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Abstract

Run by run (RbR) control is a form of adaptive model based process control where recipe
changes are performed between runs of the process. It is becoming popular in the area of
VLSI processing but its acceptance has been hindered by integration issues. Existing sys-
tems cannot be replaced due to massive capital investments, so the RbR controller must
mesh with these systems without requiring large modifications. Two steps have been taken
to ease this integration. First, an abstract data model has been developed for RbR control
which can be easily communicated between dissimilar modules. Second, a three tier com-
munication model has been developed to allow multiple levels of interaction with the RbR
control module. These layers complement the underlying data model.

An RbR control server has been implemented to demonstrate the robustness of the
communication model and data abstraction. This server provides RbR control to a variety
of clients via TCP/IP network sockets. One of these clients is a graphical user interface
that allows direct operation of the control algorithms. This can be a powerful tool when
evaluating new control algorithms or testing equipment models. The interface contains a
set of simulation, graphing, and archiving tools to aid in the testing and operation of the
server. The controller has been integrated into a local computer integrated manufacturing
(CIM) system, as well as a control framework being developed by The University of
Michigan and SEMATECH.

In addition to interface issues, the control algorithms themselves have been enhanced
to enable a variety of constraints and bias terms to be added to the models. The controller
currently contains two control algorithms, but is designed to be expanded to include more
algorithms as they are developed. Data needed for these new algorithms can be con-
structed using the data abstraction without disrupting existing modules. Implementation,
interface, and integration barriers to the adoption of run by run control have been reduced
by the definitions and demonstrations presented in this thesis.

Thesis Supervisor: Duane S. Boning
Title: Assistant Professor of Electrical Engineering
Thesis Supervisor: Donald E. Troxel
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

Integration is a key issue in determining the eventual success of a component in a manu-

facturing process. If the component cannot complement the other pieces of the existing

system, it will be rejected in order to protect the previous system wide investment. This

leads to a demand for technology to be flexible so that it can not only provide new and

improved functionality, but can also mesh seamlessly with other systems. The primary

goal of this thesis is to design a generic interface for one such technology, run by run con-

trol, and demonstrate the flexibility of this interface by examining multiple system inte-

grations. A positive side-effect of work done toward integration has been a refinement of

the algorithms used for the controller. This chapter reviews previous run by run control

research, and discusses of issues faced when attempting integration. The chapter con-

cludes with a short example followed by a thesis overview.

1.1 Background: Run by Run Control

Run by run (RbR) control is a form of process control. It uses post-process measurements

and possibly in situ data to modify models of the process, and based on these adaptive

models recommends new equipment settings for the next run. Although run by run control

may use in situ data, it differs from real-time control in that it only adjusts process vari-

ables between runs. Run by run control can be effective in keeping a process on target and

in statistical control in the presence of process noise and drift detected between runs.
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There are many algorithms used for run by run control. These algorithms form the

"brain" of the controller. They take the measurements collected after and possibly during

the run as well as historical data and compute the next recipe that will bring the process

back to target. The actual method is dependent on the algorithm. Figure 1 shows a sche-

matic breakdown of some of the methods used for run by run control. The methods are

Run by Run
Control

Gradual Mode Rapid Mode
(Small Disturbances) (Large Disturbances)

Exponentially Predictor Cor- MIT/ Classifica- Neural Monitor
Weighted Moving rector Control Bayesian tion Trees Networks Wafer

Average (PCC) Controller

Figure 1: Run by run method hierarchy

divided into two categories, gradual and rapid, based on the nature of the disturbances.

Gradual mode algorithms are designed to handle statistically small disturbances (less than

3 a). These algorithms usually assume the process is in the correct region of operation and

requires only slight changes in the recipe to account for long-term drift.

Two example gradual mode implementations are Exponentially Weighted Moving

Average (EWMA) and Predictor Corrector Control (PCC). Note that the actual gradual

mode control incorporates one of these filtering mechanisms along with a recipe generator

(see Chapter 3). EWMA uses an exponentially weighted moving average filter to distin-

guish between random noise and real disturbances [Ing91 ]. This weighting helps eliminate

some of the harmful effects that process and measurement noise can have on a system by

time averaging this noise with data from previous runs. The weighting factor a can be set

to adjust the extent of this averaging. The trade off is between controller response vs. con-

troller immunity to noise. A comparison of an a weighting of 0.1 and 0.5 is shown in Fig-

ure 2. As can be seen, as a is increased, the relative weighting of previous runs (<20) is

decreased.
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EWMA alpha=0.5

0 2 4 6 8 10 12 14 16 18 20
Run Number Run Number

Figure 2: EWMA decay comparison

A modified version of the EWMA controller developed at Texas Instruments is Pre-

dictor Corrector Control (PCC) [BS93]. This algorithm more explicitly models the time

dependence of disturbances. Trends in the drift are monitored over many runs and are fac-

tored into the suggested recipes. This method requires the addition of disturbance state to

the process model, but has shown improved performance over EWMA when persistent

drift is present. An example cause of such drift is equipment aging. The drift monitored in

the PCC algorithm also uses EWMA filtering to ensure that the overall trend of the drift is

more resistant to process noise.

The other major class of run by run algorithms is rapid mode. Rapid mode algorithms

are designed to work under the assumption that significant disturbances have occurred and

the controller must take aggressive (rapid) steps toward pulling the system back to target.

These disturbances are greater than 3 a but less than a value which suggests that the pro-

cess has moved to an uncontrollable state. In the later case, techniques such as model

building or expert systems may be utilized to bring the process back under control. These

systems are usually used in conjunction with a gradual mode algorithm to provide both

quick response with stable control. Deciding when to switch from gradual to rapid modes

is the key to most rapid mode algorithms. The two rapid mode implementations discussed

here use different approaches to determine when a system is "out" of the gradual mode

regime and needs rapid adjustment. Other approaches that blur the distinction between

rapid and gradual mode control, including a classification tree approach [Ira90] and the

Page 10
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monitor wafer controller [MSC94] are not discussed in detail here.

One approach to rapid mode is the MIT Bayesian method [Hu93a]. In this method Sta-

tistical Process Control (SPC) charting techniques are used to signal rapid alarms. These

techniques, developed originally for manual quality control, provide a set of definite con-

ditions which signal when a process is out of control. Once an alarm has been triggered,

Bayesian statistics are performed on subsequent runs to determine the likelihood that the

alarm is a true shift in machine operation. This is used to prevent outliers from triggering

false alarms and causing incorrect adjustments based on one data point. An example of a

real and false alarm is shown in Figure 3.

Real Shift Outlier

0

1•.0

0

0

1.0

0Io

I0· 0

I0 0

~T~L

5 10 5 10
Run Run

Figure 3: Bayesian shift weighting

Another rapid mode implementation involves the use of neural networks [KS94]. In

this case, a neural network is trained on the inputs and outputs present after a shift has

occurred. The controller then uses this information to immediately compensate for distur-

bances after a shift rather than waiting for convergence as in the case of an EWMA con-

troller. Gradual mode control may then be applied once the shift has been compensated

for. Experiments have shown that this method does reduce process variation when com-

pared to a pure gradual mode, although comparisons with other rapid mode algorithms

were not performed.

The concept of a clean and open interface to run by run control algorithms has not

been as well studied as the algorithms themselves. In an effort to remedy this, SEMAT-
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ECH as part of its attempt to define an all encompassing Computer Integrated Manufactur-

ing Application Framework [Oco94],a has defined the functional interface that a control

module would have along with its interaction with the rest of the system. Figure 4 shows

the proposed information model. This model shows that a controller will have zero or one

Machine

uses to
accomplish

~rrr~~~r ~rr+rr l

Process
Resource

Plmubl U ;UIILlUI

O = zero or one connection

=many connections (zero or more)

Figure 4: Process Control information model

machines to control as well as one or many process resources that it uses to get the infor-

mation needed for control. SEMATECH has also presented a communication model that

uses messages to transfer information between functional modules. Figure 5 shows the

control communication model. This model demonstrates the need for a well-defined inter-

face between various separate resources. By defining the behavior of routines via the mes-

sages they can respond too, a valuable level of abstraction can be obtained. Using this

abstraction, vendors can implement components with vastly different internal structures

yet be externally compatible.

In addition to the work done by SEMATECH, there have been several attempts at

defining the form of the data needed for run by run control as well as presenting the con-

troller in a friendly and easy to use manner [Hu93b, SBHW94]. Conversion of the MIT

gradual mode control algorithms to the C language has also been performed [KM93].

Due to the developmental nature of many of the algorithms discussed, standardization

of interface and data has not been extensively performed. This makes it difficult to com-

pare different algorithms without essentially rewriting the desired modules. It also leads to

difficulties when integration of these routines into larger systems becomes necessary.

Before the actual methods and abstractions developed for run by run control are dis-
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/ External R
\ Requester /

-- 0 ProcessHistory();
NumberOfRunsPossible

(aProcessRun);
dataAvailable_forRun

(aDataSamplingPlan, aProcessRun);

Process Control P
Management C
Component M

'rocess N
esource

calculateSettings(aProcessRun);
dataCollectionForRun(aProcessRun);
addRunToHistory(aProcessRun);
runEnded(aProcessRun);
runEnded_withData

(aProcessRun, anOrderedCollection);

rocess ,40
'ontrol ---- -1 Machine
anager historyFor(aString , , .

Figure 5: Process Control communication model

cussed, it is useful to examine why and how run by run control can be integrated into a

manufacturing process. Although semiconductor manufacturing is the target application

for much of the run by run research, the run by run method of process control is in no way

limited to this area. The next section will touch on some of the issues faced when consid-

ering run by run control, and will present an example integration procedure.

1.2 RbR Control Application Issues

When evaluating control technologies to be tested and possibly integrated into a produc-

tion facility, certain criteria are often examined. The actual process being examined is

often of secondary importance if it fails to satisfy these constraints. These constraints do

not represent all of the issues used to judge a control strategy, but are a representative sub-

set:

* Cost

* Capability for Integration with existing equipment

* Effectiveness

* Degree of support

1.2.1 Cost

Many times cost is the primary barrier to adopting a new or modified processing method.
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Ideas are often considered based on the financial risk they pose to the company. This cost

is not only the cost of equipment needed by the process, but also the integration cost. In

addition to one time charges, there are also execution costs. Control may require addi-

tional measurements, and thus impose additional labor, time, and materials expenses. All

costs must be considered to conduct a complete analysis of the consequences of a control

strategy.

1.2.2 Capability for integration with Existing Systems

It is no longer an option to refit an entire production facility to implement a control strat-

egy. Large investments must be protected by easing this integration. For this reason,

robust interfaces to process control are needed to allow existing systems to be controlled

with little or no modifications. Often, due to a lack of equipment automation and commu-

nication, this must be done as a "suggestion" based strategy where the human operator

becomes the interface between the machine and the controller.

1.2.3 Effectiveness / Performance

Adoption of a control strategy is futile if it does not provide an improvement over the

existing process. This intuitive fact becomes a major barrier to technologies that are new

and have process-specific benefits. This can be a fatal barrier if the control process is not

flexible enough to allow a relatively painless "trial" period to show feasibility.

1.2.4 Flexibility

Another quality sought in a control strategy is its flexibility. This not only involves

changes in the product produced by a particular process, but also changes in the process

itself. A controller must be flexible enough to allow these changes with as little effort and

cost as possible. Flexibility is also beneficial in that a similar control strategy can be used

for a variety of processes.

1.2.5 Degree of Support

Companies are unwilling to blindly adopt a "black box" control strategy. It is important

that in one form or another support for the controller and its integration into the system

can be readily obtained. For this reason, companies are looking for products that embrace
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open standards. By adopting an open standard, a company can better guarantee that multi-

ple vendors can offer competitive products that all provide the same functionality.

1.3 Example Integration

Once run by run control has passed the initial phase of acceptance, it is necessary to pro-

ceed carefully toward an efficiently integrated run by run strategy. This is by no means a

one step process. It requires breaking the problem up into chronological goals that when

completed represent a safe and predictable path to integrated run by run control. These

steps are:

* Defining the problem

* Creating a model

* Configuring a controller

* Testing the model and controller

* Developing an integrated system

The intent of the following fictitious example is to show the steps toward integrated

control, not to provide insight into controlling a certain process. For this reason, a very

simple process is examined: Yummy Bake cookie manufacturer is interested in integrating

run by run control into an existing soft-center cookie production line. The machine to be

controlled is the baking oven. The desired output of the system is a "good" cookie.

1.3.1 Defining the Problem

Many times the most difficult phase of a control strategy is determining what needs to be

controlled. The solution to this can be complex. A single machine may have many charac-

teristics that are important to the manufacturer, but choosing which and how many can be

controlled can be a long and difficult process. It is also often an iterative process, where

initially several parameters are targeted, and experiments are done on each to determine

which are suitable for control. It is also important to note that in many cases parameters

which are suitable for control may not be adjusted directly, similarly process qualifiers i.e.

qualities that indicate the "goodness" of a process may not be directly measurable. In

these cases indirect measurement (virtual sensors) and actuator techniques may be

required to achieve the desired effect.
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Initially, the goal of a "good" cookie was not very helpful. Luckily, after some market

studies, this is further refined into two measurable outputs, center hardness and outer

color. The controllable inputs to the oven are the temperature, cook time, and rack height.

It is important to note that these inputs and outputs may not be the optimal choices and

may prove to have poor control characteristics. At this stage it is not critical, they are start-

ing points. Their suitability as parameters will be determined by both the model design

and later control tests.

1.3.2 Creating a model

The intent of this overview is not to develop a revolutionary scheme for controlling cookie

production, but rather to outline the steps needed to develop a run by run control system.

For this reason, it is assumed that through experience and design of experiments (DOE) a

three input, two output model can be obtained.

Although it is not covered here, it is essential that a suitable model be found for the

process. Poor models lead to poor control. The controller by its nature has the ability to

find an optimal operation point, but it is limited to a local minimum search. If the model of

the system suggests an operating point sufficiently far away from the optimal value, the

controller may be unable to push the process into a more favorable environment.

1.3.3 Configuring a Controller

Once a model has been constructed, it is necessary to configure a controller based on this

model. Configuring the controller involves choosing an available control algorithm and

modifying it to work with the model. This includes not only inputs and outputs, but also

ranges, weights, as well as many other constraints. These are the parameters of the con-

troller. It is essential that a controller be as configurable as possible: this allows models to

be entered with no special programming or controller modification. Often it is possible to

evaluate multiple control strategies using the same basic control framework. This aids in

the final selection of an algorithm and adds to the flexibility of the controller.

1.3.4 Testing the Model and Controller

It is difficult to introduce a new control technology to a proven process. A trial period

is needed to see if the control system is warranted for a particular process. This trial period
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must be made as inexpensive in time and effort as possible. This is due to the real possibil-

ity that many model/controller combinations will need to be evaluated before committing

to any one scheme.

There are two methods used to evaluate and show feasibility. First, simulations can be

performed to mimic operation of the equipment and controller. These provide useful and

inexpensive results, but often fall short of securing commitment to the idea. For this rea-

son, these simulations are often used as a first cut toward the eventual adoption of an algo-

rithm. The second method, real testing, is the method of choice for examining new ideas

before they are put into the production line. This testing must also fit the time and effort

criteria for it to be used.

The need for a simulator and tester that do not require the complete integration of an

untested system into a process motivates the development of a stand-alone graphical inter-

face to the run by run controller. This interface allows the user to configure the controller

with a test model and both simulate as well as run real test data through the controller.

Using this interface, the existing process can be tested without the need for full integra-

tion.

Using this interface the model developed for the oven control problem can be first sim-

ulated to determine if it is worthy of testing, and then tested in the factory on a sample run

of cookies. In this type of control, the human operator becomes the actuator of the control

mechanism. In this way real results can be obtained with a minimum disruption to the

existing process. As an added benefit, maintaining a human buffer between the control

decisions and the actual equipment can often catch unwanted and potentially dangerous

suggestions made by an incorrectly formulated problem or unanticipated system behavior.

It also allows the operator to become more familiar with the control system. Figure 6

shows a sample interface screen

1.3.5 Developing an Integrated System

Once the control components have been designed and configured, the collection of mod-

ules must act as a system. This is essential to the long-term adoption of a control system.

Short-term tests may be done with a loosely coupled system, but for production purposes,

control must be at worst an added routine to the process engineer and at best seamlessly
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Figure 6: Interface screen

integrated into the process. Tedious control management leads to both errors and resis-

tance from the operators.

The complete system is shown in Figure 7. Control is done in a run by run manner.

The steps of the run by run process can be enumerated as follows:

1. Bake cookie (Or cookie batch) with controller settings.

2. Measure cookie quality.

3. Using measurement data, generate new settings.

4. Repeat steps 1 through 3.

The power of the run by run control scheme is that it continually attempts to improve

the output of a process without requiring complex models. It also benefits from not requir-

ing in-situ control mechanisms that are often not an option for existing systems. These

benefits, however, are not unique to the run by run control server. What the control server

provides is a client/server approach that allows portions of the system to be modified or

replaced without affecting the rest of the system. The controller is based on a messaging

system, where a module is only required to adhere to a given message format, and is not

bound to any particular internal structure. This, for instance, allows different control strat-

Page 18



Figure 7: Cookie production with run by run control

egies to be implemented into the controller with no change to the other system compo-

nents. This concept also scales well in that additional resources, such as an archiving

database for run histories, can be added and accessed via messages.

1.4 Organization of Thesis

This section has presented an overview of some of the issues faced and addressed by

the run by run server. Specifics were intentionally left out. The specific interfaces and pro-

gramming paradigms are important to the eventual success of the run by run controller,

but the ideas they are designed to address are even more important.

The following chapters describe in detail the underlying structure of the run by run

controller as well as other system issues. Chapter 2 discusses the integration of run by run

control into existing systems, and further details the graphical interface discussed earlier.

The underlying algorithms used in the run by run controller are described in Chapter 3 as

well as the parameters used for control. Chapter 4 details the messaging and general inter-

face used by the run by run control module as well as the issues that it attempts to address.

Results obtained by actual tests using the run by run control server are discussed in Chap-
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ter 5. These tests were performed both with and without the graphical interface. Chapter 6

summarizes the thesis and points out important research needed for further advancement

of run by run control.
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Chapter 2

RbR Integration

Integration into existing systems is the primary goal of this research. The use of the run by

run controller in a wide range of applications is the benchmark by which to measure

progress. Only through interaction with real systems can the integration tools written for

the run by run controller be tested. Valuable information about the controller interface as

well as the underlying algorithms has been gained through these interactions. Currently

three systems have been investigated for communication with the RbR controller:

* The CIM RbR User Interface and Simulation Environment (CRUISE)

* The Computer-Aided Fabrication Environment (CAFE) [McI92]

* The Generic Cell Controller (GCC) [MM92]

2.1 The CIM RbR User Interface and Simulation Environment (CRUISE)

In addition to interaction with existing systems, a control client has been developed that is

used to test and debug the controller as well as to provide valuable simulation data. The

environment also provides a valuable stand-alone version of the controller that can be

used as a manual form of run by run control.

This environment is written in Tcl/Tk [Ous94], an interpreted language designed for

extending application programs and creating graphical user interfaces (GUIs). The advan-

tages of using an interpreted language like Tcl as a base for the environment are two-fold.

First, rapid program development and modification are provided as a direct result of inter-
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preted code. Second, the debugging information available in the programming environ-

ment can be a powerful tool when developing models for the interface, or testing

communications with the controller.

In addition to its use as a debugging client, the environment provides a valuable suite

of simulation tools. These include the following:

* tabular representation of historical data,

* graphing ability,

* a machine simulator with noise models,

* dynamic modification of controller parameters.

The remainder of this section will briefly explain each of these features and discuss the

benefits of their inclusion into CRUISE. Appendix B contains a user's manual for

CRUISE.

2.1.1 Tabular Representation of Historical Data

Simulation of control algorithms is important for both testing and development. There are

many methods and conventions used for both. An archiving facility is needed to provide

historical data for both comparison with other data and for graphing to identify trends or

anomalies.

CRUISE has options to display, graph, store, and compare historical data. These func-

tions are integrated into the environment and provide an intuitive interface to the data.

Storage schemes for the data include an internally recognized format as well as a format

suitable for exporting data to packages such as MatlabTM and MathematicaTM . Data com-

parison is done by graphing two simulation histories simultaneously.

2.1.2 Graphing Ability

The RbR environment has the ability to provide a graph of any time series data present in

the tables. This allows both inputs and resultant outputs to be analyzed. Postscript output

of graphs is also supported. As stated earlier, graphing of two different histories simulta-

neously is supported to facilitate comparisons.
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2.1.3 Machine Simulation with Noise Models

One of the major components of CRUISE is the equipment simulator. This simulator is

designed to provide both valid data for RbR Server testing, but more importantly, realistic

machine simulation data. This can be a valuable tool when developing a control algorithm

or comparing algorithms.

In order to provide realistic simulation data, the environment has a number of model

customization features. A simple first order polynomial model without noise that exactly

matches the control model may be used to complement the model used in the RbR Server.

This would represent control of an accurately modeled and well behaved process. The

operator, however, can adjust the equipment model so that it differs from the model used

for control and thereby simulate model mismatch.

In addition to first order polynomial models, custom higher order models are also sup-

ported. These "freeform" models allow the operator to enter useful effects such as cross

product terms and higher order terms. The syntax of entry is ASCII based, and models are

limited to functions strictly of input variables. Exponential and trigonometric functions are

not supported in direct form but may be approximated by Taylor series expansion. The fol-

lowing shows the algebraic representation for a two input one output system:

Y = 10 + 0.1X + 0.5X 2 + 0.01X 1 + 0.1X1 X 2

This system cannot be entered into the environment in this form. It must be converted into

a simple ASCII string that can be easily parsed by the environment. The following is an

acceptable version of the same input:

Y = 10 + 0.1*X1 + 0.5*X2 + 0.01*X1*X1 + 0.1*X1*X2

Noise simulation is essential when modeling a real system. The RbR environment sup-

ports the addition of noise to the value obtained from the simulation model. The simulator

supports two types of noise. The first and simplest is Gaussian distributed noise. This is

useful for testing due to its simplicity and easily analyzed behavior. The simulator also

supports more complex autoregressive moving average (ARMA) noise. This type of noise

is often more realistic due to its time-dependant nature. ARMA noise takes on the follow-

ing form:
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N, = aNt + w, + pw 1
where:

Nt  = total noise for run t,
wt  = white (Gaussian) noise for run t,
a, P = noise model coefficients.

Figure 8 shows a comparison between Gaussian and ARMA based noise. The shape of

the ARMA noise is heavily dependent on a and P and in fact becomes white noise with

oc=[=0.
Gaussian Noise ARMA Noise

(a=0.5, 0=0.5)

Figure 8: Gaussian vs. ARMA noise

2.1.4 Dynamic Modification of Controller Parameters

Often it is desirable to change characteristics of a simulation during execution. An exam-

ple would be subjecting a system to a process shift. The simulator fully supports such

actions. It not only allows the process engineer to change the form and parameters of the

noise model, but also to dynamically change underlying models between runs.

Dynamic modification of models aids both simulation and prototyping. First, simula-

tion is enhanced by allowing machine models to be changed. This aids the simulation

when trying to simulate complex events such as machine cleaning and maintenance which

may considerably modify the characteristics of the machine. Second, prototyping is
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enhanced by permitting the control engineer to directly modify the controller's internal

model without interrupting the simulation. In this way, the engineer can become part of

the control process. This simulates a more complex (human) form of control. By examin-

ing the effects on the system, it can be determined whether steps should be taken to ana-

lyze the control actions to develop a controller that exhibits similar behavior to the control

actions provided by the user.

2.2 The Computer-Aided Fabrication Environment (CAFE)

CAFE is a comprehensive object oriented integrated circuit fabrication facility manage-

ment system. It was designed at MIT to address the many issues arising from fabrication,

including recipe management and processing. CAFE currently can store process data in its

database and chart this data for manual control, but has no mechanism for integrating this

control into the CAFE system. Integrating run by run control into the CAFE system is an

excellent test of the flexibility of both CAFE and the RbR control server.

Although much of CAFE is linked at compile time to its functional core, this was not

the method of integration used. Compiling the run by run controller into CAFE would rep-

resent a break from the ideals of modularity. Modularity was maintained by making a

small external program that could be called by CAFE to enact control. To keep the inter-

face as simple as possible, the communication between CAFE and the external program is

done in two steps. First, the external program is called with all data given as arguments on

the command line. This is a simple way to send modest amounts of static data without

complex messaging systems. The external program then interacts with the RbR control

server via messages over TCP/IP and gets the suggested recipe for the next run. The pro-

gram then prompts the user to decide among three possible alternatives:

* Use recipe stored in the CAFE database.

* Use run by run control suggestions.

* Enter custom recipe.

Once the user has selected a recipe, the recipe is returned as a return value to CAFE for

further action and the external program exits. This intermediate program could be elimi-

nated in the future in favor of a direct client/server paradigm. Figure 9 shows a typical

screen generated by the control program.
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Figure 9: CAFE run by run interface

2.3 The Generic Cell Controller(GCC)

The GCC development effort is a project conducted at the University of Michigan that is

designed to integrate modules from various vendors into a single control framework

[MM92]. The goal of the project is to integrate these modules into a productive and coop-

erative tool controlled by the GCC. The RbR controller is one such module.

Integration with the GCC proved to be less abstract than was originally hoped. For the

sake of expediency, the computational engine of the run by run controller was converted

into a subroutine that could be called by the GCC. This provided a quick way to integrate

the run by run controller with the GCC. It has, however, demonstrated some of the pitfalls

that code integration can fall into, namely that software updates require at least a relink of

the GCC and at most a rewrite of the functional interface to the controller. It has also led to

a split in the development of the run by run server and the code used by the GCC module.

Figure 10 shows the current model of integration as well as the desired future model being

pursued at the University of Michigan.
Current Model Desired Model

Figure 10: GCC and RbR interface models
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Performance of the run by run controller as a module of the GCC has been useful to

show feasibility of control in chemical mechanical planarization (CMP) (see Chapter 5).

This program was meant as a first step toward automated control. As the project evolves,

so will the communication link between the run by run controller and the GCC. As with

any communication specification, work is needed to ensure that the communication speci-

fication used is acceptable at both ends and can grow as the complexity of the data grows.
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Chapter 3

RbR Implementation

There are many different approaches to process control. The focus of this research is to

implement existing algorithms for run by run control in a clear and well documented man-

ner. It is also desired that the methods used to implement existing algorithms be designed

so that future algorithms can use the same basic interface. This enables the RbR controller

to become a test-bed for algorithms by allowing their rapid integration into the existing

system.

Currently, the RbR controller has support for two methodologies for solving multiple

input multiple output (MIMO) first order polynomial control algorithms. This may at first

seem limiting, but it is assumed that run by run control will be applied to a relatively sta-

ble process, subjected to noise and drift. Once this has been established, the controller

does in effect a piecewise linear approximation over many runs. Using this strategy, com-

plex models can be linearized around an optimal point and given to the controller to main-

tain that point.

More formally, the controller uses an m-by-n (inputs-by-outputs) linear model with an

additional constant term .

y = Ax+c

1. Equations will use the following notation: Arrays will be capitals, vectors will be lower case,
indexing within a vector or matrix will be lower case with subscripts. In addition, the special
subscript "t" will be reserved for time, or run number information.
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where:
y = System output,
x = Input (Recipe),
A = Slope coefficients for equation,
c = Constant term for linear model.

This matrix notation can be expanded into the familiar simultaneous equations. Each

output represents a target of control, and each input represents an adjustable parameter in

the recipe.

Yl = allxl + al2x 2 
+ ""almXm + Cl

Yn = anlxl + an2X2 + ""anmxm + Cn

The controller operates under the assumption that the underlying process is locally

approximated by the first order polynomial model, and that this polynomial model can be

maintained near a local optimal point solely by updating the constant term c. In order to

allow maximum flexibility for algorithmic development, the computational engine of the

RbR controller has been divided into two parts:

* Model update,

* Recipe update.

3.1 Model Update

Updating the model is the first step in the control process. Currently this entails updating

the constant term used in the polynomial model equation. The algorithms used in the RbR

control server do not update the slope coefficients. This step of the control process deter-

mines how aggressive the controller is, as well as the its ability to handle different condi-

tions such as drift.

Two similar control algorithms are implemented in the RbR controller:

* EWMA gradual mode,

* Predictor corrector control (PCC).

3.1.1 EWMA Gradual Mode

EWMA gradual mode is the simplest method of model update used in the RbR controller.

As its name implies it filters historical data with an exponentially weighted moving aver-

age (EWMA) filter to prevent over-control. A single weighting factor a is used.
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t

ct = a•(1-a)t-i(yi-Axi) (1)
i= 1

Although (1) would provide the desired EWMA weighting, it also requires data from

all previous runs. Luckily this can be simplified using the additive nature of the series to

generate an iterative expression for the constant term update:

ct = a (yt-Axt) + (1-a)ct _

Using an EWMA filter to smooth the control action on a linear process has been

shown [SHI91] to have very promising results. The simplicity of the algorithm also makes

it a natural starting point for a run by run control strategy.

3.1.2 Predictor Corrector Control (PCC)

PCC is an expansion on the EWMA gradual mode that adds an explicit model for drift.

Drift is present in many VLSI processes that can "age." Examples include pad wearing on

a chemical mechanical planarizer, or build-up on the wall of a plasma etcher. PCC uses

two parameters, oa and 0, to weight noise and drift respectively. EWMA weighting is used

for both the constant term update and for the drift estimation.

n t = a (yt- Axt) + ( 1 - a) nt_ 1

dt = (yt-Axt - ct_ 1) + (1- P) dt_ 1

Ct = nt + d t

Where:
n = Estimation of noise for run.
d = Estimation of drift for run.
A = Slope coefficients for model.
y = Measured output of the system.
x = Input (recipe).
c = Constant term for model.
a = EWMA weighting for noise estimation.
0 = EWMA weighting for drift estimation.

Simulations of PCC vs. EWMA on processes with and without drift show that PCC

provides better drift response with no noticeable penalty when drift is absent. Changes in

the drift-rate, however, can lead to potential overshoot based on the time averaging of the

PCC drift estimator. Figure 11 shows a comparison between PCC and EWMA control
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under both drift and noise conditions [BS93].

EWMA vs. PCC: Drift EWMA vs. PCC: Noise

0.5 0.r  -., 2
1- - -- --- - - - - - - - 0.5-

I 

t

-1 . . I P -1.5 P I-

5 10 15 20 25 30 35 40 45 50 2 4 6 8 10 12 14 16 18 20

Initial offset of -2.0 followed by a drift of 0.5 20 runs with Gaussian noise a = 1.0
units per run. At run 20 drift changed to 0.1 Noise equal for both algorithms

Figure 11: PCC vs. EWMA

3.2 Recipe update

Once a suitable constant term has been chosen for each of the equations separately, the

task of determining a new recipe arrives. This solution must take into consideration many

conditions and constraints that affect the process. Although in the actual controller the

final recipe is calculated in the presence of all conditions and constraints, they will be dis-

cussed separately. First the algorithm used for fitting a solution to the numerous outputs

will be discussed followed by the parameters that can affect this solution.

3.2.1 Curve Fitting

At the heart of the RbR recipe algorithm is a matrix least-squares routine. Least-squares is

a method for determining the optimal solution (curve fit) for an overdetermined (#outputs

> #inputs) system. The method has the favorable property of providing the "best" solution

even if an exact solution does not exist. In this case, "best" refers to the solution which

minimizes the squared error between itself and the exact solution. Care must be taken

when formulating the problem. The absolute scale of the inputs can cause certain inputs to

be favored over others when an optimal solution is chosen. This is beneficial when used to
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modify the behavior of the controller, but is not desirable if it is not controlled (see input/

output weights discussed in section 3.2.2). To prevent unwanted bias, all inputs are nor-

malized (as shown in equation 2) to between -1 and 1 before any computation.

(Xma x + Xmin)
x-

max - Xmi n

2

Where:
xn = Normalized recipe.
xmin= Lower bound for recipe.
Xmax= Upper bound for recipe.

Based on the formulations of the problem and possible boundary constraints, the least

squares solution can take on three forms:

* Exact solution

* Overdetermined

* Underdetermined.

Figure 12 illustrates examples of the three possible forms of the solution to a control

problem. Each of these must be solved in a different manner. For the underdetermined

case (Figure 12a), the system has two inputs (x1 and x2) and one target output (3). This

problem would normally lead to an infinite number of solutions (represented by a line).

Since all solutions are "correct" it would serve the purpose of the algorithm to simply pick

one of the values. This extra degree of freedom is instead used to bring the solution as

close to the previous recipe as possible minimizing least squares distance. This not only

reduces the solution to a singe value, but it also has the positive effect of minimizing the

extent of the changes to the input parameters of the system.

Figure 12b illustrates the effects that two conditions have on a two input system. These

constraints which are represented by two lines, create a problem that has only one solu-

tion. This solution (represented by the intersection of the two lines) satisfies both condi-

tions exactly. Due to the lack of freedom in the problem, the previous solution information

is not used.

With the addition of a third condition, an overdetermined problem arises (Figure 12c).
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(a) Underdetermined

Solution (entire line)

3=xl+x 2  Previous
Recipe

Select value
closest to pre-
vious recipe.

1 - 2 3 4
x1

(c) Overdetermined

xl

3=x1+x2

t)

X2

Summary:

Underdetermined:
#inputs > #outputs, many solutions.
Select solution closest to previous.

Exact:
#inputs = #outputs, one solution.

Overdetermined:
#inputs < #outputs, no solution.
Must use choose best solution.

Figure 12: Three possible solution domains

In this formulation there are more conditions than degrees of freedom in the inputs, so

there is no exact solution. A least squares algorithm is used to minimize the error between

the target for each output and the final solution. Again the previous solution is not used to

avoid further constraining the problem.

In order to provide a flexible environment that can handle any input/output combina-

tion, the controller first determines which case is occurring, then generates the solution

accordingly. This could require three separate computational routines, but luckily this can

be reduced to one. Since the least squared solution is guaranteed to be the best, it can be

used to solve the exact case directly and the underdetermined case with some preprocess-

ing of the data. The mathematical formulation of the recipe update problem for each of

these cases is described in more detail below.
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3.2.1.1 Exact Solution

If the number of inputs (n) to a system is equal to the number of outputs (m) then there is

exactly one solution that satisfies the desired outputs. The calculation of this solution is

straightforward.

y = Ax+c
-1

x = A-I (y - c)

There are two uses for the symbol y in the equations used for control. First, it represents

the output of the system. This is what is measured as the real value of the system output.

This value is primarily used to update the constant term c, discussed earlier. Second, it is

used to denote the target that is desired for that output. This second use is how it is used in

the remainder of this chapter. The two meanings are similar in that they are the real and

ideal value of the system output.

3.2.1.2 Overdetermined

There are two events that could lead to an overdetermined problem. The first is that the

problem was formulated with fewer inputs than outputs (n<m). Second, the controller

could have originally been underdetermined or exact, but input bounds forced certain

inputs to be locked, thus decreasing the number of controllable inputs.

Once an overdetermined case is encountered, a least-squares error fit is applied. This

ensures in a least squares sense that the solution places the output as close as possible to

the target.

y = Ax+c

A T (y-c) = ATAx

x = ATA-AT (y - c)

3.2.1.3 Underdetermined

In contrast to the overdetermined case, the underdetermined case is encountered when the

number of inputs exceeds the number of outputs (m>n). This is often the case in a process.

Several inputs can be modified to help maintain a certain output, so the possible solutions

are infinite.
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Although being able to reach target is always desirable, the choice of the "best" solu-

tion from the set of all possible solutions must be done in a consistent manner. Again we

turn to least squares. This time, however, instead of merely obtaining an answer that hits

the target, we can also select an answer that is closest to the previous recipe while still

exactly solving the original problem. In this way we can ensure both that our output is

guaranteed to be correct, and that the associated inputs are modified as little as possible.

The actual formulation of the problem is a little more complex than the other cases. It

involves the use of a Lagrange multiplier (k) to take the two constraints and merge them

into a single equation. This is not the only method of obtaining the result, but is consistent

with published results [KM93].

min lix - X21Ax = b

L = 2(x-x) (x-x) + (Ax - b)

dL TTdL (X - Xo) + A = 0
dx

x - x o = -A

Ax = Axo-AA T = b

AA X = Ax o - b

X = (AA T) (Ax - b)

x = xo-AT(AAT)- (Axo - b)

Where:
b = y-c (Measured output - Constant term).
xo = Recipe from previous run.
X = Lagrange multiplier.
A = Slope coefficients for model.
L = Equation to minimize.

3.2.2 Parameters and Constraints

In addition to satisfying the constraints given by the equations themselves, the control-

ler must also consider additional constraints and parameters before a final solution can be

found. This is what often separates a theoretical solution from a "real" answer. The differ-

ence being, the theoretical solution is often solved in a vacuum with no thought to actual
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application-based limitations, whereas a real answer represents the best possible theoreti-

cal result given all of the constraints present in the working equipment as well as other

preferences. For this reason, the controller provides many parameters that can both con-

strain and bias the recipe generation in a predictable manner. Although these parameters

can complicate an otherwise simple control approach, they can also provide valuable oper-

ator influence that complements the bare controller. These additional parameters are listed

below:

Constraints:

* Input bounds

* Input resolution

Bias parameters

* Output weights

* Inputs weights

3.2.2.1 Input Bounds

The RbR controller was designed to control actual machinery, and as a result must account

for limitations in the range of possible settings that an input can have. One way to achieve

this is to simply determine the optimal recipe without input bounds, then fix all outputs

that exceed their bounds to the closest valid setting. This approach provides the necessary

constraints, but allows the controller to provide a less than optimal setting to the equip-

ment. It is important that the final recipe is chosen in the presence of these constraints. The

RbR controller uses an iterative approach to achieve this. Figure 13 shows the approach

used.

This approach differs from the one-pass approach in one key area. After the variables

have been modified to respect their maximum ranges, these variables are removed from

the system and the process is repeated. This reduces the possibility for a non optimal solu-

tion, but does not guarantee one either. It is provided as a computationally cheap alterna-

tive to a full optimization which can at least guarantee valid if not optimal results.

3.2.2.2 Input Resolution

A major problem faced when applying run by run control to a real process is input resolu-
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Figure 13: Input bounds algorithm

tion. Even a perfectly modeled system can suffer from this. Control decisions based on

infinite resolution must be rounded by the operator (or the machine) to acceptable incre-

ments. This can often lead to unacceptable control, and as a side effect gives false infor-

mation back to the controller algorithm: namely that the suggested recipe was used when

in fact a rounded version was used.

As a first step to addressing this problem, a simple iterative method is proposed to pro-

vide resolution control. Inputs are ordered from least to most adjustable (using their input

weights see section 3.2.2.4) and then sequentially rounded and removed from the equa-

tion. The remaining inputs are then adjusted to obtain the best solution for the new prob-

lem. This is repeated until all inputs have been rounded. Figure 14 shows a diagram of the

method used.

3.2.2.3 Output Weights

It is often the case that the desired target of a process cannot be reached given the con-

straints of the system. If this is the case, a decision must be made as to the relative impor-
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Start

Remove rounded
input from model.

Are
all inputs
rounded?

yes

Return Result

Figure 14: Input resolution methodology

tance of each output. The default is, of course, equal weighting, but this may not be

desirable. For example, if a process has two outputs, thickness and uniformity, the opera-

tor may want optimal thickness with a secondary requirement of good uniformity. The

weights could also be set inversely proportional to the variance of the output variable.

This would put greater importance on those variables with low variance e.g. those that can

be more accurately controlled. The controller accomplishes this by applying an output

weighting matrix W
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w 1 0 0
W =[0 ...

0 Ow

where: w1 ... wm are the relative weights for outputs 1 ... m.
The system equation for the output becomes:

Wy = WAx + Wc

W(y-c) = WAx

(WA) TW(y-c) = (WA) WAx

(A TW AW -lA TWW (y c) = x

The weighting works by biasing the magnitude of certain outputs so that when a least

squared solution is calculated, outputs with higher weights are penalized the solution the

most so they are set closer to their target than other outputs. Application of output weights

in an exact or underdetermined system has no effect on the output; in both cases there is

no reason to sacrifice one output to obtain another, therefore all outputs are reached.

Other related bias terms are the model update weights. These weights (a for EWMA, a

and b for PCC control) determine the aggressiveness of the controller for each of the out-

puts. These parameters can be used to minimize the effects on certain noisy outputs while

increasing the affect of more stable outputs. The result is a system that can quickly adapt

to changing conditions while being resistant to process noise. An added benefit of these

parameters is that they affect the system regardless of its condition (i.e. underdetermined,

exact, or overdetermined).

3.2.2.4 Input Weights (Input Adjustability)

Although the inputs to the system are normalized to ensure consistent operation, weights

can also be applied to these inputs to add yet another level of control. Input weights enable

the user to set the adjustability of the inputs. By this it is meant that input variables

weighted heavily are adjusted with greater magnitude relative to lightly weighted vari-

ables.

Application of the weighting is achieved by adjusting the normalized input variables

so that the least squared distance incurred by each variable (distance of new xt from xt-1:
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where t is the run number) is adjusted by its input weight. This should not be confused

with the output weights discussed earlier for they have exactly opposite behavior. The

input weighting has no effect on both overdetermined and exact solution problems. In

those cases, the inputs are not factored into the calculation of the error for the final solu-

tion, so the magnitude of the inputs which is the key to their weighting is irrelevant. In the

underdetermined case, where all outputs are met, the recipe is determined with the added

constraint of being as close to the old recipe as possible. This can be biased by the relative

weighting of the inputs. Inputs that are weighted heavily are forced to be the least adjust-

able due to their relatively large effect on the error calculation for the recipe. A matrix V

and its inverse V 1 are used to apply the input weighting.

vi 0 0
V= 0 ... O

0 0v

where: v1 ... vn are the relative weights for inputs 1 ... n.

Once a weight matrix has been defined, it must be applied in such a manner as to

ensure that the formulation of the problem leads to a correct solution. In order to achieve

this, the weight must be applied to both the recipe and the slope term. First, the application

of the weight term V to the recipe x modifies the least-squared error generated by these

inputs when determining the solution closest to the previous solution (see section 3.213).

The side effect of this weighting is that the new output generated by these inputs is not

consistent to the original problem formulation. To remedy this, the slope term A is

weighted with the inverse of the recipe weight. The system equation for the output

becomes:

y = Ax+c

y = (A.V - (V.x) +c

y =Ax +c

This new formulation can be used in place of the original variables to provide the nec-

essary weighting. The problem is then treated as before (see section 3.2.1.3), but with the
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new scaled values.

min x -xo Ax* = Ax = b

The solution, however, is based on these scaled values, so it must be scaled back to the

original domain.

-1 *
x = V x

3.3 Future Improvements

The RbR controller was designed to enable the incorporation of a wide range of algo-

rithms. This initially was done to allow the user to select from a variety of control methods

or test different algorithms with similar data sets. Although this has remained true, there

has been an unexpected reward to implementing multiple algorithms in the same control

framework. Since the solution generated by the controller is broken down into two parts,

model update and recipe update, the algorithms used for the model update can all benefit

from advances in the recipe update stage. As discussed earlier, a number of constraints and

bias terms have been implemented to occur within the recipe update phase of the control

action.

Future work on the control algorithms will be divided into the two phases of the solu-

tion. New constant (and possibly slope) update algorithms will be examined to give the

user more freedom when controlling a variety of systems. The constraints and bias terms

will also be expanded and improved. Many of these parameters have not been extensively

tested, and could be improved.

Chapter 4 discusses the interfaces to the controller for communicating with other

sources as well as the abstractions used internal to the controller. It is this internal data

abstraction which is key to enabling expansion of the controller. Future algorithms can be

added to the controller without requiring major code revision or changes to the other algo-

rithms.
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Chapter 4

RbR Interface Specification

In order to enable the integration of run by run control into a variety of existing systems,

key issues must be resolved. The goal is to define and implement specifications for both

data abstraction and communications that will allow the RbR controller to communicate

with various clients with minimal modification of code. In order to accomplish this, the

task of defining an interface specification for the RbR controller has been broken down

into several parts.

First, a generic data abstraction is presented that attempts to define a concise represen-

tation of the data needed for run by run control. Once this is completed, the actual map-

pings to this abstraction used by the RbR control server are presented. A communication

model is also defined to communicate the data stored within the data model between dis-

similar modules. Finally, an example implementation of the data and communication

model is shown. Each of these is discussed in more detail in this chapter.

4.1 Generic Data Definition and Abstraction

In order to implement algorithms effectively, a controller must have the data required by

these algorithms. This can lead to a very tight and undesirable relationship between the

controller and the data provider. Small changes to the algorithms often require changes in

the data provided to the controller. This leads to the need for a clear abstraction of the data

used by the controller. The goal is to provide a framework by which many different algo-
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rithms can query the same data store without requiring specific modifications to the under-

lying routines. In order to achieve this, the data used for the controller is broken down into

three levels as shown in Figure 15:

1+ = one or more

1+

Individual data
(Outputs, Target....)

1+

Data Primitives
(Setting, anOutput, aTarget)

Figure 15: RbR data abstraction

* Grouped data level.

* Individual data level.

* Data primitive level.

Figure 8 shows the data hierarchy used for the RbR controller. The data groups

become increasingly more specific and complex as they approach the Grouped data level.

The reason for this is to allow various algorithms within the controller to use the same

base of primitive data. By building specific groups needed for specific algorithms, the

advantages of structured data are achieved without the loss of generality at the most basic

level. The levels are further explained below.
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4.1.1 High-level grouped data:

At the highest level of data abstraction are the data groups. These groups contain well

defined sets of data that are related in a logical way. This data is then acted upon by vari-

ous algorithms that are designed to provide run by run control. Each algorithm can request

a given data group that contains the data needed for correct operation of that algorithm.

Data objects can be expanded and modified as the needs of algorithms change with little or

no changes to the underlying data from which they are constructed. This allows function-

ality to be added without the cost of code revision.

4.1.2 Medium-level individual data:

Individual data is often the finest grain of data needed in the operation of the RbR control-

ler. This level of data represents one complete data item. These items can be scalars, vec-

tors, or multi-dimensional arrays; what is important is that they are a single unit of data.

They can be referred to by one name and represent a single piece of information. This dif-

fers from a set of data which can be represented as a vector or array but represents a col-

lection of different data items.

4.1.3 Low-level data primitives:

At the lowest level are data primitives. These primitives can be of any form or dimension,

but share one common attribute: they cannot be referred to by a unique name. They are

part of larger data items. The reason for this level of data is that many times the physical

form of the data is primitive in nature and must be processed to create higher levels of

abstraction.

4.2 RbR High-level Data Mapping

The RbR controller can be thought of as a collection of control algorithms that share the

attribute of run by run operation. Currently, the two algorithms used in the controller,

EWMA and PCC, require almost identical data sets. This has led to the data mapping used

in the RbR controller. This is by no means the only possible mapping; in fact, as more

algorithms are introduced, various groups of data will be developed to satisfy their needs.

The important thing to note is that the medium and low level data items contained in these

groups are generic and can be used equally well in other groups as more algorithms are
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added. These high level data abstractions are discussed next.

4.2.1 Constraints

All parameter constraints are contained in this group. It is assumed that these bounds do

not change over the course of time, or that changing the constraints would invalidate the

use of previous data.

Data:
Rmin The lower bounds of the Recipe input data.
Rmax The upper bounds of the Recipe input data.
Target The desired output of the system.
iweight The input weights for the system.
oweight The output weights for the system.
resolution The input resolution for each input.
Scale_flag Boolean signalling normalized data.

4.2.2 Run_data

The run_data represents a snap-shot in time of the result of machine operation. This

includes input settings data for the machine, and the resulting outputs.

Data:
Recipe Settings used to configure the machine before each run.
Output Measured outputs gathered after previous run.

4.2.3 Model

The run by run controller currently uses a first order polynomial model as its basis for con-

trol. The dynamic elements of that model are stored in this data group. If the model were

to be expanded to other higher-order terms, they would be named and stored within this

group.

Data:
Slope This represents the coefficients for each term in the first order polynomial

model. Since the controller supports Multi-Input-Multi-Output (MIMO)
models, this object is often two dimensional.

Intercept The constant offset of the first order polynomial model. There is one inter-
cept associated with each output in the model.

4.2.4 Algorithm_params

The parameters for the two algorithms used in the RbR controller are stored in this group.

It may seem wasteful to carry information about an unused algorithm when using another,
but since currently the number of algorithm parameters is small, it is easiest to lump them
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together into one group. If more complex models with many parameters are later added,

specialization of the algorithm_params group can be made to accommodate them.

Data:
g_alpha Alpha parameter (forgetting factor) used in the RbR EWMA mode algo-

rithm.
pcc_alpha Alpha parameter used for the Predictive Corrective Control (PCC) algo-

rithm.
pcc_beta Beta parameter for PCC.

4.2.5 Controllerflags

The Controllerflags group contains various flags that select which control method to use.

This group could also include initialization information common to all control methods.

Data:
enable_rapid Boolean to enable Rapid Mode.
select_gradual_pcc Selects between EWMA, PCC, and None. These can not be

run simultaneously.

4.3 Communication Model

The RbR controller is arranged in a client/server configuration using TCP/IP sockets

[Car94]. This RbR Control Server has the ability to accept multiple requests for control

action from various clients. The key to the integration of this server into existing systems

is the communication model. Figure 16 shows an overview of the RbR Control Server as

well as a few possible connections.

Communication (TCP/IP) Communication (TCP/IP)

User Interface and Cell Controller
Simulator. (Tcl/Tk) (or anything else)

Figure 16: RbR Server and possible connections (clients)
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Although sockets were chosen as a robust method of communication with the server,

the underlying messaging system is independent of the media. The advantage of this is

that the same core controller can be used for both client/server operation, as well as

embedded operation. The communication model is based on the data model and has a one-

to-one mapping with its components. This makes integration of the communication mod-

ules into the controller much more straightforward.

Figure 17 shows an overview of the communication model. The model is arranged as a

set of functional modules that communicate via messages. The Control Requester is the

external client that uses the RbR Controller for recipe suggestions. The Database is an

external storage area for data not contained within the Control Requester. The other three

components (RbR "Brain," Group Builder, and Data Builder) are actually contained

within the RbR Controller, but are separated here to emphasize the abstraction used by the

controller. The RbR "Brain" consists of the algorithms used for the recipe generation pro-

cess and operates on a group-based data level. The Group and Data Builder provide valu-

able translation services to the RbR "Brain."

Communication between the modules follows the following pattern. First, the Control

Requester queries the RbR Controller for recipe information (via calculateSettings). Next,

the RbR "Brain" must retrieve group-based data information it needs for operation. To do

this, the "Brain" sends a get_group() message to the Group Builder requesting pieces of

data. The Group Builder then retrieves the information needed for each group of data. This

may require multiple queries using get_data() to the Control Requester or Database to get

all the data needed. If this level of interaction is not supported, then the Data Builder is

called. The Data Builder preforms an operation similar to the Group Builder, but at a sin-

gle scalar level, piecing vectors together out of scalars. Once these operations have been

performed the "Brain" can perform the requested control action and return the result. This

result is again translated to the level needed by the Control Requester; a set of modules

(not shown) provide the sending counterpart to the ones discussed above. The net result is

a communication model that provides both abstract data models with compatible interac-

tion levels, customizable to the data interface requirement of particular systems.

There are two possible integration paths while using the communication model. First,
if the controller has been established and a system wishes to connect without disrupting
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Figure 17: RbR communication model

existing clients, then it must comply with the established communication level. To do this,

the client must both request and provide data in the manner defined by the controller.

Since there are only three possible levels of communication in this model, it should be

straightforward to determine and implement the correct level of interaction. The second

integration path involves writing a control server to service a number of previously estab-

lished clients. In this scenario, the "Brain" of the controller can remain constant, but the

two builder routines must be written so that they can correctly interpret the data level pre-

sented by each of the valid clients and act accordingly. Once this has been established,

additional clients can be added by either conforming to the existing methods, or modify-

ing the builder routines to recognize and correctly translate data between the client and the

control server.

The remainder of this section describes the specific routines used to access the data at
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the three levels. Other issues such as desired behavior and data scoping are also discussed.

The section ends with a short pseudo coded example using some of the communication

routines.

4.3.1 Desired Functional Behavior

It is important that the basic behavior of the data accessor routines be defined. This behav-

ior goes beyond the mere prototype for enacting the function, but rather centers on the

state of the data once it is retrieved or sent via the routines. By defining certain behavior

ahead of time, incorrect assumptions that could lead to possible errors can be avoided.

Although the list of important behavior can be extensive, some of the more prevalent pit-

falls are discussed below.

Memory management is often implemented incorrectly. A program that incorrectly

manages memory can often run flawlessly but then crash unexpectedly and even worse

unpredictably. This need for robust memory management leads to some of the behavior

required of the data routines. As a matter of convention, the routines used in the RbR con-

troller to both store and retrieve data leave de-allocation of variables to the calling func-

tions, independent of who originally allocates the storage. This simplifies use of the

routines by maintaining a consistent interface to their use.

In addition to memory constraints, the access of data at all levels must also be stan-

dardized. To this end, the concept of the access "key" has been developed. Both storage

and retrieval of data items is based on a key. A key in its simplest sense is a unique name.

This name is used as an identifier to access data between two sources. The use of a key

allows a single routine to access all forms of data. This is very powerful when many vary-

ing types of data must be passed between the RbR controller and a data source.

A problem with using a key is that it implies a global namespace. This means that all

data is effectively floating in a large sea, with no grouping structure. This can be undesir-

able when large amounts of data from various sources must be accessed. An example

would be a query to a large database containing several machines that all share the same

statistics, naming each variable uniquely could lead to confusion, while identical naming

schemes would be impossible. To remedy this, a function is provided which takes a format

string and a variable number of arguments to build a scoped key. The key then assumes a
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dual role, both as a name identifier, and as a scope specifier. In a simple implementation,

the key will be a name specifying an object in a global namespace, while in a complex

implementation, the key will be a formatted string that is used to scope the namespace. An

example follows:

char *key_mask="%s :%s:%s :MyOffice";
char **key;
char *data;
char *country="USA";
char *state="MASS";
char *city="CAMBRIDGE";
make_key(key, key_mask, country, state, city);
get_data (key, data);

Where:
errortype make_key(char **key,char *mask,...)

key ...... Output: Processed key is returned.
mask ..... Input: Format string for key.
"..." .... Input(s): Argument(s) to fill in format fields.

In this function, the name "MyOffice" is given scope by country, state and city. This

provides an easy to use yet powerful and dynamic naming convention. The format of the

scoping is left to the implementation, and in simple cases, where global naming is not an

issue keys may be simple names with no scope formatting.

The remainder of this section will define the prototypes for the interface modules.

They are arranged in hierarchical order, highest to lowest. Although the specification is

meant to be generic, an ANSI C language interface is used as an example since this is the

language used in the controller itself.

4.3.2 Data Group Level

At the highest level of interaction are the data group functions. These access complete

groups of related data and store them in a provided variable. The structure of this data is

very specific and well defined. There is freedom, however, as to the size of any one of the

data elements. This size is stored within the variable and can be accessed when needed.

There are only two functions needed at this level, one to receive data groups from the out-

side, and one to send them. This is done by getgroup and put-group.

error_type get_group(char *key,void **data)
key...... Input
data ..... Output

error_type put_group(char *key,void *data)
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key ..... Input
data..... Input

Both getgroup and put_group use the key concept to access data that is to be passed

between the data source and the controller. The data is both sent and received using the

data argument. An attempt has been made to make both the sending and receiving routines

exact counterparts. This leads to a more standard interface that is easier to remember and

understand. Also, as discussed earlier, allocation of these groups is done by the get-group

command, but de-allocation (freeing) must be done by the caller. For this reason, every

group object has complete information about its internal size. This allows them to be

safely destroyed.

4.3.3 Individual Data Level

As discussed earlier, it is often difficult to request entire groups from the data source. For

this reason, simpler data items are used. These data items can then be arranged into groups

to form the grouped data items used at the highest level.

To retain a consistent interface to all types and dimensions of data, a simple one

dimensional variable length vector has been chosen as the basic unit of communication.

This requires that scalars be packed as length 1 vectors, and more importantly that higher

dimension variables be packed into a vector and then later expanded. This may seem lim-

iting, but the additional overhead of communicating arbitrary dimension data is enough to

warrant a universal coding scheme.

error_type get_data(char *key,enum dtype,void **data,int
*length)

key ...... Input
dtype .... Input
data ..... Output
length... Output

error_type put_data(char *key,enum dtype,void *data,int
*length)

key...... Input
dtype .... Input
data..... Input
length... Input

Again both get_data and put_data share identical calling arguments. At this level there

is less agreement or knowledge about the structure of the data being accessed. The dtype
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and length arguments have been added to remedy this. Length is simply the length of the

vector being sent or received. Dtype is an enumerated type representing one of the primary

data types (int, float, char, long). The use of dtype as an input to the get_data routine is to

allow further scoping for the data being requested (e.g. to differentiate between an integer

named "foo" and a float named "foo").

4.3.4 Data primitive level

At the lowest level of the data abstraction is the data primitive interface. This makes very

few assumptions about the outside data other than that it exists and can be referenced via a

key. These functions are designed to return only a single value upon execution. As with

the data primitives, higher level data can be made by grouping many data primitives

together.

error_type get_primitive (char *key, enum dtype, void *element)
key. ..... Input
dtype..... Input
element. .Output

error_type put_primitive(char *key,enum dtype,void element)
key ...... Input
dtype..... Input
element. .Input

4.4 Example Implementation

There are many possible levels at which the RbR controller can be integrated into a sys-

tem. One example is to control the oven discussed in chapter 2. For this application (bak-

ing cookies) concepts of data groups such as settings and measurements are foreign to the

existing process. The original equipment was designed for simple single value data com-

munication, yet group data is what is used by the control algorithms. All that is available

are three input controls (temperature, time, rack height) and two outputs (center hardness

and outside color). This represents an individual data interface to the system. Even though

the data is scalar by nature the data is not considered primitive; each data item represents a

complete piece of information. Figure 18 shows the interface between the controller and

the system for this fictitious example.

The symbols used in this example are summarized in table 1. One complete run of the
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Figure 18: Example RbR controller communication

controller involves several steps shown in table 2.

Key Variable Length Type Description

settings recipe 3 group Settings for oven.

measurements output 2 group Measurement data.

temp temp 1 float vector Temperature of oven.

time time 1 float vector Time to cook cookies.

height height 1 float vector Height of oven rack.

color color 1 int vector Color of cookie.

hardness hard 1 float vector Hardness of cookie center.

(none) length 1 integer Generic length variable.

Table 1: Example variable definitions
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Table 1: Example variable definitions

Step Description of Action

1 Oven calls calculateSettingso to request control from RbR Controllera.

2 RbR "Brain" calls getgroup() to get "settings".

3 Group Builder must actually put groups together, so for "settings" it calls
get_data() three times for the data temp, time, and height.

4 Oven responds to get_data() for "temp", "time", and "height" keys and sends
their values.

5 Group Builder combines temp, time, and height into recipe and returns
to RbR "Brain"

6 Steps 2-5 repeat for "measurements", except the Measurement Tool is queried.

7 RbR "Brain" performs control calculations.

8 RbR "Brain" calls put group() for "settings".

9 Group Builder unpacks recipe into temp, time, and height variables and
calls put_data() three times.

10 Oven responds to put_data() calls and uses temp, time, and height to run
oven.

11 Finished cookie is sent to Measurement Tool.

12 Process Repeats

Table 2: Steps for one complete "run"

a. To avoid confusion, the following convention will be used for keys and variable names:"aKey",
aVariable.

The key point of the example is that the structure of the data external to the controller

is not important, as long as it can be accessed in some way. By using "builder" routines,

the controller can maintain a high level interface to the data. This allows one controller to

be used for various applications. If later, the oven is updated to allow downloading of a

complete control setting, then the controller could interact with the oven at a higher level.

From the perspective of the control algorithms, however, the result would be the same.
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Chapter 5

Results of Run by Run Control

As the primary goal of this research is to allow run by run control to be easily integrated

into systems, it is useful to examine the results of this integration. The two primary test-

beds for MIT run by run control using the control server (or its algorithmic core) were set

up at SEMATECH and Digital Equipment Corporation (DEC). All tests were done on the

chemical mechanical planarization (CMP) process. Appendix A presents a brief overview

of the process.

5.1 SEMATECH Tests

As part of the SEMATECH J88D project, two tests were conducted on an industrial CMP

machine. The purpose was to show feasibility of both run by run control and of the

Generic Cell Controller (GCC). The two tests were performed in October 1994 and

December 1994 respectively.

5.1.1 SEMATECH: First Test

The first SEMATECH CMP control experiment proved to be a valuable test of the Run by

Run Control Server. Although originally it was planned to use the GCC to provide a con-

trol framework which included the algorithmic core of the RbR Server, the GCC was still

under development when the actual test was done. This required a stand-alone version of

the RbR controller to be developed to perform the test without the GCC.
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As an example of the flexibility and open structure of the RbR Server, a simple text

input/output client was written in under one week. This simple interface provided the link

to the Control Server that was used in the control experiment. Figure 19 shows a sample

output from the text-based client.

Enter type of control:(0=gradual l=pccl 2=pcc2) 0
Number of inputs to system: 2
Number of outputs to system: 2
Do you want to modify model parameters?
(Enter y/n): y
Enter gradual alpha:(0.000000) .5
Enter 2 constant terms separated by spaces:
0.000 0.000
1.0 2.0
Enter 2 targets separated by spaces:
0.000 0.000
2.0 4.0
Enter 2 slope coefficients for equation 0:
(Separated by spaces)
0.000 0.000
.1 .4
Enter 2 slope coefficients for equation 1:
(Separated by spaces)
0.000 0.000
.5 .23
Enter 2 recipe terms separated by spaces:
0.000 0.000
10 20
Enter 2 recipe lower bounds separated by spaces:
0.000 0.000
0 -10
Enter 2 recipe upper bounds separated by spaces:
0.000 0.000
50 75
Enter 2 weight terms separated by spaces:
0.000 0.000
1.0 1.0

Enter 2 system outputs
2.5 4.03

----------------------- RESULTS-----------------------
Control Mode=> gradual

Expected output after correction:
2.0 4.0

New Constant terms:
1.11 1.897

New Recipe
18.65 21.2

----------------------ould you like to control another run?(yn)
Would you like to control another run?(y/n)

Figure 19: RbR text client

The results of the first SEMATECH test proved to be quite favorable. The controller

was able to maintain a constant removal rate without drastic changes in the non-unifor-
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mity. The test also pointed out weaknesses in the control approach. In particular, the con-

trol parameters of the machine were discretized and could not be precisely set to the

suggested recipe. This led to sudden "bumps" in the recipe whenever an input crossed a

discretization point. This also led to very few actual control changes.

5.1.2 SEMATECH: Second Test

The second run by run control test was done using the GCC with embedded run by run

algorithms. Although the control system was better organized, the test uncovered limita-

tions in the current algorithm. Discretization was not implemented in the controller, and

proved to be needed in this multiple input, multiple output scenario. The system drifted

significantly, with marginal ability to correct this trend.

The test provided a wealth of information as to the limitations of the controller as it

was then formulated. Among the areas that needed work were: discretized inputs,

weighted inputs, separate gradual weights for each output, and simulator development.

Each of these enhancements provides another level of customization of the controller.

Currently all updates have been integrated into the stand-alone controller and the updated

controller will soon be integrated into the GCC.

5.2 Digital Equipment Corporation Test

Run by run CMP was examined at DEC by an MIT Leaders for Manufacturing student,

Arthur Altman [Alt95]. The thrust of Altman's work was to show feasibility of run by run

control when applied to CMP. He used CRUISE to both test his control models, and to

control the actual machine.

The development and testing phase of the project done at DEC provided valuable

feedback as to errors and limitations present in the run by run GUI. The need to store sim-

ulation data in a way that allowed simulations to be performed over multiple days was

addressed and added to the environment. The need for feedforward information also

became apparent due to the type of problem being examined. This too was added and sub-

sequently improved by valuable interaction with Altman.

Due to the apparent drift examined while characterizing the system, Altman decided to

use the Predictor Corrector Control (PCC) algorithm as a base for the control scheme. His
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two goals where to control both final thickness and uniformity. This was done by monitor-

ing 9 points on the wafer (see Appendix A).

Due to the lack of materials, time, and access to the CMP machine, the tests were not

large enough to provide conclusive evidence of correct control but do suggest that run by

run control can effectively improve CMP processing. The DEC experiments also provided

the first on-line test of CRUISE. Especially informative data collected from the run

included the resulting outputs for Mean Polish Rate Slope (where slope is a measure of

non-uniformity). This graph, shown in figure 20, is an example of both a controlled as

well as an uncontrolled process. The reason for the process moving to an uncontrollable

state is that, at run four of the experiment, the control "knob" reached its limit, and there-

after the opportunity to control the process further was lost. The first few runs suggest that

run by run control can maintain the process near target; runs 5-9 show that without control

the uniformity measure drifts and degrades with time.

Mean Polish Rate Slope
I.U0Uo

0.00%

-1.00%

-2.00%

-3.00%

-4.00%

-5.00%

-6.00%

Figure 20: Output from DEC CMP experiment

Although the test performed is small in relation to those used to verify the use of a pro-

cess, it does provide useful information as to the usability of the Run by Run Control and

Simulation Environment. It has also been instrumental in fixing errors and structural limi-

tations that would otherwise have gone unnoticed due to lack of use. Future tests will be

needed to advance the state of the interface, but this was a very productive and fruitful

start.
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Chapter 6

Summary

One of the greatest barriers to the integration of run by run control into VLSI manufac-

turing is compatibility with existing systems. To address this issue, a generic data format

as well as a multilevel communication model for run by run control has been developed.

The hope is that using these abstractions, the task of integration can be greatly simplified.

The abstraction used is broken down into three levels, high, medium, and low. These

represent increasingly primitive representations of data. The highest level contains logical

groups of related data. At the mid level, single data items are stored. These items may

have many components, but are considered a single entity. The lowest level of the abstrac-

tion interacts with raw data types directly. All three levels are needed to present a com-

plete picture of possible operation.

Complementing the data model is a three tier communication model. Each level com-

municates data items of a given complexity (high, medium, low). These three levels of

communication are unseen by the inner core of the controller which uses high-level data

exclusively. This abstraction is facilitated by modules that construct complex data groups

out of primitive data items. This allows the algorithms of the controller to maintain a high-

level data abstraction without requiring this level of communication from the data pro-

vider. By allowing multiple levels and complexities of interaction, the controller can con-

nect to a variety of systems.
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To demonstrate the use of the data abstractions and communication model, a run by

run control server has been developed. This server uses TCP/IP sockets to allow multiple

clients to request run by run control over a network. The server provides both a medium

and primitive level of communication to the clients. Control data is communicated via

access "keys" that denote various pieces of data. These keys can be easily expanded as

more complex control algorithms are added and a single server can support multiple algo-

rithms by querying algorithm-specific data from the client as needed.

In addition to a control server, a stand alone graphical client has also been developed.

CRUISE is a Tcl/Tk based application that provides complete access to the control server.

This interface provides three useful functions. First, the interface serves as an example

implementation of the messaging system in the RbR Control Server and can be used to

both test and demonstrate the messaging used. Second, the interface has a wide range of

simulation features that can be used to both simulate real machinery as well as test new

algorithms as they are being developed. Third, the interface can be used as a fully func-

tional run by run controller interface. In this scenario, real processes can be controlled by

entering data into the interface and querying the Control Server for control decisions. The

interface has information graphing and storing functions that are useful when evaluating

the control action for a process.

The controller has also been integrated into two manufacturing systems as an effort to

examine the effects of run by run control. These systems are the MIT Computer-Aided

Fabrication Environment (CAFE) and the Generic Cell Controller (GCC). CAFE is a CIM

system developed at MIT that integrates the RbR Control Server via an external callable

program. This program provides the user with the options of accepting the run by run con-

trol suggestion or the default recipe for the process. The GCC development effort is a

project at The University of Michigan under contract with SEMATECH to examine the

possible introduction of run by run (and other methods of) optimization and control into

VLSI fabrication. The functional core of the RbR Server is integrated directly into the

GCC.

Along with interface and integration issues, the run by run algorithms themselves have

been expanded to include: input bounds, input weights, input discretization, and output

weights. These parameters enhance the operation of the underlying algorithms by provid-
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ing both constraints and bias terms. These "knobs" give the process engineer greater free-

dom to adjust the controller to provide the best possible control.

As with all applications, the RbR Control Server and the data abstraction and commu-

nication model it uses are continually evolving. The communication model will be modi-

fied as more experience is gained in the area of integration. This is needed to ensure that

the controller remains as flexible as possible. The underlying data model may also change

and become object oriented as object based systems become more prevalent.

The controller is designed to be expandable by allowing multiple algorithms to coex-

ist. Both the addition of new algorithms and the further refining of existing ones will allow

the controller to provide a wide range of control choices. This will allow comparisons

between various algorithms without the need to redesign the implementation from scratch.

This saves time and leads to more accurate results by enabling the researcher to effectively

toggle between competing algorithms.

The user interface will also expand to embrace new functionality as it is added to the

controller. The interface is object oriented 2 and therefore can be easily modified and

expanded as advances are made. This has been the method used throughout the develop-

ment of the interface. New or modified controller options are first added and then tested

using the graphical interface.

The main focus of this research has been to develop a run by run controller for integra-

tion with various clients. This goal can be best met if the controller, the communication

models, and algorithms themselves continually evolve to meet the changing needs of man-

ufacturing systems.

2. The interface uses [incr tcl], an object oriented extension to the Tcl/Tk programming language.
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Appendix A

Chemical Mechanical Planarization
(CMP)

As VLSI technology advances, the feature sizes of both the underlying devices and the

underlying metal line widths decrease. With this decrease comes increased transistor

speed and density, but also a need for more layers of metal interconnect. Thus interconnect

technology is the center of much of today's VLSI research.

One of the major problems with fabricating additional layers of metal interconnect is

that the

topography of the silicon wafer becomes increasingly non-planar as levels of metal are

added. This coupled with the demand for increasingly smaller geometries has led to some

problems previously unseen. First, due to the clarity of image needed for submicron

geometries, the focal depth of lithography machines has decreased. This reduced focal

depth results in some of the topography of the wafer being out of focus when other parts

are in focus (see Figure 21). This is unacceptable as geometries shrink.

In addition to lithography concerns, the non-planar surface can lead to difficult pro-

cessing as the aspect ratio of the valleys of the wafer become great enough that the inter-

connect metal is unable to fill and cover these areas. This effect can lead to circuit failure

due to metal fatigue or lack of connection entirely. Figure 22 shows a typical non-planar

process as well as an ideal one.
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Figure 21: Enlarging lithography system

Non-Planar Process Ideal Process
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Figure 22: Comparison between non-planar and planar processes

There are many techniques used to increase planarity. Most involve applying a level of

glass or oxide in an attempt to fill the valleys that can lead to trouble later on. The problem

is that the peaks are also extended to some extent, so it is very difficult to achieve planarity

through this process alone. The process of etching peaks from the dielectric has also been

attempted; again this suffers from the inability to etch peaks while leaving valleys

unchanged. CMP solves this problem by using a combination of chemical etching and

physical abrasion to achieve global planarization.

CMP has its roots in the silicon wafer production machines used to polish the wafers

before processing. These machines provided a wealth of information that led to the CMP

machines of today. The basic process is the same for both. Wafers are loaded into a vac-

uum grip carrier which can rotate. This is then pressed against an abrasive pad which can

also rotate (in the opposite direction). The lower pad is much bigger than the wafer, and is

Page 66

Po!



continually coated with a chemical slurry by a nozzle. Figure 23 [Sze83] shows a sche-

matic of a simple CMP machine.

Chemical Mechanical Planarizer

Side View Top View

Figure 23: Schematic of a CMP machine

Through the use of CMP, near ideal planarization can be achieved. This has allowed

VLSI manufacturers to increase the number of interconnect layers. It has also aided reli-

ability by reducing the mechanical strain in metal lines resultant from non-planarity.

CMP is not without its flaws. In addition to its high cost, it has non-uniformity issues

that are the center of much CMP research. Non-uniformity issues can arise both within a

wafer, and between two wafers. Within wafer uniformity is measured by comparing the

relative thicknesses of the wafers along various sited located radially from the center. The

reason for this rather than a more uniform pattern is that CMP involves rotating the wafer

which makes all sites that are radially equal the same thickness. Figure 24 shows the two

methods of measurement.

Uniformity between wafers is measured by comparing the average thickness between

two wafers. This measurement is related to the overall drift in a machine. This drift can

have many sources, among them are pad wear, and changes in slurry composition.
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Uniform Sites

Figure 24: Wafer measurement sites

Page 68

Radial Sites



Appendix B

Run by Run User Interface and Simula-
tion Environment Manual (CRUISE)

The following is a user's manual for the Run by Run Interface and Simulation Environ-

ment. It provides a brief overview of the main functional units of the interface as well as

an example simulation. The graphics contained in the manual are actual screen shots using

a screen capture program.
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CIM Run by Run User Interface and
Simulation Environment Manual

(CRUISE)

version 2.1

February 3, 1995
William Moyne

Copyright 1994
Massachusetts Institute of Technology

All rights reserved
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1 Introduction
The CIM Run-by-Run User Interface and Simulation Environment (CRUISE) is a graphi-
cal tool that acts as both a user interface and a simulation test-bed for the Run by Run con-
trol server. The environment can act as a user interface to a Run by Run (RbR) Control
Server in a stand-alone configuration. CRUISE is also designed to make both testing and
simulation as easy and efficient as possible. As with any tool, an attempt has been made to
make the environment easy to use while retaining both power and flexibility.

This manual is by no means meant to be a complete reference, but rather a quick guide to
essential operations so that the user can feel confident to explore the environment further.

2 Overview of Manual
This manual provides the following:
* Explanation of various fields,
* Overview of options present on the menu bar,
* Various figures illustrating actual operation.,
* A complete simulation example,

3 Explanation of Fields:
CRUISE can be thought of as a collection of panels and a menu bar. The panels serve as
both an input and output device for data. The menu bar provides a structured way to
access the functions present in the environment. Figure 1 shows CRUISE along with
labels denoting the panels and menu.

The main features are:

* Menu Bar ....Used to access most of the environment's functions. (Discussed below.)
* Model .......... Displays current experimental model for controller.
* Weights ....... Displays and sets the value control algorithm weights.
* Recipe ......... Displays current suggested recipe.
* Initial Conditions .... Displays the initial state of the process.
* History.........Contains a tabulated summary of previous results.

Explanation of the panels will be left to the example simulation, the reason being that
these tables are mainly for display and storage of simulation data. They also play a key
roll when generating a new simulation model. For these reasons an example simulation
will provide the most useful information.

The following section describes the various capabilities available through the menu bar.

4 Menu Bar
The Menu Bar (Figure 2) has 6 basic submenus:
* File
* View
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Menu Bar w

Model I

Weights I

Recipe - D

Initial Conditions --

History I

Figure 1: RbR Simulation Environment

Plot
Controller
Equipment
Help

Figure 2: Menu Bar

4.1 File

The File menu (Figure 3) as the name implies takes care of saving and retrieving informa-
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tion from disk.

File
Menu

Figure 3: File Menu

4.1.1 New

Creates a new model for simulation with a given number of inputs and outputs. Figure
4 shows the new model configuration window.

Figure 4: New Model Window

Once the size of the new model has been set. An empty model is generated that can be
configured as desired.

4.1.2 Load From:
Retrieves from disk a previously configured model. A directory browser (Figure 4) is
provided to aid in finding files.

4.1.3 Overlay Plot:
Retrieves previously saved plot data. This data may then be plotted together with the
current data. This is useful when comparison of algorithms is done.

4.1.4 Save:

Saves the current state of the environment to the current model name.

4.1.5 Save As:
Similar to Save, but allows a new file name to be specified.

4.1.6 Save Plot:

Stores data from the current history of runs so that it can be accessed later using the
Overlay Plot menu item.

4.1.7 Quit:
Exit immediately without saving model or history information.
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Figure 5: Generic Directory Browser

4.2 View:
The View menu (Figure 6) provides a convenient way to manage the representation of data
in the environment.

Figure 6: View Pulldown Menu

4.2.1 Configure Tables:
Lets the user control the dimension of the display tables. Figure 7 shows the three
parameters:
* Maximum Rows ..................Maximum row cells before adding a scrollbar
* Maximum Cols .................... Maximum columns before adding a scrollbar
* Column Width ...................... Default width of table columns.

4.2.2 Name Variables:

Allows the user to change the default input and output variable names. Figure 8 shows
the entry format. The old names are then updated automatically.

In addition to the table formatting features, the View menu also controls which panels are
displayed. The on toggle buttons represent panels that are actively displayed. Panels can
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Figure 7: Configure Tables

Figure 8: Name Variables

be toggled on and off by clicking on the square preceding their name. Note: The debug
window is for debugging purposes only, and will not be present in the final released ver-
sion.

4.3 Plot:

The plot menu (Figure 9) provides a convenient way to view the data stored in the envi-
ronment graphically.

Figure 9: Plot Pulldown Menu

The options currently supported are: Overlay Plots, Input History, Output History.

4.3.1 Overlay Plot:
This option lets the user decide whether or not to overlay data that has been loaded in
using the File/Overlay Plot command. When selected, the previous data are plotted
with the corresponding new data.

4.3.2 Input History:
This item is actually another submenu that displays all the current input variables. As
shown in Figure 9, Inputl and Input2 are the two input variables for the given sce-
nario. Selecting one of these would produce the appropriate plot. Example input vari-
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able plots are shown in Figure 10 (note the overlay data in the second plot):

Figure 10: Input Variable Plots

4.3.3 Output history:
The system output can also be plotted, as shown in Figure 11 below:

Figure 11: Output Variable Plots

Both plot types provide a menu bar (Figure 12) with the following functions:
* DoneDismiss graph
* SaveSave graph data to a text file. (Useful for importing into MatlabTM.)
* PostscriptGenerate postscript file for printing purposes.
Future plot tools will include SPC sigma guide lines, and various other statistical informa-
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tion. The current implementation is for algorithm testing only.

Figure 12: Plot Menu Bar

4.4 Controller:
The controller menu (figure 13) provides an easy way to specify the various parameters of
the control algorithms, along with some related functions. When a new algorithm is imple-
mented, fields containing the algorithm's parameters are added to this list. Currently
Gradual, and PCC modes are available.

Figure 13: Controller Pulldown

4.4.1 Run Control Server:

This sends the RbR Control Server the current state of the
recipe information.

process and requests new

4.4.2 Set Weight Profile:
This option is a submenu that allows the user to set the parameters for the Gradual and
PCC algorithms. These parameters, or weights, are used in EWMA (Exponentially
Weighted Moving Average) filters present in both the Gradual and PCC controllers.

Note: The PCC algorithm has two EWMA filter parameters:

Alpha is used to weight the noise term which is similar to the gradual controller.

Be 

n

To aid in visualizing the effect of various weights, a graphing function has been added
to this option (Figure 14). Note that a weight of 100 (100%) represents 100% update
on current data, while a setting of 1% relies heavily on past data. This graphically
shows the exponentially decaying nature of the EWMA filter. As with most aspects of
the environment, other weighing techniques could be easily added and displayed in a
similar manner.
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Figure 14: Set Weight Profile

4.4.3 Simulate multiple runs:
This option is necessary to simulate the controller over many runs. The user is
prompted for the number of iterations and they are then performed as a batch opera-
tion.

The way the new data is added to the history is controlled by the Add to history option
discussed below.

4.4.4 Set Seed:

It is often necessary when comparing two algorithms to test them under exactly the
same conditions. This option allows the user to seed the random numbers used in the
generation of noise so that multiple algorithms are tested with exactly the same data.

4.4.5 Use Initial Conditions:
This toggle controls the use of initial conditions in the model. If initial conditions are
activated, the initial condition panel (see Figure 1) is used to set initial conditions and
weightings of these conditions.

4.4.6 Add to history:
This toggle sets whether the environment should delete old data in the database upon
arrival of new data, or add to this old data. This is used in conjunction with the Simu-
late multiple runs command.

4.4.7 Gradual, PCC(b(t)), PCC(b(t+1)) Mode Engaged:
These radio buttons represent possible algorithms that may be used for control. The
reason for the radio button (radio buttons only allow 1 selection to be chosen from the
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list) is that these particular routines are similar in function and cannot be used together.

4.4.8 None:

Sometimes it is useful to examine a system in "open loop," not providing any control.
This option allows this.

4.5 Equipment:
The equipment menu (Figure 15) controls the model portion of the environment. This
model is what is used to simulate the actual machine being controlled.

Figure 15: Equipment Pulldown Menu

Although the current implementation uses an internal model, the system has been
designed with enough modularity so that as external models become available they can be
seamlessly integrated into the environment.

4.5.1 Run Equipment Model:
This item is the complement to the run control server discussed earlier. When acti-
vated, the current control recipe is fed into the model, and the resulting data is stored
in the history table.

4.5.2 Edit Linear Model:

This selection brings up the Equipment simulator (Figure 16) which allows the opera-
tor to control the various model coefficients and noise terms used for simulation.

Changing the parameters of the simulation model allows the user to have separate
algorithm and simulation coefficients. This can help test the effect of an incorrect
machine characterization.

The RbR environment also supports a variety of noise types. Gaussian noise can be
added with a given mean and standard deviation. Drift can also be added to simulate
machine aging and other time dependant events. The drift term may also have a stan-
dard deviation which represents uncertainty in the drift coefficient.

Along with random Gaussian distributed noise, the simulator also supports more com-
plex autoregressive moving average (ARMA) noise. This is often more realistic due to
its time dependent nature. This noise takes on the following form:

where:
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Figure 16: Equipment Simulator

N, = cNt_1 + i + wrwt_ 1

Nt = total noise for run t,
wt = white noise for run t,
a, p= noise model coefficients.

To aid in visualizing the noise generator, a sample noise distribution over time can be
viewed by clicking on the graph button on the tool bar of the equipment simulator.
Figure 17 shows an ARMA example.
This plot is also dynamically updated as the a and P values of the model are changed.
In this way the user can get a better feel for what various constants will do to the over
all shape of the noise terms. The graph also has a select button which is used to select
which output to view in a multi-output problem.

4.5.3 Edit Custom Model
Often it is not enough to simulate a real machine with a purely linear model. This
option allows the user to construct higher order models so that the simulator can more
accurately mimic actual machine behavior. This does not, however, mean that the con-
troller can use these higher-order models. The controller will try to react using its lin-
ear model. Figure 18 shows the custom equation editor. The format of the equations is
text based.

The Custom and Enabled pull-down menus allow the user to do a variety of opera-
tions. One of the most useful options is check equation. This will test the current for-
mula against the current data and return a result or error depending on the result. This
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Figure 17: Noise Simulation Display

helps avoid syntax errors while entering formula. This function is automatically called
when the user attempts to save a formula to avoid simulation problems in the future.

Figure 18: Custom Model Editor

4.5.4 Round Before Run

An important difference between theoretical simulations and real experiments is that in a
real experiment, control over a process is often limited to a discrete set of values, while in
simulation, these values or "knobs" have infinite resolution. This can lead to inconsistent
behavior between simulation and actual operation. The Round Before Run toggle has been
added to remedy this. When enabled, this toggle rounds all recipe suggests to a set preci-
sion. These values are then used in the next run of the process, thus simulating a discrete
process.

The controller itself supports an internal type of recipe rounding, but this function
attempts to suggest recipes that are both correctly rounded and provide an optimal output.
The toggle simply rounds recipes that have already been suggested and does not attempt to
generate an optimal solution using these values.
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4.5.5 Adjust Rounding

The degree of precision used when Round Before Run is enabled is set by this option. A
small tabular entry form provides the rounding information needed for each of the inputs.
A value of zero signals that rounding should not be applied to a certain input. This allows
both discrete and continuous values to be used in the same control action. Figure 19 shows
the input table.

Figure 19: Adjust Rounding

4.6 Help:
The current implementation of the simulator does not provide on-line help.

5 Simulation Example
Now that an overview of the simulation environment has been presented, it is useful to
illustrate with a complete simulation. The example cannot hope to exercise all the features
of the environment, but hopefully a framework will be developed that can be expanded by
the user.

First, an explanation of our problem:
We wish to simulate control of a new furnace we bought (or an old one!) that based on
a design of experiments has the following parameters:

Thickness = Temp • 0.7 + Time • 3.0 + InitialThickness -0.5 + 150.0

Uniformity = Temp 0.08 + Time -0.1 + InitialUniformity -0.19 + 10.0

For a quick simulation, we set the variables as follows:
Thickness= Thickness
Uniformity= Uniformity
Temp= Temp
Time= Time
InitialThickness= Initial condition (Not a control parameter!)
InitialUniformity= Initial condition (Not a control parameter!)

Let us also assume the allowable ranges and optimal outputs are as follows:
Thickness= 1000.0
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Uniformity= 100.0
700 < Temp < 1200(Degrees Celsius)
25 < Time < 100(Minutes)

Another assumption is that we do not want to sacrifice thickness for uniformity (we
want the emphasis on thickness to be 4 times that of uniformity), so we weight the
equations as follows:
WThickness=  4.0

Wuniformity= 1.0

In order to start the simulation, we need an initial guess for the recipe. This is usually
the operating point around which we linearized to get the equations for the model:
Temp= 950
Time= 45
InitialThickness= 100
InitialUniformity= 50
Now that we have formulated the problem, we are ready to begin.

5.1 Creating a New Model
The first step after formulation is to create a new simulation based on the problem. This
can be done by selecting File->New. This will allow us to enter the dimensions of the
problem (see Figure 4). For this problem:

Number of Inputs = 2
Number of Outputs = 2

Noise was also added to the system. Simple white noise was used as a starting point. More
complex ARMA type noise could be added later once the simulation was well understood.

We now enter the various bits of data we have into the appropriate fields. (See Figure 20)
Since we are using initial conditions, they must be enabled using the Controller menu. See
section 4.4.5 for more information.

5.2 Simulation
Once the data has been entered into the environment we can begin simulation. There are
many ways to construct a simulation, each based on different requirements and expecta-
tions. We will perform two basic tests:
* Initial condition test
* Noise test

These tests are designed to exercise some of the features of the environment, and to dis-
play what is considered "normal" behavior. The user should be able to start with these
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Figure 20: Simulation: Main Panels, Equipment Simulator

basic results and construct much more complex simulations that provide relevant informa-
tion about a process.

These tests were performed using the CYCLE button on the front panel (see Figure 1).
This button has two distinct modes of operation based on the state of the initial conditions.
If initial conditions are disabled (See section 4.4.5) then the button performs a simulation
using the current model, then queries the RbR Control Server for recipe suggestions. This
represents one complete cycle of operation. The user can then cycle again.

The second mode of operation is used for initial conditions. Initial conditions require spe-
cial attention because the simulator does not generate them directly. It must rely on the
user to enter relevant initial conditions before it can complete a simulated run. To facilitate
this, the CYCLE button is used to perform a two-part procedure. First, the user presses
CYCLE and is given the results of the simulator (no control yet) and a blank row is added
to the initial condition table. The user is then required to enter initial condition data in this
row for this run. The CYCLE button can then be pressed again to complete the run.

The dual nature of the CYCLE button allows consistent operation of both initial and non-
initial condition runs, and also helps avoid erroneous data created by simulation with
insufficient data.

Noise for these simulations was added via the Equipment Simulator (See section 4.5.2). In
addition, when comparisons between competing models was required, the Set Seed com-
mand (See section 4.4.4) was used. This ensured that two simulations could be performed
at different times and that the noise generated for each was guaranteed to be equivalent,
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hence allowing comparison.

5.2.1 Initial Condition Test

The first test is designed to test the treatment of initial conditions. It is essential that
the user be both familiar and comfortable with these results so that controller response
can be understood, and proper operation is ensured.

In order to isolate the initial conditions themselves, we eliminate all noise from our
problem formulation. Noise will be tested later, so we will concentrate on the response
to various initial conditions. The desired result is this: "Given various initial condi-
tions, the controller should suggest recipes that ensure the equations meet target. In
addition, the controller SHOULD NOT change any model parameters. These parame-
ters should only be affected by noise."

We will vary the initial conditions from their initial values, to various other values,
then back. The desired result is a range of recipes with no major changes in any other
values. Figure 21 shows the results of the simulation.

Figure 21: Simulation to Check Initial Conditions

Notice that the controller performed as expected, changing the recipe terms without
changing the constants. Also notice run 4 displays what happens when a parameter
limit is met. Input2 cannot be set lower than 25, so the controller sets it to 25 and re-
optimizes. The output is also effected, not being able to hit target with the added con-
straint.

5.2.2 Noise Test

Once we have verified that the initial conditions work as expected, we can perform an
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actual simulation with noise. Noise is an important ingredient to any simulation
because it represents a fundamental phenomena of a real process. For the sake of sim-
plicity, white noise will be used. The application of more complex noise models and
drift can be applied in a similar manner once the simulation process is understood.

As before, it is essential that we understand the desired operation of the controller. In
this simulation the desired result is this: "Given a system with noise, the controller
should suggest changes to the constant term in the model and generate recipes that
allow the system to reach target when possible."

Figure 22a shows the graphic results of the simulation. There seems to a problem
though. The non-controlled case seems to be at least as good if not better than the
gradual mode controller. This would lead us to believe that no control is the best
course of action and in this context it may be. In contrast Figure 22b shows the results
of a similar simulation but with the addition of an ARMA a weighting of 0.95 (See
section 4.5.2). This addition makes the noise much more likely to exhibit trends rather
than the purely random nature exhibited in the white-noise case. In such a scenario the
gradual mode is effective in compensating for the trend.

A B
Figure 22: Output of Noise Simulation

5.3 Notes on Simulation
There is no right or wrong way to perform a simulation. The environment is designed to
allow the user as much freedom as possible without being washed out with options. There
are a few functions/styles that are useful and are worth mentioning again here. They will
be briefly described below.

Possibly the most useful aid to simulation is the Save command (See section 4.1.4). There
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is no limit (other than disk space) to the number of times a model/state can be saved. This
is very helpful for "what if' type scenarios. The user can save the state of the controller,
try something, note results, re-load the previous state, and try something else. This was
used in the noise simulation above.

Another small but very useful function is the Set Seed command (See section 4.4.4). This
is essential when noise is used in a simulation. Due to the nature of computer generated
random numbers, given a seed, the computer will produce the same stream of random
numbers for that seed every time. This allows multiple simulations to be subjected to
exactly the same noise.

The environment also supports plotting any input or output to the system. This allows the
user to view not only the performance of the system (via the output variables) but to also
examine the input parameters to see if there is some useful trend or unwanted operation.

6 Conclusion
As with any overview, many things have been left out, and many questions remain. It is
the intent of this document to provide enough background to get the user going with
CRUISE.

Once familiar with the basics, the user will quickly be able to test control algorithms in an
easy to use and flexible environment.
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