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Abstract

Fluid flow models are used in performance evaluation of production, computer, and telecom-

munication systems. In order to develop a methodology to analyze general Markovian contin-

uous material flow production systems with a finite buffer, a general single-buffer fluid flow

system is modelled as a continuous time, continuous-discrete state space stochastic process and

the steady state distribution is determined. Various performance measures such as the pro-

duction rate and the expected buffer level are determined from the steady-state distributions.

The flexibility of this methodology allows analysis of a wide range of models by specifying

only the transition rates and the flow rates associated with the discrete states of each stage.

Therefore the method is proposed as a tool for performance evaluation of general Markovian

continuous flow systems with a finite buffer. The solution methodology is illustrated by analyz-

ing a production system where each machine has multiple up and down states associated with

their quality characteristics in detail. Then four different models: a model with multiple un-

reliable machines in parallel in each stage, a model with a merge-type structure, and a model

with phase-type failure and repair-time distributions, and a model with multiple unreliable

machines in series in each stage are analyzed by using the same methodology.

1The first version of this report was published on March 14, 2007
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1 Introduction

In this study, we consider a two-stage continuous flow system separated by a finite capacity buffer
(Figure 1). The dynamics of each stage is described by a continuous-time, discrete-state Markov
chain where a different flow rate is associated with each state. This model can represent a wide
range of systems. For example, it may represent a portion of a factory in which a stage represents
an unreliable machine that may have any one of a wide variety of up- and down-time distributions;
or a machine with variable quality; or multiple machines in series or parallel without intermediate
buffers. For another example, it can represent a communications network in which message flow
rates change according to Markov processes. In the following, we use the terms stage and machine

interchangeably.

Mu MdN

Figure 1: A Single Buffer Fluid Flow System with Two Stages

There is a vast literature on continuous material flow models of unreliable production lines.
Two station single buffer unreliable continuous flow production systems have been analyzed in
various studies, (e.g. Wijngaard 1979, Gershwin and Schick 1980, Dubois and Forestier 1982,
Yeralan, Franck, and Quasem 1986, Yeralan and Tan 1997, among others). In most of these studies,
each unreliable machine has two states: a single up state that represents the condition of a fully
productive machine and a single down state that represent the condition where the machine is not
productive due to a failure and the failure and repair times are exponential random variables.

More detailed models of production systems where each stage is modelled by using more than
two states have been used to approximate general processing, failure, and repair time distribu-
tions by using phase-type distributions (Altıok 1985, Dallery 1994, Özdoğru and Altıok 2003); to
study quality-quantity interactions (Tempelmeier and Burger 2001, Poffe and Gershwin 2005); or
to develop new approximation methods with multiple up and down states (Levantesi, Matta, and
Tolio 2003). Similarly, analysis of production lines with series or parallel structures (Mitra 1988,
Patchong and Willaeys 2001), or merge structures (Tan 2001, Helber and Jusic 2004, Diamantidis,
Papadopoulos, and Vidalis 2004) also received attention.

Although a variety of models are used to evaluate the performance of continuous flow production
systems, currently there exists no unified methodology to analyze these systems. In the analysis
of continuous flow models, once the state space is determined based on the underlying assump-
tions, the steady-state distribution is determined by analyzing the continuous time-continuous and
discrete state space Markov process. In order to analyze this process, a set of differential equa-
tions that describe the behavior of the system is derived and then solved subject to boundary and
normalization conditions. Without a general methodology, this process is repeated for each new
model and considerable effort is required to model and to analyze any given system. This study
is motivated by the need to develop a unified methodology to analyze all Markovian single-buffer
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continuous-flow production systems. With a similar objective, Gershwin and Fallah-Fini (2007) re-
cently proposed a method to analyze general discrete-time, discrete-material-flow production lines
with single buffer and identical processing rates. For a multiserver queue with Coxian arrival and
service times and infinite waiting space, Bertsimas (1990) presents an algorithm to determine the
system-size distribution and related performance measures. This approach can be used to analyze a
special class of two-stage discrete-material, continuous-time production lines with an infinite buffer.
In this line, the processing time of the first machine is a Coxian random variable. The second stage
has a number of identical machines in parallel and the processing time of each machine is also a
Coxian random variable.

Fluid flow models with a single buffer are also used to evaluate the performance of computer
and telecommunication systems, (e.g. Anick, Mitra, and Sondhi 1982 and Elwalid and Mitra 1991).
Recently, different methodologies are proposed to analyze general fluid flow models of computer
and telecommunication systems with a finite buffer, (e.g. Serucola 2001, Ahn and Ramaswami
2003, Ahn, Jeon, and Ramaswami 2005, Soares and Latouche 2006). Although the fluid flow
models developed for production and computer/telecommunication systems are similar, the methods
developed for telecommunication and computer systems cannot be used to analyze production
systems directly. The main difference between the models of telecommunication and computer
systems and the models of production systems is the operation dependent failures that are observed
in production systems. When the failures are operation dependent, an idle machine that is blocked
or starved cannot fail. If a machine is partially blocked or partially starved and operating at a
reduced rate, its failure rate will be lower than its rate when the buffer is partially full. As a result,
the boundary processes when the buffer is empty or full are not the same as the interior process
and all three processes must be analyzed accordingly.

In this paper, we present a methodology to analyze general Markovian continuous flow produc-
tion systems with a finite buffer. The dynamics of the process when the buffer is partially full is
determined by solving a set of first-order differential and algebraic equations. The unknown coeffi-
cients of the solution are determined by using a level crossing analysis. Namely, we first determine
the probabilities of entering and exiting the full- and empty-buffer processes while the machines are
in specific states by using a level crossing analysis. Then we link the entry and exit probabilities by
using the conditional probabilities that are derived from the boundary processes. The only inputs
of the model are the transition rates of each stage, the processing rates associated with the discrete
states of each stage, and the buffer size. Therefore our model is quite general and allows analysis
of a wide range of models by determining the required inputs. We illustrate our methodology by
using a detailed example of a production system with multiple up and down states. We also discuss
how different models can be analyzed by using our methodology.

The organization of the remaining part of the manuscript is as follows: In Section 2, we present
a specific model where each stage has multiple up and down states corresponding to their quality
characteristics to describe the types of models that can be analyzed with our methodology. In
Section 3, we give a description of the general model, its assumptions, and introduce the variables
used in the model. In Section 4, we present our methodology to analyze the general model and
determine the performance measures of interest. In Section 5, the methodology is illustrated by
analyzing the system described in Section 2. Then four different models: a model with multiple
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Figure 2: State transition diagram of the system of Section 2 and 5 with multiple up and down
states

unreliable machines in parallel in each stage, a model with a merge-type structure, and a model with
phase-type failure and repair-time distributions, and a model with multiple unreliable machines in
series in each stage are analyzed by using the same methodology in Section 6 Finally, conclusions
are given in Section 7.

2 Example

Before presenting the methodology to analyze general Markovian continuous flow systems, we first
introduce a specific example to illustrate the type of models and also to show the generality of our
methodology. In this example, we consider a production system with two unreliable machines with
multiple up and down states and a finite buffer studied by Poffe and Gershwin (2005).

In the system we consider, the first stage has two up (State 1 and State -1) and three down states
(State D1, D−1, and DQ). We refer to states of Mu as down when the processing rate in that state
is 0. In State 1, the machine produces products with no quality problems but when it is in State
-1, the quality of the products produced is not perfect. Furthermore, the machine is subject to two
different failures: operational failures (State D1 and State D−1) and quality failures (State DQ) and
they have different mean times to repair. Since these failures are different in nature, they cannot be
modelled with a single down state. The failure rate is reduced proportionally when the processing
rate of the machine is reduced due to starvation and blockage. The operational dependent failure
mechanism is described in detail in Section 5. The second stage has one up (State 1′) and one
down state (State 0′). Similar to the previous case, we refer to state 0′ of the second stage as down
because the processing rate of Md is 0 in that state. More detailed representation of quality and
unreliability characteristics of machines allows us to investigate quality and quantity issues jointly
in the design and operation of production systems.

The processing rates of the upstream stage in both of the up states are equal to µu; the processing
rate of the downstream stage in its up state is µd; and the processing rates of all the down states
for both stages are equal to 0. Figure 2 depicts the state transitions for Mu and Md for this model.
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In order to analyze this system, a set of differential equations that describe the dynamics of
the system must be derived and then solved subject to the boundary conditions. For example,
when µu 6= µd, this model yields 7 first-order differential equations and 3 algebraic equations. In
order to determine the steady-state probability distributions, 7 equations must be derived from the
boundary processes. Once the steady-state distribution is obtained all the performance measures of
interest can be determined from the distribution. Poffe and Gershwin (2005) derive these equations
and solves them explicitly.

In order to analyze another system, e.g., an extension of this system where the second station is
also modelled with 3 up and 2 down states, the same procedure must be repeated to derive all the
equations (for this model when µu 6= µd, 16 differential and 9 algebraic equations) and then they
must be solved.

In the next section, we present a methodology to analyze general Markovian continuous flow
systems with a finite buffer. The specific model presented in this section is analyzed in Section 5
in order to explain the methodology in detail.

3 General Model

We consider a continuous flow system with two stages separated by a buffer with capacity N (Figure
1). The state of the system at time t is s(t) = (X,αu, αd) where 0 ≤ X ≤ N is the buffer level,
αu ∈ {1, ..., Iu} is the state of the upstream stage Mu and αd ∈ {1, ..., Id} is the state of the
downstream stage Md. There are IuId discrete states in the state space (αu, αd) ∈ SM . Figure 3
shows a sample realization of the system described in Section 2.

The maximum processing rate of Mu in state i is µu
i ≥ 0 and the maximum processing rate of

Md in state j is µd
j ≥ 0. The machines operate at their maximum rates unless they are starved

or blocked. With these definitions, states need not be classified as up or down states as most of
the other studies in the literature. A state with a maximum processing rate equal to zero can be
considered as a down state.

When the buffer is empty in the machine state (αu, αd) = (i, j) with µu
i = 0 and µd

j > 0 then
Md is said to be completely starved and it is forced to stop. However, when the buffer is empty and
µd

j > µu
i > 0, Md is said to be partially starved and it can continue its production at a reduced rate

of µu
i . When the buffer is full in machine state (αu, αd) = (i, j) with µu

i > 0 and µd
j = 0 then Mu is

said to be completely blocked and the flow into the buffer is stopped. However, in the same state if
µu

i > µd
j > 0, Mu is said to be partially blocked and it can continue its production at a reduced rate

of µd
j . We assume that Mu is never starved and Md is never blocked.
We partition the discrete states of the system into three sets depending on whether the buffer

level goes up (Υ), down (∆), or stays the same (Z) in that state










(i, j) ∈ Υ if µu
i > µd

j

(i, j) ∈ ∆ if µu
i < µd

j

(i, j) ∈ Z if µu
i = µd

j

and SM = Υ ∪ ∆ ∪ Z. The number of states in each of these sets are IΥ = |Υ|, I∆ = |∆|, and
IZ = |Z| respectively and IΥ + I∆ + IZ = IuId.
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Figure 3: Sample path for the system of Section 2 and 5 with multiple up and down states (µu = 1.2,
µd = 1, p = 0.01, r = 0.1, p′ = 0.05, r′ = 0.10, g = 0.05, h = 0.10, rQ = 0.10)
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For Mu, when 0 < X < N , the transition time from state i to state i′ is an exponential random
variable with rate λu

ii′ . Similarly for Md, the transition time from state j to state j′ is an exponential
random variable with rate λd

jj′ . When Mu is partially blocked, the transition time from state i to
state i′ is also an exponential random variable with rate ψu

ii′ . Similarly, when Md is partially starved,
the transition rate from state j to state j′ is ψd

jj′ .
The time-dependent probability density while the buffer is partially full is

f(x, i, j, t) =
∂

∂x
prob[X(t) ≤ x, αu(t) = i, αd(t) = j] for 0 < x < N.

We assume that the process is ergodic and the steady-state probabilities exist. The steady-state
density functions are defined as

f(x, i, j) = lim
t→∞

f(x, i, j, t) for 0 < x < N (1)

and arranged in column vectors as

fS(x) = {f(x, i, j)}, for (i, j) ∈ S, S = Υ,∆, Z. (2)

The probability of state (0, i, j) at time t when the buffer is empty is denoted by p(0, i, j, t) and
the probability of state (N, i, j) at time t when the buffer is full is denoted by p(N, i, j, t). The
steady-state probabilities at the empty and full buffer states when (αu, αd) = (i, j) are p(0, i, j) =
lim
t→∞

p(0, i, j, t) and p(N, i, j) = lim
t→∞

p(N, i, j, t) respectively.

4 Analysis of Interior and Boundary Processes

In this section, the steady-state distribution is determined by analyzing the continuous time, con-
tinuous and discrete state space Markov process. First, the differential equations that describe the
dynamics of the system when the buffer is in the interior (0 < X < N) and when the buffer is at
the boundary, i.e. when the buffer is empty (X = 0) or full (X = N), are derived. Then a solution
technique is developed.

4.1 Interior Process

State Transition Equations Relating the probability density of the state at time t + h to the
probability density of the state at time t yields

f(x, i, j, t+ h) = f(x− (µu
i − µd

j )h, i, j, t)













1 −
Iu
∑

i′ = 1
i′ 6= i

λu
ii′h

























1 −
Id
∑

j′ = 1
j′ 6= j

λd
jj′h












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+
Iu
∑

i′ = 1
i′ 6= i

f(x− (µu
i′ − µd

j )h, i
′, j, t)λu

i′ih













1 −
Id
∑

j′ = 1
j′ 6= j

λd
jj′h













+
Id
∑

j′ = 1
j′ 6= j

f(x− (µu
i − µd

j′)h, i, j
′, t)λd

j′jh













1 −
Iu
∑

i′ = 1
i′ 6= i

λu
ii′h













, (i, j) ∈ SM . (3)

The above equation can also be written in differential form by setting h→ 0 as

∂f(x, i, j, t)

∂t
+ (µu

i − µd
j )
∂f(x, i, j, t)

∂x
= −f(x, i, j, t)













Iu
∑

i′ = 1
i′ 6= i

λu
ii′ +

Id
∑

j′ = 1
j′ 6= j

λd
jj′













+
Iu
∑

i′ = 1
i′ 6= i

f(x, i′, j, t)λu
i′i +

Id
∑

j′ = 1
j′ 6= j

f(x, i, j′, t)λd
j′j, (i, j) ∈ SM . (4)

In steady state, the above equation yields IuId equations given below:

(µu
i − µd

j )
∂f(x, i, j)

∂x
= −f(x, i, j)













Iu
∑

i′ = 1
i′ 6= i

λu
ii′ +

Id
∑

j′ = 1
j′ 6= j

λd
jj′













+
Iu
∑

i′ = 1
i′ 6= i

f(x, i′, j)λu
i′i +

Id
∑

j′ = 1
j′ 6= j

f(x, i, j′)λd
j′j, (i, j) ∈ SM . (5)

Solution of the Internal Equations Note that the coefficient of ∂f(x,i,j)
∂x

in Equation (5) can
be positive, negative, or zero. Then the internal equations given in Equation (5) can be written in
matrix form as









∂fΥ(x)
∂x

∂f∆(x)
∂x

0









=

[

A1 A2

A3 A4

]







fΥ(x)
f∆(x)
fZ(x)





 (6)

where A1 is a square matrix of size (IΥ + I∆)× (IΥ + I∆), A4 is a square matrix of size IZ × IZ , A2

is a matrix of size (IΥ + I∆) × IZ , A3 is a matrix of size IZ × (IΥ + I∆), and 0 is a column vector
of length IZ . These matrices are determined by the parameters of the system.
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Expanding Equation (6) gives the following set of equations:





∂fΥ(x)
∂x

∂f∆(x)
∂x



 = A1

[

fΥ(x)
f∆(x)

]

+ A2fZ(x) (7)

and

0 = A3

[

fΥ(x)
f∆(x)

]

+ A4fZ(x). (8)

Equation (8) is a set of algebraic equations and it can be solved directly to express fZ(x) in terms
of fΥ(x) and f∆(x) as

fZ(x) = Ω

[

fΥ(x)
f∆(x)

]

(9)

where Ω = −A−1
4 A3. Since the square matrix A4 has non-zero diagonal elements where each diagonal

element is the sum of the transition rates from state (i, j) ∈ Z, A−1
4 always exists.

Now, inserting Equation (9) into (8) yields a first-order matrix differential equation given below





∂fΥ(x)
∂x

∂f∆(x)
∂x



 = Λ

[

fΥ(x)
f∆(x)

]

. (10)

where Λ = A1 − A2A
−1
4 A3. The solution of this first-order matrix differential equation is

[

fΥ(x)
f∆(x)

]

= eΛxw (11)

where eΛx is a matrix exponential determined by matrix Λ and w is a column vector of length
IΥ + I∆.

Inserting the solution for fΥ(x) and f∆(x) given in Equation (11) into Equation (9) yields the
solution for fZ(x):

fZ(x) = ΩeΛxw. (12)

When vector w is determined, all the density functions are determined by Equations (11) and
(12). Since the length of w is IΥ + I∆, IΥ + I∆ equations are needed to determine the weights
uniquely. We determine these equations by analyzing the boundary processes in the following. We
first discuss important concepts and results of level crossing analysis.

4.2 Level Crossing

In order to relate the densities of the partially-full buffer process and the boundary buffer processes
when the buffer is empty or full, we use a level crossing analysis similar to the one utilized in Yeralan
and Tan (1997). With this approach, the entry and exit probabilities into the empty- and full-buffer
processes are determined from the density functions.

In order to explain this approach, first note that since the buffer is finite and the process is
ergodic, any process realization must visit any given buffer level an infinite times in the long run.

10
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Equivalently, at a buffer level x, the number of upward crossings in a given time period is equal to
the number of downward crossings in the same time period in the long run.

In order to define level crossing at the buffer level x formally, consider the following event

G(x, i, j, h) = {αu = i, αd = j, 0 ≤ x ≤ X ≤ x+ h ≤ N}.

A level crossing at x when (αu, αd) = (i, j) is defined as event G(x, i, j, h) as h → 0 when (i, j) ∈
Υ ∪ ∆.

The rate of change of buffer level in state (i, j) is |µu
i − µd

j |. Note that |µu
i − µd

j | 6= 0 only when

(i, j) ∈ Υ ∪ ∆. Once event G(x, i, j, h) occurs, it will last for h
|µu

i
−µd

j
|

time units. Therefore when

h→ 0, the probability that (αu, αd) changes its state in this time period goes to zero.
The probability of this event can be determined as

prob[G(x, i, j, h)] =
∫ x+h

x
f(x′, i, j)dx′ = f(x, i, j)h+ o(h). (13)

Let L(x, i, j, T ) denote the number of level crossings in state (x, i, j) in the time interval [t, t+T ].
If the system is observed for T units of time as T → ∞, the probability that event G(x, i, j, h) occurs
is also the fraction of time the system spends in set G(x, i, j, h) in the long run. Consequently,

f(x, i, j)h = lim
T→∞

L(x, i, j, T )

T

h

|µu
i − µd

j |
+ o(h). (14)

Therefore, the expected number of level crossings per unit time in the long run is determined
by the densities and the flow rates as

lim
T→∞

L(x, i, j, T )

T
= |µu

i − µd
j |f(x, i, j). (15)

In state (i, j) with µu
i > µd

j , (µu
i − µd

j )f(x, i, j) is the expected number of upward crossings at
buffer level 0 < x < N per unit time. Similarly in state (i, j) with µu

i < µd
j , (µd

j −µd
i )f(x, i, j) is the

expected number of downward crossings per unit time. Since at any given buffer level, the expected
number of upward and downward crossings are equal in the long run, we can also write

Iu
∑

i=1

Id
∑

j=1

(µu
i − µd

j )f(x, i, j) = 0. (16)

The above result can also be derived by adding all the transition equations given in Equation (5)
for (i, j) ∈ SM that yields the level crossing equivalence in differential form. For other results in
level crossing analysis, the reader is referred to Blake and Lindsey (1973) and Brill (1978).

In order to complete the analysis, we must determine p(0, i, j), the steady-state probability that
the buffer is empty and the machine states are (αu, αd) = (i, j); and p(N, i, j), the steady-state
probability that the buffer is full and the machine states are (αu, αd) = (i, j). Next we focus on the
x = 0 boundary.

11
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4.3 Empty Buffer Process

Now we derive the equations that describe the dynamics of the system when the buffer is empty, or
becomes empty, or stops being empty. As the buffer level decreases in states (i, j) ∈ ∆, the buffer
eventually becomes empty if no other transition occurs first. Once the buffer becomes empty, it
stays empty until the system makes a transition to a state (i, j) ∈ Υ. When the buffer is empty,
the set of states where the buffer stays empty is S0 = ∆ ∪ Z and IS0

= |S0| = I∆ + IZ .

State Transition Equations Let t0k be the kth time the buffer becomes empty. We calculate
p(0, i, j) from the state transition rates that determine π(0, i, j, t0k + τ), the probability that X = 0
and (αu, αd) = (i, j) at time t0k + τ given that the buffer became empty at time t0k and has been
empty during [t0k, t

0
k + τ ].

In order for the buffer to become empty at time t0k the machine state (αu, αd) must have been
in set ∆ at that time. For it to stay empty during [t0k, t

0
k + τ ], (αu, αd) must be in set S0 = ∆ ∪ Z

during that interval. For it to become non-empty at time t0k + τ , (αu, αd) must make a transition
into Υ at that time.

The dynamics of the system during an interval when the buffer stays empty are given by the
following equations:

dπ(0, i, j, τ)

dτ
= −π(0, i, j, τ)













Iu
∑

i′ = 1
i′ 6= i

λu
ii′ +

Id
∑

j′ = 1
j′ 6= j

ψd
jj′













+
Iu
∑

i′ = 1
i′ 6= i

(i′, j) ∈ S0

π(0, i′, j, τ)λu
i′i +

Id
∑

j′ = 1
j′ 6= j

(i, j′) ∈ S0

π(0, i, j′, τ)ψd
j′j, (i, j) ∈ S0. (17)

Equation (17) can be written in matrix form as

dπ0
S0

(τ)

dτ
= A0π

0
S0

(τ) (18)

where π0
S0

(τ) = {π(0, i, j, τ)} for (i, j) ∈ S0 and A0 is a IS0
× IS0

square matrix.
The empty buffer process ends with a transition into a state where the buffer level starts in-

creasing. Let q(0, i, j, t0k + τ) be the rate at which the process enters into the state (i, j) ∈ Υ at time
t0k + τ given that the buffer became empty at time t0k. This rate can be determined as

q(0, i, j, τ) =
Iu
∑

i′ = 1
i′ 6= i

(i′, j) ∈ S0

π(0, i′, j, τ)λu
i′i +

Id
∑

j′ = 1
j′ 6= j

(i, j′) ∈ S0

π(0, i, j′, τ)ψd
j′j, (i, j) ∈ Υ. (19)

12
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Equation (19) can be written in matrix form as

q0
Υ(τ) = B0π

0
S0

(τ) (20)

where q0
Υ(τ) = {q(0, i, j, τ)} for (i, j) ∈ Υ and B0 is a IΥ × IS0

matrix.

Entry and Exit Probabilities In order to link the interior and the empty buffer process, we
first analyze how the buffer becomes empty and then how it exits the empty buffer states. Let us
define a discrete time random process {φenterk , k = 1, 2, ...} sampled from the process {s(t), t ≥ 0} at
the instances t0k, k = 1, 2, ... when the buffer becomes empty. The random variable φenterk consists
of states of the machines at the instant when the buffer becomes empty for the kth time. That is, if
X(t0k − h) = 0+ and X(t0k) = 0 as h→ 0 then φenterk = (αu(t

0
k), αd(t

0
k)). The subscript k is dropped

to represent φenterk in steady state.
The probability that the buffer becomes empty while the machines are in state (i, j) is the ratio

of the number of downward crossings in this particular state to the number of all possible downward
crossings at X = 0+:

prob[φenter = (i, j)] = lim
T→∞

L(0+, i, j, T )/T
∑

(i′,j′)∈∆
L(0+, i′, j′, T )/T

=
(µu

i − µd
j )f(0+, i, j)

∑

(i′,j′)∈∆
(µu

i′ − µd
j′)f(0+, i′, j′)

, (i, j) ∈ ∆. (21)

Similarly, let us define another discrete time random process {φexitk , k = 1, 2, ...} sampled from
the process {s(t), t ≥ 0} at the instances τ 0

k , k = 1, 2, ... when the buffer level starts increasing
following being empty. The random variable φexitk describes the states of the machines at the
instant when the buffer level starts increasing after being empty for the kth time. That is, if
X(τ 0

k − h) = 0 and X(τ 0
k ) = 0+ as as h → 0 then φexitk = (αu(τ

0
k ), αd(τ

0
k )). Then the probability

that the process exits the empty buffer state with a transition into state (i, j) ∈ Υ is given as

prob[φexit = (i, j)] =
(µu

i − µd
j )f(0+, i, j)

∑

(i′,j′)∈Υ
(µu

i′ − µd
j′)f(0+, i′, j′)

, (i, j) ∈ Υ. (22)

The empty buffer process relates the probabilities given in Equations (21) and (22). More
specifically,

prob[φexit = (i, j)] =
∑

(i′,j′)∈∆

prob[φexit = (i, j) | φenter = (i′, j′)]prob[φenter = (i′, j′)],

(i, j) ∈ Υ. (23)

Inserting Equations (21) and (22) into Equation (23) and using the equivalence of the upward and
downward crossings given in Equation (16) yields

13
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(µu
i − µd

j )f(0+, i, j) =
∑

(i′,j′)∈∆

prob[φexit = (i, j) | φenter = (i′, j′)](µd
j′ − µu

i′)f(0+, i′, j′),

(i, j) ∈ Υ (24)

where conditional probabilities prob[φexit = (i, j) | φenter = (i′, j′)] are determined from Equations
(18) and (20).

The (i, j)(i′, j′) element of −B0A
−1
0 is the conditional probability that the empty buffer process

exits in a particular state (i, j) ∈ Υ given that it starts in one of the states (i′, j′) ∈ S0 where the
buffer stays empty. Since the empty buffer process can start only in states (i, j) ∈ ∆, let G0 be
a IΥ × I∆ matrix that is obtained by eliminating the columns of −B0A

−1
0 corresponding to states

S0 \∆. Accordingly, by using the solution of the density functions given in Equation (11), Equation
(24) can be written in matrix form as

[

diag(mΥ) 0IΥ×I∆

]

w = G0

[

0I∆×IΥ diag(m∆)
]

w (25)

where mΥ = {(µu
i −µd

j )| (i, j) ∈ Υ} and m∆ = {(µd
j −µu

i )| (i, j) ∈ ∆}. We use diag(a) to represent
a diagonal matrix formed with the elements of vector a and 0k×l is a k × l matrix of zeros.

Since
∑

(i,j)∈Υ
prob[φexit = (i, j)] = 1, Equation (25) gives IΥ − 1 linearly independent equations

that will be used to determine w.

Steady-State Probability Distribution Due to ergodicity of the process, the probability that
X = 0 and (αu, αd) = (i, j) is also the fraction of the total time the process stays in this state in a
given time period the long run.

We can determine the total time the process stays in state (i, j) ∈ S0 while X = 0 in a given
time period by determining the number of times the buffer becomes empty and the time the process
stays in this state for each time the buffer becomes empty in the same time period.

Given that the machine states (αu, αd) = (i′, j′) ∈ ∆ at the time the buffer becomes empty,
the expected time that the machine states (αu, αd) stay in (i, j) ∈ S0 before exiting to a state
(αu, αd) ∈ Υ is denoted by E[T 0

(i,j),(i′,j′)]. Then, the steady-state probability of state (0, i, j), p(0, i, j)
is given as

p(0, i, j) =
∑

(i′,j′)∈∆

lim
T→∞

L(0+, i′, j′, T )E[T 0
(i,j),(i′,j′)]

T
(26)

By using Equation (15), we can write p(0, i, j) in terms of the densities, processing rates, and
expected sojourn times as

p(0, i, j) =
∑

(i′,j′)∈∆

(µd
j′ − µu

i′)f(0+, i′, j′)E[T 0
(i,j),(i′,j′)]. (27)

The (i, j), (i′, j′) element of matrix −A−1
0 determined from Equation (18) gives the expected

sojourn time in state (i, j) ∈ S0 given that (αu, αd) starts in state (i′, j′) ∈ S0. Since the empty

14
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buffer process can start only in states (i, j) ∈ ∆, we define E[T 0] to be an IS0
× I∆ matrix that is

obtained by eliminating the columns of −A−1
0 corresponding to states in S0 that are not in ∆, i.e.,

S0 \ ∆.
Using the solution of the density functions given in Equation (11) in Equation (27) gives

p0 = E[T 0]
[

0I∆×IΥ diag(m∆)
]

w (28)

where p0 = {p(0, i, j)}.
Now, we can also determine the probability that the buffer is empty as

prob[X = 0] =
∑

(i′,j′)∈S0

p(0, i, j) = uIS0
p0 (29)

where uk = (1, 1, ..., 1) is a row vector of ones of length k.

4.4 Full Buffer Process

The last step is the analysis of the full buffer process. As the buffer level increases in states (i, j) ∈ Υ,
the buffer eventually becomes full if no other transition occurs first. Once the buffer becomes full,
it stays full until the system makes a transition to a state (i, j) ∈ ∆. When the buffer is full, the
set of states where the buffer stays full is SN = Υ ∪ Z and ISN

= |SN |.

State Transition Equations Let tNk be the kth time the buffer becomes full. We calculate
p(N, i, j) from the state transition rates that define π(N, i, j, tNk + τ), the probability that X = N
and (αu, αd) = (i, j) at time tNk + τ given that the buffer became full at time tNk and has been full
during [tNk , t

N
k + τ ].

In order for the buffer to become full at time tNk the machine state (αu, αd) must have been in
set Υ at that time. For it to stay full during [tNk , t

N
k + τ ], (αu, αd) must be in set SN = Υ∪Z during

that interval. For it to become non-full at time tNk + τ , (αu, αd) must make a transition into ∆ at
that time.

The dynamics of the system when the buffer stays full in state (i, j) ∈ SN are given as

dπ(N, i, j, τ)

dτ
= −π(N, i, j, τ)













Id
∑

j′ = 1
j′ 6= j

λd
jj′ +

Iu
∑

i′ = 1
i′ 6= i

ψu
ii′













+
Id
∑

j′ = 1
j′ 6= j

(i, j′) ∈ SN

π(N, i, j′, τ)λd
j′j +

Iu
∑

i′ = 1
i′ 6= i

(i′, j) ∈ SN

π(N, i′, j, τ)ψu
i′i, (i, j) ∈ SN . (30)

The above equation can be written in matrix form as

πN
SN

(τ)

dτ
= ANπ

N
SN

(τ) (31)
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where πN
SN

(τ) = {π(N, i, j, τ)} for (i, j) ∈ SN and AN is a ISN
× ISN

square matrix
The full buffer process ends with a transition into a state where the buffer level starts decreasing.

Let q(N, i, j, tNk + τ) be the rate at which the process enters into the state (i, j) ∈ ∆ at time tNk + τ
given that the buffer became full at time tNk . We can determine this rate as

q(N, i, j, τ) =
Id
∑

j′ = 1
j′ 6= j

(i, j′) ∈ SN

π(N, i, j′, τ)λd
j′j +

Iu
∑

i′ = 1
i′ 6= i

(i′, j) ∈ SN

π(N, i′, j, τ)ψu
i′i, (i, j) ∈ ∆ (32)

or in matrix form
qN

∆(τ) = BNπ
N
SN

(τ) (33)

where qN
∆(τ) = {q(N, i, j, τ)} for (i, j) ∈ ∆ and BN is a I∆ × ISN

matrix.

Entry and Exit Probabilities In order to link the interior and the full-buffer process, we first
analyze how the buffer becomes full and then how it exits the full buffer states and the buffer level
starts decreasing. Let us define a discrete time random process {ϕenter

k , k = 1, 2, ...} sampled from
the process {s(t), t ≥ 0} at the instances where the buffer becomes full. The random variable ϕenter

k

describes the states of the machines at the instances tNk , k = 1, 2, ... when the buffer becomes full for
the kth time. That is, if X(tNk −h) = N− and X(tNk ) = N as h→ 0 then ϕenter

k = (αu(t
N
k ), αd(t

N
k )).

The subscript k is dropped to represent the random variable in steady state.
The probability that the buffer becomes full while the process has been in a specific state is

the ratio of the number of upward crossings in this particular state and the all possible upward
crossings at X = N−:

prob[ϕenter = (i, j)] =
(µu

i − µd
j )f(N−, i, j)

∑

(i′,j′)∈Υ
(µu

i′ − µd
j′)f(N−, i′, j′)

, (i, j) ∈ Υ. (34)

Similarly, let us define another discrete time random process {ϕexit

k , k = 1, 2, ...} sampled from
the process {s(t), t ≥ 0} at the instances τN

k , k = 1, 2, ... when the buffer level starts decreasing
following being full. The random variable ϕexit

k describes the states of the machines at the instant
when the buffer level starts decreasing following being full for the kth time. That is, if X(τN

k −h) =
N and X(τN

k ) = N− as h→ 0 then ϕexit

k = (αu(τ
N
k ), αd(τ

N
k )). Then the probability that the process

exits the full buffer state with a transition into state (i, j) ∈ ∆ is given as

prob[ϕexit = (i, j)] =
(µu

i − µd
j )f(N−, i, j)

∑

(i′,j′)∈∆
(µu

i′ − µd
j′)f(N−, i′, j′)

, (i, j) ∈ ∆. (35)

The full buffer process relates the probabilities given in Equations (34) and (35). More specifi-
cally,

prob[ϕexit = (i, j)] =
∑

(i′,j′)∈Υ

prob[ϕexit = (i, j) | ϕenter = (i′, j′)]prob[ϕenter = (i′, j′)],
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(i, j) ∈ ∆. (36)

Inserting Equations (34) and (35) into Equation (36) and simplifying by using the equivalence of
the upward and downward crossings given in Equation (16) gives

(µd
j − µu

i )f(N−, i, j) =
∑

(i′,j′)∈Υ

prob[ϕexit = (i, j) | ϕenter = (i′, j′)](µu
i′ − µd

j′)f(N−, i′, j′),

(i, j) ∈ ∆ (37)

where conditional probabilities prob[ϕexit = (i, j) | ϕenter = (i′, j′)] are determined from Equations
(31) and (33).

More specifically, the (i, j)(i′, j′) element of matrix −BNA
−1
N is the conditional probability that

the full buffer process exits in a particular state (i, j) ∈ ∆ given that it starts in one of the states
(i′, j′) ∈ SN where the buffer stays full. Since the full buffer process can start only in states
(i, j) ∈ Υ, let GN be a I∆ × IΥ matrix that is obtained by eliminating the columns of −BNA

−1
N

corresponding to states SN \ Υ.
Using the solution of the density functions given in Equation (11) in Equation (37) yields

[

0I∆×IΥ diag(m∆)
]

eΛNw = GN

[

diag(mΥ) 0IΥ×I∆

]

eΛNw. (38)

Since
∑

(i,j)∈∆
prob[ϕexit = (i, j)] = 1, Equation (38) gives I∆ − 1 linearly independent equations that

will be used to determine w.

Steady-State Distribution Ergodicity of the process ensures that the probability that X = N
and (αu, αd) = (i, j) is also the ratio of the total time the process stays in this state in a given time
period the long run.

The total time the process stays in state (i, j) ∈ SN while X = N in a given time period can be
determined by multiplying the number of times the buffer becomes full and the time the process
stays in this state once the buffer becomes full in the same time period.

Given that the machine states (αu, αd) = (i′, j′) ∈ Υ at the time the buffer becomes full,
the expected time that the machine states (αu, αd) stay in (i, j) ∈ SN before exiting to a state
(αu, αd) ∈ ∆ is denoted by E[TN

(i,j),(i′,j′)]. Then, the steady-state probability of state (N, i, j),
p(N, i, j) is given as

p(N, i, j) =
∑

(i′,j′)∈Υ

lim
T→∞

L(N−, i′, j′, T )E[TN
(i,j),(i′,j′)]

T
(39)

By using Equation (15), we can write p(N, i, j) in terms of the densities, processing rates, and
expected sojourn times as

p(N, i, j) =
∑

(i′,j′)∈Υ

(µu
i′ − µd

j′)f(N−, i′, j′)E[TN
(i,j),(i′,j′)] (40)
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The (i, j), (i′, j′) element of matrix −A−1
N determined from Equation (31) gives the expected

sojourn time in state (i, j) ∈ SN given that (αu, αd) starts in (i′, j′) ∈ SN . Since the full buffer
process can start only in states (i, j) ∈ Υ, we define E[TN ] to be an ISN

×IΥ matrix that is obtained
by eliminating the columns of −A−1

N corresponding to states in SN that are not in Υ, i.e., SN \ Υ.
Inserting the solution of the density functions given in Equation (11) in Equation (40) yields

pN = E[TN ]
[

diag(mΥ) 0IΥ×I∆

]

eΛNw. (41)

where pN = {p(N, i, j)}.
Then the probability that the buffer is full can be calculated as

prob[X = N ] =
∑

(i,j)∈SN

p(N, i, j) = uISN
pN . (42)

4.5 Solution of the Probability Densities

Once the weight vector w is determined, all the steady-state probabilities are also determined. Since
there are IΥ + I∆ weights and Equations (25) and (38) give a total of IΥ + I∆ − 2 equations, two
additional equations are required to uniquely determine w.

The first equation is the equivalence of the total upward and downward crossings in the interior
region. Integrating Equation (16) from 0 to N yields

N
∫

0

Iu
∑

i=1

Id
∑

j=1

µu
i f(x, i, j)dx =

N
∫

0

Iu
∑

i=1

Id
∑

j=1

µd
jf(x, i, j)dx (43)

or in matrix form

[

mΥ − m∆

]





N
∫

0

eΛxdx



 w = 0. (44)

The second equation is the normalization equation:

Iu
∑

i=1

Id
∑

j=1

(p(0, i, j) + p(N, i, j)) +

N
∫

0

Iu
∑

i=1

Id
∑

j=1

f(x, i, j)dx = 1. (45)

By using Equations (11), (12), (29) and (42), the normalization equation can be written in matrix
form as



uIS0
E[T 0]

[

0I∆×IΥ diag(m∆)
]

+ ν





N
∫

0

eΛxdx



 + uISN
E[TN ]

[

diag(mΥ) 0IΥ×I∆

]

eΛN



 w = 1

(46)
where ν = (uIΥ+I∆ + uIZ

Ω).
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Now Equations (25) and (38) with Equations (44) and (46) give IΥ + I∆ linearly independent
equations that uniquely determine w. Therefore all the steady-state probability distributions that
describe the dynamics of the system are determined by these equations.

4.6 Performance Measures

When the probability densities are determined, all performance measures of interest can be calcu-
lated. In a production setting, the main performance measures of interest are the production rate
and the expected buffer level.

The production rate is the amount of material processed per unit time in the long run. The
production rate of the first stage and the second stage are the same due to the conservation of flow.
Therefore we give the production rate of the first stage without loss of generality. The production
rate in the internal states can be determined in a straight-forward way. Since the first stage can
be forced to produce at a reduced rate due to partial blocking and the second stage can be forced
to produce at a reduced rate due to partial starvation, this must be taken into consideration. The
following equation gives the production rate of the first stage:

Π =
∑

(i,j)∈S0

µu
i p(0, i, j) +

∑

(i,j)∈SM

N
∫

0

µu
i f(x, i, j)dx+

∑

(i,j)∈SN

µd
jp(N, i, j) (47)

The expected buffer level is determined as

E[X] =
Iu
∑

i=1

Id
∑

j=1





N
∫

0

xf(x, i, j)dx+Np(N, i, j)



 . (48)

Once the steady-state distribution is determined, other performance measures of interest can also
be evaluated directly.

5 Analysis of the Example

In this section, we analyze the specific system described in Section 2 by using our methodology. In
order to explain the methodology, all the variables defined in Section 3 are given explicitly for this
model. We also evaluate the performance of the system as some of the system parameters change.

Before defining the variables, we first discuss modelling operation dependent failures in this
setting. Although our methodology is developed to work with arbitrary values of ψu

ii′ and ψd
jj′ , in

this example and in the production examples analyzed in Tan and Gershwin (2007), a specific case
where the reduction in the transition rates at the boundaries is proportional to the reduction in
the processing rate is considered similar to other papers in the literature (e.g. Gershwin and Schick

1980). That is when the buffer is empty and Md is producing at a reduced rate of µu
i , ψ

d
jj′ =

µu
i

µd
j

λd
jj′ .

This setting implies that when µu
i = 0, ψd

jj′ = 0 and therefore it is not possible to make a transition
when Md is completely starved. Similarly, when the buffer is full and Mu is producing at a reduced
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rate of µd
j , ψ

u
ii′ =

µd
j

µu
i

λd
ii′ . Similar to the previous case, when µd

j = 0, ψu
ii′ = 0 and therefore a

transition is not possible when Mu is completely blocked.

5.1 Model Inputs

Our solution methodology requires only matrices λu = {λu
ii′}, λ

d = {λd
jj′}, ψ

u = {ψu
ii′}, ψ

d = {ψd
jj′},

vectors µu = {µu
i }, µ

d = {µd
j}, and the buffer size N as its inputs. In this specific example, since

ψu
ii′ =

µd
j

µu
i

λd
ii′ and ψd

jj′ =
µu

i

µd
j

λd
jj′ , ψ

u and ψd are defined by the other inputs.

We first order the states of Mu as {1,−1, D1, D−1, DQ} and number them from 1 to Iu = 5.
According to the state transitions for Mu and Md given in Figure 2, the transition rate matrix of
Mu is given as

λu =

















−g − p g p 0 0
0 −p− h 0 p h
r 0 −r 0 0
0 r 0 −r 0
rQ 0 0 0 −rQ

















. (49)

The processing rates in states {1,−1, D1, D−1, DQ} are

µu =
[

µu µu 0 0
]

.

Similarly, the states of Md are ordered as {1′, 0′} and numbered from 1 to Id = 2. The transition
rate matrix of Md is given as

λd =

[

−p′ p′

r −r′

]

. (50)

In states {1′, 0′} the processing rates of Md are given as

µd =
[

µd 0
]

.

5.2 Analysis of the Model

Once these inputs are given, we can specify matrices A1, A2, A3, A4, A0, B0, AN , BN and vectors
mΥ, m∆, and mZ directly. Once these matrices and vectors are specified, the methodology outlined
in the preceding sections yields the desired performance measures directly.

The table given in (51) lists the states, the corresponding processing rates, and the classification
of each state in sets Υ, ∆, and Z depending on µu and µd. In this section only the case µu > µd is
discussed in detail.
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State State S
Mu Md αu αd mS µ1 > µ2 µ1 = µ2 µ1 < µ2

1 1′ 1 1 µu − µd Υ Z ∆
−1 1′ 2 1 µu − µd Υ Z ∆
1 0′ 1 2 µd Υ Υ Υ
−1 0′ 2 2 µu Υ Υ Υ
D1 1′ 3 1 µd ∆ ∆ ∆
D−1 1′ 4 1 µd ∆ ∆ ∆
DQ 1′ 5 1 µd ∆ ∆ ∆
D1 0′ 3 2 0 Z Z Z
D−1 0′ 4 2 0 Z Z Z
DQ 0′ 5 2 0 Z Z Z

(51)

There are 10 discrete states in the state space. When µu > µd, IΥ = 4, I∆ = 3, and IZ = 3. In
this case,

mΥ =
[

µu − µd µu − µd µu µu

]

,

m∆ =
[

µd µd µd

]

,

mZ =
[

0 0 0
]

.

For this specific case, the submatrices A1, A2, A3, and A4 are

A1 =

































−p−g−p′

µu−µd
0 r′

µu−µd
0 r

µu−µd
0

rQ

µu−µd
g

µu−µd

−p−h−p′

µu−µd
0 r′

µu−µd
0 r

µu−µd
0

p′

µu
0 −p−g−r′

µu
0 0 0 0

0 p′

µu

g
µu

−p−h−r′

µu
0 0 0

− p
µd

0 0 0 r+p′

µd
0 0

0 − p
µd

0 0 0 r+p′

µd
0

0 − h
µd

0 0 0 0
rQ+r′

µd

































, (52)

A2 =









0 0 r
µu

0 − r′

µd
0 0

0 0 0 r
µu

0 − r′

µd
0

0 0
rQ

µu
0 0 0 − r′

µd









T

, (53)

A3 =







0 0 p 0 p′ 0 0
0 0 0 p 0 p′ 0
0 0 0 h 0 0 p′





 , (54)

A4 =







−r − r′ 0 0
0 −r − r′ 0
0 0 −rQ − r′





 . (55)

The submatrices for the cases µu = µd and µu < µd can be written similarly.
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When µu 6= µd, the buffer level does not change when both stages are in down states. Since
these states cannot be reached when the buffer is empty or full, S0 = ∆ and SN = Υ. Therefore
IS0

= I∆ = 3 and ISN
= IΥ = 4.

For the empty buffer process, since Md is completely starved in all transient states, the matrices
A0 and B0 for the empty buffer process are

A0 =







−r 0 0
0 −r 0
0 0 −rQ − r′





 (56)

and

B0 =











r 0 rQ

0 r 0
0 0 0
0 0 0











. (57)

Since S0 = ∆, E[T0] = −A−1
0 and G0 = −B0A

−1
0 .

For the full buffer process, Mu is partially blocked in states (1, 1′) and (−1, 1′) and completely
blocked in states (1, 1′) and (−1, 1′). Then the matrices AN and BN are

AN =













−pµd

µu
− g µd

µu
− p′ 0 r′ 0

g µd

µu
−pµd

µu
− hµd

µu
− p′ 0 r′

p′ 0 −r′ 0
0 p′ g µd

µu
−r′













(58)

BN =









pµd

µu
0 0 0

0 pµd

µu
0 0

0 hµd

µu
0 0









. (59)

Since SN = Υ, E[TN ] = −A−1
N , GN = −BNA

−1
N .

5.3 Performance Evaluation

Now since all the input matrices and vectors are determined, the solution methodology outlined
in the preceding sections yields the probability densities and the performance measures directly.
Namely, inserting these matrices and vectors into Equations (25) and (38) with Equations (44) and
(46) yields a system of equations that determine the weight vector w. Then Equations (47) and
(48) yield production rate and the expected buffer level.

All the results in this section are validated by simulation. Each model is simulated by using
both a continuous flow and also a discrete event simulation model. When the continuous simulation
is run for 106 events, the percentage error between the analytical production rate and the simulated
production rate is less than 10−5. The time required to determine the performance measures by
using the general methodology is very short and not affected by the buffer level.

Figures 4 and 5 show that increasing the processing rate of each stage increases the production
rate until it reaches its limit. However, the expected buffer level increases with the processing rate of
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the first stage and it reaches its capacity and decreases with the processing rate of the second stage
and it approaches zero. Figure 6 shows that increasing the buffer level increases the production
rate and the expected buffer level as expected.
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Figure 4: Effect of the processing rate of the upstream station in the model with multiple up and
down states (µd = 1, p = 0.005, r = 0.15, p′ = 0.015, r′ = 0.15, g = 0.01, h = 0.20, rQ = 0.15,
N = 17)
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Figure 5: Effect of the processing rate of the downstream station in the model with multiple up
and down states (µu = 1, p = 0.005, r = 0.15, p′ = 0.015, r′ = 0.15, g = 0.01, h = 0.20, rQ = 0.15,
N = 17)

6 Modelling of Various Systems

In this section, we will model four different systems to illustrate the application of our methodology
in the analysis of a range of production lines. The first model is a system where each stage has a
number of identical machines in parallel. The second model is a system where the up- and down-
times of each station are Erlang random variables with different number of stages. Then a model
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Figure 6: Effect of the buffer capacity in the model with multiple up and down states (µ1 = 1,
µ2 = 1, p = 0.005, r = 0.15, p′ = 0.015, r′ = 0.15, g = 0.01, h = 0.20, rQ = 0.15)

of a three station merge system with a shared buffer is discussed. Finally, a model of a system
where each stage has a number of machines in series is given. The way these systems are modelled
is shown and the inputs are given explicitly for each model.

6.1 A Model with Parallel Machines

We now model a system where Mu has mu and Md has md identical machines in parallel similar to
the one analyzed in Mitra (1988). Each machine is unreliable and has one up and one down state.
In the upstream stage, the processing rate of each machine is µu and the failure and repair times
are exponential random variables with rates pu and ru respectively. In the downstream stage, the
processing rate of each machine is µd and the failure and repair rates are also exponential random
variables with rates pd and rd respectively.

In this model Mu has mu + 1 and Md has md + 1 states. In state i of Mu, i machines are
operational and the effective processing rate is iµu, 0 ≤ i ≤ mu. Similarly, in state j of Md, j
machines are operational and the effective processing rate is jµd, 0 ≤ j ≤ md.

Accordingly, the possible transitions for Mu are

• from state i to state i− 1 with rate ipu for i = 1, ...,mu, and

• from state i to state i+ 1 with rate (mu − i)ru for i = 0, ...,mu − 1.

Similarly, possible transitions for Md are

• from state j to state j − 1 with rate jpd for j = 1, ...,md and

• from state j to state j + 1 with rate (md − j)rd for j = 0, ...,md − 1.

Figure 7 depicts the state transitions for Mu and Md for a specific case where Mu has mu = 3
machines and Md has md = 2 machines in parallel.

The matrices λu and λd and the vectors µu and µd for this specific case are given below:
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Mu Md
N

2pu

1 0

µu 0

2

2µu

pu

2ru
3ru

3

3µu ru

3pu 2pd

1 0

µd 0

2

2µd

pd

2rd
3rd

Figure 7: A system with parallel machines

λu =











−3ru 3ru 0 0
pu −pu − 2ru 2ru 0
0 2pu −2pu − ru ru

0 0 3pu −3pu











(60)

where the states are ordered as {0, 1, 2, 3}. The processing rates in these states are

µu =
[

0 µu 2µu 3µu

]

.

Similarly,

λd =







−2rd 2rd 0
pd −pd − rd rd

0 2pd −2pd





 (61)

where the states are ordered as {0, 1, 2}. In these states the processing rates of Md are given as

µd =
[

0 µd 2µd

]

.

There are a total of twelve states in the state space. Once these inputs are given, the methodology
described above yields the desired performance measures directly. Figure 8 shows the effect of the
number of parallel stations on the production rate and the expected buffer level. In this specific
case, the production rate of the second stage is kept equal to the production rate of the first stage as
the number of parallel stations in the second stage increases. The figures shows that as the number
of parallel stations increase both the production rate and the expected buffer level increases.
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Figure 8: Effect of the number of parallel machines (µu = 1, pu = 0.01, ru = 0.09, mu = 1,
µd = µu

mu

md
, pd = 0.01, rd = 0.09, N = 1)

6.2 A Model with a Shared Buffer

We now consider a three station merge system with a shared buffer. This system was analyzed in
detail in (Tan 2001). Helber and Jusic (2004) also analyzes a similar system. In the upstream stage,
there are two unreliable machines with processing rates µ1 and µ2. In the downstream stage, there
is only one machine with processing rate µ3. The failure and repair rates for each machine are pi

and ri for i = 1, 2, 3. Figure 9 depicts the state transitions for Mu and Md for this specific case.

11 01

10 00

1’

0’

p2 r2 r2p2
p3 r3

Mu Md

µ1+µ2 µ2

0

µ3

0

N

µ1

p1

p1

r1

r1

Figure 9: A system with a shared buffer

Similar to the first example, we will specify the matrices λu and λd and the vectors µu and µd

as the inputs of the solution methodology. The transition rates for Mu are given as

26



Tan and Gershwin Single-Buffer Fluid Flow Systems April 9, 2007

λu =











−p1 − p2 p2 p1 0
r2 −p1 − r2 0 p1

r1 0 −p2 − r1 p2

0 r1 r2 −r1 − r2











(62)

where the states are ordered as {11, 10, 01, 00}. The processing rates in these states are

µu =
[

µ1 + µ2 µ1 µ2 0
]

.

Similarly,

λd =

[

−p3 p3

r3 −r3

]

(63)

where the states are ordered as {1, 0}. In these states the processing rates of Md are given as

µd =
[

µ3 0
]

.

There are eight discrete states in the state space. Once these inputs are given, the methodology
described above yields the desired performance measures directly. We compare this case with the
results given in (Tan 2001). Since a specific case with hot standby is analyzed in (Tan 2001), the
method described above is modified accordingly. Figure 10 shows the effect of µ3 on the production
rate and the expected buffer level obtained by using the methodology given here and the results in
(Tan 2001) that are equal to each other.
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Figure 10: Effect of the processing rate (µ1 = 1.2, µ2 = 1, p1 = 0.1, p2 = 0.1, p3 = 0.2, r1 = 0.9,
r2 = 0.9, r3 = 0.9, N = 1)

6.3 A Model with Erlang Up and Down Times

We now model a production system where the failure and repair times are Erlang-type random
variables. We assume that the failure time of Mu is an Erlang random variable with κu

f stages.
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The expected failure time is MTTFu and the squared coefficient of variation of the failure time is
scvu

f = 1/κu
f . The repair time of Mu is also an Erlang random variable with κu

r stages. The expected
failure time is MTTRu and the squared coefficient of variation of the failure time is scvu

r = 1/κu
r .

Similarly, failure time of Md is an Erlang random variable with κd
f stages. The expected failure

time is MTTFd and the squared coefficient of variation of the failure time is scvd
f = 1/κd

f . The
repair time of Md is also an Erlang random variable with κd

r stages. The expected failure time is
MTTRd and the squared coefficient of variation of the failure time is scvd

r = 1/κd
r .

The processing rates of Mu and Md are µu and µd respectively. In this model Mu has κu
f + κu

r

states and Md has κd
f + κd

r states. The states of Mu are indexed from 1 to κu
f + κu

r and ordered
such that states i = 1, ..., κu

f are for the up states and states i = κu
f + 1, ..., κu

f + κu
r are for the down

states of Mu. Similarly the states of Md are indexed from 1 to κd
f +κd

r and ordered such that states
i = 1, ..., κd

f are for the up states and states i = κd
f + 1, ..., κd

f + κd
r are for the down states of Mu.

The possible transitions for Mu are

• from state i to state i+ 1 with rate pu = κu
f/MTTFu, i = 1, ..., κk

f ,

• from state i to state i+ 1 with rate ru = κu
r/MTTRu, i = κu

f + 1, ..., κu
f + κu

r − 1,

• from state κu
f + κu

r to state 1 with rate ru.

Similarly, the possible transitions for Md are

• from state j to state j + 1 with rate pd = κd
f/MTTFd, j = 1, ..., κd

f ,

• from state j to state i+ 1 with rate rd = κd
r/MTTRd, j = κd

f + 1, ..., κd
f + κd

r − 1,

• from state κd
f + κd

r to state 1 with rate rd.

For example, let us consider a specific case with κu
f = 2, κu

r = 2, κd
f = 1, and κu

r = 3. For this
specific system, Figure 11 depicts the state transition diagram.

The matrices λu and λd and the vectors µu and µd for this specific case are given below:

λu =











−pu pu 0 0
0 −pu pu 0
0 0 −ru ru

ru 0 0 −ru











, (64)

µu =
[

µu µu 0 0
]

,

λd =











−pd pd 0 0
0 −rd rd 0
0 0 −rd rd

rd 0 0 −rd











, (65)
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Figure 11: A system with Erlang Up and Down times

µd =
[

µd 0 0 0
]

.

Figures 12 and 13 show the effects of the failure and repair time variabilities of each stage on the
production rate and the expected buffer level. Figure 12 shows that as the coefficient of variation of
the failure times of first and the second stages increase, the production rate decreases. On the other
hand, a decrease in the variability of the failure time of the upstream machine results in an increase
in the expected buffer level. Similarly, Figure 13 shows the effect of the repair time variability of
the firs and the second stage on the production rate and the expected buffer level. A decrease in
repair time variability of either stage increases the production rate. On the other hand, a decrease
of the repair time variability of only the first stage increases the expected buffer level.

6.4 A Model with Series Machines

We now consider a production line where Mu has mu and Md has md machines in series. The
machines are indexed from 1 to mu + md. Each machine is unreliable and has one up and one
down state. The processing rate of machine k is µk. The failure and repair times of machine k are
exponential random variables with rates pk and rk, k = 1, ...,mu +md.

The state of the upstream stage is a vector of length mu with its ith element is 1 if machine i is
operational and 0 otherwise, 1 ≤ i ≤ mu. Similarly, the state of the downstream stage is a vector of
length md with its jth element is 1 if machine mu + j is operational and 0 otherwise, 1 ≤ j ≤ md.
Accordingly, Mu has 2mu states and Md has 2md states.

Since each stage is operational only when all the machines are up, Mu produces at the maximum
rate of µu = min{µ1, ..., µmu

} when all the stations are up and it can not produce if one of the
machines is down. Similarly, Md produces at the maximum rate of µd = min{µmu+1, ..., µmu+md

}
when all the stations are up and it cannot produce when one of the machines is down.
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Figure 12: Effect of the failure time variability (µu = 1, µd = 1, MTTFu = 200, MTTFd = 100,
MTTRu = 6.67, MTTRd = 10, N = 10)
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Figure 13: Effect of the repair time variability (µu = 1, µd = 1, MTTFu = 200, MTTFd = 100,
MTTRu = 6.67, MTTRd = 10, N = 10)

When all the machines of Mu are up, each machine can fail with rate pi
µu

µi
, i = 1, ...,mu due to

operational failures. Similarly, when one machine is down, none of the other up machines can fail
since they will be forced to stop due to the down machine. As a result, the only possible transition
when machine k is down is the repair of machine k with rate rk. Therefore although there are 2mu

states for Mu, only mu + 1 of them will be non-transient. The case for Md is similar.
Figure 14 depicts the state transitions forMu andMd for a specific case whereMu has 3 machines

and Md has 2 machines in series.
The matrices λu and λd and the vectors µu and µd for this specific case are given below:

λu =













−µu(
p1

µ1
+ p2

µ2
+ p3

µ3
) p1

µu

µ1
p2

µu

µ2
p3

µu

µ3

r1 −r1 0 0
r2 0 −r2 0
r3 0 0 −r3













(66)
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Mu Md
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Figure 14: Modelling of a system with series machines for analysis by using the general methodology

where the states are ordered as {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. The processing rates in these
states are

µu =
[

µu 0 0 0
]

where µu = min{µ1, µ2, µ3}. Similarly

λd =







−µd(
p4

µ4
+ p5

µ5
) p4

µd

µ4
p5

µd

µ5

r4 −r4 0
r5 0 −r5





 (67)

where the states are ordered as {(1, 1), (1, 0), (0, 1)}. In these states the processing rates of Md are
given as

µd =
[

µd 0 0
]

where µd = min{µ4, µ5}. There are a total of twelve states in the state space. Once these inputs
are given, the methodology described above yields the desired performance measures directly.

Consider the problem of locating a finite buffer in a continuous material flow production line
with no interstation buffers. Once the buffer is located between machine k and k + 1, the line is
divided into two stages. The resulting two-stage system can be analyzed by using the methodology
outlined above. Figure 15 shows the effect of the buffer placement on the production rate for a
production line with ten identical stations. As expected, for this homogeneous system placing the
buffer in the middle, between Machine 5 and 6 maximizes the production rate.

However, when the machines are not identical, the buffer location that maximizes the production
rate can be different. Figure 16 shows the effect of the buffer placement on the production rate for
a production line with ten non-identical stations. In this case, placing the buffer between Machine
5 and 6 maximizes the production rate.
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Figure 15: Effect of the buffer placement on the production rate (µi = 1, pi = 0.01, ri = 0.9,
i = 1, ..., 10, N = 1)

7 Conclusion

We presented a general methodology to analyze continuous-flow material flow two stage-single buffer
production systems. The method handles general Markovian transitions and different processing
rates associated with each state for both stages. The run time of the method is very fast and not
affected by the buffer size.

A wide range of models can be analyzed by our methodology directly by determining the transi-
tion rates of each stage and the flow rates associated with the discrete states of each stage. We used
the methodology presented in this study to model and analyze various single buffer continuous flow
systems including the systems where each stage has a number of identical machines in parallel or
in series, systems where the up- and down-times of each station are Erlang random variables with
different number of stages, and a model of a three-station merge system with a shared buffer.

In addition to the production systems, our methodology can also be used in performance evalua-
tion of computer and telecommunication systems. Since the operation-dependent failure mechanism
differentiates the models of production and computer/telecommunication models, setting the oper-
ation dependent failure rates equal to the original rates in our methodology allows us to use the
same tool in the performance evaluation of computer and telecommunication systems.

Therefore we propose our model as a general tool to model and analyze single buffer fluid flow
systems.
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