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Abstract

A combined experimental-computational program is conducted to develop a new crystal
plasticity based constitutive model to predict the elastic-plastic deformation of fcc poly-
crystals under multi-axial cyclic loading. Uni-axial strain and stress controlled cyclic tests
along with multi-axial displacement controlled cyclic tests are performed on OFHC cop-
per. As compared to the previous phenomenological cyclic plasticity models, this physically
based combined isotropic-kinematic hardening crystal plasticity model demonstrates better
agreement with experiments.
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Chapter 1

Introduction

1.1 Motivation

The development of mathematical models which describe and predict the deformation of

metals is proceeding with increasing vigor. One of the existing features of the recent thrust

toward plasticity modeling is its effort to bring together the separate disciplines of materials

science and solid mechanics. This unification is motivated by recognition of the complexity

and scope of the modeling activity. In order to provide an extrapolative and predictivitive

capability, a strong physical basis is introduced into the modeling; and the multiaxial stress-

strain relationship is expressed in an appropriate tensorial form. Multiaxial experimental

work is conducted to determine the material parameters. Finally, numerical methods are

developed to solve complex boundary values problems encountered in engineering design.

Such interdisciplinary research allows development of constitutive models which comprehend

and are founded on a strong physical basis, and also satisfy the requirement of a practical

continuum theory.

A good example of the results of such an interdisciplinary approach is the polycrystal

model developed by Anand, Kaladindi, and Bronkhorst (1991). They were the first to

report a simulation and the corresponding comparison against experiments of the evolution

of crystallographic texture in a non-homogeneous deformation processing operation, by

using a Taylor-type polycrystal model at each integration point of a finite element mesh.

A satisfactory agreement with experimental load-displacement curve and texture evolution

was obtained. The advantage of using a crystal plasticity approach in modeling metal

deformation is indicated by such success.



Indeed, a proper constitutive model is at the core of plasticity theory. However, a crystal

plasticity model with only one internal resistance variable (Kalindindi, et al.,1991) has its

limitations when applied to cyclic loading conditions. Their model is summarized below.

To simulate polycrystal deformations, we need to include enough grains with different

orientations at each "material point". For a polycrystal materials, we assume that all grains

have equal volume, and the local deformation gradient in each grain is homogeneous and

identical to the macroscopic deformation gradient F at the continuum material point level.

These assumptions leads to
N

Tr T(k) (1.1)
k=l

where T is the averaged stress, N is the total number of crystals at the material point, and

T(k) is the Cauchy stress in the kth crystal.

For each grain the constitutive equation for stress is taken as

T* = L [E*] (1.2)

with

E* = {F*F* - 1}, (1.3)

T* = F* - {(detF*) T} F*T , (1.4)

and £ a fourth order elasticity tensor. The strain and stress measure E* and T* are elastic

work-conjugate strain and stress measures, with T the Cauchy stress tensor in each grain,

and F* the local elastic deformation gradient defined by

F* = FF -1, (1.5)

where F and Fp are the local deformation gradient and local plastic deformation gradient,

respectively. In order to satisfy the condition of plastic incompressibility, det Fp should

equal unity.

The plastic deformation gradient is in turn given by the flow rule

FP = LPFp (1.6)



Lp  .asa,
a

S - ma ® na

where m' and n' are time-independent orthonormal unit vectors which define the slip

direction and the slip plane normal of the slip system a in a fixed reference configuration.

The plastic shear rate on the slip system a is denoted by ý,a, and is defined in terms of the

resolved shear stress 7-, and deformation resistance sa:

a = a ) (7, Sa) . (1.8)

The resolved shear stress Ta is obtained from balancing plastic stress power per unit

volume in the isoclinic relaxed configuration (e.g. Anand 1985)

0P - (C*T*) -LP, with C* - F*TF*

Using the above equations, we defined a resolved shear stress Ta for the slip system a

through the relation

(1.10)jip = I: T aY
a

which yields

Ta (C*T*) - S' (1.11)

Since C* is approximately unity for small elastic stretches (which is true for metallic mate-

rials), we have

Ta a T* . S . (1.12)

With sa representing the deformation resistance, the hardening rule is taken as

Shp haO = qa(P)h(-) no sum on 3 (1.13)

where qap represents the latent hardening matrix. Following Asaro and Needlemen (1985),

(1.7)

(1.9)



for the 12 slip systems of FCC crystals, we have

A qA qA qA

qA A qA qA (1.14)

[] qA qA A qA

qA qA qA A

here q is the ratio of latent hardening effect to the self hardening effect and A is a matrix

fully populated by ones.

For the hV, motivated by Brown, Kim and Anand (1989), we take the following form

h h 1 - (1.15)

From the above equations, we see that the hardening rule for s" in a single slip defor-

mation process with no latent hardening will be

sa = ho 1 - |- . (1.16)

This equation for sa will lead to two response characteristics which are at variance with

what is known about cyclic deformation:

1. Because s' is monotonically increasing, there would be no Bauschinger effect - no

reduction of reverse yielding strength - during reversal.

2. Irrespective of the cyclic strain amplitude, the saturation level, ss, will be the same

for all tests.

Fig. 1-1 and Fig. 1-2 show the prediction of two strain controlled tests (ea=0.75% and

1.5%) of polycrystal copper using the model of Kalindindi, et al with latent hardening.

Although the initial monotonic stress-strain response is captured by the model very well,

the prediction for the subsequent cyclic response does not match the experimental results.

'Therefore, the applicability of the previous model has to be restricted to monotonic defor-

mations or to a small number of reversals. To overcome this weakness, it is required to

modify the hardening rule and incorporate additional internal variables to better represent

the slip system deformation resistance.

As is well known, one major factor of current incremental plasticity modelling is the



choice of appropriate internal variables and formulation of corresponding evolution equa-

tions. The issue of how many variables a good model must contain can be viewed as a ques-

tion of principle versus practicality. Incorporation of all possible micro-structural variables

into a model seems impractical and hard to verify. Seeking direct quantitative representa-

tion of micro-structure is also difficult. However, to provide an extrapolative capability it

is required to incorporate internal variables derived from, or at least those that reflect, the

internal structure. Also, these variables must be operationally defined to be measurable

from physical experiments. Since a one internal variable model fails to represent cyclic

deformation phenomena, in what follows we try two internal variables to characterize cyclic

deformation. A common choice is the pair (s', z a ) where s' is a deformation resistance and

:x' is a "back stress" variable. This choice has proved useful in several previous attempts at

cyclic crystal plasticity modelling applications (Stouffer 1992; Walker 1991; Teodosiu 1992).

A flow rule generally accepted in these plasticity models is:

/0 I 1 if IT a 
- xaI < sth,

a = (1.17)
o I-S m sign (T - Zx) , otherwise.

Here Xz is the back stress for slip system a, and sth corresponds to a certain threshold

resistance for all slip systems (for details see next chapter). The main difference between

various models lies in the evolution equations for s' and za.

To make intelligent judgment and to extract physical laws from experimental observa-

tions are the core characteristics of a successful model. In the light of this point, we begin

with a brief review of previous research about the underlying mechanisms, and physical

and macroscopic modeling for cyclic deformation. For a good review up to 1988, see White

(1988).

1.2 Previous works

After Johann Bauschinger (1876-1886) reported the reduction of yield stress upon rever-

sal of straining - the Bauschinger effect, the cause for such "anomalous" behavior had

remained mysterious for almost a century. The early suggestion around 1950's was that

the Bauschinger effect is developed from plastic incompatibility between deforming grains.

Acknowledging the fact that the Bauschinger effect is independent of grain size (Wolley,



1953), and exists even in single crystals (Marukawa and Sanpei 1971), we can conclude

that the plastic incompatibility is not the only mechanism. Since for a single crystal of

pure metal the main resource for shearing resistance is dislocation interaction with cells

and tangles, the cause for the reduction of reverse yield should be due to the alteration of

these micro-structural features.

Hasegawa, Yakou, and Karashima (1975) conducted experiments on polycrystal alu-

minum and observed that dislocation cells, formed during prestraining, were dissolved at

the initial stage of the reversed straining (Fig. 1-3). The overall dislocation density decreased

by about 16% before increasing again. A similar result is also reported by Christodoulou,

Woo, and MacEwen (1986) for polycrystal copper (Fig. 1-4). These structural changes are

considered to be the origin of the Bauschinger effect in single phase metallic single crystals

in which cells or subgrains are formed during pre-straining.

This partial disintegration of cell walls and dislocation tangles was later studied by

Hasegawa and Kocks (1979) and Hasegawa and Yakou (1980) to compare with the effects of

annealing (thermo-recovery). It was found that although both thermo-recovery and stress

reversal reduce reverse yielding, their physical background and subsequent macroscopic

response are different. The thermo-recovery will tighten the cell walls, clean up the interior

of cell, and eventually lead to annihilation of dislocations inside the cell walls. On the

contrary, the reverse shearing will diffuse the cell wall (Fig. 1-5), make the micro structure

similar to that of a less deformed material. Macroscopically, thermo-recovery reduces the

reverse yielding stress more and in a uniform way but reversal shearing shows a transient,

low hardening rate region (Fig. 1-6).

The comparison between the mechanisms for annealing and strain reversal reveals one

piece of information: the dislocation structure could be divided into two categories: the one

which is polarized and relatively unstable and the one which is isotropic and relatively stable.

While annealing will eliminate both of them, the strain reversal would only annihilate the

polarized one temporarily. This concept is quite useful for constructing cyclic constitutive

models.

A reversal of strain in uniaxial cycling should be considered only a special case of a

general loading process. With a lot of work focusing only on the Bauschinger effect in

uniaxial cyclic loading, few people have noticed that the mechanism for the Bauschinger

effect should also have an influence on any complex loading path change. Such a correlation



between the Bauschinger effect, load path change test, and micro-structure was recently

investigated by Rauch and Schmitt (1989). They performed two-step tests on thin plate

samples of mild steel. In the first step, they deformed the samples in tension; then, they

performed simple shear tests on those predeformed sample with different angle (a) between

the shear and the tensile directions (Fig. 1-7). They showed that when a equals 900 the

yield stress is maximized and higher then forward flow stress, and when a equals 1350, a test

similar to the typical Bauschinger test, the opposite is true (Fig. 1-8). The augmentation

of yield stress when a equals 900 is explained by the observed formation of micro bands

due to newly activated slip systems, and yield stress decrease (a = 135 ° ) is, again, related

to the dissolution of dislocation cell walls due to reversed shear stress on the same slip

systems. What has been indicated by Rauch and Schmitt is the importance of the role of

,slip activity and the dissolution of dislocation cell structure upon reversal of slip on the

same slip system.

The above experimental observations indicate that the deformation resistance, which

could be expressed in terms of dislocation density, will not simply increase monotonously.

In reality, the dislocation density will decrease during reversal, and this phenomenon is the

cause for Bauschinger effect and related material behavior in a cyclic deformation process

of pure single phase metallic crystal. Based on such an idea, White, Bronkhorst and Anand

(1990) reported a phenomenological plasticity model with two internal variables, namely,

deformation resistance and back stress. They also compared simulations of the model to

uniaxial cyclic test data on five different materials - 1100-0 Aluminum, 316 stainless steel,

and spherodized 1020, 1045 and 1095 plain carbon steels. The model was shown to capture

the key features of these uniaxial cyclic behavior reasonably well.

A similar, but more complicated model was later on reported by Hu, Rauch and Teo-

dosiu (1992). Based on the idea that the dislocation cell walls are polarized (Kocks, 1980),

they separate the deformation resistance into three parts, (P, R, X). The part P is polarity

dependent and is related to persistent dislocation structures, the part R is related to rear-

rangement and formations, and the part X is related to less stable dislocation arrangements.

This model may be viewed as an extension of the model by White and Anand, but in a

more complicated form. Their continuum plasticity model simulations match their large

strain torsion tests data on AK-mild steel quite well.

In the framework of crystal plasticity for cyclic loading, the main focus has been on ap-



plication to single crystal superalloys. Stouffer and co-workers (1988, 1990, 1992) have pro-

posed crystal plasticity models based on the idea of back stress. Walker and Jordan (1989,

1992) and Meric and Cailetlaud (1991) also present their combined isotropic-kinematic

hardening model for superalloy PWA1480, and SNECMA AM1, respectively. Although

there are complexities such as non-Schmid effect and temperature dependence in modeling

superalloys, the small isotropic hardening of these highly strengthened two-phase materials

usually allows simple isotropic hardening rules, such as non-hardening. Therefore, these

models are not directly applicable to non-strengthened materials showing both hardening

and softening in cyclic deformation.

Weng (1979, 1980, 1987) was one of the first to study kinematic hardening in cyclic

loading in terms of crystal plasticity, and he approached this problem in a different way

as compared to the other researchers. He consider the forward and reverse slip system as

two different ones, and treated the Bauschinger effect as a latent hardening effect. Instead

of using a single latent hardening ratio q (Equation 1.14), he express the latent hardening

matrix q"a as:

qaP = qi + (1 - qi) cos BOb cos a + (q2 sin 0a + q3 sin a 0 )  (1.18)

where Oa0 is the angle between the slip direction and the ath and 3th systems, and 00P

the angle between their slip plane normals. The three parameters ql, q2, and q3 are to

be determined by latent hardening tests. With this interaction hardening matrix, he was

able to reasonably match the latent hardening tests by Edward and Washburns (1954). His

predictions of yield surface test of Philips and Tang (1972) were also good. Compared to

the back stress models using simple latent hardening matrix (Eqn. 1.14), this approach may

have some merit. However, such geometric based relationship can still not fully character-

ize the nature of the hardening interactions. Besides, its application is more limited due

its complicated slip interaction relations, and more tests are required to define the extra

parameters such as ql, q2, and q3.

It is worth noting that there is another branch of cyclic plasticity models - the so-called

two surface models - which have been developed by some workers in the last thirty years

(e.g. Sierakowski, 1965; Morz, 1967, 1983; Dafalias and Popov, 1975, 1976). The general

idea is to create one more (or multiple) bounding surfaces in addition to the yield surface in



stress space. The performance of such models depends on their specific equations specifying

the translation and expansion of these bounding surfaces, and generally improves with the

increasing number of surfaces or complexity of the specific equations. The latest model of

this type is from Hassan and Kyriakidas (1994), which shows a good match with most of

their uniaxial and biaxial ratcheting experiments on 304 and 1018 steels. However, they

have to use different set of equations to reproduce the biaxial test than those they use for

uniaxial tests. Also, their model is fairly complicated.

The general shortcomings of these two-surface phenomenological models lies in their lack

of adaptability for extension to model anisotropic or inhomogenous materials, for instance,

pre-textured polycrystals, two phase materials, or single crystals. It is also hard to reconcile

these model for high temperature applications due to their rate-independent nature.

Recently, Khan and Su (1994) combined the latent hardening from Weng (1987), the

forest dislocation relation from Jackson and Basinski (1967) and two-surface model similar

to Dafalias and Popov (1976), and created a set of new constitutive relations for single

crystals. They did a good job in matching the latent hardening test data of Edward et al.

(1954) and Tang et al. (1972), but no prediction for multiple slip deformation is reported.

Unlike the old two-surface models, some physical connections to dislocation densities and

resolved shear stress are made to obtain equations for the bounding surfaces. This approach

brings new insight to view the hardening mechanisms from constitutive modeling, but their

lengthy formalism for more complicated slip activity seems to lack practicality.

1.3 Objective

With continuing efforts from researchers around the world, the picture of a general plasticity

model has become more clear than ever before. Although there are no general guidelines for

constructing such constitutive models, a crystal plasticity model with combined isotropic

hardening and kinematic hardening, or in terms of internal variables, a deformation resis-

tance and a backstress, seems to be a balanced choice between complexity and practicality

for modeling of general deformations of metallic materials. Moreover, good multiaxial ex-

perimental data have been lacking and most current phenomenological models show mod-

erate predictability for multiaxial test results. Accordingly, an experimental-computational

program is conducted to develop such a combined isotropic-kinematic hardening crystal



plasticity model. Appropriate specific constitutive equations are constructed based on crit-

ical uniaxial/biaxial experiments with the objective of capturing the following important

material behavior (White, Bronkhorst and Anand 1990):

1. Monotonic deformations:

* At low superposed pressures, initial yield and strain hardening are generally the same

for uniaxial tensile or compressive deformation.

* If geometrical instabilities are suppressed, then strain hardening may continue to many

hundred percent strain.

2. Uniaxial reversed and cyclic deformation:

* The Bauschinger effect: after deformation in one direction a reversal in the direction

of deformation shows a reduced stress magnitude when yielding occurs again. There is

usually a smooth transition from elastic to elastic-plastic behavior upon development

of plastic flow in the reverse direction. As the tangent modulus gradually decreases and

achieves the value it had prior to unloading, there may be a "permanent softening"

where the flow stress magnitude is less than it would have been in unidirectional

loading at the same accumulated strain. (Fig. 1-9)

* Under symmetric cycles of strain (or stress) metals in a annealed state will harden

cyclically and tend to stable limit cycle (Fig. 1-1 and 1-2), while those in a cold worked

condition will soften to a stable cycle.

* Unsymmetric cycles of stress in the plastic range will cause progressive "creep" or

"ratcheting" in the direction of the mean stress. Depending on the material, the

strain increment might stabilize during ratcheting, or becomes unstable as in Fig. 1-

10.

* Unsymmetric cycles of strain for cold worked metals in the plastic range will cause

progressive relaxation to zero of the mean stress in the cycle. For annealed metals,

the material will harden cyclically to a stable loop as in the symmetric strain cycling

case. Softening might appear as the annealed material is continued to be cycled to

large number of cycles, or in a multi-step unsymmetric strain cycling test (Fig. 1-11).

3. Small strain multiaxial cyclic deformation:



* Proportional cycles of combined tension-torsion for a given equivalent strain amplitude

gives rise to an "equivalent" cyclic stress-strain response which is the same as that

obtained in uniaxial strain cycling for the same strain amplitude.

* Non-proportional tension-torsion cycling exhibits higher hardening and higher satu-

ration stress levels for cycling to the same maximum equivalent strain amplitude as

compared to proportional cycling (Fig. 1-12). The combined out-of-phase tension-

torsion test with a phase difference of 90 degrees causes the largest cyclic hardening

of all possible paths with the same strain range.

In the following chapters, we present the results of the current study with the objective

of capturing the above criteria. Attension is first focused on the constitutive equations,

which, combined with time-integration schemes, will be introduced in the next chapter.
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Figure 1-1: Prediction of symmetric strain cyclic test with model of Kalindindi, Bronkhorst,
and Anand, Ca = 0.75%.
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Figure 1-2: Prediction of symmetric strain cyclic test with model of Kalindindi, Bronkhorst,
and Anand, Ca = 1.5%.
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Figure 1-3: TEM pictures from Hasegawa and Yakou (1975). Dislocation density decreases
at the initial stage of reversal (point C)
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Figure 1-4: Dislocation dissolution during reversal (Christodoulou et al. 1986)
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Figure 1-5: HVEM pictures shows diffusion of dislocation cell walls and tangles during
strain reversal. The left picture is taken before reversal, the right one is after. (Hasegawa
and Yakou, 1980)
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Figure 1-6: Stress strain response of reverse loading before and after annealing. The one
on the left compares reverse loading to forward loading after annealing, the curves on the
right are all from reverse loading (Hasegawa and Yakou, 1980)
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Figure 1-7: Two-stage strain path change test (Rauch and Schmitt, 1989)
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Figure 1-8: Stress strain response for loading path change test. (Rauch and Schmitt, 1989)
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Figure 1-9: Schematic drawing shows the typical Bauschinger effect. Compared to the
forward curve, there are: A. reduction of reverse yielding strength; B. smooth transition
showing a strong hardening region; C. low hardening region; D. An offset in stress level
(permanant softening op).
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Figure 1-10: Unstable ratcheting of CS 1020 steel due to cyclic softening (Hassan and
Kyriakidas, 1994)
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Figure 1-11: Four step unsymmetric strain cycling performed on SS 304 steel, the material
cyclic hardened in the first step, and showed slight relaxation in the last two steps (Hassan
and Kyriakidas, 1994)
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Figure 1-12: Tension, torsion, and combined-tension/torsion tests with different phase lags
on 316 SS plotted on the saturation equivalent stress-equivalent strain amplitude axis. It
shows that the non-proportional cycling leads to higher saturation stress. (Cailletaud et al.,
1984)
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Chapter 2

Combined Isotropic-Kinematic

Hardening Polycrystal Model

The present work extends the polycrystal visco-plasticity model of Anand and co-worker

(Bronkhorst et al., 1991 and Kalindindi et al.,1991). Basically, in addition to the slip resis-

tance s' of Anand, et al., we introduce another internal variable, a "back stress" parameter

xa on each slip system, and corresponding evolution equations to represent the essence of

anisotropic hardening during cyclic deformation process. The slip resistance s" is related

to the forest dislocation density in a physical sense, and the directional resisting strength

developed during shearing is represented by the back stress xa . New equations for ya and

the evolution equations for s' and x" are formulated. These equations are introduced in

the following sections.

2.1 Specific Constitutive Equations

For the cubic crystals considered in the current research, the description of the elasticity

tensor £ requires three stiffness parameters, C11, C12, and C44, which are defined as:

C11 = (e ® e' ).[e' ®e] (2.1)

C12 = (e ®e) .£[e' ®e] (2.2)

C4 4 = (e' ® e') £[2sym(ef( e')] (2.3)

where eq (i = 1, 2, 3) denotes an orthonormal basis associated with the crystal lattice.



There are several features of a typical uniaxial cyclic stress strain relationship that we

should consider while constructing the model. Initially, the reverse proportional limit is

lower than the forward flow stress. Secondly, an initial high hardening rate region accom-

panied by a relatively long region of low hardening are usually observed, showing a plateau

on the curve. Finally, as the reverse hardening rate approaches the forward hardening rate

there is an offset in the stress magnitude at equal accumulated strain level. Such an offset

is often referred to as "permanent softening" in the literature.

To match these features, the specific constitutive functions for the plastic shearing rate

ja is taken as

0 if IraT' - < Sth
0 = -XIs (2.4)

0 ( s thm sign(Ta -x a) if IT - a > th,

where j0o and m are material parameters representing a reference shearing rate and shear

rate sensitivity. The parameter sth represents a threshold value for the effective stress

(7" - x") below which no shearing occurs in slip system a. For pure metals, sth is in the

order of 0.1 Mpa. The parameter so is the shearing resistance, and x' is the back stress.

Motivated by White, Bronkhorst and Anand (1990), the slip resistance s' is taken to

evolve as

h= a hc'P [-ha [ya (2.5)

where

ha- = qa(P)h#)  (no sum on f), (2.6)

and

h = - (2.7)

The first part of (2.5) is essentially the same as the hardening rule from the crystal plasticity

model by Anand and co-workers. Here r, s,, and a are constants, and s, denotes the

saturation value for s.

The second part in ( 2.5) represents the softening effect in cyclic loading. The h' stands

for the rate of softening on slip system a due to a reversal of shearing on that system.

Previous experimental results in the literature indicate that the softening effect is active

only during the "reversal transient" which is (approximately) limited to the time that it



takes for the back stress to change sign and achieve the same magnitude it had prior to the

reversal. In order to properly define the softening modulus hl, we generalize such an idea

and operationally define the "reversal transient" and related parameters in our model as

follows:

" During a cyclic loading process, a reversal transient for a slip system commences when

ýa or the effective stress (7
- - x') changes sign. Let t, denote the time when the

reversal transient commences, and let

x, = X (tn) (2.8)

denote the value of xa at the beginning of the reversal event.

* A reversal transient ends when the back stress reaches the same magnitude but op-

posite sign as when the transient started. That is, a reversal transient ends when

za(7) = --x, 7 > t, (2.9)

* Let fa denote the fraction of a reversal event the slip system has experienced. Refer-

ring to Fig. 2-1 and 2-2, fa is defined as

0 when (r' - xa) changes sign,

f i 1 -)(2.10)

1 when xa = -x'

We define the softening rate h' based on the following ideas. We assume that h'

* Vanishes as fa approaches unity.

* Is proportional to x14 .

* Is independent of sc.

Accordingly, we assume that

hc = ( (1 - fa) (14xl) (2.11)

Here ( is taken as a constant.



In (2.11), we assume that the softening rate h2 is proportional to the maximum opposing

stress ,* I. A additional inverse dependence of (Ix, + sth) is found necessary to correctly

model the small strain cyclic response (Ea < 0.5%). Numerical experiments showed that

when the cyclic strain amplitude is less than 0.5%, the softening effect needs to be en-

hanced to more accurately reproduce the experimental data. We assume a simple inverse

relationship of Ijxal to represent this observation. To prevent the singularity of this term for

situations when lxc1l = 0, we also included the threshold resistance sth in the denominator.

Based on these assumptions, the complete form for h" is motivated to be

h •=(1 - fa) ( xa + l (2.12)

This relative strong softening effect in small strain cycling may be qualitatively explained

by the following arguments. In small strain cyclic deformations, planar vein structures

consisting of edge dislocation bundles are observed. The existence of such planar vein

structures have been verified for single crystals (e.g. Basinski, Basinski, and Howie 1969),

and also individual grain of polycrystals (e.g. Liu, You, and Bassin 1994). Based on purely

geometrical considerations, it seems reasonable to argue that a planar dislocation structure

is easier to dissolve on reversed deformation as compared to a three dimensional cell network

formed during large strain cycling. Since these planar structures mainly appear during small

strain cycling, we find stronger softening during small strain cycling. To model such effect,

we take a first order approach and assume h2 to be simply inversely dependent on jIx I + Sth.

A good match between the simulation results and experimental data justifies the utility of

including such a term (Chap. 3).

Next, for the evolution for the back stress we assume

3 (1 - -sign (-ýa)) -ya (2.13)
X8

where h' is the rate of hardening for the back stress.

As indicated in Chap.1, it has been experimentally observed that at the beginning of

stress reversal, the dislocation cell walls will disintegrate (Hasegawa and Yakou, 1975) and

reduce the slip resistance(s). In the mean time, the back stress also changes sign. Therefore

the rate of softening for s and the rate of change of back stress are coupled. In this model,

we choose to establish a linear relationship between h 2 and h3 , and assume the following



form for h 3

h" = € + Xha, (2.14)

where 4 and X are constants. We will show that such correlation between h' and h' provides

a capability to obtain a reasonable match with experimental results (Chap. 3).

The set of equations (2.4) through (2.14) is aimed at representing the major features

of the flow stress evolution in a typical cyclic test. Using representative values of material

parmeters, Fig. 2-3 schematically shows the evolution of 7r, xa , and so for one slip system

of a single crystal undergoing single reversal. Before the reversal, the resolved shear stress

reaches 40 MPa, but the reverse yield strength drops to 36 MPa. The difference between

the forward the reverse flow stress is approximately equal to two times the back stress

at reversal. As back stress changes sign and hardens in the other direction after reversal,

there is a corresponding low hardening region for the stress and the s also softens reasonably.

These three effect are coupled together through the constitutive equations introduced above.

To further examine the contribution from each terms from the constitutive equation, we

invert (2.4), and we will get

Ira-XI - Sth = (2.15)

Let 7• > x a before reversal and assume sth to be small and negligible, then

7. (00 a +  a ". (2.16)

After reversal, the relationship becomes

- T·o S -- X .  (2.17)

Taking absolute value of the above two equations, it is not hard to see that whenever -7

changes sign, the magnitude of the reverse yield stress will be reduced by two times the

value of current xa. Accordingly, from Eqn. 2.13, we see that ia will change sign at reversal

straining and its magnitude will be relatively large at the beginning before it goes down,

showing a high initial hardening rate for the flow stress.

At the same time, the hardening rate sa reduces during the reversal transient due

to the increasing contribution from h2, and we get a plateau on the stress strain curve



(Fig. 2-3). Eventually, as x' reaches the same magnitude as before reversal (the end the

reversal transient), the s' has not hardened very much due to the softening effect during the

reversal transient. Therefore, we would observe an offset between the forward and reverse

stress levels - the permanent softening - on an accumulated strain-stress diagram.

Having examined the interaction between the constitutive equations for single slip, let

us summarize the complete model for a single crystal as follows:

1. Constitutive Equation for Stress:

T* = L [E*] (2.18)

with

{ IF*T F* - 1}

= F*-1 {(det F*) T} F*- T

(2.19)

(2.20)

(2.21)F* = FFp - I

2. Flow rule:

= LPFp

= aS

(2.22)

S -- ma 0 nc (2.23)

if Ia - Xal : Sth
1(T -  - sa m sign (Ta - xa) if Ira - xja > Sth

T7a T* -S0

(2.24)

(2.25)

3. Evolution Equations for sa:

(2.26)

( no sum on # )h?' = qQaph (2.27)

0

so = hop 4 -hc |$kl



A qA qA qA

q" 3  qA A qA qA A=[111 (2.28)

qA qA A qA

qA qA qA A

h, = rl 1 - -(2.29)

ha=(l-f(() (ii + (2.30)
I) + + Sth

0 when (ra - x a ) changes sign

f- 1 1- - a = (2.31)

1 when xw = -x

4. Evolution Equations for xa:

a-= ha (1 sign ('a)) < (2.32)

ha = € + Xh 2  (2.33)

2.2 Time Integration Procedure

Let t denote the current time, and r = t + At the time at the end of an increment. Then,

proceeding in a fasion similar to the time integration procedure for a polycrystal plastic-

ity model without back stress (Kalidindi, 1992), we start from solving a set of nonlinear,

simultaneous algebraic equations in T*(r) ,sa(7), and x'a(7). The equation for T*(7) and

sa(r) is quite similar to the previous work:

T* (r) = T*t - AyO (ra (T* (r)) , sa (r) ,a (r)) C , (2.34)

s (•) = s"(t)+ h (s (T)) Iy• • ( (T* (,'7)), s (,r) , -()) (2.35)



where

T*tr" £[( A - 1}

Ca a [( Ba]
A Fp - T (t) FT () F (7) FP - ' (t)

B a  - AS +SSA

To obtain the equation for xa(r), from (2.32), we recall that

( 1
h" = 0 + XC (1 - f ") jx. Xl+ h

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

and note that since h' is a function of xz only, the rate equation (2.32) can be expressed

as a function of x' as follows:

- -sign
Xs (ýa)) -ia (2.41)

The equation can be analytically integrated from time t to time 7 assuming that the ya

does not change sign during the interval (t - 7):

("(T) dx

Ix(t) h~ (hg (hxa)) (1 - 821) sign ( c(t))
(2.42)= dWy~

Jr" (t

Carrying out the integration and substitute in the value of xz(t), we get

Xz() = ae - 1
(be - d)

where

a = + ~xIxx I
1

b = Xýsign(x,)

d sign (= M

(2.43)

(2.44)

(2.45)

(2.46)

-h" (x' (r)) I a- (7- (T* (r)), s' (-r) ,x (7))l

.a = ha (x a ) 13

m

a



e = -dxa(t) exp((b - a d)Aya(a (T*(r)), sa(7),xa(T))) (2.47)
a-b- xa(t)

Equations (2.34), (2.36) and (2.43) are solved using a two level iteration procedure. The

subscripts n and k, through this section, refer to the number of first level iterations, and

second level iterations, respectively. The subscript p for xp (7) refers to the xa (7) obtained

at pth trial of the whole iteration process.

In the first level of iteration, Eqn. 2.34 is solved for T*(T) using Newton-type algorithm

while keeping the estimates of s" (r) and xz (7) fixed. The Newton algorithm for T*(T) is

Tn+1 (r) = T* (t) - Jn-' [G,] (2.48)

where

Tn - T (r) - T*t + A- (a (T * (T(r)) , s" (r), x"(7)) C (2.49)

i± {Z+A(YayO (7`(T*(7-)),s C)() a 0 a (2.50)
a

As the iteration of the stress converges, we start the pth trial of the second level iteration

by updating the value of xp (T) using (2.43) with e in (2.47) estimated by Tt 1 (7r), s (7)

and xP_l1 (7r). After we obtain xx(T7) and accordingly, h(7T), we are able to calculate an

average value for h" during t to 7

M h2(t) + h• (7)
h 2 (2.51)

Using this averaged h', we start the second iteration by iterating the sa (7) as:

S+ 1(7) s= a(t) + Ih ((T)) [A 7 ( (T 1(7)) , s (), x 1 (7)) (2.52)

-h (xa(t), xc(7-)) 1 A- (Ta' (T+ 1(T)) , c' (r) , (T))

In our calculation, the values of T* (7) and sa (T) are accepted if change in the absolute

values are less than 10-3so for T* (T) and 10-4so for sa (7). Otherwise, this new estimates of

sa (T) and xa (T) are used to restart the iteration. Since we use an exact analytic integration

to calculate xa (T) from t to T, it only need to be calculated once at the beginning of each

second level iteration and its convergence is implied by the convergence of T*(7) and sa(-).



The remaining task for time-integration scheme is essentially the same as the polycrystal

model by Kalidindi, Bronkhorst and Anand (1991).

In the next chapter, we verify our model by comparing a set of experimental data

to simulation results based on experimentally obtained parameters. We will show that the

validity of the model is supported by a good match between the simulation and experimental

results.
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Figure 2-1: Definition of "reversal transient" and related parameters x,, and fraction f.
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Chapter 3

Verification of the Constitutive

Model

3.1 Experimental Apparatus

The experiments were conducted on a stiff servo-hydraulic testing system (Fig. 3-1). The

testing system features a high stiffness biaxial test frame equipped with MTS series 646

hydraulic collet grips, and the load capacity is 50,000 lbs (222 kN) / 20,000 inch-lbs (2260

N-m). The machine is controlled on both channels with an analog controller. Acquisition of

data is performed with the software package LabTech Notebook through a Keithley Series

500 hardware interface installed on an Intel 486/50 personal computer. Prior to the tests,

the load train is carefully aligned by adjusting four alignment screws on the top of the load

train to make sure that the misalignment is less than 0.0005" circumferentially.

High conductivity oxygen free copper is chosen as the candidate material for all testing.

Round tension-compression and tension-torsion specimens are machined from as-received

0.5" and 2" diameter rods. The dimensions of the uniaxial test sample and axial-torsional

sample are shown in Fig. 3-2 and Figs. 3-3, 3-4, respectively. Prior to the tests, all samples

were annealed in an Argon-filled furnace, to remove any residual stress or pre-textures. The

samples were heated up to 8000C in two hours, soaked for one hour and then furnace cooled

to room temperature in nine hours. After annealing, photo-micrographs of the polished-

etched sample were taken ( Figs. 3-5, 3-6). The grains are equiaxed and their average size

is about 60 pm. The annealed material shows a relatively low yield strength of 25 MPa.



The uniaxial tension/compression cyclic test were performed under strain and load con-

trol mode to precisely characterize the strain in the gage section. For these tests, the strain

data are collected through an extensometer with maximum range of ±0.1 inch.

Lacking a biaxial extensometer, the biaxial cyclic test were performed under position

control. However, a strain gage rosette was carefully aligned and glued on the surface

of the gage section of the specimen to provide a measurement of the cyclic strain in the

gage section. During the test, displacement readings from LVDT and RVDT are collected

together with the readings from the strain gages. These two data are compared to check the

accuracy of LVDT/RVDT readings in providing accurate measures of gage section strains.

Noting that the relative importance of the shoulder sections depends on their length, as

compared to gage length, it is found that the deformation of the shoulder sections plays a

less important role for the tests performed on the long gage length torsional samples. The

strain amplitude is almost uniform through the test. For the short gage section samples,

the deformation in the shoulder section is relatively larger.

3.2 Material Parameter Evaluation

In order to perform numerical simulations using the present model, we need to estimate the

material parameters. The parameters in the present model include elastic modulus C11,

C12 , C44 , rate sensitivity m, plastic resistance parameters so, s,, Xz, Sth, and hardening

parameters a, l7, ýj , X, and q. In this section, a methodology for determining the material

parameters is given and applied to the material under consideration.

The experiments that were required to determine the parameters consisted of the uni-

axial monotonic test and the uniaxial cyclic tests, and the steps used to determine the

material parameters are as follows:

1. Obtain C11, C12, and C44 from handbooks.

Elastic moduli C11, C12 , and C44 should be obtained from ultrasonic testing and for

copper are available in handbooks (e.g. Simmons and Wang, 1971).

2. Determine m and q.

The value of rate sensitivity m for OFHC copper is obtained by fitting a uniaxial strain

rate jump test performed by Bronkhorst (1991) with ~o set to be equal to macroscopic

strain rate. Characterization of latent hardening is perhaps the most difficult part of the



constitutive model. Here we simply take the latent hardening factor q as 1.4.

3. Determine 0 and x, from uniaxial single reverse test.

Several symmetric strain cycling tests with different strain amplitudes were performed

in order to determine the back stress versus strain curve, by utilizing the first reversal data.

We define the level of back stress at each strain amplitude to be half of the difference of

corresponding forward flow stress and reverse 0.2% offset yield stress. For polycrystal mate-

rials, the averaged resolved shear stress is about one-third of the macroscopic tensile stress.

Using this relation, we can approximate the resolved-shear-stress/strain curve. On the other

hand, because during a monotonic deformation the term contains X in the expression for

h 3 is zero, h3 equals ¢ and we can integrate Eqn. 2.32

dx 
7

L dx d7 (3.1)

and get the back stress- strain relationship

S- =n (3.2)

The initial guess of x, and 0 is obtained by nonlinear fitting such equation to the back stress-

strain (x - -y) curve. These values are then checked and fine-tuned using a finite element

simulation of a monotonic test. Fig. 3-7 shows the results from fitting the experiment data

of OFHC copper.

4. Determine a, 7, so, ss, and q from uniaxial monotonic test.

After the back stress-strain curve are determined, we can exclude its contribution from

the total resistance (flow stress) and get the isotropic resistance-strain data. Since h2

is zero during a monotonic test, the deformation resistance-strain relation (2.5) is again

integratable without considering latent hardening effect.

f ds a Idy (3.3)

then
l(a - i) - = (3.4)

Therefore, a first guess of so, s, ,a and t7 could be obtained using similar procedures as for



x, and 0 from nonlinear curve fitting (3.4) to the resistance-strain data . From experience

it is found that we need to reduce 7r by about 5 times and adjust a a little bit after including

the latent hardening relationship for s. After a few trials, a proper set of a, i7, so, and s,

will be obtained to give a reasonable fit the monotonic stress strain response (Fig. 3-7).

5. Determine X and ( from fitting the uniaxial cyclic tests.

After all other parameters are determined, ( and X is obtained by trial and error to

get a best fit of at least two stress-strain curve from the uniaxial cyclic tests data. The

general rule for adjusting these two parameters is: increase X to increase the initial slope

of each reversal and saturation stress level; increase ( to increase the permanent softening

and reduce the saturation stress level. Since there is a competing effect between ý and X,

it requires a few trials to get these two parameters.

The complete set of parameters for Copper obtained is listed in Table 3.1 below. Where

a, m, and q are dimensionless and the rest have dimension of MPa.

C11  C22  C44  R X
150.E+3 110.E+3 75.E+3 325.0 138.0 448.0 1.5625

so sS 2x a m q
8.0 133.0 5.0 2.1 0.012 1.4

Table 3.1: Material parameters for annealed OFHC copper

3.3 Uniaxial Symmetric Strain Cycling

To verify our cyclic crystal plasticity model, we check its performance by matching cyclic

tests with equal positive and negative cycling strain range-the symmetric strain cycling.

The model should be able to capture the whole deformation process for each strain range,

up to the saturation level. These tests are also the primary tests for determining the set of

material parameters, as indicated in the previous section.

Five tests, with strain range of 0.3% to 3%, are performed and the tests data and

simulations are shown in Fig. 3-8 to 3-12. The model are able to closely match the stress-

strain response up to saturation. There is some discrepancy in the vicinity of each reversal;

the simulation shows a little sharper turn in this regime.



One important feature of the model worth pointing out is that the saturation level is

determined by the balance of hardening (due to hi) and softening (due to h2) of deformation

resistance s. As the cycling process advances, the hardening rate decreases, but the softening

rate increases due to the augmentation of back stress. At the stress level where these two

competing effect balance and no more further hardening is achieved in each half cycle, the

material reaches saturation.

Such softening phenomena in cyclic loading is supported by the experimental work

of Hasegawa et al. (1975) and Christodoulou, et al. (1986) as indicated in Chap. 1.

The effect of back flow is similar to annealing in the way that both of them reduce the

deformation resistance, or equivalently, the density of forest dislocations. Kocks, Hasegawa

and Scattergood (1980) interpret such softening as an stress induced dynamic recovery

which is effective only on unstable cell components.

We could also imagine the whole reversal transient in terms of dislocation interaction

mechanisms proposed by Orowan. The annihilation could be inferred by the backward mo-

tion of piled-up dislocations from forest dislocations or three dimensional networks, when

the resolved shear stress changes sign. As these unstable dislocations move in the "back-

ward" direction, reducing the density of dislocation around the entanglement of dislocation,

the back stress is reduced and the deformation resistance appears lower (at the beginning of

the stress reversal). When deformation continues in the backward direction, another back

stress field opposing the continuous shearing will be built up. Besides, since dislocation cells

are polarized as suggested by Kocks (1979), it is very possible that these backward moving

dislocations will encounter and cancel some dislocations of the opposite sign in the blocking

dislocation structures. These effects justify the physical background for the h2 term in our

model, and point out a possible qualitative connection between our internal variables and

evolution equation for our micro-structural elements.

After verifing the current model by comparing its predictions to symmetric strain cycling

data, in the next chapter we try to predict other cyclic loading responses.



Figure 3-1: Instron biaxial testing frame.
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Figure 3-2: Tension-compression cyclic test sample.
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Figure 3-3: Axial-torsional cyclic test sample, short gage length.
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Figure 3-5: Photo-micrograph of annealed OFHC copper taken perpendicular to the rod

axis. (x1600)
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Figure 3-6: Photo-micrograph of annealed OFHC copper taken parallel to the rod axis.
(x1600)
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Figure 3-8: Symmetric strain cycling test, Ea = 0.3%.
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OFHC copper cyclic test (RT)
I I

.-- simulation

I I I I

-4 -2

true strain

Figure 3-9: Symmetric strain cycling test, Ea = 0.5%.
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OFHC copper cyclic test (RT)
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Figure 3-10: Symmetric strain cycling test, E, = 0.75%.
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OFHC copper cyclic test (RT)
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Figure 3-11: Symmetric strain cycling test, Ea = 1.5%.
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Figure 3-12: Symmetric strain cycling test, ea = 3%.
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Chapter 4

Predictions

After we obtain the material parameters we are able to predict the material's stress-strain

response under different loading conditions. In order to evaluate the predictive capability,

it is imperative to choose loading conditions which are different and more complex than the

experiments from which the material parameters were determined. In the current study, we

try to predict the stress-strain response for unsymmetric axial strain and unsymmetric axial

stress controlled cycling. We also examine a ninety degree out of phase non-proportional

tension-torsion cycling, and a proportional "butterfly" straining pattern in tension-torsion.

The results are presented in the following sections.

4.1 Unsymmetric Axial Strain Cycling

Instead of performing cyclic test with equal positive and negative strain range, we performed

strain controlled cyclic test within two unsymmetric strain bounds. For an annealed mate-

rial undergoing small unsymmetric strain the material strain hardens during unsymmetric

strain, and the mean stress approaches zero at saturation.

The prediction accompanied by the experimental data for a test with strain range

1%+0.75% is shown in the Fig. 4-1. The predictions of the model are in good accord

with experiment. If we compare the results to the symmetric strain cycling test with equal

strain amplitude (Fig. 3-10), we find that the flow stress starts higher for the unsymmetric

cycling but the saturation level for these two tests are about equal. In other words, the

contribution of the initial strain offset to the hardening gradually disappears as the number

of cycles increases.



4.2 Unsymmetric Uniaxial Stress Cycling

Materials experiencing unsymmetric cyclic stress undergo cyclic creep. If the material

softens substantially, then the ratcheting process will accelerate, leading to an unstable

behavior with increasing creep strain for each cycle. A catastrophic failure of the material

usually occurs after a large number of cycles, and the use of such a material in applications

under fatigue loading is considered inappropriate. On the contrary, a strain-hardening

material is relatively more stable, and the creep strain in each cycle gradually decreases

to zero, and the ratcheting ceases. These observations are demonstrated by the schematic

drawing show in Fig. 4-2. The fully-annealed copper of the current study belongs to the

latter case, and we expect little ratcheting in this material.

The unsymmetric stress cycling test, or ratcheting test was also performed on the OFHC

annealed copper 1 , with the specimen cycled between stress limits of 50 MPa in tension and

40 MPa in compression. This specimen was not from the same heat-treated bunch as for the

strain-controlled experiments, and the yield strength is about 9 MPa higher. To account

for the difference, in the simulation, we needed to adjust the parameter so by 3 MPa to

account for the difference in the yield strength. All other parameters were unchanged. The

prediction and experiment of this ratcheting test is shown in Figs. 4-3 and 4-4. We see that

the prediction is quite close to the experiment. The predicted strain level and shape of the

saturation loop resemble the test results closely.

Due to the incompatibility between grains as materials go through an elastic-plastic

transition, the small strain range cyclic modeling has been a difficult problem to deal with.

Our model does show good predictability for the uniaxial cyclic tests performed in the small

strain range. For either strain or stress controlled test, the model capture the response from

yielding all the way to saturation. Moreover, the smooth elastic-plastic transition is also

captured with reasonable accuracy.

In the next section, we move on to a more challenging objective - predicting small strain

biaxial cycling, to better evaluate the predictive capability of the model.

'One thing to remember while comparing the stress controlled test data to the strain controlled ones
is, the strain rate is not constant in order to keep a constant stress rate, and vise versa. Therefore, for a
rate-dependent material, the response of these two tests could be slightly different. However, knowing that
the copper is quite rate-insensitive at room temperature (rate sensitivity m = 0.012, see Table 3.1), we
expect to get similar monotonic curves from strain or stress controlled tests.



4.3 Axial-Torsional Cycling

4.3.1 900 out-of-phase cycling

For multiaxial tests, in the classical literature based on isotropic plasticity, it is common to

use equivalent stress and strain measures to evaluate tests results and compare them with

those obtained from uniaxial tests. The definition of equivalent stress is

r 3 (T' . T') (4.1)

where T' is the deviatoric stress. The definition of equivalent strain is

E (' e') (4.2)

where the e' is the deviatoric strain. In uniaxial tensile/compressive loading, the equivalent

stress/strain measures reduce to usual uniaxial stress/strain measures. However, in pure

shear, the equivalent stress will be V3 times the shear stress, and the equivalent strain is

shear strain divided by V3.

One of the biaxial experiments cited frequently in the literature as a basic test of non-

proportional cyclic plasticity, is the axial-torsional 900 out-of-phase cyclic test. This involves

radial loading in either the tension or shear direction to a certain prestrain, then cycling by

following a circular trajectory in the strain space keeping the equivalent strain amplitude

constant. That is, the normal and shear strain are related by

E = a sin (21rwt) (4.3)

7 = E. cos (21rwt) (4.4)

where Ea is a constant equivalent strain amplitude and w is the cyclic frequency. Generally

speaking, such 900 out-of-phase cycling shows maximum "extra hardening" and leads to

highest saturation stress levels as compared to uniaxial cycling and other biaxial cycling

with the same equivalent strain amplitude. On the contrary, proportional cycling (no phase

lag between shear strain and normal strain) will show the same response in the equivalent

stress-strain space.

Lacking a biaxial extensometer, several 900 out-of-phase cycling tests were performed



under position control with different displacement amplitudes. Because the material strain-

hardens a lot, the radius and the shoulder sections of the axial-torsional specimens gradually

plastically deform at higher stress level. This end effect makes the actual strain inside the

gage section hard to identify from displacements and rotations measured by LVDT/RVDT

mounted at the end of the load-train. To better characterize the strain in the gage section,

a strain gage rosette was carefully aligned and glued on the surface of the gage section

of the specimen to provide a measure of the cyclic strain in the gage section. During the

test, displacement readings from the strain gages are collected together with those from

LVDT/RVDT. This method also has its drawbacks considering the hysteresis effect of the

strain gage in cyclic deformation (it is about 15% at maximum), and possible non-uniform

of strain around the gage section. Taking advantage of both strain measuring methods, the

strain data used in the simulation is approximated by comparing the LVDT/RVDT strain

for the whole process to the first cycle of strain obtained from strain gage glued on one side

of the gage section.

The results for both simulation and experiment of two test with ia = 1% are shown

in Fig. 4-5 and 4-6. Compromising between the speed and accuracy, the simulations were

performed using four 3D eight-noded elements.2 In the simulations, we fix the bottom

surface in the loading directions, and pulling and shearing the the top surface nodes together

at the same time. Taylor's assumption is applied by averaging the response of a set of 50

crystal orientations at each integration point. As we see from the figures, the simulation

is reasonably close to the experiment for the first three cycles, then it under-predicts the

data at saturation. The mismatch is possibly due to the uncertainty of strain data. Even

through the prediction is not as good as in the uniaxial case, the model still captures the

main features of the test such as a spiraling outward stress trajectory, and a higher saturation

level compared to monotonic cycling. (Fig. 4-8) Another simulation is also performed to be

compared with a test with =a = 0.75% (Fig. 4-7). The discrepancy at higher stress level is

similar to the ones with ýa = 1%.

A possible reason for the under-prediction of the saturation loop lies in the model itself.

2A one element simulation is faster; however, the T - a curve obtained is slightly faceted, possibly due
to improper finite element procedures from overly constrained boundary conditions (the exact reason is
unclear). Another full geometry simulation was also performed with 400 elements. In this case, while giving
out a rather smooth stress trajectory, the job takes fours days on a HP 735 with only one random orientation
assigned at each integration point.



Assuming the simulation strain input is the same as the experimental strain input, from

the under-prediction at higher number of cycles we conclude that a smaller softening (or a

stronger hardening) in 900 out-of-phase biaxial cycling is required for the model to capture

the higher stress levels obtained in the experiments. From the way the hardening rule is

formulated (Eqn. 2.5), we will get the same softening effect for either proportional or non-

proportional cycling because there is no interaction of softening between each slip system.

Nevertheless, a small increase of hardening in non-proportional cycling is obtained in the

simulation (Fig. 4-8) through the latent hardening relationship (q=1.4) because the latently

hardened slip systems have a higher potential of becoming active in a non-proportional

cyclic deformation process. In a back and forth (proportional) small strain cyclic loading,

the primary slip systems are not expected to change, and the extra 40% hardening effect

through latent hardening only affect the inactive slip system and will have no contribution

to the macroscopic response.

From Fig. 4-5, considering the mismatch is about 20MPa at maximum, only 10% of

the saturation stress, we believe our model is reasonably adequate to predict the 900 out-

of-phase cycling and there is no overwhelming need to further complicate the model and

calculation procedure. We should keep in mind that although such latent hardening interac-

tions might improve the accuracy of the model further, there will be a penalty of substantial

increase of calculation time.

Although a 900 out-of-phase cycling is an extreme case for maximum hardening among

all cyclic process of the same equivalent strain, the phase lag is kept constant along the

deforming process. A "butterfly" cyclic test in which the phase lag is constantly changing

is considered more general for checking the validity of the model to be applied to random

cyclic loading condition. We examine this case in the next section.

4.3.2 Butterfly strain cyclic test

A "butterfly" strain cyclic test involves a biaxial cyclic test with the following strain input:

e = Ea sin (4irwt) (4.5)

y = /iGa sin (27rwt) (4.6)



The name of this test comes from the geometric shape of the trajectory of strain in the (, -y)

strain space - a butterfly - as shown in figure 4-9. It is essentially a non-proportional

cyclic test with a variable phase lag between normal and shear strain. In each cycle, the

phase lag varies from 00 to 900, down to -900, then back to 00. It is a challenging task for

a model to correctly predict the results of such an experiment.

A "butterfly" cyclic test was performed on the OFHC annealed copper using the long

gage section thin-walled tube under position control. The strain in the gage section was

estimated in the same way as that in the 900 out-of-phase experiment, that is, by estimating

from both strain gage and LVDT/RVDT data. We ran 10 such strain cycles, and the

specimen started to show some buckling after the fifth cycle; therefore, only the data from

the first five cycles are used for comparison with the simulation results.

As shown in the Fig. 4-10, a good match between the experiment and prediction is

obtained from the current model. The prediction is from a four elements simulation as

described in the previous section and the first five cycles are quantitatively well predicted

by the simulation. This is a very pleasing result which demonstrates the robustness of the

model in predicting complicated multiaxial cyclic stress-strain response.

4.4 Further predictions

In this section, we present predictions of results of tests not conducted under the current

research program. The general idea is to check if we can predict the key feature of the test

demonstrated by other workers studying complicated deformation path changes in metals.

The tests includes, large strain reversal torsion by Teodosiu et al.(1992), and a strain path

change experiment by Rauch and Schmitt(1989).

4.4.1 Large strain torsion reversal test

Although the focus of the current study is on small strain cyclic test. The model is com-

pletely applicable to large strain cyclic (reversal) loading. The material parameters might

require minor adjustment, but no change in the model is necessary.

Hu, Rauch, and Teodosiu (1992) performed large strain torsional reversal test on AK-

mild steel, Fig. 4-11. They found that a plateau on the stress-strain curve commences right

after yielding on strain reversal. In this regime, the material exhibits very small hardening.



The softening is more pronounced if the reversal happened at a larger strain level. To check

if we can predict the same phenomena from our model, we simply simulate the same test

with parameters for copper, and the result is shown in Fig. 4-12. We are pleased to report

that the qualitative features of their experimental curves are well-captured by our model.

4.4.2 Strain path change test

Rauch and Schmitt (1989) also performed strain-path-change test on mild steel. They pre-

deformed samples of thin plates in tension, then cut square pieces out of it with different

orientations a to conduct a second step simple shear test, Fig. 1-7. By changing the relative

orientation a of the shear sample to the tension sample, they were able to perform two-step,

strain-path-change tests.

The special test which shows different results from the others experiments concerning

the Bauschinger effect is the one for which a = 900. When a equals 900, instead of getting

reduction in yielding, the second stage shows an increase in the yield strength.

We also perform a simulation of load path change test to see if our model can capture

such feature. The results are shown in Fig. 4-13. We are very pleased to see that although

the response for a = 450 overshoot a little at the beginning of the reloading3, both the

additional hardening (a = 900) accompanied by softening (a = 1350) are well captured

by the current model. This results support our positive comment on a physically based,

two-parameter crystal plasticity model in Chap. 1, and demonstrate the applicability of

our model for general path-change simulations.

3The time-integration procedure could be possibly improved to eliminate this spike.
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Figure 4-1: Unsymmetric strain cycling test, E = 1% + 0.75%.

68

100

0

-100

I I I I I III I

I I I I I I I



Harde~nino
;ning

:heting

Figure 4-2: Schematic drawing shows the role of hardening in determining the ratcheting
and relaxation behavior during cyclic deformation.

--- Z



OFHC Cu ratcheting test (RT)
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Figure 4-3: Ratcheting test.
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Figure 4-7: 900 out of phase biaxial cyclic test, E. = 0.82%.
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Figure 4-12: Simulation of large strain reversal torsion test.
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Chapter 5

Closure

With the background of the crystal plasticity model of Kalidindi, Bronkhorst, and Anand

(1991) and kinematic-isotropic hardening model White and Anand (1989), the following

have been accomplished in the present study:

1. A combined kinematic-isotropic hardening crystal plasticity model applicable to

cyclic loading has been developed. Such a model, with physically based internal variables,

sa and x a , can capture both the crystallographic slip and the substructure evolution in a

continuum level formulation.

2. A fully implicit time-integration procedure has been developed for the above model

and implemented in the finite element code ABAQUS to facilitate simulations of cyclic

deformations for FCC materials.

3. A set of cyclic experiments including uniaxial symmetric and unsymetric strain

cycling, uniaxial unsymmetric stress cycling, biaxial strain cycling has been performed on

OFHC Copper from the fully annealed state. For the tremendous hardening effect of the

annealed copper (saturation stress is about ten times higher than the yield stress), the

experiment results provide a set of challenging data resource to test the robustness of any

plasticity model.

4. A new set of evolution equations for the back stress variable is defined. Simulations

based on these equations capture the monotonic macroscopic cyclic stress/strain response

very well, with cyclic strain range varies from 0.3% to 3%. The biaxial response is also

reasonably captured considering the difficulties of determining true strain for a position

controlled test.



Although the motivation of the current study comes from our long-term objective of con-

tructing a cyclic plasticity model for Ni-base superalloys, the presented combined hardening

crystal plasticity model also stand by itself as a good cyclic plasticity model for pure FCC

metals. The main difficulty of the current model lies in the underprediction for the biaxial

cases, possibly caused by an oversimplified latent hardening relationship. The assumption of

no interaction of softening between different slip systems might be expedient so as to reduce

calculation time, but it is questionable in reality. Considering the good predictability of

the current model, we are reasonably satisfied with the current latent-hardening relations;

however, further insight into the mechanisms would be beneficial.

Further, the current continuum model incorporates an important softening phenomena

of s' during reverse deformation. It would be interesting to investigate the proper forms for

the hardening parameters hi, h2, and h3 (Eqn. 2.5, 2.32) based on dislocation interactions,

and also the coupling relationship between them, but we leave this complex task for the

future.
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