
Implementing an Approximation Scheme for All

Terminal Network Reliability

by

Ray P. Tai

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1996

© Ray P. Tai, MCMXCVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis

. 4ft

MiAR 211997

document in whole or in part, and to grant others the right to do so.

Author

Depaitment of Electrical Engineering and

Certified by

Ij \

Computer Science
June 3, 1996

David R. Karger
Assisuant Professor

Thesis Supervisor

Accepted by
ham Dp.....artrnenX) ~ OA-i'ma \ . . F. R. Morgenthaler

Chairman, Department Co 'mittee on Graduate Theses

I

Implementing an Approximation Scheme for All Terminal

Network Reliability

by

Ray P. Tai

Submitted to the Department of Electrical Engineering and Computer Science
on June 3, 1996, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I implemented a randomized fully polynomial time approximation
scheme for the All Terminal Network Reliability Problem. The scheme consists of
a combination of a naive Monte Carlo algorithm for computing the reliability of net-
works with a high failure probability, and a method of enumerating small cuts to
compute the the reliability of networks with a small failure probability. The imple-
mentation was tested on several different network topologies. The implementation
demonstrated chat the algorithm performed better than its theoretical O(n1) time
bound in practice, and it also provided insight into the causes of unreliability in
networks.

Thesis Supervisor: David R. Karger
Title: Assistant Professor

Acknowledgments

Thanks to Dr. Miro Kraetzl, who provided a network reliability package that was

invaluable during the initial testing of the implementation. Thanks also to Milena

Mihail, who suggested graph topologies for testing.

Contents

1 Introduction 8

1.1 Motivation 8

1.2 Previous Work8

2 Implementation 10

2.1 Overview 10

2.2 Naive Monte Carlo Algorithm 11

2.3 Restriction to Small Cuts 13

2.4 Recursive Contraction Algorithm 13

2.4.1 Theoretical Recursive Contraction Algorithm 14

2.4.2 Karger and Stein's Implementation of the RCA 15

2.4.3 Finding Near Minimum Cuts 18

2.5 Self-Adjusting Coverage Algorithm 20

3 Optimizing Performance 23

3.1 Dovetailing 24

3.1.1 Computing a for the Dovetail Implementation 25

3.1.2 Monte-Carlo Algorithm Termination Criteria 26

3.2 Optimizing for multiple minimum cuts 28

4 Results 29

4.1 Network Topologies 29

4.1.1 Cycles 29

4.1.2 Delaunav Grahs 30

4.1.3 Nearest Neighbor Graphs 31

4.1.4 Real Networks 31

4.2 Performance 31

4.2.1 Cycle Performance 32

4.2.2 Delaunay Graph Performance 36

4.2.3 Nearest Neighbor Performance 42

4.2.4 Real Networks 45

5 Conclusions and Future Work 48

List of Figures

4-1 Graph Failure Probabilities for Cycles 32

4-2 Running Time versus Edge Failure Probability for Cycles 35

4-3 Running Time versus Graph Failure Probability for Cycles 36

4-4 Coarse and More Exact Estimation for Cycles 37

4-5 Worst Case Running Time for Cycles 38

4-6 Graph Failure Probabilities for Delaunay Graphs 40

4-7 Graph Failure Probabilities for 40 Node Delaunay Graphs 41

4-8 Running Time versus Edge Failure Probability for Delaunay Graphs . 42

4-9 Running Time versus Graph Failure Probability for Delaunay Graphs 43

4-10 Worst Case Running Time for Delaunay Graphs 44

4-11 Running Time versus Size for Nearest Neighbor Graphs 45

4-12 Running Time versue Edge Failure Probability for Nearest Neighbor

Graphss 46

4-13 Graph Failure Probabilities for Real Networks 47

List of Tables

4.1 Average Error for Cycles 33

4.2 Average Error for Various r for Cycles 33

4.3 Times for Various Epsilon for Cycles 37

4.4 Average Change from E = 0.1 for Delaunay Graphs 39

4.5 Times for Various e for Delaunay Graphs 39

Chapter 1

Introduction

1.1 Motivation

One of the classic problems in reliability theory is the All Terminal Network Reliability

problem. In this problem, we are given a network with n vertices whose edges fail

independently with some probability. Given this input, we wish to determine the

probability that the network is disconnected at any particular time. By disconnected,

we mean that there exist two vertices that do not have a path between them formed

by edges that have not failed.

There are several practical applications of this problem in the analysis of com-

munications networks and other networks, which has caused the problem to undergo

a large amount of scrutiny [Col87]. In this Uhesis, we implement an approximation

scheme that we hope will provide a way to analyze network reliability quickly, and

thus aid engineers in designing reliable networks.

1.2 Previous Work

The All Terminal Network Reliability problem has been shown to be #P-complete,

a complexity class that is at least as intractable as NP[Va179, PB83]. Therefore, it

is very unlikely that the problem has a polynomial time solution. Given the diffi-

culty of the problem, work has been done to try to approximate solutions. Initially,

researchers believed that even app:rximating a solution to this reliability problem

was #P-complete[PB83]. This belief, however, was based on the assumption that

the approximation parameter e was part of the input, and that one could encode an

exponentially small 6.

Currently, research is being performed on fully polynomial time approximation

schemes (FPTAS). An approximation scheme is deemed a FPTAS if it has running

times polynomial in n and also polynomial in I. Another interpretation is that an

FPTAS runs in polynomial time with respect to the input size if f is given in unary

as opposed to binary notation. Using the FPTAS model, it is possible to create an

approximation scheme for the All Terminal Network Reliahl'lity Problem that rur -

in polynomial time. This fact was proven in Professor David Karger's paper on this

problem [Kar95], as he demonstrated that this reliability problem can be solved by

reducing it to the problem of DNF counting, which has a FPTAS [KLM89]; reliability

can therefore be solved in O() time.

Although a solution to the reliability problem has been conceived in theory, it re-

mains to be seen whether or not this solution is useful when applied to real networks.

Thus, this thesis implements Karger's approximation scheme and explores its practi-

cality. In addition, the algorithm was modified tou make it more efficient for several

different types of test networks, which hopefully translates into better performance

for real networks.

Chapter 2

Implementation

2.1 Overview

Karger's approximation scheme has two paths which it can take. For graphs with a

relatively large failure probability, a naive Monte-Carlo algorithm (MCA) is used to

determine the network reliability. For graphs with relatively small failure probability,

a two-step procedure is used to determine reliability.

The MCA, discussed in section 2.2, works by running several trials, where each

trial consists of simulating edge failures and then chec .lig to see if the graph is

connected. The graph failure probability i- then estimated by taking the percentage

of all trials that caused the graph to booome disconnected. The total number of

trials needed for the MCA to produce a close estimate is inversely proportional to the

graph failure probability. Thus, in graphs with a high failure probability, the MCA

provides an accurate estimate of reliability using a reasonable number of trials. In

graphs with a small failure probability, however, too many trials are needed to find

enough disconnected graphs to give an accurate estimate with high probability. In

this case, a two step procedure is used.

The two step procedure is as follows. We first find the small cuts, where a cut

is a set of edges whose removal would cause the graph to become disconnected. A

cut with the least number of edges possible is called the minimum cut, and the total

weight of the edges in the minimum cut is called . If the input graph is not weighted,

then c is simply the number of edges in the minimum cut. We define an a-minimum

cut as one whose weight is less than or equal to ac. a-minimum cuts for small a are

the sets of edges where the network is most likely to fail, since the larger a cut gets

the less likely all of its edges are to fail simultaneously and cause the graph to become

disconnected. In his paper [Kar95], Karger denlonstrates that in graphs with a small

chance of failure, the probability that one of these a-minimum cuts fails comprises

most of the graph's failure probability, so we do not have to examine all cuts.

After finding these small cuts, we approximate the overall probability of network

failure by representing these cuts as a formula in disjunctive normal form and finding

the truth probability of this formula. If this formula is true, it means that at least one

of the small cuts has failed. The Recursive Contraction Algorithm (RCA), discussed

in section 2.4, was used to find the small cuts [KS93], and the Self-Adjusting Cov-

erage Algorithm (SACA), discussed in section 2.5, was used to determine the truth

probability of the formula in disjunctive normal form [KLM89].

We first attempted a faithful implemention of the algorithm specified in the theory

paper. This algorithm runs the MCA on graphs using the hypothesis that FAIL(p),

the probability the graph is disconnected given that an edge fails with probability

p, is larger than !. If the result from the MCA suggests that FAIL(p) is less than

±, the RCA/SACA is run to get a better estimate of the reliability of the graph.

Otherwise, the result from the MCA is considered a close enough estimate. According

to the theory paper on this scheme, this split between the MCA and the RCA/SACA

results in a running time of O(n4). In practice, however, we discovered that certain

modifications could be made to reduce running time.

2.2 Naive Monte Carlo Algorithm

Graphs with a relatively high likelihood of failure can use a naive Monte Carlo method

to calculate their reliability. We used the naive Monte Carlo algorithm described in

Karp, Luby, and Madras's paper and implemented it as follows [KLM89]:

N trials are run, where each trial consists of the following.

(1) The on/off state of each edge in the graph is set according to its failure

probability.

(2) The graph is checked to see if it is still connected. A variable, Y, is incremented

if the graph is not connected.

After N trials, FAIL(p) is estimated by FAIL(p) = -. The number of trials, N,

is obtained from the Zero-One Estimator Theorem [KLM 89].

The following definitions are needed for the theorem. Let U be the complete set

of possibilities. In our case, it consists of the entire probability space. Let G be the

event in U whose probability we wish to estimate using a Monte-Carlo algorithm. In

our case, Pr[G] is FAIL(p), the sum of the probabilities of all edge configurations that

result in the graph being disconnected. Finally, an (e, 6)-approximation algorithm is

one that produces an estimate that is between 1 - e and 1 + e times the actual value

with probability at least 1 - 6.

Theorem 2.2.1 (Zero-One Estimator Theorem) Let u = Pr[G]. Let : < 2.

If N > - f, then the Monte-Carlo algorithm described above is an (e, 6)-

approximation algorithm.

For the faithful implementation of the theory paper, we use the MCA whenever

FAIL(p) = Pr[G] is larger than !. Since u = Pr[G] and we arbiurarily choose 1

and 6. we can solve for a bound on N easily. Substituting 1 for u, we deduce that

running the MCA for N = n4
. trials will produce an estimate that is between

1 - e and 1 + e times the actual value with probability at least 1 - 6.

For this part of the algorithm, the graph was represented as an adjacency list, with

additional storage provided for the failure probability of each edge. This representa-

tion enabled fast connectivity checking, which was implemented as a depth-first search

of the graph starting from an arbitrary node with marking of all nodes encountered.

If all nodes became marked, the graph was connected.

2.3 Restriction to Small Cuts

When the failure probability of a graph is small, the MCA does not work because

too many trials are needed to obtain an estimate with good accuracy. In this case.

another method is needed to estimate the reliability.

()ne way of computing the exact reliability of a graph is to enumerate all cuts and

then find the probability that at least one of the cuts fails. Enumerating all cuts of

a graph, however, can be very time consuming as there can be 2" cuts. Finding the

probability that at least one cut fails is also non-trivial when the number of cuts is

large.

Since enumerating all cuts usually proves too time consuming, we wish to take

some subset of the cuts and find the probability that the subset fails. Karger proved

in [Kar95] that the probability that a cut of value exceeding ac is exponentially small

in a. Thus, if we wish to to obtain an estimate of the reliability that is between 1 + e

and 1 - E times its actual value, we need only to find all a-minimum cuts such that

the probability that a cut of value greater than ac fails is less than 6 times the actual

value. Since we do not know the actual failure probability, the theory paper uses the

probability that a minimum cut fails as a pessimistic estimate of graph failure.

For graphs with a relatively low chance of failure, the value of a necessary to per-

form this type of estimation is low enough so that the a-mini,,um cuts can be found

quickly. The Recursive Contraction Algorithm is used to find these near minimum

cuts.

2.4 Recursive Contraction Algorithm

Originally, the RCA was designed to find only minimum cuts. We will discuss the

theoretical RCA in the following section. In reality, we were given an implementation

of the RCA done by Karger and Stein which contained a few modifications on the

basic contraction algorithm. These modifications will be discussed in section 2.4.2.

Finally, the RCA had to be modified to find a-minimum cuts for this thesis. These

changes will be discussed at length in section 2.4.3.

2.4.1 Theoretical Recursive Contraction Algorithm

The RCA uses the Contraction Algorithm (CA), which consists of the following

[KS93]:

(1) Choose an edge uniformly at random from the input graph G.

(2) Contract this edge, where contraction consists of replacing the endpoints of

the edge with a single vertex. The set of edges incident to this new vertex is the

union of the sets of edges incident on the original endpoints.

(3) Replace G with the partially contracted graph, which has one less vertex.

Repeat steps 1-3 until a specified number of vertices remain.

The intuition for the CA is that after each iteration, the number of vertices is

reduced by one. When the graph has only two vertices left, the set of edges connecting

the two vertices defines a cut. This cut is the minimum cut if no contraction has

contracted an edge from the minimum cut in previous iterations. If we run the CA

enough times, we are assured that with high probability the minimum cut will survive

contraction to two vertices in at least one of the trials.

The original Recursive Contraction Algorithm, which u Ity finds the minimum cut,

consists of the following:

Given a graph G with n vertices,

(1) If G has fewer than 6 vertices perform the Contraction Algorithm on it until

2 vertices remain. Return the weight of the cut defined by the the two remaining

vertices.

(2) Otherwise, run the Contraction Algorithm on G until + 1] vertices remain,

and run the Recursive Contraction Algorithm recursively on the resulting graph. Do

this procedure twice and return the smaller : f the two values.

The RCA is designed so that each call to the CA has at most a 1 chance of

contracting an edge in the minimum cut. The RCA runs two trials of the CA so

that on the average, one of the two recursions will preserve the minimum cut. The

RCA is also run for several iterations to produc< the minimum cut with even higher

probability.

We now wish to determine how many iterations of the RCA need to be run to

ensure that the success probability for finding the minimum cut is greater than some

desired value. To answer this question, we need to find the success probability of one

iteration of the algorithm. Karger and Stein solved this problem using the following

recurrence, where P(t) is the probability that the minimum cut is found at the tth

level of the tree above the leaves.

P(t) = P(t - 1) - 1P(t - 1)2

'The recurrence is derived from the fact that each time the RCA is called, it splits

into two branches. In each branch, the RCA runs the CA and then recursively calls

itself using the result from the CA as the input. A branich finds the minimum cut

if and only if the CA preserves the minimum cut, and its recursive call to the RCA

succeeds in finding the minimum cut of its input. Let P(t) be the probability that the

parent finds the minimum cut of its input graph and let P(t - 1) be the probability

that the branch finds the minimum cut of its input graph. Since the CA succeeds

with probability ½, the probability that a branch finds the minimum cut is ½P(t - 1).

The algorithm succeeds if at least one branch succeeds. Using the fact that for two

events A and B, P(A U B) = P(A) + P(B) - P(A)P(B), and that P(A) and P(B)

in this case are P(t - 1), we arrive at the recurrence above. [KS93] 3:howed that

P(t) = 0(1). Thus, to find the success probability of one tree, we only need to know

the tree's height. Since a set fraction of the vertices are contracted after every call to

the RCA, it is easy to find this height.

The running time of the RCA as listed in [KS93] is O(n 2 log3 n). A rigorous

analysis of the two algorithms listed in this section is given in the same paper.

2.4.2 Karger and Stein's Implementation of the RCA

In their implementation of the RCA, Karger and Stein made a few modifications that

decreased the running time of the algorithm for some cases. Instead of contracting

to [.- + 1] vertices one vertex at a time, each edge is given a contraction probability

which governs how likely a particular edge is contracted in one branch of the RCA.

This probability is chosen so that the the probability the minimum cut is lost is less

than I for one iteration. Since this bound is the only assumption used to prove the

correctness of the RCA in [KS93], the overall algorithm is still correct. While the

implementation is still correct, it also allows many graphs to be contracted more

quickly than the theoretical RCA. Consider a graph with a minimum cut of 1 edge.

If the number of edges is large, than the likelihood of contracting the minimum cut

edge during one level of the theoretical RCA tree is much less than one half since it

contracts until a set number of vertices remain. Using edge contraction probabilities,

we ensure that enough edges are contracted so that the probability that the minimum

cut survives is exactly one half. We now demonstrate how this edge contraction

probability was derived and explain the new calculation of recursion depth necessary

for this modification.

Finding the edge contraction probability

We wish to determine the correct probability of contracting an edge which assures

that the probability of contracting an edge in the minimum cut is at most 1. Assume

we are given a weighted graph containing a minimum cut with k edg-s whose weights

are Uw . . . k, and let c be the total weight of the cut, such that c = k w,.

Statement 1:

We decide that the probability a particular edge in the minimum cut is not con-

tracted by one iteration of the contraction algorithm is e- ýw where 0 is a constant to

be determined and w is the weight of the edge.

Statement 2:

The probability that no edges in the minimum cut are contracted by the contrac-

tion algorithm is e-B.

Statement 2 follows from statement 1, since no edges in the minimum cut are

contracted if and only if each particular edge survives contraction. The probability

that each particular edge avoids contraction is the product of the: likelihoods, which

simplifies to e-6 c

We wish for this probability to be tt least , so we set:
2

- 1
2

Solving for 0, we get:
In 2

c

Substituting 3 in for the probability in statement 1, we find that the probability

that an edge should survive contraction is e (", which can be simplified to 2-.

Thus, if the RCA is modified so that the Co-traction Algorithm tries to contract each

edge with probability 2-3, the minimum cut still survives with probability at least I

after each iteration of the algorithm.

Finding depth

Since Karger and Stein's implementation did not contract a set fraction of the vertices

during each call to the RCA, the depth of the tree was slightly more difficult to find.

The depth of the RCA's tree is calculated in the following manner. A vertex is

contracted away if any of its incident edges are contracted during the algorithm. The

vertex most likely to survive would be one whose edges formed a minimum cut, since

the probability of an edge being contracted is proportional to its weight. Given such

a vertex exists, we know that the probabilihy that it survives is 1. This is true since

an edge is contracted with probability 2-3, and the sum of edges' weights for such a

vertex would be c. Thus, the probability that none of the edges would be contracted

is 2-f, or .

Through the previous analysis, we know that a vertex has at most a 1 chance of

survival through one branch of the contraction algorithm. It follows that half of the

vertices will have an incident edge contracted. Using this knowledge, we can find what

percentage of the vertices remain after one level has been completed. In the worst

case, the contracted vertices would form a matching, so that every two contracted

vertices are connected by a contracted ed, . In this case, each pair of vertices is

contracted into one vertex. Thus, in the worst case we expect that at most 1 the

original number of vertices will remain after one level of the contraction algorithm.

Using this information, we conclude that the depth of the tree is logs n, where n is

the number of vertices in the original graph.

2.4.3 Finding Near Minimum Cuts

Since Karger's approximation scheme requires near minimum cuts tu be enumerated,

the RCA had to be modified to find cuts larger than the minimum cut. One mod-

ification we made was to change the contraction probability for an edge to assure

that an a-minimum cut sulrvives with probability at least 1. Since changing the edge

contraction probability affects the depth of the RCA tree, we also had to modify the

number of iterations to ensure the same level of accuracy. In addition, the graph was

only contracted until [2al vertices remained. The necessity of this modification is dis-

cussed in [KS93]. Finally, since our analysis only ensures that at least 1 a-minimum

cut will be found with high probability, the number of iterations had to be adjusted

again to account for the fact that we need to find all a-minimum cuts.

To modify the edge contraction probability, we assume that there exists at least

1 a-minimum cut with k edges, whose weights are wl•. 1k respectively, and whose

weight is less than or equal to ac. As discu•:sed before in section 2.4.2, the probability

that a particular edge survives contractin is e-"1 . The probability that the entire

cut survives is at least e- c, again as before. Setting this probability to 1 and solving

for 3, we get 3= ,. Substituting 3 in, we find that the probability that a particular

edge should survive contraction is e-('•)w, which is simplified to 2 1-.

The modification to edge contraction probability affects the depth in the following

manner. In the a-minimum case, the vertex most likely to survive an iteration would

still be one whose edges form a minimum , i:t. The probability that such a N: [ex

would survive is 2-a, or 2-. Thus, we would expect that at least 1 - 2- of the

vertices would have an incident edge contracted and that 1 - ((1 -2-) vertices would

remain after each level. So, in the a-minimum case, the depth is log 1 n,
1- (1-2

where n. is the number of vertices in the original graph. Currently. Karger is developing

a more complete proof for determining depth that does not increase the calculation

of depth by more than a constant factor.

IUsing the depth, we can find the likelihood that we will find a particular a-

minimum cut. Since the recurrence in section 2.4.1 still applies, this probability is

O(-). We still, however, need to find how many trials of the RCA are needed to

find all a-minimum cuts.

For this problem, assume there are i a-minimum cuts that we wish to find. Let

ci be the event that we find the ith a-minimum cut at any leaf of the RCA tree. We

wish to find how many trials of the RCA it takes so that Pr[nci] is very high.

If the events were independent. Pr[ncil would be easy to calculate, as it would

simply be the product of all ci. Unfortunately., each event is not fully independent.

since finding a cut at a particular leaf precludes the possibility of finding some cuts

at neighboring leaves. This is true because contracting away some cuts at a higher

level of the tree was necessary to find the cut.

So, instead of trying to calculate Pr[nci], we will instead find the probability

of its complement Pr[Ui]. Regardless of the events' independence, we know that

Pr[Uc] < E Pr[T7] using the Union Bound. By Theorem 2.2 from Karger's paper, we

also know that there are at most n2o a-minimum cuts [Kar95]. By forcing Pr[7]l to

be less than -f, where f is some constant to be determined. we know that E Pr[c,]

is at most J. Thus, Pr[U{-] is at most A, anid Pr[nci] is at least 1 - 3.

Now we only need to know how many .1imes to run the RCA to ensure that Pr[T]

is less than -. Let q be the probabiiiry that an iteration of the RCA does not find

a particular a-minimum cut, where q is derived from the recurrence given in 2.3.1. If

we repeat the algorithm k times, Pr[TI] = pk. Setting pk to be less than or equal to

2, we arrive at the following value for k.

k > logP 12

Thus, as long as at least k trials of the modified RCA are run, we are guarantoed

to find all a-minimum cuts of the input graph with probability 1 - 3.

2.5 Self-Adjusting Coverage Algorithm

After the RCA is used to find the approximately minimum cuts, a formula in disjunc-

tive normal form (DNF) is derived from the resultant cut list. Let m be the number

of edges in the graph and 1 be the number of cuts in the cut list. The formula contains

I clauses, C . . . C, where each clause is a conjunction of a subset of literals defined

with respect to m boolean variables X 1 ... Xm. Each clause corresponds to a cut,

where Xk is in the conjunction if and only if the kuh edge of the input graph is in

the cut. If an edge in the input graph fails. its corresponding variable in the formula

is set to true. Thus, a cut causes the graph to become disconnected when all of its

variables become true. By finding the probability that at least one clause is true, we

can determine the failure probability due to the approximately minimum cuts. The

Self Adjusting Coverage Algorithm (SACA) is used to find this probability.

The SACA is a Monte-Carlo algorithm used to solve the Union of Sets problem,

which we now define [KLM89]. The input to the union of sets problem is s sets,

D ... Ds, and the goal is to compute the cardinality of D = LJ=l D,. The DNF

probability problem that we are trying to solve is a special case of this problem. Each

clause can be thought of as a set whose elements are the variable configurations that

cause the clause to be true. Solving the union of sets problem for the clauses counts

the number of variable configurations that cause at least one of the clauses to be true.

By adding the probabilities of each of these variable configurations, we can determine

the overall probability that the DNF formula will be satisfied.

The SACA requires that a clause be chosen from the list of clauses, and that the

variables be set so that the clause is satisfied. The following procedure was used to

ensure that the variables were chosen with uniform randomness .KL83]:

1) Choose i E 1,2,...,1 with probability Pr[D1
Ei=1 Pr[Di]

2) Choose configuration s E Di with probability Pr[]
Pr[D obability of each clause.

Step 1 was implemented by first calculating the truth probability of each clause.

This probability was the probability that ll edges fail in the cut defined by a clause.

A selection array was then created, and each clause was assigned a portion of the array

whose size was proportional to the likelihc,,d of the clause being true. A pointer was

assigned randomly to the array, and the clause pointed to was assigned to i. Step 2

was implemented by setting all variables in clause i so that i is satisfied, and then

randomly assigning values to the remaining variables according to the probability

defined by the corresponding edge in the graph.

The SACA is a modification of the KLM's Coverage Algorithm [KLM89], which

is also used to solve the Union of Sets problem. In the Coverage Algorithm, an

ordering is cdfined for the clauses. For each +rial, a clause is chosen at random and

variables are set so that the clause is satisfied. The trial is considered a success

if the clause chosen is the smallest clause as defined by the ordering that is made

true by the configuration of variables. Thus, each configuration is only counted in

at most one clause. An estimate of the size of the union of sets can be obtained by

taking number of successes and dividing it by the number of trials. The algorithm

improves on a naive Monte Carlo algorithm since it automatically assumes a variable

configuration within the subset defined by the clauses. The most costly step in the

Coverage Algorithm is determining if the clause chosen is the smallest one possible.

The SACA improves the Coverage Algorithm by reducing the amount of time used

to make this determination.

In the SACA, during each trial a clause and a Tvariable configuration are chosen

according to the method described before. instead of running a set number of trials,

however, the algorithm sets an upper limit on how many steps are run. A step in the

SACA is choosing a random clause and seeing if the variable configuration satisfies

the clause. A trial ends only when a step has succeeded in satisfying the randomly

chosen clause. The success of the trial is determined by how many steps were needed

before the trial completed. If more steps were needed, then the trial was considered

more successful. The intuition behind performing steps is that if a large number of

steps are used for a trial, the particular variable configuration must be in fewer of the

clauses. Thus, it must be counted more heavily in determining the union of sets. If

a trial takes fewer steps, it mears that the variable configuration most likely satisfies

many clauses. Thus, it will be chosen often in the selection of variable configurations

and must be counted less heavily since the goal is to coant each configuration only

once.

Self-adjusting Coverage Algorithm Theorem II [KLM89] is used in the SACA to

determine the number of steps, T, necessary for completion, where a step is as defined

in the previous paragraph.

Theorem 2.5.1 (Self-adjusting Algorithm Theorem II) When E < 1 and T =
8-(]-+c).11n(3)

0--~-E2), the self-adjusting coverage algorithm is an E, 6 approximation algorithm

when estimator Y - F- 1 Y is used.NT

The SACA produces estimator Y, which is according to Self-Adjusting Coverage

Algorithm II an (e, a)-approximation for the probability that one of the cuts fails.

Thus, by finding the approximately minimum cuts of a graph and then using the

SACA to determine the failure probability of these cuts, we can approximate the

failure probability of the graph. Since the RCA is accurate to within 1 +± (, and the

SACA is also accurate to within 1 ± e with high probability, our estimate is accurate

to within (1 ± e)2 of the actual failure probability with high probability.

Chapter 3

Optimizing Performance

The theoretical algorithm attempts to balance the time used by the naive Monte

Carlo Algorithm and the Recursive Contraction Algorithm/Self-Adjusting Coverage

Algorithm by running the RCA/SACA only for FAIL(p) < !. This division of labor

theoretically results in both paths of the algorithm having the same O(n 4) running

time. In practice, however, we noticed that the MCA approach took much more time

than the RCA/SACA approach, even for values of FAIL(p) larger than -. To avoid

having to find the values of FAIL(p) for which the RCA/SACA was faster for each

particular graph, we decided to use an adaptive approach that would ensure that the

faster algorithm would be run in all cases. The approach we decided to adopt was

dovetailing, in which the MCA and RCA/SACA are essentially run in parallel.

While testing our implementation we also noticed that the theoretical algorithm

lists more cuts than necessary during the RCA/SACA portion for most graphs. This

situation occurs because the theoretical algorithm uses a pessimistic estimation of

the graph failure probability, namely the probability that the minimum cut fails,

during its calculation of how much error to allow. In many cases, however, the failure

probability is much greater than this value. If the algorithm were somehow supplied a

better estimation of graph failure, it could allow more leeway and thus examine fewer

cuts. A natural way to come up with this estimate was to use Karger's approximation

algorithm, except allowing a larger margin of error to decrease the running time for

this application of the algorithm. We implemented tho dovetail oFptimization as well

as this optimization and analyzed their effects on the algorithm's speed.

3.1 Dovetailing

The first optimization we performed was to dovetail the naive Monte Carlo algorithm

(MCA) portion of the implementation with the Recursive Contraction Algorithm/Self

Adjusting Coverage Algorithm(RCA/SACA) portion of the implementation. Our

rationale for this optimization was that during initial testing we discovered that the

MCA portion potentially dominates running time. For a randomly generated graph

with 10 nodes, E set to 0.05, J set to 0.05, and usilng thle hypothesis that FAIL(p) >

I, the Zero-One Estimator Theorem states that over 50,000,000 trials need to be run

in order to assure that the Monte Carlo algorithm is an e, 6 approximation algorithm.

By dovetailing, we are assured that the implementation terminates when the faster

of the two portions completes.

The scheme we used to dovetail the MCA and RCA/SACA is as follows:

(1) Run the RCA to find the minimum cut of the graph. Using the minimum cut

information, determine a to ensure that the probability that any cut of value greater

than ac fails is less than epc, where c is the weight of a minimum cut and pC is the

probability that a particular minimum cut fails.

(2) Run the RCA/SACA approach using this a for some arbitrary amount of

time. We chose to use one second. If the RCA/SACA completes in this time, use the

output from the RCA/SACA as our answer.

(2) If the RCA/SACA does not compl:te, run the MC for the same amount of

time. If the MCA completes in that amount of time, then use the output from the

MCA as our answer.

(3) If neither algorithm gives us an answer, double the time used for computation

and repeat steps 1 and 2.

Let y be the number of iterations it takes fcr tihe dovetail implementation to

complete. In a worst case scenario, the algorithm optimally takes 2Y time for some

y and terminates in the MCA before the RCA/SACA. In this situation, our dovetail

implementation would run for 2Y+1 + 2(2Y) time in the RCA/SACA, and then run for

2(2Y) in the MC. In this situation, the total time used is still within a factor of six of

the optimal time.

3.1.1 Computing a for the Dovetail Implementation

Since we do not use the theory paper's assumption that FAIL(p) < 1 to run the

RCA/SACA for the dovetail implementation, we need to find the right value for a

that makes the error less than E with high probability for an arbitrary FAIL(p). To

find a, we use the following claim.

Claim 3.1.1 Given a such that n2Qpac(1 -) is less than epC, the probability

that any cut of value greater than ac fails is less than epC.

Proof: In Karger's proof of Theorem 3.1 from [Kar96] on this approximation

scheme, he shows if we write pC as n - (2 +P), the probability that a cut larger than ac

fails is O(n-/3) . We need the exact probability, however, to calculate a accurately.

To calculate this probability, we examine the proof of Theorem 2.3 from the same

paper. In this proof, Karger uses the following assumptions. Let r be the number of

cuts in the graph, and let c1, ..., Cr be the values of the r cuts. Assume the values of

ci are in increasing order.

By Theorem 2.2 of the paper, we know there are at most n2a cuts of value less

than ac. Thus, cuts cl, ..., c-2, can be cuts of any value greater than c and cuts

cn2c-4 , ... , C, must have values larger than ac.

For cuts cl, ..., cn2a, the minimum contributing cut value to the failure probability

is ac since we want the probability that a cut larger than ac fails. Thus, the contribu-

tions of the first n2a cuts is bounded by n2apa c . Karger shows that the contributions

of the remaining cuts is bounded by the integral, rf2. k-(l+±)dk. This integral is less

than -=7 if i > 0. Thus, the overall probability that a cut of value greater than ac

fails is less than

2n-on
n2ap

a c _

Solving for B in terms of pC, we determine:

In pCS= -(- + 2)In n
Substituting 3 into our bound, we find:

2n(In
"

+2
) In n 2

Pr[Cut > ac fails] < n2 , _c = n 2a • ac(-
('ý + 2) In n2pc

We set this value to be less than epc and solve for a to determine the correct

number of cuts to examine.

3.1.2 Monte-Carlo Algorithm Termination Criteria

By removing the 4 barrier between the MCA and the RCA/SACA, the dovetail im-

plementation raised another question. Since we could no longer assume that FAIL(p)

is larger than - when running the MCA, we had to develop a termination criterion

for the MCA that did not require an estimate of the failure probability. To do this,

we defined the concept of self-verification. We say that the MCA self-verifies if it en-

counters enough disconnected graphs so it is very likely that its estimate of the graph

failure probability is accurate to within e of the actual failure probability. If the MCA

self-verifies within its allotted amount of time according to the dovetail implementa-

tion, it has run a sufficient number of trials and its answer can be used. The following

lemma answers how many disconnected graphs are needed for self-verification.

Lemma 3.1.2 The naive Monte Carlo algorithm self-verifies if it encounters at least

(1 + E)~ disconnected graphs.

Proof: Before we prove this statement, recll the Zero-One Estimator Theorem

and our analysis of the naive Monte Carlo algorithm from section 2.2. By the theorem,

we know that we need to run at least N = 1 -I.~.) for the algorithm to be an, 6AIL(algorithm

e, 6 algorithm.

If N trials are run, we expect that k. the number of failed trials, is approximately

FA 'L(p)N. The FAIL(p) term in k cancels out with the FAIL(p) term in N,
41n(2)

resulting in k = . We now proceed to prove that running the MC until (1 + E)k

failures are encountered and dividing the number of failures by the number of total

trials is an E, 6 approximation of a graph's reliability.

For the purposes of this proof, let 1 = (1 + c)k. To prove that searching for 1

failures is sufficient, we consider an infinite sequence of trials. The expected value of

TI, the trial at which the Ith failure is encountered, is IFA p a number larger than

N for e > 0. We will call this value E[TJ]. Consider two times EfT] and Ei[. The

Zero-One Estimator Theorem applies to both times since E•• -= N and [> N.

By the theorem, we know that at time E at least (T1)FAIL(,)(1 - c) failures

will be encountered with probability 6. This expression simplifies to E[T,]FAIL(p),

or 1, so we know that when I failures occur, T, <] with probability 6.

Similarly, the theorem states that at time E[T1] at most (EI~ T)FAIL(p)(1 + E)

failures are encountered with probability 6. This expression also simplifies to 1. By

the Union Bound Theorem, we know the following is true with a probability of at

least 1 - 26.

E[T1] E[T1]

To complete our proof, we substitute for E[TI], divide by I and take theFAIL(p)

reciprocal which results in the following:

(1 - e)FAIL(p) < < (1 + e)FAIL(p)

Thus, by taking (1 + e)k over the number of trials it takes to find the (1 + e)kth

'filure, we obtain an E, 6 approximation for FAIL(p).

3.2 Optimizing for multiple minimum cuts

In graph geometries in which there are multiple minimum cuts or many cuts that

are close in size to the minimum cut, the approximation scheme can be made more

efficient. The wasted computation occurs because in this case, FAIL(p) is much

larger than p', the probability that the minimum cut fails. In the theoretical paper,

a is set so that the error caused by not examining cuts larger than a-minimal cuts is

less than epc. In actuality, however, a needs only to be set so that the error caused

by cuts larger than a-minimal cuts is less than EFAIL(p). Thus, in cases where pC is

much smaller than FAIL(p), our calculation for a is unnecessarily conservative.

To optimize for this case, we decided to use Karger's approximation scheme to ob-

tain a coarse estimate of the failure probability, and then use this estimate to calculate

the a necessary to guarantee a close estimate. Thus, we initially ran Karger's algo-

rithm using an E of 0.5 to get a quick estimate, EFAIL(p), that is at most 2FAIL(p)

with probability 6. Solving for FAIL(p), we know that FAIL(p) > EFAIL(p)

compare this estimate of FAIL(p) with the probability that a minimum cut fails and

use the larger value to obtain a.

a was calculated from our estimate of FAIL(p) in the following manner. Recall

Claim 3.1.1 states that given n2ap ac - 2) is less than EpC, the probability that any

cut of value greater than ac fails is less than epc. By solving a so that n2p c(1- In -t)

is less than EFAIL(p), we account for our more accurate estimate of FAIL(p).2

Chapter 4

Results

To analyze the performance of the approximation scheme, we ran our implementation

on several families of graphs. The families were chosen to highlight the worst case

running time of the scheme, and also to give an indication of how well the sclheme

would perform on test inputs from the real world. Performance was measured by

recording how much CPU time (in seconds) was needed to compute the reliability for

graphs of various sizes and edge failure probabilities.

4.1 Network Topologies

We ran the implementation on cycles, Delaunay graphs, and nearest neighbor graphs.

Cycles were used to test the worst case running time of the scheme, and the other two

network topologies were used because they closely model actual telecommunications

networks. Finally, we tested our implementation on four real-life networks.

4.1.1 Cycles

A cycle is a graph in which there are exactly as many edges as there are nodes and

cach node is connected to two other nodes. The only way for such a graph to be

2-connected is for the edges to form a ring. In a cycle, a minimum cut is any two

edges, since the loss of any two edges will disconnect the graph. Thus, there is an

abnormally large number of near minimum cuts in a cycle, which is actually the

maximum number of minimum cuts for the number of vertices. Since the goal of the

RCA is to find these cuts, solving the reliability for cycle was a essentially a worst

case test for the RCA/SACA portion of the algorithm.

Another interesting aspect of the cycle is that its reliability can be calculated

easily using simple analysis. We note that the only way a cycle is not disconnected is

if either no edges fail, or if exactly one edge fails. The probability of no edges failing is

(1 -p). The probability that exactly one edge fails is np(1 -p)n-1. Thus, the failure

probability of a cycle can be expressed by 1 - (1 - p)' - np(1 - p)n-l. Using this

exact expression for reliability, we can measure the accuracy of our implementation.

4.1.2 Delaunay Graphs

To create a Delaunay graph, we first randomly place nodes in a plane. We then per-

form a triangulation of that plane by connecting nodes with edges that subdivide the

area into triangles. The Delaunay triangulation has the property that the circumcir-

cle of every triangle does not contain any points of the triangulation [Kra95]. We call

the result of a Delaunay triangulation on a set of nodes a Delaunay graph. Netpad,

a graph manipulation program created at Bellcore, wa: ised to create the Delaunay

graphs for this research.

This family of graphs was particularly interesting because a Delaunay graph is a

fairly good approximation of a telecommunications network. Each node in the graph

could represent a city in the network, and each edge a physical link between two cities.

The nature of the triangulation causes nodes to be connected only to other nearby

nodes, which is a realistic analogy to what happens in actual telecommunications

networks. Thus, this family of graphs allows us to get a sense of how the algorithm

would perform on -cal networks.

4.1.3 Nearest Neighbor Graphs

Another model of how real networks are constructed is the nearest neighbor graph.

The idea for this type of graph was suggested by Milena Mihail of Bellcore. In

this family of graphs, we are given two parameters, a range and a density. The

range specifies how many of a node's nearest neighbors should be considered for

connection, and the density specifies how many of the considered nodes will actually

be connected. A graph generator created by Professor Karger was used to create the

nearest neighbor graphs. The generator works by first placing a random assortment

of nodes in a plane. The generator then iterates through all nodes and connects each

node to a random choice of density of its range nearest neighbors, where near is

defined by least distance. The resultant graphs are also a fairly good approximation

of a city's telecommunications network in which neighborhoods are connected to some

nearby neighborhoods, but not all.

4.1.4 Real Networks

Finally, our implementation was tested on four telecommunications networks from real

life. These networks were supplied by a telecommunications company that requested

anonymity. By solving these networks, we were able to obtain a sense of how long

the scheme would take to approximate the reliability of a network designed by an

engineer for a specific task.

4.2 Performance

To test the performance of the algorithm, we ran it each of the network families with

varying sizes of n and values of p. For the test runs, the C code was compiled using

the GNU C Compiler using the -02 flag for optimizations. The runs wer- :one on a

SPARC 20 with a 60 MHz TI, TMS"90Z55 CPU using an e value of 0.1.

-2

-4o.

L. -6

-J -8

-10

- Cycle (n = 10)

- Cycle (n = 20)

- - Cycle (n = 40)

-5 -4 -3 -2 -1
Log (p)

Figure 4-1: Graph Failure Probabilities for Cycles

4.2.1 Cycle Performance

With the cycle, we were able to use the exact analysis method to obtain correct values

for FAIL(p). These values were used to analyze the performance of the approxima-

tion algorithm in terms of accuracy. In addition, we measured the running time of

the scheme for various cycle sizes and edge failure probabilities. Using these times,

we were also able to analyze the speed of the algorithm for cycles.

Accuracy

The approximation scheme was run on cycles whose sizes ranged from 10 to 55 nodes

using edge failure probabilities ranging from 10-1 to 10- . Figure 4-1 shows the

results of our trials; it plots how the log of FAIL(p) varies with the log of p for

several sizes of cycles. As expected, the plot shows :several straight lines that indicate

graph failure probability increases polynomially with edge failure probability.

We used our exact analysis method to compute FAIL(p) for the cycle sizes that

MCA % Error

10

15

20

25

30

40

45

0.10

0.10

0.10

0.10

0.10

0.10

2.124132%

1.149327%

0.849997%

2.141035%

2.141464%

1.356978%

0.10 1.905801%

Table 4.1: Average Error for Cycles

Nodes Fosilon 'ICA % Error RCA % Error

30 0.10 2.141464% 0.493210%

30 0.15 2.732437% 0.825496%

30 0.20 4.822210% 1.244153%

30 0.25 4.013265% 1.106079%

30 0.30 8.459856% 1.923839%

30 0.40 4.952984% 2.485224%

Table 4.2: Average Error for Various c for Cycles

we tested and compared these results with those obtained from the approximation

scheme. Table 4.1 shows the average percentage error over all trials run for a particular

cycle size and a particular E that ended up using the MCA estimate, and the average

error for trials that ended up using the RCA/SACA estimate. We note from the

results that the accuracy of the scheme was on the average much better than we

would guess from the value of e used, especially with respect to the RCA/SACA

estimates. Thus, we ran the scheme for several values of e on a 30 node cycle with

p varying from 10-1 to 10- 5 to analyze the effect of e on accuracy. Table 4.2 shows

these results.

From Table 4.2, we see that even for values of e as large as 0.4, we still obtain

values for FAIL(p) that are within 10 percent of the actual value on average. We also

note that the difference between the MCA error and the RCA/SACA error increases

as e increases. This leads us to believe that using a different e for the two parts of

RCA % Error

0.4603237

0.585237%

0.721226%

0.635712%

0.493210%

0.680662%

0.677075%

INodes Epsilon

the algorithm could lead to a better balance of time used while still maintaining the

same accuracy in practice.

Speed

To analyze the worst case speed of the algorithm for cycles, we first had to find

the worst case values of p for each graph. This search was necessary because of

the nature of our dovetail implementation. For large values of p, the MCA would

complete quickly and terminate the algorithm. Similarly, for small values of p, the

RCA/SACA would terminate first. We expect that the worst case time would occur

when the MCA and RC -/SACA terminate simultaneou ly, so 'hat no time is ' Ived

by dovetailing. Thus, we searched for values of p where this occurred using a binary

search.

The next two figures show how the log of running time varied with logp and

log FAIL(p) for several cycle sizes. We can see from the figures that the RCA/SACA

is dominant at small values of p, and its running time increases slowly up to a point

where the MCA begins to dominate. After this point, the running time falls off

exponentially as p increases, as expected. It is interesting to note, however, that the

worst case running time often did not occur where the hinary search on p converged.

This convergence is evident on Figure 4-2 as the p where there are several trials

clustered. Instead of only one peak, there is a second peak in running time for a p

that is slightly less than the p that the binary search found.

Finding this result unusual, we examined the trials for these values of p more

carefully. We found that the odd peak in running time was caused by the coarse

estimation process. Looking at the division of time between the coarse estimation

and the more exact estimation, we found that the coarse estimation time dominated

at the peak that was at lower values of p.

Looking at the trials, it appeared as if at high values of E, the MCA is sped up

greatly but the RCA/SACA is not affected as much. When we studied the effect of

varying e on the accuracy of the algorithm, we also noted the effect on running time.

We were able to use this data to clarify our observtion. We ran the approximation

3

2

1

0

-1

-- Cycle (n = 10)

-0-- Cycle (n = 20)

- Cycle (n = 40)

-6 -5 -4 -3 -2 -1
Log (p)

Figure 4-2: Running Time versus Edge Failure Probability for Cycles

algorithm on a 30 node cycle with varying E for two values of p, one in which the MCA

dominated (p = 0.001) and one in which the RCA/SACA dominated (p = 0.0001).

Table 4.3 shows how running time was reduced as E increased.

From Table 4.3, we see that increasing e greatly reduces running times on trials

for which the MCA is dominant, but has a much smaller effect on trials for which the

RCA/SACA is dominant. As the running times for the MCA are greatly reduced as

E increases, we can deduce that at high values for c. the M'iCA is effective at lower

levels of p than it is at small values for E. Since the RCA/SACA is not affected to the

same degree as E increases, we can assume that the value of p for which the MCA and

the RCA/SACA take the same amount of time decreases as E increases. Thus, the

balance point for the coarse estimation must be different than the balan-'P point for

the more exact estimation. Since the coarse estimation process dominates time for

cycles, it is that balance point that is creating the higher peak. Figure 4-4 overlays

time used for coarse estimation on the time used for the exact estimation to clarify

3

E

0
-10

-1

-o- Cycle (n = 10)

- Cycle (n = 20)

- Cycle (n = 40)

-10 -5 0
Log (Fail(p))

Figure 4-3: Running Time versus Graph Failure Probability for Cycles

our explanation for the double peak.

Figure 4-5 shows the increase in running time as the size of the cycle increases by

plotting the log of running time versus the log of the number of nodes in the cycle.

The worst case times for each cycle were used for this plot. Looking at the plot. we

see that it is approximately a straight line. By taking the slope of the line, we can

find the exponent on the running time. This slope was approximately 3.34, so we

know that the algorithm runs in O(n3 34) time for cycles, which is significantly better

than the theoretical running time of O(n 4).

4.2.2 Delaunay Graph Performance

We were satisfied with the algorithm's accuracy through its per nrmance on cycles,

and the reliability for the other families of graphs coul-d iot be determined analytically,

so most of the rest of the tests were focused on analyzing the algorithm's speed for

various graph topologies. We did, however, perform tests on the Delaunay graphs to

Nodes Epsilon MCA (p = 0.001) RCA/SACA (p = 0.0001)

30 0.1 1971.12 1714.00

30 0.15 959.30 1472.72

30 0.2 525.42 1484.03

30 0.25 302.55 922.87

30 0.3 292.67 1422.33

30 0.4 176.90 1377.00

Table 4.3: Times for Various e for Cycles

-6 -5 -4 -3 -2 -1

Log (p)

Figure 4-4: Coarse and More Exact Estimation for Cycles

00=

0)E
0
.j

--- Coarse

- Exact

b

4-

1-

-j 2

1
I I I I

0.8 1.0 1.2 1.4 1.6 1.8

Log (n)

Figure 4-5: Worst Case Running Time for Cycles

further analyze the effects of changing e on the algorithm's accuracy and speed. In

addition, we measured the running time of the algorithm for various sizes and edge

failure probabilities.

Effects of e on Accuracy and Speed

To test the effects of varying e, we ran the algorithm using values of E from 0.1 to

0.4. We compared the reliability estimates obtained from higher e values with the

reliability estimate we got for e = 0.1 to ascertain the effects on accuracy. Runs were

made on a 40 node Delaunay graph using several different edge failure probabilities to

find the average change in accuracy for both the MCA estimate and the RCA/SACA

estimate as e increas-,1

To test the effect on speed, we varied E from 0.1 to 0.4 and measured the time

required to compute the reliability for two values of edge failure probability. One

value (p = 0.05) was chosen to show the effect on the MCA, and the other (p = 0.01)

I

Nodes Epsilon MCA % Change RCA % Change

40 0.15 1.484369% 2.841093%

40 0.20 2.964967% 2.044593%

40 0.25 6.041112% 0.639655%

40 0.30 6.641002% 2.960856%

40 0.40 10.577722% 0.581327%

Table 4.4: Average Change from e = 0.1 for Delaunay Graphs

Nodes Epsilon MCA (p = 0.05) RCA/SACA (p = 0.01)

40 0.10 2448.92 112.05

40 0.15 988.50 105.57

40 0.20 631.23 66.'2
40 0.25 464.90 65.17
40 0.30 367.70 86.75
40 0.40 277.62 63.50

Table 4.5: Times for Various e for Delaunay Graphs

was chosen to show the effect on the RCA/SACA portion of the algorithm. Table 4.4

and Table 4.5 show the results of our tests.

The results for Delaunay graphs are very similar to our results for cycles. The

error increases more quickly for the 'MCA as E increases, but the error is still much

below e for both the MCA and RCA/SACA. The running time decreased greatly

for the MCA as e increased, but the increase has little effect on the running time of

the RCA/SACA. Thus, although a higher value for E probably can be used for the

RCA/SACA without sacrificing accuracy for the overall algorithm, it is unknown how

much we would need to increase E before a significant decrease in the RCA/SACA

running time would occur.

Speed

To analyze the algorithm's performance on Delaunay graphs, we performed the same

binary search to find the worst case p. The Delaunay graphs were more reliable than

-5

U.

0

-10
-4 -3 -2

- Del (n = 10)

- Del (n = 20)

SDel (n = 40)

0
Log (p)

Figure 4-6: Graph Failure Probabilities for Delaunay Graphs

cycles, as their minimum cuts ranged from three to five edges, so we ranged our values

of p from 0.75 to 10- 4. The failure probability of the graph became insignificant and

easy to compute using the RCA/SACA approach at values of p smaller than 10- 4 .

The search was performed on five instances of each Delaunay graph size.

Figure 4-6 shows the increase in FAIL(p) as p increases by plotting log FAIL(p)

versus logp for one instance of each size of Delaunay graph. It is interesting to note

from this figure that the graph failure increased polynomially with respect to the the

value of p, as evidenced by the plots being virtually straight lines. We guessed that

the cause was that almost all of the failure probability was due to the minimum cuts

of the graph.

We plotted several instances of a 40 node Delaunay graph in Fig',re 4-7 to check

this theory. Of the five instances that we plotted, four of +L'em had identical slopes.

We checked the minimum cuts of the instances and found that the four identical

instances all had minimum cuts with three edges. The single instance with a different

U

0.

u_

-10

-4 -3 -2 -1 0

Log (p)

Figure 4-7: Graph Failure Probabilities for 40 Node Delaunay Graphs

slope had a minimum cut of four edges. The larger minimum cut meant that as

the edge failure probability was reduced, graph failure probability was reduced more

quickly than for a smaller minimum cut, resulting in the steeper slope. In addition,

we discovered that the number of minimum cuts determined the height of the line.

For example, of the four lines of the same slope, the highest line has 3 minimum cuts

of size 3, and the lowest line has 1 minimum cut of size 3. The two lines in the middle

that virtually overlap have 2 minimum cuts of size 3. This plot also reinforces our

conclusion that almost all of the failure probability is caused by minimum cut failure

for Delaunay graphs.

Figure 4-8 and Figure 4-9 show how the log of running time varied with logp and

log FAIL (p) for different sizes of Delaunay graphs. These figures are very similar to

Figures 2 and 3, except that the second peak is missing. We explain the absence of

the second peak during Delaunay graph trials with the fact that the coarse estimation

optimization had much less effect on Delaunay trials. Since the number of minimum

4

E

-J,

1

0

Del (n = 10)

-- Del (n = 20)

- -Del (n = 40)

-4 -2 0

Log (p)

Figure 4-8: Running Time versus Edge Failure Probability for Delaunay Graphs

cuts in Delaunay graphs is much smaller than for cycles, the optimization was not able

to reduce the more exact estimate's time by as much. Thus, the coarse estimation

was never able to dominate time for any values of p.

Figure 4-10 plots the log of running time versus the log of th number of nodes to

get a sense of how the running time increases as the size of the graph increases. The

average of the five worst case times for each size of Delaunay graph were used 1fr this

plot. Looking at the plot, we see that it is approximately a straight line, except that

running time seems to flatten out as the graph size increases. Taking a pessimistic

view, we try to fit a line to the curve and ignore the apparent flattening. By taking

thp slope of this line, we find that the algorithm runs in O(n 4.0 2) time for Delaunay

graphs. If we take an opIII, ... view, however, and take the least slope, we find that

the algorithm potentially runs in O(n2.65) time.

4

E

02

1

--- Del (n = 10)

-- Del (n = 20)

-* Del (n = 40)

-10 -5 0
Log (Fail(p))

Figure 4-9: Running Time versus Graph Failure Probability for Delaunay Graphs

4.2.3 Nearest Neighbor Performance

When we ran the algorithm on the nearest neighbor family of graphs with range set

to 8 and density set to 3, we found that for all reasonable values of p (less than 0.1),

the graph was so reliable that the RCA/SACA dominated for all p used. Since we

expect the algorithm to be used prirmarily on telecommunications networks, where

link failure probabilities of even 1 percent would be unacceptable, this bound on

p is acceptable. We used the nearesr neighbor graphs to see how the time of the

RCA/SACA increased as graph size increased for a fixed p.

We created five instances of each size for graphs ranging from 10 nodes to 320

nodes. The algorithm was then run on the graphs using p = 0.1 and p = 0.15.

The values of FAIL(p) produced varied from instance to instance, but - general it

increased as the number of nodes ir -reased. Even at 320 nodes, however, the failure

probability averaged less than 10-9 for p = 0.1.

Figure 4-11 shows the more interesting data generated from this family of graphs,

C

4-

E

0b--

1-

0- I I I I I

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Log (n)

Figure 4-10: Worst Case Running Time for Delaunav Graphs

the effect of size on the running time of the RCA/SACA. In the figure, we plotted

the log of the graph size versus the log of the total running time used. We note

from this figure that the plot is not a straight line, so the running time grows more

than polynomially as the graph size increases. This result, however, does not indicate

that the overall running time of the algorithm is more than polynomial, as for the

worst case of p, the MCA takes over before the RCA/SACA time begins growing at

a super-polynomial rate.

We also ran the approximation scheme on nearest neighbor graphs for several val-

ues of p from 0.75 to 0.99, to study the effect of p on running time of the RCA/SACA.

Figure 4-12 shows the results of these tests by plotting the log of p against the log

of the runnilng time for one instance of each size of graph. Of intere't~ is the sudden

jump in running time as p for a 10 node graph goes from 0 cl to 0.10. and the sudden

jump in running time as p for a 40 node graph goes from 0.15 to 0.20. In both cases,

the jumps were accompanied by a sharp increase in the number of cuts found. This

r

I I I

-- p = 0.15

*~ p = 0.1

0.5 1.0 1.5 2.0 2.5 3.0
Log (n)

Figure 4-11: Running Time versus Size for Nearest Neighbor Graphs

result confirms Karger's statement in [Kar95] that the running time of the RCA varies

with the number of cuts found.

4.2.4 Real Networks

The real networks that we received ranged from 9 to 57 nodes in size. We ran tests

by starting p at 0.1 and lowering p until FAIL(p) dropped below 10- 6 . We estimate

that, a typical telecommunications network will accept a failure rate between 10-" and

10-', or about between 0.1 and 10 seconds of failure a year. These values motivated

our settings for p, as a user would most likely set p such that FAIL(p) is between

the two bounds above.

Fi gure 4-13 plots log FAIL(p) versus logp. Looking at this figure, we find again

that FAIL(p) increases polynomially as p increases. We also notice that three of the

problems have the same slope, while one has a smaller slope. From our experience

with Delaunay graphs, we would guess that the network with a smaller slope has a

3-

E2-
0

0-

r

-o-- NNG

- N-NG

-2.0 -1.5 -1.0 -0.5
Log (p)

Figure 4-12:
Graphs

Running Time versus Edge Failure Probability for Nearest Neighbor

2.5

2.0

1.5

1.0

0.5

E

0)
I-j

(n = 10)

-o- NNG (n = 20)

(n = 40)

--- n = 57

S'- n =9

-o-- n =44

-6 -5 -4
Log (p:

-3 -2 -1

Figure 4-13: Graph Failure Probabilities for Real Networks

smaller minimum cut than the other three networks. By enumerating the minimum

cuts, we find that our hypothesis is true. The network with a different slope has a

minimum cut of 1 while the other networks have minimum cuts with 2 edges, causing

its failure probability to increase more slowly than the other graphs.

0

-2

-4

U-

0o-6

-8

Chapter 5

Conclusions and Future Work

By implementing Karger's approximation scheme for solving the All Terminal Reli-

ability Problem, we have shown that the 0(n4) time solution proved in theory also

works in practice. For cycles and for Delaunay graphs, the implementation performed

in approximately O(n4) time, and there were indications that the exponent was be-

ginning to drop as the graph size increased.

Through our tests on several families of graphs, we were also able to gain some

insight into the main causes of failure in graphs. From our plots of FAIL(p) versus

p for several families of graphs, we saw that graph failure increase€ polynomially as p

increases, and with the same slope that the minimum cut would indicate. Thus, we

conclude that the minimum cuts contribute overwhelmingly to failure probability of

the sizes and types of graphs that we studied. Using this information, we propose that

an extremely quick and reasonably accurate way of obtaining reliability is find the

minimum cuts and multiply the probability of a minimum cut failing by the number

of minimum cuts found.

Several extensions can be made to this thesis. Karger proposed in [Kar95] a

method of extending the algorithm to include graphs where the edge failuie prob-

ability is not identical for all edges. If this extension were impliemented, it could

give insight into the effects of different edge failure probabilities on the overall graph

failure probability.

Another extension would be to study the effectiveness of the algorithm for larger

graphs and to see apparent drop in the exponent on running time was valid. In addi-

tion, the algorithm could be run on a wider variety of graphs to see if our observations

on reliability apply in general.

In conclusion, we have shown that Karger's time bounds for his approximation

scheme apply in practice. For many values of p, the time used by the approximation

scheme is much less than the worst case time. For these values of p, the algorithm can

be used to analyze relatively large graphs in a reasonable amount of time. Thus, we

hope we have created the foundation for a useful tool for analyzing real life networks.

REFERENCES

[Co187] Charles J. Colbourn. The Combinatorics of Network Reliability, volume 4

of The International Series of Monographs on Computer Science. Oxford University

Press, 1987.

[Kar95] David R. Karger. A Randomized Fully Polynomial Time Approximation

Scheme for the All Terminal Network Reliability Problem. Symposium on the Theory

of Computing 1995.

[KL83] Richard M. Karp and Michael G. Luby, Monte-Carlo Algorithms for enu-

meration and reliability problems. Proceedings of the 24th IEEE Foundations of

Comvuter Science Symposium, pp. 56-64.

[KLM89] Richard M. Karp and Michael G. Luby. Monte carlo algorithms for

enumeration problems. Journal of Algorithms . 10(3):429-448, September 1989.

[Kra95] Jorg Kramer. Delaunay Triangulation in two and three dimensions. Mas-

ter thesis, December 1995.

[KS93] David R. Karger and Clifford Stein. An O(n 2) alg6rithm for minimum

cuts. In Proceedings of the 25th ACM Symposium on the Theory of Computing,

ACM Press, May 1993, pages 757-765.

[PB83] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and

of computing the probability that a network remains connected. SIAM Journal on

Computing, 12(4):777-788, 1983.

[Val79] Leslie Valiant. The complexity of enumeration and reliability problems.

SIAM Journal on Computing, 8:410-421, 1979.

