
Scalable Coding of HDTV Pictures Using the
MPEG Coder

by

Adnan Husain Lawai

B.S., Massacusetts Institute of Technology (1992)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1994

© Massachusetts Institute of Technology 1994. All rights reserved.

I

Author
Depan -of Electrical Engineering and Computer Science

May 18, 1994

Certified by.....
V. Michael Bove, Jr.

Associate Professor
Thesis Supervisor

Accepted by -- - -...................
: •·Frederic R. Morgenthaler

Chairn, $n, ' Committee on Graduate Students

M 'SSACU 4. iNSTITR E

l1BRARES

/

Scalable Coding of HDTV Pictures Using the MPEG Coder

by
Adnan Husain Lawai

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 1994, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Science and Engineering

Abstract

The MPEG-2 coding standard, soon to be put into commercial use, uses DCTs and
motion compensation for coding digital images at variable sizes and bitrates. Per-
forming motion estimation at HDTV picture sizes is, however, computationally very
expensive. This thesis explores ways of coding High Definition Television images by
using the MPEG coder for coding a low resolution image extracted from the original
and a simpler coding scheme for the high resolution components of the original not
dealt with by the MPEG coder. The advantages of such an implementation are low
computational cost and the availability of two bitstreams capable of simultaneously
displaying the same image at different resolutions. Two distinct approaches to the
problem are proposed and implemented. Experiments on images of differing char-
acteristics show that although the methods developed here are predictably not as
efficient as MPEG itself, they do perform well in terms of providing two levels of
quality images at high compression rates.

This research was supported by the Television of Tomorrow research consortium
at the MIT Media Laboratory.

Thesis Supervisor: V. Michael Bove, Jr.
Title: Associate Professor

Acknowledgments

My hearfelt thanks and deepest respect goes to my advisor, Mike Bove. It has been

great working with him in the Media Lab as an undergraduate and graduate student.

My thanks also to Andy Lippman, for his guidance and advice on the earlier part of

this thesis.

Nuno Vascancelos, with others, carried out the initial experiments that became

the core of this thesis. I wish to thank him for helping me to start off, and for his

valuable help whenever I needed it. Roger Kermode, Henry Holzman, Joseph 'Foof'

Stampleman also deserve my gratitude for fielding my many questions on MPEG and

other technical issues.

To all my friends at MIT who made my seven years here so rewarding, thanks for

the great times.

And to my parents and family, I couldn't have done it without your support.

Contents

1 Introduction 10

2 Background: Image Compression 16

2.1 Quantization 17

2.2 Transform Coding: The Discrete Cosine Transform 19

2.2.1 Quantization in the Transform Domain 25

2.3 Subband Coding 27

2.3.1 Design of Perfect Reconstruction Quadrature Mirror Filters 30

2.4 Temporally Predictive Coding: Motion Estimation 33

2.5 Lossless Coding 37

2.5.1 Huffman Coding 40

2.5.2 Arithmetic Coding 41

2.5.3 Run Length Coding 43

2.5.4 Entropy coded quantization 44

3 The MPEG-2 Coding Standard 46

3.1 Overview of the Codec 47

3.2 Video data structures 49

3.3 Temporal Processing 50

3.4 Spatial Processing 57

3.5 Variable Length Coding 63

3.6 Summary of Computational Requirements 65

4 Structure of the Coders 72

4.1 Overview

4.1.1 The Open Loop coder

4.1.2 The Closed Loop coder

4.2 The Functional Units

4.2.1 The Downsampling Unit

4.2.2 MPEG-2 coding at the base layer . .

4.2.3 The Upsampling Unit

4.2.4 The Subband Coder

5 The Experimental Results and Conclusions

5.0.5 Directions for Future Work

5.1 Conclusion

107

116

117

............

............

............

List of Figures

1-1 Possible structure of the image layers 11

2-1 Quantizer transfer function: a) uniform, b) non-uniform. 19

2-2 Example of a two dimensional pdf, p_,,,,(zi, z2), uniform in the shaded area and

null on the outside. The marginal pdfs, p,i(zx) and p, , (X2), are also represented.

From [24], as it appears in [39]. 20

2-3 Partition of the 2-D space with scalar quantization. The dots represent the recon-

struction value associated with each region of the partition. From [39] 21

2-4 Joint pdf after rotation of the coordinate axis. The marginal densities and the

partition regions associated with separable scalar quantization with 8-levels are also

shown. The rotation makes the random variables independent, and the distortion

is minimized. The dashed line is included for comparison with figures 2-2 and 2-3.

From [39] 22

2-5 Basis vectors of a 2D 8 x 8 Discrete Cosine Transform (DCT). From [17]. 24

2-6 Arbitrary M band analysis/synthesis system 28

2-7 Frequency domain effect of subband coding using 'brick wall' filters . 28

2-8 Effects of (a) downsampling by a factor of k, followed by (b) upsampling

by a factor of k, without any anti-aliasing or interpolation filters. The

shaded areas represent the aliasing. 31

2-9 Block diagram of a predictive a) encoder and b) decoder. 34

2-10 Illustration of the block matching procedure 36

3-1 Simplified block diagram of MPEG-2 codec: a) encoder, b) decoder.

From [20]. 48

3-2 Spatial data structures within MPEG-2 50

3-3 Example of a GOP structure with M = 3, N = 15. The arrows indicate

the frames from which each P or B frame was predicted. 51

3-4 Motion Compensated or No Motion Compensation decision character-

istic. 56

3-5 Intra / Non-intra coding decision. 57

3-6 Macroblock structure for a) frame DCT, b) field DCT. 58

3-7 Quantization matrix for a) intra, b) non-intra macroblocks........ 60

3-8 Scanning orders for DCT coefficient coding: a) Zig Zag Scan, and b)

Alternate Scan 64

4-1 Frequency domain picture of an interlaced sequence 74

4-2 Block diagram of the 'Open Loop' encoder. 75

4-3 Block diagram of the 'Open Loop' decoder. 76

4-4 Block diagram of the 'Closed Loop' encoder. 78

4-5 Block diagram of the 'Closed Loop' decoder. 79

4-6 Downsampling method used to derive the even and odd fields of the

low resolution image from the progressive full resolution original. 84

4-7 The rest of the downsample/interlace unit. 85

4-8 Frequency responses of the downsampling filters 87

4-9 Regions of support for (a) progressively downsampled image, (b) inter-

laced and downsampled image, from the perspective of the upsampled

full resolution image. 88

4-10 Bitrate vs. SNR for the 'Balloons' and 'Traffic' sequences. 91

4-11 Upsampling unit for progressive sequences and horizontal lines of in-

terlaced sequences. 93

4-12 Upsampling unit for the vertical lines of interlaced sequences...... 94

4-13 Subband filter frequency responses 96

4-14 Block diagram of the subband coder 98

4-15 Perceptual significance weighting for the eighteen spatiotemporal bands 103

5-1 First frame of the 'Balloons' sequence 108

5-2 First frame of the 'Traffic' sequence 109

5-3 Blocking artifacts in 'Balloons' 111

5-4 Blocking artifacts in 'Traffic' 112

List of Tables

5.1 Statistics for the openloop coders 113

5.2 Statistics for the closedloop coders 114

5.3 Results of MPEG-2 coding the full sized image at enhancement level

rates 115

Chapter 1

Introduction

Simplicity of operation and scalability have recently become the focus of increasing

attention within the digital image coding community. A coding method is said to be

scalable if the decoder is capable of using part of the bitstream to obtain a displayable

image. Using a larger portion of the bitstream, the decoder may be able to increase

the resolution of the image, or add more content to it. Scalability is a key attribute in

a media system where different applications are making varying demands on channel

capacity. In order for such a system to be flexible for the user as well as efficient

in terms of the demands it places on channel capacity, the ability to extract useful

information from part of the bitsream is essential. In terms of defining a standard for

High Definition Television (HDTV), the backward compatability requirement forces a

two layer scalable structure on the encoded bitstream. Backward compatibility means

that receivers/decoders that use the current technology be able to receive/decode the

bitstream being encoded by the coder under development. The backward compatible

encoder should be able to provide such a bitstream without incurring too great a

computational cost.

The coding scheme developed in this thesis attempts to do just that. HDTV

images are coded in two steps. A standard MPEG-2 coder encodes a low resolution

image derived from the original. The rest of the image - a 'differential' signal

consisting mainly of the higher frequency components of the original - is coded

using a simple and efficient method. The result is a method of encoding the signal

which is computationally not as expensive as encoding the entire image using MPEG-

2, and which outputs two displayable bitstreams - one at the low and the other at

the high resolution. The savings in computation is made possible by the fact that

motion compensation is performed by the MPEG-2 coder only at the low resolution.

Thus the very high computational requirements for performing motion compensation

at HDTV resolutions incurs is avoided.

This idea is extensible to multiple scales of resolution. Thus, the low resolution

signal may be in interlaced format, and the first 'enhahancement layer' might add

a differential signal to convert it to progressive format. The next layer might then

provide the ehancement necesary for increasing the spatial resolution, followed by a

layer making a further increase in resolution possible. This structure is illustrated in

figure 1-1.

---- ------------------------ a

a D
u

i

I
I
I
I
I
I
I
I
I

I
r
I
I
I
I
I
I

.056

Figure 1-1: Possible structure of the image layers. Region A is at the low resolution
and is interlaced. It has been coded by a complex coder such as MPEG-2. Region
B extends interlace formant to progressive. Region C, the second enhancement layer
extends the spatial resolution of the low resolution image, while region D adds another
degree of spatial enhancement

The MPEG-2 [8] (see Chapter 3) coder is a relatively complex one and is designed

to operate across a wide spectrum of digital imaging applications. It uses motion

compensation to exploit temporal redundancy between frames, while block based

Discrete Cosine Transforms (DCTs) followed by quantization and entropy coding

are used to exploit spatial redundancy for achieving compression. Each sequence

of pictures is broken up into a series of Group of Pictures (GOPs). Within each

GOP, the first frame is purely intra coded using DCTs. The intra coded frame (I

frame) is followed by a series of motion compensated frames. These may be of two

types - Predictive frames (or P frames) use only previous I or P frames as reference

frames for motion compensation, while Bidirectionally predictive frames (or B frames)

may use I or P frames which come temporally both before and after that frame as

reference frames. The motion compensated prediction error for each non-intra frame

is coded using DCTs as well and the DCT coefficients (both from intra and non

intra frames) are quantized (using a weighting matrix based on the visual importance

of each coefficient), and then coded using differential pulse code modulation and

variable length coding. Within each type of frame, blocks may be not coded at all

if they are deemed to have too much redundant information. Different methods of

motion compensation - which can handle fields separately, or provide more or less

accurate predictions depending on user requirements also exist. The MPEG-2 coder

provides a high level of compression, and is an easily available, standardized coder.

It is ideal for use as the workhorse of our coding scheme at a low resolution, on top of

which one or more high resolution 'enhancement' layers may be added. In addition,

the current HDTV proposal being standardized closely follows the MPEG-2 syntax.

Thus, a proposal developed using this syntax is likely to be practically useful.

The idea of coding a high resolution picture using a complex coding mechanism at

a low resolution base layer followed by simpler coding at a higher resolution enhance-

ment layer has been tried before. Tsunashima et. al. [37] used a two level subband

structure with motion compensation at the low and mid levels of resolution to obtain

a scalable and efficient coder. The MPEG-2 standard contains three types of 'scala-

bility extensions': spatial, temporal and SNR. In the spatial scalability extension, a

motion compensated coded representation of the same image is provided at a lower

resolution. This may then be upsampled and compared with the full resolution mo-

tion compensated predictions for P or B frames - if the former prediction is better,

it may be used instead of the full resolution prediction, or it may be combined with

full resolution prediction [8]. In the temporal scalability extension, the enhancement

layer is capable of adding temporal resolution (by inceasing the frame rate) to the

base layer. SNR scalability involves refining the DCT coefficients in order to improve

the quality of the image.

This work builds upon the proposed ATV profile submitted to the MPEG-2 re-

quirements discussion by Andrew Lippman and V. Michael Bove Jr. of the MIT

Media Laboratory [22]. This profile proposed a generic scheme for encoding any type

of video which may be required at multiple scales of resolution, and which required

the following features:

* Highest efficiency at the base resolution

* Inexpensive decoder at the base resolution

* Extensible by more than one spatiotemporal resolution increment

* Satisfactory efficiency at extended resolution

* Inexpensive encoding and decoding at extended resolutions

* Scalable, without the need for simulcasting (treating the low resolution and

high resolution components separately).

* Capable of supporting software decoding, low delay modes, VCR features, and

rapid lookup.

The problem of designing a coder to meet our constraints can be broken down

into distinct but interrelated parts. The first step is concerned with deriving an

appropriate low resolution signal from the original which is given to the MPEG-2

coder. The choice of an appropriate method here is dictated by MPEG-2 performance

characteristics at that low resolution. Once such a 'downsampling' method has been

obtained, we can determine the characteristics of the 'difference' signal, i.e. that part

of the original signal where the MPEG-2 coder does an inadequate job of coding

(or that part of the original not coded at all by the MPEG-2 coder). Using this

information, the second step of our coding scheme has to compensate for what the

lower level MPEG-2 coder has left out - i.e. the 'difference' signal has to be coded

so that it may provide effective enhancement for the lower layer signal.

Two methods have been been tried for the 'downsampling' part of the coding

system. The first method downsamples the image in the 'standard' way [28]. That is,

given a high resolution frame, this method separably downsamples and filters along

each dimension in order to obtain a frame at the low resolution. Thus, this method

downsamples from a progressive format to a progressive format. The second method

downsamples from a progressive to interlaced format. It takes a pair of frames from

the original and extracts a field of a low resolution frame from either frame. This is

also done by separable downsampling and filtering, but in this case the downsampling

factor for each frame is twice that used in the first case. In either case, the higher

spatial frequency components of the full resolution image are not present in the lower

resolution image, and need to be compensated for.

The second stage of the system codes these frequency componets, and those por-

tions of the image spectrum which are badly coded by the MPEG-2 coder. This part

of the coding has been performed using subband analysis. Subbands seem to be the

natural choice, since they provide us with different portions of the spatiotemporal

frequency spectrum which we can then quantize according to how good a job the

MPEG coder has done in coding each subband. In the experiments for this thesis,

our lower level resolution was two thirds of the full resolution. This suggests the use

of a nine subband decomposition (three in each direction) in the spatial frequency

domain. Thus, theoretically (assuming perfect subband analysis and synthesis filters

as well as perfect anti-aliasing and interpolation filters) the bottom four subbands of

the high resolution pictures' spatial frequency spectrum are the only ones included

in the low resolution picture encoded by MPEG-2. The top five subbands need to

be coded, along with the visually significant data that has been corrupted by the

MPEG-2 Coder in the bottom four subbands (if there is any). Two approaches have

been proposed for this part of our system, which we will refer to as the openloop and

the closedloop coders.

The openloop coder works on the premise that the MPEG coder does a sufficiently

good job at the lower level, so that we need not compensate for any errors made in

coding the information contained in the lower subbands. Consequently, only the

higher frequency subbands need to be coded. The closedloop coder, on the other

hand, is designed to be more robust. It can compensate for errors made by the

MPEG coder as well as code the high frequency details not handled by the lower

level coding. It does this at the cost of coder complexity, with an associated cost in

terms of coding delay. The coded lower resolution picture is decoded at the encoder

- upsampled to full resolution and subtracted from the original to yield an 'error'

image. It is this error image which is analyzed into subbands. Thus mistakes made at

the lower resolution - such as motion compensation artifacts - can be compensated

for.

The subbands are coded using scalar quantization followed by run-length and en-

tropy coding. Bit allocation amongst subbands is based on the the visual importance

of the data in each subband as well as the variance of a subband - which is consid-

ered a measure of the energy of the data contained in a subband. An algorithm for

rate control has also been developed.

This thesis is organised in the following manner. Chapter 2 discusses the image

compression techniques that were used in this project. Chapter 3 describes the salient

features of the MPEG-2 coding syntax, and presents an analysis of the computaional

complexity of the MPEG-2 coder. Chapter 3 describes the technical details of our

coding methods. Chapter 4 presents experimental data and their analysis, while

Chapter 5 ends with suggestions for future work and conclusions.

Chapter 2

Background: Image Compression

Compression is the key to doing almost anything with images. Existing storage and

transmission technologies simply cannot meet the huge demands placed on them by

full motion, full colour, digital video. The original sequences used for this project

were in RGB colour at 24 bits per pixel, 720 by 1056 pixels per frame, 60 frames

per second. To transmit this as uncompressed video would require a transmission

'bandwidth' of 1094860800 or about 1.1 Gigabits/second. Storing an hour's worth of

uncompressed video would require about 4 * 109 Gbits of storage space. The goal in

this thesis was to code this data such that the final, compressed image would require

only about 20-25 Megabits/second i.e. we were aiming at a compression factor of

about 40-50:1. The goal of this section is to describe the techniques that were used

in this project.

Compression techniques are of two types. Lossless coders exploit redundancy in

data to devise a rendition of the data such that all of the coded information can be

recovered by the decoder. Lossy coders, on the other hand, lose information. The

designer's job is to devise a lossy coder such that the perceptually most insignificant

information is lost. The codec used in this experiment is overall a lossy one.

In terms of image compression, quantization is usually (and certainly in this case)

the most significant portion of the coder. We begin with a discussion of scalar quan-

tization in Section 2.1. Section 2.2 discusses transform coding in the context of

the Discrete Cosine Transform (DCT). Section 2.3 describes subband analysis. Sec-

tion 2.4 describes, motion compensation, a temporally predictive technique for achiev-

ing compression. Finally, Section 2.5 explains lossless codes, in particular, it discusses

Variable Length Codes (VLCs), with emphasis on Huffman Coding and Arithmetic

Coding.

2.1 Quantization

A quantizer maps a large (possibly infinite) set of input values into a smaller set of

quantized (or reconstructed) values. Amplitude quantization is required when convert-

ing continuous analog signals to discrete digital ones. In image compression systems,

quantization provides a significant portion of the compression. Quantizers are of two

types: scalar quantizers process one input sample at a time. Vector quantizers, on

the other hand, process a collection (vector) of input samples at a time.

Mathematically, a scalar quantizer's operation may be characterized as follows: If

f is the input, and f represents the quantized output:

j = Q(f) = ri di-1 < f < di (2.1)

where Q represents the quantization operation, ri for 1 < i < L denotes L recon-

struction levels, and di for 0 < i < L denotes L decision boundaries. If the value of f

falls in the region between di-1 and di, it is assigned the quantized value ri. We may

also express f in 2.1 as

f = Q(f) = f + eQ (2.2)

such that, eQ, is the quantization error given by

eQ = f - f (2.3)

Since quantization is a lossy operation, the role of the scalar quantizer's designer is

to make the distortion of the original signal as visually insignificant as possible. This

is a very difficult problem to deal with quantitatively since (1) the characteristics of

the Human Visual System (HVS) are not fully understood and (2) they cannot as yet

be quantified in a mathematically tractable way. In the absence of a criterion with

a good physiological basis, mathematical tractability is emphasized and the Mean

Squared Error (MSE) distortion measure is used almost universally. This defines the

distortion between f and f to be:

d(f, f) = I| - f12 (2.4)

The quantity e2 is thus seen to be the MSE distortion measure.

Now, given any general distortion measure d(f, f), the total distortion D in the

input is, for an L level quantizer, given by

L di
D = E j d(fo, fi)pf(fo)dfo (2.5)

where pi(fo) is the probability distribution of the input. Thus, given a probability

distribution, it should be possible to find a quantizer that minimizes this quantity.

In practice, probability distributions for image amplitudes are not known, but can be

approximated from a histogram of image amplitudes or a known image model.

Minimizing equation 2.5 with respect to fk for 1 < k < L and dk for 1 < k < L-1,

we get (using the MSE distortion criterion) [21]:

If=d -1 fop/(fo)dfo
rjk = fodk fop (fo)df < k <L (2.6)

fo=dk- Pf (fO)df0

dk = k 1 1 < k < L (2.7)

This set of equations states that a reconstruction level fk is the centroid of pf(fo)

over the interval dk-1 5 fo 5 dk, and that the decision level dk (except for do and dL)

is the midpoint between the two reconstruction levels fk and fk+l.

The most straightforward method of quantization is uniform quantization, in

which the reconstruction and decision levels are uniformly spaced. For a uniform

quantizer:

(2.8)

and,
di + di- 1

2
l, <i<L (2.9)

Where A is the step size (the spacing between decision boundaries). An example of a

uniform quantizer is shown in figure 2-1(a). It turns out that a uniform quantizer is the

optimal quantizer (in terms of the MSE distortion measure) given an input sequence

with a uniform probability distribution. Optimal quantizers have been computed

for other probability distributions [16], and an example of a nonuniform quantizer is

shown in figure 2-1(b).

a) b)

Figure 2-1: Quantizer transfer function: a) uniform, b) non-uniform.

2.2 Transform Coding: The Discrete Cosine Trans-

form

The previous section discussed some of the issues related with quantizing a scalar

source. The main limitation of a scalar quantizer is that, processing one sample at a

time, it is incapable of exploiting the redundancies in a typical image. A pixel in a

di - di-1 = A, 1 < i < L

typical scene has a value closely related to the values of the surrounding pixels, and

this correlation can be exploited by taking account of the vector nature of the source

image. In transform image coding, a group of pixels (a vector) is transformed to a

domain significantly different from the image intensity domain. By doing so, we wish

to exploit two properties:

* The transform coefficients reduce the correlation that exists amongst pixel in-

tensities. Because of this correlation reduction property, redundant information

does not have to be coded repeatedly.

* For typical images, a large amount of energy is contained in a few transform

coefficients. This energy compaction property enables us to code a small fraction

of the transform coefficients without having to sacrifice much image quality.

The correlation reduction property can be illustrated by means of the following ex-

ample, originally presented in [24].

Suppose a source generates two dimensional random vectors x = [z zz 2]T charac-

terized by the joint pdf px ,,2(xl, x2) represented in figure 2-2.

71

Figure 2-2: Example of a two dimensional pdf, pl,, 2 (l, zz2), uniform in the shaded area and
null on the outside. The marginal pdfs, p,,(zl) and p,2 (z2), are also represented. From [24], as it
appears in [39].

It is clear from the figure that p(,,,,2)(z1, z) 2 p 1 (zX)p, 2 (x 2), i.e. that zx and

x2 are not independent. If we notice that the pdf is oriented in the direction of the

w ILr

~Jr
rll

H(b

HC~I *
1411
sJl(rr

*rr
rW

)JI~

line xl = X2 , it is clear that the two components are more likely to have similar

amplitudes. Thus there is some redundancy between the two components.

Figure 2-3 shows the optimal partitioning of the two dimensional space if both

components are scalar quantized separately (for an optimal 8 level quantizer along

each component). This partition is clearly sub-optimal, since large regions with zero

probability also have a reconstruction value associated with them, and it would be

clearly better to have all of the reconstructed values inside the shaded region. Much

better results can be obtained by a simple rotation of the coordinate axes. Figure 2-4

-2G2 2 i 2G 2r

Figure 2-3: Partition of the 2-D space with scalar quantization. The dots represent the
reconstruction value associated with each region of the partition. From [39]

shows the same joint pdf, but rotated such that the new coordinate axes are ul =

x1+ 2 and u2 = z2- x1. After the rotation, the two components become independent

and it is possible to do a much more efficient job of scalar quantization by avoiding

zero probability partitions.

When, as in this example, the input random variables can be made independent by

a linear transformation, they are said to have linear dependencies. In practice, image

intensities cannot in general be made independent via a linear transform. They can,

however, always be decorrelated, and that, followed by scalar quantization, provides

good compression.

*rr

rJIL*

Nr

wlb

UIE·

Nr

~Jlb

*r

IJ

a.

I '' III
-a/l2 /2a

Figure 2-4: Joint pdf after rotation of the coordinate axis. The marginal densities and the
partition regions associated with separable scalar quantization with 8-levels are also shown. The
rotation makes the random variables independent, and the distortion is minimized. The dashed line
is included for comparison with figures 2-2 and 2-3. From [39]

Suppose input samples at the transmitter are grouped together into vectors of

dimension K, linearly transformed, quantized, and then transformed back to the

original domain (presumably at the decoder, after some sort of channel transmission).

Such a set of operations is known as transform coding.

The linear transformation maps the input vector x = [x1, ..., XK]T into a vector

u = [u1, ..., UK]T according to

u = Tx. (2.10)

The row vectors ti T of T, are generally known as the basis functions of the trans-

form, and since
K

ui = tiTU = 'tik Uk, k = 1,..., K, (2.11)
j=1

the components of the transformed vector u (known as the transform coefficients) are

nothing more than the projections of x onto these basis functions. It is, therefore, a

necessary condition that the set of basis functions can span the entire K-dimensional

space, i.e. the basis vectors have to be linearly independent.

A desirable property of any transform is that the basis vectors be orthonormal,

i.e. they satisfy

I

II

ti TtJ = 0 if ij (2.12)
1, ifi =j,

In this case, the inverse transformation is very easy to compute. From 2.12, since

TTT = I, (2.13)

T -l = TT (2.14)

It is possible, given the covariance matrix of the image, to compute the transform

which is optimum in terms of the correlation reduction and energy compaction prop-

erties. This is known as the Karhunen-Loeve Transform [21]. However, the covariance

matrix of an image is in general not available, and is difficult to estimate. Even if

the covariance matrix is known, there is no efficient way of computing the trans-

form coefficients. For this reason, the Karhunen-Loeve transform, though interesting

theoretically, is hardly ever used in practice.

The most commonly used transform for image coding is the Two Dimensional

Discrete Cosine Transform (the DCT). The One Dimensional DCT is closely related

to the more commonly known Discrete Fourier Transform (DFT) [28]. The main

distinction between the two is that while the DFT uses complex exponentials as basis

functions, the DCT uses real (co)sinusoids as its basis functions. This works well,

since image intensities are real valued and thus we need not have imaginary sinusoids

as our basis functions. In addition, the DCT is much better than the DFT in terms

of the energy compaction property (see [21] for a discussion of why this is true). A

number of well known algorithms exist for efficient computation of both the DFT

and DCT [28]. The Two Dimensional DCT, uses two dimensional (co)sinusoids as its

basis functions.

If x(m, n) in an N by N input, the 2D DCT coefficients F(u, v) are defined by:

2 • -1 N-1 _ (2m + 1)ur (2n + 1)vr (2.15)
F(2u, v) a(U)Q(V) CE z(m, n). cos 2N 2N (2.15)I0 n=0

where,

1/a,k(1,
if k = 0

if k #0.
(2.16)

The 2D Inverse DCT (IDCT), which given N by N transformed coefficients, maps

them back to the original domain, is defined by:

2 N-1 N-1 (2m + 1)ur (2n + l)v]
X(m, n) = N EE a(u)a(v)F(u, v). Cos 2Nc cos 2NN Lo v=O

(2.17)

where a(k) is as defined in 2.16.

figure 2-5.

The basis functions of the 2D DCT are shown in

Figure 2-5: Basis vectors of a 2D 8 x 8 Discrete Cosine Transform (DCT). From [17].

An important feature of the 2D DCT is that it is separable. That is, each basis

function (which is a function of two variables) can be represented as a product of two

functions of one variable:

bi,,(m, n) = bi(m)bj(n)((2.18)

This property enables us to obtain the transform of an image by first performing a

1D DCT separately on all rows of the image and then applying a 1D DCT to all the

columns of the result (row column decomposition). We can now exploit the efficient

algorithms which exist for taking 1D DCTs. Thus the 2D DCT can be computed

very efficiently.

Often the image to be coded is broken up into a number of 'subimages' and these

are transform coded separately. This is done for a number of reasons. Coding different

portions of the image separately enables us to code the image adaptively. Thus, in

a uniform region, we need not code the transform coefficients corresponding to the

the higher frequencies as well as we would need to in a region with a lot of detail.

Since the entire image is not needed at one time, memory requirements are reduced,

Subimage coding also reduces computational requirements in most implementations,

which use efficient FFT like procedures.

The subimages cannot be made too small though, since decreasing image size

decreases the amount of redundancy within each block that can be exploited. Large

subimages, on the other hand, result in decreased adaptivity and greater memory and

computational requirements. Typical subimage sizes are 8x8 (the size used by the

MPEG coder) and 16x16.

2.2.1 Quantization in the Transform Domain

The idea behind transform coding is obtain transform coefficients with special prop-

erties that may be exploited by a quantizer to get more compression. An important

property of any transform is the energy compaction property. For the DCT, this

means that the 'lower frequency' transform coefficients contain most of the energy in

the image. Thus, the higher frequency components may be quantized very coarsely,

or not coded at all. Another consideration is the sensitivity of the Human Visual

System (HVS) to each of the coefficients. Fortunately, for the DCT, the HVS is more

sensitive to the lower frequency coefficients, particularly the DC coefficient.

Mathematically rigorous derivations of optimal bitrates depend on the criterion of

optimality being employed, none of which is the definitively 'correct' one. Minimizing

the MSE and keeping the average bitrate constant gives us

2 [(x.' (I71/N1

where bi and a2 are, respectively, the bitrate allocated to and the variance of coefficient

i, R is the average target bit rate, and N is the number of coefficients per block [16].

This result, originally derived by Huang and Schultheiss in 1963 [10], confirms the

intuitive notion that the bitrate assigned to a coefficient should be proportional to the

image energy contained in that coefficient as a fraction of the total image energy. It is

easy to incorporate further perceptual considerations into this result by substituting

all the o~a's by wia , where w1 is the perceptual weight of each band, and -1 w = 1.

Equation 2.19 provides the theoretically optimal bit allocation, but is not always

usable in practice since it does not satisfy the constraint that the individual bitrates

bi must be integers. In practice, the bitrates derived from 2.19 can be used as an

initial estimate for bit allocation, followed by an algorithm which adjusts these rates

according to additional constraints.

Two heuristic methods commonly used for quantization of transformed coeffi-

cients are Zonal coding and Threshold coding [21]. In Zonal coding only coefficients

in a predetermined zone are quantized - the rest are discarded. Within the zone,

the coefficients are typically assigned different bitrates based on 2.19 or other more

ad hoc considerations. In Threshold coding, the coefficient magnitudes are compared

with some threshold, and only those which are larger than the threshold are kept.

The rest are discarded. From an energy compaction point of view, Threshold coding

is preferable, since in Zonal coding some coefficients with small magnitudes are kept

while other coefficients with large magnitudes may be thrown away. However, the

positions of the coefficients which are kept are not known a priori and need to trans-

mitted to the decoder. Threshold coding is an adaptive procedure - the number

of coefficients kept and thus the total bitrate required to code them are not known.

A method of assigning bits amongst the coefficients (again, some method based on

equation 2.19 may be used here) which are kept and for controlling the total bitrate

is required.

Once bit allocation has been performed, there still remains the problem of quan-

tizing the coefficients. The human eye is in particular very sensitive to errors in the

DC coefficient, i.e. the average brightness of the (sub)image. Coarse quantization of

the coefficient results in the 'blocking effect', which exposes the block based structure

of the coding in the decoded image, and which looks particularly unpleasant. The

DC coefficient is thus very finely quantized, using (usually) a uniform scalar quan-

tizer, since the pdf for this coefficient has empirically been found to be approximately

uniform for most images. The AC coefficients are not as crucial to picture quality

and are thus not so finely quantized. Their pdfs are approximately gaussian and thus

scalar quantizers optimized for gaussian pdfs can be used to quantize them.

2.3 Subband Coding

Subband coding of signals is another incarnation of linear transform coding, first

used to code speech by Crochiere et. al [6]. Subband analysis of a signal involves

separating the spectral components of signals into different subbands, which may then

be coded. The signal is convolved with an array of bandpass filters, and the result

of each convolution is then downsampled to its Nyquist rate. The resulting smaller

images are known as subbands. Each subband may then be coded separately.

The original image can be recovered from its subbands by first zero-padding each

subband by the amount it was downsampled with and then applying an appropriate

interpolation filter to isolate each subband at the original size. The results of this

operation applied to all the subbands are added back together to obtain the final

reconstructed image. This procedure is illustrated in figure 2-6.

Figure 2-7 shows the frequency domain effect of splitting the image spectrum using

ideal 'brick wall' bandpass filters. For image coding subbands analysis/synthesis is

typically applied separably along each dimension.

Subband coding originally emerged as a way of coding speech signals. The impetus

for this development was the human auditory system's nonlinear response to different

Analysis Section Synthesis Section
A

x[n] yo [n] x[n]

Figure 2-6: Arbitrary M band analysis/synthesis system

Figure 2-7: Frequency domain effect of subband coding using 'brick wall' filters

frequencies. Two significant advantages of this approach were identified. First, since

the subbands were coded separately, the quantization noise was localized to each

band and did not affect the other bands. Second, the bit allocation could be varied

across the bands so as to more closely model the energy distribution and perceptual

significance across the bands.

The qualities deemed advantageous for subband coding of speech are equally im-

portant for the coding of images. The human visual system has a nonuniform response

across different portions of the spatio-temporal spectrum. Schreiber [32], Troxel et.

al [5], and Glenn [4] all discuss the reduced distortion sensitivity of the HVS to high

frequency spatial detail, in particular when coupled with high frequency temporal de-

--ro) oL 0K0L kW

y, [n)
k

ý- g

tail. The HVS is extremely difficult to model overall, but some good approximations

exist for particular regions of the spatio-temporal spectrum (see Butera [1]). Tempo-

rally the HVS functions approximately as a differentiator at low frequencies and an

integrator at high frequencies. Therefore, a simple halfband filter applied along the

temporal axis captures the essence of this bimodal response. Spatially, available evi-

dence suggests that the subbands should be arranged in a series of oriented bandpass

channels as discussed by Marr [25], Hildreth [9], and Hubel [11]. In particular, for

a fixed retinal position, there are well known components of the early visual path-

way that can be well approximated using filter banks so that the bandwidths vary in

increments of roughly singly octaves.

'Brick wall' bandpass filters are, however, impossible to realize in practice (accord-

ing to theory, they would have to be infinitely long in the spatial domain). Very close

approximations to 'brick wall' filters are also undesirable, since they cause 'ringing'

in the spatial domain according to the well known 'Gibbs' phenomenon. Given this

limitation, we have two choices:

* We may employ filters which fall off gradually but do not overlap at all. This

results in no aliasing between the subbands but there is some information in

the original which is not included anywhere in our subbands.

* We may use filters which do overlap, so that each subband contains some in-

formation from the next subband, and all the information in the original is

contained in the subbands. However, it is possible to design analysis/synthesis

filters such that the aliasing (overlap) cancels out at the output, and, in some

cases, perfect reconstruction is achieved.

The latter approach is the one used in practice, and the analysis/synthesis filters

commonly used are known as Quadrature Mirror Filters (QMFs). In this project,

because of the peculiar nature of the problem, 3 band QMFs were chosen. The

design of QMFs such that perfect reconstruction is guaranteed is dealt with is the

subject of the next section.

It would be useful at this point to elaborate on the fact that subband analysis

and linear transforms are essentially variations on the same theme . A block based

transform coder (using a block size of N by N) can be thought of as a subband coder

by considering the N basis functions of the (forward) transform to be the analysis

filters of a subband coder, and using a decimation factor of N. This is followed by

interpolation by a factor of N using the (inverse) transform basis functions as the

synthesis filters. Admittedly, when treated as bandpass filters, DCT basis functions

do not provide very good frequency localization. They are not meant to, however.

The DCT basis functions are chosen for their energy compaction and correlation

reduction properties, while subband analysis/synthesis filters are chosen for their

ability to isolate different regions of the spectral domain, which may then be coded

with psychovisual considerations in mind.

2.3.1 Design of Perfect Reconstruction Quadrature Mirror

Filters

The problem here is to design analysis/synthesis filters, such that i[n] in figure 2-6

is a perfect (or as perfect as possible) replica of x[n]. Downsampling corresponds to

a 'stretching' in the frequency domain [28], such that the frequency response of the

intermediate signal yi[n] is given by:

1 k-1 W 2rp w 2rpF(w X k k (2.20)
p=O

where we have assumed that ko, kl etc. are all equal to k. It is this 'stretching' that

causes aliasing in the frequency domain, as illustrated in figure 2-8. Upsampling on

the other hand, causes a 'compressive' rescaling of the of the frequency axis (illustrated

in figure 2-8), such that the expression for the output of the system in figure 2-6 is

given by:
M-1

X(w) = , Y1(kw)Gi(w) (2.21)
q=0

IX(ej a)I

I 0 Ic
M M

Original Signal

IX(e)I

7C 0 n
M M

Downsampling by K

IX(ej)

-7 X 0 X
M M

Upsampling by K

Figure 2-8: Effects of (a)
by a factor of k, without
represent the aliasing.

Combining the two gives:

X(w)

downsampling by a factor of k, followed by (b) upsampling
any anti-aliasing or interpolation filters. The shaded areas

q=0 =0

1 M-1
= - Z Fj(w)Gj(w)X(w)

q=O

l1 k-l 27p M-l (-)G
x + k E k~

p=l q=O
(2.22)

The first term corresponds to a linear shift-invariant system response, and the second

contains the system aliasing [34]. It is this second term which is to be eliminated by

appropriate design of the analysis and synthesis filters fi[n] and gi[n].

A further constraint we would like to have on our analysis/synthesis system is

orthogonality i.e. we would like the 'basis functions' of the analysis section to be

orthogonal to each other. This enables the transformation we have applied in the

analysis section to be easily inverted. In addition, coefficients derived using an or-

thogonal transform represent distinct information, and can be effectively used for the

kind of psychovisual weighting that subband transform coeffiecients are useful for.

When combined with the perfect reconstruction constraint, orthogonality yields the

constraint that the synthesis filters must be time reversed versions of the analysis

filters, i.e.

gi [n] = fi[-n], for all i (2.23)

Furthermore, orthogonality by itself yields the constraints that,

N-1

Z fi[n]fi[n - mki] = 0, for all m # 0 (2.24)
n=O

and,
N-1

E fi[n]fj[n - mk,] = 0, for all i 0 j (2.25)
n=O

where the filter sample locations are computed modulo N [34].

A number of techniques exist for designing orthogonal analysis/synthesis filters

for perfect reconstruction in a M band filter bank [38]. In this project the techniques

developed by Simoncelli [34] were employed. Using the most basic method, we select

M filters with the approximate characteristics we want (in terms of band cutoffs,

orthogonality etc.) and we derive a square, full rank analysis matrix A, such that

y = Ax (2.26)

where x is the vector of inputs and y is the vector of subband transformed outputs. We

then perform an iteration on the analysis matrix according to the following algorithm:

A' + [A + (A1)t (2.27)

It can be shown that starting from an appropriate matrix A, this method will yield

an orthogonal analysis system. The problem with this method is that it depends

on initial conditions and that we have no control over the frequency response of the

output. This can be improved upon by using a frequency sampling technique that

satisfies the perfect reconstruction constraint in the frequency domain. Both methods,

however, have the disadvantage that filters with sharp transitions in frequency are

difficult to realize, and thus the M band subband coder using these filters does have

considerable information 'leaking' across bands.

2.4 Temporally Predictive Coding: Motion Esti-

mation

All the methods described so far in this chapter have relied on exploiting the re-

dundancy amongst the pixels of an image to achieve compression. When an image

sequence needs to be coded, another source of redundancy becomes available: the pic-

ture does not change much from frame to frame. This leads to the idea of attempting

to predict a given frame from its immediately surrounding frames. This is a specific

case of a more general procedure known as predictive coding.

Predictive coding is based on the notion that it is more efficient to predict a

sample (which may be a frame, or just a pixel value) and code the error. Already

coded values from the sequence from which the sample is derived may be used for

forming a prediction. It is necessary in this case that the encoder be able to make the

same prediction that the decoder would make i.e. the encoder must have part of the

decoder built into it. Once the prediction has been formed at the encoder, it subtracts

the prediction from the original value, and then codes the error signal (using, perhaps,

one of the methods described earlier). The decoder takes a previously decoded value

and (possibly) combines it with additional information to form a prediction for the

current value. The error is then decoded and and added to the prediction to give the

decoded value of the sample. This process is illustrated in figure 2-9.

For predicting a frame from its surrounding frames, a procedure known as motion

estimation is used. This is based on the premise that most motion in a typical scene is

Previously
Apindpi

:ded
ror

a) b)

Figure 2-9: Block diagram of a predictive a) encoder and b) decoder.

translational. If we can obtain a vector field describing the motion from one frame to

the next, then one frame, along with the vector motion field (which is typically source

coded before transmission and decoded at the decoder), can be used to form a good

prediction for other frames. This procedure uses the 'analysis' section as indicated

in figure 2-9. Predictive coding schemes in general, such as Differential Pulse Code

Modulation (DPCM) do not always use such analysis. In DPCM, the previous value,

or a weighted sum of the previous few values is used as a predictor for the current

value, and the difference between the prediction and the actual value is transmitted.

Estimating the motion of objects in a scene is a very complex one. A number of

different approaches exist, including spatio-temporal constraint methods and region

matching methods [21]. Spatio-temporal constraint methods attempt to derive some

mathematical constraint on the pixel values of the image based on some image model

- such as that all motion in a image is translational with uniform velocity, to take

a simple case. Numerical methods for the solution of differential equations are then

used to obtain a solution satisfying the constraint. The most commonly used methods

in practice though, are region matching methods. These consider a small region in

Additional
information

dditional
formation

Previously
d•,.wipd

the image and attempt to estimate the motion of that region by finding a region in

the next frame which is the 'best match' - based on some error criterion.

Segmenting the image into appropriate regions, though, is a non-trivial procedure

and no 'optimal', or even 'correct' way of doing it is known. In practice, most region

matching estimators simply segment the image into blocks (ignoring the content) of

pixels. Typical block sizes are 8 by 8 or 16 by 16. Block matching consists of finding

the closest match to a block from the blocks of the previous image. Though ad hoc,

this method has the virtue of being conceptually simple and of working well with the

other compression schemes described earlier.

In general, a small area of pre-specified size in the previous frame, usually referred

to as the search window is used in searching for the 'best match'. The error expression

to be minimized is typically the based on the MSE or Mean Absolute Error (MAE).

Under the MAE criterion, for example, block matching finds, for each block, the

motion vector (d., dy) which minimizes

I I(x,y,t)- I(x - d,, y - d, t - 1), (2.28)

where I(x, y, t) is the intensity of frame t for the pixel coordinates (x, y), and R~ is

the search window. This process is illustrated in figure 2-10.

Block matching is based on three assumptions:

* all the motion in the scene is translational and parallel to the plane of the

camera.

* nearby pixels of the same object have equal motion.

* the size of revealed or occluded areas is small relative to the image size.

Since these assumptions hold approximately for most scenes (especially if the block

size is small relative to the size of the objects in the scene, and the sequence has

a reasonably high frame rate), block matching is a reasonably robust method for

performing motion estimation.

-

0iell--- -

Figure 2-10: An illustration of the block matching procedure. The image has been
segmented into blocks of m by m pixels. The block in the middle of the image in
this figure belongs to a previous frame. This is shifted and centered around all the
dots, which consitute the search window. The vector (d,, dy) (indicated by the arrow)
corresponds to the 'best match' amongst the positions searched.

Since the error has to be calculated for every point in the search window, motion

estimation by block matching is computationally a very expensive procedure - and

it grows as 0(n 2) as either the search window or the dimensions of the image are

increased in size. The size of the search window depends on image characteristics -

specifically the amount of motion in the scene under consideration, and the frame

rate of the sequence. If the sequence has been shot at a low frame rate, then the

amount of motion between frames will be large and a large search window will be

needed.

A number of approaches have been tried to reduce the computational burden of

the block matching. One commonly used method is to perform an n step search

over the search window, instead of an exhaustive search as shown in figure 2-10. In

the n step search we begin with doing block matching over n2 equally spaced blocks

spaced as widely apart as possible in the search window. We than do a similar search

over a smaller search window centered around the best match from the first step,

and so on. Though not as accurate as the exhaustive search, this method does yield

reasonable results and is widely used in practice because of its reduced computational

requirements. One thing to notice about the block matching problem in general is

that it is very appropriate for parallel processing implementations - error expressions

throughout the search window can all be separately and simultaneously computed in

parallel, and this fact is beginning to be exploited in practice. As noted earlier, the

high computational requirements for motion estimation by block matching for large

image sizes was one of the motivations for this project.

The encoder in a coding scheme based on motion compensation periodically en-

codes frames without any motion estimation, using the methods described in earlier

sections (this is known as intraframe coding), which is to be used for predicting other

frames after decoding. For each of the frames to be coded using motion estimation

(interframe coding), the encoder transmits a set of coded motion vectors and the

encoded error signal. The decoder uses the motion vectors and the error signal along

with the previous intra frame to form the motion compensated frames. Although

the description of the coding in this section has assumed that predictions may be

formed only from previous frames, this need not be true. In fact the MPEG coder

uses future frames (as well as previous ones) for prediction. This increases the storage

requirements and coding delay, but enables the coder to form better estimates.

2.5 Lossless Coding

All the coding methods discussed so far have been based on some form of lossy

quantization. For some applications, the distortion resulting from such lossy coding

is not desirable, and a different form of compression, usually referred to as lossless

coding is used. Lossless coding may also be applied after quantization, to exploit any

redundancy in the quantized data.

Lossless coders perform a one to one mapping between the original data and

the coded data, so that all the original data can be uniquely reconstructed and no

information is lost in the process. They do so by exploiting the statistical properties

of the data. The main idea is that more frequently occuring symbols are represented

with a smaller codeword, while less frequently occuring symbols use a larger codeword.

This reduces the average bitrate required. One feature of such a scheme is that it is

impossible to know a priori (without knowing the data) the total number of bits which

will be required to encode some data, and thus the average bitrate is not known. For

this reason, lossless codes are also known as Variable Length Codes (VLCs).

A source code C for a random variable X' is a mapping from X, the range of

X to D, the set of finite length strings of symbols from a D-ary alphabet. Let

X = (wl,... , wN), pi be the probability of each symbol wi, and li the length of each

codeword. The theoretically optimal coder is the one which minimizes the average

rate per symbol of the encoded output

N
b = -pil,. (2.29)

i=1

In addition to minimizing the bitrate, the optimal code also has to satisfy the re-

quirement of unique decodability. One way to make a code uniquely decodable is to

ensure that no codeword is a prefix of any other codeword. In this way there is no

ambiguity about the decoded symbol. Such codes are known as prefix codes.

It can be shown [3] that any prefix code over an alpahabet of size D, the codeword

lengths lI,..., vN must satisfy the Kraft Inequality

N

E 2-1 ' < 1, (2.30)
i=1

and, that if this inequality is satisfied, it is possible to construct a prefix code. Thus

the optimal lossless code is one which minimizes equation 2.29 subject to the con-

1X might be, for example, a random variable describing the probability law for all the possible
values at the output of a scalar quantizer

straint 2.30. We may use the method of Lagrange multipliers to show that 2.29 is

minimized when the optimal codelengths are:

1i = -logDp,. (2.31)

This non-integer choice of codeword lengths yields the average bitrate:

N 1
b* = HD(X) = pilo9D--, (2.32)

i=1 Pi

where HD(X) is known as the entropy of the source. In most cases, the codewords are

constructed from a binary alphabet (0 and 1) and thus D = 2. Equation 2.32 states

one of the fundamental results of information theory, first establised by Shannon [33]:

the minimum possible rate achievable by lossless coding of a source is given by the

entropy of that source.

Notice that equation 2.31 states that the entropy bound can be achieved only if

pi = 2- '•, (for D = 2). Now, if we code each symbol separately, the codeword length

li must be an integer. This implies that the entropy bound can only be achieved if

the symbol probabilities are a power of 2. Thus the entropy bound cannot in general

be achieved for a scalar coder. However, it can be shown [3] that a code can always

be constructed such that the average rate of that code is within one bit of the entropy

bound, i.e:

H(X) < b < H(X) + 1, (2.33)

where H(X) is the entropy for D = 2.

If we code more than one symbol at a time, though, we can get closer to entropy.

Suppose, we code K symbols together. Let the probability of each such K-vector be

pi, and the codeword length associated with each symbol be ii. Then the average

bitrate to be minimized is given by:

M

b = pill, (2.34)
i=1

Where M is the size of the symbol alphabet. Following the same analysis as before

for the vector case, we find that

H(X) < b < H(X) + 1. (2.35)

If we assume that the K symbols forming the vector are i.i.d drawn from X according

to pi, then the average bitrate per symbol and the entropy per symbol are given by 6

and -X. Thus,
1

H(X) < b < H(X) + (2.36)

Thus it is theoretically possible to achieve average bit rates arbitrarily close to the

entropy of the source by coding larger and larger blocks of symbols.

2.5.1 Huffman Coding

The optimal prefix code for a given distribution can be constructed by a simple

algorithm discovered by Huffman [12], [3]. The following is a description of the

Huffman coding algorithm:

1. List all possible messages and consider these messages the leaves of a binary

tree. Associate with each message its probability.

2. Pick the two messages with the least probability and create a parent node with

a probabaility associated with it which is the sum of the two leaves. Label one

of the branches with a one and the other with a zero.

3. If the probability associated with this node is one, go to step 4. Otherwise treat

this node as a leaf and go to step 2.

4. Follow the path from the root to each leaf. The sequence of bits associated with

the path to each message is the codeword associated with that message.

The encoder needs to transmit its model of the Huffman tree as well as the code-

words to the decoder. The above algorithm depends on the fact that the probabaility

distribution of the source is known. In practice this is seldom true. When Huffman

coding typical image data, it is customary to first go through the data and construct a

histogram of all the symbol occurences in order to obtain a probability mass function

for the data. If such a procedure is not desirable for the application being considered

(for example if it introduces too much coding delay), a procedure known as Dynamic

Huffman coding [36] can be used. In Dynamic Huffman coding, the process begins

with both the encoder and the decoder using a Huffman tree based based on an ar-

bitrary probability distribution for the data. As both the encoder and the decoder

receive symbols from the source, they modify their model the of the source's proba-

bility distribution and hence their Huffman trees in a known manner. As the length

of the entire message approaches infinity, this procedure yields the correct Huffman

tree and thus the optimal coding scheme.

As noted above, because of the restriction of using integer length codewords, the

entropy bound can only be achieved if block coding is performed. Huffman coding

yields suboptimal performance perticularly when the probabiltiy distribution is higly

skewed. For example if one symbol has a probability of 0.9 associated with it, it

should take no more that 1og20.9 = 0.15 bits to encode it. However, we use one

bit, which is more than six times as much to encode this bit, and since this symbol

will occur frequently, good performance will not result. Block coding also presents a

problem though, since the probability laws become more complicated and the size of

the encoding table inceases exponentially with block length, increasing coding delay.

For these reasons, another approach, known as arithmetic coding is often used.

2.5.2 Arithmetic Coding

Arithmetic coding is another form of lossless coding whose performance approaches

the entropy bound. However, instead of assigning each symbol or group of symbols

in the message a codeword as in Huffman coding, arithmetic coding assigns a unique

codeword to the entire message. The restriction of integer length codewords per

symbol is therefore done away with and, especially in cases where Huffman coding

works poorly, arithmetic coding can more closely approach the entropy bound.

The basic algorithm for arithmetic coding is as follows:

1. Divide the interval [0,1) on the real line into a set of subintervals each of length

equal to the probability of each symbol in the input alphabet. This is the main

interval.

2. To code the next input symbol, choose the subinterval associated with that sym-

bol. Make this the new main interval and divide it into subintervals according

to the input probabilities, as in 1.

3. Indicate to the decoder the boundaries of the current main interval. If there

are more symbols in the message, go to step 2. Othewise stop.

A sequence of symbols is thus translated into a successively smaller interval which

uniquely identifies the input sequence. In fact, both ends of the interval need not be

transmitted - any number inside the interval may be used to uniquely identify the

input message. The compression is provided by the fact that symbols with higher

probabilities have longer intervals associated with them, and it takes fewer bits to

describe a number in a longer interval. Note that the decoder need not wait for the

encoder to be done before it can start decoding. As the interval becomes narrower

and narrower, more and more digits of a number that falls within this interval become

set, and the decoder can use this information to begin decoding the sequence.

As an illustration of the efficacy of arithmetic coding consider an example with

only two symbols: A 0 with probability 16382/16383 and an end of file character

with probability 1/16383. Suppose a message has 100,000 O's and one end of file

character. Using arithmetic coding, this message can be compressed using three

bytes, while Huffman, or fixed length coding would take 12,501 bytes to compress

this message [27]. Though obviously very contrived, this example does illustrate the

kind of situation in which arithmetic coding provides a big win over Huffman coding.

In practice, implementations of arithmetic coding are not as simple as described

above since the arithmetic precision required to code a message keeps growing with the

length of the message. Thus, periodic renormalizations of the interval are required in

real implementations. Recently, the Binary Arithmetic coder or Q coder, has proven

to be very popular. The Q coder begins with converting the K letter alphabet into

a string of binary values, perhaps by using some inefficient fixed length code. These

values are then coded using arithmetic coding. One of the reasons why the Q coder is

so popular is the simplicity of its implementation, since it involves binary arithmetic.

Good explanations of arithmetic coding intricacies and implementation details are

provided in [30] and [40].

2.5.3 Run Length Coding

Many types of data have long runs of the same value as a form of redundancy. For

example two tone facsimile images have large regions of either black or white. Another

example is the quantized pixel value data from the high subband of an image which

does not have a lot of high resolution detail. In such a case, most of the pixel values

will be zero, and a lot of runs of zeros will be expected. Run lengths are a particularly

simple form of redundancy to compress - one needs to code only the value and the

length of a run of each value.

It can be shown [16] that if the source can be modeled as a first order Markov

process (i.e. if one value of the source depends only on the previous value), then

the maximum compression that can be achieved by run length coding is equal to the

reciprocal of H(X), where H(X) is the entropy of the source. This makes intuitive

sense, since the more skewed a probabaility distribution is, the lower entropy. And

a more skewed distribution implies longer runs - which allows run length coding to

perform better.

In practice, run length coding is usually followed by a Huffman coder in order to

exploit the remaining redundancy in the data. Using this combination it is possible

to bypass the main weakness of Huffman coding alone - that it does not work well

with highly skewed distributions beacuse of the integer length codeword constraint.

As an illustration of this consider again the example at the end of the last section. A

source has two symbols: 0 with probability 16382/16383 and an end of file character

with probability 1/16383. A message with 100,000 Os and an end of file character can

be run length coded simply by indicating a run of 100,000, which can be done in 4

bytes. So arithmetic coding no longer has a particular advantage over Huffman coding

if the Huffman coder is preceded by a run length coder. Popat [31] cites evidence

that this is particularly true at low bitrates (below 1.6 bits per sample for a gaussian

source). However, at higher bitrates and for large alphabet sizes the codebook for run

length coding becomes very large, since all possible run/magnitude pairs need to be

accounted for. The conceptual and implementational simplicity of run length coding

leads it to be often preferred over arithmetic coding at low bitrates.

For more on run length coding see Jayant and Noll [16] or Huang et. al. [26].

2.5.4 Entropy coded quantization

In section 2.1, the optimum scalar quantizer for a given pdf was presented (equa-

tion 2.7). Quantized data is often entropy coded. The reason for this is that using

fixed length codes for transmitting quantized data (i.e. essentially performing no

further coding) is optimal only for uniformly distributed data, and the output of a

quantizer is often not uniformly distributed, even though that may be the aim of such

a quantizer.

The introduction of variable length coding after quantization introduces a further

design parameter into our problem of data compression with minimum distortion,

however, and the analysis of section 2.1 is no longer valid in this case. It can be

shown [16] that for a given distortion, the uniform quantizer will achieve the minimum

entropy when quantization is followed by entropy coding (under the assumption of

high bitrate coding). This result depends on the fact that we can (theoretically) have

an arbitrarily large number of reconstruction levels. The reason why we can have a

large number of reconstruction levels and still achieve a small average bitrate is that

quantization intervals which are not very likely contribute very little to the average

bitrate after being entropy coded. In fact we can (theoretically) have an infinite

number of quantization levels and still have a finite average bitrate.

The advantage of using a uniform quantizer for such an entropy coded quantizer

can be intuitively explained in this way. Suppose we have two quantizers Q1 and Q2.

Q1 has been optimized to achieve minimum distortion according to equation 2.7, while

Q2 is a uniform quantizer with an unlimited number of levels. Since Q1 minimizes

distortion, quantization intervals are closer together in regions of high probability

density and further apart in regions of low probability. Thus the total area under

the pdf covered by each reconstruction level is approximately the same and the out-

put of the quantizer will have approximately uniform probability distribution. For

Q2, though, reconstruction levels in regions of high probability will have a greater

likelihood of occurence than levels from regions of low probability density. Since the

more uniform a distribution, the higher its entropy, the output of Q2 will have a

lower entropy than the output of Q1, which an intelligently designed entropy coder

can exploit. The average distortion for Q2 may be higher, but it may be decreased by

increasing the number of quantization intervals. In addition, because of an unlimited

(or in practice, large) number of levels, Q2 does not suffer from overload distortion2 .

The result of all these effects is that Q2 is able to achieve the average distortion of

Q1 with a lower codeword entropy.

For this reason uniform quantizers followed by entropy coders are a very popular

component of practical image coding systems.

2this type of distortion results from the inability of a quantizer to cope with high values of input
data. Such values are not very probable and are thus part of a large quantization interval, with a
relatively low reconstruction value assigned to them

Chapter 3

The MPEG-2 Coding Standard

The MPEG (Motion Picture Experts Group) coding standard is a generic coding

scheme designed to deal with digital video compression over a wide variety of appli-

cations. Generic means that the standard is independent of a particular application;

it does not, however mean that it ignores the requirements of the applications. MPEG

developed in response to the need for a standard in a field that was seeing a rapid

growth in compression schemes for video for different applications. Storage media

such as CD-ROMs, tape drives and writable optical drives as well as telecommunica-

tion channels such as ISDNs and local area networks were being used to carry digital

video. The need for a standard was sorely felt in order to facilitate interoperability.

The original MPEG proposal was standardized by the ISO (International Orga-

nization for Standardization) in 1990 and was meant to address the compression of

video signals at about 1.5 Mbits per second (including audio). It was developed with

a number of desirable characteristics for such a generic coder in mind. These included

the ability to perform random access, fast forward and reverse searches, reverse play-

back, audio visual synchronization, robustness to errors, low coding decoding delay

for applications such a videotelephony, editability and the ability to perform real time

encoding/decoding without too exorbitant a cost [7].

MPEG-2 is a modification of MPEG, in order to deal with a wider, and more

demanding, variety of applications - most importantly HDTV and regular television

broadcast over satellite and cable. It is meant to address video compression for rates

upto about 40 Mbits. In addition, the MPEG-2 bitstream may be scalable A base layer

carries a video signal at a low resolution (in terms of spatial or temporal resolution or

SNR) which can be encoded and decoded by itself. This may be supplemented by an

enhancement layer, which, when appropriately decoded and added to the base layer

provides extra resolution.

Since MPEG is meant to be a generic standard for a variety of applications it de-

fines a syntax for the bitstream i.e. it defines the types of operations which are allowed

under the standard, the sequence they must occur in and the type of data they can

contribute to the bitstream. It leaves the implementations of the different operations

to the discretion of the user, who may use different algorithms depending on the ap-

plication and the state of the art in terms of technology. MPEG is organized as a set

of different profiles. Each profile is composed of a subset of the syntax and supports a

specific functionality. A profile can have different levels, which put constraints on the

parameters and are usually associated with different resolution input formats (SIF,

CCIR, 601, HDTV, etc.). The intent behind this organization was to have a measure

of flexibility within the standard and to facilitate interoperability between different

encoders and decoders. This chapter will describe the main profile [14] - the core of

the codec around which the other profiles are built.

3.1 Overview of the Codec

As mentioned previously, the MPEG-2 algorithm uses motion compensation for tem-

poral redundancy reduction and block based DCTs for spatial coding. The quantized

data (DCT coefficients) is further compressed using variable length coding - MPEG

outputs a variable length bitstream. Rate control is achieved by adaptively control-

ling the quantization step size. These main operations of the codec are summarized

in the simplified block diagrams of the encoder and decoder in figure 3-1 a) and b)

respectively.

DCT - 8x8 Discrete Cosine Transform
DCT1 - 8x8 Inverse Discrete Cosine Transform

Q
Q-V
VLC

-Quantization
- Inverse Quantization
- Variable Length Coding

Figure 3-1:
From [20].

Simplified block diagram of MPEG-2 codec: a) encoder, b) decoder.

3.2 Video data structures

A source or reconstructed picture in MPEG-2 consists of three rectangular matrices

of integers. A luminance matrix (Y) and two chrominance matrices (Cb and Cr).

The luminance and chrominance matrices are obtained from the RGB representation

by applying a linear transform as defined in the CCIR 601 Recommendation [15], or

by a transformation specified in the bitstream.

MPEG-2 represents video in a hierarchical manner as shown below

Sequence

{Group of Pictures}

Picture

Slice

Macroblock

Block

A sequence may consist of one or more groups of pictures (GOPs) or one or more

pictures. The GOP layer is optional and consists of one or more pictures grouped

together in a sequence meaningful for the motion compensator (to be discussed later).

Pictures correspond to a single frame of the image sequence. The main function of

the slice layer is to provide a means of resynchronizing the decoder after an error has

occured in the bitstream.

Each slice consists of an arbitrary number of macroblocks in the same horizontal

position. A macroblock is in turn made up of blocks. A block is an 8 by 8 pixel

region of the picture. Each macroblock consists of four luminance (Y) blocks and

a fixed number of chrominance blocks depending on the format of the video being

coded (4:4:4, 4:2:2 or 4:2:0). Most applications use the 4:2:0 format in which the

chrominance channels are both downsampled by a factor of two in either dimension.

For the 4:2:0 format, each macroblock consists of 4 Y blocks and one block each of the

Cb and Cr components, giving a total of 6 blocks per macroblock. In the 4:4:4 format,

the chrominance components are not subsampled - this corresponds to 12 blocks per

macroblock. In the 4:2:2 format, the chrominance components a sampled by 2 in the

horizontal direction only, corresponding to 8 blocks per macroblock. The choice of

format depends on the quality of input available and output desired. A macroblock

that is not coded is referred to as a skipped macroblock. Each slice may begin and

end only with a non-skipped macroblock. Figure 3-2 illustrates this structure.

Picture lAyer

Slice 3
Slice Layer

MB I MB2 I MB3 *. *.. *. *

Macroblock Layer

Y Y2

Figure 3-2: Spatial data structures within MPEG-2

MPEG-2 supports both progressive and interlaced sequences, and the type of

coding algorithm depends on the input type. Two picture structures are defined for

interlaced sequences: in field pictures each field is considered a separate entity, while

frame pictures, obtained by merging two fields together in a single frame, each frame

is considered a unique entity. Macroblocks in frame pictures contain both fields, while

macroblocks in field pictures contain only one field. The way motion compensation

and spatial processing is performed on an interlaced sequence varies according to

whether the picture is of frame or field type.

3.3 Temporal Processing

There are three common picture types in the MPEG-2 bitstream:

* Intra (I) frames are coded without any temporal processing. Only Intraframe

coding, based on DCTs is allowed.

* Predictive (P) frames are coded by motion compensation using a temporally

previous frame, and

* Bidirectional (B) frames are coded by motion compensation using both a tem-

porally previous frame and a frame in the future.

The ordering of these frames within a sequence is specified by two parameters: M

and N. M describes the relative frequency of P frames. Every Mth frame that is not

an I frame must be a P frame. If M = 1 then there are no B frames - every frame is

a P frame except for the I frames, whose frequency is described by the N parameter.

Every Nth frame is an I frame. A P frame can only be predicted from the previous

I or P frame, and a B frame can only be predicted using the nearest I or P frames

that follow or precede it. These features are demonstrated in figure 3-3, where M =

3, and N = 2.

A group of pictures (GOP) is typically an I frame followed by a succession of

P and B frames before the next I frame. A GOP header is used to distinguish

between GOPs, whose structure may be changed in the bitstream. GOPs are meant

to facilitate random access, reverse playback and editability. Applications requiring

these features will typically have short GOPs.

yr

I

F,

I, yrr

I Frame P Frame B Frame

Figure 3-3: Example of a GOP structure with M = 3, N = 15. The arrows indicate
the frames from which each P or B frame was predicted.

The non causal character of the B frames requires that a frame store (of M-1

frames) be kept for both encoding and decoding. The natural order of the frames

(referred to as the display order) cannot be used for coding. A coding order requires

that the the I and P frames which are being used to form predictions come before

the P and B frames which will be predicted from them. For example, if the display

order is:

vr \r !

11
j ...

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ...

IB B P B B P B B I B B P B B P

then the coding order is:

1 4 2 3 7 5 6 10 8 9 13 11 12 16 14 15 ...

IP B B P BB I B B P B B P B B ...

Fortunately, frame reordering may be achieved simply my moving pointers to frame

buffers.

Predictions are formed by block matching (described in section 2.4) on the lu-

minance component of each macroblock (i.e. a 16x16 block size is used), and the

motion vectors so obtained are appropriately scaled (depending on the input for-

mat) and used for the chrominance blocks. Typically the error criterion used is the

MAE 2.28, since it is the simplest and computationally cheapest to implement. The

motion vectors are computed to half pel accuracy. This is done by predicting an extra

pixel in between any two pixels in the image (being used to form a prediction) by

simple linear interpolation from the immediately surrounding pixels, as demonstrated

by the following equations.

P(x + 0.5, y) = (P(x, y) + P(x + 1, y))/2

P(x,y+0.5) = (P(x,y)+ P(x,y+ 1))/2 (3.1)

P(x + 0.5, y + 0.5) = (P(x, y) + P(x + 1, y) + P(x, y + 1) + P(x + 1, y + 1))/ 4

Once a motion vector has been computed to single pel accuracy using the tradi-

tional techniques, an exhaustive search can be carried out on the eight surrounding

vectors within half a pel of the full pel motion vector.

The way in which predictions are formed depends on the picture type and one of

the three prediction modes associated with each type. For frame-type pictures the

three modes are,

* frame mode, in which motion vectors (one for P macroblocks, two for B mac-

roblocks) are generated for the entire macroblock by block matching using the

full 16x16 luminance block.

* field mode, in which a vector is generated separately for each field in the mac-

roblock from the two most recently decoded fields. A motion vector may be

generated from a field of the same parity or of different parity, whichever yields

better results. Thus, two vectors per macroblock are generated for P mac-

roblocks, and four for B macroblocks.

* dual-prime mode tries to combine the reduced overhead of frame mode predic-

tion with the coding gain typical of B frames. One vector is generated per

macroblock. However, each field in a macroblock is predicted from both fields

of the prediction frame, and a single motion vector is created by interpolation

between the vectors for the two fields. The motion vector thus derived indi-

cates a pixel to be used for prediction of a particular pixel in a field of the same

parity. This motion vector is then scaled, corrected in the vertical direction to

reflect the vertical difference between fields of opposite parity, and added to a

differential value of small amplitude (restricted to be 0 or -1) in order to point

to a second pel in the field of opposite parity. These two pels are then averaged

to form a prediction. This process is repeated in order to predict a value in

the next field, using the same vector and differential value. Dual-prime mode is

only used in P pictures when there are not B pictures in between the predicted

and reference fields or frames.

Typically, the field and frame modes are combined into a field/frame adaptive mode,

where the best of these two prediction methods is chosen at the macroblock level.

The field mode is more efficient in areas of strong motion, where the two fields can

be displaced by different amounts, whereas frame mode works more efficiently in less

active areas, since it requires only half the number of vectors. Field type pictures

have three modes as well.

* In field mode a vector is generated for each macroblock by searching over the

same region in reference fields of both types (using a 16x16 block size), and

using the best prediction. One vector per macroblock is generated for P type

macroblocks and two for B type macroblocks.

* 16x8 mode partitions each block into an upper and a lower region and generates

motion vectors for each sub-block in the same way as in field mode (except that

it uses 16x8 blocks). The rationale behind this is that a 16x16 block in field

pictures represents a 16x32 block in a real picture, and a 32 pixel height is too

much for efficient motion compensation.

* In dual-prime mode, a macroblock from each reference field is used for predicting

a macroblock. The two motion vectors so obtained are linearly interpolated

to get a single motion vector. This motion vector, along with a differential

value, is used to provide two motion vectors for predicting a macroblock from a

macroblock of either parity by linear interpolation. As for frame pictures, dual

prime mode is used only for P pictures when there are no intervening B pictures

between the reference and the prediction.

The number of arithmetic operations required to compute a full pel motion vector

per macroblock is proportional to the square of the range of the search window. As-

suming that the search window is ±range pels in both width and height, the number

of computations required is:

Possible number of vectors = (2 x range + 1)2

Number of arithmetic operations to calculate MAE/vector = 2 x 162

Total number of operations = 512 x (2 x range + 1)2

When more than one vector has to be generated per macroblock, the computational

burden is increased. For example, in field/frame adaptive mode (for frame type pic-

tures), three vectors need to be generated. In this case, however, we can use the fact

that the total MAE per macroblock is the sum of the MAE between two odd fields

and the MAE between two even fields shifted by the same amount. So for field/frame

adaptive mode we need to perform four searches amongst 4 possible combinations

reference field/predicted field pairs. The number of computations required is then:

Possible number of vectors = 4 x (2 x range + 1)2

Number of arithmetic operations to calculate MAE/vector = 2 x 16 x 8

Total number of operations = 256 x 4 x (2 x range + 1)2

In order to refine each computed full pel vector to half pel accuracy, three new

points need to be calculated by interpolation for every point in the original frame.

These three points require a total of five 2 point interpolations. Each 2 point interpo-

lation consists of one addition and one division operation. Another eight macroblock

size compares (involving calculation of the MAE) must then be performed. Thus:

Number of 2 point interpolations per macroblock = 5 x 16'

Number of operations for half pel refinement/ frame vector = 8 x 2 x 162

Number of operations for half pel refinement/pair of field vectors = 2 x 8 x 2 x 16 x 8

Number of operations for half pel refinement/3 field/frame vectors = 2 x 8 x 162,

Once the required motion vectors have been calculated for a particular macroblock,

it remains to be decided which vector(s) give the best prediction and whether this

prediction is sufficiently close to be useful. The best vector(s) are chosen in terms of

whichever one minimizes the chosen error criterion. This requires only a few additions

and compares per macroblock. Several macroblock types are possible, depending on

the frame type.

* P frame macroblocks can be predicted from a past frame (forward predicted

macroblocks), or not predicted at all (intraframe macroblocks).

* B frame macroblocks can be predicted from a past frame (forward prediction),

from a future frame (backward prediction), from an interpolation from both past

and future frames (interpolative prediction), or not predicted at all)intraframe

mode).

Having chosen the best vector, a decision needs to be made about whether trans-

mitting the motion vectors will result in a coding gain if a motion vector set to zero

is used for prediction. This decision is made according to figure 3-4, used for a coder

using the MAE error criterion [20].

MAE (best vector(s))/256

7

6

5

4

3

2

1

0

0 1 2 3 4 5 6 7 MAE (0 vector)/256

Figure 3-4: Motion Compensated or No Motion Compensation decision characteristic.

Deciding whether the best motion vectors calculated above is/are better than

just coding the block in INTRA mode (using only intraframe prediction) is done by

comparing the variance of the residual luminance component and the variance of the

luminance of the original macroblock, using the characteristic given in figure 3-5.

Having decided the type of the macroblock to be transmitted, the macroblock is

subjected to a DCT and then quantized.

Motion compensation at the decoder consists of decoding the macroblock vectors

and then using them as offsets for macroblocks from the previously decoded frames

into a prediction store. The dequantized residual values are then added to the pre-

diction to form the decoded image. Thus, in terms of arithmetic operations, motion

compensation involves 64 additions per block.

VAR (residual)

256

192

128

64

0

Non-Ir

- ---------

0 64 128 192 256 VAR (original)

Figure 3-5: Intra / Non-intra coding decision.

3.4 Spatial Processing

After motion compensation has been performed, spatial redundancy within a frame

is minimized by using the 8x8 block DCTs on each of the luminance and chrominance

blocks. The DCT is applied to the pixel values directly for Intra macroblocks, while

the motion compensated macroblocks (P and B types) have DCTs applied to the

residual data (the difference between the prediction and the actual data).

There are two different modes for DCT coding:

* In frame DCT mode, each block contains lines from both fields interleaved

together and the DCT is applied without any consideration of the interlaced

nature of the macroblock.

* In Field DCT mode, lines from each field are used to form different blocks, and

an 8x8 DCT is performed on these.

Both these procedures are explained in figure 3-6.

Field type DCTs are more effective when there is a lot of motion between fields

and significant vertical detail. This causes vertical edges to appear serrated when

fields are interleaved, introducing high vertical frequencies which are difficult to code.

Frame DCTs are more efficient when there is not a lot of motion or vertical detail,

a I I I

I

a 3 ·

a) b)

Figure 3-6: Macroblock structure for a) frame DCT, b) field DCT.

since the higher vertical resolution allows us to compress the vertical redundancy

more effectively. The decision about which DCT mode to use is based on comparing

the total error between successive lines in a macroblock with the total error between

every other line in a macroblock. If the former is higher, it indicates a large inter-field

error, and field mode is used.

We can take advantage of the separable nature of the DCT and employ row col-

umn decompositions (see section 2.2) to reduce the computational requirements of

taking a DCT or IDCT. We can deduce from looking at equations 2.15 and 2.17 that

direct computation would require (for a N by N block) N'(N2 - 1) additions and

N4 multiplications. However, using row column decomposition, we need to perform

N 1D N point DCTs (along the rows) followed by N 1D N point DCTs (along the

columns). Since each 1D N point DCT takes about N 2 multiplications and N(N - 1)

additions, we need, for each N x N (or 8 x 8) block:

Number of multiplications = 2 x N3 = 2 x 83

Number of additions = 2 x (N - 1)N2 = 2 x 7 x 82

Computation of the IDCT simply uses a different set of basis functions and uses

the same number of operations per block. Direct computation of the 1D DCT/IDCT

has been used in our implementation. More efficient implementations, using FFT

(Fast Fourier Transfrom) algorithms to derive the DCT (there is a simple relationship

between N point DFTs and DCTs) are possible [21].

|

|

After application of the DCT, the transformed coefficients are quantized. Varying

the quantization parameters is the main method of achieving rate control within

MPEG-2. A larger quantization step size results in more information being lost and

degradation of image quality, but the picture can be coded using fewer bits.

Quantization of transform coefficients is a two step procedure. First a prespecified

quantization weighting matrix, common to all blocks in a frame is applied to the block

coefficients. Each modified coefficient is then scalar quantized, with a quantization

step size that is determined by the local image activity and the available transmission

rate.

Typical quantization matrices weigh the coefficients unevenly to reflect both the

subjective (visual) and objective (in terms of total amount of energy represented)

importance of the lower frequency coefficients. They also provide an easy way to

perform threshold coding - any coefficient of amplitude less than the quantizer

step size is automatically zero, and by dividing high frequency components by a large

number, quantization matrices increase the effective step size of the quantizer for these

components. The quantization matrix is different for intra and non-intra macroblocks.

This is due to the fact that non-intra macroblocks contain residual energy, which is

highpass in nature, and both the subjective and objective importance of the resulting

DCT coefficients is roughly equivalent. Quantizing the higher frequency coefficients

much more coarsely would throw away a lot more of the macroblock energy for the

non-intra case than for the intra case. The default quantization matrices for the two

cases are shown in figure 3-7. These matrices can be changed and specified in the

bitstream.

The next step in the quantization process is to find an appropriate quantization

step size. This is done by setting the value of the quantization parameter mquant,

which is done in three steps 1.

1. Before a frame is coded, a target bitrate is set by computing the number of bits

1For this project the rate control mechanism described in the MPEG Test Model 5 [2] was imple-
mented. As far as the MPEG syntax is concerned we may substitute any method for determining
mquant.

w (i j)

i j)

I -

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

1N66 , j1

16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16

a) b)

Figure 3-7: Quantization matrix for a) intra, b) non-intra macroblocks.

available for the frame. This is done by means of a set of formulas that attempt

to keep the ratio of bits allocated to I, P and B frames approximately constant.

2. By means of a 'buffer fullness' of a 'virtual buffer' a reference quantization value

is calculated per macroblock. The buffer fullness is a measure of the deviance

of the coder from the target bitrate per macroblock, and this portion might be

viewed as a kind of feedback loop. The macroblock to be coded is assigned a

large quantization step size if the previous macroblocks have been taking more

bits than they should have taken to maintain the target bitrate calculated in

step 1.

3. The reference value of the quantization parameter calculated in step 2 is mod-

ulated according to the spatial activity in the macroblock. If the variance of

the macroblock pixels is high, then presumably the macroblock contains a lot

of detail that can mask noise - allowing the coder to increase the quantization

parameter. The activity measure, based on variance, is normalized with respect

to the average activity measure in the previous frame. This normalized measure

is multiplied with the reference parameter obtained in step 2 to yield the value

of mquant.

The exact equations for determination of mquant are given in [2].

The main computational burden incurred in doing the rate control is in computing

the variance of the macroblocks. According to the TM5 specifications, the variance

over 8 luminance blocks per macroblock is calculated and the minimum variance is

used for the final value. The 8 luminance blocks are the 4 luminance blocks treated as

if they were part of a field picture (i.e. with different fields in different blocks) and the

4 blocks treated as if they were part of a frame picture (i.e with two fields interleaved

together in the same block). For each block, calculation of the mean is done first. This

requires 63 additions and 1 division. Calculation of the variance requires a further

64 multiplications, 127 addition/subtractions, and 1 division per block. In addition,

another 4 additions/subtractions, 5 divisions, and 4 multiplications are required per

macroblock. Thus for rate control, the total number of operations (excluding a small

overhead of operations per frame) is:

Function Multiplications Divisions Additions

Rate Control 516 13 1020

Since the DC transform coefficient (which represents the average value) is ex-

tremely important both subjectively and objectively, it is quantized using a fixed

scalar quantizer, whose step size may be 8, 4 or 2, according to the desired accu-

racy specified in the bitstream. For intra blocks, the AC coefficients are quantized

using mquant (which is calculated for every macroblock) according to the following

equations.

QDC = dc// {8, 4, 2}, depending on the required accuracy,

ac ~ (i,j) = (16 x ac(i,j))//wj(ij),

QAC(i,j) = [ac ~ (i,j) + sign(ac ~ (i,j)) x ((p x mquant)//q)]/(2 x mquant),
(3.2)

Here QDC and QAC are the quantized dc and the quantized ac coefficients at po-

sition (i,j) respectively, and // represents division followed by rounding off to the

nearest integer. The two parameters p and q are fixed at 3 and 4 respectively for this

implementation, wi is the intra quantization matrix whose default value is specified

in figure 3-7, and

sign(X) =
+1,

-1,

0,

if X > 0

if x < 0

if z = 0.

The quantized coefficients are reconstructed according to:

recon dc

reconac(i, j)

= QDC x 8,4, 2

= [2 x mquant x mquant x QAC(i,j) x wi(i,j)]/16

A similar procedure is followed for quantizing non-intra coefficients. Specifically,

quantization is performed according to:

ac ~ (i,j)
QAC(i,j)

(16 x ac(i,j))//WN(i,j),
ac ^ (i,j)/(2 x mquant).

(3.5)

Here ac(i,j) refers to all the coefficients, including the dc value. WN is the non-intra

quantization matrix.

Dequantization is then performed according to the following equation.

reconac = [(2 x QAC(i,j) + sign(QAC(i,j)) x mquant x wN(i,j)]/16,

recn ck(,j) = reconc(i,j), if QAC(i,j) # 0reconblock(s ,) =
0, if QAC(i,j) = 0

(3.6)

Note that the last of the above equations implies that the quantizer has a deadzone

i.e. that a larger than usual range of values around zero get quantized to zero.

Based on these expressions for quantization/inverse quantization, the number of

arithmetic operations required per macroblock are given below.

(3.3)

(3.4)

Function Multiplications Divisions Additions

Intra Quantization 128 128 63

Non-intra Quantization 65 128 0

Intra Dequantization 129 63 0

Non-intra Dequantization 192 64 64

3.5 Variable Length Coding

After quantization has been performed on the transformed macroblock, the non-

zero coefficients, along with the motion vectors, quantizer and other parameters are

entropy coded to further increase the compression. The vlc encoded data is then

incorporated into the bitstream according to the MPEG-2 syntax. To reduce over-

head, the contents of each block are examined for non-zero coefficients. If none are

found the the block is deemed non-coded, otherwise it is classified as coded. If a block

is deemed to have been coded then the quantizer value is examined to see if it has

changed from the previous macroblock. If it has then the quantizer must be resent.

To indicate the blocks that are non-coded, and thus not sent, a coded block pattern

needs to be transmitted for each macroblock

Since neighbouring blocks typically have similar means, the dc coefficients from

the DCT are coded using DPCM - the value of the previous block's dc component

is used as a predictor for the current dc value and the difference is losslessly coded

according to a prespecified table in the MPEG-2 specifications.

In coding the ac coefficients, the coder takes advantage of the fact that neigh-

bouring coefficient values have similar amplitudes by using an intelligently chosen

scanning order to encode the coefficients. The lower frequency coefficients have rela-

tively high amplitudes, and many of the higher frequency components are zeroed out.

Zero runs amongst the high frequency components are fairly common, and this fact is

exploited by employing run length coding. Two scanning orders are specified: zig zag

scan and alternate scan. These are shown in figure 3-8. Zig zag scan is the default

a) b)

Figure 3-8: Scanning orders for DCT coefficient coding: a) Zig Zag Scan, and b)
Alternate Scan.

scanning order and works well with progressive pictures, while alternate scan works

better with interlaced pictures. The scanned vector of coefficients is then run length

coded. MPEG-2 specifies a table of vlc's for commonly occuring run-amplitude pairs.

Uncommon run-amplitude pairs are escape coded - i.e. an escape symbol followed

by fixed length coded run and amplitude values is used.

Motion vectors are also differentially coded. Four separate predictors are kept,

which are used to form the four different types of predictions that may be required

for each of the modes in each picture type. In Test Model 5, the following rules are

obeyed for encoding motion vectors:

* Every forward and backward motion vector is coded relative to the last vector

of the same type. Each component of the vector is coded independently, the

horizontal component first and then the vertical component.

* The prediction motion vector is set to zero in the macroblocks at the start

of a macroblock slice, or if the last macroblock was coded in intra mode. A

no motion compensation decision (according to figure 3-4 also corresponds to

setting setting a predictor to zero.

* Only vectors used for the selected prediction mode are coded. Only vectors that

have been coded are used as predictors.

-7/-7./' /"+'

¢/////A
////1A
(/////Z

I 1A A1 A A A AI 1A

VV) V)) v

/(I A V A V A

I _-) M V 1 I

Vectors are coded in raster scan order. The differential components are then variable

length coded using a vlc table derived from statistical experimentation. Tables of

vlc's are also used to encode other MPEG parameters and variables, such as coded

block pattern, or macroblock type 2.

3.6 Summary of Computational Requirements

Tabulated in this section is a summary of computational requirements for encoding

CCIR 601 (480 x 704) and HDTV (720 x 1056) resolution pictures using MPEG-2.

For these calculations, it is assumed that 4:2:0 input format, and field/frame adaptive

motion compensation is being used. The figures presented here are for one frame.

In addition to arithmetic operations, memory copies for the purpose of motion

estimation, half pel buffer construction, motion compensation etc. will also be re-

quired and these will take time to do. No computational requirements are presented

for variable length coding. It is assumed that this can mostly be done using table

lookups.

HDTV Resolution

60 frames per second

upto 45 x 66 macroblocks per frame = 178,200 macroblocks/second

6 blocks per macroblock = 1,069,200 blocks/second

CCIR 601 Resolution

30 frames per second

upto 30 x 44 macroblocks per frame = 39,600 macroblocks/second

6 blocks per macroblock =• 237,600 blocks/second

2This parameter in the MPEG-2 stream, in addition to specifying the type of motion prediction,
also contains information about whether the macroblock in coded or non-coded arid whether the
quantizer needs to be reset.

HDTV Resolution

Functional Block

Frame Reorder (encoder)

Frame Reorder (decoder)

Mult/Div Add/Sub

Motion Estimation (full pel, full search, range = 15)

Motion Estimation (full pel, full search, range = 45)

Half Pel Buffer Construction

Half Pel Refinement

Motion Compensation

DCT

IDCT

Quantization (Intra)

Quantization (Non-intra)

Dequantization (Intra)

Dequantization (Non-intra)

Rate Control

3,801,600

18,247,680

18,247,680

4,561,920

3,439,260

3,403,620

4,561,920

1,571,130

2,922,670,080

25,184,839,680

3,801,600

24,330,240

1,140,480

15,966,720

15,966,720

1,122,660

1,140,480

3,029,400

VLC

VLD

CCIR 601 Resolution

Functional Block

Frame Reorder (encoder)

Frame Reorder (decoder)

Mult/Div Add/Sub

Motion Estimation (full pel, full search, range = 15)

Motion Estimation (full pel, full search, range = 45)

Half Pel Buffer Construction

Half Pel Refinement

Motion Compensation

DCT

IDCT

Quantization (Intra)

Quantization (Non-intra)

Dequantization (Intra)

Dequantization (Non-intra)

Rate Control

VLC

VLD

1,689,600

8,110,080

8,110,080

2,027,520

1,528,560

1,512,720

2,027,520

698,280

1,298,964,480

11,193,262,080

1,689,600

10,813,440

506,880

7,096,320

7,096,320

498,960

506,880

1,346,400

HDTV Resolution

I Frame Encode

Half Pel Buffer Construction

DCT

Quantization (Intra)

Rate Control

VLC

P Frame Encode

Motion Estimation (full pel, full search, range = 15)

Half Pel Refinement

Half Pel Buffer Construction

Motion Compensation

DCT

Quantization (Non-intra)

Rate Control

VLC

B Frame Encode

Fwd. Motion Estimation (full pel, full search, range = 15)

Fwd. Half Pel Refinement

Bwd. Motion Estimation (full pel, full search, range = 15)

Bwd. Half Pel Refinement

DCT

Quantization (Non-intra)

Rate Control

VLC

3,801,600

18,247,680

3,439,260

1,571,130

2,922,670,080

24,330,240

3,801,600

1,140,480

15,966,720

3,029,400

2,922,670,080

24,330,240

2,922,670,080

18,247,680

3,439,260

1,571,130

15,966,720

3,029,400

Mult/Div

3,801,600

18,247,680

4,561,920

1,571,130

Add/Sub

3,801,600

15,966,720

1,122,660

3,029,400

I Frame Decode

Half Pel Buffer Construction

IDCT

Dequantization (Intra)

VLD

P Frame Decode

Half Pel Buffer Construction

Motion Compensation

IDCT

Dequantization (Non-intra)

VLD

B Frame Decode

Motion Compensation

IDCT

Dequantization (Non-intra)

VLD

3,801,600

18,247,680

3,403,620

3,801,600

18,247,680

4,561,920

3,801,600

15,966,720

3,801,600

1,140,480

15,966,720

1,140,480

1,140,480

15,966,720

1,140,480

18,247,680

4,561,920

CCIR 601 Resolution

I Frame Encode

Half Pel Buffer Construction

DOCT

Quantization (Intra)

Rate Control

VLC

P Frame Encode

Motion Estimation (full pel, full search, range = 15)

Half Pel Refinement

Half Pel Buffer Construction

Motion Compensation

DCT

Quantization (Non-intra)

Rate Control

VLC

B Frame Encode

Fwd. Motion Estimation (full pel, full search, range = 15)

Fwd. Half Pel Refinement

Bwd. Motion Estimation (full pel, full search, range = 15)

Bwd. Half Pel Refinement

DCT

Quantization (Non-intra)

Rate Control

VLC

1,689,600

8,110,080

1,528,560

698,280

8,110,080

3,439,260

698,280

1,298,964,480

10,813,440

1,689,600

506,880

7,096,320

1,346,400

1,298,964,480

10,813,440

1,298,964,480

10,813,440

7,096,320

1,346,400

Mult/Div

1,689,600

8,110,080

2,027,520

698,280

Add/Sub

1,689,600

7,096,320

498,960

1,346,400

I Frame Decode

Half Pel Buffer Construction 1,689,600 1,689,600

IDCT 8,110,080 7,096,320

Dequantization (Intra) 1,512,720

VLD

P Frame Decode

Half Pel Buffer Construction 1,689,600 1,689,600

Motion Compensation 506,880

IDCT 8,110,080 7,096,320

Dequantization (Non-intra) 2,027,520 506,880

VLD

B Frame Decode

Motion Compensation 506,880

IDCT 8,110,080 7,096,320

Dequantization (Non-intra) 2,027,520 506,880

VLD

Chapter 4

Structure of the Coders

Two structures for the coders were suggested and implemented in this project. This

chapter will describe the details of their implementations and will discuss the perfor-

mance issues that were considered while designing the coders. In order to facilitate

comparisons between these coding schemes and others in terms of computational com-

plexity, the number of arithmetic operations required for the main components of the

coders will also be presented. The figures presented are for the luminance portion of

the image.

4.1 Overview

We will begin with a brief overview of the two coding structures and then consider

the design details at every step. For the purposes of this thesis, we will assume

that the lower layer image is two thirds the spatial resolution of the full resolution

HDTV image. Assuming that we have sampled using the appropriate anti-aliasing

filters [28], (see figure 2-8 for the effects of downsampling. Anti-aliasing filters are a

necessary feature of the coding scheme, since aliasing causes very unpleasant image

artifacts), only the lower portion (the lower third, or two thirds, depending on the

type of downsampling employed) of the total image spectrum is available for coding

at the lower layer. Thus, it is the higher frequencies of the spatial frequency spectrum

in either direction that we are mainly interested in coding at the enhancement layer.

This makes subband coding using a nine subband structure the natural choice for

coding the high resolution enhancement image.

4.1.1 The Open Loop coder

The openloop coder works on the premise that the MPEG-2 coder does a very good job

of coding the lower resolution image. Specifically, we assume that the MPEG-2 coder

does such a good job that not only is the low resolution image perceptually flawless,

but when the low resolution image is interpolated back to the higher resolution, the

higher resolution image does not reveal any of the MPEG-2 coding errors either.

The only visually significant missing information is that contained in the high spatial

frequencies of the original high resolution image.

When the low resolution sequence is in interlaced format, however, it is not simply

the spatial high frequencies that are missing. The region of support for the spectrum

of an intelligently derived interlaced sequence is diamond shaped in the time/vertical

frequency domain [19], [29]. Thus more of the high spatial frequencies from the

temporal high frequency region are missing from the original spectrum, and need to

be compensated for. Thus an eighteen subband structure must be used for effective

coding of the enhancement signal in the openloop structure when the base signal is

interlaced. This is pictorially explained in the frequency domain in figure 4-1.

For reasons to be discussed later, in the experiments performed for this project

the base layer did not have the ideal region of support shown in figure 4-1. Instead,

only the bottom four subbands (vertical low/horizontal low and middle bands in both

temporal bands) were fully available to MPEG-2.

Figure 4-2 is a block diagram of the openloop encoder. We begin by downsampling

and interlacing (if necessary) the original image to derive a base layer image, which

is given to the MPEG-2 encoder. Simultaneously, we split frame pairs from the

original image into two bands of temporally high and low components. The X'ed

subbands are then derived from these bands by subband decomposition (filtering

followed by downsampling). The selected subbands are then coded, with bits allocated

in proportion to the visual importance and the amount of signal energy in each

t f

lto

Temporal lows Temporal highs

a) b)

Figure 4-1: (a) Region of support for an interlaced sequence in the temporal/vertical
frequency domain, (b) the shaded subbands from the spectrum of the original high
resolution image are coded by MPEG. The X'ed subbands are not.

subband.

The decoding process is straightforward. The MPEG-2 decoder converts the bit-

stream it receives into pictures, which are then interpolated to full size. Simultane-

ously, the subband decoder converts the enhancement layer bitstream into decoded

subbands. The subbands are added together to give the decoded residues of the two

temporal bands, and converted from temporal bands to frame pairs. The decoded

enhancement frames are then added to the upsampled MPEG-2 decoded images to

obtain the final image. This process is illustrated in figure 4-3.

The openloop coder is meant for applications where the low resolution image is

required to be of a very high quality, and where a correspondingly large and reliable

channel is available to carry the base resolution signal.

4.1.2 The Closed Loop coder

The closedloop coder trades off increased computational complexity and robustness

with an increase in computational requirements. In this case, it is not the original

sequence which is subject to subband analysis. Instead, the MPEG-2 decoded signal

is upsampled and subtracted from the original, and it is this difference signal which

is subband coded as the enhancement layer. This structure may be thus be viewed as

I

I

The 'Open Loop' Coder

1056

720

Pair of HDTV resloution rames

I I
480 MPEG Encoder

704
Single CCIR601 resolution frame

Fourteen or Seven - -- .
Subband > x x

L---A --L--
Domnpould IXi

Temporl lows

x Lx
' 'X

TanpoMn highs

Encoded 'low-res'
Image for
Transmission

Encoded Subbands
w nfor

Transmisdon

Figure 4-2: Block diagram of the 'Open Loop' encoder.

Downsample by 2/3

and

Interlace: 2 frames > 1 frame

Compute coding rate for
and

Encode each 'x'ed subbeand

The 'Open Loop' Decoder

MPEG Encoded
Low Resolution

MPEG Decoder

7Dcoded4low
Decoded low-ru frame

I'

Pair of HDTV resohlution frames

Encoded Subbands
Nine I frameSubband

Subband

Decoder

X'X'IX I'XX
1 J . JI -I Subband

x X XX Synthesizer
Ixl I Ix,

PFouten decoded subbafnd h or eac frame pair
or seven per frame

+

0I
Pair of bi-res 'error' frames

1056

720 I
Pair of reconstaucted HDTV resohtiac frames

Figure 4-3: Block diagram of the 'Open Loop' decoder.

Upsample by 3/2
amnd mes

Deinterlace: 1 frame -> 2 frames

I

blonging to the class of predictive coders discussed in section 2.4, and illustrated in

figure 2-9. Note that since the MPEG-2 coder is also a predictive coder, this scheme

does not put an additional burden on the MPEG-2 encoder in terms of having to

provide decoded frames at the low resolution.

Since it is the 'error' image which is coded, the base image need not be coded very

well. Its bitrate needs to be just high enough to ensure that the low resolution image

is of an acceptable quality. Temporal subband analysis is not required, though it may

be efficient to use it nevertheless. Visually objectionable errors made by the MPEG-

2 coder can be corrected for, provided enough bits are assigned to the appropriate

subbands.

A block diagram of the closedloop encoder is provided in figure 4-4. The decoder

is almost identical to the one in the openloop case, the only difference being in the

number of subbands that is decoded, and in the fact that synthesis of temporal bands

into frame pairs may not be required. Figure 4-5 is a block diagram of the closed loop

decoder. Note that one essential functional block missing from all of the previous

four block diagrams is the conversion unit from RGB format to the YBR 4:2:0 format

(which was the format that was used within the coding blocks throughout this thesis).

All the picture sizes given in these block diagrams are for the luminance component,

and must be halved in each direction for the chrominance components in the 4:2:0

format.

The closedloop coder is more appropriate for situations in which the base layer

channel is unreliable, the sequences to be encoded are demanding, or when a high

quality picture at the high resolution is a requirement, and encoding complexity

(delay) is not a problem.

4.2 The Functional Units

With the general structure of the coders in mind, this section will give the details of

the functional unit implementations, and the design issues involved.

The 'Closed Loop' Coder

Pair of HDTV resolution frames

I I]
Encoded 'low-res'48MPEG Encoder Imae for
Transmission

704
Single CCIR601 resolution fame

"0
704

Decoded low-re frame

o1056

Pair of HDTV resohluion frames

1056

Nine (3x3)
I

720 Subband

Decomposition / Frame

Pair of hi-res 'error' fames

Encoded Subbands
> for
Transmlimdon

Figure 4-4: Block diagram of

Downsample by 2/3
and

Interlace: 2 iframes -> 1 frame

Upsample by 3/2
and

Duinterlace: 1 kame -> 2 frames

0

Compute coding rate for
and

Encode each subhand

- -

If

the 'Closed Loop' encoder.

The 'Closed Loop' Decoder

MPEG Encoded
Low Resolution
Image

0 MPEG Decoder

IL

480- I -
704

Decoded low-rs frame

1056

720

Pair of HDTV resolution frames

Encoded Subbands
Nine /frame Subband

Decoder

. L. Subband•,,•___ i s--r
Synthesizer

720 BowL

Pair of hi-rne 'eror' frames

1056

720

Pair of reconstructed HDTV resolution frames

Figure 4-5: Block diagram of the 'Closed Loop' decoder.

Upeample by 3/2
and

Deinterlace: 1 frame -> 2 frames

4.2.1 The Downsampling Unit

If the base layer is in progressive format, downsampling is straightforward. It is per-

formed in the 'standard' way [28], i.e. by upsampling by 2, applying a lowpass filter

with a r/3 cutoff and then decimating by 3, separably along each dimension of the im-

age. The only issue is designing an appropriate lowpass (anti-aliasing/interpolation)

filter.

The most appropriate filter would be such that its frequency response complements

the frequency response of the subband analysis filters, so that perfect reconstruction

can be possible (assuming no coding, or lossless coding). Let us consider what happens

as we downsample to the lower resolution and then upsample back. We first zero pad

by a factor of 2 and then apply our 7r/3 cutoff filter (which cuts off at what would

be considered 27r/3 in the original spectrum). We then decimate by a factor of

3, which causes aliasing at the higher frequencies, since our filter does not have a

'brick wall' characteristic. This gives us the low resolution image. At this point, the

original spectrum has been modified multiplicatively by the frequency response of the

filter and, and the aliasing at the high frequencies. In order to upsample to the full

resolution, we begin by zero padding our image by a factor of three. Next, we again

apply our filter (with the appropriate gain). This has the effect of taking the entire

spectrum of the low resolution image, normalizing it by a factor of three (so that a

frequency of 7r now appears as 7r/3) and multiplying it with the frequency response

of our filter. The next step is decimation by a factor of two. This 'stretches out'

the spectrum (from the previous step) within each interval of 27r centered around a

multiple of 21r. The net effect on the original spectrum is that frequencies higher than

approximately 2r/3 are cutoff. There is some aliasing energy present in the region

around 27r/3 in the frequency spectrum. At other frequencies the effect is precisely

that of being multiplied by the response of our filter twice.

Ignoring for the moment the aliasing energy around 21r/3, ideally the shape of the

square of the anti-aliasing/interpolation filter's frequency response should be very

similar to the shape of the sum of the frequency responses of the low and middle

subband analysis filters for perfect reconstruction to be possible. Thus, if qt(t), q,(t)

and qh(t) are the low, middle and high QMF filters (see section 2.3) respectively, and

h(t) is the anti-aliasing/interpolation filter,

H2 (2jw) = Qt(jw) + Q,(jw) (4.1)

where the equation has been written in terms of the frequency responses of the re-

spective filters.

Given this equation, we can design the required filter by the following procedure.

We sample the frequency response on the right hand side of equation 4.1 at a large

number of points. We then take the point by point square root of this frequency

response and add an equal number of zeros to it. We can consider this new set of

values as expressing the sampled frequency response of our desired filter. Thus, if the

original frequency response had a cutoff at 27r/3, the response of this derived filter will

have a cutoff at r/3, and the shape of the square root of the frequency response of the

original filter (scaled down by two). We now need to take the inverse transform of this

frequency response in order to obtain our filter. We can do this using MATLAB [23],

which uses an equation error method [35] to find an approximation for the inverse Z

transform, given a specified number of taps.

Unfortunately, the above algorithm does not yield good results for a reasonably

low number of taps (upto 61). However, if we do not take the square root of the

frequency response, we can still get a very good approximation of the filter we require.

Not taking the square root also has another big advantage - the transition from

the passband to cutoff is much sharper, and passband energy is lower, reducing the

problem of aliasing energy error. On the other hand, the shape of frequency response

is approximately the same in most of the passband and stopband regions, where the

(normalized) gains are very close to unity and zero respectively.

Because of the aliasing energy which we have not accounted for, the filter specified

by equation 4.1 may not be the best one for our purposes. This is particularly true

when the QMF filters are such that the frequency response of their sum does not

exhibit a sharp transition between the passband and cutoff regions. In this case, a

large amount of aliasing energy will be included in the spectrum of the final upsampled

image, which may appear as image artifacts. In the openloop structure, there is

no way to correct for them, while in the closedloop structure they might require

a disproportionately high number of bits to encode, reducing the bits allocated to

coding other parts of the spectrum, and thus the decreasing the general quality of

the image.

Another disadvantage of this method is the relatively large size of the filter re-

quired to form a reasonable approximation. Filtering is a computationally expensive

operation, and large filter lengths are not desirable for our system. For these reasons

it might be politic to abandon the perfect reconstruction ideal and use filters derived

by using other filter design techniques, such as windowing [28]. In windowing, we

begin with the impulse response of a 'brick wall' filter, which is infinite, and multiply

it with a finite length window to obtain an approximation to that frequency response.

The longer the window, the more accurate our approximation. This operation corre-

sponds to convolving the perfect 'brick wall' frequency response with the frequency

response of the window, which is usually close to the form of a sinc function. This has

two effects: it makes the transition less sharp - the transition region is the length

of the mainlobe width of the sinc like function - and it introduces ripple in the

stopband and the passband, corresponding to the relative height of the sidelobes of

the sinc like function. A number of windowing functions are known, which trade off

these two factors, the simplest being a rectangular window.

After some experimentation (which was by no means exhaustive) , the low QMF

filter shown in figure 4-13 was found to yield the best results in terms of overall SNR.

The fact that it performs better than the filter derived from equation 4.1 without the

square root can be explained by the fact that the response of the QMF is closer to

the ideal response (as specified by 4.1).

When the base resolution sequence is interlaced, however, the situation is some-

what more complicated. We now need to convert from 60 frames per second to sixty

fields per second, with successive fields covering different parity lines of the raster.

Each different field at the base layer has a resolution of 240 lines, each consisting of

704 pels, and must be temporally derived from a different frame at the high resolu-

tion. This suggests that a high resolution frame must be vertically downsampled by

a factor of 3 (instead of 2/3) to obtain a field. However, since the lines of successive

fields need to be of different parity, and our downsampling factor is odd, we need

to upsample by 2 and then do an offset downsampling by 6. This process is best

described by means of an illustration, which is provided in figures 4-6 and 4-7. It

is clear from these figures that since our downsampling factor is odd, the odd par-

ity field needs to be derived from lines in between two fields, and thus simply shift

downsampling by 3 will not do.

Once again, designing an appropriate anti-aliasing filter with a rx/6 cutoff is an

issue, and it should be done in such a way that perfect reconstruction within the

subband structure is possible. If we ignore the effects of the shift required before

downsampling for each odd field, we have a situation analogous to the one we have

already discussed for the progressive downsampling case, the only difference being

that we are now downsampling by a factor of 2/6 instead of 2/3. Thus, we would

expect the spectrum of the final image to be cut off at about 7r/3, and this frequency

response, with the exception of the aliasing energy around 7r/3, would be exactly

like the original spectrum multiplied twice by the response of the anti-aliasing filter.

Thus, for perfect reconstruction,

H2 (2jw) = Qj(jw). (4.2)

Again, we can use MATLAB to find the appropriate filter by sampling the square root

of the frequency response of qt(t) and zero padding, as discussed earlier. MATLAB

fails to give an accurate impulse response for small filter sizes, so we work with the

frequency response without taking the square root.

For the three band QMFs that were used in this project, the low band filter

had a gradual transition characteristic and had relatively low attenuation in the

stopband. Thus the 7r/6 cutoff downsampling filter based on this filter's response

allowed considerable aliasing. This showed up as stripe-like aliasing patterns in the

The Downsample/Interlace Unit
In Vertical Direction:

Frame 8

X X +

x X
X O

x x

X 0

a

1-

+

B

A

0

0
X

I II I

Zero pad and apply interpolation filter (c/2) Apply anti aliasing filter and subsample by 6

Original Image (720 lines) Interpolated Image (1440 lines) Even field of downsampled image (240 lines)

Frame 1

I V *

x 0

x 0

X . O

X Ox * X

x * O

* * X

* 0 O

* 0 1

*

*

0

0

0

0

I II I
Zero pad and apply interpolation filter (x/2) Apply anti aliasing filter and subsample by 6 (with an offset of 3)

Original Image (720 lines) Interpolated Image (1440 lines) Odd field of downsampled image (240 lines)

Figure 4-6: Downsampling method used to derive the even and odd fields of the low
resolution image from the progressive full resolution original. The 7r/2 interpolation
filter is not needed since the ir/6 anti aliasing filter applied immediately after it makes
it redundant, but is included for completion.

84

The Downsample/Interlace Unit

In Vertical Direction:

Frame 0 Frame 1 Downsampled and Interlaced Frame

Odd Field (240 lines) Even Field (240 lines) Full 'MPEG' Frame (480 lines)

In Horizontal Direction (for both frames):

Original Image
(1056 pixels wide) Upsmple Lowpas Filter Downsample 'MPEG' Image

by Gain = 2 by (704 pixels wide)
2 C"te = pl/3 3

b)

Figure 4-7: (a) The even and the odd fields derived as in figure 4-6 are merged together
into a frame before being MPEG-2 encoded, (b) the horizontal rate conversion is done
in the standard way.

image, particularly around edges. In the closedloop coder, bits were required to

compensate for this aliasing energy, and consequently, the rest of the image suffered

in terms of quality. In the openloop coder the aliasing could not be compensated for,

and added to the noise in the image.

For this reason, a r/6 cutoff filter designed using a windowing method was used.

The window length was 31 taps and the Hamming window [28] was used to obtain

our filter. This window size has the advantage of having a relatively small mainlobe

width, and very low sidelobe magnitudes. The magnitude of the frequency response

of this filter is shown in figure 4-8 (a). The frequency response of the filter derived

from the lowpass QMF filter is shown for comparison. We can see from this figure

that the hamming filter has both a sharper transition and greater attenuation in the

stopband region. It is worth noting, however, that the difference between the final

images in which the two filters were used was minor - the images downsampled using

the hamming filter were only about 0.3 dB better. Thus, better QMF designs might

lead to coding gains in the system.

At this point it is useful to analyse what our operations do to the signal in the

frequency domain as we downsample and interlace. As discussed previously, from the

perspective of the full resolution image, all downsampling does (if we assume perfect

lowpass filters), is limit the horizontal frequencies to 27r/3 and the vertical frequencies

to 7r/3. Of course, in reality, aliasing will extend these regions to beyond these points,

and change the shape of the response within these regions. The regions of support for

a full resolution image which has been downsampled and upsampled, using perfect

filters is shown in figure 4-9.

Interlacing causes interesting things to happen in the vertical/temporal frequency

plane. If we begin with a progressive image g[h, v, t] (with frequency response given

by G(wh, wv, Wt)), we can obtain an interlaced image by multiplying this image by the

two dimensional function,
1 1
1 + cos• r[v + t]. (4.3)
2 2

Thus, in order to get the frequency response of the interlaced image, we need to

QMF derived filter

1 z 3 4
Angular frequency

Hamming filter

0 1 2 3 4
Angular frequency

Figure 4-8: Frequency responses

1

1

Ce

1

1

Angular frequency

1i

1

1

o

cn

1

1

1

Hammina filter

Angular frequency

of the downsampling filters

QMF derived filter

4L :HM: HH

H:

0 Uh

aI

a)I

a)

aI
a I IIb)

b)

Figure 4-9: Regions of support for (a) progressively downsampled image, (b) inter-
laced and downsampled image, from the perspective of the upsampled full resolution
image.

convolve G(wh, w, wt) with the frequency response of 4.3, which consists of impulses

at (0, 0), (+7r, +7r), and (-r, -7r). Furthermore, beginning with two fields with lines

one pel apart, we can get an 'intermediate' progressive image simply by zero padding

by a factor of two, and applying one pel shifts to alternate fields. Using the DTFT

convention given in [21], this gives us,

I(wh, wi) = 2r' [H(wh,2w,, w) + 1H(wO Wh, 2w + r,Wt + 7)+ 1 H(wh,2w, - r,w- r)

(4.4)

where we have ignored the phase factor arising from the shift, and H(wh, w,, Wt) is

considered to be the spectrum of the sequence of fields we have obtained from down-

sampling. If we think about what this does in the frequency domain, the spectrum

of the interlaced sequence consists of copies of the spectrum of the original image re-

flected around its mid point and added to itself. Thus the LL frequencies are aliased

with the HHs, the LHs with the HLs and vice versa. Note that this operation is

completely reversible if the spectrum of the original image is left intact.

In terms of computational complexity, if we perform a one dimensional convolution

between two sequences of length M and N, then, if N < M, each point requires N

I----IIIIII
III
III
II1II

IIIII1III

IIIIII
III

L.

OOh

multiplications and (N - 1) additions to compute. Thus if an image of size X pixels

by Y pixels is being separably filtered by filters of length Nh and N,, we require

X x Y x Nh + X x Y x N, multiplications and X x Y x (Nh - 1) +X x Y x (N, - 1)

additions. In the interlaced case, since we must first zero pad by 2 and then decimate,

the image size on which filtering is to be applied is 1440 by 2112. For the progressive

case, filtering is applied to the full resolution image, which is 1056 by 720 pixels wide.

Thus, for the two cases, using filters of length 31 and 15 for the interlaced case and

15 and 15 for the progressive case, we get the following numbers.

Downsampled Format Multiplications Additions

Interlaced 139,898,880 136,857,600

Progressive 22,809,600 21,288,960

4.2.2 MPEG-2 coding at the base layer

From figure 4-9, it is clear that compared to the progressive sequence, only half the

number of subbands are available for MPEG-2 coding of the interlaced sequence at

the base level. This makes intuitive sense, since the interlaced sequence contains half

as much data as the progressive one, and the vertical resolution of a field is half that

of a progressive frame.

The 60 field per second interlaced sequence is converted to a 30 frame per second

sequence by interleaving together successive pairs of fields into frames. These are

treated as frame type pictures by MPEG-2, which performs field/frame adaptive mo-

tion compensation on them. Field/frame adaptive mode is appropriate if we consider

the fact that the each field is derived from a frame of the original sequence, and thus

performing motion compensation amongst neighboring fields is in a way equivalent

to performing motion compensation on neighboring frames of the original sequence.

However, if a region of the interlaced frame does not contain a lot of vertical detail

(which may have originated as detail between the two fields), frame mode provides

more efficient motion compensation, since it generates only one motion vector per

macroblock (as opposed to the two generated in field mode).

Merging fields into frames can be though of as zero padding each field vertically,

convolving with the anticausal filter f[v, t] = 6[v, t] + 6[v, t + 1], and then decimating

by two in the temporal direction. In the frequency domain this leads to (1) a rescaling

of the vertical frequency axis, such that w, is replaced by w,/2, (2) a multiplication

by a cosine frequency response along the temporal axis, and (3) aliasing along the

temporal axis as a result of downsampling. Thus if we begin with I(wh,w,, wt), we

get a great deal of temporal aliasing in the frequency domain. The net result is that

the entire spectrum of the image contains aliasing energy from other parts of the

spectrum. The only region which is relatively free of it is the LL area, where, in

typical images, large amounts of aliasing do not occur because of the band limited

nature of the input.

Throughout this project, the parameters M and N were chosen to be 3 and 15

respectively. Thus there were two B frames between any two P or I frames, and one I

frame after 15 frames of the other types. These values were chosen since they provide

a good compromise between the compression rate (which decreases as the number of

I frames increases, and increases with the number of B frames) and computational

complexity (which increases with the number of B and P frames). In addition, the

values chosen for these parameters facilitate features such as random searches and

reverse playback. Another parameter that needed adjustment was the search window

size for block matching. The two images used for the initial tests of this coder were

scanned in at 24 frames per second, and thus they contained a disproportionately

large amount of motion between frames. The search window per frame was set at 16

by 16 pixels. This meant that when block matching over N frames a search window

of 16N by 16N would be used. For the above values of M and N this resulted in a

maximum search window size of 48 by 48, which occurred whenever a P frame was

being predicted.

Above bitrates of about 6 Mbits/sec (calculated with respect to 60 frames/s),

pictures of good viewing quality resulted at the lower resolution. Figure 4-10 plots

the signal to noise ratios for the two test sequences against bitrate 1. Notice that the

1The figures shown in figure 4-10 were computed using an older (Test Model 2) version of the

Statistics for the Balloons sequence: o interlaced, * progressive

1 2 3 4 5 6 7 8
Bitrate, Mbits/second

Statistics for the Traffic sequence: o interlaced, * progressive

1 2 3 4 5 6 7 8
Bitrate, Mbits/second

Figure 4-10: Bitrate vs. SNR for the 'Balloons' and 'Traffic' sequences.

;3

36

35

CO

a.34
z

33

32

31

0

32.5

32

31.5

31

30.5

30
q0--

;jj · ·

,,

-

-

-

-

i-

E

'Traffic' sequence is a much more demanding one and results in lower SNRs at the

same bitrate. This is not surprising, since 'Traffic' contains much more detail, both

spatial and temporal, than the 'Balloons' sequence. These sequences are displayed

in figures 5-1 and 5-2. Another observation worth making about figure 4-10 is that

although the progressive sequences contain twice as much data as the interlaced ones,

the bitrate required to achieve the same SNR is not twice as high. This suggests that

MPEG-2 is not as efficient at coding interlaced sequences as it is in coding progressive

ones. This is not surprising, given our previous discussion, where it was shown that a

frame type interlaced picture contains a large amount of aliased energy, which reduces

the correlation amongst DCT coefficients. Thus, the DCT and entropy coding blocks

of the MPEG-2 coder cannot do as good a job of compression as they can with the

more correlated energy in a progressive image.

One problem with the MPEG-2 coding which is not very noticeable at the low

resolution, but is very apparent at the full resolution is the presence of blocking arti-

facts . Blocking artifacts are a common problem with block based DCTs. They result

from coarse quantization of DCT coefficients, leading to the appearance of artificial

boundaries between blocks. Since these boundaries are unnatural they are visually

both noticeable and unpleasant. Not surprisingly, they are a particular problem at

low bitrates. With the MPEG-2 coder used for this project, blocking artifacts were

visible whenever the rate control was overloaded, even when the overall bitrate was

high. This occurred in particular in regions which contained a great deal of both

spatial detail and motion. A good example is the region indicated around the man's

mouth in the 'Balloons' sequence, shown in figure 5-3. As in that region, blocking

artifacts seem particularly unpleasant when a background with details to mask them

is not available. In addition to looking unpleasant, these artifacts reduce the coding

gain in the closedloop coder, which has to spend bits compensating for them. In

the openloop coder, they are a serious problem if they are very apparent, since the

openloop structure cannot compensate for them.

MPEG-2 coder, and are not as good as those for the coder used in our final experiments. In general
there is about a 1-2 dB difference. However, the trends that are shown are preserved across models.

Blocking artifacts can be reduced by a number of methods, the simplest of which is

by filtering the pixels around the block boundaries (in the decoded image) with a very

smooth lowpass filter. This filter should be smooth enough that it does not adversely

affect the non-spurious details in the image. This method, originally proposed by

Reeve et. al. [131, works well in low bitrate applications, where picture quality is not

required to be very good. Within our system, though, it was not found to be very

effective. By using the filter proposed in [13], we were able to reduce the blocking, but

it was still visible. Within the closedloop structure, this operation yielded a very small

gain in the SNR of the final image. It was thus decided to abandon this method, and

use higher bitrates at the base resolution instead. In the openloop coder, however,

this method might still be useful as a way of enhancing the image at the decoder if

blocking artifacts are still a problem. A much more effective solution would be to

take account of this problem when choosing the MPEG-2 rate control mechanism.

Figures for the number of arithmetic operations required for MPEG-2 coding are

given at the end of chapter 2.

4.2.3 The Upsampling Unit

Upsampling/deinterlacing is performed in the obvious ways. If the base image is

progressive, then the standard method, shown in figure 4-11 is used. If the base layer

is interlaced, then the two fields are first separated from the MPEG-2 decoded image,

and then each field is upsampled to a full resolution frame, using shift upsampling,

with a shift of three on every alternate field. This process is illustrated in figure 4-12.

The fields are horizontally upsampled according to figure 4-12.

Decoded 'MPEG' Inmge
(704 pixels wide) UpupkF Dowm Low lP 'HDTV' Irmge

S by Gain = 3 by (1056 pixels wide)
3 Cutoff = x/3 2

Figure 4-11: Upsampling unit for progressive sequences and horizontal lines of inter-
laced sequences.

The computational requirements for upsampling are identical to those of down-

The Upsample/Deinterlace Unit
In Vertical Direction:

Frame 0

+ -+ ,+ ax

* -I

+~ 0

* 0

* 0

* 0

O0

0

+

0

0

0

0

0

x
X

x
x

x

I II II I
Extract Even Field Interpolate by 6 (zero pad and filter) Downsample by 2

Decoded 'MPEG' Image (480 lines) Even Field (240 lines) Interpolated Even Field (1440 lines) Frame 0 of 'HDTV' Image

Frame 1

+ - 0 x
O 1

+a

a41

S

U

0O

x

x

X

y

* 0

S a

O x

o *

0S 0 0

0 * 5 0 *

* 0 * * 0 * 0

I II II I

Extract Even Field Interpolate by 6 (with offset of 3, zero pad and filter) Downsample by 2

Decoded 'MPEG' Image (480 lines) Odd Field (240 lines) Interpolated Odd Field (1440 lines) Frame 1 of 'HITV' Image

Figure 4-12: Upsampling unit for the vertical lines of interlaced sequences.

94
· · · · 094

w A

i V

sampling.

Downsampled Format Multiplications Additions

Interlaced 139,898,880 136,857,600

Progressive 22,809,600 21,288,960

4.2.4 The Subband Coder

Because of the 2/3 ratio between the sizes of the the base layer and full resolution

images, a nine subband structure in the spatial frequency domain is a natural choice.

The first issue to be resolved within this structure is whether or not a temporal

subband split will be advantageous. Theoretically, it should yield a coding gain

simply because there is less energy in the high temporal frequencies than there is

in the lows, and a temporal split allows us to apportion our bits appropriately. In

practice, though, we need to ensure that the temporal split is a clean one. i.e. that a

lot of energy does not leak across temporal subbands, and this adds significantly to the

computational burden and the encoding and decoding delay. Within the closedloop

structure, we tried a simple temporal subband decomposition by averaging over the

sum and difference of frame pairs. This did not yield results as good as those from

the simple nine band decomposition. We can understand why this happens if we

consider the frequency responses of the two tap temporal filters we have applied. The

magnitude of the frequency response of the averaging filter is a cosine, while that of

the differencing filter is a sine. These two responses are shown in figure 4-13 (a). A

lot of the middle portion of the frequency spectrum is shared by these two functions.

Thus there is a large amount of duplication of energy between between subbands,

which ends up being coded twice. It was experimentally found that the difference in

SNRs between doing and not doing a temporal split was very small (a fraction of a

dB) though. Thus using a more sophisticated temporal filer might yield a significant

coding gain.

More sophisticated temporal filters, such as the 3 tap and 15 tap filters used

in [18] would no doubt yield better results, but it is debatable whether this increase

0 0.5 1 1.5 2 2.5 3
(a) the sine and cosine responses of the temporal filters

3.5

5
(b) frequency responses of the 3 band QMFs

Figure 4-13: (a) Frequency responses for the averaging and difference filters, (b)
frequency responses for the 3 band QMF filters

in performance merits the extra computational burden. We can get a significant

improvement by using a temporal split if the image being coded does not contain a

great deal of motion, since in that case the differene image will not contain a great

deal of energy. In that case, even the two tap filter used here would likely yield a

coding gain. Within the closedloop structure, however, MPEG-2 handles regions of

low motion very effectively, and as a result temporal frequencies are more uniformly

distributed for the enhancement image. This is not true in the openloop case, however,

since the subbands being coded come directly from the image and MPEG-2 has not

had a chance to remove the low temporal frequencies.

The next problem is coming up with a set of appropriate 3 band QMFs. Since,

for optimal performance, the QMF shape must be replicated by the downsampling

filters, we have to ensure that the filters we employ have relatively sharp transitions

and large stopband attenuation. For purposes of this project, the 15 tap 3 band

QMFs designed by Simocelli [34] were used. These were designed using the procedure

outlined in section 2.3.1. Although these filters were not optimized, they produced

acceptable results. The frequency responses of these filters are shown in figure 4-13

(b).

In terms of computational requirements, the full resolution image must be filtered

nine times to obtain the nine subbands in the closedloop case, and and seven times

per frame in order to get the seven spatial subbands for the openloop coder. If in

addition, the simple temporal analysis described above is to be used, we need an extra

720 x 1056 operations per frame. Using the results for convolution, and assuming QMF

filter lengths of 15, we get the following figures.

Coder type Multiplications Additions

Closedloop 205,286,400 191,600,640

Openloop-interlace 159,667,200 149,022,720

Openloop-progressive 114,048,000 106,444,800

Once the subbands have been separated, they must be coded. This is done by

quantization, followed by run length coding of zeros, followed by entropy coding.

Figure 4-14 is a block diagram of the subband encoding and decoding process.

The Subband Coder

The ncoder:

HZOWW ISO

Dac-mam Quatam
hem fcor

(badmabitadonm)

Te Decodr:

RDeodw Dftdo Deqeunvth

Figure 4-14: Block diagram of the subband coder

The quantizer is a uniform one and takes three inputs, the quantization factor, the

dead zone factor and a mask file. The mask file contains an array of masking factors

for each 8 by 8 block in the subband. Each masking factor is the the normalized

sum of absolute values of all the pixels in that block over all the luminance subbands

that are to be coded. The masking factor is used as a measure of image activity

in a particular region of the image. The premise behind this procedure is that the

more active a region of a normal image, the more detail it contains, which can mask

out errors. Thus we can get away with quantizing that region more coarsely. This

argument holds for the openloop case, where we are coding subbands directly from the

image. Regions of high activity can indeed mask noise. However, for the closedloop

case, the opposite is true, at least for the low subbands which are coded by MPEG-2,

where the error between the real image and MPEG-2's prediction of it is being coded.

A more active region simply means that MPEG-2 did not do a sufficiently good

job of coding that region - thus in order to effectively remove MPEG-2 artifacts,

active regions should be coded more finely. Thus, in MPEG-2 coded subbands, the

local quantization factor for a particular region is derived by dividing the subband

quantization factor by the masking factor, while in non MPEG-2 coded subbands, it is

obtained by multiplying the subband quantization factor by the masking factor. Note

that in terms of SNR, the argument that a more energetic region should be quantized

more coarsely is counterintuitive. If increasing the SNR is the the only requirement,

then most of the available bits should go to the regions with the greatest amount of

energy, since those are the regions which make the largest contributions to the MSE

and SNR. However, SNR is not always a good measure of human perception of image

quality. The masking effect at high frequencies is a very well documented and much

exploited phenomenon in the design of imaging systems.

The block size for computing masking factors is chosen to correspond to the

MPEG-2 macroblock size at the the low resolution. This is because a potentially

different value of mquant is used for each macroblock, which affects local image char-

acteristics. Thus, a macroblock size of 16 by 16 at a resolution of 480 by 704 gives us

a masking block size of 8 by 8 at a subband size of 240 by 352.

The next issue is whether or not to use a dead zone when coding a particular

subband. A dead zone maps relatively large values around zero to zero and thus

provides the potential for more efficient run length coding. If a large number of values

in a subband is clustered around zero, a dead zone increases distortion significantly.

On the other hand, it frees up bits to use in coding perceptually more important

values more accurately. Thus a dead zone will yield a better looking image if the

values around zero in a subband are perceptually not important. This is the case

for the high subbands in both the openloop and closedloop coders. Zeroing a small

but non zero coefficient contributes to background noise, but the noise is not very

noticeable if more significant details are accurately rendered. In the lower subbands,

especially the ones neighboring the MPEG-2 coded bands, this is no longer true.

These bands contain a significant amount of aliasing energy, which may show up as

small pixel values in the error image which are nevertheless important since aliasing

is very noticeable. The lower bands are also visually more important compared to

the higher ones, and a mistake in the lower bands carries a higher perceptual penalty.

Thus, in this project the higher subbands were quantized with a deadzone, while the

MPEG-2 coded subbands and the subbands adjacent to it were not.

The number of arithmetic operations required for quantization is relatively small.

Computation of the mask file requires 240 x 352 x (9,7,5) operations per frame,

depending on the number of subbands employed. A DPCM coded version of the

mask file (with a step size of 0.2) is used at both ends. Quantization involves one

multiply/add per masking block to determine the quantization factor. A pixel is

quantized and dequantized according to the following expressions.

Qpix = [pix ± quant/2] // quant, if abs(pix) > deadzone

= 0 if abs(pix) < deadzone

DQpix = quant x Qpix

Thus the number of arithmetic operations required per frame for quantization and

dequantization is given as follows.

Coder type Mults/Divs Adds/Subs

Closedloop 1,520,640 1,521,960

Openloop-interlace 1,182,720 1,184,040

Openloop-progressive 844,800 846,120

After quantization, the pixel values are subjected to lossless coding to further

increase compression. The fact that high subbands do not contain a lot of energy and

the presence of a quantizer with a dead zone in the preceding stage make long zero

runs fairly common, which can be efficiently compressed using run length coding of

zeros. In the next stage, a Huffman coder further reduces redundancy. The Huffman

coder used in this project built a table based on statistics for the entire subband

before coding. Though this is theoretically the optimal way to do it (in the absence

of a known probability distribution for the subband), it introduces coding delay. A

quicker method might be to use dynamic huffman coding, which was discussed in

section 2.5.1, This type of huffman coder dynamically builds a huffman table. This

would, of course, be less efficient in terms of providing compression.

100

Instead to the runlength/huffman coding pair, an arithmetic coder may be used

for lossless coding of the quantized data. For this project, the Q-coder described in

section 2.5, and specified in [30] is used as an alternative. This Q coder uses a state

machine driven probability estimation method. Numbers are decomposed into binary

decisions such as zero/nonzero, positive/negative, and magnitudes and actual values

are arithmetic coded using the different estimated conditional probabilities, which are

dynamically computed using several state machines. Since these conditional proba-

bilities can be estimated in an identical manner by both the decoder and the encoder,

no table needs to be built or transmitted prior to coding a particular subband. The

arithmetic coder did not provide as efficient compression as the runlength/huffman

pair. This is not surprising given the fact that the arithmetic coder does not begin

with a priori knowledge of the subband statistics, as the huffman coder does. In

practical implementations, however, either such an arithmetic coder or a runlength

coder followed dynamic huffman coding would be preferred for its lower coding delay.

Bit allocation

Since there is no really good metric for perceived image quality, no 'optimal'

scheme for bit allocation amongst subbands exists. Even if a 'perfect' metric existed,

we would have to know the probability distribution of the data we are coding in order

to come up with an optimal bit allocation. For this reason, common bit allocation

schemes are usually somewhat arbitrary, and are based on a combination of intuitive

notions of type of information subband statistics (such as the variance) convey and

experimentation with different types of images.

We may use reasonable approximations as a guide, though. Thus if the error

criterion to be minimized is MSE, the basis functions of the subbands are orthogonal,

each subband is independently quantized using a Lloyd Max quantizer, and d~, the

error distortion for the kth subband can be related to the bitrate Rk and'the subband

variance ar by,

d= C2 -2Rkaf, (4.5)

101

then the optimal bit allocation, subject to the constraint of constant average bitrate

R, can be shown by the method of Lagrange multipliers to be given by an expression

identical to equation 2.19, with DCT coefficients replaced by subbands. Including,

the perceptual weighting criteria vAk, the expression is:

1 vk .6
bk = R+ log 2 N akO (4.6)

1l-1=0 Vk

Here bk and ao are, respectively, the bitrate allocated to and the variance of subband

k, B is the overall bit rate, and N is the number of subbands being quantized.

That the expressions are identical for the DCT and subband coders should not be

surprising, given the the discussion on page 30 about the equivalence of these two

types of coders.

Equation 4.5, where e2 is a constant depending on the probability distribution

of the image, has been experimentally observed to hold for most images [16]. The

basis functions for the subbands are orthogonal, and the MSE is a reasonable (though

sometimes untrustworthy) criterion of perceptual quality. In this setup we are not per-

forming optimized scalar quantization, though given the fact that a uniform quantizer

is the optimal entropy constrained quantizer, this might not be a bad assumption.

Thus, in the absence of anything better, equation 4.6 should give us at least a rea-

sonable guess for the bit allocation. A careful look at equation 4.6 reveals that it is

possible (when the variance of a subband is low, and the bitrate to be apportioned

amongst the bands is low), for the formula to give us a negative bitrate, which is

impossible in practice. Clearly, in practice equation 4.6 can only serve as a guide,

and should not be considered to be of fundamental importance. In the experiments

for this project, if a subband was assigned negative bits according to equation 4.6,

then its bit assignment was set to zero and the equation was applied to the remaining

subbands, until a set of subbands with positive bit allocations resulted.

A bit allocation scheme that assigned bits to each subband in direct proportion

to its variance times a weighting factor was found to yield slightly better results

than using the above formula. The weighting factors work only for the images we

102

dealt with though, and there is no guarantee that the particular values we used are

generally applicable. Although equation 4.6, does not provide the best bit allocation

for every image, in combination with some perceptually biased weighting factors, it

does give good results. We may use our knowledge of the perceptual significance of

subbands to choose the weighting factors vi in equation 4.6. It is a well known fact

that in general,

* the higher the frequency, be it horizontal, vertical, or temporal, the lower its

perceptual significance,

* vertical and horizontal frequencies have approximately the same importance,

however diagonal frequencies are less important.

* chrominance subbands are less important than luminance bands.

Thus, a reasonable

in figure 4-15.

but nevertheless arbitrary weighting scheme is the one described

a) Temporal lows
Figure 4-15: Perceptual significance weighting

b) Temporal highs
for the eighteen spatiotemporal bands

Rate control

Rate control must be an essential part of any coder that uses variable length

coding, since the rate of the output bitstream in such a coder is not possible to

determine a priori. We must constrain the bitrate within certain parameters so that,

103

3 2 2

3 3 3

3 3 3

2 1 1

2 2 2

2 2 2

* if the bitrate is too high, channel capacity or decoder buffering is not exceeded

* if the bitrate is too low, channel capacity is not wasted, or image quality need-

lessly compromised

As we have seen with the MPEG-2 rate control algorithm, effective control should be

performed adaptively at a relatively low level, such as at the macroblock or slice layers

in MPEG-2. The MPEG-2 coder defines a buffer fullness variable, which it uses to

control the bits assigned to each macroblock by means of the control variable mquant.

Though real implementations of our coders should do something similar by providing

rate control at the subband or block level, nothing as fancy was implemented as part

of this project.

Rate control is achieved in our system by varying the quantization parameter

for each subband. We initialize our quantization parameters by iterating through a

number of values as follows.

1. For each subband in the first frame, choose an initial quantization parameter

(quant) of either 2 or the quant resulting from the previous subband. Carry

through the entire coding process (quantization, entropy coding).

2. If the resulting bitrate from the previous step, which used a quant of Q is too

high compared to the target bitrate for the band, attempt a quant of 2Q. If

too low, choose a quant of Q/2 and carry through the coding process. If the

resulting bitrate is within tolerance of the target, stop.

3. If the two previous quants give bitrates which are both above or both below

the target, go to step 2. Otherwise try a quant which is the average of the

previous two quants. If the resulting bitrate is within tolerance of the target,

stop. Otherwise, of the last three quants, keep the two quants which give one

bitrate closest to the target above the target and the one bitrate closest to the

target below the target. Repeat step 3.

On average, this algorithm converged to within 0.05 bits/pixel of the target bitrate in

about 5 to 7 iterations. Thus in effect we are performing the entire coding about six

104

times in this step. Since the first frame at the base layer is always an I frame which

takes a relatively small amount of computation to code, the extra computational

capability will presumably be available at this stage.

The quantization factor for the same subband in the next frame is computed by

taking advantage of the approximate relationship given in equation 4.5 for scalar

quantized sources and the fact that if either the bitrate is high or if the probability

distribution of subband coefficient values is flat outside the dead zone, then the quan-

tization factor is proportional to the square root of the distortion [16]. This leads us

to:

Q oc (e.2-Rka k, (4.7)

where Q is the quantization parameter of a subband and the other quantities are

as used in equation 4.5. Thus, whenever the above approximations are valid, then,

assuming that the statistics of a subband do not change significantly from frame to

frame (or frame pair to frame pair), and thus equation 4.5 remains valid, we may

calculate the a new quantization parameter from the previous one by,

t
Q t = Q k2-(Rt-R, (4.8)

Ok

where Q* is the predicted quantization factor, and Qt, ta, and Rt are the quantization

factor, standard deviation, and achieved bitrate for the subband in the last frame.

The main computational component of rate control is calculating the variance. In

order to calculate the variance, we need the mean first, which requires 84480 additions

per subband We need a further 84480 subtractions, and 84480 additions per subband

to find the variance. This information is summarized for the three coders in the table

below, which presents the figures per frame.

Coder type Mults/Divs Adds/Subs

Closedloop 760,320 1,520,640

Openloop-interlace 591,360 1,182,720

Openloop-progressive 422,400 844800

105

This method worked reasonably well when implemented. Occasionally, the quan-

tization parameter needs to be set aright, and this can be done at the beginning

of each GOP, while MPEG is computing an I frame, or whenever a scene change is

detected. In practice about five out of six subbands coded using this method were

coded at bitrates within 0.1 bits/pixel of the target.

At the end of each frame the number of bits required to code that frame is com-

pared with the target bitrate for the frame (which is chosen such that it is constant

for each frame, i.e. in our setup it is bitrate/60) and the number of difference bits are

added to the target bitrate of the next frame This rate is used in order to allocate bits

amongst subbands as described in the previous chapter. In this way, if the current

frame uses too many bits, then fewer bits are assigned to the next frame, and vice

versa. Adding a fraction of the difference bits (instead of all of them) to set the target

rate for the next frame works better, since it ensures that the rate control converges

slowly to the desired value, and does not keep oscillating around the target rate.

The purpose of providing rate control within this setup was to demonstrate an

implementation of our system under real constraints, and thus a lot of time was not

spent on fine tuning this mechanism. In this sense our system represents a worst

case scenario. With a more elaborate system, tighter rate control as well as better

performance should be possible.

106

Chapter 5

The Experimental Results and

Conclusions

This chapter will provide the results of running the openloop and closedloop coders

on the two sample sequences shown in figures 5-1 and 5-2. All calculations for bitrates

are made based on an original image size of 720 by 1056 pixels and a frame rate of

60 frames per second. Since both the sequences used in this project were originally

scanned in at 24 fps, they are rather demanding to code with respect to these reference

values - the motion between frames for these images will be larger than that between

frames of a sequence shot at 60 fps, and thus MPEG-2 will not be able to motion

compensate as effectively.

The 'Balloons' sequence, shown in figure 5-1 does not contain a great amount of

spatial detail. Most of the image, such as the two people's clothes and the area within

the balloons, and the background consists of relatively flat regions. There is a lot of

motion around the man's face, but elsewhere in the image, it is largely restricted to a

not very fast camera pan. 'Traffic', on the other hand is very highly detailed spatially,

as can be seen from figure 5-2, and there is also a large amount of motion due to the

moving cars and camera pan. As can be seen from figure 4-10, is much more difficult

to code.

Two constraints must be considered in choosing a bitrate for the low resolution

image. First, the low resolution image must be of a viewable quality. Secondly, the

107

'I

Figure 5-1: First frame of the 'Balloons' sequence

108

£o

Figure 5-2: First frame of the 'Traffic' sequence

109

image derived from upsampling it must be of a sufficient quality that enhancement

layer coder is capable of correcting it or enhancing it. It was the second requirement

which dictated the choice of base layer bitrate in this project, mainly because of the

blocking artifacts mentioned on page 92. These artifacts, shown for the two images

in figures 5-3 and 5-4 are not very noticeable at the low resolution, but when an

image containing even minor such artifacts is upsampled, they become very visible

and severely degrade the perceptual quality of the image. The openloop coder cannot

compensate for this artifact. Thus in the openloop case a high base bitrate must be

chosen. However, there must be an upper limit on the bitrate because of scalability

and channel constraints. A base bitrate of 12Mbits/second was chosen for the open-

loop coder. This was approximately the rate at which, for the images considered, the

blocking artifacts, though visible, were not very objectionable.

There is a lot more leeway in choosing the bitrate in the openloop case, since the

enhancement layer can correct for the errors made by MPEG. After some experimen-

tation, a base rate of 8Mbits/second was found to provide a good balance between

(almost) eliminating blocking artifacts at the full resolution being able to enhance

and correct for other parts of the image. The total bitrate for both the openloop and

closedloop cases was kept at 20Mbits/second.

For the reasons outlined on page 92, coding progressive sequences at the low

resolution is more efficient. Thus, for the experiments with a progressive base layer,

the same base layer bitrates were sufficient for good image quality, even though the

the amount of data being coded at the base layer in the progressive case is twice the

amount being coded in the interlaced case.

Using the above numbers for bitrates, the four coders (openloop-interlaced, open-

loop progressive, closedloop interlaced, closedloop progressive) were tried on both

sequences. The final version of theses coders were settled upon after some experi-

mentation, and represented approximately the best setup given the images. Fourteen

frames were coded in each case.

Temporal subbands were not used, since they degraded the performance of the

system, given our very crude filters. Equation 4.6 was used to perform the bit alloca-

110

Figure 5-3: Blocking artifacts in 'Balloons'

11

Figure 5-4: Blocking artifacts in 'Traffic'

112

S

tion, with the visual weighting factors given in figure 4-15 for the luminance subbands.

The chrominance subbands were assigned the weights given in figure 4-15 reduced by

one. The best downsampling filters, as described in chapter 4, were chosen.

A dead zone factor of 2 was used in the higher subbands. However, in the experi-

ments that were performed, the higher subbands usually ended up not being assigned

any bits at all and were not coded. In the closedloop case, the most energetic sub-

bands of the difference image were the ones which had already been coded by MPEG-2

at the lower resolution and the subbands immediately adjacent to them. Using our

bit allocation scheme, they were to only ones coded. This is not surprising given

the fact that, (1) in a typical image, most of the energy is contained in the lower

spectral regions, and (2) one source of significant error is the aliasing energy leaking

across subbands due to the gradual transition regions and relatively low stopband

attenuations of the QMF filters shown in figure 4-13 (b).

The main results from the four experiments are shown in tables 5.1 and 5.2.

Coder Type Openloop Interlaced Openloop Progressive

'Balloons' Sequence
Base bitrate (Mbits/s) 12.00 11.96
Base SNR (dB) 40.64 39.16
Base MSE 3.33 4.52
Total bitrate (Mbits/s) 20.03 20.01
Total SNR (dB) 27.58 29.86
Total MSE 79.02 55.08

'Traffic' Sequence
Base bitrate (Mbits/s) 11.96 11.95
Base SNR (dB) 35.44 33.95
Base MSE 10.25 13.87
Total bitrate (Mbits/s) 20.00 19.97
Total SNR (dB) 25.02 27.52
Total MSE 158.48 96.06

Table 5.1: Statistics for the openloop coders

It is evident from these tables that the closedloop coder performs significantly

better than the openloop one. The difference between the two is most dramatic in the

113

Coder Type Closedloop Interlaced Closedloop Progressive
'Balloons' Sequence

Base bitrate (Mbits/s) 8.01 7.99
Base SNR (dB) 39.36 38.55
Base MSE 4.39 5.18
Total bitrate (Mbits/s) 20.08 20.09
Total SNR (dB) 30.47 30.30
Total MSE 36.06 50.04

'Traffic' Sequence
Base bitrate (Mbits/s) 7.96 7.97
Base SNR (dB) 33.64 32.38
Base MSE 15.03 19.80
Total bitrate (Mbits/s) 20.04 20.04
Total SNR (dB) 25.89 27.64
Total MSE 138.73 92.46

Table 5.2: Statistics for the closedloop coders

presence of blocking artifacts, which are visually unpleasant, a fact not appreciated by

looking simply at the SNR and MSE. A progressive format at the low resolution seems

to work better for the openloop coder. This is as expected, since the more information

the MPEG-2 coder has available to it at the base layer, the better a job it can do of

coding. It was observed that the upsampled progressive image exhibited significantly

lesser blocking artifacts than the upsampled interlaced image. As discussed earlier,

this is not surprising given the large amount of relatively uncorrelated energy that

is present on account of aliasing in the interlaced image, which tends to overload

the MPEG-2 rate control mechanism. In both the closedloop and openloop cases, a

progressive base layer format is seen to have a slight advantage in terms of Signal to

noise ratio and Mean Squared Error. Perhaps because of the blocking artifacts again,

the perceptual difference seemed somewhat greater.

In terms of perceptual quality, all the coding structures, with the exception of

the openloop-interlaced coder yielded good looking images at the specified bitrate of

20 Mbits/sec. Despite the relatively low SNRs shown for 'Traffic' in the tables, it

did not look bad at all due to a high degree of masking. There was so much detail

114

and motion present in the image that the noise was not very noticeable unless it was

specifically looked for. Blocking artifacts, if they were not too severe, appeared as

blurs in the moving sequence, and did not look quite as bad as one might be led to

believe from looking at a still frame.

The figures presented in tables 5.1 and 5.2are obviously not as impressive as what

MPEG-2 would yield for the same bitrates, and they are not meant to be. The idea

behind this project was to design a simpler coder which can nevertheless do an effec-

tive job of creating a scalable bitstream. However, one useful standard with which

to compare these coders is the image quality of MPEG-2 coding the full resolution

picture with the bitrate used by the enhancement level coders. Leaving aside the

issue of the expense of implementing the MPEG-2 coder for the full resolution image,

the MPEG-2 coder alone can be used to provide a scalable bitstream by means of

simulcasting, and this provides a good reference point for coder such as those devel-

oped here. In order for simulcasting to be equivalent to the openloop case, with the

numbers used here, the MPEG-2 coder would be required to code the full resolution

image at 8 Mbits/s. For simulcasting to be equivalent to the closedloop coder with the

numbers used in this project, it must code the full resolution picture at 12 Mbits/sec.

The image qualities resulting from MPEG-2 coding the two sequences used in this

project are shown in table 5.3.

Bitrate (Mbits/s) SNR (dB) MSE

'Balloons' Sequence
8 36.82 7.66

12 37.65 6.31
'Traffic' Sequence

8 30.98 27.90
12 32.51 19.40

Table 5.3: Results of MPEG-2 coding the full sized image at enhancement level rates.

Table 5.3 shows that simulcasting performs significantly better than either the

openloop or closedloop coders. However a look at the computational requirements of

MPEG-2 at the end of chapter 3 and a glance at the computational complexity of the

115

enhancement layer coder reveals that the number of operations required for motion

compensation alone is an order of magnitude greater than the total requirements of

the openloop or closedloop enhancement layers. The fact that MPEG-2 performs

so much better is thus not very surprising. The closedloop coders developed in this

project do a reasonable job of coding quite demanding images at high compression

rates, and are a good compromise when the cost of computational complexity is very

high.

5.0.5 Directions for Future Work

A number of improvements can be suggested to the setup that was presented in this

thesis.

Firstly, there is nothing special about the the image sizes and the ratios between

the full resolution and base layer images that were used in this experiment (apart from

the fact that the CCIR601 format is commercially very popular). A more complicated

ratio than 2/3 will demand a greater number of spatial subbands, and approximately

perfect reconstruction filters for them. For a scheme such as the one presented here to

become generic it is necessary that higher dimensional QMFs with suitable properties

(such as the ones described in section 2.3.1 be developed.

Another line of inquiry might be to explore the coding gain, if any, from using more

complicated coding techniques, such as vector quantization, on the subbands. Vector

quantization (VQ) provides a gain over the scalar case by exploiting the redundancy

of the data being coded. It quantizes vectors of pixel values to points in N dimensional

space instead of treating each pixel value as independent. However, VQ gives the most

coding gain when the data is strongly correlated. The subbands which were coded

in this project all had a relatively highpass character and thus there was relatively

weak correlation amongst the pixels. It is open to question whether VQ could have

achieved greater redundancy reduction than the entropy coder that were included in

the setup.

One interesting variant on this project might be to try a good temporal filter to

see how much of a coding gain that yields and whether or not that is worth the extra

116

coding delay. Another interesting thing to try might be to use a vertical-temporal

filter when downsampling, so that the region of support of the interlaced sequence is

indeed the diamond shaped region indicated in figure 4-1 (a). This would result in

increased picture quality at the base resolution, though its effect at the full resolution

might not be significant, provided this frequency shape is taken account of when

assigning bits to the enhancement layer subbands.

One area which could certainly yield significant benefits is more careful design of

the MPEG-2 coder's bit allocation algorithm, so that it may be able to deal with

interlaced inputs more effectively. Given the advantage of progressive sequences with

respect to MPEG-2 coding, one possible three layer structure might be to transmit the

base layer as a progressive sequence, from which decoders can extract an interlaced

sequence if desired. This process does the reverse of what was postulated in figure 1-1.

5.1 Conclusion

This work demonstrated the viability of using simple coding techniques built on top

of a sophisticated coding 'black box' at low resolutions to derive a scalable two layered

bitstream that can be extended to more layers. With the current explosion of video

standards around the world, and particularly given the current battle to define a

worldwide High Definition TV standard, such an approach can be used to connect

across many different formats, applications and image resolutions.

117

Bibliography

[1] William J. Butera. Multiscale coding of images. Master's thesis, Massachusetts

Institute of Technology, 1988.

[2] Test Model Editing Committee. Test model 5. Technical report, ISO-

IEC/JTC1/SC29/WG11, April 1993.

[3] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John

Wiley and Sons, 1991.

[4] R. L. Dhei, W. E. Glenn, Karen Glenn, and I.C. Abrahams. Reduced bandwidth

requirements for compatible transmission of high definition television. 38th An-

nual Broadcast Engineering Conference, pages 297-305, 1984.

[5] D. E. Troxel et. al. Bandwidth compression of high quality images. International

Conference on Communications, pages 31.9.1-31.9.5, June 1980.

[6] R. E. Crochiere et. al. Digital coding of speech in subbands. The Bell System

Technical Journal, 55(8), October 1976.

[7] Didier Le Gall. Mpeg: a video compression standard for multimedia applications.

Communications of the ACM, 34(4):46-58, April 1991.

[8] Motion Picture Experts Group. Generic coding of moving pictures and associated

audio, recommendation h.26x, fourth working draft (brussels). Technical report,

ISO/IEC, 1993.

118

[9] Ellen C. Hildreth and John M. Hollerbach. A computational approach to vision

and motor control. Technical Report A.I. Memo 864, MIT Artificial Intelligence

Laboratory, August 1985.

[10] Y. Huang and P. Schultheiss. Block quantization of correlated gaussian random

variables. IEEE Transactions on Communication Systems, September 1963.

[11] David H. Hubel and Torsten N. Wiesel. The Mind's Eye. W. H. Freeman

and Company, 1986. Readings from Scientific American, see chapter on Brain

Mechanisms of Vision.

[12] D. A. Huffman. A method for the construction of minimum redundancy codes.

In Proceedings of the IRE, pages 1098-1101, 1952.

[13] Howard C. Reeve III and S. Lim Jae. Reduction of blocking effects in image

coding. Optical Engineering, 23(1), January / February 1984.

[14] ISO/IEC 13818-2. Generic Coding of Moving Pictures and Associated Audio,

Recommendation H.262, November 1993. Committee Draft.

[15] ITU, CCIR. Recommendation 601: Encoding Parameters of Digital Television

for Studios, 1986.

[16] N. S. Jayant and Peter Noll. Digital Coding of Waveforms. Prentice Hall, En-

glewood Cliffs, New Jersey 07632, 1984.

[17] Nikhil Jayant, James Johnston, and Robert Safranek. Signal compression based

on models of human perception. Proceedings of the IEEE, 81(10), October 1993.

[18] Pasquale Romano Jr. Vector quantization for spatiotemporal sub-band coding.

Master's thesis, Massachusetts institute of Technology, 1990.

[19] V. Michael Bove Jr. Three dimensional subband coding and interlace. Technical

report, MIT Media Laboratory, 1991.

119

[20] Roger G. Kermode. Requirements for real time digital video compression. Tech-

nical report, M.I.T. Meida Laboratory, July 1993. Report prepared for Digital

Sight and Sound Group, Silicon Graphics Inc.

[21] Jae. S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall,

Englewood Cliffs, New Jersey 07632, 1990.

[22] Andrew Lippman and V. Michael Bove Jr. Atv profile. Technical report, ISO:

Coding of Motion Pictures and Associated Audio, 1992.

[23] John N. Little and Loren Shure. Signal Processing Toolbox for Use with MAT-

LAB. The Math Works Inc., 1993.

[24] J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech coding.

Proceedings of the IEEE, 73, November 1985.

[25] David Marr. Vision. W. H. Freeman and Company, 1982.

[26] H. Meyr, Hans G. Rosdolsky, and Thomas S. Huang. Optimum run length codes.

IEEE transactions on Communications, COM-22(6):826-835, June 1974.

[27] Mark Nelson. The Data Compression Book. M & T Books, 1991.

[28] Alan V. Oppenheim and Ronald W. Schafer. Discrete-Time Signal Processing.

Prentice Hall, Englewood Cliffs, New Jersey 07632, 1989.

[29] Donald Edwin Pearson. Transmission and Display of Pictorial Information.

Wiley, Halstead Press, 1975.

[30] William B. Pennebaker and Joan L. Mitchell. JPEG Still Image Data Compres-

sion Standard. Van Rostrand Reinhold, 1993.

[31] Ashok C. Popat. Scalar quantization with arithmetic coding. Master's thesis,

Massachusetts institute of Technology, 1990.

[32] W. F. Schreiber. Pychophysics and the improvement of television image quality.

SMPTE Journal, pages 717-725, August 1984.

120

[33] C. E. Shannon. A mathematical theory of communication. Bell Syst. Tech.

Journal, 27, July 1948.

[34] Eero Peter Simoncelli. Orthogonal sub-band image transforms. Master's thesis,

Massachusetts Institute of Technology, 1988.

[35] J. O. Smith. Techniques for Digital Filter Design and System Identification with

Application to the Violin. PhD thesis, Stanford University, 1983.

[36] James A. Storer. Data Compression: Methods and Theory. Computer Science

Press, 1988.

[37] Kenji Tsunashima, Joseph B. Stampleman, and V. Michael Bove Jr. A scalable

motion-compensated subband image coder. IEEE Transactions on Communica-

tions, 1992.

[38] P. P. Vaidyanathan. Quadrature mirror filter banks, m band extensions and

perfect-reconstruction techniques. IEEE ASSP Magazine, pages 4-20, July 1987.

[39] Nuno Vasconcelos. Library based image coding using vector quantization of the

prediction space. Master's thesis, Massachusetts Institute of Technology, 1993.

[40] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic coding for

data compression. Communications of the ACM, 30(6), June 1987.

121

