Manager, the program will be restarted the requested number

of times (or indefinitely) if it terminates abnormally. If the process terminates normally,

it will not be restarted. If the program terminates with the pre-defined error code, or if

it needs to be restarted too many times, the Process Manager will automatically reboot

the computer. When the computer reboots, and the Process Manager restarts, it will

automatically restart the program, and any other programs that were being run when the

Process Manager rebooted the computer. (Only programs being run through the Process

Manager will be restarted - not every process that was running on the computer.)

3.2.3 How it works

When the Process Manager receives a command to start a program, it makes a record of

the program being started, including its name, process id, the number of restarts allowed,

and the pre-determined failure code. It then forks, and runs a wrapper process, which is

responsible for handling the program when it terminates. The wrapper process forks again;

one process becomes the specified program; the other waits for the program to terminate.

When the program terminates, the operating system delivers the exit code to the waiting

wrapper program. If the program terminates cleanly, the wrapper sends a message to the

Process Manager, notifying it that the program has terminated. If the program does not

terminate cleanly, the wrapper restarts the program. If the program has restarted too

many times, or if it terminates with its critical error code, the wrapper sends a critical error

message to the Process Manager. This process is summarized in figure 3-4.
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Figure 3-4: This figure shows the flow of control when the Process Manager receives a
request to start an application. The Process Manager starts a wrapper program, which in
turn starts the application. The wrapper program waits for the application's exit code, and
sends a message to the Process Manager.

When the Process Manager receives a critical error message (or, if it receives a command

from the network client) it makes a request to the operating system to reboot the computer.

Before it does, it writes all of the unresolved program records to a file (as stated above,

these records include the program name, the number of restarts allowed, and the critical

error code). When the system comes back up, and the Process Manager restarts, it reads

this file, and runs all of the programs with their original parameters.
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3.2.4 Data Backup Services

We have described a service to automatically restart programs and reboot computers. But,

what about the state of the programs that were running? Programs that crash might want to

be able to recover their state when they restart. It seems silly to be able to restart programs

after a computer has rebooted, if those programs cannot recover their state somehow. To

facilitate this restoration of state, we have designed a data backup service.

The data backup services are rolled into the Process Manager. Applications send "Packages"

of data to the Process Manager, to be backed up. Upon receiving this data, the Process

Manager then propagates this data out to other hosts on the network. When the host

reboots, and the Process Manager restarts, it goes out to other hosts on the network,

gathers up left behind data, and makes this data available to the applications.

3.2.5 Primary application interface for the Data Backup services

The Package object encapsulates the information that the Process Manager needs in order

to store data. Packages are uniquely identified by a combination of address/port/id, where

address is the integer IP address of the host, port is the port where the application will be

waiting to receive data, and id is a unique identifier that must be generated/stored by the

application.

When the application wishes to store data with the Process Manager, it creates a Package,

using the data to be stored as the payload. It tags the Package with its address, the port

where it will receive data that is sent back to it, and a unique id number. It then sends this

package to the Process Manager. When the application wishes to update information that

it had previously sent to the Process Manager, it creates a Package, using the same tags

it had previously used. It then sends this updated package to the Process Manager. The

application does not need to take any further action to ensure that its data is safe.

When the application wishes to retrieve data that it left behind, the application creates a

query with the tags of the Package it wishes to retrieve and sends this query to the Process



Manager. (It can also create a query to retrieve all Packages, instead of a single Package.)

Then, the application needs to wait for the Process Manager to send all of the Packages.

The exact nature of the messages that must be sent to work with the Data Backup services

is detailed in appendix F.2.

3.2.6 How it works

When the Process Manager receives a new Package, it randomly selects two other hosts

on the network, and sends them a copy of the Package. This process is shown in figure

3-5. When the application wishes to update information it had previously sent to the

Process Manager, it sends a new Package, using the same address/port/id combination it

had used previously. The Process Manager then sends this updated Package out to the

other hosts where it had previously sent the Package. When the application wishes to

remove the information it had previously sent, it sends a Package to the Process Manager

with the same address/port/id combination (but no payload), asking the Process Manager

to remove the Package. Then, the Process Manager sends a notification out to the other

hosts where it had previously sent the Package asking them to remove the Package.

To be able to propagate data to other hosts on the network, the Process Manager must

maintain a list of available hosts. The Process Manager begins this list by sweeping a range

of IP addresses, and keeps it updated by monitoring its network traffic. When the Process

Manager starts, the first thing it does is sends probes to other hosts on the network. If a

probe is successful, the relevant host is added to the list of available backup hosts. When

the Process Manager receives a probe, it knows that the host that sent the probe is now

available, and it adds the sender of the probe to the list of available backup hosts.

Every so often, the Process Manager re-probes all of the hosts in its list, to make sure that

each of the hosts is still available. If the Process Manager discovers that one of the hosts in

its list is no longer available, it must find an alternate backup site for any data that it had

sent that host, and, as a courtesy, it will propagate any data that the host had sent to it.

When a Process Manager receives a probe, it looks in its records to see if it had previously
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Figure 3-5: This figure shows the flow of data through the Process Manager when an
application wishes to back up data. The Process Manager randomly selects two other hosts
to receive copies of the data.

received any data from the remote host. If it had, it sends a copy back to them. Doing this

allows a Process Manager that has restarted to recover the data it left behind, and make

the data available to the application. This process is summarized in figure 3-6.

3.3 Data Aggregation Subsystem

Applications in ubiquitous computing and sensor networks are able to benefit by using a

number of sensors to gather data. Using the data from multiple sensors, it is possible

to derive high quality information that might not be available otherwise. A significant

problem encountered in these types of applications is that the volume of data generated by
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Figure 3-6: When the Process Manager (re)starts, it sends out a query to other hosts on
the network. Nodes that receive the query, which have data sent by the host, send a copy
to the Process Manager. The information is then available for the application to retrieve.

a collection of sensors can be quite large. For example, if some sensor is producing data at

the modest rate of 10 pieces of data per second, and there are 6 such sensors in a system, in

10 seconds, the system generates 600 pieces of data. What we need is a way to organize this

data, so that the application is not left with a tangle to unravel. We have created a system

for organizing the data produced by multiple sensors, which we present in this section.

The Data Aggregation subsystem provides an object-oriented module for managing data

from many sources. Data is organized first by the source from which it came. Then, data

from different sources is grouped together to represent a phenomenon. The Aggregator

manages the production, getting, sending, and association of data. We provide base classes

for the primitives used by the Aggregator, which are extended to fit the application.

Process Manager
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Figure 3-7: This figure shows the structure of the various objects inside the Aggregator.
The Aggregator contains SensorDataAggregates (hexagons), which are comprised of Sen-
sorDataStrands (octagons). SensorDataStrands, in turn, are comprised of SensorDatum
(circles). The different colors represent data from different hosts/sensors.

In the model used by the Data Aggregation subsystem, there is some Sensor, which is

producing pieces of data (SensorDatum). These pieces of data are such that they can

be strung together into streams (SensorDataStrand), reflecting some physical phenomenon

over time. A stream of data represents a single physical phenomenon, as sensed by a sin-

gle sensor. (If there is more than one phenomenon detected at each sensor, that sensor

would generate multiple streams.) Streams of data from different sources, representing the

same phenomenon, can be associated together, creating aggregate streams (SensorDataAg-

gregate). SensorDatum are the only information exchanged by Aggregators running on

different hosts. SensorDataStrands and, later, SensorDataAggregates, arise from collec-

tions of SensorDatum. Applications extend the Sensor, SensorDatum, SensorDataStrand,
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Figure 3-8: This figure shows how the Aggregator functions over the network. The colors
represent data from different sources. Each of the three Aggregators has a sensor that is a
different color, but by exchanging data, they are all able to aggregate data from all of the
possible sources.

and SensorDataAggregate classes, to make the Aggregator work for their data types.

For example, a Sensor might be a face tracker. This face tracker produces locations and

thumbnails of faces in a video stream. Furthermore, it knows that the face from one frame

is the same face as the face in a subsequent frame, and so it tags the two consecutive

pieces of information with the same identifier. (If it is tracking two faces at once, it would

tag the data for each face with different identifiers.) Inside the Aggregator, these faces

are exchanged over the network, and then, using their unique identifiers, they are strung

together into streams of face thumbnails that represent one face, over time, as seen by

one particular host. Using an application-defined similarity function, each host is able to
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combine streams of faces, to collect different views of each face.

We have assumed a very general model, when developing the Data Aggregation system. The

model used by the Data Aggregation system does not assume that data is being produced

synchronously on different hosts (i.e. the different sensors are not necessarily waiting for

each other). It does not assume that data is produced at the same rate on different hosts,

and it doesn't assume that data is being produced at regular intervals on any particular

host. It does not assume that the clocks of different hosts are synchronized, but it does

assume that time moves forward. There may or may not be a delay in getting data from

one host to another, and data may arrive out of order.

This general model makes the Data Aggregation system suitable for use in a wide range of

applications, but limits its power to make sense of the data. The Data Aggregation system

has been designed, primarily, to provide containers for pieces of data. It leaves the task of

interpreting the data to the application and the application-provided derived classes. The

system assumes that the Sensor has solved the data association problem for the data it

produces. For purposes of determining if streams are similar and should belong to the same

aggregate, the application must provide a similarity function through a derived class. Given

that there is no assumption about any timing constraints, the system does not try to align

the data in time (determine that two measurements happened at the same time).

3.3.1 Primary application interface

To use the Data Aggregation system, the application programmer must provide derived

classes for the Sensor, SensorDatum, SensorDataStrand and SensorDataAggregate types.

We describe an instance of the Data Aggregation system with derived classes in section 4.2.

To write a program that uses the data aggregation system with the derived types, the

application creates an instance of a Sensor and passes the Sensor to the Aggregator. The

derived Sensor class is responsible for creating objects of the correct derived types. The

application registers callbacks for events that it wishes to respond to, and then makes



Aggregator * aggregator;
Sensor* sensor;
const in WORKING-PORT = 1234;
void callback(PointerList<SensorDataAggregate*> *aggregates, void* data){

//Do work

}
int main(){

sensor = new DerivedSensor;
aggregator = new Aggregator(WORKINGPORT, sensor)
//Aggregator setup (detailed in appendix G.)
aggregator->RegisterCallback(AGGREGATOREVENTTYPETIMER, callback);

while(true){
aggregator->ProcessDatao;
//do work

}
}
Figure 3-9: The basic structure of a program using the Data Aggregation system. This
program uses the callback registry to receive regular updates.

repeated calls to Aggregator::ProcessData(. The basic structure of a program that uses

the Data Aggregation system is shown in figure 3.3.1.

The application can register callbacks to react to a number of different types of events. The

application can register to receive updates at regular intervals (the intervals will not be

shorter than the requested time, although they may be longer, depending on how long it

takes the sensor to produce data). The application can also register to receive updates after

at least some number of samples have been added (more than the requested number might

have been added.) In both cases, the Aggregator will finish one iteration before calling the

callbacks. The application can register to receive events when pieces of data arrive, when

new strands or aggregates are created, or when strands or aggregates are removed. The

application can also register to receive notifications when other hosts request local data.

The application must direct the Aggregator to request data from its peers. When the

application directs the Aggregator to ask for data, the Aggregator sends a request to the

relevant host. The receiver of this request must make a decision about whether it has

resources available, and then must initiate a downstream persistent connection through the



Messenger.

To aid the application, or a derived class, with the task of aligning the data in time, the

system does provide facilities to resample data, given an application-defined interpolation

function. The default interpolation function simply uses nearest neighbors; it is not ap-

propriate for data types that use higher order moments. The interpolation function is a

member of the SensorDataStrand so that it may have access to all of the data available

when doing the interpolation (for example, if the interpolation function involves high-order

splines.)

3.3.2 How it works

In one iteration of the Aggregator, it goes through a cycle where it gets data from the

sensor (synchronously), sends the data to other Aggregators running on other hosts (asyn-

chronously), processes the data it produced, and then processes the data it received from

other Aggregators. At the end of the iteration, it looks at all of the SensorDataAggregates

to determine if any of them are stale. Stale SensorDataAggregates are removed from the

system. Various events are generated throughout the cycle. These events are detailed in

appendix G.

When the Aggregator receives/produces a SensorDatum, it first finds the SensorDataStrand

where the SensorDatum belongs. The Aggregator then updates the SensorDataStrand and

its parent SensorDataAggregate. If the SensorDatum does not match any existing Sen-

sorDataStrands, a new SensorDataStrand is created. Then, the Aggregator tries to find

a SensorDataAggregate where the new SensorDataStrand belongs. If the SensorDataS-

trand does not belong to any existing SensorDataAggregate, a new SensorDataAggregate

is created. Each SensorDataStrand will belong to exactly one SensorDataAggregate.

In order to find the SensorDataStrand where a given SensorDatum belongs, the Aggregator

iterates through all the existing SensorDataStrands and asks them if the SensorDatum be-

longs to them. This allows derived classes to easily redefine the membership criteria. The

base-class membership function simply matches the tags provided by the Sensor. When a



SensorDatum is added to a SensorDataStrand, the SensorDataStrand adds the SensorDa-

tum in order (within a SensorDataStrand, SensorDatum are ordered by time), and then

updates its modification time.

In order to find the SensorDataAggregate where a given SensorDataStrand belongs, the Ag-

gregator iterates through all the existing SensorDataAggregate and asks them to generate a

membership score. The Aggregator chooses the SensorDataAggregate with the best score.

(This score is thought of as distance, and so the Aggregator chooses the SensorDataAg-

gregate with the lowest membership score). The default membership function returns a

constant number. When a SensorDataAggregate is updated, it updates its modification

time, and then it iterates through all of its member strands, to determine if any of them

are stale. Stale SensorDataStrands are removed.

The application can set the membership criteria, so that if none of the SensorDataAggre-

gates generate good enough scores, the Aggregator will decide that the SensorDataStrand

does not belong to any of them, and a new SensorDataAggregate will be created. Using

the default membership function, depending on the application-define criteria, all Sensor-

DataStrands will belong to different SensorDataAggregates, or they will all belong to the

same SensorDataAggregate.

SensorDataAggregates must decide fairly early if a SensorDataStrand belongs to them (typ-

ically, after only one piece of data has arrived). If, subsequently, the SensorDataAggregate

determines that the SensorDataStrand does not belong, it can remove it from its member-

ship list, so that the SensorDataStrand will, temporarily, not belong to any SensorDataAg-

gregate. The Aggregator will then try to find another SensorDataAggregate where the

orphan SensorDataStrand belongs (or create a new one). On the other hand, if, initially,

the SensorDataStrand is erroneously shunted to a separate SensorDataAggregate, the Ag-

gregator will not interrogate these singleton aggregates/strands to see if they really belong

as part of some other aggregate.

To determine whether or not a SensorDataAggregate (or SensorDataStrand) is stale, the

SensorDataAggregate keeps a record of the time the most recent SensorDatum was added



to one of its strands. (When a SensorDatum is added, the SensorDataAggregate is updated

with the local time, not with the timestamp on the SensorDatum.) SensorDataAggregates

can determine that their member SensorDataStrands are stale, and remove them from

their membership list. While the Aggregator is looking for stale SensorDataAggregates,

it will also collect and remove stale, orphan SensorDataStrands. The application sets the

definition of "stale" by specifying the maximum amount of time that an aggregate or strand

can persist without being updated.
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Chapter 4

Applications

All of the applications described in this chapter were written to run on the smart wall tiles

of the Smart Architectural Surfaces project. Using the framework described in chapter 3,

and the techniques described in chapter 2, we built a distributed, interactive simulation ap-

plication. In the simulation, there are agents of various types. They move around inside the

confines of the simulation, and interact with each other. Users can control the application

using a colored ball as an input device.

We chose to write a distributed simulation because it was something that was fun, un-

derstandable, and relatively simple. The code for the simulator, which runs on a single

computer is a few hundred lines. The simulator would also allow us to show the tiles shar-

ing information, and handing off control of resources (agents). We could also showcase the

decentralized nature of the system, since tiles in the simulation have no global clock and no

global coordinate frame.

We chose to create a user input system using balls as input devices because the ball was

a simple, understandable object. We opted for the ball as an input device, as opposed to

a hand gesture based system, because the ball is something that a user could put down.

The choice of input system was also influenced by practical concerns - the smart wall tiles

are fairly computationallylightweight devices, and so we needed a modality that would not



require sophisticated processing. The use of brightly colored balls greatly simplified the

requisite image processing.

In this chapter, we will describe the the distributed simulation, distributed ball tracking,

and distributed input system that lead to our final, interactive application.

4.1 Distributed Simulation

In the simulation, there are a number of agents of different types, that move around and

interact with each other. The simulation is fairly simple, when confined to one computer, but

increases in complexity when moved to a distributed platform. There are three fundamental

building blocks of the Simulator: Types, Agents, and Attractions.

The Type class provides a means for specifying the behavior of a set of agents. Character-

istics of the behavior of an agent includes its maximum speed, the amount of randomness

in its movements, and its maximum sight distance. The Type class also provides a mecha-

nism where the application can specify the appearance of a set of agents, using polygonal

segments. The appearance of a Type can have states, so that (for example) agents of a

particular type could alternate being red and blue. Types are identified uniquely using a

combination of the IP address of the host where they originated, and an id number, provided

by the originating host.

Each individual agent in the system is represented by a state vector, which has fields for

information about an agent's position and velocity, among other things. Agents are uniquely

identified by a combination of their type (two numbers for the type), the IP address of the

host where they originated, and an id number, which is provided by the Type residing on

their host of origin (as opposed to a global pool of numbers being shared among all copies

of the Type). Agents rely on Types and the Simulator to advance their state and decide

where they should go next.

The Attraction class provides a simple way to describe relationships between Types. The

Attraction class has fields for two Types : the active Type, and the stimulus Type. It also



has a parameter to describe how strong the attraction (or repulsion) is. All agents of a

particular type will be attracted to or repulsed by all agents of another type.

At each step of the simulation, the Simulator goes through a cycle where it computes

new velocities for all of the agents in the system and then integrates. To compute the

new velocities, the simulator computes an aggregate attraction vector between each agent

and all the other agents in the system. The attraction an agent feels for another agent

depends the distance between the two agents and the strength of the relationship between

the types of the two agents. Agents cannot be attracted to other agents that are beyond

their maximum sight distance. The Type for the agent then computes the agent's next

velocity by combining the attraction vector, the agent's previous velocity, and a random

term.

Since we make no assumptions about synchronicity, handling errors and disagreements

among tiles is a source of confounding complexity when moving this simple simulation from

one computer to an array of computers. For the version of the simulator written for the

our application, we created a system with no global clock and no global coordinate frame.

Tiles were free to run at whatever pace suited them, exchanging messages when needed.

All geometric information was kept in terms of the local coordinate system. Tiles know (or

are told) about the relative transformation between them and all of their neighbors.

The first step towards a distributed simulation is to be able to transfer Types between

tiles. Since the appearance portion of a Type can contain an arbitrary number of polygonal

segments, divided into an arbitrary number of appearance states, the Type specification

needs to be broken up into many messages. When sending a Type to another tile, the tile

first sends the initial Type specification (the part that describes the behavior of the agents).

When the other tile sends back an acknowledgment, the tile then sends the remaining

geometric information. We decided to send the Types in this way for two reasons. The

more practical reason is that, when tiles were simply spewing their Types to each other

all at once, as in section 2.4, the network was getting congested and pieces were getting

lost, despite TCP's best efforts. Breaking the Type into messages in this way provided a

sort of flow control. The other reason is that, if a Type changes, there should be a way to



update the type. Sending the initial type specification first gives the receiving tile a chance

to clear out the old, outdated geometry before new geometry arrives, and avoids the need

to tag every piece of geometry in the type with a timestamp. It is possible that a computer

running the simulation might encounter an agent with a type that the computer does not

know about. Since agents are tagged with their type, the computer can simply request

the relevant type from the host specified in the tags of the agent. This is a simple instance

where a computer might know what it wants, and who to ask for it, without actually having

the thing it wants, as discussed in section 2.7, where we discussed using queries to specific

pieces of data.

The next step towards the distributed simulation is getting the Attractions between tiles.

This mechanism is fairly simple, since Attractions are of a fixed length. The Simulator

on one tile simply packages the Attraction and sends it to the other side. On the other

side, the Simulator checks to see if it already has an Attraction for the given combination

of active/stimulus types. If it does, it updates the parameter of that attraction with the

newly arrived parameter. If it does not already have information about that relationship,

it simply adds the newly arrived attraction to the system.

The final step towards the distributed simulation is getting information about the where-

abouts of agents between tiles intelligently, and handing off control of the agents among

tiles, correctly.

Tiles are able to ask each other for information they need by making spatial queries to each

other, following the scheme using queries for streams of data, described in section 2.8. The

query specifies that the asking tile should be notified of any activity that takes place within

a requested distance of its borders. For such a query to work properly, the receiving tile

must be aware of the transformation and extents of the asking tile. At the end of each

iteration, the simulator compares each agent against its list of queries. If the agent is inside

of the requested bounds, the tile sends a copy of the agent to the asking tile. If the agent

was inside the bounds in the previous time step, but is no longer inside the bounds, the

simulator sends a notification cancellation message, to let the other tile know that it can

forget about that agent.



The process whereby tiles hand off the control of various agents follows the handshaking

with timeouts scheme described in 2.6. While the simulator is running, agents move around

inside the bounds of a space, where the bounds are defined by the application. If agents

attempt to move outside one of these boundaries, and there is another tile next to that

boundary, the Simulator sends a message to that tile, trying to pass the agent, and then

waits for an acknowledgment. If the sending tile does receive the acknowledgement, it deletes

the records for that agent, and continues. If it does not receive the acknowledgement after

some amount of time, it will send a pass cancellation message. If an agent attempts to

move past one of the simulation's boundaries, and there is no tile next to the boundary,

the agent is "bounced" - placed back inside of the boundary, and the relevant portion of

its velocity inverted. If, after a tile has attempted to pass an agent, it then needs to send

a pass cancellation message, it will then bounce the agent, and continue as if it had never

attempted to pass the agent.

There are a number of reasons that a tile might not receive a pass acknowledgement: the

other tile might be busy and not have time to handle its messages, or the link between the

sending tile and the receiving tile might be congested, or the link from the receiving tile to

the sending tile (where the acknowledgement would need to travel) might be congested. In

the first two cases, when the receiving tile finally gets its messages, the receiving tile will

receive the agent, and then will immediately receive the cancellation, so that the agent will

never have a chance to become established on the tile, and will not affect the behavior of

other agents on the tile.

The last case, where the link from the receiving tile to the sending tile is congested, is

somewhat more problematic. If the link from the receiver back to the sender is congested

(but the reverse is not), the agent will have an opportunity to become established on the

receiving tile. In the best case, the received agent will be the only agent on the tile, and it

will remain on the tile until the cancellation message is received, at which time, the problem

will be resolved. However, if the cancellation message follows some time after the tile has

received the agent, the agent might escape to another tile before the cancellation message

is received. This would mean that a duplicate agent could persist in the system for some



time. (Keeping records about every agent that has passed through each tile, for purposes

for passing on cancellation messages, is both expensive and highly error prone.) What is

worse, if this duplicate, imposter agent is in the system with other agents, the behavior

of the other agents will be affected by its presence. In our case, this is not devastating.

The resolution mechanism for handling duplicate agents is fairly simple. If a tile detects a

collision (if it receives passes for two agents that have the same tags) it will simply remove

one of them.

Initially, passing agents was done without timeouts. The tiles simply sent the pass messages

to each other, and forgot about them. This worked sometimes, when the network was

behaving well. At other times, if a link between two tiles were congested or otherwise

faulty, many of the agents in the simulation would get "caught" in the space between the

two tiles; the agents would seem to disappear when moving from one tile to another, and

then some time later (possibly minutes), they would all emerge at once on the receiving tile.

Sometimes, the agents would be lost outright, when moving from one tile to another along

a congested link. The timeout scheme was adopted to be sure that agents were conserved

in the system. We opted for a balance in the system where duplicate agents could arise,

but where it was unlikely for agents to be lost.

4.2 Data Aggregation Instance : Distributed Ball Tracking

Now, we will discuss an instance of the Data Aggregation system, for distributed target

tracking. Our task is for each tile to keep track of a number of brightly colored balls, even

if they move out of the field of view of any particular camera. To use the Data Aggregation

system for this purpose, we must provide derived classes for the Sensor, SensorDatum,

SensorDataStrand, and SensorDataAggregate.

The TrackingMgr class (derived from the Sensor class) runs on a single tile, and has no

awareness of other tiles in the system. It gets data from the camera and does the image

processing to find brightly colored objects in the scene. It tracks the brightly colored objects

from frame to frame using a nearest neighbors technique.



The TrackingMgr creates Ball objects (derived from SensorDatum). Ball objects include

information about position, velocity, and color. The TrackingMgr tags each Ball with

a unique identifier which corresponds to the object being tracked. At each frame, the

TrackingMgr returns a list of Ball objects to the Aggregator.

Balls are strung together to create BallTracks (derived from SensorDataStrand). The Ball-

Track object uses the default SensorDataStrand association function (simply assuming that

the TrackingMgr has solved the data association function). The BallTrack class keeps track

of the color of the Ball added to it most recently. The update function updates the color

of the BallTrack, using the color from the most recent Ball, and then otherwise uses the

default function (updating the modification time of the BallTrack, and adding the Ball in

order). The BallTrack also provides an interpolation function which interpolates the po-

sition of new Ball objects based on the old ones, and then recalculates the velocity of the

new Ball objects accordingly.

BallTracks are combined to create Users (derived from SensorDataAggregate). The User

class assumes that a single user in the world is represented by a collection of BallTracks.

(Each BallTrack arises from a different camera.) The membership function of the User as-

sociates BallTracks together primarily by comparing their color. The membership function

of the User also checks to make sure that BallTracks from the same host, which are being

updated at approximately the same time, are not associated together. This allows the User

class to give some consideration to the case where two different users happen to have balls

with the same color, while allowing broken tracks from a given host (if the TrackingMgr

loses, and then finds an object) to get stitched back together. (If BallTracks are being pro-

duced at the same time, on the same tile, they must correspond to different objects from

the world. On the other hand, if BallTracks from the same host have matching colors, but

one was produced before the other, it might be that the two BallTracks really represent

the same object.) The User object also keeps a record of the color of the most recent Ball

added to it, which is recorded by the update function.

To use the Aggregator to do distributed tracking, the application creates a new Aggregator,

providing a Sensor (the TrackingMgr) which produces data (Ball objects). The application



needs to set two things: the maximum membership distance criteria, and the staleness

criteria. In the case of distributed ball tracking, we want the application to receive regular

updates, so the application must also set the timer, and then register a callback, which will

be called at regular intervals. At this point, it is not necessary for the application to do

anything special when strands or aggregates are created or destroyed.

We could write an application that showed how the views from different cameras are related

(figure 4-1). In this application, the positions of the objects on the screen are set directly by

looking at the position of the ball as seen in the different views. In this case, the application

would tell the Aggregator to gather data from all the available nodes.

Figure 4-1: This figure shows the simultaneous state of four tiles participating in data aggre-
gation, with the distributed ball tracking. The hexagon with the brightest color represents
the local view of the ball. The darker colored hexagons represent remote views of the ball.

Alternatively, we can create a single object, and then combine the information from the



different views in some way. In the application shown in figure 4-2, the position of the

object is initially set by looking at the position of the ball in one of the views. Then, the

position is changed by integrating the observed velocity of the ball. The views of the ball

are combined when, at each time step, the application chooses one of the views to use to

update the position of the object. A more sophisticated method might use a stereo vision

algorithm.

Figure 4-2: This figure shows the state of the cursor, where the position is determined
by integrating the velocity of observed balls. The rectangle shows the field of view of the
camera. The cursor is able to move outside of the field of view of the camera because the
tiles are cooperating.

In the case where the application is updating a single object by selecting different views,

the application does not need to receive continuous updates from all of the other nodes.

Indeed, it is wasteful to do so, since we do not need data from all of the other hosts all of

the time. The application shown in 4-2 keeps track of its immediate neighbors. When the

ball moves near the edge of the field of view of the local camera, the application instructs

the Aggregator to ask the node nearest the affected edge for help. When the ball moves

away from the edge, the application instructs the Aggregator to tell the neighbor node to

stop sending it data. In this way, the application is, both, able to conserve bandwidth, and

able to track the ball, even when it moves out of the field of view of the local camera.



4.3 A Distributed User Input System,

using Distributed Ball Tracking

The distributed tracking method proposed in the previous section would run on every tile -

that is, each tile would maintain its own view of where the "cursor" would be, although each

tile would be able to keep track of the cursor, even if it moved out of the field of view of its

camera. Now, we will discuss the additional intelligence that must be added in order to have

a single cursor among a set of tiles. To accomplish this, the CursorCoordinator receives, from

the Aggregator, notifications when new aggregates are created, or when existing aggregates

are destroyed, in addition to timed notifications (as with the distributed ball tracking). (The

CursorCoordinator operates on a port separate from the Aggregator, so that they do not

receive each other's messages.) We assume that the clocks of the tiles are not synchronized,

and they are not producing data at the same rate. It would be possible, using a semaphore

style synchronization scheme, as discussed in section 2.10 and 2.11, to force the tiles to move

in lockstep, but that would preclude the usefulness of the system for real-time interaction.

Information about the derived position of the cursor is contained in CursorPosition objects.

CursorPosition objects are used to record the history of a cursor's movement. This history,

along with other information, is contained in Cursor objects. The most important of these

other pieces of information is the control state. This field indicates whether, and to what

extent, the CursorCoordinator has control of, or has a vested interest in the given Cursor.

The possible values of this field include: true, false, pending, and a few other values that

we will discuss in detail, later. The Cursor also has an separate state field, which is for use

by the application.

The first hurdle to overcome is bringing all of the tiles to agreement about where the cursor

should initially be, and who should be in charge of updating it. Given that we have no

assumptions about any sort of synchronicity, we cannot actually guarantee that the tiles

will agree, but we will do our best. Given that there is a user holding a ball, heuristically,

the tile that has the best view of the ball should control the cursor. So, the task, then, is for

the tiles to decide who has the best view, where the "best view" is defined as the smallest



distance between the apparent position of the ball, and the center of the field of view of the

camera. The method to bring the tiles to agreement follows the semaphore-style scheme

described in section 2.10.

When the tile is notified that a new aggregate has been created, it finds the local view of

the ball, and calculates the distance between the local view of the ball and the center of

the field of view of the camera. It also creates a new Cursor, corresponding to the new

aggregate, and marks its control state as pending. Using the identifiers for the new cursor,

the distance between the local view of the ball and the center of the field of view, and the

appearance information from the local view of the ball, the tile creates a query, which is

sent out to all of the other tiles in the network. As the tile sends out these queries, the

tile makes a record of the distance it sent out, and each tile where it sent the query. This

record serves as the semaphore. Two cursors under negotiation at the same time would get

separate records.

The tile then waits to receive responses from the other tiles. The response contains the

identifiers for the cursor (the same tags that were sent out), and the distance between the

remote view of the cursor and the remote center of the field of view. If that distance is

less than the distance the tile sent out, the control state of the cursor is marked false,

and the semaphore is cleared. (The tile does not need to know that three other tiles have

better views - one is enough.) If that distance is greater than the distance the tile sent out,

the control state of the cursor is not modified, but the remote host is removed from the

semaphore. At each iteration, the CursorCoordinator checks the semaphores of all pending

cursors. If the semaphore is clear, the cursor is then activated, and its control state is set

to true.

As the CursorCoordinator is running, if it receives a control negotiation query, it uses the

appearance information in the query to identify what local cursor might correspond to the

cursor in the query. If the control state of the matching cursor is pending, the tile will

respond with the distance that it sent out, when it made its request (of which it made a

record). If the control state of the matching cursor is true (the tile had previously negotiated

for control of the cursor), it sends back a distance of zero. If the control state of the matching



cursor is anything else, or if the tile cannot find a matching cursor, it sends back a very

large distance (essentially saying that it has no input). When formulating a response, it

uses the tags given in the query, and the local distance information.

A real problem with this scheme is that there is absolutely no guarantee that the tiles all

saw the ball at the same time. This is ameliorated somewhat by having tiles respond to

each other with the distance that they sent out when attempting to negotiate for control

(rather than the distance at the time they receive the query). Another problem is that this

resolution process takes a long time (on the order of seconds), and the user can move the

ball a lot in that time. So the tile that negotiates control of the ball might not have the

best view by the time the negotiation is complete.

Initially, the tiles used a time-out scheme, as described in 2.6, for negotiating control. Tiles

sent out the queries, containing their tags, distance, and appearance information, as above,

and then waited for answers. If they did not receive an answer, saying that someone else

had a smaller distance than their own, after a certain amount of time, they activated the

cursor. When a tile received a control negotiation query, it only responded if it already

had control of the cursor, or if its distance was smaller than the advertised distance. This

scheme had the benefit that it used less bandwidth, and tolerated node failures, but it failed

to account for varying latency. When the number of hosts negotiating for control increased,

the timeout value also needed to be increased. This meant that, if there were less than the

target number or hosts negotiating for control the user had to wait, even if all relevant data

had been exchanged. More importantly, if all of the data did not get back and forth in

time, multiple tiles would conclude that they had control of the cursor. It was due to this

problem, that the semaphore style scheme was adopted.

Once initial control has been negotiated, the challenge is to keep the control of the cursor

on a tile with a good view of the ball. (Requiring that it be the best view of the ball

is unnecessary, and very difficult, if not impossible, without any assumptions about syn-

chronicity.) Handling the control of the cursor, once initial control has been negotiated,
follows the handshaking with timeouts scheme described in section 2.6.

To determine if a cursor needs to be passed, the tile checks to see if the local view of the



ball has moved too close to some edge, where "too close" is defined as within some tolerance

of the edge. If the ball has moved too close to the edge, it sends a message to the neighbor

closest to the affected edge, asking to pass the cursor, and then marks the control state of

the cursor pending. Then, it waits to receive an answer. If the other tile accepts the pass,

then it changes the control state of the cursor to false. If the other tile rejects the pass, the

tile marks the control state of the cursor true, and then carries on. A pass will be rejected

if the other tile is unable to find a cursor in its repertoire that matches the description of

the cursor it has been passed.

If the tile does not receive an answer soon enough, it will take back control of the cursor

by marking its control state true. If the other tile subsequently accepts, the first tile will

send the other tile a message, saying that they should forget about the information that it

had previously received. This is necessary, instead of simply letting them have control of

the cursor, since there is no bound on latency; their response might be very stale. When

the other tile receives the cancellation message, it gives up control of the cursor it had

previously been sent. A cursor will only be sent, as a pass, to another cursor once. After

that, it is then tagged, so that the tile will not try to send it again before the other tile

answers or times out.

Since the fields of view may overlap significantly, there may need to be a mapping such

that cursors in a significant portion of a given tile's field of view may need to be drawn on

another tile. To accommodate this, the CursorCoordinator has facilities to send and receive

notifications about activity related to cursors, so that cursors can be drawn on tiles that are

not neccesarily controlling them. Information about different cursors is tagged with unique

identifiers, so that a tile can receive information about multiple cursors at the same time.

Once a tile has received information about some cursor, an important question is how long

the tile should keep this information. In this system, the answer we have adopted, is that

a tile should keep such information until someone else tells them to remove it. This leads

to a number of interesting problems. For example, if the mapping from the field of view

to the screen is such that movement on one tile might end up drawing the cursor on two

other tiles, what should happen? What if the application wants to draw one big, long tail,



showing everywhere that the cursor has been? Clearly, if the associated ball disappears,

both of the tiles should be notified of the cursor's demise. Also, it is clear that we should

not remove the cursor from the first tile when we start sending to the second tile, but it also

does not make sense to continue to send the first tile continuous updates. Also, if control

of the cursor changes hands while a tile is receiving updates, tiles receiving updates should

continue to receive these updates, no matter who has control of the cursor.

To handle problems such as these, we have adopted the idea of a "receiver" and a "stake-

holder". A receiver is a tile that is receiving continuous updates about the position and

state of a cursor. A stakeholder is a tile that is receiving intermittent updates about a

cursor, such as changes in the application-defined state, or the cursor's destruction. These

notions are reflected as possible control states for each cursor. (A tile will know that it is

a stakeholder or a receiver for a given cursor.)

When the CursorCoordinator determines that it should send data to another tile, it registers

that tile as a receiver of information about the affected cursor. If the CursorCoordinator

then determines that the tile should no longer receive continuous updates, it changes the

status of that tile from a receiver to a stakeholder (it modifies its own records, and sends

messages to the tile, to notify it of its change in status). When control of a cursor passes

from one tile to another, the sending tile gives the receiving tile the list of receivers and

stakeholders for the given cursor, including itself as a stakeholder.

After introducing the notion of receivers and stakeholders, we must make a modification

to what happens when one tile tries to pass the cursor to another. When the passing tile

receives a message that the remote tile has accepted the pass, it does not mark the control

state of the cursor as false, as we said before. It marks that it is a stakeholder of the cursor.

A stakeholder for a cursor doesn't really care where the cursor information comes from,

but it does care that the information has the right tags. So, when passing control of the

cursor between tiles, maintaining the integrity of these tags is important. Tiles cannot

simply adopt their own, local tags, and expect them to work. They must use the tags that

everyone is expecting.



When a tile receives a pass from another tile, the pass includes information about the tags

from the previous controller of the cursor, as well as a description of the ball associated that

cursor. Using the description, the tile finds a cursor in its own repertoire that matches. It

also checks to see if there is any cursor that matches the tags of the newly arrived cursor.

If there is a single cursor that matches both, the description of the ball, and the tags, then

everything is all set. If there is no cursor that matches the tags of the new cursor, but there

is a cursor that matches its description, then the cursor matching the description is given the

appropriate tags. If there is a cursor that matches the description, and another cursor that

matches the tags, the cursor with the matching tags is set to use the ball associated with

the cursor that matched the description (and the cursor initially matching the description

is deleted). This situation arises if the tile had previously received information about a

cursor to draw, which would have the same tags, although it would not be associated with

any ball. When the tile is passed the cursor, with its description, it is finally able to make

the association between the ball it sees and the information for the cursor it was receiving

remotely.

Since there is a lot of information flying around about who should be receiving what infor-

mation about what cursor, there is an awful lot of room for inconsistencies to creep into the

system. When inconsistencies creep into the system, generally, cursors on tiles that were

receiving remote updates are not removed properly. To trap all of these errors, we have

adopted keep alive messages, as described in section 2.9. A tile that has control of a cursor

must periodically send keep alive messages to all of the stakeholders for the cursor. If a

tile is a stakeholder for any cursor, for which it has not received the requisite keep alive

message, that cursor is deleted. When receivers get information about the position of the

cursor, that is an implicit keep alive message.

Finally, when the CursorCoordinator receives a notification from the Aggregator that a

ball has disappeared (a User object is being removed), if the tile has control of the cursor,

it sends a termination notification to all of the cursor's receivers and stakeholders before

removing the cursor. After a stakeholder or a receiver is instructed to remove a cursor, if

it still sees the ball that was associated with that cursor, it will create a new cursor, and



begin the initial control negotiation process.

The last concern is that users must have some way to indicate intent (like a mouse click).

In our system, we have designed a small vocabulary of gestures that users may utilize to

communicate with the system. The gestures are : a horizontal shake, a vertical shake,

and a circle. The path of the ball is tokenized into strokes by looking for stops (when the

ball moves a very small amount for some number of frames). Each token (stroke) may

be classified as one of the gestures, or as a non-gesture. Strokes are trivially classified as

non-gestures if they are either too long or too short. Otherwise, a stroke is classified by

making a histogram of the angles of the velocities inside the stroke. This histogram is then

compared to a set of templates using mean-squared error (MSE). If the MSE is below a

certain threshold, the stroke is categorized according to the template that best matched its

histogram.

Recognition of gestures is done by the tile controlling the cursor. The tile delivers notifica-

tions of the gesture events to all receivers and stakeholders. The application can register to

receive notifications when gestures happen. To allow system-wide events to be propagated

at the application layer, rather than at the cursor layer, events that happen locally and

remotely are registered separately. If this were not the case, consider the case where some

gesture toggles the state of some variable in the application that is shared among the tiles.

The application would register to receive notifications about the relevant gesture. Say now,

that the gesture happened. If the tile were a receiver of cursor data, it would receive a ges-

ture event, and the application variable would toggle. But, the tile controlling the cursor

would also generate a gesture event, toggling the variable, and so the variable would be

changed twice.

4.4 An Interactive Application

In the interactive application we have designed, users are able to control aspects of the

distributed simulation, using a ball, via the distributed input system described in 4.3. Users

are able to add agents of various types to the system by using gestures. Using a GUI style



collection of buttons and sliders, users are able to set up interactions, where agents of one

type will be attracted to or repulsed by agents of another type. Users that are editing the

same relationship are able to see each other's cursors, so that they will have some sense of

the presence of the other side.

To set up an interaction, users must have a way to modify all of the critical parameters of

the Attraction object: the active type, the stimulus type, and the strength of the attrac-

tion/repulsion. To do this, users access a special purpose screen, which contains two buttons

and a slider. The slider both, reflects the current state of any interaction between the two

selected types, and serves as a way to modify the state of the interaction between the two

types. When an interaction is edited on any one tile, it becomes effective throughout the

whole system.

A button is essentially a special, active area of the screen. To activate a button, a user

moves the cursor into the active area, and then makes a gesture. The gesture does not

need to end in the active area, but it does need to start there. When a gesture occurs, the

application does intersection tests with all of the relevant active areas (e.g. buttons). If the

gesture happened inside one of the buttons, that button is activated. This is analogous to

"clicking" on a button in a traditional GUI. Doing different gestures inside the button is

analogous to "right-clicking" or "left-clicking".

A slider is similar to a button, in that it is an special area of the screen. However, it

is different, since the user must be able to make some sort of continuous adjustment to

the slider. In traditional GUIs, this is usually done with the "click and hold" paradigm.

Since no such paradigm is available when using the ball as an input device, we have devised

another way. When a user activates the slider, the cursor used to activate the slider becomes

associated with the slider. Subsequent movements of the cursor adjust the value of the slider.

When the user releases the slider (with another gesture), the cursor is disassociated, and

further modifications are not made.

In our user input system, there can be multiple cursors, and cursors can disappear (com-

plications not faced in traditional GUIs). So, when a slider has been activated, and is



associated with some cursor, it must prevent other cursors from activating it. Also, if a

cursor that is associated with a slider disappears, the association between the cursor and the

slider needs to be reset so that some other cursor can use it. There are also some interface

design issues. For example, if there is a vertically oriented slider, it is suboptimal to use a

vertical shake as the gesture to release the slider.

As users manipulate the slider, the relationship between the types is updated locally, and

then propagated out to all other nodes running the simulation through the Simulator. A

relationship edited on one tile is reflected in the whole system. So, if two (or more) users

are looking at the slider for the same pair of agent types, they are essentially looking at the

"same" slider - they each have a slider in front of them that controls the same parameter

in the system. This leads to two interesting problems: 1.) if one of the users manipulates

the slider, the changes should be reflected in the sliders that all the other users see, 2.) only

one user should be able to manipulate the slider at once.

To handle the first problem, the application is notified whenever an updated relationship

has been received. If the tile is editing that relationship, the slider is updated to reflect the

new parameters. In this way, all of the sliders are updated by proxy. A more direct way to

do update the sliders might be to use "sessions", as described below.

To handle the second problem, we have adopted the notion of a "session". A session

applies to some control, or set of controls, and allows the nodes running the application to

exchange information about what is happening to those controls, so that it can create a

cohesive response. If a tile is in a session, and its state changes, it sends out updated session

information to all of the other tiles in the system. If a tile is in a session, and it encounters

a state change in another tile's session (that matches its own), it takes some appropriate

action.

For example, the session for the slider lists the relationship that the slider is editing, and

whether or not the slider has been activated. When a user selects a pair of agent types,
the application starts a session for editing that relationship. This session is sent out to all

other tiles in the network. Subsequently, if a user at another tile wants to edit the same



relationship, that tile also sends out a session for that relationship. It is not important who

starts the session for a given relationship, or if two tiles try to start a session at the same

time. All that is important is that the tiles are exchanging information about the state of

controls that are being manipulated by users at each tile. When one of the users activates

the slider, that tile sends out updated session information, saying that its user has taken

control of the slider. In response, the other tile will not allow its user to take control of the

slider. If the tiles detect a collision, where both users have tried to take control of the slider

at the same time, they will both relinquish control, and try again. If a user then chooses to

edit a different relationship, the application ends the session for the first relationship (by

sending out a notification that it is ending its session) before starting a session for the next

relationship.
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Chapter 5

Evaluation

To evaluate the framework's ability to support distributed applications, we examined the

usability of the final, interactive application described in Chapter 4. Three rounds of user

testing were conducted. Modifications were made to the system to respond to users' needs.

Figure 5-1: This figure shows the agents moving around in the simulation.

In the application developed for the user testing, agents could be one of three types of

fish : orange, green, and purple (shown in figure 5-1). In all of the trials, there were two



installations of the wall tiles, containing four tiles each. The installations were in different

parts of a conference room, facing away from each other. Users could not easily see each

other while standing in front of their respective installation of tiles. All eight tiles were

involved in running the unified simulation. Agents being simulated in one set of tiles were

reflected in the other set of tiles. Agents being simulated in different sets of tiles could still

be attracted to each other. In contrast, there were two separate ball tracking networks set

up, one for each installation. We set the test up this way, so that we could see that the

distributed simulation was working properly, that the distributed input system was working

properly, and that users were able to control the system and collaborate.

In all of the tests, the goal was for the users to create multiple fish (at least one of each

type), and set up two relationships. Before attempting to complete the task, users were

initially shown how to create fish and how to set up relationships. Users were able to ask

questions about the user interface while they were working with the system. After either

completing the task, or a sufficient period of time had elapsed, users were asked to fill out

short questionnaires. Users were asked to describe what they did, describe the system,

describe what it was like to use the system, and describe what happened while they were

using the system.

In the first study, there were three modes in the application : a simulation mode, a selection

mode, and an interaction mode, shown in figure 5-2. In the simulation mode, the user viewed

the fish as they swam around, and was able to add fish of various types. The other two

modes were used to create attractions between different types of fish. In the selection

mode, users chose what type of fish would like what other type of fish. The would make a

gesture on a button to move into the "interaction" mode, where users controlled a slider to

determine the strength of the attraction/repulsion.

Ten users, in five pairs, participated in the first study. Users were instructed to create ten

fish, and set up two relationships. Only two of the five pairs were able to complete the task.

All groups were able to create the requisite number of fish, but users struggled to create

relationships.

Users had difficulty with the precision required to make gestures on all of the various



Figure 5-2: This figure shows the two modes for editing interactions, in the first version of
the application. The selection mode is shown on top. The interaction mode is shown on
the bottom.

buttons. Users also had trouble when gestures were recognized erroneously, taking them

out of their desired mode, and requiring them to navigate through the modes, back to the

screen where the slider could be manipulated.

A surprising result was that users did not collaborate very much. It was expected that users

would try to divide the task amongst themselves, by having one person create one relation-

ship, and the other person create the other relationship, or by having one person create the

fish, and the other person create the relationships. This behavior was not observed. Users

remained focused on their installation of tiles, and did not talk to each other very much.

Part of this could be attributed to the description of the task, but the main cause of this

is that users were so focused on using the input system, that they did not have attention



available to talk to each other about what relationships they should create, or how they

might otherwise divide the task.

To address the problems users had activating the buttons, the application was modified. In

the second study, the "selection" mode was eliminated. Users selected the agent types for

the interaction in the "interaction" mode, on the same screen with the slider, by iterating

through the different available types. To address the problems had with erroneous gestures

being identified, the gestures used to activate buttons and change modes were adjusted, to

make it less likely that gestures that would have a detrimental effect would be recognized

erroneously.

Eight users, in four pairs, participated in the second study. They were instructed to create

a "love triangle." In the second test, three of the four groups were able to complete the

task. In the remaining test, users were able to create the number of fish, and set up multiple

relationships, but, due to repeated system failures, the application needed to be restarted

three times, and the users were not able to create the all of the relationships and all of the

fish in a single session.

In the second user, study, there was more collaboration. All but one of the pairs talked

to each other about what they should do next. They negotiated about what types of fish

they should each make like or dislike each other. This change in the nature of the user's

behavior can largely be attributed to the change in the description of the task.

Users continued to struggle with the necessary precision to activate the buttons. There were

fewer buttons, and so this posed less of a problem. Erroneous gestures remained a problem,

but having only two modes reduced the cost of having a gesture recognized improperly.

In both the first and second tests, many users characterized the system as "frustrating" or

"difficult" (even users who were able to complete the task). One of the sources of frustration

is that the cursor can take some time to appear. When a user first shows the ball to the

system, it can take the tiles some time to resolve, amongst themselves, who should be in

charge of the cursor. While waiting, people tend to wave the ball around, trying to get the

tiles' attention. This exacerbates the situation, since the tiles then have trouble agreeing



because they are all seeing the ball in different places. Another source of complaints was

that the cursor would sometimes disappear. This is actually by design - when the tiles

detect a collision of control (where two tiles think they should have the cursor) both tiles

let go, and then they all renegotiate control.

Most of the frustration was derived from the difficulty of controlling the cursor in a pre-

dictable way. At first, the processing power of the computers was blamed, for not being

able to track the balls and produce data at a sufficient rate to keep the tracking smooth.

However, this complaint could not be reconciled with the observation that the cursor worked

fairly well when only one tile was involved. Next, network capacity and latency were blamed

for not getting data back and forth fast enough. However, this could not be reconciled with

the observation that the pure data aggregation application (discussed in Chapter 4, where

the positions of the ball on all of the tiles were shown on the screen) seemed to run in

real-time, without very much appreciable lag.

Finally, we concluded that it was the "jerkiness" of the cursor (that it would go slowly,

and then suddenly speed up, and then suddenly slow down again) that gave users difficulty.

This jerkiness was a result of the way the CursorCoordinator instructed the Aggregator to

gather information. The CursorCoordinator would only ask for help from other tiles when

a ball was within some tolerance on the edge of the field of view of the camera. When the

Aggregator was getting information from another tile, this would slow the system down.

When the ball moved away from the edge of the field of view (or passed to another tile),

the system would speed up again. Due to the way the position of the ball was integrated, a

ball being controlled on one tile might be drawn on a different tile; there was not a strong

relationship between the position of the ball in the field of view of the camera, and the

cursor on the screen. So, it made no visual sense when the cursor would slow down and

speed up.

To address this problem, the system was modified again. This time, The CursorCoordinator

received data from all of its neighbors, all of the time. This had the effect of slowing the

system down, but it made the control of the cursor much smoother and more predictable.

After cursory tests with previous subjects, showing that this was indeed a significant im-



provement, we did a third round of user testing. In the last test, the goal was really to test

the usability of the input system, and less the ability of the users to collaborate. So, users

participated alone. Six users participated in the last study. Users were instructed to create

a "love triangle." The goal was the same, as with the pairs of users; users were to create at

least one fish of each type, and set up two relationships. Five of the six users were able to

complete the task successfully.

As predicted, users struggled a lot less with control of the cursor. Only one of the six

users (the user who had been unable to complete the task) characterized the system as

"frustrating." However, problems remained.

The user who had been unable to complete the task had a darker complexion, and orange-

ish tones in his skin. The image processing on the tiles intermittently picked up his face,

as if it were a ball. This led to cursors jumping all over the place, which rendered the

system mostly unusable. (A similar problem was observed in the second user test, where

one of the users in the pair unable to complete the task had similar skin tones.) Even

users with lighter complexions had their faces identified as balls occasionally. Early in the

development of the system, a balance had to be struck between identifying clothes and skin

as balls, and being able to identify the balls as balls. The solution to this problem, really,

is more sophisticated image processing. In its present form, the image processing simply

looks for areas of saturated color that are of at least a minimum size. A face detector would

help to screen out people's faces, and stronger appearance priors (about the ways shadows

are cast on the balls) would help to screen out clothing. To do better image processing, the

system needs computers with significantly more processing power.

Another problem users had was with duplicate cursors arising. This problem comes from

errors in the Aggregator, when strands are not associated together into aggregates properly.

(This is shown in figure 5-3.) The cause of strands not being associated together properly

is the weakness of the association function in the derived class of the SensorDataAggregate.

Color is used as a discriminator to decide if strands belong together. However, all of the

cameras are a little bit different, and motion blur can affect the average color of areas

detected as balls. The solution to this problem is to use more and stronger appearance



Figure 5-3: Faulty data aggregation, due to inadequacies in the data association function,
leads to multiple aggregates created for a single object, which leads to multiple cursors for
the same ball. SensorDataStrands in the same SensorDataAggregate are represented by
hexagons of the same hue.

information when deciding if strands belong together. This would require more sophisticated

image processing, and, potentially, more network bandwidth (if the appearance information

took up a sufficiently large number of bytes).

Aside from the difficulties with the user input system, the framework was fairly successful

at supporting the distributed simulation. In the user surveys, there were no mentions of

fish disappearing, for example. Users also understood very quickly that interactions that

they edited on one tile were propagated to the other tiles (and to the other installation of

tiles, where applicable).

The way users described the system speaks most to the success of the framework in sup-

porting a distributed, interactive application. Users, as a group, did not get stuck on the

fact that the application was being run on four (or eight) separate computers. Many of

them (though, admittedly, not all) viewed the system as a cohesive unit. One user observed

that "All objects on the total screen moved ... between screen partitions." This remark is

particularly encouraging, since it shows that the user thought of the system as one large



thing, and viewed the different computers as mere partitions of the larger thing. One of

the users from the second study described the system as "two sets of four tablet computers

with cameras," but then went on to say "It is controlled." So, on the one hand, the user

was aware of the hardware elements of the system, but also viewed it as a cohesive system.



Chapter 6

Conclusion and Future Work

In this thesis, we have presented a software framework to support programmers writing

distributed applications. We have assumed a very general model of mesh network style

distributed computing, where hosts have no shared clock, no shared memory, and latency

is unbounded. We have not assumed the most general case of distributed computing, since

we have assumed that hosts can be identified uniquely, but we do not feel that this limits

the usefulness of our work.

When programming for a distributed environment, seemingly simple tasks become complex

quickly, in the face of unbounded latency, network failures, and node failures. It is possi-

ble to manage this complexity by anticipating possible error conditions, and by uniquely

identifying pieces of data, using combinations of locally available identifiers.

We have provided support for the exchange of data in distributed applications by help-

ing applications to send and receive messages asynchronously, providing a mechanism that

allows applications to handle the exchange of data in an event driven manner, and encap-

sulating the details of the networking protocol. We have provided support for applications

susceptible to hardware and operating system failures by providing a piece of software that

can respond to the status of terminated applications, and also serves to provide applications

with a means to recover from node failure by backing up data and distributing it throughout



the network. We have provided support for applications that use data from many sources,

by providing a set of containers for the data, along with a method for distributing and

assembling the data.

Our framework, in its current form, is best suited to applications that need to be responsive

and interactive. The data aggregation framework provides good support for applications

to gather data from sensors about what users are doing, potentially leading to the use of

a number of modalities. The consistent use of multithreading throughout the framework

allows it to handle network traffic, while it continues working, so that the application

remains responsive.

We make no pretension towards bandwidth efficiency. In our applications, we have sought

to reduce unneeded flow of information, but the framework is not built to be lean or mean.

The Message structure uses six 32 bit integers for tagging. This is most certainly excessive.

Similarly, throughout the applications, we have used fairly loose packing for the data (using

32 bit integers throughout). On the other hand, if network bandwidth were at a premium,

the fundamental structure of things in the framework would not need to change - all that

would need to change is the method for packing the data.

We have used TCP for reliable data exchange. It is worth remembering, however, that TCP

does not guarantee that data will get from one host to another, it only guarantees that if

the data does get there, it will all get there together, and the data from a single connection

will arrive in order. This means that applications that run where the network is faulty must

still anticipate faults and handle them gracefully.

Our framework still operates at the level where the application programmer needs to write

instructions for each individual node. We have not provided a system where a programmer

could give instructions to the system as a whole, and have the system figure out what to

do.

Applications where precision and accuracy are most important are supported by our frame-

work, but require extra work on the part of the programmer. A significant short-coming of

our framework is that we have not directly provided support for control and resource-sharing



logic. We have discussed patterns for such logic in broad terms (Chapter 2). Rolling these

patterns into a software module would contribute significantly to the ease of developing

distributed applications.

An obvious area for improvement to the framework, is to move away from the limitation

of IP enabled computers. It would be useful to provide services for different types of

networking protocols. This would allow the framework to expand its usefulness to blue-

tooth enabled and embedded devices. The inclusion of routing facilities would expand the

usefulness of the system into ad hoc networking situations. Including more sophisticated

geometrical intelligence in the MachineNode would aid the usefulness of the framework for

applications where computational units are highly mobile, and where the orientation of the

units matters. Adding facilities for describing location symbolically would serve to support

applications where the relevant aspect of the location is not its coordinates, but its heuristic

significance (i.e. in the bedroom).

Another area of improvement to the framework is the backup service. Currently, there

is very little security built into the system (other than that the backup service will only

give data back to the host/port combination that sent it). There is nothing to stop one

node from impersonating another node, and stealing or modifying its data. Additionally,

there are only minimal safeguards in place for ensuring that all of the copies of data in the

network are consistent and up to date.

GUI developers on just about every platform use some sort of toolkit, which insulates them

from the complexity and tedium of handling user interface elements. It is burdensome to

require the application programmer to handle intersection tests with all of the buttons and

other elements that might exist in a user interface. A natural extension of such toolkits

would be a distributed user interface toolkit. In our application, we demonstrated the

feasibility of the basic elements that would be needed for such a toolkit : buttons, sliders,

and sessions. A user interface toolkit that handled distributed events related to interface

elements, and managed sessions for those user interface elements would be very valuable.

Programmers could create interfaces where multiple users could participate simultaneously

from multiple locations, and elements of the user interfaces could be handled according to



the platform and modality of the receiver.

Improvements to the user input system described in 4.3 could be made by better taking

advantage of the many available sources of data. An improved system might employ truer

multi-camera tracking, with sleeker positioning of new cursors. Units could agree, not only

on who should control a new cursor, but where it should appear, given other cursors in the

system. Another improvement to the system might come in the form of distributed gesture

recognition, where units in the system voted, or otherwise communicated with each other

about what gestures they saw in their own streams of data.

Our framework provides a good foundation, by providing services aimed at the basic needs

of distributed applications, and distributed applications that use sensor data. Future di-

rections for service suites, based on our framework, include suites for advertising resources

(this would support many ubiquitous computing applications), context awareness, sensor

fusion, and data fusion.



Appendix A

System and Services Summary

A.1 Is this system for you?

Our framework was designed to work on computers that support TCP, and that have multi-

threading capabilities. The framework has been used and tested under Linux and Mac OS

X.

The messaging system is for people who want to do distributed computing, without worrying

about networking details. It is for people who need reliable connections, but don't want the

TCP connection model, and don't want to write their own networking protocol.

The messaging system does not allow developers to carefully control the use of network or

operating system resources. The system uses a reasonable amount of system resources; each

sending/receiving thread takes up time and resources, and each TCP connection takes time

and resources. All data structures in the system are loosely packed, using 32 bit integers

The process management and data backup services are for people who want to write ro-

bust, distributed applications on somewhat unreliable hardware. The process management

services are for use where programs may crash intermittently, due to problems with the

underlying system. It is also for use where operating system or hardware failures can be



detected directly, or where frequent restarts are a symptom of failure. The data backup

services are designed to help protect against intermittent, scattered outages. They are most

useful where the state of programs can be summarized in a data structure or data structures.

The data backup service can't necessarily protect against data loss when large portions of

the network go out simultaneously. Also, the data backup service does not provide strong

mechanisms to make absolutely sure that all copies of data throughout the network are up

to date and consistent.

The data aggregation system is for applications that want to share data gathered by lots of

sensors, but don't want to worry about the details of getting the data back and forth. The

data aggregation system is at its best when sensors collect data about multiple, identifiable

phenomena at each site, and there is some function that can show how data from different

sources are related.

The data aggregation system provides an interface where applications must request data

from each other, so the application must know what other hosts it should ask for data.

The data aggregation system does not solve the data association problem, or the alignment

problem.

A.2 Summary of Services

The Messaging system provides services to send and receive messages asynchronously. The

Messenger provides a callback registry, which allows the application to react to incoming

messages in an event-driven manner. The Messenger allows applications to request persis-

tent TCP connections between hosts, to reduce the overhead of setting up and tearing down

connections, and to ensure that TCP's guarantees about complete, in-order delivery hold.

The Process Management system provides services to automatically restart programs that

crash, and to automatically reboot computers where critical faults are detected. The Data

Backup system allows applications to store data, for later retrieval. Data is propagated

out to the network to provide robust storage, in the case of node failure. When a program



fails, and then restarts, it can retrieve data from the Process Manager when it restarts. If

the computer needs to be rebooted, when the Process Manager restarts, it gathers up left

behind data from other hosts on the network. Then, when the application restarts, it can

retrieve its data from the Process Manager.

The data aggregation system provides a structure to organize data that is gathered from

many sensors. The Aggregator manages the production, sending, receiving and organization

of data. The application must know what its data is like and how to collect it, but it does

not need to worry about sending or receiving it. Aggregators send their data only to hosts

that have requested it. This allows the application to manage network utilization, by only

requesting data that is relevant. The Aggregator provides a callback registry, which allows

the application to react to data-driven events.
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Appendix B

PointerList API

B.1 PointerList <YourTypeHere*>

The PointerList class implements a templated doubly linked list. It is designed to be used

to store pointers to objects/memory that have been dynamically allocated.

The list has an internal "reference" which can be manipulated by the application. This

reference is used to make iteration through the list, and certain other operations, fast.

When doing operations that involve searching the list (like the AddAfterO call), if there is

more than one copy of a pointer in the list, the first found copy of the element is the one

affected. The list is searched starting at the head (front) and ending at the back (end).

The PointerList is not thread safe. This decisions was made so that applications that use

the PointerList do not necessarily have to link against libpthread. Applications must wrap

the list with a mutex for thread safe adding, removing, and searching.

To instantiate the list, do:

PointerList <YourTypeHere *>mylist;

OR

PointerList <YourTypeHere *>* mylist = new PointerList <YourTypeHere * >;



To iterate through a list, do:

for(YourTypeHere* temp = mylist->Start(); temp!=NULL; temp = mylist->Next(){

}

To iterate through a list, where you may remove elements from the list, do:

YourTypeHere* temp = mylist->StartO;

while(temp != NULL){

if(condition) {

mylist->Remove(temp);

temp = mylist->Get(;

}
else{

temp = mylist->Nexto;

}
}

bool Add(YourTypeHere *data)

Adds the given data to the front of the list. All Add* functions return true upon

successful completion, and false in case of failure. All Add* functions will not add an

element to the list whose value is NULL (or 0).

bool AddToFront(YourTypeHere* data)

Adds the given data to the front of the list. Returns true upon successful completion,

and false in case of failure.

bool AddToBack(YourTypeHere* data)

Adds the given data to the back of the list. Returns true upon successful completion,

and false in case of failure.

bool AddAfter(YourTypeHere* data, YourTypeHere* after)

Adds the given data to the list, placing it after the given value. If the "after" value is

not in the list, the function returns false and the element is not added to the list. This



function searches the list for the "after" value, and so, if repeated "AddAfter" calls

are going to be used, it will be more efficient to use the second version of "AddAfter".

bool AddAfter(YourTypeHere* data)

Adds the given data to the list, placing it after the value pointed to by the internal

reference. If the reference is not pointing to anything, the function returns false and

the element is not added to the list.

bool AddBefore(YourTypeHere* data, YourTypeHere* before)

Adds the given data to the list, placing it before the given value. If the "before"

value is not in the list, the function returns false and the element is not added to the

list. If the "before" value is NULL, the function returns false and the element is not

added to the list. This function searches the list for the "before" value, and so, if

repeated "AddBefore" calls are going to be used, it will be more efficient to use the

second version of "AddBefore".

bool AddBefore(YourTypeHere* data)

Adds the given data to the list, placing it before the value pointed to by the internal

reference. If the reference is not pointing to anything, the function returns false and

the element is not added to the list.

bool AddInOrder(YourTypeHere* data,

bool(*compare)(YourTypeHere* thing1, YourTypeHere* thing2))

Finds the first element in the list where the comparison function is true, and adds the

given data before that element. If there are no elements in the list when this function

is called, it simply adds the element to the list.

YourTypeHere* RemoveFromFront()

Removes the first element of the list, and returns it.

YourTypeHere* RemoveFromBack()

Removes the last element of the list, and returns it.



YourTypeHere* Remove (YourTypeHere* item)

Finds and removes the first element of the list matching the given value, and returns

it.

YourTypeHere* Remove()

Removes the element currently pointed to by the internal reference and returns it.

The internal reference pointer is moved to the next element.

bool RemoveAll()

Removes all elements from the list, but does not call the C++ delete operator.

bool DeleteFromFront()

Removes the first element of the list, and deletes it with the

bool DeleteFromBack()

Removes the last element of the list, and deletes it with the

bool Delete(YourTypeHere* item)

Finds and removes the first element of the list matching the

it with the C++ delete operator.

C++ delete operator.

C++ delete operator.

given value, and deletes

bool Delete()

Removes the element currently pointed to by the internal reference and deletes it

with the C++ delete operator. The reference pointer moves to the next element in

the list.

bool DeleteAll()

Removes all elements in the list, and calls the

YourTypeHere* Start()

Sets the internal reference to the first element

C++ delete operator for each of them.

in the list, and returns that element.

YourTypeHere* Endo

Sets the internal reference to the last element in the list, and returns that element.
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YourTypeHere* Next()

Sets the internal reference to the next element in the list and returns that element.

Returns NULL if the reference is not set prior to the call, or if the reference was at

the end of the list prior to the call.

YourTypeHere* Next (YourTypeHere* item)

Sets the internal reference to the element after the first element in the list matching

the given value. Equivalent to a call to Set(YourTypeHere*) followed by a call to

NextO. Returns the value pointed to by the reference at the end of the call.

YourTypeHere* Prevo

Sets the internal reference to the previous element in the list and returns that element.

Returns NULL if the reference is not set prior to the call, or if the reference was at

the head of the list prior to the call.

YourTypeHere* Prev(YourTypeHere* item)

Sets the internal reference to the element after the first element in the list matching

the given value. Equivalent to a call to Set(YourTypeHere*) followed by a call to

PrevO. Returns the value pointed to by the reference at the end of the call.

bool Set(YourTypeHere* item)

Sets the internal reference to the first element in the list matching the given value.

bool IsIn(YourTypeHere* item)

Searches for the given element in the list. Returns true if the element is in the list,

and false if it is not.

YourTypeHere* Get()

Returns the element that the internal reference is pointing to. Returns NULL if the

internal reference is not set.

YourTypeHere* Get(int index)

Treats the list as an array, and returns the given element of the list. Get(O) returns
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the first element of the list. Returns NULL if there are fewer than index elements in

the list.

YourTypeHere* GetStart()

Returns the first element in the list. Does not alter the internal reference.

YourTypeHere* GetEnd()

Returns the last element in the list. Does not alter the internal reference.

YourTypeHere* GetNext()

Returns the element in the list after the element pointed to by the internal reference.

Returns NULL if the reference is not set, or is at the end of the list. Does not alter

the internal reference.

YourTypeHere* GetNext(YourTypeHere* item)

Returns the element after the first found instance of the given value. Does not alter

the internal reference. Is not affected by the internal reference.

YourTypeHere* GetPrev(

Returns the element in the list before the element pointed to by the internal reference.

Does NOT alter the internal reference. Returns NULL if the reference is not set, or

is at the head of the list. Does not alter the internal reference.

YourTypeHere* GetPrev(YourTypeHere* item)

Returns the element before the first found instance of the given value. Does not alter

the internal reference. Is not affected by the internal reference.

PointerList <YourTypeHere* >Detach(YourTypeHere* item)

Finds the (first instance of) the given value, and returns all subsequent elements in

a new list. Elements in the new list are removed from the parent list.

bool Trim(int howmany)

Counts the given number of elements in the list, and deletes all elements after that
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element. Returns true on successful completion, and false if there are less than the

required number of elements in the list.

bool TrimAfter(YourTypeHere* after)

Finds the (first instance of the) given value in the list, and deletes all subsequent

elements of the list. The given element remains in the list. Returns true on success,

and false if the given value is NULL, or if it is not in the list.

bool IrimBefore(YourTypeHere* before)

Finds the (first instance of the) given value in the list, and deletes all previous elements

of the list. The given element remains in the list. Returns true on success, and false

if the given value is NULL, or if it is not in the list.

int Lengtho

Returns the number of elements in the list. It actually goes through and counts

the elements in the list, rather than maintaining a count as elements are added and

removed.

void ApplyToAll(void (*function) (YourTypeHere*)

Takes the given function and applies it to each element in the list. The function to

be applied will take a single element as an argument. Do NOT add or remove nodes

to the list inside this function.
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Appendix C

Messaging API

The messaging subsystem is a collection of objects and functions to facilitate the

exchange of data between processes running on different hosts. Applications package

their data in Messages, which are then given to the Messenger. The Messenger then

takes control of the messages and sends them. Messages are received asynchronously

by the Messenger. Applications register callback functions for different types of mes-

sages and receive messages in an event-driven loop. The application must periodically

call Messenger: :ProcessMessages, which dispatches messages to the appropriate call-

backs, in addition to handling internal messages. The architecture is asynchronous,

multi-threaded, and uses blocking I/O.

C.1 Message

The Message is the main unit of currency in the system. It is mostly a container for

tagging data, and holding onto buffers.

The member variables of the Message class are: int type;

int extra;

int timestamp;
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Figure C-1: The dependency diagram for objects in the Messaging subsystem.

int seq..no;

int sender;

int receiver;

int length;

char* message;

Message(

Creates a blank messages with all members initialized to 0 or -1.

Message(Message* msg)

Creates a new message that is a copy of the given message. Creates a copy of the

message buffer.
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Message(char* msg)

Creates a message that contains the (parsed) information contained in "msg".

Message(int type, int extra)

Creates a blank message, but initializes "type" and "extra" to the given values.

Message(int receiver, int sender, int type, int extra)

Creates a blank message, but initializes, receiver, sender, type and extra to given

values.

void SetMessage(char* message, int length)

This function is VERY IMPORTANT. Data in an application should ultimately be

packaged into byte arrays. This is, as opposed to null terminated strings. The good

thing about using byte arrays is that there can be zeros in the middle, and you can

transmit binary data easily. The bad part about using byte arrays is that you need to

be told how long the buffer is. The byte array could contain a null-terminated string,

but you still need to use strlen+1 to say how long the buffer is. To use this function,

package your information as a byte array and figure out its length. When you pass in

a buffer, the message "takes control" of the memory (and will try to delete it when

its destructor is called).

void ReadHeader(char* msg)

This function takes a byte array and parses out the header, but does not create a new

buffer or copy the data into its message.

void ParseString(char* msg)

This function takes a byte array and parses out the header, and uses the length pa-

rameter to allocate a buffer, and copy in the relevant information from the remainder

of the buffer.

char* CreateString(int &len)

This function returns a byte array, which contains the information contained in the
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Message. An integer should be passed in, which will be modified. This is to indicate

the size of the buffer returned.

void SetExpiration(int future)

This function sets the expiration time of a message (in seconds). Internally, when this

message is about to be sent, its expiration time is checked, and if it has passed, the

message is quietly deleted. Do not set the expiration time, and there will effectively

be no expiration time. Beware of edge effects when setting expiration times 1 second

in the future.

Message* Reply()

This function creates a new message, where it has swapped its own sender and receiver

fields. Otherwise, the returned message is blank.

void PrintO

Prints the information of the message in this format: || sender, receiver || type, extra

(timestamp, seq-no) length message If the message is a byte array, the end will look

like garbage.

C.2 Message Types

MESSAGETYPES 20

MESSAGETYPEERROR 0

MESSAGETYPECOMMAND 1

MESSAGETYPENOTIFY 2

MESSAGETYPEQUERY 3

MESSAGETYPEPASS 4

MESSAGETYPECOORDINATEREQUEST 5

MESSAGETYPE.COORDINATERESPONSE 6

MESSAGETYPENEIGHBOR 7
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MESSAGETYPECONNECTION 8

MESSAGETYPECONTINUATION 9

MESSAGETYPEROUTING 10

ERROR.NOSOCKET 1

ERRORBADHOST 2

ERRORJ3INDSOCKET 3

ERROR.CONNECTIONTERMINATED 4

ERRORNEEDREBOOT 5

ERRORNOPROGRAM 6

COMMANDQUIT 'Q'
COMMANDSTOP 'S'

COMMAND.CONTINUE 'C'

NEIGHBOR.ADD 'A'

NEIGHBOR-REMOVE 'R'

NEIGHBOR.MODIFY 'M'

CONNECTION.START 'S'

CONNECTION..END 'E'

CONNECTIONTERMINATED 'T'

MESSAGEFORMATP2P 1

MESSAGEFORMATERSISTANT 2

MESSAGEFORMAT.GROUP 3
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C.3 Messenger

The sending and receiving inside the Messenger happens on a specific port. You

designate the port in the constructor. Messengers on different physical machines

must be listening / talking on the same port to be able to communicate. If an error

occurs during setup (like, if the server cannot bind to the socket), an error message

is placed on the queue and will be dispatched in the first ProcessMessageso call.

Once messages are placed on the queue, the application should not attempt to modify

them in any way. DO NOT REUSE MESSAGES. They are deleted with the C++

delete operator when they are sent.

DEFAULTLISTEN-PORT 4690

MAXMESSAGELENGTH 512

MESSAGEHEADERSIZE 28

Messenger()

Sets up the Messenger to listen and send on the DEFAULTLISTENPORT.

Messenger(int port)

Sets up the Messenger to listen and send on the given port.

Messenger(int port, bool using-sender, bool using-server)

Sets up the Messenger to send and/or receive on the given port. Allows the application

to disable either the main client thread or the main server thread. The Messenger will

still be able to set up persistant connection, even if the main client is not running.

However, the Messenger will not be able to handle the setup of incoming persistant

connections if the main server thread is not running.

int GetAddress()

This retrieves the integer value of the local IP address from the network table.

int ProcessMessages(
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This function must be called periodically to dispatch messages to the registered call-

backs. Messages for which there are registered callbacks are deleted. Messages with-

out registered callbacks are put back on the queue.

The ProcessMessages function handles a maximum of 15 messages, before it returns.

(This is to prevent starvation of the main application, if messages continue to arrive).

The function returns the number of messages it has processed.

If there is no callback registered for the MESSAGETYPE.ERROR message type,

these messages will also get placed back on the queue, and the application will not

otherwise be notified of the problem.

void RegisterCallback(int type, void (*function) (Message*, void*)

Callback functions registered with the Messenger must have the signature: void my-

function(Message*, void*). The void* argument is to package whatever piece of infor-

mation the application needs to its callback. This is very useful, for example, when

the callback needs to be a method of a class. To do this, you declare a static method

of the class, and then use the void* to package a pointer to the class. Your static

member uses the pointer to call the proper method of the class, with access to all the

data members, etc. This methodology is somewhat borrowed from GTK.

void RegisterCallback(int type, void (*function) (Message*, void*), void*

data

You can use this version if you have no extra data to pass to your callbacks. (It just

looks slightly cleaner).

Message* CreateMessage(int type, int extra, char* data, int len)

This function takes the provided arguments, and makes a new Message with the

appropriate information. It sets the sender to be the local address. The application

must set the receiver. If you know to whom you want to send the message (and

you don't plan to make any copies), you can use the second SendMessageo function

below.
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void SendMessage(MachineNode* receiver, int type, int extra, char* data,

int len)

This function takes the given information and sends it to the given host. It sets the

sender and receiver of the message automatically.

void SendMessage (Message* message)

This takes a created Message and sends it. Do NOT try to modify a message once

you have passed it to this function. If you do not set the receiver, then the message

will come back to you, since receiver == 0 is localhost.

void SendMessageCopy(Message* message, MachineNode* receiver)

This function takes the given message, makes a copy, and sends the copy to the given

node. It does not delete or alter the original message.

void SendMessageToHosts(MachineNodeMgr* hosts, Message* message)

This message takes a MachineNodeMgr and sends the given Message to every host

represented in the MachineNodeMgr. It deletes the original message when it is done.

void SendMessageToAll(int type, int extra, char* data, int len

This function takes the given information, makes a message out of it, and sends a

copy to every node in the internal "neighbors" MachineNodeMgr.

void SendMessageToAll (Message*)

This function takes the given message and sends it to every node in the internal

"neighbors" MachineNodeMgr.

Message* SendMessageTo(Message* message, int address, int port)

Sends the given Message to the given address on the given port. This function sends

the Message synchronously. The Messages returned by this function are possible error

messages generated when trying to send the message. It should be noted that if this

send fails due to a problem with the remote host, it may take a long time for the

function to return.
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Message* SendMessageTo(Message* message, int port)

Sends the given Message to the local address on the given port. This function sends

the Message synchronously, but an error with a local address will return quickly if

there is no server running.

int RequestConnection(int address)

These functions set up a persistant connection with the host with the given address.

If this host does not exist in the internal "neighbors" MachineNodeMgr, it is created.

int RequestConnection(char* address)

These functions set up a persistant connection with the host with the given address.

If this host does not exist in the internal "neighbors" MachineNodeMgr, it is created.

int RequestConnection(MachineNode* host)

This function sets up a persistant connection with the given host. You can only

request outgoing connections. You can't request that a host that has been sending

you a lot of data set up a persistant connection with you - they must initiate the

connection. This sort of request must go through the application layer. There is no

support for it in the Messenger. The function returns 0 if everything went well, and -1

on an error. If the connection to the remote host failed, an error message is generated

and placed on the queue.

int CancelConnection(int address)

These functions close a previously requested persistant connection to the host with

the given address. If the address is not represented in the internal "neighbors" Ma-

chineNodeMgr, the function returns -1;

int CancelConnection(char* address)

These functions close a previously requested persistant connection to the host with

the given address. If the address is not represented in the internal "neighbors" Ma-

chineNodeMgr, the function returns -1;

int CancelConnection(MachineNode* host)
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This function closes a previously requested persistant connection to another host.

The function returns 0 if everything completed successfully, and -1 on an error.

MachineNode* AddNeighbor(char* address)

Adds a MachineNode with the given address to the internal neighbor MachineN-

odeMgr.

MachineNode* AddNeighbor(int address)

Adds a MachineNode with the given address to the internal neighbor MachineN-

odeMgr.

MachineNode* AddNeighbor(Message* message)

Takes the given message, parses it, and adds the parsed MachineNode to the internal

MachineNodeMgr.

MachineNode* AddNeighbor(MachineNode* host)

Takes the given MachineNode and adds to the internal MachineNodeMgr. The ap-

plication should not attempt to delete the MachineNode, once it has been passed to

this function. (It does not make a copy.)

MachineNode* GetNeighbor (char* address)

Returns the MachineNode in the internal MachineNodeMgr that matches the given

address.

MachineNode* GetNeighbor(int address)

Returns the MachineNode in the internal MachineNodeMgr that matches the given

address.

int RemoveNeighbor(char* address)

Removes the MachineNode with the given address from the internal neighbor Machi-

neNodeMgr.

int RemoveNeighbor(int address)
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Removes the MachineNode with the given address from the internal neighbor Machi-

neNodeMgr.

int RemoveNeighbor(Message* message)

Takes the given message, parses it, and removes MachineNode matching the address

of the parsed MachineNode from the internal MachineNodeMgr.

int RemoveNeighbor(MachineNode* host)

Removes the given MachineNode from the internal MachineNodeMgr. It is assumed

that the given MachineNode actually came from the internal MachingNodeMgr, and is

not a copy or something. Unpredictable things will happen if the given MachineNode

is not actually in the internal MachineNodeMgr. To delete from a copy, use the

RemoveNeighbor(int) function.

MachineNode* Transform(MachineNode* host, MachineNode* neighbor)

Transforms the host into the neighbor's coordinate frame. Returns a node with the

relevant transform.

void SetAsNeighbors(MachineNode* host, MachineNode* neighbor)

This function notifies the node about the neighbor. It takes the neighbor MachineN-

ode, transforms it by the "node" MachineNode's transformation, and then sends that

to the node. It forges the sender address so that it looks like the neighbor notification

came from the neighbor MachineNode.

void SetupNeighborMess()

This function sets every node in the table as a neighbor of every other node in the

table. It does not try to set each node as a neighbor of itself.

void SetupNeighborLattice(int degree)

This would more aptly be name "SetupNeighborChaino". This function goes through

the neighbor table, and for each node, gives it the given number of neighbors from

the table. The structure will be like a chain.
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C.4 MachineNode

The MachineNode is a class for keeping track of nodes in the network. "Machine" Node

comes from thinking of a State Machine. So, it refers to nodes running a state

machine. This class also keeps track of physical topology / transformations. When

dealing with physical transformations, the assumption is that the local node (the host

maintaining the table) is at (0,0,0) and is axis-aligned. All other hosts are translated

and rotated with respect to the local node. This class also has data members for

keeping track of persistant connections. I do not recommend messing with these -

leave that to the Messenger.

int address

int type (largely unused)

int t //Time offset

int x[3] //position

int r[3] //rotation (unsupported)

int s[3] //size/extent

MachineNodeo

The default constructor for the MachineNode initializes all of the geometry to with

appropriate zero values.

MachineNode (Message* message)

This constructor initializes the geometry to zero, but then parses out the address and

physical transformations.

void Copy(MachineNode* host)

This function takes another MachineNode and copies all of its information (less con-

nections and threads).

int Parse(Message* message)

This function takes a Message and parses out the address and physical transforma-
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tions.

int ParseString(char* string)

This function takes a string, assumes that it is a packaged MachineNode, and parses

out the address and physical transformations.

char* CreateString(int& length)

This function packages a MachineNode as a byte array. The len variable is passed in

and modified to indicate the length of the returned byte array.

void Print()

This function prints the information of the MachineNode in the following format:

address || time-offset (X translation, Y translation, Z translation) ; (X size, Y size, Z

size)

void Update(MachineNode* host)

This function takes another MachineNode and copies the physical transformation

information, over-riding whatever information it previously had.

void SetAddress(int address)

This function stores the given integer as the address.

void SetAddress(char* address)

The function takes in a string, such as "18.85.18.131", or "ozy.media.mit.edu" and

converts it to an integer, and stores that integer.

void SetType(int type)

This is to set the internal type variable. I had envisioned this for typing things as a

tile or a robot or a PC, or whatever other device we might have.

void SetTime(int time-offset)

I envisioned this holding information about the offset between clocks on various hosts.

void SetTranslation(int X, int Y, int Z)
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This is to set the translation vector (where the given host is with respect to the local

host).

void SetTranslation(int* translation)

Here, the translation vector should take the form int v[3] = X,Y,Z.

int* GetTranslation(int* translation)

A vector (int[3]) should be passed in. This is then filled with the relevant information,

and returned.

void SetSize(int X, int Y, int Z)

This assumes that nodes can be described by boxes. The boxes are X wide by Y tall,

and Z deep.

void SetSize(int* size)

Vector version. int size[3] = width, height, depth;

int* GetSize(int* size)

A vector (int[3]) should be passed in. This is then filled with the relevant information,

and returned.

int* Transform(int* point)

This function takes a point int X, Y, Z format. It transforms the point, from the

outside, into the coordinate frame of the node, using the internal translation (and

rotation, at some point in the future), and stores the result in the vector that is

passed in. POINTS PASSED TO THE FUNCTION ARE MODIFIED, and then

returned.

int* InverseTransform(int* point)

This function takes a point int X, Y, Z format. It transforms the point from the

coordinate frame of the node, out to the local host's coordinate frame. It stores the

result in the vector that is passed in. POINTS PASSED TO THE FUNCTION ARE

MODIFIED, and then returned.
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bool Inside(int* point)

This function takes a point, in the external coordinate frame, and determines if it is

inside the extent of the node. It transforms the point internally, so don't transform

it before passing it in. It does NOT modify points that are passed in.

bool InsideWithTolerance(int* point, int* epsilon)

This function takes a point, in the external coordinate frame, and determines if it is

inside the extent of the node, with the given tolerance, epsilon. There can be different

tolerances in each of the three directions. It does NOT alter points that are passed

in.

int SquaredDistanceToCenter(int* point)

This takes a point, in the external coordinate frame, and determines the (squared)

distance to the center of the node. It does the squared distance to avoid expensive

sqrt calls, and most cases I could think of, the squared distance was just as good as

the plain distance.

int SquaredDistanceToExtent(int* point)

This takesa point, in the external coodinate frame, and determines the (squared)

distance to the nearest border. If the point is outside the volume, the return value is

positive. If the point is on a border, the return value is zero. If the point is INSIDE

the volume, the return value is NEGATIVE.

bool IsLefto

Determine if the node is to the left of the local host.

bool IsRighto

Determine if the node is to the right of the local host.

bool IsUpo

Determine if the node is above the local host.

bool IsDownO

Determine if the node is below the local host.
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C.5 MessageQueue

The MessageQueue object serves as the interface between the main program and the

sender and server threads. Applications should not really need to interact with the

message queues. The exception is when the application elects to bypass the internal

Messenger::ProcessMessages function, and handle the incoming messages itself (which

I don't recommend, because there are internal messages to handle.)

int Enqueue(char* message)

The function takes the character buffer, creates a message, and puts it on the queue.

int Enqueue(Message* message)

The function takes the given message and puts it on the queue. Return value of -1

means there was a problem enqueueing the message.

Message* Dequeue()

Returns the first message on the queue.

Message* DequeueByType(int type)

Returns first message on the queue with the given type.

Message* DequeueByFormat(int format)

Returns the first message on the queue with the given format. Don't worry too much

about this. It doesn't mean the data is any different - It is mostly for ensuring that

certain threads get or don't get messages they should or shouldn't get.

Message* DequeueBySender(int address)

Returns the first message on the queue with the given sender.

Message* DequeueByReceiver(int address)

Returns the first message on the queue with the given receiver.
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C.6 MachineNodeMgr

The MachineNodeMgr is a table for MachineNodes. It holds the linked list represent-

ing all known hosts. It also provides some higher level geometric intelligence (like,

finding the host that is nearest to a given point.)

int SetClient(MachineNode* host)

This function designates the given node as the client node. I had originally intended

to use this for debugging (so every tile would dump back to some client), but I have

never actually used it.

int SetSelfO

This function creates a node and sets its address using the gethostnameo call.

int SetSelf(MachineNode* host)

This function uses the given node as the self node.

MachineNode* Add(char* address)

This function takes a string in the style of "18.85.18.131" or "ozy.media.mit.edu",

creates a node with that address, and adds it to the list. It returns the created node.

Geometrical information is left blank.

MachineNode* Add(int address)

This function takes an address as an integer, creates a node with that address, and

adds it to the this. It returns the created node. Geometrical information is left blank.

MachineNode* Add(Message* message)

This function takes a Message, creates a node, parses the Message into the node, and

adds the node. It returns the created node. Any geometrical information contained

in the Message is reflected in the added node.

MachineNode* Add(MachineNode* host)

This function takes a pre-allocated MachineNode and adds it to the list. It assumes
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responsibility for the memory, and will delete the node if it is not otherwise removed.

There can only be one node with a given address in a MachineNodeMgr. If the

Add function finds another MachineNode with the same address, it will replace the

geometrical information with the given information using MachineNode::Updateo,

and then delete the passed in node. It will return either the node that is added

(passed in), or the node that it finds with the same address. This function does not

make a copy.

int Remove(int address)

This function takes an address as an integer and removes the node with the given

address.

int Remove(char* address)

This function takes an address as a string and removes the node with the equivalent

address.

int Remove(Message* message)

This function takes a Message and removes the host designated in the Message. If the

Message is an error message, it looks at the receiver, and removes that node (these

error messages are created in the Messenger). Otherwise, it parses the message as

usual, and removes the node with a matching address.

int Remove(MachineNode* host)

This function takes the given MachineNode and removes it from the list. This should

be a node that is IN the list (that you got with one of the GetNode(*) functions),

and not some copy that the application has kept outside of the list.

MachineNode* GetSelfO

Returns the designated "Self' node.

MachineNode* GetClient()

Returns the designated Client node.
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Pointerlist <MachineNode*>* GetNodes()

Returns the list of MachineNodes.

MachineNode* GetNode(MachineNode* after)

Returns the next node in the list, after the given node. Passing in NULL returns the

head of the list.

MachineNode* GetNode(int address)

Returns the node in the table with the given integer address.

MachineNode* GetNode(char* address)

Returns the node in the table with an equivalent address.

C.7 Connection

This class is designed to minimize the pain of dealing with TCP network connections.

It is designed to be used to send and receive information packaged as Messages.

Unfortunately, it keeps with the TCP connection model: there is a server and a client.

The server binds to the port and waits to receive connections. When it receives a

connection, it creates a new Connection, which then receives the message. There are

options for using non-blocking I/O. I tested the receiving functions in non-blocking

mode, and they should work properly. I have not checked the send functions in non-

blocking mode, and I think it is possible for the send to return before it has sent all

of the data, so beware.

void Initialize()

Zeroes out all of the (private) data in the connection - resets the local address and

port.

void SetPort(int)

Sets the port on which the connection will try to communicate. Does nothing if the

connection is already open.
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void SetHosts(int remote, int local)

Sets the remote and local addresses to the given integer addresses. The remote

address is the address to which you will connect if you try to start a connection.

Remote addresses do not make any sense for incoming connections, but they are

convenient for book-keeping. If the connection is already open, it does nothing.

void SetHosts(MachineNode* remote, MachineNode* local)

Sets the remote and local hosts using the MachineNode abstraction.

void SetRemoteHost(int remote)

Sets just the remote address (to which you will connect) to the given address. Does

nothing if the connection is already open.

void SetRemoteHost(MachineNode* remote)

Sets just the remote address, using the MachineNode abstraction.

int GetRemoteAddress()

Returns the integer value of the remote address.

void SetNonBlocking()

Puts the connection into non-blocking mode. (Can be done while connection is open).

Use with caution!

void SetBlocking()

Puts the connection into blocking mode.

void DisableNagle()

The Nagle algorithm is a pretty simple little idea. For every packet sent over TCP,

an ACK is sent in return. The guys designing TCP said "gee, it is kinda wasteful to

use a whole packet to send a 1 bit acknowledgement." So, using the Nagle algorithm,

they piggy-back the ACKs on real data, going the other way. If there is no data

going the other way, however, (as is generally the case in this system, since it is

easier to program), if the Nagle algorithm is enabled, the ACKs will never get sent,
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and no more data will come. So you disable the Nagle algorithm to send the ACKs

immediately.

void EnableNagle(

Enable the Nagle algorithm.

void DisableTimeWait()

When you open a TCP connection, and then you send data over the connection, it is

possible that some of the data bound for the connection is delayed along the way. To

this end, when you close a connection, you don't want to reuse the port immediately,

since this stray data might come into the port later on and mess you up. So, you

wait for some amount of time, until you can be reasonably sure there is no stray data

coming to mess you up. This enables the port to be reused immediately.

void Close()

Closes the connection using the system close, and zeroes out the file descriptor. Does

not modify the local or remote host addresses, or the port. Connection is ready to

be reused.

bool IsOpeno

Returns false if the socket file descriptor is not a real file descriptor (fd i= 0). It does

not do any more sophisticated tests to make sure the socket is good to read/write to.

Message* SetupToWaitForConnection()

This sets up the "server" end of a TCP connection. It does the bind() and listeno

calls of the setup. If it is unsuccessful, creating or binding to the socket, it will return

an error message. If all goes well, it returns NULL.

Connection* WaitForConnectiono

This function waits for new connections to come in using the accepto call. This

function will block if no connection is immediately available. Not sure what happens

when the connection is in non-blocking mode. Returns a new Connection object for

the accepted connection.
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Connection* WaitForConnection(Connection*)

This function waits for new connections to come in using the accepto call. This

function will block if no connection is immediately available. Not sure what happens

when the connection is in non-blocking mode. It will use the given Connection,

rather than creating a new Connection object. If the Connection is not open, it

returns NULL.

Message* Start Connection()

This implements the client side of the connection. This initiates a connection to the

stored remote address, on the stored port. If the connection is already open when

this function is called, the old connection is closed. If the connection does not start

successfully, an error message is returned. If all goes well, the function returns NULL.

int UseConnection(int file-descriptor)

This sets the internal file descriptor to point to the given file descriptor. This function

is used, for example, when accepting new connections in a server.

Message* Receive()

This function receives messages from a connection. If the connection is not open, or

if there is no data to read, it returns NULL. If the other side of the connection has

closed the connection, it will detect this, close the connection, and return a connection

message (which will be handled by the Messenger). Otherwise, this function allocates

and returns the message that has just been read off the connection.

Message* Send(Message*)

This function sends Messages out over a connection. If the message is successfully

sent, the function returns NULL. If there was a problem sending the message, the

function returns an connection message, which will be handled by the Messenger.

IMPORTANT: If there is a problem sending the message, this will happen because

the receiving end of the connection has closed the connection. When a program tries

to send something, and there is nobody listening, this raises the SIGPIPE signal.

There is supposed to be a socket option for disabling this, but I couldn't get it to
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compile. To work around this, in the Messenger, it sets up to catch SIGPIPE with

the SIGAlGN macro. If you are using the Connection object out of the context of the

Messenger, you will also need to catch SIGPIPE.
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Appendix D

Network Client Interface

The Network Client is a piece of software that was written for communicating with

various network pieces (like the tiles, and the robots). There are internal commands,

telling the program to do things, and network commands, which are things to be

sent over the network. Internal commands are capitalized. Network commands are

lower-case. You can create files with sequences of commands, and then load them

in. It will ignore blank lines and lines starting with '#'. It is otherwise quite finicky

about whitespace.

# - comment

D.1 Internal Commands

Q - Quit

H - Help

F filename - read script from file

T IPaddress - set target receiver (T switches among existing targets. Use integer
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versions to add targets.) (When using integer versions, new values for translation and

extent override old values)

T1 IP-address

T3 IP-address xitranslation y-translation z-translation

T6 IP-address x-translation y-translation z-translation x-extent y-extent z-extent

R IP-address - Removes the node with the given address from the internal network

table

P IP-address - prints information about node with given address

M - Set up fully connected node mesh

L degree - set up lattice of connected nodes (specifically, a chain)

N IP-address IP-address - sets the two hosts as neighbors (shares geometric informa-

tion)

D.2 Network Commands

Using <extra>with any network command sets the "extra" member of the message

to be sent. The default value for "extra" is 0.

c <extra>string - send a command to current target c Q - send Quit command c C

- send Continue command c S send Stop command

n <extra>string - send a notification to current target

p <extra>string - send a pass to current target

q <extra>string - send a query to current target
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Appendix E

Telephone

One of the simplest programs that we wrote was a telephone-like application for the

tiles. In this application, one tile gets sound from its microphone, and sends it to

another tile, who plays it through their speaker. To set up a telephone, one would

have two sets of tiles: a sender and receiver, for each site.

The pseudo-code for this application is very simple (shown in figures E and E), and

follows the pattern laid out in section 3.1.
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Messenger *messenger;
void callback(Message* message, void* data){

PlaySound(message->message);

}
int main(){

messenger = new Messenger;
messenger-> RegisterCallback(MESSAGETYPENOTIFY, & callback, NULL);

while(true){
messenger-> ProcessMessages(;

}
}

Figure E-1: This figure provides pseudo-code for a simple telephone receiver.

Messenger *messenger; MachineNode* receiver;
void neighbor-callback(Message* message, void* data){

receiver = messenger->AddNeighbor(message);
messenger-> RequestConnection(receiver);

}
int main({

SoundSetup(;

char* buffer;
receiver = NULL;
messenger = new Messenger;
messenger-> RegisterCallback(MESSAGETYPENEIGHBOR, neighbor-callback);

//wait to receive a notification about where we should send data
while(receiver == NULL){

messenger-> ProcessMessages(;
}

//send sound in a loop
while(true) {

buffer = new char[SOUNDLENGTH];
GetSound (buffer);
messenger-> SendMessage(receiver, MESSAGETYPENOTIFY, 0, buffer,

SOUNDLENGTH);
}

}
Figure E-2: This figure provides pseudo-code for a simple telephone sender.
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Appendix F

Process Manager /
Backup Server Interface

The Process Manager serves two functions : it provides an interface for starting

and stopping programs using the message passing interface (or the network client,

described in Appendix D), and it offers a data backup service. It offers a service

to automatically restart those programs, should they fail, and it offers a service to

automatically reboot the machine, if a critical failure is detected. Data that is backed

up using the process manager is propagated out to other machines, so that if the

machine reboots, the data can be retreived, first by the Process Manager, and then

by the application.

The port DEFAULT-PROCESS-PORT is 3680.

F.1 Program Management

Using automatic program restarts

The Process Manager will automatically restart programs that terminate abnormally

(with some other return code than 0). By default, the Process Manager will restart
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Figure F-1: The dependency diagram for objects in the Process Management and Data
Backup subsystems.

programs indefinitely. (If they terminate with a return value of 0, they will not be

restarted).

If set, the Process Manager will reboot the machine after a specified number of

restarts. To set the maximum number of restarts, send a Message to the Process Man-

ager on port DEFAULT-PROCESSPORT, with type = MESSAGETYPE.NOTIFY,

and extra = r. (case-sensitive. 'r' is for 'restarts'). The payload of the message is

assumed to be a string, which is converted to an integer using atoiO.

Using automatic reboot

The Process Manager will also automatically reboot the machine when a program

returns with a specific error code. This allows programs that detect critical errors
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while running to notify the Process Manager that the machine needs to be rebooted.

This error code must be between 0 - 255, on a linux machine.

To set the code that a program will return to notify the Process Manager that it needs

to reboot, send a Message to the Process Manager on port DEFAULTPROCESSPORT,

with type = MESSAGETYPENOTIFY, and extra = 'c'. (case-sensitive. 'c' is for

'code'). The payload of the message is assumed to be a string, which is converted to

an integer using atoiO.

It is also possible to send a reboot code directly to the Process Manager. Send a

Message to the Process Manager on port DEFAULTPROCESSPORT, with type =

MESSAGETYPECOMMAND, and extra = 'R'. (case-sensitive. 'R' is for 'Reboot').

Before the Process Manager reboots, it writes a file with a list of the processes that

are running.

Starting a program

Send a Message to the Process Manager on port DEFAULT-PROCESS-PORT, with

type = MESSAGETYPECOMMAND, and extra = 'S' (case-sensitive. 'S' is for

'Start'), with the name of the process to start as the payload of the Message. The

Process Manager will use the current values of the maximum number of restarts, and

the reboot error code when starting the program.

When the Process Manager is told to start a program, it runs a separate program

wrapper which actually restarts the designated program when it terminates abnor-

mally. This wrapper program sends an error message to the Process Manager when

the maximum number of restarts has happened, or when the program returns a special

reboot code.

Terminating a program

Send a Message to the Process Manager on port DEFAULTPROCESS.PORT, with

type = MESSAGETYPE-COMMAND, and extra = 'K' (case-sensitive. 'K' is for

'Kill'), with the name of the process to kill as the payload of the Message. The name

135



to kill must be exactly the same as the name the program was started with (including

the directory where the program is located.)

Terminating the Process Manager

Send a Message to the Process Manager on port DEFAULTPROCESSPORT, with

type = MESSAGETYPECOMMAND, and extra = 'Q'. (case-sensitive. 'Q' is for

'Quit'). Processes running under the Process Manager will continue to run, and be

restarted when they terminate abnormally.

F.2 Backup Service Interface

The Package and PackageQuery classes are described below. The DataBackup object

serves as an easy to use interface between the application and the services described

below.

To backup data:

Create a Package with the address of the host requesting the backup, the port of

the application requesting the backup, a unique identifier, and the desired data

as the payload. Create a string from this package, and set it as the payload of a

Message, with the type set to MESSAGETYPENOTIFY and extra set to PACK-

AGEUPDATE. Send this message to the localhost address on the machine, using port

DEFAULTPROCESSPORT. (This can be done using Messenger:: SendMessageTo(int

address, int port, Message* message).

To update backed up data:

Use the same procedure as when initially backing up data. Packages sent to the

Process Manager that have the same address/port/id combination as an older package

will overwrite the older package.
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To remove backed up data:

Create a Package with the same address/port/id combination as the package you wish

to delete (any payload of this package will be ignored). Set the id to -1 to remove all

packages sent from this address/port combination. Create a string from this package,

and set it as the payload of a Message with the type set to MESSAGETYPENOTIFY

and extra set to PACKAGEREMOVE. Send this message to the localhost address on

the machine, using the port DEFAULTPROCESS.PORT. (This can be done using

Messenger::SendMessageTo(int address, int port, Message* message).

To retreive backed up data:

Create a PackageQuery with the same address/port/id combination as the data you

wish to retreive. Setting the id to -1 will retreive all data for a given address/port

combination. (The Process Manager will only send data using a query of this type to

the address/port from whence it came). Setting the port to -1 will retreive all data

for a given address. (The Process Manager will only send data using a query of this

type to the DEFAULTPROCESS-PORT, i.e. other Process Managers.)

The PackageQuery structure provides a reply-address and reply-port field. For a

more flexible way of using the Process Manager, it would be possible to use these

fields rather than ignore them. They are ignored in the present incarnation of the

Process Manager to provide some modicum of security, but there is nothing to stop

a program from impersonating another program by running on the same port, and

thereby retreive another program's data.

Packages sent to the application will be contained in Messages with type = MES-

SAGETYPE.NOTIFY and extra = Package::PACKAGEUPDATE.
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F.3 Package

The package is used as a wrapper for the application's buffers, providing an easy way

for the application to provide the tags needed by the Process Manager, to back up

the data.

PACKAGEUPDATE = 2011

PACKAGEREMOVE = 2012

PACKAGEQUERY = 2013

int address;

int port;

int id;

int length;

char* data;

void SetData(char* buffer, int len)

Sets the payload of the Package as the given buffer, and sets the length of the payload

to be the given len value. This function takes the buffer, and does not make a copy.

void Clear()

Deletes the payload of the Package, using the C++ delete operator, and sets the

pointer to NULL. It sets the length of the payload to 0.

char* CreateString(int &len)

Using the current parameters of the package (including the payload), make a new

byte array. The byte array is allocated using the C++ new operator, and is suitable

to pass to the Messenger for sending.

void ParseString(char*)

Takes a byte array, and parses it, assuming the byte array was produced by a Package.

Sets all parameters, and allocates a buffer for the payload of the Package.
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F.4 PackageQuery

The PackageQuery provides an abbreviated object, which is used when requesting

data from the Process Manager.

int address;

int port;

int id;

int reply-address;

int reply-port;

char* CreateString(int &len)

Uses the current parameters and creates a new byte array. The byte array is allocated

using the C++ new operator.

void ParseString(char* string)

Takes the given buffer, and parses out all parameters.

F.5 DataBackup

The DataBackup object provides an easy-to-use interface between the application and

the backup services of the Process Manager. It communicates with the Process Man-

ager, packages and unpackages data, and makes retrieved data available for pickup.

This class encapsulates much the functionality described in F.2.

If using the DataBackup object, the application does not need to worry about the

details of the Package and PackageQuery classes. If the application is not using the

DataBackup object, then the application needs to use Packages and PackageQueries

to store and retrieve data.
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DataBackup(int port)

Starts the backup service, running on the given port. The DataBackup class contains

a Messenger. It runs a separate thread, to service the Messenger, in between calls

to PickUp from the application. The thread continuously gets messages from the

Messenger, and puts them on an internal queue.

int Backup(char* buffer, int len)

Takes the given buffer, creates a Package, and sends the Package to the Process

Manager. The buffer given to this function will be deleted using the C++ delete

operator, so be sure to give it memory allocated with the C++ new operator.

void DeleteAll()

Sends a message to the Process Manager, asking it to remove all of the packages sent

from this application.

void Delete(int ID)

Sends a message to the Process Manager, asking it to delete the package given by

this ID number.

void RetreiveAll()

Sends a request to the Process Manager, for it to send all of the Packages the applica-

tion had previously sent it. Packages requested with this function must be retrieved

later by using the PickUp( function.

void Retreive(int ID)

Sends a request to the Process Manager, for it to send a copy of the Package given

by this ID number. Packages requested with this function must be retrieved later by

using the PickUp() function.

char* PickUp(

Returns the payload of a package retrieved using the Retreive( function. Returns

only the buffer (which should be a copy of the buffer passed to the DataBackup when

calling Backp(). Any information about length, or any tags must be included in the
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buffer, since they are not returned by this function. To get all packages sent to the

application by the Process Manager, the application should make repeated calls to

PickUp(. The function will return NULL when there are no packages in the queue,

but other packages might still be forthcoming from the Process Manager.
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Appendix G

Data Aggregation API

The Data Aggregation system consists of an Aggregator and a collection of base

classes, which provide some basic services. The application must provide derived

classes in order for the system to function. For an example of a collection of derived

classes, see Appendix H. Below, we describe the default function that are available,

and the way these functions ought to function in derived classes.

G.1 Sensor

The Sensor is a purely abstract class. The application must provide a derived class.

None of the members described below are implemented - this is only a description of

what the function should do in a derived class.

The Sensor is responsible for creating and tagging pieces of data. It is assumed

that pieces of data produced in a single iteration will all have different tags. The

tags are the way the sensor can say that the same thing represented in two different

iterations by different pieces of data. The sensor need not produce data for every

phenomena at each time step, but the application programmer should be wary of the

interaction between not producing data at each time stamp, and the timeout value
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Figure G-1: The dependency diagram for objects in the Data Aggregation subsystem.

given to the Aggregator. The sensor could produce more than one piece of data for

each phenomena. This makes the most sense when the different pieces of data have

different time stamps.

PointerList <SensorDatum*>* ProduceDatao

This function should return a list of the SensorDatum produced at each time step.

Each SensorDatum in this list will probably have different tags.

SensorDatum* AllocateSensorDatumO

Allocates a SensorDatum of the derived type.

SensorDataStrand* AllocateSensorDataStrand()

Allocates a SensorDataStrand of the derived type.
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SensorDataStrand* AllocateSensorDataStrand(SensorDatum*)

Allocates a SensorDataStrand of the derived type, and makes the given SensorDatum

the first element in the strand.

SensorDataAggregate* AllocateSensorDataAggregateo

Allocates a SensorDataAggregate of the derived type.

SensorDataAggregate* AllocateSensorDataAggregate(SensorDataStrand*)

Allocates a SensorDataAggregate of the derived type, and uses the given SensorDataS-

trand as the first element in the aggregate.

G.2 SensorDatum

The SensorDatum is the main unit of currency in the Data Aggregation system. The

SensorDatum is an abstract class, and the application must provide a derived class.

Some of the members have default implementations, as described below.

The following variables are members of the SensorDatum. These variables are referred

to collectively as the "header" (since they will be used to identify all types of derived

SensorDatums).

int timestamp; //seconds from the system clock

int microstamp; //microseconds from the system clock

int duration; //the amount of time elapsed between this, and a subsequent Sensor-

Datum

int source; //originating address

int type; //application-defined

int label; //defined by the sensor

int seq.no; //defined by the sensor

void Initialize()

Sets all variables in the SensorDatum to zero or negative one.
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void SetTime()

Sets the timestamp and microstamp of the SensorDatum using the local clock.

void Copy(SensorDatum*)

Copies all variables of the header from the given SensorDatum. Derived classes should

provide an alternative implementation that copies all relevant data, and also calls the

base class version to copy the header.

char* CreateString(int &len)

This function is abstract and must be provided by the derived class. This function

should Create a byte array from the SensorDatum, using all of the current data.

Should sets the given len variable to the number of bytes in the returned buffer.

void WriteHeader(char*, int &len)

Writes the header information (the data from the base class), into the given buffer.

The len variable is set to point to the integer after the end of the header (assuming

that the buffer is an array of integers, instead of an array of bytes). To get to the

byte after the header, multiply the value returned in len by sizeof(int).

void ParseString(char*)

This function is abstract and must be provided by the derived class. This function

should parse a buffer into the the SensorDatum.

void ReadHeader(char*, int &len)

Parses the header information out of the front of the buffer. The len variable is set to

point to the integer after the end of the header (as above). To get to the byte after

the header, multiply the value returned in the len variable by sizeof(int).

void Print()

This function is abstract and must be provided by the derived class. Prints the data

of the SensorDatum.

void PrintHeader()
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Prints the header information of the SensorDatum in the following format:

(timestamp : microstamp : duration) || source || type : label ||seq-no

float Error(SensorDatum*)

This function is abstract and must be provided by the derived class. It is to be the

difference between two SensorDatum objects (whatever that difference might mean).

G.3 SensorDataStrand

The SensorDataStrand is used to organize SensorDatum objects by their origin and

tags. All SensorDatums in a given strand will have the same source, type, and

label. The label variable of the SensorDataStrand is for use by the Aggregator. The

labelequivalence variable is used to denote the label of the SensorDatum objects

contained in the strand.

int source; //originating address

int type; //application-defined; will match all SensorDatums

int label; //for use by the Aggregator

int labelequivalence; //will match all SensorDatum::label variables

bool used; //denotes whether the strand has had any elements added to it

int totaltime; //amount of time covered by samples

int modification; //the seconds from the system clock, at the last modification time

int micromodification; //the microseconds from the system clock at the last modifi-

cation time

PointerList<SensorDatum*>*measurements; //The list of SensorDatums contained

in the strand

SensorDataAggregate* parent; //A pointer to the strand's parent SensorDataAggre-

gate

The "label" variable is used internally by the Aggregator for identifying strands. The
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"labelequivalence" variable is used to keep track of the tags that are assigned to the

SensorDatum's produced by the Sensor.

SensorDataStrando

Sets all variables to initial values.

SensorDataStrand(SensorDatum*)

Sets all variables to initial values, and then adds the given SensorDatum as the first

element in the history of the strand, by calling Add(SensorDatum*).

void InitializeO

Sets all variables to initial values.

void Clear()

Removes all elements from the strand's history, maintaining the source, type, and

labelequivalence information

void ClearAll()

Removes all elements from the strand's history, and sets "used" to false, priming the

strand for a new source/type/labelequivalence labelling.

bool Belong(SensorDatum*)

Compares the tags of the given SensorDatum with its internal tags. (The tags that

are compared are the source, the type, and the labelequivalence tag.)

bool Add(SensorDatum*)

If the SensorDatum is the first element to be entered in the history of the strand, the

stand adopts the tags of the SensorDatum. (The source, type and labelequivalence

variable are set to match the source, type and label variables of a SensorDatum.) Adds

it in order by looking at the timestamp. Computes the duration of SensorDatums

in the list by looking at the time elapsed between each element and the subsequent

element.
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bool AddDataPoints(PointerList<SensorDatum*>*)

Takes a list of data points, and adds them, one at a time, using the Add(SensorDatum*)

function.

void Trim(int samples)

Trims the history to contain no more than the specified number of samples.

void TrimByDuration(int microseconds)

This function is designed to trim the list so that it only contains samples that hap-

pened in the last microseconds amount of time. Uses the GetByDuration function to

find the SensorDatum that occured after the specified amount of time passed, and

then removes all subsequent (less recent) items.

void TrimByTime(int seconds, int microseconds)

Looks for the SensorDatum that has occured after, but closest to the given time.

Removes all subsequent SensorDatums.

void Regularize(int microseconds)

First, computes the number of samples that must be in the history, for the samples

to be the specified number of microseconds apart. Then, resamples the data using

the interpolation function.

void Resample(int samples)

Uses the interpolation function to resample the data, so that the history will have

the specified number of evenly spaced samples.

SensorDatum* GetFirst ()
Gets the first (least recent) element in the history.

SensorDatum* GetNth(int& n)

Gets the specified element of the history, where the 0th element is the most recent

element.
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SensorDatum* GetByDuration(int &microseconds)

This function is designed to return an element that happend microseconds ago. Start-

ing with the most recent element in the list, the function adds together the duration

of each subsequent element. The SensorDatum directly after the specified amount of

time has been accounted for is returned.

SensorDatum* GetByTime(int &seconds, int& microseconds)

Looks for the SensorDatum that happened directly before the given time, and returns

it.

int Length()

Counts and returns the length of the history.

void Print ()

Prints all of the SensorDatum in the history, using the SensorDatum::PrintO method.

SensorDatum* Interpolate(float place)

The place variable should be between 0 and 1. Least recent element is 0. Most recent

element is 1. Finds the given place in the list and creates a new SensorDatum, which

is interpolated from the elements in the history. The default interpolation function

uses nearest neighbors. This function is a wrapper that calls Interpolate(float place,

SensorDatum**before, SensorDatum**after, float &percent) with dummy variables.

SensorDatum* Interpolate (float place, SensorDatum** before,

SensorDatum** after, float& percent)

The place variable should be between 0 and 1. Least recent element is 0. Most recent

element is 1. Finds the given place in the list, and creates a new SensorDatum,

which is interpolated from the elements in the history. Taking the argument of the

pointers to the before and after SensorDatum allows the application to get information

about the two places in the history surrounding the point of interest. The default

interpolation function uses nearest neighbors. This function should be overloaded by

the application to do whatever makes sense with the data.
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SensorDatum* FindPlace(float place, SensorDatum** before,

SensorDatum** after, float& percent)

The place variable should be between 0 and 1. Least recent element is 0. Most

recent element is 1. Finds the given place in the list, and returns the SensorDatum

before and after that place, along with the percentage between them. If there were

10 evenly spaced elements in the list, and the place variable had a value of .72, the

before variable would contain a pointer to the 7th element in the list, the after pointer

would contain a pointer to the 8th element in the list, and the percent variable would

be set to 0.2.

SensorDatum* AllocateSensorDatumO

This function is abstract and must be provided by the derived class. Allocates a

SensorDatum of the derived type.

void Remove(SensorDatum*)

Removes the given SensorDatum from the history of the strand.

G.4 SensorDataAggregate

The SensorDataAggregate is a container to hold a group of related SensorDataS-

trands. The SensorDataStrands contained in a SensorDataAggregate should repre-

sent the same phenomena. All SensorDataStrands in an aggregate will (most likely)

be from different sources. The aggregate is able to expel strands from its membership,

if it determines that a strand no longer meets the necessary criteria. To aid with this

functionality, the aggregate has pointers to two of the paramets in the Aggregator,

which are set by the application. The two parameters at the ExpirationTime (the

amount of time a strand is allowed to go without being updated, and the MatchScore,

which is the maximum match distance, as given by the DataBelongso function. Point-

ers are used so that subsequent changes to these parameters by the application will
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be reflected in all of the aggregates. Classes derived from the SensorDataAggregate

may use these pieces of information, if it wishes.

int* ExpirationTime; //pointer to Aggregator parameter for local processing

int* MatchScore; //pointer to Aggregator parameter for local processing

PointerList<SensorDataStrand* >*feeder; //the member strands

int totalreports; //the number of feeder strands

int modification; //the seconds from the system clock, at the last modification time

int micromodification; //the microseconds from the system clock at the last modifi-

cation time

SensorDataAggregate()

Sets all variables to appropriate initial values.

SensorDataAggregate(int reports, SensorDataStrand* strand)

Sets all variables to appropriate initial values, and calls Add(strand).

void InitializeO

Sets all variables to appropriate initial values.

void SetParameters(int* expiration, int* matching)

Sets the internal pointers to the expiration time and matching threshold. These

numbers are used subsequently for checks of staleness and to be sure that strands

continue to meet membership criteria. These pointers are assumed to be pointers to

the Aggregator's copy of these parameters.

void Clear()

Calls Clear( on each of the feeder strands.

void ClearAll()

Calls ClearAll() on each of the feeder strands.
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void Print()

Prints all of the feeder strands.

float DataBelongs(SensorDataStrand*)

This function is thought of as a distance function, between the aggregate, and the

given strand. The base class version of this function returns a constant. Derived

classes should provide more meaningful membership functions, for the Aggregator

to work well. The lower the score is, the more the strand seems to belong to the

Aggregate.

int Add(SensorDataStrand*)

Adds the given strand to the list of feeder strands, and sets its parent pointer to point

to the aggregate.

void Update(SensorDataStrand* strand)

Updates the modification time of the aggregate (with the local time), and then checks

the feeder strands for staleness. Any stale strands are removed.

void Trim(int samples)

Calls SensorDataStrand::Trim(samples) on each feeder strand.

void TrimByDuration(int microseconds)

Calls SensorDataStrand::TrimByDuration(microseconds) on each feeder strand.

void TrimByTime(int seconds, int microseconds)

Calls SensorDataStrand::TrimByTime(seconds, microseconds) on each feeder strand.

void Regularize(int microseconds)

Calls SensorDataStrand::Regularize(microseconds) on each feeder strand.

void Resample(int samples)

Calls SensorDataStrand::Resample(samples) on each feeder strand.

void Remove(SensorDataStrand*)
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Removes the given strand from the aggregates list of feeders. Sets the parent pointer

of the strand to NULL.

float Alignment Score(SensorDatum*, SensorDatum*)

Computes the mean squared error between two sets of SensorDatums (using the

SendsoDatum::Error() function).

G.5 Aggregator

The Aggregator is the main point of contact for the application. It manages the

production, sending, and receiving of data. The Aggregator takes a pointer to a

Sensor, which it periodically calls, in order to produce data. The application must

periodically call ProcessData( to allow the application to do its work.

The Aggregator has no public data members, but the application may request access

to the list of all strands and aggregates in the system. The application should not

modify elements in these lists.

A program that uses the Aggregator might look like the program sketched in figure

G.5.

The Aggregator also provides a callback registry, so that the application can respond

to events in an event driven way. Callback functions are called inside the Process-

Data() call. Some callback functions have versions for SensorDataStrands, and Sen-

sorDataAggregates. The signature of the callback determines whether the callback is

called with the relevant strand or aggregate.

The available events are:

AGGREGATOREVENTTYPEDATA

A piece of data has been processed. Data may originate locally or remotely. The appli-

cation may register separate callbacks for the strand or the aggregate, using void Reg-

isterCallback(int event-type, void (*function) (SensorDataStrand*, void*), void*) or
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Aggregator * aggregator; Sensor* sensor; const in WORKINGPORT = 1234;
void callback(PointerList<SensorDataAggregate*> *aggregates, void* data){

//Do work

}
int main(){
sensor = new DerivedSensor;
aggregator = new Aggregator(WORKING-PORT, sensor)
aggregator->SetMatchScore(1234);
aggregator->SetExpirationTime(1000000); //time is in microseconds
aggregator->SetTimer(2500);
aggregator->RegisterCallback(AGGREGATOR.EVENTTYPE.TIMER, & call-

back, NULL);

while(true){
aggregator->ProcessDatao;
//do work

}
}
Figure G-2: This figure shows the basic structure of a program using the Data Aggregation
system. This program uses the callback registry to receive regular updates. Modified from
figure 3.3.1.

void RegisterCallback(int event-type, void (*function) (SensorDataAggregate*, void*),

void*). The strand callback will be called with the strand where the new piece of

data is assigned. The aggregate callback will be called with the aggregate parent of

the strand where the new piece of data is assigned. This function is called in the

middle of ProcessDataO.

AGGREGATOREVENTTYPENEWSTRAND

This event is generated when a new strand has been created. (This would typically

represent data arriving from a new source.) There is a strand version and an aggregate

version of this callback. If using the strand version, the callback will be called with

the new strand itself. If using the aggregate version, the callback will be called with

the parent of the strand. This function is called in the middle of ProcessDataO.

AGGREGATOREVENTTYPENEWAGGREGATE

This event is generated when a new aggregate has been created. (This would typi-
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cally represent the recognition of a new phenomena, which had not previously been

recognized.) There is a strand version and an aggregate version of this callback. If

using the strand version, the callback will be called with the strand that triggered

the creation of the new aggregate. If using the aggregate version, the callback will be

called with the new aggregate itself (but the aggregate will only contain one strand.

This function is called in the middle of ProcessData(. If a new aggregate is created

due to a new strand, both a NEWSTRAND and a NEW.AGGREGATE event will

be generated, and both sets of callbacks will be called.

Note: about the DATA, NEWSTRAND, and NEW-AGGREGATE events. These

events are all generated in the same function, at the same time. It is possible that

all three sets of callbacks will be called. If that happens, they will be called in this

order:

NEW.AGGREGATE, NEWSTRAND, DATA. All of these functions are called af-

ter the data has been added to the system, and the strand has been added to the

aggregate, etc.

AGGREGATOREVENTTYPEREMOVESTRAND

This event is generated when a strand needs to be removed. Typically, strands will

be removed if they have not been updated sufficiently recently. There is a strand

version and an aggregate version of this callback. The strand version will be called

with the strand being removed. The aggregate version will be called with the parent

of the strand being removed. The callbacks will be called before the strand is actually

removed. The removal will happen directly after the callback executes.

AGGREGATOREVENTTYPEREMOVEAGGREGATE

This event is generated when an aggregate needs to be removed. This will happen

if none of the strands in the aggregate have been updated sufficiently recently. It

represents that the Aggregator has lost track of the phenomena represented by the

aggregate. There is only an aggregate version of this callback, which is called with the

aggregate to be removed. The callback will be called before the aggregate is actually
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removed. The removal will happen directly after the callback executes.

AGGREGATOREVENTTYPETIMER

This event is generated at the end of ProcessData if the specified amount of time has

elapsed since the function was last called. The callback is called with the list of all

SensorDataStrands or SensorDataAggregates. Callbacks for this event are registered

with

void RegisterCallback(int event-type, void (*function) (PointerList<SensorDataStrand*>*,

void*), void*) and void RegisterCallback(int event-type,

void (*function) (PointerList<SensorDataAggregate* >*,void*), void*). The timing

interval for this function is set with void SetTimer(int useconds). ProcessDataO will

complete one full iteration before calling this callback, so more time than specified

may have elapsed.

AGGREGATOREVENTTYPESAMPLES

This event is generated at the end of ProcessData if the specified number of samples

have been added since the function was last called. The callback is called with the

list of all SensorDataStrands or SensorDataAggregates. Callbacks for this event are

registered with

void RegisterCallback(int event.type, void(*function)(PointerList<SensorDataStrand*>*,

void*), void*) and void RegisterCallback(int eventtype,

void(*function) (PointerList<SensorDataAggregate*>* ,void*), void*). The number

of samples to be added is specified with void SetSamples(int samples). ProcessData(

will complete one full iteration before calling this callback, so more samples than spec-

ified may have been added. This event does not distinguish between data generated

locally or remotely.

AGGREGATOREVENTTYPE-REQUESTRECEIVED

This event is generated when another host requests that we send them our data. The

callback function is not able to affect whether or not the requesting host receives

data. Callbacks for this function are registered by calling void RegisterCallback(int
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event-type, void (*function)(Message*, void*), void*). The value given to the callback

function will be the message used to request the data. The callback must not modify

or delete this message.

AGGREGATOREVENTTYPELOSTHOST

This event is generated when a host to which the Messenger fails to send data to a

host that we are supposed to send data to. This will typically happen if the other host

fails. Callbacks for this function are registered by calling void RegisterCallback(int

event-type, void (*function)(Message*, void*), void*). The value given to the callback

function will be the message used to notify the Aggregator of the failure. The callback

must not modify or delete this message.

Aggregator()

Sets all member variables to appropriate initial values.

Aggregator(int port)

Sets all member variables to appropriate initial values, and then calls

Aggregator::SetPort (port).

Aggregator(int port, Sensor* sensor)

Sets all member variables to appropriate initial values, and then calls

Aggregator::SetPort (port) and Aggregator::SetSensor(sensor).

void SetPort(int port)

Tells the Aggregator to operate on the given port. (The internal Messenger is set up

in this call.)

void SetSensor(Sensor*)

Tells the Aggregator to use the given sensor to generate data.

void Request(char* address)

Instructs the Aggregator to make a request for data from the given host.
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void Request(int address)

Instructs the Aggregator to make a request for data from the given host.

void Request (Message* message)

Instructs the Aggregator to make a request for data from the given host. The host

information is parsed out of the Message

void Request(MachineNode* node)

Instructs the Aggregator to make a request for data from the given host. The given

MachineNode is added to the internal table.

void CancelRequest(char* address)

Instructs the Aggregator to cancel any requests for data from the given host.

void CancelRequest(int address)

Instructs the Aggregator to cancel any requests for data from the given host.

void CancelRequest (Message* message)

Instructs the Aggregator to cancel any requests for data from the given host.

void ProcessDataO

This is the main function to drive the Aggregator. The application must periodically

call this function in order for the Aggregator to generate and exchange data. In

this function, the Aggregator calls Sensor::ProduceData. Then, the Aggregator sends

each piece of data to all other hosts that have asked to receive data. Then, the

Aggregator processes the local data. Then, the Aggregator processes incoming data.

The Aggregator then generates appropriate TIMER and SAMPLES events. Finally,

the Aggregator checks for and removes stale aggregates and strands.

void RegisterCallback(int event-type, void (*function) (SensorDataStrand*,

void*))

This function is a wrapper for

void RegisterCallback(int event-type, void (*function) (SensorDataStrand*, void*),

NULL)
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void RegisterCallback(int eventtype, void (*function) (SensorDataAggregate*,

void*))

This function is a wrapper for

void RegisterCallback(int event-type, void (*function) (SensorDataAggregate*, void*),

NULL)

void RegisterCallback(int event-type, void (*function) (SensorDataStrand*,

void*), void*)

This function registers strand callbacks for the DATA, NEWSTRAND, NEW.AGGREGATE,

and REMOVESTRAND events. You can register a strand callback for the RE-

MOVEAGGREGATE event, but it will not be called.

void RegisterCallback(int event-type, void (*function) (SensorDataAggregate*,

void*), void*)

This function registers aggregate callbacks for the DATA, NEWSTRAND, NEW.AGGREGATE,

REMOVESTRAND, and REMOVEAGGREGATE events.

void RegisterCallback(int event-type,

void (*function) (PointerList<SensorDataStrand*>*, void*))

This function is a wrapper for

void RegisterCallback(int event-type, void (*function) (PointerList<SensorDataStrand*>*,

void*), NULL)

void RegisterCallback(int event-type,

void (*function) (PointerList<SensorDataAggregate*>*, void*))

This function is a wrapper for

void RegisterCallback(int event-type, void (*function) (PointerList<SensorDataAggregate*>*,

void*), NULL)

void RegisterCallback(int event-type,

void (*function) (PointerList<SensorDataStrand*>*, void*), void*)

This function is used to register callbacks for the TIMER and SAMPLES events. Call-
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backs registered with this function receive the list of all SensorDataStrands. Beware

using the void RegisterCallback(int event-type, void (*function)(SensorDataStrand*,

void*), void*) function for these events - there will be no warning that you have done

anything wrong, and you will get strange behavior.

void RegisterCallback(int event-type,

void (*function) (PointerList<SensorDataAggregate*>*, void*), void*)

This function is used to register callbacks for the TIMER and SAMPLES events. Call-

backs registered with this function receive the list of all SensorDataAggregates. Be-

ware using the void RegisterCallback(int eventtype, void (*function) (SensorDataAggregate*,

void*), void*) function for these events - there will be no warning that you have done

anything wrong, and you will get strange behavior.

void RegisterCallback(int event-type, void (*function) (Message*, void*))

This function is a wrapper for void RegisterCallback(int event-type, void (*func-

tion)(Message*, void*), NULL). void RegisterCallback(int event-type, void

(*function) (Message*, void*), void*)

This function is used to register callbacks for the REQUESTRECEIVED and LOST.HOST

events.

void SetExpirationTime(int)

Sets the staleness criteria. Aggregates and strands that are older than the given

number of microseconds will be removed.

void SetMatchScore(int)

Sets the match criteria, for associating strands with aggregates. A strand must have

a matching score (given by SensorDataAggregate::DataBelongso) that is no greater

than the given value. Scores must be lower than the given value, since they are

thought of as distances, and smaller distances are good.

void SetTimer(int useconds)

Sets the notification interval, if the application registers a callback for the AGGRE-
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GATOREVENTTYPETIMER event. Applications will receive notifications that

are at least useconds microseconds apart. They may be further apart, but will not

be less.

void SetSamples(int samples)

Sets the number of samples that must be received before the application receives a no-

tification, if the application registers a callback for the AGGREGATOR.EVENTTYPESAMPLES

event. Applications will receive notifications when at least the given number of sam-

ples has been received. More samples may have been received, but there will not be

less.

SensorDataStrand* GetDataStrandsO

Returns the list of SensorDataStrands.

SensorDataAggregate* GetDataAggregates()

Returns the list of SensorDataAggregates.

void Clear()

Calls Clear() on all SensorDataAggregates and SensorDataStrands.

void ClearAll()

Calls ClearAll() on all SensorDataAggregates and SensorDataStrands.
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Appendix H

Ball Tracking API

The BallTracking system is an instance of the Data Aggregation system. The Ball

Tracking system provides derived classes for the Sensor, SensorDatum, SensorDataS-

trand, and SensorDataAggregate.

H.1 TrackingMgr

The TrackingMgr inherits from the Sensor class. It finds and tracks brightly colored

objects, using the camera on a single machine.

PointerList <SensorDatum*>* ProduceDataO

Grabs an image from the camera, does the necessary image processing, and tracks

objects in the scene. Returns a list of Ball objects.

SensorDatum* AllocateSensorDatumO

Allocates a Ball object.

SensorDataStrand* AllocateSensorDataStrandO

Allocates a BallTrack object.
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Figure H-1: The dependency (and inheritance) diagram for objects in the Ball Tracking
subsystem.

SensorDataStrand* AllocateSensorDataStrand(SensorDatum*)

Allocates a BailTrack object, and sets the given Ball (SensorDatum) as the first item

in the history of the BallTrack.

SensorDataAggregate* AllocateSensorDataAggregate(

Allocates a User object.

SensorDataAggregate* AllocateSensorDataAggregate(SensorDataStrand*)

Allocates a User object, and sets the given BallTrack (SensorDataStrand) as the first

feeder.

int GetHeight(

Returns the height of the camera's field of view, in pixels.
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int GetWidthO

Returns the width of the camera's field of view, in pixels.

H.2 Ball

The Ball class inherits from SensorDatum. It is the fundamental unit in the Ball

Tracking system, representing the brightly colored objects found in the camera by

the TrackingMgr.

Inherits from SensorDatum:

int timestamp;

int microstamp;

int duration;

int source;

int type;

int label;

int seq-no;

Has, on its own:

int position[3];

int velocity[3];

int YUV[3];

void InitializeO

Sets position, velocity and color information to 0.

void Copy(SensorDatum*)

Copies the header, position, velocity and color from the given Ball (SensorDatum)

object. Passing in a SensorDatum that is not a Ball will yield strange results.

char* CreateString(int& len)

Creates a byte array, using the current values. The byte array is allocated using the
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C++ new operator and is suitable for use with the Messenger. The variable passed

in as len is modified to reflect the number of bytes in the buffer.

void ParseString(char*)

Parses values out of a byte array, assuming that the byte array is the correct format

and size.

void Print()

First, prints the position and velocity in the following format: (x, y, z), (vt, vY, v2),

(Y, U, V). Then, prints the header on a separate line

float Error(SensorDatum*)

Computes the difference between itself the given Ball. The difference is the squared

length of the vector difference between the velocities of the two Balls. The error is

given by (vxi - vx2) 2 + (vY1 - vy2) 2 + (v21 - v2) 2 .

float ColorDifference(int YUV[3])

Computes the magnitude of the squared difference between the color of the Ball, and

the given color. The return value is given by (Yi - Y2)2 + (U1 - U2 )2 + (Vi - 2)2,

where the subscript 1 denotes the internal value of the YUV variable, and subscript

2 denotes the color that was passed in.

H.3 BaliTrack

The BallTrack is a container for Balls. It inherits from SensorDataStrand. It makes

small modifications to the Addo, Resample(, Regularize( and Interpolate( func-

tions, but otherwise basically uses the default implementations of most functions.

Inherits from SensorDataStrand:

int source;

int type;
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int label;

int labelequivalence;

bool used;

int totaltime;

int modification;

int micromodification;

PointerList<SensorDatum*>*measurements;

SensorDataAggregate* parent;

Contains one additional variable:

int YUV[3];

BallTrack()

Calls the default constructor for the

BallTrack(SensorDatum* ball)

Calls the default constructor for the

void Initialize()

Calls SensorDataStrand::InitializeO,

void ClearO

Removes all elements in the history,

SensorDataStrand.

SensorDataStrand, and then calls Add(ball).

and then sets its YUV variable to 0,0,0.

except the first (most recent) one.

void ClearAll()

Removes all elements in the history.

bool Belong(SensorDatum*)

Uses the default, SensorDataStrand::Belongo function, which simply compares the

tags of the given SensorDatum with the tags that the strand is expecting.

bool Add(SensorDatum* ball)

Sets the YUV variable of the strand to match the given ball, and then calls Sensor-

DataStrand::Add(ball), which adds the item in order by time.
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SensorDatum* Interpolate(float place, SensorDatum** before, SensorDa-

tum** after, float& prcnt)

Calls SensorDataStrand::Interpolate(...) to get the before pointer, after pointer, and

the percent between them. Does a linear interpolation of the position, between the

before and after, according to the percent returned.

void Regularize(int microseconds)

Calls SensorDataStrand::Regularize, which uses the interpolation function to compute

the positions of all of the samples. Then, it uses all of the derived positions to compute

the velocities.

void Resample(int samples)

Calls SensorDataStrand::Resample, which uses the interpolation function to compute

the positions of all of the samples. Then, it uses all of the derived positions to compute

the velocities.

H.4 User

The User class represents a person, who has a ball in their hand, where the ball is seen

by a number of different cameras. The User class inherits from SensorDataAggregate.

It implements a different function for DataBelongs(, and contains two additional

functions which are needed by the CursorCoordinator (see Appendix I).

Inherits from SensorDataAggregate:

int* ExpirationTime;

int* MatchScore;

PointerList<SensorDataStrand* >*feeder;

int totalreports;
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int modification;

int micromodification;

Contains the additional variable:

int YUV[31;

Usero

Creates a new User, using the default constructor.

User(SensorDataStrand* data)

Creates a new User, with the given strand as the first strand of the feeder strands.

void Initialize()

Calls SensorDataAggregate::Initializeo, and then sets the internal YUV variable to

0,0,0.

float DataBelongs(SensorDataStrand*)

First, computes the time difference between the most recent samples in the given

sensor data strand, and any other strand from the same host. If the two strands

contain samples that were generated at approximately the same time, the function

returns a very large (constant) value. Otherwise, returns the difference between the

color of the BallTrack, and its internal YUV variable, using the ColorMatch function.

int ColorMatch(int yuv[3])

Computes the squared length of the difference between the internal color, given by

the YUV variable, and the color given as an arguemnt. The return value is given by

(Yi - Y2 )2 + (U1 - U2 )2 + (V1 - V2)2, where subscript 1 denotes the internal value, and

subscript 2 denotes the argument value.

void Update(SensorDataStrand*)

Updates the internal YUV variable with the color of the most recently added Ball

in the SensorDataStrand, and then calls the default SensorDataAggregate::Update()

function.
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void Regularize(int microseconds)

Calls the Regularize function on each of the feeder strands.

void Resample(int samples)

Calls the Resample function on each of the feeder strands.

char* CreateString(int& len, int address)

Finds the local strand (given by the local IP address), in the User. Using the local

strand, this function creates a Message, for sending to other Aggregators, containing

the address, labelequivalence, and YUV variables of the local strand. This function

is used by the CursorCoordinator.

bool MatchString(char*)

Assumes that the argument was created by the CreateString function. This function

parses out the address, labelequivalence and color arguments. First, it determines

if it has a feeder that matches the tags (address and labelequivalence) given in the

buffer. If it contains a strand with matching tags, the function returns true. If it does

not, it then computes the difference between its internal color, and the color given in

the buffer. If this score is less than the Aggregator's maximum color distance (given

by MatchScore), the function returns true. Otherwise, it returns false. This function

is used by the CursorCoordinator.
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Appendix I

Cursor Input API

The Cursor Input system uses the Data Aggregation and Ball Tracking systems, in

order to provide a unified system for a mouse-like cursor interface.

The CursorCoordinator needs to get information about its neighbors - the ones im-

mediately surrounding it, and the ones with whom it must negotiate for control of

the cursor. The cursor system keeps a table indicating whether neighbors are to the

left, right, etc. to determine to whom it should pass the cursor, or who it should ask

for help. When attempting to negotiate control of the cursor, the CursorCoordinator

sends information to all hosts in the Messenger's neighbor table.

The history of Cursors are tokenized into Strokes by looking for stops.

The CursorCoordinator runs on port 3460.

I.1 CursorCoordinator

The CursorCoordinator is the main point of contact for the system, handling the

control, generation and destruction of cursors, getting and sending data to other
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Figure I-1: The dependency diagram for objects in the distributed Cursor Input subsystem.

nodes, and generating events for the application. The application must periodically

call HandleCursorsO to let the CursorCoordinator do its work.

The CursorCoordinator is comprised of a very large amount of code, but most of its

complexity lies in handling the control of the cursors. The interface for the application

is not too complicated, but the application programmer must be careful of how they

handle events.

The application registers to receive events by calling void RegisterCallback(int type,

void (*function)(Cursor*, void*), void*). Events generated by cursors controlled

locally and remotely are registered seperately, to reduce confusion when events need

to be propagated at the application layer. The available events are:
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CURSOREVENTTYPENEWCURSOR

A new cursor has been created and activated (the node has completed the control

negotiation process, and has come up the winner).

CURSOR-EVENTTYPE-REMOVECURSOR

A cursor has been destroyed.

CURSOR.EVENTTYPEMOVEMENT

The cursor moved

CURSOR.EVENTTYPESTOPPED

The cursor is presently stopped.

CURSOREVENTTYPESTROKE

The cursor completed a non-gesture stroke.

CURSOREVENTTYPECIRCLE

The cursor did a circle gesture. Before calling the callback, the stroke that was

classified as the gesture is removed from the list of tokens on the cursor.

CURSOR-EVENTTYPE.HORIZONTAL

The cursor did a horizontal shake. Before calling the callback, the stroke that was

classified as the gesture is removed from the list of tokens on the cursor.

CURSOREVENTTYPEVERTICAL

The cursor did a vertical shake Before calling the callback, the stroke that was clas-

sified as the gesture is removed from the list of tokens on the cursor.

CURSOR.EVENTTYPEARRIVED

A cursor that another node is controlling has arrived for the first time.

CURSOR.EVENTTYPESTATECHANGED

The state of a cursor being controlled by another node has changed. This callback

is not called for cursors that are under local control. (If we changed the state of the

cursor, we already know about it.)
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CURSOREVENTTYPEREMOTEREMOVECURSOR

A cursor being controlled by another node has been removed.

CURSOREVENTTYPEREMOTESTOPPED

A cursor being controlled by another node is presently stopped.

CURSOREVENTTYPEREMOTESTROKE

A cursor being controlled by another node completed a non-gesture stroke.

CURSOREVENTTYPEREMOTECIRCLE

A cursor being contolled by another node did a circle. The cursor can be used, as if

it were local (any data associated with the gesture is removed).

CURSOREVENTTYPEREMOTEHORIZONTAL

A cursor being contolled by another node did a horizontal shake. The cursor can be

used, as if it were local (any data associated with the gesture is removed).

CURSOREVENTTYPEREMOTEVERTICAL

A cursor being contolled by another node did a vertical shake. The cursor can be

used, as if it were local (any data associated with the gesture is removed).

void RegisterCallback(int type, void (*function) (Cursor*, void*))

A wrapper for void RegisterCallback(int type, void (*function)(Cursor*, void*), NULL)

void RegisterCallback(int type, void (*function)(Cursor*, void*), void*)

Registers the given callback for the given event type.

void SendCursorTo (Cursor* cursor, int address)

Instructs the CursorCoordinator to send cursor information to its version of the host

with the given address. (It uses the transform that it knows about in its own table.)

void SendCursorTo(Cursor* cursor, MachineNode*)

Instructs the CursorCoordinator to send cursor information to the given host, using

the given transformation. This function does not add the given node to the internal
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Messenger. So, it is possible to send cursor information to other hosts, without having

them entered in the negotiation for control of the cursor.

void StopSendingCursorTo(Cursor* cursor, int address)

Instructs the CursorCoordinator to stop sending cursor information to the given host.

The other host will be converted to a stakeholder, and will continue to receive keep-

alive messages.

void StopSendingCursorTo(Cursor* cursor, MachineNode*)

Instructs the CursorCoordinator to stop sending cursor information to the given host.

The other host will be converted to a stakeholder, and will continue to receive keep-

alive messages.

void ChangeState(Cursor*, int state)

Changes the state of the given cursor to the given value. This function propagates

the state change out to other hosts that have an interest in the cursor (so, while it is

possible to change the state of a cursor directly, it is best to do it with this function.)

void TransferStatus(Cursor* cursor, bool keeplocal)

Gives the CursorCoordinator instructions to not transfer control of a given cursor.

This is useful for when the application is busy using the cursor for something, and

doesn't want it to disappear. The CursorCoordinator will ask for help from its neigh-

bors, as necessary to keep information coming about the given cursor.

void TransferAuto(int radius)

Gives the CursorCoordinator instructions to automatically designate hosts as re-

ceivers or stakeholders, using its best judgement. It will designate a node as a receiver

if it detects that a cursor is inside the bounds of the node (the node must be repre-

sented in the internal Messenger.)

bool Control(Cursor* cursor)

Returns true if the cursor is under local control, and false if it is under remote control.
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PointerList <Cursor*>* Get Cursors() return cursors

Returns the list of all active cursors, that should be drawn or reacted to.

void HandleCursors()

The main function to drive the CursorCoordinator. All callbacks are called in the

context of this function.

void AddNeighbor(MachineNode*)

Adds the given host to the internal Messenger. Checks to see if the host is directly

next to us. If it is, the host is listed in a table of hosts where we should pass cursors

or ask for help.

void AddNeighbor(Message*)

Parses information out of the message, and calls AddNeighbor(MachineNode*).

void RemoveNeighbor(MachineNode* host)

Removes the given node from the internal Messenger, and from the list of hosts where

data should be sent, etc.

void SetClampBoundaries(int left, int right, int top, int bottom)
Sets the clamping boundaries. If a cursor goes outside of the given bounds, it will be

placed back inside. Using all zero values turns clamping off.

1.2 CursorPosition

The CursorPosition is a simple container for information about the position and speed

of a cursor at a given time. Cursors and Strokes contain a list of CursorPositions,

describing their history.

int source;

int id;

int seq-no;
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int speed;

int position[3];

int velocity[3];

int modification;

int micromodification;

char* CreateString(int &len)

Creates a byte array, using the current internal information. The buffer is allocated

using the C++ new operator and is suitable for sending with the Messenger.

void ParseString(char* string)

Parses information out of a byte array.

1.3 Cursor

Cursors are the main unit of currency in the Cursor Input system. They correspond

(roughly) to the SensorDataAggregates contained in the Aggregator in the Cursor-

Coordinator. They are used to summarize the information garnered from the many

strands found in each SensorDataAggregate. They contain a list of CursorPosition

objects, representing the history of the cursor's movement, and a list of tokens. The

history of the cursor is tokenized by looking for stops, and the resulting segments are

turned into Strokes. Strokes have removed all of the positions where the cursor did

not move appreciably. The tokens are stored in a list. The Cursor has intelligence for

updating and tokenizing itself, using the information from a User (SensorDataAggre-

gate), but the application does not need to use that functionality, since it is invoked

by the CursorCoordinator.

int source;

int id;
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int length;

int position[3];

int velocity[3];

float color[3];

int state;

PointerList<CursorPosition* >history;

PointerList<Stroke*>tokens;

Stroke* GrabToken()

Takes the most recent token from the list, for the application's use. The stroke is

removed from the token list.

Stroke* GrabToken(int index)

Grabs the given token in the list, for the application's use. The stroke is removed

from the token list.

Stroke* GrabToken(Stroke*)

Grabs the given token from the list, for the application's use. The stroke is removed

from the token list.

Stroke* BorrowToken(int index)

Grabds the given token from the list, but does NOT remove the stroke from the token

list.

char* CreateString(int &len)

Uses the current internal parameters to create a byte array. The buffer is allocated

with the C++ new operator and is suitable for use with the Messenger.

void ParseString(char*)

178



Parses the relevant parameters out of the given buffer.

1.4 Stroke

The stroke is a series of CursorPosition objects, wrapped up in a different package.

The Stroke has intelligence to classify its history as one of 3 gestures, or as a non-

gesture. The application does not need to use this intelligence, however, since the

CursorCoordinator will identify gestures and notify the application via the callback

system. The most interesting thing, for the application, is the stroke variable, which

is the list of CursorPosition objects which comprise the stroke.

GESTURENONE=-1;

GESTURE.CIRCLE=O;

GESTUREHORIZONTAL=1;

GESTUREVERTICAL=5;

int source;

int id;

int length;

float color[3];

int position[3];

PointerList<CursorPosition*>* stroke;
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Appendix J

Paint

The paint application was the primary vehicle for the development of the cursor

system. The functionality of a paint program is very familiar : as a user moves the

cursor, a trail is drawn behind them. Our paint application allowed users to choose

the color of the paint they were using, to decide whether or not to keep the strokes

they had created, and to clear the screen.

As users move the cursor, a tail would be drawn, showing where the stroke would be

laid down. If user made a circle gesture, the stroke would be laid down in a thick

line. If the user shook the cursor horizontally, the cursor would change color. If the

user shook the cursor vertically, the screen would be cleared.

Once the cursor system worked properly, the paint program followed fairly simply.

The paint program registered callbacks with the CursorCoordinator for the circle,

horizontal, and vertical events. Then, the program went through a cycle where it

would process incoming messages, handle the cursors, and then redraw the screen.

When a circle gesture occured, the application would take the most recent token from

the cursor that made the gesture, and add it to a list of strokes to draw. When a

horizontal gesture occured, the program would change the state of the cursor, using
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the CursorCoordinator, and the state change would propagate throughout the system.

(The state of the cursor corresponded to the color the cursor was drawn in.) When a

vertical gesture occured, the program would remove all of the strokes from its list of

strokes to draw.

When the paint program was moved from a single tile, to multiple tiles, the program

then had to handle remote events. To do this, the program registered a callback for

the remote circle event. When a remote circle event happened, the program would

take the most recent token from the affected cursor, just as if the event had happened

locally. The program did not register events for the remote horizontal and remote

vertical events, because these things were propagated at the application level. (The

change in color was propagated by using the CursorCoordinator to propagate the

cursor state change. The clear screen was propagated by simply sending a message

to all participating tiles.)
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