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Abstract

Model selection can be thought of as meta-learning - it is the problem of finding
the best model among a group of learning methods. To help avoid overfitting, this
is normally done by cross validation. However, cross validation is computationally
intensive, especially if the number of models or the number of training points is
high. Methods such as gradient descent have problems such as local minima, or
even worse, are not even applicable in some model spaces. In this thesis, I will
develop a technique called Hoeffding Races for quickly discarding bad models and
concentrating the computational effort at differentiating between the better ones,
thereby reducing the number of cross validation queries. In addition, I will apply
this technique to the problem of segmenting 3D magnetic resonance brain images
and MS lesion detection. Despite the huge amount of data, I will show that learning
algorithms such as memory based methods (variants of nearest-neighbor) can cope
with problems that have required traditional vision techniques in the past.
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Chapter 1

Introduction

Imagine that you are a world famous brain surgeon, flying across oceans to perform

life saving operations and win the adorations (and money) of tearful and thankful

relatives. Your schedule has become so crowded, however, that you are no longer able

to spend appropriate time with every patient's records before the operation. What

you need is an intern who will go over the patient's MRI (a 3-D picture of the brain)

and tell you, as you rush from one operating room to another, where the deadly lesions

and tumors are located. To find the best person for this job, you collect everyone in

your hospital (even the cleaning staff - who knows who will make a good intern?)

and teach them how to find lesions from pictures of slices of a brain. In order to find

the best person of the bunch, you test them on a few example brains. Teaching only

took a few hours, but who has time to grade the attempts of the entire hospital staff,

some of which are truly feeble?

This thesis attempts to resolve the surgeon's problem. The solution will involve

the rather harsh criterion of tossing out a candidate intern without grading their

entire test if they are doing badly at the beginning of the test. This means that we

have to spend considerably less time grading than if we were to check every answer

of every candidate. On the other hand, using this method results in not knowing the

exact grade of every candidate, and more seriously, has the chance of tossing out the

best intern early if they happened to do badly at the beginning. By using Hoeffding's

bound (a statistical formula which tells us how far we are from the average after n



independent samples) and formalizing the concepts of 'teaching', 'learning', and 'test-

ing', I will show that we can bound the chance of failure of this method. Therefore,

we can accelerate the selection process without sacrificing significant accuracy.

Of course, the above situation is merely an oversimplified analogy: in this thesis I

instantiate the analogy by having many different computational learning mechanisms

and choosing among them. The surgeon is instantiated by the researcher who has a

classification or regression problem and needs to find the best learning mechanism for

this task. I am therefore not so much concerned with 'learning', as I am with 'meta-

learning' - learning how to learn. In the past, the problem of model selection has

been dealt with in an ad hoc fashion. This thesis attempts to give an algorithm which

can be analyzed formally, yet is efficient enough to make the problem computationally

tractable.

1.1 Formalizing 'teaching' and 'learning'

Adults can do at least two wonderful things: they can tell chairs from objects which

are not chairs and they can answer questions of the form "what is seven times nine?"

as long as the numbers that need to be multiplied are less than ten. Assuming

that these are not innate abilities, they must have been taught by an adult and

learned by a child. The field of Machine Learning has a unifying formalism, called

function approximation, for dealing with the apparently unrelated learning processes

of distinguishing chairs and learning the multiplication table.

The function we are trying to learn maps attributes into outputs. If the output

is continuous, then the approximation is called a regression; if the output is discrete,

the task is called a classification. The attributes can be of any type, so for example, in

the multiplication table example they are the two multiplicands; in the chair distin-

guishing example, finding appropriate attributes is less obvious. Possible candidates

include 'number of legs','does it have a back', 'how much weight does it support', etc.

The problem of choosing suitable attributes for any given function is a formidable

one, and hence is given a specific name - the representation problem.



In this thesis, I will handle this problem in two ways: first, I will approach it

from an optimistic perspective which says that we are stuck with what we are given.

In other words, leave the attribute selection to the teacher, and assume that the

examples given to us by the teacher have been processed in such a manner as to give

us exactly the information we need. The other approach is more pessimistic yet more

active. We still assume that all the information is located in the attributes, but some

of the attributes might be irrelevant, and some might be more important than others.

Finding that information is up to the learner.

I will discuss exactly what kind of learners I use in the next chapter. Before I go

on, I would like to make sure that I do not give the mistaken impression that this for-

malism is what really goes on in children's brains when they learn. The multiplication

and chair examples are only examples to show how almost any learning problem can

be formulated as function approximation. However, that is where the analogy ends.

There is no attempt made in this thesis to make the formalism biologically feasible.

It is simply for purposes of analysis and computation that this model was chosen.

1.2 Formalizing 'testing'

Unfortunately, given any finite number of training points, there are an infinite number

of functions which fit them. Figure 1.1 shows a few of the possible functions which fit

the 5 training points perfectly. Clearly, it is a bad idea to use the same set of points

for teaching as for testing. Problems such as overfitting (getting an overly optimistic

error rate) lead to a choice of a learner which performs very badly on new queries.

What is needed is a way to test not only rote memorization, but also the ability

to generalize. There are two popular methods of estimating the learner's ability to

generalize. One is partitioning the entire set of the teacher's examples into a training

set and a testing set. The learner is trained on the training set, but its performance is

determined on its average prediction error for points in the testing set. A prediction

query involves giving the learner the attributes, but withholding the correct outputs.

The learner's guess at the outputs is then compared to the true outputs.
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Figure 1-1: Different functions fitting the the same set of points

The second method of estimating generalization is called cross validation. In the

case of leave-one-out cross validation, we can use the same set of points for both

training and testing by performing the following trick: train on all points except one;

perform a prediction query on the one point which was held out; repeat this process

for all points and return the average prediction error of all the iterations. This method

might seem more computationally expensive than the test-set method, but it does

have certain advantages, namely in cases where we cannot afford to partition the few

training points that we have (i.e., there are not enough points) or when we need a

good estimate of the error distribution over the entire space we are trying to learn.

Also, as I will show in the next chapter, there are certain classes of learners where

cross validation is just as cheap as finding the test-set error.

Cross validation turns out to be a special case of a number of statistical reuse

techniques such as jackknife and bootstrapping. For a readable overview of these

techniques, see [Efron and Tibshirani, 1991].

1.3 Hoeffding Races at a glance

Hoeffding Races takes as input a set of models, and returns the ones with the lowest

error. It tags each model with an estimated accuracy, which at the beginning is

unknown, but as the model is tested on more and more points, becomes closer and

closer to the true accuracy. When all the models are given the same point in parallel,

and update their individual estimates, they are 'racing'. Hoeffding's bound is a

statistical tool, similar to Chebyshev's and Chernoff's bound. By using that bound,
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we can tell how close our estimated accuracy is to the true accuracy after seeing only a

subsample of the test points. The more points we test on, the smaller this bound gets.

The algorithm compares the various models' bounds and removes the models which

with high probability have a worse estimated accuracy than all the other models. We

can also put some guarantees on the chances of taking a model out of the race that

could have won the race. Since the models which we are racing are memory based, it

takes no time to train them; therefore, the algorithm optimizes the real cost of these

models - the testing time.

1.4 Summary of thesis

This thesis discusses how to perform efficient model selection. I have developed a new

technique called 'Hoeffding Races' and I apply it to the problem of finding the best

classifier for segmenting MRI data. The thesis is organized as follows:

Chapter two will explore the class of models that I am using for this thesis. I

explain the benefits and disadvantages of using memory based learners and their

properties. I also discuss the nice computational properties of these models.

Chapter three gives the details of the Hoeffding Races algorithm. I also give a

proof of correctness, given some confidence. I show results of running the algorithm

on a few medium-sized problems and discuss its effectiveness.

Chapter four discusses the problem of brain segmentation and lesion detection. I

compare the various training and testing options and show how the Hoeffding Races

algorithm quickly found a good learner despite the size of the problem.

Chapter five talks about future work, related approaches to model selection and

MRI segmentation, and summarizes the main ideas of this thesis.



Chapter 2

Memory based learning

Memory based learning is an encompassing name for a variety of statistical and ma-

chine learning methods such as nearest-neighbor and local weighted regression. The

underlying principle of memory based learning is to simply remember all of the train-

ing examples. Variants of the nearest-neighbor method are then used for prediction.

Every learning method must perform some sort of memorization (otherwise it would

be ignoring its training); memory based learning differs in that the training does not

modify any internal parameters with each new training point - it simply stores it in

memory.

Let us look at a learner which is not memory based. For example, if we assume

that the function we are trying to learn is a quadratic, then we need to learn the three

parameters (a,b, and c) in the equation f(x) = ax2 + bx + c. When the program is

asked to predict the value at x = 5, it plugs in the value of x into the quadratic with

the trained parameter values. This is not a memory based learner since we do not

keep track of all of the training points, only of the parameters. On the other hand,

with a memory based learner, the training points, which are of the form (x, f(x)), are

kept in memory. When the program is asked to predict the value at x = 5, it looks

in memory for a few points whose x-values are closest to 5. The value of the function

at those points is averaged and returned as the predicted value.

Clearly, we usually do not know that the function we are trying to learn is

quadratic, or a polynomial, or piecewise linear, or has a normal distribution. There-



fore, nonparametric methods such as nearest-neighbor are more robust than methods

that make assumptions about the parameters which characterize the space of func-

tions. In addition, we can see that nearest-neighbor techniques also fall into a differ-

ent computational category from parametric methods (or even very weakly parametric

methods such as neural nets and decision trees). There is negligible computation in-

volved in training (memorizing) and most of the effort goes into finding the neighbors

of the queried point. However, there are a few unanswered questions such as:

* How do we measure 'nearness'?

* How does the choice of the number of neighbors influence prediction?

* What method should be used for averaging the outputs of the neighbors?

* How does memory based learning compare to other robust learning methods

such as neural networks and decision trees, both in prediction accuracy and

computational expense?

In this chapter, I will answer these questions, give a formal description of memory

based models, and discuss the differences between these models and other popular

machine learning techniques.

2.1 Nearest neighbor and variants

2.1.1 k-nearest-neighbors

There seems to be a need for discrimination procedures whose validity

does not require the amount of knowledge required by the normality as-

sumption, the homoscedastic assumption, or any assumption of paramet-

ric form. ... can reasonable discrimination procedures be found which will

work even if no parametric form can be assumed? [Fix and Hodges, 1951]

Fix and Hodges answered their own question by introducing nearest-neighbor

classification. The principle is simple: when queried for the class of some attributes,



return the class of the point with the most similiar attributes. Similarity is usually

measured by using the Manhattan or Euclidean metric, depending on the type of the

attributes. The method generalizes easily to k-nearest-neighbors, where a majority

rule is used to find the correct class, or averaging is used for continuous outputs.

A larger value for k makes the rule more stable against outliers and noisy data.

However, making k too large destroys the advantage of locality that a nearest-neighbor

algorithm inherently owns. In this thesis, I present a method for picking the best value

for k with respect to prediction error.

Cover and Hart [Cover and Hart, 19671 showed that 1-nearest-neighbor performs

at most twice worse than the Bayes error (the error you would get if you knew

the exact distribution of each class). As k gets larger, the competitiveness bound

gets exponentially smaller. Since this thesis is concerned more with the practical

and computational properties of nearest-neighbor, I refer the reader to Dasarathy's

collection [Dasarathy, 1991] for more theoretical results.

Weighted distance metric

Despite the fact that I ignored it in the last section, finding an appropriate distance

metric is often the toughest hurdle in attempting to use a memory based learning

system. The distance metric is responsible for the representation of the memorized

data. It decides which attributes are more important than others and aligns all the

attributes into the same representation. To give an example, let us say that we are

trying to predict hat size from height and weight. The data points are of the form

(height, weight, hat-size). Given a query q of the form (6ft,155LB), we look for

the point p which minimizes the distance between p and q. However, it is probably

not a good idea to use the standard euclidean distance since differences in pounds are

much less significant than differences in feet: someone who is (2ft,155LB) is closer to q

than someone who is (6ft,165LB) using the plain euclidean distance metric. Clearly,

we need a weighted metric that forces differences in heights to be comparable to

differences in weight. The initial representation (feet and pounds) should be changed

to a more suitable one.



However, that is not the end of our problems. What if IQ is predominantly affected

by height, and only marginally by weight? In that case, we need to count the height

attribute much more than the weight attribute so that points with similar heights

will be close together, even if they have very different weights.

Both problems can be solved with a priori knowledge of the importance and scale

of the various attributes, but one of the main reasons for using nearest-neighbor

methods is to get away from making any assumptions about the best representation

for the data. The best weighting, like the best value of k, must be learned.

2.1.2 Kernel regression

It is intuitive that some neighbors are more important than others. Specifically,

neighbors which are closer to the queried point should count more toward its classifi-

cation than neighbors which are farther away. 'Kernel regression' performs weighted

averaging (instead of a uniform average) over the space of neighbors. The weighting

function which I use is taken from [Moore et al., 1992]. The weight of the ith point

(xi) with respect to the query point q is wi .

1
wi = (2.1)1 + c - (distance(xi, q)/KlIfdth)2

The parameter Kwidth determines the width of the weighting (or smoothing) range.

The larger it is, the more weight is given to distant points. Again, it is usually not

feasible to estimate this parameter before trying out various values of it. In this

thesis, we use the value of c = 20.

2.1.3 Local regression and local weighted regression

The computationally intensive part of nearest-neighbor algorithms is usually to find

the k neighbors. Once that is done, we can perform more complex operations than

averaging in order to predict the queried value. For example, local regression involves

finding a least-squares linear fit of the neighbors. Local weighted regression [Cleveland

et al., 1988] attempts to minimize the weighted error, where the weighting function



is the one shown in Equation 2.1.

2.1.4 Preprocessing

In order to reduce the cost of finding a nearest neighbor, researchers have used two

types of preprocessing methods. The two methods are organizing the data into a fast-

access structure (such as a k-d tree) or eliminating redundant training points (also

known as editing). By processing the data before the queries, a speedup in prediction

is achieved at the expense of non-negligible training time.

A k-d tree [Preparata and Shamos, 1985] divides the space of points into hyper-

ranges which span the space and allow nearest-neighbor queries of almost any size

to be completed in O(logn), where n is the number of training points. This is an

improvement over the O(n) behavior of the obvious brute force algorithm. However,

there is an O(n log n) preprocessing cost and O(n) of additional memory is needed

to maintain the tree. In addition, k-d trees tend to perform badly if the data is

non-uniformly distributed across many dimensions [Moore and Atkeson, 1992].

Editing methods approach the problem by attempting to reduce n, the number of

points that need to be searched. There are various approaches, which include throw-

ing out points which are classified correctly, merging points which are similar, and

iteratively condensing the data set. For more detailed discussion of these methods,

see [Dasarathy, 1991]. In this thesis, I do not do any formal editing; when the training

set is too large (hundreds of thousands of points) I simply take a randomly selected

subset.

2.2 Example

To give an intuitive notion of how the various memory based learning methods fit

a function, I trained some of them on 75 random points from the function f(x) =

0.01x 3 - 3x2 - 5x + 4 in the interval [-300,400]. I also added 10% random noise to

all of the training points, which are shown in Figure 2-1. I then took 1000 random

points in the interval [-350,450] and the predictions made by 1-nearest-neighbor,
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Figure 2-1: 75 random training points with noise

5-nearest-neighbor, kernel regression with Kwidth = and K h = , and local

weighted regression with Kwidth = - and Kwidti = 1 are shown in Figure 2-2.

As can be seen, having a kernel width which is too large results in too much

smoothing, while using only a few nearest neighbors results in too much prediction

noise. Efficient decision-making of which of these functions is best is the topic of this

thesis.

2.3 Pros and cons

Before discussing the benefits of memory based learning methods, I would like to com-

ment on some of the arguments against them. Specifically, in the CART book [Breiman

et al., 1984], the authors state that:

1. They are sensitive to the choice of the metric lixIi, and there is usually

no intrinsically preferred definition.

2. There is no natural or simple way to handle categorical variables and

missing data.

3. They are computationally expensive as classifiers; C must be stored,

the interpoint distances and d(x) recomputed for each new point x.
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4. Most serious, they give very little usable information regarding the

structure of the data.

For the first point, I think that there is an intrinsically preferred definition: pick

the metric which makes the algorithm have the least generalization error. In the next

chapter, I discuss ways of accomplishing that efficiently. For the second point, cate-

gorical variables simply have a non-standard (i.e. non-Euclidean) distance function

between them. For example, it is simple to assign a specific distance function to the

categorical attributes - one which returns a distance of 1 between any two values

which are not equivalent, and a distance of 0 between values which are identical. In

his thesis, Aha [Aha, 1990] demonstrated this and showed how to handle missing

data. As for the third point, computers have become a lot more powerful in the past

decade. Memory is cheap, and storing all of the points in a k-d tree results in fairly

impressive runtime performance. The computational benefits (discussed below), are

in my opinion equal to the cost at prediction time.

Finally, on the point that they deem most serious, these statisticians fall into the

same trap as neural-net researchers who create 'Hinton diagrams'. CART creates

trees which attempt to minimize generalization error, not maximize understandabil-

ity. The same goes for the backpropagation algorithm. By looking at the resulting

structure, whether in the form of a tree or activation of neurons, we only learn what

the algorithm did with the data, not the underlying structure (if there is such a thing).

To put it another way, we can think of our a priori guess at the underlying structure

as a theory. Theories, by definition, are things which can be disproved. Unless we

are willing to toss out the model that CART produces if it does not agree with the

theory (no matter how good its predictive accuracy is), or to toss out our theory (no

matter how much believe in it), then we cannot honestly attempt to understand the

structure of the data. One might be able to achieve both predictive accuracy and

understandibility in physics, but in Machine Learning, understandibility comes at the

expense of computational tractability and generalization performance.

This thesis is concerned mostly with the computational properties of memory

based algorithms, but it is important to note that they hold their own in empirical



comparisons of accuracy to more complicated models such as neural networks and

decision trees. Examples of this can be seen in [Aha, 1990] and [Holte, 1993].

The three main advantages of memory based learners is that they are simple,

have an obvious representation, and are lazy. At the heart of even the most complex

local weighted regression models lies a simple engine of finding the nearest neighbor.

There are not many algorithms which can be described in only two words. In addition,

unlike other learning methods, there is not an attempt to force the training points

into a decision tree, a neural net, symbolic rules, or any formal representation. The

points act as their own best representation. A direct implication of this fact is that

no work needs to be performed during training - simply store the points in memory.

Therefore, memory based learners are lazy; they only do work when queried for

prediction of a new point.

In this thesis, I leverage the laziness in two ways. First, computing the leave-one-

out cross validation error is just as cheap as computing the test-set error. That is

because there is no need to retrain on all of the points but one. We can just 'cover up'

that point in memory and that is equivalent to retraining. Therefore, we have a quick,

reliable estimator for the error of a memory based model by performing leave-one-out

cross validation on all the points in the training set. Second, we can look at many

different learners without worrying about the initial expense of training all of them.

The only significant computation arises when they are tested. In fact, even if a k-d

tree is built, we can use the same tree for learners with different k, different K,,dth,

and different regression techniques. The only time when different k-d trees need to

be built for different learners is if the distance metric varies.

To conclude, I borrow an analogy from John Pratt. We can think of memory

based learners as interpreters and think of neural networks as compilers. Interpreters

are simple, give a quick answer, but perform a lot of computation during runtime.

Compilers are complex and have a significant start up cost, but their product is more

compact and there is less work during runtime.



Chapter 3

Hoeffding Races

This chapter describes a new algorithm called Hoeffding Races that guarantees to find

the best model from a set (within a confidence parameter), yet does not require the

computational expense of testing all of the models on all of the possible test points.

The idea behind the algorithm is that you do not really need many testing queries

to find out who the really good models are for a given set of data. Since all we care

about is determining the best model, we can stop testing the worst ones after only

a few queries and concentrate the computational effort on distinguishing among the

better models. We use a statistical tool - Hoeffding's Bound - to decide when a

model is significantly bad, to bound how wrong we can be about its performance, and

to guarantee with some confidence that this model is indeed bad.

In this chapter, I will first describe two alternative methods of model selection. I

will then present the Hoeffding Races algorithm and give a proof of its correctness.

Then I procceed to give various refinements to the algorithm and give some results of

running it on a number of relatively small problems. I also discuss the relation between

Hoeffding Races and descent methods, and speculate on when it is appropriate to race,

and when to climb.



3.1 Alternative model selection techniques

Traditionally, there have been a number of popular ways to search through a large col-

lection of models. Brute force was always applicable and gave the desired result, but

at a high computational price. Descent methods such as hill climbing and conjugate

gradient were much faster, yet did not guarantee to return the right result and, even

worse, was not applicable in many cases. Other techniques such as simulated anneal-

ing and genetic algorithms fall into similar traps, since provably convergent versions

of simulated annealing and genetic algorithms are too slow to be used in practice.

Hoeffding Races manages to lessen the evils of these techniques, while retaining their

benefits.

3.1.1 Brute force

Brute force attacks the problem in the simplest possible way. Given m trained learners

and a test set which consists of n points, it performs a prediction query on every point

for every single learner. It then computes the mean squared error of the predictions

of each learner and selects the learner with the lowest error. This algorithm runs in

time O(n -m).

3.1.2 Descent methods

Gradient descent, or hill climbing [Press et al., 1992], treats the collection of models

and their prediction error as a continuous and differentiable surface. It starts at some

point on this surface, and proceeds to 'descend' in the direction which has less error.

The algorithm stops when it reaches a local minimum. In other words, when all of

the neighboring models have higher error, the algorithm returns the current model.

This algorithm is much faster than brute force since it does not need to find the error

of every single model. It only needs to compute the error for the learners which are

on the path to the optimal learner. However, there are two major problems: local

minima and applicability.

Local minimum is a well documented and analyzed problem with gradient descent.
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To give an example of it in the realm of model selection, let us say that we need to

select among nine k-nearest-neighbor learners. They differ in their k (i.e., the number

of neighbors they look at in order to make a prediction). The error of each learner

is plotted in Figure 3-1. The points are connected so that we can pretend that the

surface is continuous. Gradient descent starts at one of the points on the surface and

moves toward a learner which has lower error. This method works fine if the initial

point is k = 3,2, or 1. However, for any other starting point, the algorithm will get

stuck at a local minimum either at k = 4 or k = 9. In general, the error at the local

minimum can be many times larger than the error at the global minimum, and in

addition, the chance of starting at a place which will lead to a global minimum can

be arbitrarily small.

There is an even more serious problem with gradient descent that was ignored

over in the last example - namely, there are many instances when it is not even

applicable to model selection. Let us go back to the analogy of trying to find the

best student in the class, and attempt to use gradient descent for this task. The class

is shown in Figure 3-2. We start with Bill and compute his grade; we then look at

Bill's neighbors and find that Shaniquah has the best grade out of that group. We

compare Shaniquah's grade and the grades of her neighbors and move on to Juan, etc.

Clearly, this is a nonsensical method. There is no reason to presume that just because

two students happen to sit next to each other in class means that their grades are

related (unless they are cheating). More formally, at every step of the gradient descent
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Figure 3-2: An example of gradient
descent search for the best student
in a classroom

algorithm, we need to find a collection of models which are 'near' the current model.

However, the collection of models may not have a distance metric (and therefore no

concept of 'near') defined on it. For example, how far is a neural network from a

nearest-neighbor model? How far is a decision tree from a local weighted regressor?

It is possible to impose a distance metric on any collection of objects, as shown

dramatically in the classroom example, less obviously in the k-nearest-neighbor ex-

ample, and even more sneakily in the cases where models are ordered according to

simplicity. (See [Schaffer, 1993a] and [Wolpert, 1993] for a more thorough discussion

of the misuse of occam's razor). However, just because we can impose a metric does

not mean that it is correct, or even useful. Just because there is a parameter to tune

(e.g. k in k-nearest-neighbor) does not mean that there is a predictable relation be-

tween a change in the parameter and the performance of the algorithm. In the cases

where there is no clear distance metric among the various models, all of them must be

raced. Conjugate gradient is just as susceptible to these problem as its less-capable

relative.

I



3.1.3 Genetic algorithms and simulated annealing

The same problems described with descent methods apply to these techniques as well,

only less explicitly. In a genetic algorithm [Goldberg, 19891, we start with a population

of different models, where each member is described by a representation which can

be mutated and crossed with other representations. There is a certain probability

that some bit in the representation mutates. Therefore, there is a distance imposed

between models which is proportional to the average number of generations it takes to

get between two representations. Again, this distance metric is completely arbitrary

and is based solely on the representation of the models, which is just as meaningless

as having it based on their position in a room.

Simulated annealing [Kirkpatrick et al., 1983] at high temperature performs as

slowly as brute force. At low temperatures, it is restricted by the same problems

described above for gradient descent. There are cooling schedules which guarantee

convergence at a global minimum, but they are too slow to be practical.

3.2 Racing

The algorithm derives its name from Hoeffding's formula [Hoeffding, 1963], and from

the idea that we want to 'race' all models in parallel and drop the ones which are

clearly losing the race for the least error.

3.2.1 Hoeffding's Bound

Let us say that we have N points with which to test a given model. If we were to test

a model on all of them, then we would have an average error which we will call Etrue.

However, if we only tested the model on 10 points, then we only have an estimate of

the true average error. We call the average after only n points (n < N) E,,t since it

is an estimate of Etre,. The more points we test on (the bigger n gets), the closer our

estimate gets to the true error. How close is E,,t to Et,,, after n points? Hoeffding's

bound lets us answer that question when the n points are picked with an identical



independent distribution from the set of N original test points. In this case, we can

say that the probability of E,,est being more than e away from Etrue is

Pr(Etrue - Eestl > e) < 2 e-2ne/B2  (3.1)

where B bounds the greatest possible error that a model can make.

We would like to say that "we are 99% confident that our estimate of the average

error is within e of the true average error", or in other words, Pr( Etrue - Eest I > e) <

0.01. We denote the confidence parameter with 6. Equating S with the right-hand

side of Equation 3.1 gives us an expression for e in terms of n, B, and 5.

B 2 1og(2/) (3.2)E(n)= (3.2)
2n

Equation 3.2 tells us how close the estimated mean is to the true mean after n

points with confidence 1 - S. I will discuss how to obtain a value for B in a later

section.

3.2.2 The algorithm

The algorithm starts with a collection of learning boxes. We call each model a learning

box since we are treating the models as if they were black boxes. We are not looking

at how complex or time-consuming each prediction is, just at the input and output of

the box. Associated with each learning box are two pieces of information: a current

estimate of its average error and the number of points it has been tested upon so far.

The algorithm also starts with a test set of size N. For leave-one-out cross validation,

we can perform N queries on a training set of size N.

At each iteration of the algorithm, we randomly select a point from the test set.

Then for each learning box:

* compute the error at the point by using that learning box.

* update the learning box's estimate of its own average error rate.

* use Hoeffding's bound and Equation 3.2 to calculate how close the current
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Figure 3-3: An example where the best upper bound of learning box #2 eliminates
learning boxes #1 and #5. The size of c varies since each learning box has its own
upper bound on its error range, B.

estimate is to the true error for each learning box.

Each learning box now has a bound within which its true average error lies. We

can eliminate those learning boxes whose best possible error (their lower bound) is

still greater than the worst error of the best learning box (its upper bound); see

Figure 3-3. The intervals get smaller as more points are tested (since E gets smaller

as n gets larger), thereby "racing" the good learning boxes and eliminating the bad

ones.

3.2.3 Ending the race

We iterate and keep picking test points until one of three conditions occur:

1. All but one of the learning boxes have been eliminated. The algorithm simply

returns it as the best one.

2. The algorithm can also be stopped once we have picked more than N test points.

However, since we are picking the testing points in an independent indentical

distribution, that is not a strict requirement.
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3. Alternatively, the algorithm can be stopped once e has reached a certain thresh-

old.

In any case, the algorithm returns a set of learning boxes whose errors are indistin-

guishable to within 2. e(n).

3.3 Proof of correctness

The rash reader would ask why a proof of correctness is necessary since we used a

proven statistical tool which should make the algorithm proven with confidence 6 as

well. However, the careful reader would have noticed that the confidence 1 - 6 given

in the previous section is not correct for the entire algorithm. 1- 6 is the confidence in

Hoeffding's bound for one learning box during one iteration of the algorithm. What

we need is to prove that the entire algorithm has some confidence 1 - A of returning

the best learning box.

For the sake of a simpler proof, let us make the requirement of a correct algorithm

more stringent. We will say that the algorithm is correct if every learning box is within

e of its true error at every iteration of the algorithm. This requirement encompasses

the weaker requirement that we do not eliminate the best learning box. An algorithm

is correct with confidence 1 - A if

Pr{ all learning boxes are within e(n) on all iterations} > 1 - A (3.3)

What we would like to do is show the relationship between 6 (the chance of being

wrong on one learning box in one iteration) and A (the chance of being wrong on the

whole algorithm), so that when the user wants the algorithm to work with probability

0.999, we can translate that into the confidence that we need for each learning box

at each iteration. We will be relying on the disjunctive probability inequality which

states that Pr{A V B} < Pr{A} + Pr{B}.

Let us assume that we have n iterations (we have n points in our test set), and



that we have m learning boxes (LB 1 , -- , LBm). We start with the fact that:

Pr{ a particular LB is within e(i) on a particular iteration il} > 1 - 6

Flipping that around we get:

Pr{ a particular LB is wrong on a particular iteration} < 6

Using the disjunctive inequality we can say

Pr{ a particular LB

a particular LB

a particular LB is

is wrong on iteration 1 V

is wrong on iteration 2 V

wrong on iteration n} < 6 - n

Let us rewrite this as:

Pr{ a particular LB is wrong on any iteration up to n} < 8 - n

Now we do the same thing for all learning boxes:

Pr{ LB 1 is wrong on any iteration V

LB 2 is wrong on any iteration V

LBm is wrong on any iteration} < S. n . m

or in other words:

Pr{ some LB is wrong in some iteration} < S6 n - m

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)



We flip this to get:

Pr{ all LBs are within e(n) on all iterations} > 1 - 6 -n -m (3.10)

Clearly, Equation 3.10 is the same as Equation 3.3 and we can therefore conclude

that 6 = A. When we plug this into Equation 3.2 (our expression for e from the

previous section), we pump up e, and thereby ensure the correctness of this algorithm

with confidence A. The new e is expressed as:

(n) = jiB2(log(2nm) - log(A)) (3.11)

This is an extremely pessimistic bound on A and tighter proofs are possible [Omo-

hundro, 1993]. It is pessimistic in two regards: first, it assumes that all learning boxes

are completely independent of each other. Second, it assumes that the error of a learn-

ing box after seeing n points is completely independent of its error after seeing n + 1

points. This is clearly a worst case assumption, and most PAC bounds are made

tighter by leveraging this point.

3.4 Refinements

This section presents some speed-ups and patches for the bare-bones algorithm pre-

sented above.

3.4.1 Bounding errors

The most obvious obstacle to implementing the algorithm is finding a value for B, the

maximum error of a learning box. For classification problems, there is no difficulty

- B is simply 1. That is because the worst mistake that the algorithm can make is

a misclassification which has an error of 1. For regression problems the solution is

less straightforward. If we know something about the learner and something about

the data, then we can try to put some finite bound on B. If that is not possible, then

we can attempt to estimate B by adding a few standard variances to the average
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Figure 3-4: Example of how to shrink the interval bounds

error of this learner. Since the average error and variance are updated after every

new point, the value of B also gets modified at each iteration. The value of B tends

to fluctuate wildly during the first few points until the average and variance settle

down. To avoid that, I only start racing after collecting errors from about 30 points

from each learning box. However, using this heuristic invalidates the proof.

3.4.2 Shrinking the intervals

With a little effort, we can actually tighten the bounds around the estimated error for

each learning box. First we need to name a few important components of a learning

box. Let us call the estimated error for the kth learning box at the ith iteration

E,,t(i). We will call the lower bound of that learning box lowerk(i) and likewise the

upper bound will be called upperk(i). These can be calculated by Ek (i) - e(i) and

Est(i) + (i) respectively. From now on, I will be dropping the superscript, since I

will be talking about one learning box, but applying the ideas to all of them.
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During the course of running the race, all three of these components tend to

fluctuate. Eest(i) moves around with every new point, trying to get closer to the true

error. lower(i) and upper(i) move around for two reasons: the first is that e gets

smaller at each iteration; the second is that Eest(i) changes after almost every new

point. However, despite all of this movement, we are guaranteed that with confidence

1 - A, Eest(i) will stay between the lower and upper bounds. What if at iteration

i + 1 we get a point upon which the learning box performs very badly? In this case,

Est(i + 1) is larger than Eet(i). The bounds have become tighter because of the

decrease in e, but they have been transformed by the increase in E,,t. However,

Eest(i + 1) is guaranteed to stay not only within the bounds at iteration i + 1, but

also within the bounds at all iterations until now. Therefore, the new upper bound

should not be Eest(i + 1) + e(i + 1), but instead the tighter

upper(i + 1) = Min(Eest(i + 1) + e(i + 1), Eest(i) + E(i)). (3.12)

Likewise, a tighter lower bound at iteration i + 1 is

lower(i + 1) = Max(Eest(i + 1) - e(i + 1), Eest(i) - e(i)) (3.13)

An example of shrinking the intervals is shown in Figure 3-4. The bound of

iteration i + 1 can be improved based on previous bounds.

3.4.3 Reducing variance

Recently, [Moore and Lee, 1994] added an extension known as blocking to the races.

Blocking attempts to solve two problems: first, learning boxes with very high variance

of error tend to survive the race despite the fact that their mean error could be very

high. That is because their variance translates into B, thereby increasing their e and

making it impossible to eliminate them. Second, learning boxes with very similar

average error but different variances are very hard to distinguish, resulting in the fact

that neither one can eliminate the other.



By using blocking, we race not the average errors of each learning box, but differ-

ences in errors between learning boxes. Therefore, with m models, we have
2

differences to race. Once the difference between learning box A and learning box

B is less than 0 with confidence 6, we can eliminate learning box A. This results in

eliminating the effect of error variance on the removal of racers. The reason that this

method works is that learners are usually not independent, and when one of them

performs badly on a particular point, most of them likely to perform badly as well.

3.5 Examples and results

We ran Hoeffding Races on a wide variety of classification and regression problems

which are described below. These results were also presented in [Maron, 1994]. The

data files are available from the author.

ROBOT 10 input attributes, 5 outputs. Given an initial and a final description

of a robot arm, learn the control needed in order to make the robot perform

devil-sticking [Schaal and Atkeson, 1993].

PROTEIN 3 inputs, output is a classification into one of three classes. This is the

famous protein secondary structure database, with some preprocessing [Zhang

et al., 1992].

ENERGY Given solar radiation sensing, predict the cooling load for a building.

This is taken from the Building Energy Predictor Shootout.

POWER Market data for electricity generation pricing period class for the new

United Kingdom Power Market.

POOL The visually perceived mapping from pool table configurations to shot out-

come for two-ball collisions [Moore, 1992].

DISCONT An artificially constructed set of points with many discontinuities. Local

models should outperform global ones.



Problem # points Initial # # queries with
learning boxes Brute Force

ROBOT 972 95 92340
PROTEIN 4965 95 471675
ENERGY 2444 189 461916
POWER 210 95 19950
POOL 259 95 24605
DISCONT 500 95 47500

Problem # queries with # learning speedup
Hoeffding Races boxes left factor

ROBOT 15637 6 5.91
PROTEIN 349405 60 1.35
ENERGY 121400 40 3.80
POWER 13119 48 1.52
POOL 22095 75 1.11
DISCONT 25144 29 1.89

Table 3.1: Results of Brute Force vs. Hoeffding Races.

I have run Hoeffding Races on a collection of memory based learning algorithms.

The learning boxes varied in the number of nearest neighbors that they looked at (k =

1, 3, 5, 7, 9), in the degree of smoothing performed (Kwidth = 4,2, 1, 2, 4, 1, , 4),

and whether the function was locally constant or performed local weighted regression.

The distance metric was not varied. Chapter two describes these learning boxes in

more detail. All of the experiments were run using 6 = 0.01. We compare the

algorithms relative to the number of queries made, where a query is one learning box

finding its error at one point. The results are summarized in Table 3.1.

There are a few observations to be made from this table:

* Hoeffding Races never performs more queries than brute force, and its overhead

is negligible.

* In all the cases we have tested, the learning box chosen by brute force is also

contained by the set returned from Hoeffding Races. Therefore, there is no loss

of performance accuracy.



Figure 3-5: The bottom line shows
the number of queries taken by Ho-
effding Races for the ROBOT prob-
lem as the size of the initial set of
learning boxes is increased. The
top line shows the performance by
brute force. At each point, the set
o1 learning boxes was chosen ran-
domly.

* It is least effective when a large percentage of the original learning boxes are left

at the end. For example, in the POOL problem, where there were 75 learning

boxes left at the end of the race, the number of queries is only slightly smaller

for Hoeffding Races than for brute force. In the ROBOT problem, where only

6 learning boxes were left, a significant reduction in the number of queries can

be seen.

* The obvious conclusion from this observation is that Hoeffding Races is most

effective when there exists a small subset of clear winners within the initial set

of models. In fact, it becomes more and more effective (in comparison to brute

force) the larger the size of the initial set of models.

In order to test this conclusion, I created random subsets of increasing sizes from

the 95 learning boxes used for the ROBOT experiment. I ran Hoeffding Races on

each one of the subsets, and tabulated the results in Figure 3-5. As can be seen, we

can search over a large set of models without much concern about the computational

expense of a large initial set. In other words, if we have very little knowledge of the

problem, we should not preclude any possible solution - Hoeffding Races lets us do

that without much computational expense.

I do not think that there is a general asymptotic relation between Hoeffding Races

and brute force as the number of models grow. As shown by Table 3.1, it is problem

dependent. However, it is clear that Hoeffding Races works badly on 'boring' prob-



lems, where any arbitrary model does as well as anything else, and works very well on

'interesting' problems, where only a few models really fit the domain. Running the

classroom analogy completely into the ground, the boring problems can be thought

of as picking the best gym student (everybody gets A's in gym), and the interest-

ing problems can be thought of as picking the best history student (where the grade

distribution is such that there are only a few excellent students).

I did not compare Hoeffding Races to gradient descent for the reasons given at the

beginning of this chapter - descent methods are simply not applicable for selection

among these models. Gradient descent might have been applicable if I was trying to

find suitable weights (i.e. a good distance metric) for the attributes of a particular

model (see [Atkeson, 1990]). Even then, a Hoeffding Race needs to be run between

the current weights and the neighboring weights. This technique was used successfully

in [Greiner and Jurisica, 1992].



Chapter 4

Segmenting MR data

Now that we have a method for efficiently choosing a classification or regression

model, let us try to apply it to a problem in which its efficiency and reliability are

really necessary. Segmenting Magnetic Resonance images by tissue type is such a

task. I will look at the problem of determining, for every voxel in the image, whether

it is gray matter, white matter, white-matter lesion, or cerebral fluid. This chapter

is meant to serve mostly as an extensive example of model selection. As with most

real world problems, the data needs to be massaged into a form which is appropriate

for learning. However, I have tried to maintain syntactic, rather than semantic,

transformations of the data. Expecting a learner to normalize and align the data on

its own is too much to ask for with today's technology.

The segmentation problem is important in several medical imaging applications.

For example, Multiple Sclerosis (MS) causes brain lesions, whose volume needs to

be tracked over time in order to determine if the treatment is working, or the rate

of deterioration. If this were to be done by hand, a specialist would need to look

through over 50 slices of the brain, determine the location and size of the lesions in

each slice, and add them up to get a piece of information for one person during one

time point. This becomes horribly time consuming when there are many patients

getting scanned on a weekly basis. This chapter describes an attempt to find an

automated system that has been trained on expertly segmented brains (i.e. given

examples of correct identification of lesions, gray and white matter, and fluid) and



gives good segmentations on new brains.

This is a difficult problem for several reasons. First, it is a real-world problem

with noise, human errors, and very little a priori knowledge about which features

are important. Second, it is one of the bigger problems (in terms of the number of

data points) that has been attempted using these techniques. In fact, understanding

images has usually been relegated to the Computer Vision domain, where image

specific techniques such as filtering, edge detection, and object recognition have been

used. Here I will show how a general technique can be applied in their place. Of

course, the main reason that I can do this is that the images are very constrained. I

am not attempting to solve the general vision problem using Machine Learning; I am

attempting to use general learning techniques to solve a highly constrained vision-like

problem. Finally, this is a hard problem because it has yet to be solved. No one has

come up with a perfect segmentation algorithm, and I think that is because it is

hard to formulate the solution in terms of a simple program or a few simple rules.

Therefore, the segmentation problem falls into the class of problems which are more

efficiently solved by learning from examples, than by rote programming.

A moderate goal of this project was to be able to segment future scans of the

same patient after training on that patient's images. A more ambitious goal was to

segment arbitrary patient's images after training on various patients. The attempts

are described in the next few sections.

4.1 The training data

Thanks to the MS study headed by Ferenc Jolesz and Ron Kikinis at Brigham and

Women's Hospital in Boston, I have MR images from 8 different patients. For each

patient, I have two to four scans taken at different times, weeks or months apart. A

Magnetic Resonance Image (MRI) is a three dimensional picture of the brain. Each

point in the picture contains five pieces of information, and if the image has been

segmented, a classification as well. Three of the attributes are the point's (x, y, z)

coordinates. The other two attributes are known as the two channels. The first



Table 4.1: Average percentage of each class in a brain

channel measures the proton density at the point, and the second channel measures

the viscosity of the tissue at at that location in the brain. These two attributes are

the standard output of the MR machine for Multiple Sclerosis patients at Brigham

and Women's hospital. They were determined a priori to be key attributes for tissue

classification. The point can fall in one of four classes: gray matter, white matter,

MS lesion or cerebral fluid.

The brain images have been processed so that all matter outside of the cranial

cavity (such as the skull and the skin) has been removed. The images have been

segmented by a semi-automated process [Gerig et al., 1992], in which an expert op-

erator selects 15 to 20 points and classifies them. A program finishes the process by

classifying the rest of the points. Clearly this is not the ideal training set. A much

better one would have contained brains whose every pixel was hand classified. Un-

fortunately, those are very expensive to produce since there are over 500,000 pixels

in a typical image.

Since the function we are attempting to approximate is six-dimensional (5 at-

tributes and an output classification), it cannot be easily displayed. The standard

way of displaying this information is to show horizontal slices through the brain, dis-

playing the two channels and the classification information at each point. A typical

slice is shown in Figure 4.1, parts (a), (b), and (c). Each brain consists of 52 to 56

slices. There are about 3.5 million points per brain, but only about 500,000 of them

are actually part of the brain. The rest are empty space. The average distribution of

each class is shown in Table 4.1.

CLASS PERCENTAGE
WHITE MATTER 44.7 ± 9.3

LESION 0.8 - 0.6
FLUID 11.7 + 4.2

GRAY MATTER 41.9 ± 9.1
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Figure 4-1: (a) and (b) show intensities for the two channels. (c) is the correct

classification. Lesions are green. fluid is blue. and white and gray matter is shown

in red and salmon. (d) shows the classification performed by a learner which was

trained on a different scan from the same person. The learning box uses only intensity

inforination. (e) shows the errors in red.



4.2 Intensity based classification

I was interested in finding out how good a classifier can be found that looks only

at the two channels, and ignores the position of each pixel. By using only intensity

information, I avoid the problem that the brains need to be aligned (or registered) in

order to use position information from one brain to predict classifications on another.

If brains always have fluid in their center, then it is necessary to align all the brains to

be centered on the same coordinates. In addition, patients' heads are tilted at various

angles and alignment needs to consider rotations as well as translations. Finally,

different patients have brains of various sizes and they therefore need to be scaled.

In order to avoid these problems, we look only at the data from the two channels,

but unfortunately, there are normalization problems even here. Due to changes and

drifts in the hardware of the MR machine it is possible for the intensity values to vary

wildly from image to image, and unfortunately, even within an image. An example of

this can be seen in the intensity histograms in Figure 4-2, where the distribution of

values for each of the two channels is shown for images of the same patient taken at

two different times. The reason for the change in distribution is not the growth of a

lesion, but a reconfiguration of the hardware. Attempting to train on the first image

and to test on the second image will not work, for the same reason that teaching the

multiplication table and asking about chairs will not work. Memory based learning,

like most learning models, works under the assumption that the distribution stays

constant through both training and prediction.

Half a million training points is a lot of probably redundant information and will

make prediction and search for the best model intolerably slow. Therefore, I randomly

selected a subset of about 10,000 (non duplicated) points out of each image.

Finally, we can start racing. I start with a collection of 55 models which vary

in the number of nearest-neighbors (1,3,5,7 or 9), the value of Kdth ( , or 1),

and in their choice of weighted regression, kernel regression, local weighted regression,

global weighted regression, and k-nearest-neighbors. I used cross-validation to test

each model, and I repeated the race for every brain in my collection images. If I
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PATIENT#-BRAIN# QUERIES MADE / LBs LEFT / BEST BOX
POSSIBLE QUERIES INITIAL LBs AND ERROR

9-1 410165 / 617210 30/55 k = 5, 2.3%
9-2 413665 / 616825 30/55 k = 5, 3.1%
7-1 391860 / 613085 30/55 k = 7, 2.7%
7-2 397845 / 600875 30/55 k = 7, 9, 5.0%

11-1 377700 / 492250 35/55 k = 7, 3.8%
11-2 348285 / 491755 35/55 k = 7, 4.1%
3-1 321625 / 523600 30/55 k = 7, 2.8%
3-2 380095 / 561385 30/55 k = 3, 5, 1.8%
4-1 385300 / 550880 35/55 k = 1, 3,5, 7, 9, 1.4%
4-2 368130 / 529430 35/55 k = 7, 2.9%
6-1 359715 / 522500 30/55 k = 7, 3.0%
6-2 348905 / 528055 30/55 k = 5, Kwidth = , 3.3%
10-1 393800 / 546150 35/55 k = 7, 2.5%
10-2 375850 / 555500 35/55 k = 7, 9, 2.2%
8-1 356355 / 491040 35/55 k = 7, 2.5%
8-2 365440 / 499345 35/55 k = 9, 3.2%

Table 4.2: Results of racing by cross-validation on individual images

were to use brute force, I would need to make about 550,000 queries to find the best

model for each brain (the number of points per brain subsample varies). However,

by using Hoeffding Races I only made 68.8% ± 3.8% of these queries. At the end of

each race, I ended up with 30 or 35 of my original learning boxes. Even though all

of these are equivalent to within c, the best learning box of the remaining ones was

usually the one which used the 7-nearest-neighbor model, and its average error rate

was 2.9% ± 0.9%. In general, the more global a model was, the worst it performed -

the learning boxes left at the end of the race were rather local. In terms of compute

time, finding the best model for each brain takes over 4 hours on a SPARC ELC. By

using Hoeffding Races, I saved over 32 hours of computer time for this experiment

alone. Detailed results are shown in Table 4.2.

The low error rate was verified by out-of-sample testing to make sure that cross

validation worked. However, it turns out that testing on different points from the

same brain that was used for training is not an accurate measure of the task we

are trying to perform. When we attempt to train on one image, and then make

predictions about another image, the error rate jumps to over 17%. The following



results show this: I trained on one image, then tested on

* images from different patients (testing across patients)

* the same patient at a different time (testing across time)

* different points from the same image

This was repeated, using a different training image each time. If the test set was

from the same image, the error rate was 2.76% ± 0.64% (which confirms the original

result). If the test set was from an image of the same patient at a different time, the

error rate was 17.4% ± 6.34%. If the test set was from an image of a different patient,

the error rate was 18.2% ± 7.16%. Detailed error rates are provided in Table 4.2, and

are summarized in Table 4.4. Error rates for testing on the training image are shown

in boldface, and error rates for testing across time are shown in italics.

There are a couple of unexpected results from this experiment. It is surprising

that testing across time gives the same error as testing across patients. The results

are also very consistent; in other words, there is not one particular image which stands

out as being especially good (or bad) to train over.

The key question, though, is why the error rates jumped up when the test points

were not taken from the training image? Is it because the two channels simply do

not contain enough information to generalize well to new images, or is it because

we mined the data for patterns that are not really there by cross-validating to find

the best classifier? (a pitfall suggested in [Schaffer, 1993b]) To find out, I raced to

find the best classifier again. However, instead of racing for the best cross-validated

error, I raced for the best error rate on a different test image. I repeated the race

with different training images and 15 different test images. I got the same results

(to within half a percentage point) as above on 14 of the test sets. Therefore, the

learning boxes which the race converged on are the indeed the best ones, but they

can only generalize so well.

One last attempt was to train not on a single image, but on a conglomeration of

images. The training set was made up of a combination of three brains from different

patients. Again, 55 learning boxes were raced and the winner was a local weighted



TRAINING TESTING IMAGE
IMAGE 3-1 3-2 3-3 3-4 4-1 4-2 6-1 6-2 7-1

3-1 2.63 13.71 27.81 17.35 10.02 17.71 12.66 25.78 30.03
3-2 14.73 3.48 20.43 17.57 11.70 13.21 12.65 20.24 21.38
3-3 28.23 21.25 2.15 23.29 26.40 21.51 24.32 6.94 7.46
3-4 16.90 16.16 23.86 2.84 16.22 20.75 15.60 19.91 24.77
4-1 11.76 12.18 29.14 19.38 2.61 15.43 15.26 28.98 29.37
4-2 20.82 15.70 24.94 23.95 15.57 1.15 19.17 27.35 24.00
6-1 12.05 10.32 21.85 13.84 11.00 12.53 3.74 20.89 23.75
6-2 24.67 17.96 5.97 19.80 22.84 19.84 21.38 3.06 8.22
7-1 27.72 19.77 6.86 23.28 24.72 19.95 24.77 8.71 2.30
7-2 19.99 16.61 12.54 15.06 19.12 16.45 13.62 10.95 12.65
8-1 34.44 24.32 9.33 29.49 28.50 19.01 33.00 14.97 9.05
8-2 24.63 18.11 16.10 21.36 19.67 9.04 23.61 17.56 15.42
9-1 41.35 31.02 14.46 36.40 36.89 30.68 38.05 19.75 15.32
9-2 14.02 8.81 19.57 14.47 11.59 9.45 13.38 18.17 18.97

10-1 32.23 23.40 10.62 27.78 26.47 14.76 30.75 13.92 9.76
10-2 29.43 20.36 8.29 24.73 24.35 17.28 28.50 11.22 9.90
11-1 25.25 19.37 20.45 22.23 19.80 6.98 25.73 21.73 19.07
11-2 16.35 11.41 18.94 16.16 13.52 7.70 16.02 18.86 18.63

TRAINING TESTING IMAGE
IMAGE 7-2 8-1 8-2 9-1 9-2 10-1 10-2 11-1 11-2

3-1 21.62 31.14 22.62 37.58 14.24 30.47 28.74 22.89 16.03
3-2 18.41 22.22 17.28 28.02 8.96 22.31 20.77 18.87 12.36
3-3 13.52 7.18 14.81 12.81 19.40 9.10 08.19 20.16 19.72
3-4 15.81 29.81 21.70 33.58 14.13 27.15 25.36 21.60 16.81
4-1 23.39 29.68 21.73 36.62 12.82 28.82 27.83 21.30 15.11
4-2 20.65 18.80 9.56 29.14 11.78 17.02 20.50 8.63 9.86
6-1 12.79 25.34 17.59 31.49 10.21 25.43 25.30 19.83 13.49
6-2 10.93 10.19 13.23 16.23 16.46 9.81 8.59 17.94 17.40
7-1 13.55 6.76 13.92 13.19 17.99 7.79 8.70 18.63 18.36
7-2 3.05 16.00 10.77 22.16 14.13 15.50 15.96 16.05 15.42
8-1 20.27 2.57 12.51 12.29 21.55 6.57 7.51 16.40 20.03
8-2 13.27 11.43 2.98 21.07 12.91 10.89 12.54 6.57 10.40
9-1 26.94 14.03 23.95 2.17 28.57 17.93 18.29 28.65 28.72
9-2 15.29 20.71 12.37 26.38 3.38 20.44 19.09 13.04 6.36

10-1 18.32 5.89 10.57 15.73 20.66 2.15 6.32 13.00 17.53
10-2 17.65 6.63 11.16 14.71 17.72 5.72 2.44 14.21 15.34
11-1 16.64 14.71 5.38 24.22 13.40 13.14 15.28 3.30 10.41
11-2 15.29 18.13 9.55 24.58 6.17 17.46 16.22 10.38 3.75

Table 4.3: Error rates for training on every image and testing on every image



TEST SET AVERAGE ERROR
same image 2.76% ± 0.64%
across time 17.4% ± 6.34%

across patient 18.2% ± 7.16%

Table 4.4: Summary of errors in testing various images

regression model with Kwidth = .1 This learning box was tested on all the images

and the resulting average error rate was 15.95% ± 6.2.

4.2.1 Accuracy for each class and MS lesion detection

In addition to looking at the overall performance of a learning algorithm, it is some-

times informative to look at its performance on each class. Table 4.5 shows the

average percentage error on each of the classes. I averaged over 4 types of test sets:

all of them, those which were taken from the training image, those from a different

time but from the same patient, and those from different patients.

As can be seen, it is very difficult to detect lesions, as over half of them are

incorrectly classified. However, since lesions account for less than one percent of the

data, it does not greatly effect the overall error rate. What really influences the

overall error rate is how well white matter and gray matter are classified, and 10% of

all white matter and about 15% of gray matter is classified incorrectly.

There are some applications where lesion detection is much more important than

distinguishing between white and gray matter. In all of the above experiments, we

have implicitly ignored the lesion detection problem since lesions are such a tiny

fraction of both the training and testing set. Therefore, learning boxes which perform

badly on lesions are not penalized as much as learning boxes that do well on lesions

but badly on white matter.

The other possible cause for performing badly on the lesion class is that there are

simply not enough training points or attribute information to make good predictions.

There is a simple way to make a certain class more important than other classes

without modifying the natural distribution of the data - change the output distance
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Figure 4-3: Two different output distance metrics

metric. Normally in classification tasks, the distance between any two different out-

puts is 1. In other words, if the predicted class is correct then the error is 0, and if

the predicted class is incorrect then the error is 1. However, we can easily change

that to be

0 if x = y
dist(x, y)= 200 if (x = lesion or y = lesion) and x $ y

1 otherwise

The two metrics are shown in Figure 4-3.

A side-effect of giving high errors to lesions is that the races tend to be slower.

The maximum error for each box (B) is now 200 instead of 1, resulting in a larger

e. In fact, the bounds were so large that no learning box was eliminated when I

ran Hoeffding Races with the new output distance metric. However, the top models

remained the same ones as before.
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TEST WHITE MS CEREBRAL GRAY
SETS MATTER LESION FLUID MATTER

all images 10.5% ± 13.5 53.04% ± 27.45 29.32% - 18.18 15.26% ± 14.26
same image 0.959% ± 0.528 39.86% ± 22.08 14.90% - 6.76 0.756% ± 0.243
across time 11.01% ± 14.02 52.00% ± 25.0 25.04% ± 14.89 16.40% ± 14.52

across patient 11.16% ± 13.69 54.06% - 27.71 30.66% ± 18.46 16.21% ± 14.19

Table 4.5: Errors on each class, given various testing sets

Another possibility is to convert the four classes into just two: lesion or not-

lesion. Unfortunately, this performs no better than the previous strategy. Therefore,

the problem is that there simply is not enough information to be able to detect lesions

effectively, given our collection of learning boxes.

4.3 Combining intensity and location

Due to intensity variations across time, across patients, and even across the same

image, we would like to find a model which does not rely solely on intensity. If we can

get all of the images to be invariant with respect to translation, rotation, and scaling,

then we can use the (x, y, z) information of a pixel to inform us of its classification. As

a first stab, I used the registration system developed in [Ettinger et al., 1994]. This

system registers brain images by aligning their surfaces. However, problems such as

scaling (different patients have brains of varying sizes) and changes in brain structure

across time lead to difficulties in using a system which aligns globally, as opposed to

a system which locally aligns various key internal structures.

Using this registration system as a first-order approximation for perfectly aligned

brain images, we were not able to improve on the error rate of learners which used

only intensity information. An example of a predicted image using both intensity

and location is shown in Figure 4.3. (a) and (b) are slices from the test brain which

was registered to the training image. (c) is the correct classification, and (d) is

the classification generated by a model which uses local weighted regression with

Kwidth = - and a distance metric which counts differences in channel values 16 times
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Figure 4-1-: (a) and (b) show intensities for the two channels. (c) is the correct

classification. Lesions are green. fluid is blue. and white and gray matter is shown in

red and salmnon. (d) shows the classification performed by a learner which was trained

on a different scan from the same person. The learning box uses both intensity and

position information. (e) shows the errors in red.
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as much as differences in position. The model was trained on an image from the same

person taken at an earlier time. (e) shows the error in red for this particular slice.

The error rate for the entire image is 19%.

4.4 Future directions in automating MRI segmen-

tation

There are still several crucial obstacles to overcome in order to make automatic seg-

mentation of MR images a mainstay of radiology. From the machine learning per-

spective, the most important obstacle is the lack of a large standardized corpus of

example segmentations. The training images used in this thesis were generated by a

semi-automated process. However, we would like to learn the bias of experts, not the

bias of a different computerized system. There exists one computerized atlas of the

brain which gives tissue and functional segmentation. However, that brain is healthy,

and even worse, there is only one of it. We need a collection of brains, both healthy

and diseased, where every point on every brain has been correctly segmented by a

group of human experts. This is clearly a very costly and time-consuming project.

However, it is necessary for a scientific comparison of the performance of various

learning algorithms. Simply eyeballing an output segmentation of an algorithm does

not give an accurate estimation of how well the algorithm works. The corpus of seg-

mented images can be used both for training and testing various approaches so that

they can be compared.

Another problem is the intensity deviations of the MR machines, both across time

and across the image itself. Wells [Wells et al., 1994] goes a long way toward fixing

the shadowing problem (nonlinear intensity changes) by uses bayesian techniques.

As explained in an earlier section, it is necessary to align all of the brains in

order to use location information such as the (x, y, z) coordinates of a point. The

registration methods that have been developed so far work well when images taken

from the same patient need to be registered. However, using a global transform

for registration across patients is a first-order approximation at best. More specific



knowledge about tissues and their properties and locations need to be put into the

system before brains from different people can be aligned.

Finally, using model selection along with supervised learning methods is not nec-

essarily the best way to approach the problem. It is possible that clustering methods

such as the ones used in [Gerig et al., 1992] will produce more robust results.



Chapter 5

Conclusion

5.1 Related Work

I was motivated to find efficient techniques for model selection by working on Moore's

GMBL system [Moore et al., 1992]. Haussler's work on generalizations of the PAC

model [Haussler, 1992] provided a treasure of ideas which, combined with Kaelbling's

confidence bounds [Kaelbling, 1990], generated the Hoeffding Races algorithm. The

notion of racing shows up in related forms in multi-armed bandit problems. To give

one example, Rivest and Yin [Rivest and Yin, 1993] give a heuristic for picking which

arm to pull next according to the probability distributions of the payment of each

arm.

Greiner has independently developed a PALO (Probably Approximately Locally

Optimal) algorithm [Greiner and Jurisica, 1992] which also uses Hoeffding's bound in

order to decide when one point is better than another. The main differences between

our work is that he uses his method for gradient descent (as described at the end of

Chapter three), and that he is not trying to select among models, but among Horn

clauses and default rules. It is possible to use a descent method in a discretized space

by picking among a finite number of discrete gradients. At each iteration, the PALO

algorithm compares the estimated error of stopping against the estimated error of

each one of the neighboring possibilities. The algorithm then goes in the direction of

the least error. The comparison is made faster by using a racing-like technique.



Another method based on the racing principle called 'schemata races' is described

in [Moore and Lee, 1994]. Here, combinations of attributes are raced to find the most

effective combination.

The use of e, 8, and "probably correct" all make use of PAC-like terminology. That

is no accident, since the basis for all PAC algorithms is a distribution-free bound on

distance from a mean. That bound is normally Chernoff's bound, which is a slightly

weaker form of Hoeffding's bound.

5.2 Future Work

* This work was applied to memory based learning algorithms because of their

nice computational properties (discussed in Chapter two). Since training takes

no time, and Hoeffding Races decreases the testing time, the ratio of brute

force to Hoeffding Races represents exactly the savings brought about by racing.

The algorithm is easily applicable to any collection of models, including neural

networks and decision trees. However, the cost of training all of the models

initially may then become the overriding computational factor. An interesting

question is whether it is possible to race the training stage, or maybe race

partially trained models.

* The only criterion used in this thesis to compare and evaluate a learner has

been its accuracy. It is possible for other factors to influence the selection of a

learner, but then we can no longer treat it as a learning box. We need to look

inside each learner and consider issues such as response speed, simplicity, or

other a priori biases. These issues can be formulated in a bayesian manner as a

priori probabilities and incorporated into a racing scheme by making it harder

for a favored learner to lose the race.

* This algorithm should be easy to parallelize. Simply assign one processor per

model. If there are less models than processors, then it is probably not even

worth racing them. However, there are usually going to be more possible models



than processors, in which case whenever a model gets thrown out of the race,

its processor gets a new model.

* Hoeffding's bound was chosen since it is a tight, distribution-free statistical

bound. However, it might not be the best bound to use for classification prob-

lems. Other tests, such as the f-test, can be used in its place.

* Haussler's paper on generalizations of the PAC model [Haussler, 1992] shows a

way of getting rid of the square root in the expression for e (see Equation 3.2).

This is good if there are lots of test points and B is relatively small, but might

not be a good idea otherwise. It would be interesting to see tighter bounds so

that c can decrease faster with respect to n, the number of test points seen so

far.

* Despite the fact that this thesis concentrates on racing learning models, this

technique is applicable in many minimization problems which have a discretized

space. For example, there has been a successful application of Hoeffding Races

to finding the best pinball player among a variety of computerized players.

The criterion along which the race takes place is the average score for each

player [Johnson, 1993].

* In my opinion, the most exciting (and least likely) offshoot of this research is

a search for an 'ideal' collection of models. There is not a single model which

is a solution to every problem in the world, but it is possible that a relatively

small group of models will cover a large portion of problems. This set of models

needs to stretch across the space of possible problems without much overlap.

This can be thought of as a basis set of vectors which are orthogonal and span

the space. Once we have a basis set of models, then Hoeffding Races is the

perfect tool for finding the best model out of this idealized collection since for

any given problem, only a few of the models will perform well on it. That is

the ideal condition for racing.

* Finally, there is the danger of cross validation and data mining which I ignored



for the most part. The problem of data mining is that if you look at data long

enough, you will begin to see patterns even if it is completely random. It is

likely that by throwing too many models at the data, I am actually mining

it. If Hoeffding Races is used, it would be statistically wise to use yet another

test set at the end of the race to make sure that the chosen model really has

its purported error. In addition, users of Hoeffding Races should keep in mind

Bonferroni's advice that the more models you throw at the data, the better you

should expect to perform. If that is not the case, you are probably mining.

5.3 Conclusion

In this thesis, I have given an algorithm for efficiently selecting a classification or re-

gression model. The memory-based learning models that I used are particularly suited

to this method because of their computational properties. I have tried to maintain a

zero-knowledge approach, and let the various models be judged only according to how

well they do, rather than tailor them to a particular domain. I applied these ideas

to the problem of segmenting a MR image into gray matter, white matter, lesions,

and cerebral fluid. Despite the fact that this is a huge problem, normally relegated

to domain-specific or vision-based techniques, memory-based models performed com-

petitively and were made computationally tractable by racing them. I am therefore

confident that this technique can be applied to almost any data set with reasonable

and fast results.
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