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Abstract

In numerous domains it is useful to represent a single example by the collection of local
features or parts that comprise it. In computer vision in particular, local image features are
a powerful way to describe images of objects and scenes. Their stability under variable image
conditions is critical for success in a wide range of recognition and retrieval applications.
However, many conventional similarity measures and machine learning algorithms assume
vector inputs. Comparing and learning from images represented by sets of local features
is therefore challenging, since each set may vary in cardinality and its elements lack a
meaningful ordering.

In this thesis I present computationally efficient techniques to handle comparisons, learning,
and indexing with examples represented by sets of features. The primary goal of this
research is to design and demonstrate algorithms that can effectively accommodate this
useful representation in a way that scales with both the representation size as well as the
number of images available for indexing or learning.

I introduce the pyramid match algorithm, which efficiently forms an implicit partial match-
ing between two sets of feature vectors. The matching has a linear time complexity, naturally
forms a Mercer kernel, and is robust to clutter or outlier features, a critical advantage for
handling images with variable backgrounds, occlusions, and viewpoint changes. I provide
bounds on the expected error relative to the optimal partial matching. For very large
databases, even extremely efficient pairwise comparisons may not offer adequately respon-
sive query times. I show how to perform sub-linear time retrievals under the matching
measure with randomized hashing techniques, even when input sets have varying numbers
of features.

My results are focused on several important vision tasks, including applications to content-
based image retrieval, discriminative classification for object recognition, kernel regression,
and unsupervised learning of categories. I show how the dramatic increase in performance
enables accurate and flexible image comparisons to be made on large-scale data sets, and
removes the need to artificially limit the number of local descriptions used per image when
learning visual categories.

Thesis Supervisor: Trevor Darrell
Title: Associate Professor
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Chapter 1

Introduction

1.1 Recognizing and Retrieving Images

The visual world is a rich and complex source of information. We as humans constantly
draw on it, whether for purely practical purposes--such as navigation, recognition of familiar
people and objects, or manipulating tools and devices, or for purposes that are more intricate
and subtle ----such as inferring the function of an unfamiliar object, interpreting gestures and
facial expressions, or detecting abnormal activity. In computer vision research, we want to
develop the algorithms and representations that will allow a computer to autonomously
analyze visual information, with the belief that in doing so we will see a significant impact
on our productivity and understanding of the world around us.

The fundamental problem I address in this dissertation is how to efficiently match and
index sets of features. This problem underlies many computer vision tasks, including object
recognition and image retrieval. In this chapter I will first discuss the primary challenges
of recognition and retrieval at a high level, and then I will overview the contributions of my
research.

Recognition is the core problem of learning visual categories and then identifying new
instances of those categories. It is generally considered by vision researchers as having two
types: the specific case and the category case. In the specific case, we seek to identify
instances of a particular object, place, or person-for example, Charlie Chaplin's face, the
Taj Mahal, or a certain magazine cover. In contrast, at the category level, we seek to
recognize different instances of a generic category as belonging to the same conceptual
class--- -for example, butterflies, coffee mugs, or umbrellas. At the category level we can
expect that there may be large variations in appearance among different instances of the
same class.

In content-based image retrieval, the goal is to use the visual content of an image query to
identify the most relevant images within a database, under some defined notion of similarity.
In contrast to keyword-based indexing and retrieval, where images are organized according
to simple textual tags, content-based image retrieval aims to sort images directly using their
visual information. Retrieval and recognition are strongly related in that in both we must



(a) Illumination (b) Object pose (c) Clutter

(d) Occlusion (e) Intra-class appear-
ance

(f) Viewpoint

Figure 1-1: To robustly accommodate real-world images, recognition algorithms must face
an extraordinary amount of variation, as depicted by these strikingly different images pro-
duced by instances of the same object category.

understand what makes two images visually (or even semantically) similar; however, the
retrieval problem also implies that a potentially very large amount of data must somehow
be indexed efficiently in order to perform real-time searches.

The recognition and retrieval problems are especially compelling now due to the numerous,
rapidly growing sources of visual data that are available, including personal digital photo
libraries, streaming web cameras, satellite imagery, cell phone cameras, medical imaging
devices, surveillance videos, commercial product catalogs, and archival databases. Today
it is increasingly inexpensive to capture and store image and video data, yet automati-
cally organizing and indexing that data presents significant technical and computational
challenges.

The flexibility demanded from recognition and retrieval algorithms that are expected to
operate in real-world conditions is staggering. While the human visual system itself is
not fully understood, it is clear that humans are capable of recognizing objects with re-
markable speed and versatility. We can not only identify an object under a wide range
of illuminations, against different backgrounds, or in a variety of poses, but we can also
take relatively few instances of an object class and generalize to recognize novel instances
containing significant differences in appearance. For a computer to have this versatility,
however, recognition algorithms must take into account that even moderate changes in an
object's pose, illumination, or background may yield drastic changes in the 2-D array of



pixels that is processed, as illustrated by the koala images in Figure 1-1.

However, robustness to these considerable modes of variation must not be achieved at the
expense of computational feasibility. As in most computer science disciplines, vision re-
searchers are often caught in the tension between descriptiveness and tractability. Consider
the following indicators of the high-dimensional input and parameter spaces that naturally
occur in recognition problems, as well as the sheer volume of image and video data we would
like to index and organize; there are:

* Thousands to millions of pixels in an image

* An estimated 3,000-30,000 human recognizable object categories [11]

* Over 30 degrees of freedom in the pose of articulated objects (humans)

* Billions of images indexed by GoogleTM Image Search

* Over 18 billion prints produced from digital camera images in 2004

* 295.5 million camera phones sold in 2005

There is a real struggle: on the one hand, we have a desire to build increasingly flexible
models for recognition and retrieval, while on the other hand, we have the functional need
to make the models and inference processes practical to compute.

1.2 Thesis Overview

I believe that to be successful, recognition and retrieval algorithms must not only capture
robustness to widely varying image conditions, but they must do so efficiently. My research
embraces these dual goals: I have created a method that enables efficient learning from
sets of features-a prevalent and powerful image representation------and have developed a
technique for fast content-based search over large image databases.

1.2.1 Sets of Local Features

Earlier work in the field focused on global representations that describe each image with
a single vector of attributes, such as a color histogram or a list of filter responses. While
vector representations do permit the direct application of standard machine learning tech-
niques and distance functions, they are known to be problematically sensitive to realistic
image conditions. Much recent work shows that decomposing an image into its component
parts (or local features) grants resilience to image transformations and variations in object
appearance. Typically, an interest operator is used to identify numerous salient regions
in an image; then, for each detected region, a (vector) feature descriptor is formed (see
Figures 1-2 and 1-3). The result is one set of local appearance or shape description vectors
per image.

Strong similarity between multiple local portions of related images may often be discovered
even when the images' global appearance happens to obscure this likeness. Local features



Maximally Stable Extremal
Regions [Matas et al.]

CP BeUonUIe et al.SIFT [Lows] I'Belongqie et al.] [Ren et al.]

Salient regions Harris-Affine Spin images Geometric Blur
[Kadir et al.] [Schmid et al.] [Johnson and Hebert] [Berg et al.]

Figure 1-2: Researchers have introduced various ways to extract local features from images,
many of which include explicit invariance properties for common geometric and photometric
transformations. Details on each feature type are provided in Chapter 2.

provide a more flexible representation and can often be more reliably matched for several
reasons:

* Change globally, look locally: An image's global representation can change consid-
erably due to variations in viewpoint, object pose, or deformations; however, changes
within any given local region will be smooth and less dramatic, simply due to the
smaller amount of viewable area.

* Isolate occlusions: An object may be severely occluded by another object. A global
representation will suffer proportionally, but for local representations, any local parts
that are still visible will have their descriptions remain intact. (For instance, the
global color histogram for an image of a panda occluded by a red balloon will not
appear similar to the color histogram for an image with a panda alone; however, some
of the histograms taken from local "blob-like" regions in either image will still appear
very similar.)

* Isolate clutter and the background: Similarly, while the global description may
be overwhelmed by large amounts of background or clutter, small parts of an image
containing an actual object of interest can emerge if we describe them independently
by regions.

* Accommodate partial appearance variation: When instances of a category can
vary widely in some dimensions of their appearance, their commonality may be best
captured by a part-wise description. (For example, consider different models of air-
craft: they may exhibit significant differences in global shape, but still share local
structures such as windows or landing gear wheels.)

* Invariant local descriptors: Researchers have developed local descriptors that

Ca

S0 t% t^+
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Figure 1-3: While two images of the same scene may globally be quite different, strong
similarity may be present in their sets of local features. Interest operators identify salient
points within an image, and they often select points that will be repeatedly detected under
varying scales (left column). A local patch or region around each detected point is extracted
from the image and used to form a descriptor (center column). Descriptors designed to
have certain invariance properties will produce very similar feature vectors for the same
local part of an object, even if it is viewed at a different orientation, scale, or translation
(right column). Here, the building is viewed at two distinct scales and orientations, but the
invariant local feature descriptors x, y E Rd computed from the same patch on the building
(indicated by a yellow box in each image) will still have similar values in both instances.

are explicitly invariant to common transformations, such as illumination changes,
rotations, translations, scaling, or all affine transformations (see Figure 1-3).

1.2.2 Contributions

The problem, however, is that this appealing representation-a set of vectors-renders tradi-
tional distances and learning algorithms unsuitable. Many conventional similarity measures
and machine learning techniques assume (uniform-length) vector inputs, but with local rep-
resentations, each image produces a variable number of features, and there is no ordering
among features in a single set.

My work provides an important step towards solving this problem. In this research I present
computationally efficient techniques to handle comparisons, learning, and indexing with sets
of local features. The primary goal of this dissertation is to provide algorithms that can
effectively accommodate this useful representation in a way that scales with both the set
size as well as the number of images to be indexed or learned from. I treat the core of image
retrieval and recognition as a matching problem: if two objects or images are similar, there
should be a strong correspondence between their parts' appearance.

I develop an efficient method called the pyramid match, which forms a matching between

t
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Figure 1-4: The pyramid match measures the partial matching similarity between sets of
vectors. The approximation relies on a multi-resolution partitioning of the local descriptor
feature space to efficiently form correspondences between points in two sets via weighted
intersections.

two sets of feature vectors, and show how it can be effectively used as measure of similarity
between images represented by unordered, variable-sized sets of local features. The cost
measured by the pyramid match approximates the cost measured by the optimal correspon-
dences between feature sets of unequal cardinality (i.e., the partial matching that optimally
maps points in the lower cardinality set to some subset of the points in the larger set, such
that the summed cost between matched points is minimal). While an optimal partial match
would cost time cubic in the number of features per input set, my approximation requires
only linear time.

The basic idea of the pyramid match is to use a multi-resolution partitioning of the feature
space together with a weighted intersection measure to directly count off matches formed
at different distance ranges between the points in two sets (see Figure 1-4). The intuition is
to start collecting groups of matched points from the bottom of the pyramid up, i.e., from
within increasingly larger partitions. First we consider matching the closest points that fall
together within small bins, and as we proceed to the coarser resolutions in the pyramid we
allow increasingly further points to be matched. The key is that the matching cost can be
measured via these histogram pyramids without even computing pairwise distances between
the vectors in two point sets.

I provide theoretical bounds on the expected error for the pyramid match relative to the
optimal partial matching, and I also describe how the matching approximation can benefit
from knowledge of the distribution of points in the feature space, when such knowledge is
available. By exploiting the features' underlying structure, the pyramid match can achieve
accurate and efficient results even in high-dimensional feature spaces.

The matching approximation may be used directly as a distance or similarity measure, which
is an important tool for many vision tasks. For example, image retrieval requires identify-
ing the nearest examples to a given query; clustering image descriptions allows automatic
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Figure 1-5: A similarity measure between image representations is central to several vision

tasks.

database organization and is the foundation of unsupervised learning from examples; it is

possible to learn decision boundaries or functions for a parameter of interest if we know

how all examples are situated relative to one another in some space (see Figure 1-5).

For very large databases where it is infeasible to index with a naive linear scan of all items,
I show how to perform sub-linear time retrievals with local feature representations and

randomized hashing techniques. This capability lays the groundwork for modern data-rich

approaches to computer vision.

The matching also serves as a conduit to kernel-based learning methods for set inputs. I

show that the pyramid match naturally forms a positive-definite function, making it valid for

use in kernel methods whose optimal solutions and convergence guarantees require Mercer

kernels. This makes it possible to access numerous existing machine learning methods

with the set representation, including techniques for discriminative classification, regression,
dimensionality reduction, and clustering.

The efficient matching and retrieval framework I have developed has a very simple, general

architecture that may be extrapolated to other problems within vision and beyond. My

results are concentrated on vision problems in recognition and retrieval, but establishing

the correspondence between sets of image features is an essential problem underlying several

other vision objectives, from solving for the geometry of a scene from multiple views, to

localizing objects composed of parts, to estimating the motion of an articulated object.

In addition, the set-of-vectors representation also arises in domains outside of vision, as

it is often natural and meaningful to represent a single example by the collection of local

features or parts that comprise it. For instance, in natural language processing, documents

or topics may be represented by sets (bags) of word features; in computational biology, a

disease may be characterized by sets of gene-expression data from multiple patients. In this

dissertation I present the algorithmic details first, followed by the applications, so that a

reader interested only in alternative application areas to vision may choose to focus on the

chapters about the core methods, Chapters 3 through 5.

Regression ClusteringNearest neighbor Classifying



1.3 Road Map

In the following chapter I give a more detailed overview of the problem setting and a discus-
sion of related work. Then in Chapter 3 I define the core matching algorithm. In Chapter 4 I
describe an extension to the matching that leverages structured feature distributions within
the approximation. Chapter 5 discusses randomized hashing techniques for sub-linear time
search of large databases on the basis of matching similarity. Chapter 6 empirically evaluates
the quality of the matching approximation relative to the optimal measure.

Once the majority of the algorithmic components have been presented in these early chap-
ters, I then provide experiments and results demonstrating these ideas applied to several
computer vision problems. Specifically, in Chapter 7 I present image and shape retrieval
results with a variety of data sets and demonstrate the impact of hashing for approximate
nearest-neighbor search with very large image databases. Following that, I show how the
pyramid match may be employed as a kernel for structured inputs in Chapter 8, and describe
cases of supervised learning where it is very effective, namely discriminative categorization of
objects and inference of human body pose. I present one non-vision application in this chap-
ter as well, demonstrating inference of publication time from local feature representations
of documents. Finally, in Chapter 9 I give a method for organizing a collection of unlabeled
images into categories based on their sets of partially matching features. Throughout, I
support each class of results with direct comparisons against state-of-the-art methods and
take advantage of several benchmark data sets.



Chapter 2

Background and Related Work

In this chapter I frame the problem setting for my research and overview related work.
I first describe the local feature image representation and its advantages, and then I dis-
cuss approaches vision researchers have considered for working with this representation. I
organize my discussion of previous work in vision and machine learning into two groups:
approaches for measuring correspondence-based similarity from the image indexing litera-
ture (Section 2.2), and approaches for (primarily kernel-based) learning from sets of local
features (Section 2.3). Following this coverage of the relevant prior work in vision and learn-
ing, in Section 2.4 I review related techniques for approximate matching from the theory of
computation literature. Throughout I draw comparisons and contrasts with nmy own work.

2.1 Image Matching and Image Representations

Image matching and recognition are important computer vision problems with a variety of
applications, such as content-based image retrieval, object and scene categorization, and
video data mining. The task of identifying similar objects and scenes remains challenging
due to viewpoint or lighting changes, deformations, and partial occlusions that may exist
across different examples. The very same object can produce dramatically different im-
ages depending on its pose relative to the camera, the current illumination, or simply the
background that it is photographed against. On top of these complicating factors, different
instances of objects from the same category can exhibit significant variations in appearance.

Ib compute anything with an image, a choice of representation must be made. How should
an image be described to capture the relevant visual cues it contains? Earlier work in
the field focused on global representations that describe each image with a single vector of
attributes. Examples of global representations include a color or grayscale histogram, a list
of responses to a set of filter banks, or simply a list of intensities obtained by stacking the
columns of an image into a single vector. While vector representations do permit the direct
application of standard machine learning techniques and distance functions, they are known
to be prohibitively sensitive to realistic image conditions, and often cannot give adequate
descriptions of an image's local structures and discriminating features.



A global representation that assumes an ordering can be overly constraining. For example,
if a face class is represented by ordered lists of intensities taken from examples of frontal
faces, when a profile face is encountered, the nose pixels will no longer be in the "right"
position, and this global representation will fail. A global representation also typically makes
the assumption that all parts of an image should influence the description equally.1 This
assumption often does not hold; if an object of interest is posed against a large background,
that background could overwhelm the global description, making it difficult or impossible
to identify strong similarity between that object and another view of it against a different
background.

Much recent work shows that decomposing an image into its component parts (or "local
features") grants resilience to image transformations and variations in object appearance.
Typically, an interest operator is used to identify numerous salient regions in an image;
then, for each detected region, a (vector) feature descriptor is formed. The descriptors
are often designed to be invariant to transformations likely to occur across images, such as
photometric changes or various geometric transformations, including rotations, translations,
scaling, or all affine transformations.

Lowe has developed a widely-used local descriptor based on histograms of local image gradi-
ents called Scale Invariant Feature Transform (SIFT) [73]. To identify scale- and orientation-
invariant interest points, Lowe uses a difference-of-Gaussian function. The SIFT descriptor
has been shown to be robust under shape distortion and illumination changes, and it has
also been shown to be very resilient in an independent study [78]. A low-dimensional version
of SIFT is designed in [63]. I make use of the SIFT descriptor in various experiments in
this work to describe the appearance of local regions.

Belongie et al. design a local descriptor called the shape context histogram to represent
shape as it appears along points on an edge or contour [7]. In a related approach, Berg
and Malik develop the geometric blur descriptor in [10] to perform template matching that
is resistant to affine distortions, and show its effectiveness for object recognition in [9].
Johnson and Hebert introduce a local surface descriptor for 3-D shapes called the "spin
image" in [59]. The "superpixels" of Ren and Malik are small local regions of homogenous
texture or color found with a low-level segmentation computed with Normalized Cuts [90].
The Maximally Stable Extremal Region detector of Matas and colleagues locates blob-like
affine-invariant regions that have consistent intensity within them [76]. The Harris-Affine
detector of Mikolajczyk and Schmid detects points that are invariant to scale and affine
transformations [79]. Kadir and Brady create a hierarchy of salient regions that operate
across feature space and scale [61]. Biologically-inspired features and learning paradigms
have been explored by Serre and Wolf and colleagues [94, 114].

In the recognition literature, many researchers have turned to these local feature represen-
tations that describe the appearance or shape within confined neighborhoods in the image,
including [73, 79, 7, 34, 9, 44, 53, 31, 108], whose work I describe individually below. I use
existing techniques to detect and describe the local features themselves and do not con-
tribute new ideas on the representation side of the problem. Given a suitable local feature
description for a given task, my research focuses on how to compare, index, and recognize

SHowever, see work by Shakhnarovich for employing category- or task-specific feature selection on a global
representation [96].



with local representations.

As discussed in the previous chapter, it is important for many tasks to be able to compare
any two image descriptions. With global descriptions, every image is a vector, and in
that case every point in the plots in Figure 1-5 denotes one of these (high-dimensional)
vectors. In this case, standard vector-based distances and machine learning algorithms are
applicable.

The problem, however, is that the appealing local representations do not fit this picture, and
for this reason they render many traditional distances and learning algorithms inapplicable.
Each image may produce a variable number of local features, and there is no ordering
among features in a single set. This means it is not possible to apply standard vector-based
algorithms to compare and learn from sets of local features.

In general, existing computer vision and machine learning methods compare feature sets
by searching for explicit correspondences between their elements (which is too costly for
large scale problems), fitting parametric distributions to the sets (which makes possibly
restrictive assumptions about the data), or comparing histograms over a set of prototype
features (which must be found by clustering).

In the following section I review techniques for image indexing that measure the similarity
between sets of local features, and then in Section 2.3 I describe machine learning techniques
for handling the set representation.

2.2 Measuring Similarity Between Sets of Features

How can examples having a variable-sized, unordered set representation best be compared?
Clearly, general-purpose distance or similarity measures that operate on vectors of a fixed
number of attributes (e.g., Euclidean norms, correlation coefficient, d(lot product) cannot be
directly applied. Current image matching techniques that do handle sets of features typically
judge similarity via a voting scheme [73, 77, 105, 95] or by comparing histograms measuring
the frequency of occurrence of a set of prototype features [102, 26, 68]. A number of
methods also compare sets based on the explicit one-to-one correspondences found between
features [20, 7, 92, 40, 9]. Below I describe each of these types of approaches in turn, along
with their limitations.

2.2.1 Voting

A number of recent matching techniques extract the local features having strong invariance
p)roperties in all images, and then use voting to rank the database images in similarity: the
query image's features vote independently for features from the database images (where
votes go to the most similar feature under some distance, e.g., L 2), possibly followed by a
verification step to account for geometric relationships between the features. In the method
of Mikolajczyk and Schmid, each scale-invariant interest point in a query image votes for
images in the database containing an interest point within a thresholded distance from



itself [77]. Similarly, Tuytelaars and Van Gool use affine moment invariants to cast votes for
similar images in the database [105]. The method developed by Shaffalitzky and Zisserman
for matching scenes first uses voting to identify candidate matches, then applies a series of
steps to verify geometric consistency within larger neighborhoods [95]. Lowe shows how an
object's keypoints can be matched independently via a thresholded approximate similarity
search to all of the keypoints extracted from the database images; clusters of three matches
that agree in pose indicate the object's presence in a database image [73].

When sufficiently salient features are present in an image, methods based on the voting
scheme may successfully identify good matches in the database, particularly when matching
multiple images of the same object or scene [42]. In fact, the local features designed to be
invariant to various transformations were initially intended to be used for stereo or multi-
view matching of images containing the same scene, and only recently have they begun to
be explored for more general purpose category-level matching.

However, using a query image's features to independently index into the database ignores
possibly useful information that is inherent in the co-occurrence of a set of distinctive fea-
tures; voting implies non-injective correspondences. It is also not possible with this approach
to distinguish between instances where an object has varying numbers of similar features.
Thus, the voting-based methods typically filter through the initial feature matchings and
follow up with geometric verification steps. A naive exhaustive search for the most sim-
ilar features would make the voting technique computationally prohibitive for significant
amounts of data. In practice, an approximate similarity search technique must be used,
such as the Best-Bin-First search technique employed in [73].

My work differs from the voting-based techniques [105, 77, 73, 95] in that I advocate match-
ing sets of features; rather than match features within an image independently, my method
considers the joint statistics of the local features as a whole when matching. As I show
in Chapter 7, taking these joint statistics into account can be critical to performance for
matching problems involving images from generic object categories or textures.

2.2.2 Bags of Prototypical Features

Other matching approaches have taken feature co-occurrences into account by using vector
quantization to represent an image by its frequency counts of prototypical feature occur-
rences [70, 102, 26, 67, 68]. Sivic and Zisserman suggested the application of text retrieval
techniques to image matching in [102]; vector quantization (VQ) is applied to affine-invariant
regions collected from video data, and each image is represented by a fixed-length vector of
weighted frequencies of the pre-established feature prototypes. Then, images in the database
are ranked in similarity to a user-segmented query region based on their frequency vectors'
normalized scalar product.

Csurka and colleagues also apply VQ to affine-invariant appearance features, and then train
a classifier with each image represented by its frequencies of prototypes [26]. More recently,
Nister and Stewenius have shown that a hierarchical quantization of image features provides
a scalable means of indexing into a very large feature vocabulary [85]. However, in their
work the goal is not correspondence-based set matching, but rather indexing individual
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Figure 2-1: Comparing quantized feature sets with a bin-by-bin similarity measure is sen-
sitive to bin size. If bins are too wide, discriminative ability is lost (Point sets A and B
produce the same prototype frequencies in spite of their distinct distributions). If bins are
too narrow, features that are very similar are placed in separate bins where they cannot
be matched (D and E are considered closer than C and D, which are perceptually more
similarly distributed). Cross-bin measures avoid the bin sensitivity issue, since features are
matched based on their similarity to one another, not their assigned bin placement.

feature vectors into a database, meaning the distribution of features within an image is not
incorporated in the matching.

In a method developed by Lazebnik and colleagues [67], textures are recognized based on
their histogram of prototypical affine-invariant features, as determined by an exhaustive
nearest neighbor search with the Earth Mover's Distance (EMD) developed by Rubner et
al. in [92]. Invariant descriptors are clustered with Expectation-Maximization (EM) and
class labels are assigned to descriptors in novel texture images, then refined with a relax-
ation step that uses neighborhood co-occurrence statistics from the training set. In more
recent work, Lazebnik and colleagues vector-quantize features and allow features of the same
discrete appearance type (or "channel") to be matched with the pyramid match algorithm
described in this thesis (initially presented in [44]) operating over spatial features [68]. Their
technique is a special case of the method in [44] and Chapter 3; however the authors have
demonstrated novel and significant results on different features than those used in [44].

Mapping detected features to a set of global prototypes provides a way to translate un-
ordered, variable-sized sets into single vectors, yielding a representation that is suitable for
many existing vector-based learning methods and distances. The histogram of feature types
is a compact and efficient way to describe the entire empirical distribution. However, such
approaches assume that the space of features that will be encountered in novel images is
known a priori when generating the prototypes, and they face the standard difficulty of
properly choosing the number of cluster centers to use. Though a one-time cost, generat-
ing a reliable feature space quantization can be expensive and relies on the availability of
representative data.

Moreover, to capture perceptual dissimilarity between empirical distributions, it has been
shown that bin-by-bin measures that only compare features of the same type (e.g., Lp
distance, normalized scalar product) are less robust than cross-bin measures that allow
features from different bins to be matched to one another [92] (see Figure 2-1). Methods
that cluster features on a per-example basis also must choose a quantization level and risk
losing discrimination power when that level is too coarse [92, 67]. Unlike the above methods
that apply VQ to obtain frequency vectors [102, 26, 68, 70], my approach represents an image
with its actual set of feature vectors and makes it possible to find correspondences between
features that are similar but may not share a quantization bin; that is, it allows a form of



cross-bin matching.

The feature representation I use in this work is based on a multi-resolution histogram, or
pyramid, which is computed by binning data points into discrete regions of increasingly
larger size. Single-level histograms have been used in various visual recognition systems,
one of the first being that of Swain and Ballard [104], where the intersection of global
color histograms was used to compare images. Pyramids have been shown to be a useful
representation in a wide variety of image processing tasks, from image coding as shown by
Burt and Adelson [15], to optical flow as shown by Anandan [4], to texture modeling as
described by Malik and Perona [75]. However, previous image pyramids were constructed
as ordered, global representations in image space; in this work I will develop a pyramid in
the feature space to describe and compare unordered sets of vectors. See [50] for a summary
of uses for multi-resolution histograms in visual recognition.

2.2.3 Computing Correspondences

Previous approaches for matching images based on their local appearance features have
not utilized global correspondence solutions to measure similarity between the feature sets.
However, a number of shape matching techniques require correspondences between discrete
sets of features at some stage. In [40], Gold and Rangarajan develop an iterative graduated
assignment graph matching method for comparing image boundary features based on a
sub-optimal matching; it operates in time polynomial in the size of the feature sets. In a
related approach, Chui and Rangarajan combine "softassign" and deterministic annealing
to solve for correspondences between two equal-sized point sets [20]. The method requires
that correspondences conform to a mapping of a given parametric family (i.e., thin plate
splines).

Belongic and colleagues obtain least cost correspondences with an augmenting path algo-
rithm in order to estimate an aligning transform between two shapes [7]. They achieve
strong shape matching results with their method, though they note that the run-time does
not scale well with the representation size due to the cubic complexity of solving for corre-
spondences. Athitsos et al. use AdaBoost to learn an embedding that maps the Chamfer
distance into Euclidean space, and apply it to edge images of hands to retrieve 3-D hand
poses from large databases [5]. Carlsson characterizes local shape topologies with points
and tangent lines and uses geometric hashing to compute the correspondence between two
shapes' "order structures"; the method's combinatorial complexity practically limits its use
to sets with few features [16].

Berg et al. optimize a linear bounding problem and then use local gradient descent to find
explicit (approximately least-cost) correspondences between pairs of local shape features;
the method requires O(m 2n log n) time to compare two sets with n and m features [9].
For additional information about various distance metrics for shape matching and their
computational complexities, please refer to [107].

The Earth Mover's Distance (EMD) is a correspondence-based distance developed by Rub-
ner and colleagues that uses linear programming to find the optimal matching between two
weighted point sets [92]. It has been shown for color- or texture-based similarity [92, 49],



and extended to allow unpenalized distribution transformations in work by Cohen and
Guibas [22]. In [64] the EMD is applied to a database of silhouettes whose shock graphs
are embedded into a normed space. In [37], a pseudo-metric derived from the EMD that
respects the triangle inequality and positivity property is given and applied to measure
shape similarity on edges.

When the inputs to the EMD are uniformly weighted sets with unequal cardinalities (or
equivalently, have arbitrary weights but unequal total mass), the solution will produce a
partial matching, but time exponential in the number of features is required in the worst
case [92]. When the inputs have equal cardinalities (or equivalently, equal total mass), the
complexity is still cubic in the number of features [71].

In this work I have developed a partial matching technique based on approximate correspon-
dences that allows very efficient (linear-time) comparisons between sets of vectors. Unlike
the voting approaches, my techniques incorporate co-occurrence feature statistics when com-
puting a match, which is crucial for identifying similarities at the level of abstraction found
in object categories and textures, as I show in Chapter 7. In contrast to approaches using
vector-quantized bags of prototypical features, my approach does not require constructing a
flat, discrete feature space, and thus allows cross-bin matchings between the original image
data. Additionally, my work shows how we can compute matchings that accommodate the
clutter and background features that are expected in images, which is not tolerated by the
bag-of-prototype methods described in the previous section.

The primary distinction between my approach and previous correspondence-based ap-
proaches is the significantly lower computational demand, which translates into an ability
to handle richer image descriptions. Finally, unlike any of the above techniques, I show
how to perform sub-linear time image retrievals with very large databases based on local
feature matchings, and have developed a matching appropriate to use as a kernel to learn
categories or parameters of interest.

2.3 Learning from Sets of Features

To perform learning tasks like categorization or recognition with the set-of-features repre-
sentation is also challenging and has inspired a significant amount of previous work. Many
approaches in the vision literature perform recognition with local feature representations
using nearest-neighbor (e.g., [7, 41, 102, 9]) or voting-based classifiers followed by an align-
mnent step (e.g., [73, 77]). Unfortunately either choice may be impractical for large training
sets, since their classification times increase steadily with the number of training examples.
Shakhnarovich et al. have explored how approximate similarity search and feature selec-
tion can significantly reduce the cost of nearest-neighbor retrievals, though only for global
(vector) feature representations [97].



Captures Positive- Model- Handles unequal
Method Complexity co-occurrences definite free cardinalities

Match [108] O(dm 2) x x
Exponent match [74] O(dm 2) x x x
Greedy match [12] O(dm 2) x x x

Principal angles [115] O(dm 3 ) x x
Intermediate [13] O (dpm) x x x

Bhattacharyya [65] O(dm 3 ) x x x
KL-divergence [81] O(dm 2) x x

Pyramid match O(dm log D) x x x x

Figure 2-2: A comparison of the properties of kernel approaches for comparing unordered
sets. "Pyramid match" refers to the matching kernel developed in this work. Each method's
computational cost is for computing a single kernel value. d is the feature vector dimension,
m is the (maximum) set cardinality, p is the number of prototype features used in [13], and
D is the aspect ratio of the vector space.

2.3.1 Kernel-Based Learning

Kernel methods, which include the Support Vector Machine (SVM), kernel Principal Com-
ponents Analysis (PCA), and Gaussian Processes, have become well-established tools that
are useful in a variety of contexts, including discriminative classification, regression, den-
sity estimation, and clustering (see [99, 106]). Kernel functions, which measure similarity
between inputs, introduce non-linearities to the learned functions; the kernel non-linearly
maps two examples from the input space to the inner product in some feature space. For
example, the SVM is a widely used approach to discriminative classification that finds the
optimal separating hyperplane between two classes. Whereas nearest-neighbor classifiers
require pairwise comparisons between a novel example and all training examples, an SVM
identifies a sparse subset of the training examples (the support vectors), and the novel
example must be compared against only these examples.

However, conventional kernels (such as the Gaussian RBF or polynomial) are designed to
operate on Rn vector inputs, where each vector entry corresponds to a particular global
attribute for that instance. As a result, initial approaches using SVMs for recognition were
forced to rely on global image features [18, 91, 86], which have limitations under real-world
conditions as discussed above.

More recently, attention has been focused on developing specialized kernels that can more
fully leverage kernel-based learning algorithms for situations where the data are most natu-
rally represented by something other than a Euclidean vector space, such as graphs, strings,
or trees [36]. Due to the increasing prevalence of data that is best represented by local
features, several researchers have designed kernels that operate on unordered sets of vec-
tors [74, 65, 115, 98, 12, 108, 27, 81, 13, 66]. Existing techniques generally require either
solving for explicit correspondences between features or fitting a known parametric distribu-
tion to each set in order to evaluate an existing distribution-based similarity metric. Each
kernel has its own strengths and weaknesses, and only a few have been applied in computer
vision; see Figure 2-2 for a concise comparison, and below for elaboration.



Current approaches are either prohibitively computationally expensive, make strong as-
sumptions regarding the parametric form of the features, discard information by replacing
inputs with prototypical features, ignore co-occurrence information by considering features
independently, are not positive-definite, and (or) are limited to sets of equal size. My work
overcomes a number of these limitations. The matching measure I develop in this thesis
forms a Mercer (positive semi-definite) kernel suitable for use with the input space of sets
of vectors within any existing kernel-based learning paradigm (see Section 3.4 in the next
chapter).

Parametric Kernels

Kondor and Jebara build a parametric kernel, where a Gaussian is fit to each set of vectors,
and then the kernel value between two sets is the Bhattacharyya affinity between their
Gaussian distributions [65] . The authors note that the method is constrained to using a
Gaussian model in order to have a closed form solution. The Bhattacharyya kernel shows
strong performance in a study by Eichhorn and Chapelle [30], though it is also noted that
in practice the kernel is limited to sets with small cardinalities, given its cubic complexity.
Moreno et al. fit a Gaussian to a feature set, and then compare sets using KL-divergence
as a distance measure [81].

Approaches which fit a parametric model to feature sets in order to compare their distri-
butions [65, 81, 27] can be computationally costly and may have limited applicability, since
they assume both that features within a set will conform to the chosen distribution, and
that sets will be adequately large enough to extract an accurate estimate of the distribu-
tion's parameters. These assumptions are violated regularly by real data, which will often
exhibit complex: variations within a single bag of features (e.g., patches from an image), and
will produce a wide range of cardinalities per instance (e.g., titles of documents have just
a few word features). I instead take a non-parametric, "model-free" approach, representing
bags of features directly with multi-dimensional, multi-resolution histograms.

Matching Kernels

Kernel methods that use explicit correspondences between two sets' features search one set
for the best matching feature for each member in the other, and then define set similarity as a
function over those component similarity values [108, 74, 12, 13]. Wallraven et al. propose a
kernel that averages over the similarities of the best matching feature found for each feature
member within the other set, though the kernel is non-Mercer and so lacks convergence
guarantees when used in an SVM [108]. A similar kernel given by Lyu also considers
all possible feature matchings but raises the similarity between each pair of features to a
given power [741. The method given by Boughorbel and colleagues is based on finding a
sub-optimal matching between two sets using a greedy heuristic; although this results in
a non-Mercer kernel, the authors provide a means of tuning the kernel hyperparameter
so as to limit the probability that a given kernel matrix is not positive-definite [12]. In
more recent work by Boughorbel et al., correspondences are found through the use of an
intermediate set of prototype features in order to insure positive-definiteness [13].



These matching kernel methods have complexities that are quadratic in the number of
features m, hindering usage for kernel-based learning when feature sets are large. The
"intermediate" matching kernel of Boughorbel and colleagues [13] has a quadratic run-time
if the number of prototypes p = O(m). That is reduced if p is set so that p < m; however,
the authors note that higher values of p yield more accurate results. Furthermore, matching
each input feature independently as in [108, 74, 13] assumes non-injective correspondences
and, similar to the voting approaches, ignores potentially useful information about intra-set
dependencies. In contrast, the set kernel I develop in this work captures the joint statistics
of co-occurring features by matching them concurrently as a set.

Other Kernels for Local Features

In the method of Wolf and Shashua, similarity is measured in terms of the principal angle
between the linear subspaces spanned by two sets' vector elements; the kernel has a cubic
complexity and is only positive-definite for sets of equal cardinality [115]. In work by
Shashua and Hazan, an algebraic kernel is used to combine similarities given by local (vector-
based) kernels, with the weighting chosei to reflect whether the features are in alignment

(ordered) [98]. When set cardinalities vary, inputs are padded with zeros so as to form equal-
size matrices; results are only shown for a classification task with input sets whose features'
ordering is known. Holub and colleagues use a hybrid generative-discriminative approach
for object recognition [53], combining the Fisher kernel of Jaakkola and Haussler [58] and
a probabilistic "constellation model" (see below).

2.3.2 Alternative Learning and Detection Methods

An alternative approach to kernel methods for recognition when dealing with unordered set
data is to designate prototypical examples from each class, and then represent examples by a
vector giving their distances to each prototype; standard algorithms that handle vectors in a
Euclidean space are then applicable. The issues faced by such a prototype-based method are
determining which examples should serve as prototypes, choosing how many there should
be, and updating the prototypes properly when new types of data are encountered. Zhang
and Malik build such a classifier for handwritten digits, and use Belongie et al.'s shape
context distance as the measure of similarity [120]. To reduce the complexity of training an
SVM from a large number of examples, in recent work Zhang et al. suggest a combination
of nearest-neighbor search and SVMs [119].

Agarwal and Roth have developed a sparse part-based approach to object detection for
objects having a relatively fixed spatial configuration of parts [3]. Quattoni and colleagues
develop a discriminative part-based approach to object recognition based on Conditional
Random Fields with hidden variables, and show how to relax a conditional independence
assumption of local features [88].

In [32], Felzenszwalb and Huttenlocher develop an efficient method to detect and localize an
object composed of some number of defined parts in a given deformable configuration within
an image. Using dynamic programming and generalized distance transforms, they compute
the globally optimal matching of the tree-structured part-based model to a set of locations



in the image. The method relies on the assumptions that the relationships between the
parts form a tree structure, and that relationships between parts are pairwise. Under the
first assumption, the result is an O(12m) time matching to image locations, where there are
m parts and 1 possible locations for each part. Under both assumptions, only O(lm) time
is required. In practice, generally 1 is quite large and I >> m.

In a related approach, Crandall and colleagues develop a family of spatial priors called k-
fans that allow varying degrees of spatial structure between parts to be captured [24]. An
object model is represented by some number (k) of reference parts, and the position of all
other parts in the model are evaluated relative to these reference parts. To localize a model
in an image with 1 possible locations for each part, the running time is O(lmk+l). For a
Gaussian k-fan model, O(lmk) time is required. The authors of [24] find that for several
object classes used in the literature, relatively small amounts of spatial structure accomplish
a detection accuracy comparable to that achieved with more complex spatial models.

Note that unlike techniques designed to measure matching quality between sets of un-
structured local features, the matchings computed in [32] and [24] consider both the parts'
appearance as well as the pairwise relationships between their positions; additionally, rather
than evaluating similarity for recognition purposes, these techniques are designed for the
detection task of localizing a given configuration of parts within an image.

A number of generative learning techniques have also been proposed for object recognition.
The "constellation model" developed by Burl et al. models a class of objects in terms of a
fixed number of parts and those parts' spatial relationships [14]. A means of learning the
model with weak supervision was presented by Weber and colleagues [111, 110]. Fergus et
al. extended the approach to account for appearance and scale variability [34], while Fei-
Fei et al. explored Bayesian priors over the model parameters to make learning from small
amounts of examples more practical [31]. The exponential complexity of these models has
limited their use to very small numbers of parts (on the order of 5).

2.4 Approximate Matching Algorithms

The optimal matching's cubic complexity, though polynomial, is still costly enough that it
can be prohibitively expensive in practice, and often forces researchers relying on computing
a matching to artificially limit the size of the sets they allow their method to consider.
However, researchers in the theory community have developed approximation algorithms to
compute solutions close to the optimal bijective matching for a fraction of the computational
cost [57, 19, 2] (and see the survey on earlier related techniques in [6]).

My work draws inspiration from these methods, particularly regarding their use of a hierar-
chical decomposition of the feature space. However, previous matching approximations are
restricted to equal-sized set inputs, meaning that partial matchings are not possible. This
constraint is typically not satisfied in the vision domain, where a widely varying number of
local parts many be detected or extracted from each image. When all points in both sets are
forced into correspondence, the measure can be intolerant to clutter and outlier features. In
contrast, my techniques enable partial matchings and allow us to use inputs having unequal



cardinalities, which is important in practice for handling clutter and unsegmented images.

In the method of Indyk and Thaper, multi-resolution histograms are compared with the
L1 distance to approximate a least-cost matching of equal-sized sets, and the measure is
applied to perform approximate nearest-neighbor image retrievals based on global color
histograms [57]. This work inspired me to use a similar representation for point sets and
to consider counting matches within histograms. However, unlike the method in [57], the
approximate matching I have designed compares histograms with a weighted intersection
rather than L 1, and more significantly, it forms a kernel that can build kernel-based classi-
fiers and regressors over sets of local features, and it computes partial matchings between
inputs that may have variable sizes.

In addition, previous matching approximations suffer from distortion factors that scale
linearly with the feature dimension, and they fail to take advantage of structure in the
feature space. In Chapter 4 I show how to alleviate this decline in accuracy for high-
dimensional features by tuning the hierarchical decomposition according to the particular
structure of the data, when such structure exists.



Chapter 3

The Pyramid Match

In this chapter I introduce the partial matching approximation called the pyramid match.
I begin in Section 3.1 by laying out some definitions regarding the input space of point sets
and the meaning of an optimal matching. After these preliminaries, I define the pyramid
match algorithm in Section 3.2. I provide an analysis of its complexity in Section 3.3,
proof that it forms a Mercer kernel in Section 3.4, and proof of the expected error bounds
in Section 3.5. Applications and results using this measure within the context of vision
problems are presented in later chapters.

3.1 Preliminaries

I will be considering a feature space F of d-dimensional vectors. The point sets (or multi-
sets, since duplications of features may occur within a single set) we match will come from
the input space S, which contains sets of feature vectors drawn from F:

S=- XIX= {xl,...,Xm} , (3.1)

where each feature is a d-dimensional vector, xi E F C Rd, and m == XJ. Note that the
point dimension d is fixed for all features in F, but the value of m may vary across instances
in S. The values of elements in vectors in F have a maximal range (aspect ratio) D, and the
minimum inter-vector distance between unique points is 1, which may be enforced by scaling
the data to some precision and truncating to integer values. Please note that throughout the
text I will use the terms feature, vector, and point interchangeably to refer to the elements
within a set.

In this work we want to efficiently approximate the optimal partial matching. A partial
matching between two point sets is an assignment that maps all points in the smaller set
to some subset of the points in the larger (or equal-sized) set. Given point sets X and Y,
where m = |Xl, n = JYI, and m < n, a partial matching

M (X, Y; r) = {(xl, y, ),..., (xm, ,m)} (3.2)



pairs each point in X to some unique point in Y according to the permutation of indices
specified by rr = [rrl,..., r m], 1 < rri n, where ri specifies which point y, E Y is matched
to xi E X, for 1 < i < m. The cost of a partial matching is the sum of the distances between
matched points:

C (M(X, Y; I)) IIx - y,I .111 (3.3)
xiEX

The optimal partial matching M (X, Y; ir*) uses the assignment 7r* that minimizes this cost:

r* = argmin C (M(X, Y; r)) . (3.4)
Ir

In this work I also consider the partial matching similarity score, with similarity measured
in terms of inverse distance or cost. The similarity S (M (X, Y; 7r)) of a partial matching is
the sum of the inverse distances between matched points:

S (M(X, Y; r)) = 1 ix 1 1 (3.5)
xiEX

where the distance in the denominator is incremented by 1 to avoid division by zero. We
define the optimal partial matching similarity score to be the similarity resulting from the
same matching that minimizes the cost (Eqn. 3.4).

The best matching between two sets corresponds to an assignment that produces the mini-
mal summed cost (distance) between component features. This matching assumes that two
vectors' proximity in the chosen feature space F C Rd reflects their similarity, and that
the overall set (dis)similarity is well-captured by this aggregation of feature-level scores.
However, note that in contrast to a matching that sums the similarity between the nearest
feature for every feature in a set, the optimal matching is one-to-one.

3.2 Pyramid Match Algorithm

The pyramid match approximation uses a multi-dimensional, multi-resolution histogram
pyramid to partition the feature space into increasingly larger regions. At the finest reso-
lution level in the pyramid, the partitions (bins) are very small; at successive levels they
continue to grow in size until the point where a single partition encompasses the entire
feature space. At some level along this gradation in bin sizes, any two points from any two
point sets will begin to share a bin in the pyramid, and when they do, they are considered
matched. The pyramid allows us to extract a matching score without computing distances
between any of the points in the input sets-when points sharing a bin are counted as
matched, the size of that bin indicates the farthest distance any two points in it could be
from one another.

Each feature set is mapped to a multi-resolution histogram that preserves the individual
features' distinctness at the finest level. The histogram pyramids are then compared using
a weighted histogram intersection computation, which I show defines an implicit correspon-
dence based on the finest resolution histogram cell where a matched pair first appears (see



-+1

Figure 3-1: The pyramid match intersects histogram pyramids formed over sets of features,
approximating the optimal correspondences between the sets' features. Note throughout
that the points in the feature space will typically not be 2-D image coordinates; rather,
they may be any d-dimensional descriptions of local shape or appearance.

Figure 3-1). The computation time of both the pyramids themselves as well as the weighted
intersection is linear in the number of features.'

The feature extraction function T for an input set X is defined as:

WF(X) = [Ho(X),..., HL-1 (X)], (3.6)

where X E S, L = [log 2 D1 + 1, Hi(X) is a histogram vector formed over points in X

using d-dimensional bins of side length 2i , and Hi(X) has a dimension ri = () Id. In other
words, I(X) is a histogram pyramid, where each subsequent component histogram has bins
that double in size (in all d dimensions) compared to the previous one. The bins in the
finest-level histogram Ho are small enough that each unique d-dimensional data point from
features in F falls into its own bin, and then the bin size increases until all points in F fall
into a single bin at level L - 1.

The pyramid match PA measures similarity (or dissimilarity) between point sets based on
implicit correspondences found within this multi-resolution histogram space. The similarity
between two input sets Y and Z is defined as the weighted sum of the number of feature
matchings found at each level of the pyramid formed by T:

L-1

PA (1(Y), 4(Z)) = wiN, (3.7)
i=0

where Ni signifies the number of newly matched pairs at level i, and wi is a weight for
matches formed at level i (and will be defined below). A new match is defined as a pair of
features that were not in correspondence at any finer resolution level.

The matching approximation implicitly finds correspondences between point sets, if we
consider two points matched once they fall into the same histogram bin, starting at the
finest resolution level where each unique point is guaranteed to be in its own bin. The
correspondences are implicit in that matches are counted and weighted according to their
strength, but the specific pairwise links between points need not be individually enumerated.
The matching is a hierarchical process: vectors not found to correspond at a high resolution

'I first reported the basic pyramid match algorithm in [44].
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Figure 3-2: The pyramid match (PA) determines a partial correspondence by matching
points once they fall into the same histogram bin. In this example, two 1-D feature sets are
used to form two histogram pyramids. Each row corresponds to a pyramid level. In (a),
the set Y is on the left side, and the set Z is on the right. (Points are distributed along
the vertical axis, and these same points are repeated at each level.) Light dotted lines are
bin boundaries, bold dashed lines indicate a new pair matched at this level, and bold solid
lines indicate a match already formed at a finer resolution level. In (b) multi-resolution
histograms are shown, with bin counts along the horizontal axis. In (c) the intersection
pyramids between the histograms in (b) are shown. PA uses these intersection counts to
measure how many new matches occurred at each level. Here, 2" = 2T(Hi(Y), Hi(Z)) =
2, 4, 5 across levels, and therefore the number of new matches found at each level are Ni =
2,2, 1. (1Z1 = 0 by definition.) The sum over Ni, weighted by wi = 1, , , gives the
pyramid match similarity.

have the opportunity to be matched at lower resolutions. For example, in Figure 3-2, there
are two points matched at the finest scale, two new matches at the medium scale, and one
at the coarsest scale. PA's output value reflects the overall similarity of the matching: each
newly matched pair at level i contributes a value wi that is proportional to how similar two
points matching at that level must be, as determined by the bin size.

To calculate Ni, the pyramid match makes use of a histogram intersection function I, which
measures the "overlap" between two histograms' bin counts:

I (A, B) = m•in (A(), B ()) , (3.8)
j=1

where A and B are histograms with r bins, and A(W) denotes the count of the jth bin of A.



Histogram intersection effectively counts the number of points in two sets that match at
a given quantization level, i.e., fall into the same bin. To calculate the number of newly
matched pairs Ni induced at level i, it is sufficient to compute the difference between
successive histogram levels' intersections:

Ni = I(Hi(Y), Hi(Z)) - (Hi-1 (Y), Hi_1(Z)), (3.9)

where Hi refers to the i th component histogram generated by T in Eqn. 3.6. Note that the
measure is not searching explicitly for similar points -- it never computes distances between
the vectors in each set. Instead, it simply uses the change in intersection values at each
histogramn level to count the matches as they occur. In addition, due to the subtraction in
Eqn. 3.9, the output score will reflect an underlying matching that is one-to-one.

The sum in Eqn. 3.7 starts with index i = 0 because by the definition of F, the same
points that could match at level 0 can match at (a hypothetical) level -1. Therefore we
can start collecting new match counts at level 0, and define level -1 to be a base case with
no intersections: I (H_1 (Y), H 1 (Z)) = 0. All matches formed at level 0 are new.

The number of new matches found at each level in the pyramid is weighted according to
the size of that histogram's bins: to measure similarity, matches made within larger bins
are weighted less than those found in smaller bins. Specifically, a geometric estimate of the
distance between any two points sharing a particular bin is made; in terms of L 1 cost, two
points in the same bin can only be as far from one another as the sum of the lengths of
the bin's sides. At level i in a pyramid, this length is equal to d2'. Thus, the number of
new matches induced at level i is weighted by wi = y to reflect the (worst-case) similarity
of points matched at that level. Intuitively, this means that similarity between vectors
(features in Y and Z) at a finer resolution--where features are more distinct ---- is rewarded
more heavily than similarity between vectors at a coarser level.2 Moreover, as I show in
Section 3.5, this particular setting of the weights enables us to prove theoretical error bounds
for the pyramid match cost.

From Eqns. 3.7 and 3.9, I define the (un-normalized) pyramid match:

L-1

PA ((Y), F(Z)) = w i((Hi(Y), Hi(Z)) - I(Hi 1(Y), H 1._l(Z))), (3.10)
i=0

where Y, Z E S, and Hi(Y) and Hi(Z) refer to the ith histogram in 4(Y) and T(Z),
respectively.

3.2.1 Matching Score Normalization

To provide a partial matching score that does not favor large input sets and has no penalty
whatsoever for the unmatched features, we can normalize this value by the cardinality of

2This is if the pyramid match is measuring similarity; an inverse weighting scheme is applied if the
pyramid match is measuring cost. To use the matching as a cost function, weights are set as the distance
estimates (wO = d24); to use as a similarity measure, weights are set as (some function of) the inverse of the
distance estimates (wi oc ).



the smaller of the two input sets, arriving at the final output value

PA ((Y), (Z)) = ((Y) (3.11)
min (YI, IZl)

Alternatively, when measuring similarity, both sets' sizes may be taken into account by
normalizing by the product of each input's self-similarity, for a final kernel value

PA (IF(Y), I(Z)) = , P'A (I(Y), I(Z)) (3.12)
0/'A (p(Y), j(Y)) x PA (q(Z), Q(Z))

The normalization choice depends on whether or not the presence of greater numbers of
unmatchable features should diminish the matching quality, and whether or not a metric
measure is desired. In Chapter 5 I will show that the product normalization is necessary to
ensure a metric that can be computed within a randomized hashing framework.

3.2.2 Pyramid Bin Structure

In order to alleviate quantization effects that may arise due to the discrete histogram bins,
we combine the values resulting from multiple (T) pyramid matches formed under different
multi-resolution histograms with randomly shifted bins. Each dimension of each of the T
pyramids is shifted by an amount chosen uniformly at random between 0 and D. This
yields T feature mappings T1,..., TTI that are applied as in Eqn. 3.6 to map an input set
Y to T multi-resolution histograms: [ 1(Y),...,9IT(Y)]. If measuring cost, the matching
value for inputs Y and Z is then min PA (j (Y), Tj (Z)), the least-cost matching found

j=1,...,T
across all translations for the two sets.

In fact, the rationale for considering multiple random shifts of the pyramid grids is not
only to satisfy the intuitive need to reduce quantization effects caused by bin placements;
it also allows us to theoretically measure how probable it is that any two points will be
separated by a bin boundary, as I describe below in Section 3.5. When dealing with single-
dimensional histograms, researchers will often employ overlapping histogram bins, or use
soft bin assignment (for instance, see [1, 103, 72]). This could have similar benefits for the
accuracy of the pyramid match, but it is simply not computationally practical for higher-
dimensional pyramids. It would cost time exponential in the dimension d of the feature space
in order to cover the combinations of overlap or soft assignment between the d-dimensional
bins when inserting a single point. In contrast, the increase in cost to apply a pyramid shift
remains linear in d.

To insert a point into a histogram having uniformly shaped bins, the bin index is computed
by dividing each coordinate of the point by the bin size. To insert a point into a histogram
whose boundaries are translated by a given amount, the shift amount in each dimension is
subtracted from the feature value of the point in the corresponding dimension before that
division.

To further refine a pyramid match, multiple pyramids with unique initial (finest level) bin
sizes may be used. The set of unique bin sizes produced throughout a pyramid determines



the range of distances at which features will be considered for possible matchings. With
bin sizes doubling in size at every level of a pyramid, this means that the range of distances
considered will rapidly increase until the full diameter of the feature space is covered.
However, by incorporating multiple pyramids with unique initial bin sizes, we can boost
that range of distances to include more diverse gradations. This is accomplished by setting
the side length for each histogram Hi(X) to f2i, where f is the side length at the finest
resolution (in the above definition, f = 1). For example, say D = 32, so L = 6. Then
the set of distances considered with f = 1 are {1, 2, 4, 8, 16, 32}; adding a second pyramid
with f = 3 increases this set to also consider the distances {3, 6, 12, 24}. The outputs from
pyramids with multiple starting side lengths can be combined in the same way that the
outputs from pyramids with multiple translations are combined.

Notice that the bins in the pyramids (and thus the distances at which matches are consid-
ered) would also grow more gradually if we were to select an alternative factor of bin size
increase between 1 and 2. However, a non-integer factor would not preserve the parent-child
relationship between bins, and thus the pyramid match counting of new matches would not
be possible. In other words, points that matched at level i would no longer be guaranteed
to match again at level i + 1, and so the number of new matches Ni could not be efficiently
counted by the difference in histogram intersections as I have outlined above. In Chapter 4 I
present a method for tuning the pyramid bin boundaries according to the underlying struc-
ture of the feature space, which allows the bin sizes to grow more gradually across pyramid
levels while still maintaining the parent-child relationship.

3.2.3 Explicit Approximate Correspondence Fields

In addition to scalar matching scores, we can optionally use the pyramid structure to extract
explicit correspondence fields by considering the possible matchings between points that
cause a nonzero intersection value in a given bin. In this case, the pyramid decomposes the
retquired matching computation into a hierarchy of smaller matchings. Upon encountering
a bin with a nonzero intersection, an optimal matching is computed between only those
features from the two sets that fall into that particular bin. All points that are used in
that per-bin matching are then flagged as matched and may not take part in subsequent
matchings at coarser resolutions of the pyramid.

In Chapter 6 I provide experiments with this technique to produce approximate correspon-
dence fields between image features; I also show that with pyramids tuned to the feature
space distribution, the matching computed within a bin need not be optimal to produce
similar aggregate results. In Chapter 9 I develop a method for automatically recovering
category feature masks from unlabeled images that uses the approximate correspondences
to identify consistently matched image features.

3.2.4 Partial Match Correspondences

The pyramid match allows input sets to have unequal cardinalities, and therefore it enables
partial matchings, where the points of the smaller set are mapped to some subset of the
points in the larger set. Dissimilarity is only judged on the most similar part of the empirical



distributions, and superfluous data points from the larger set are entirely ignored; the result
is a robust similarity measure that accommodates inputs expected to contain extraneous
vector entries. This is a common situation when recognizing objects in images, due for
instance to background variations, clutter, or changes in object pose that cause different
subsets of features to be visible. As a kernel, the proposed matching measure is equipped
to handle unsegmented or poorly segmented examples, as I will demonstrate in Chapter 8.

Since the pyramid match defines correspondences across entire sets simultaneously, it in-
herently accounts for the distribution of features occurring in one set. In contrast, previous
approaches have used each feature in a set to independently index into the second set; this
ignores possibly useful information that is inherent in the co-occurrence of a set of dis-
tinctive features, and it fails to distinguish between instances where an object has varying
numbers of similar features since multiple features may be matched to a single feature in
the other set [108, 74, 13, 73, 77, 105, 95].

Note that the optimal partial matching defined in Section 3.1 is most appropriate when the
smaller set is a group of model features, the larger set is a group of observed features, and
we wish to match the model's features onto some part of the observed features. However,
it is also possible with the pyramid match to measure the matching score using only a
subset of both input sets' features. For such a matching to be well-defined, it is necessary
to provide a limit t on how distant points included in a matching can be. Given this limit,
a matching can be "partial" in both directions, meaning that only a subset of either sets'
features might contribute to the score. The corresponding modified matching cost function
C' is defined as:

C' (M(X, Y; 7r))= I xi - y,l I. (3.13)

To implement this cost function with the pyramid match, fewer than L levels in the pyramids
are considered in the sum in Eqn. 3.10. Specifically, new matches are only counted for the
levels where the bin sizes are smaller than t.

3.3 Complexity Analysis

A key aspect of this method is that we obtain a measure of matching quality between two
point sets without computing pairwise distances between their features-an O(m2 ) savings
over sub-optimal greedy matchings. Instead, we exploit the fact that the points' placement
in the pyramid reflects their distance from one another in the feature space. 3

The time required to compute the L-level histogram pyramid Q(X) for an input set with
m = JXi d-dimensional features is O(dzL), where z = max(m, k) and k is the maximum
histogram index value in a single dimension. For a histogram at level i, k < 4, so at any
level, k < D. (Typically m > k.) The bin coordinates corresponding to nonzero histogram
entries for each of the L = [10g 2 D] + 1 quantization levels are computed directly during a
scan of the m input vectors; these entries are sorted by the bin indices and the bin counts
for all entries with the same index are summed to form one entry. This sorting requires only

3Note throughout the text that the distance between points or features refers to distance in the d-
dimensional feature space F, and generally F will not be the image space or 2-D spatial coordinates.



O(dm + dk) time using the radix-sort algorithm with counting sort, a linear time sorting
algorithm that is applicable to the integer bin indices [23]. The histogram pyramid that
results is high-dimensional, but very sparse, with only O(mL) nonzero entries that need to
be stored.

The computational complexity of PA is O(dmL), since computing the intersection values
for histograms that have been sorted by bin index requires time linear in the number of
nonzero entries (not the number of actual bins). With sorted bin index lists, we obtain the
intersection value by running one pointer down each of the two lists; one pointer may not
advance until the other is incremented down to an index at least as high as the other, or
else the end of its list. Then, whenever the two lists share a nonzero index, the intersection
count is incremented by the minimum bin count between the two. If one list has a nonzero
count for some bin index but the other has no entry for that index, the minimum count is
0, so no update is needed.

Generating multiple pyramid matches with randomly shifted grids scales the complexity
by T, the constant number of shifts. (Typically we will use 1 < T' < 3.) All together,
the complexity of computing both the pyramids and kernel or cost values is O(TdmL). In
contrast, the optimal matching requires O(dm3) time, which severely limits the practicality
of large input sizes. Refer back to Figure 2-2 in Chapter 2 for complexity comparisons with
existing set kernels.

3.4 The Pyramid Match as a Mercer Kernel

Kernel-based learning algorithms are founded on the idea of embedding data into a Eu-
clidean space, and then seeking linear relations among the embedded data [99, 106]. For
example, a Support Vector Machine (SVM) finds the optimal separating hyperplane be-
tween two classes in an embedded space (also referred to as the feature space). A kernel
fumction K : X x X - R. serves to map pairs of data objects in an input space X to
their inner product in the embedding space E, thereby evaluating the similarities between
all data objects and determining their relative positions. Linear relations are sought in
the embedded space, but a decision boundary may still be non-linear in the input space,
depending on the choice of a feature mapping function 4 : X -- E.

Only positive semi-definite kernels guarantee an optimal solution to kernel-based algorithms
based on convex optimization, which includes SVMs. According to Mercer's theorem, a
kernel K is positive semi-definite if and only if there exists a mapping 4 such that

K(xi,xj) = (4(xi), 4(xj)), Vxi, xj E X, (3.14)

where (., ") denotes a scalar dot product. This insures that the kernel corresponds to an inner
product in some feature space, where kernel methods can search for linear relations [99].

Histogram intersection on single resolution histograms over multi-dimensional data was
shown to be a positive-definite similarity function by Odone et al. in [86]. That is, the
intersection I(H(Y), H(Z)) is a Mercer kernel. The proof shows that there is an explicit
feature mapping after which the intersection is an inner product. Specifically, the mapping



V encodes an r-bin histogram H as a p-dimensional binary vector, p = m x r, where m is
the total number of points in the histogram:

SH( 1 ) m- H (1)  H (R) m - H(r)

V(H )= 1,..., 1, ,...,0 I...,1,..., 1, 0,...,0 . (3.15)

first bin last bin

The inner product between the binary strings output from V is equivalent to the original
histograms' intersection value [86]. If m varies across examples, the above holds by setting
p = M x r, where M is the maximum size of any input. Note that this binary encoding
only serves to prove positive-definiteness and is never computed explicitly.

Using this proof and the closure properties of valid kernel functions, I can show that the
pyramid match kernel is a Mercer kernel. Recall that for a kernel (similarity) value the
weights for the pyramid match intersections are set to be inversely proportional to the bin
size. The definition given in Eqn. 3.10 is algebraically equivalent to

L-2

P~ (I(Y), T(Z)) = wL-1 I(HL-1(Y), HL-1(Z)) + E(wi - Wi+1) ZI(H(Y), Hi(Z)),
i=O

(3.16)
since Z (H_1 (Y), H 1 (Z)) = 0 by definition. Given that Mercer kernels are closed under
both addition and scaling by a positive constant [99], the above form shows that the pyramid
match kernel is positive semi-definite for any weighting scheme where wi > wi+j. In other
words, if we can insure that the weights decrease for coarser pyramid levels, then the
pyramid match will sum over positively weighted positive-definite kernels, yielding another
positive-definite kernel. Using the weights wi = _, we do maintain this property. The
sum combining the outputs from multiple pyramid matches under different random bin
translations likewise remains Mercer. Therefore, the pyramid match is valid for use as a
kernel in any existing learning methods that require Mercer kernels.

In Section 8.1.2 of Chapter 8 I will discuss how to adjust pyramid match kernel matrices
whose diagonal entries are very large relative to their off-diagonal entries, which may be
necessary for best performance when used with some kernel methods, including Support
Vector Machines.

3.5 Approximation Error Bounds

In this section I show theoretical approximation bounds on the cost measured by the pyra-
mid match relative to the cost measured by the optimal partial matching defined in Sec-
tion 3.1. Recall the cost (as opposed to similarity) is measured by setting wi = d2 in
Eqn. 3.10. In earlier work, the authors of [57] provided bounds for a multi-resolution his-
togram embedding's approximation of the optimal matching between inputs with equal
cardinality. Some of the main ideas of the proofs below are similar, but they have been
adapted and extended to show the expected error bounds for partial matchings, where input
sets can have variable numbers of features, and some features do not affect the matching
cost.



Lemma 1

For any two point sets X,Y where IXI < IYI, we have

C (M (X, Y; r*)) 5 PA (X, Y).

Proof:

Consider a matching induced by pairing points within the same cells of each histogram Hi.
The cost induced by matching two points within a bin having d sides that are each of length
2i is at most d2' under the L 1 ground distance.

There are no pairings induced by the histograms at level -1, or I (H _I(X), H_1(Y)) =
0. At level 0 there are I (Ho(X), Ho(Y)) pairs of points that can be matched together
within the same bins of Ho, which induces a cost no more than d I (Ho (X), Ho(Y)). Then
I (H 1 (X), H1 (Y)) - I (Ho (X), Ho (Y)) new pairs of points are matched at level 1, which
induces a cost no more than 2d [I (Hi(X), H1 (Y)) - I (Ho(X), Ho(Y))], and so on.

In general, histogram Hi induces cost d2' [I(Hi(X), Hi (Y)) - I (Hi-- 1 (X), Hi-1 (Y))]. Sum-
muing the costs induced by all levels, we have:

C (M(X, Y; 7*))
L-1

SZd2i(-(Hi(X),Hi(Y)) -Z(Hi-I(X),Hi-I(Y)))
i=O

? P,(X, Y)

where wi = d2' in Eqn. 3.10.

Lemma 2

There is a constant C such that for any two point sets X and Y, where |X| < JYI, if the
histogram bin boundaries are shifted randomly in the same way when computing T(X) and
T(Y), then the expected value of the pyramid match cost is bounded:

E[PA(X, Y)1 (C -dlog D + d) C(M(X, Y; 7r*)).

Proof:

To write the pyramid match in terms of counts of unmatched points in the implicit partial
matching, we define the directed distance between two histograms formed from point sets
X and Y:

D (H(X), H(Y))

D (a, b)

=1 •j (H(X)(J), H(Y)()) , where
j=1

S{a- -b, if a> b
otherwise

The directed distance D(Hi(X), Hi(Y)) counts the number of unmatched points at reso-

(3.17)

(3.18)

(3.19)



lution level i. Note that D (H_1(X), H 1(Y)) = X and D (HL-1(X), HL-1(Y)) = 0 by
definition. The directed distance value decreases with i, as bins are increasing in size and
more implicit matches are made. The change in the directed distance across levels is the
decrease in the count of unmatched points from one level to the next, and therefore also
serves to count the number of new matches formed at level i:

I (Hi(X), Hi(Y)) - Z (Hi-_(X), Hi-1(Y)) = D(Hi-1(X), Hi-1(Y)) - D(Hi(X), Hi(Y)).
(3.20)

In terms of the directed distance, the pyramid match cost is

L-1

PA (X, Y) = d2i(D(Hi-1(X), Hi-1(Y)) - D (Hi(X), Hi(Y)))
i=O

L-2

= dD (H_(X), H_ 1(Y)) + d2i D (Hi(X), Hi(Y))
i=O

L-2

= dlX + jd2 i D(Hi(X), Hi(Y)) . (3.21)
i=0

The expected value of the pyramid match cost is then

L-2

E [Ps (X, Y)] = dlXI + - d2i E [D (Hi(X), Hi(Y))]. (3.22)
i=O

The optimal partial matching M (X, Y; *) = { ((x, yr),..., (x,, y,) } implies a graph
whose nodes are those points in the input sets X and Y that participate in the matching
(i.e., all points in X and a subset from Y), and whose edges connect the matched pairs
(xi, y,j), for 1 < i < IX|. Let nj be the number of edges in this graph that have lengths in
the range [d2j - 1 , d2j). A bound on the optimal partial matching may then be expressed as:

Znjd2 j - 1  < C(M(X,Y;wr*)),or

njd2j < 2C(M(X,Y;wr*)) (3.23)

since for every j, all nj edges must be of length at least d2j - 1 .

The directed distance D counts at a given resolution how many points from set X are
unmatched. Any edge in the optimal matching graph that is left "uncut" by the bin
boundaries in histogram Hi contributes nothing to D (Hi(X), Hi(Y)). Any edge that is
"cut" by the histogram contributes at most 1 to D (Hi(X), Hi(Y)). Therefore, the expected
value of the directed distance at a given resolution is bounded by:

E [D (Hi(X), Hi(Y))] < E [Tij], (3.24)
J



where Tj is tile number of edges in the optimal matching having lengths in the range

[d2j - 1, d2i) that are cut by Hi.

The probability Pr(cut(x, y); i) that an edge for (x,y) in the optimal matching is cut
by the histogram grid Hi is bounded by .1 ` 11~  This can be seen by considering the
probability of a bin boundary cutting an edge in any one of the d dimensions, taking into
account that the bin boundaries are shifted independently in each dimension. An edge with
length I Ix - yI 1 > d2' is certainly cut by the histogram grid at Hi. An edge with length
lix - Y1i < d2' may be cut in any dimension. In this case, the probability of a cut in
dimension k for points x = [x,... ,Xd],y = [yl,...,Yd] is 2kYk, for 1 k < d. The
probability of a cut from Hi occurring in some dimension is then bounded by the sum of
these probabilities:

Pr(cut(x,y); i) < Ixk -2i
k=1

< (3.25)- 2i

This provides an upper bound on the expected number of edges in the optimal matching
that are cut at level i:

d23
E [Tij] < nj d2 , (3.26)

since by definition d23 is the maximum distance between any pair of matched points counted
by nj.

Now with Eqns. 3.23 and 3.24 we have a bound for the expected directed distance at a
certain resolution level:

1 1
E [D (Hi(X), Hi (Y))] < •-5nj d2i < 2 C (M(X, Y; r*)). (3.27)

Relating this to the expected value of the pyramid match cost in Eqn. 3.22, we have

L-2
E [PA (X, Y)] • dlXl + d2i  2 C (M(X, Y;)

i=O

• daX| + 2d (L - 1) C (M(X, Y; x*))
< dNXI +2dlogD C(M(X,Y; 7r*)) (3.28)

since L = [log 2 D] + 1.

As described in Section 3.1, points in sets X and Y are comprised of integer entries, insuring
that the minimum inter-feature distance between unique points is 1. We also know that
for the sake of measuring matching cost, X and Y are disjoint sets: X n Y = 0; if there
are any identical points in the two sets, we can consider them as discarded (in pairs) to
prolduce strictly disjoint sets, since identical points contribute nothing to the matching cost.
Since X, Y C [D]d and X n Y = 0, we have IXI 5 C(AM(X, Y; 7r*)). That is, each edge in
the optimal matching must have a length of at least 1, making the number of points in the



smaller set a lower bound on the cost of the optimal matching for any two sets. With this
bound and Eqn. 3.28, we have the following bound on the expected pyramid match cost
error

E [PA (X, Y)] _ d C(M(X, Y; r*)) + 2dlog D C(M(X, Y; r*))

S(2dlog D + d) C(M(X,Y; r*))

S(C dlog D + d) C(M(X, Y; 7*)). (3.29)

In Chapter 6 I will also empirically evaluate the pyramid match error under various con-
ditions, and I show that it is in practice significantly lower than that guaranteed by this
bound. In Chapter 8 I provide results using the pyramid match as a kernel to perform
several supervised learning tasks with images, and in Chapter 9 I discuss an unsupervised
category learning approach based on the matching.



Chapter 4

A Vocabulary-Guided Pyramid
Match

In this chapter I give an extension of the pyramid match algorithm that specializes pyra-
mids according to the distribution of features that appear in the input sets. As shown
in the previous chapter, when using histograms with uniformly-shaped bins, the expected
approximation error bound increases with the feature dimension. Here I introduce the idea
of a vocabulary-guided pyramid match, which can in practice remain accurate even for sets
with high-dinmensional feature vectors, and benefits from taking advantage of the underlying
structure of the feature space. Results pertaining to vocabulary-guided pyramid matching
will be given in Chapters 6 and 8.

The main idea is to derive a hierarchical, data-dependent decomposition of the feature space
that can be used to encode feature sets as multi-resolution histograms with irregularly-
shaped bins. The given feature space is partitioned into a pyramid of non-uniformly shaped
regions based on the distribution of a provided corpus of feature vectors (see Figure 4-1).
Point sets are then encoded as multi-resolution histograms determined by that pyramid, and
a weighted per-node intersection between any two histogram pyramids yields the approxi-
mate matching score for the original sets. The implicit matching estimates the inter-feature
distances based on either their bin's diameter or their respective distances to the bin center.

I call this variant of the algorithm the vocabulary-guided pyramid match because the his-
togram pyramids are defined by the "vocabulary" or structure of the feature space. This
extension makes the pyramid matching approach more generally applicable to situations
where high-dimensional features are necessary or may improve performance. As my experi-
ments in Chapter 6 will show, the vocabulary-guided pyramid match in practice can provide
a good approximation to the optimal partial matching-even for high-dimensional feature
spaces- but it is orders of magnitude faster to compute.

The idea of partitioning a feature space with vector quantization (VQ) is fairly widely used
in practice; in the vision literature in particular, VQ has been used to establish a vocabulary
of prototypical image features, from the "textons" of [70], to the "visual words" of [102].
More recently, Nister and Stewenius have shown that a hierarchical quantization of image
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(a) Uniform bins (b) Vocabulary-guided bins

Figure 4-1: Rather than carve the feature space into uniformly-shaped partitions (left),
for a vocabulary-guided pyramid match, the vocabulary (structure) of the feature space

determines the partitions (right). As a result, the bins are concentrated on decomposing
the space where features cluster, particularly for high-dimensional features. These figures
depict the grid boundaries for two resolution levels for a 2-D feature space. In both (a) and
(b), the left plot contains the coarser resolution level, and the right plot contains the finer
one. Features are small points in red, bin centers are larger black points, and blue lines
denote bin boundaries. The vocabulary-guided bins are irregularly shaped Voronoi cells.

features provides a scalable means of indexing into a very large feature vocabulary [85]. The
actual tree structure employed is similar to the one constructed here; however, whereas the
authors of [85] are interested in matching single features independently to one another to
access an inverted file, my approach computes approximate correspondences between sets of
features. Note the similar distinction between the problem I am addressing-approximate
correspondence matching between sets-and the problem of efficiently identifying approxi-
mate or exact nearest-neighbor feature vectors (e.g., via k-d trees): in the former, the goal
is a one-to-one correspondence between sets of vectors, whereas in the latter, a single vector
is independently matched to a nearby vector.

4.1 Building Vocabulary-Guided Pyramids

The first step is to generate the structure of the vocabulary-guided pyramid to define the
bin placement for the multi-resolution histograms used in the matching. This is a one-time
process performed before any matching takes place. We would like the bins in the pyramid
to follow the feature distribution and concentrate partitions where the features actually fall.
To accomplish this, we perform hierarchical clustering on a sample of representative feature
vectors from the feature space F.

We randomly select some example feature vectors from the feature type of interest to form
the representative feature corpus, and perform hierarchical k-means clustering with the
Euclidean distance to build the pyramid tree. Other hierarchical clustering techniques,
such as agglomerative clustering, are also possible and do not change the operation of the
method. For this unsupervised clustering process there are two parameters: the number of
levels in the tree L, and the branching factor k.0 The initial corpus of features is clustered

'For the pyramid match based on uniform bins described in Chapter 3, L was computed directly from
the feature space aspect ratio D. For the vocabulary-guided bins, L still reflects the number of resolution
levels, but it is a user-supplied parameter.



into k top-level groups, where group membership is determined by the Voronoi partitioning
of the feature corpus according to the k cluster centers. Then the clustering is repeated
recursively L- 1 times on each of these groups, filling out a tree with L total levels containing
k' bins (nodes) at level i, where levels are counted from the children of the root (i = 0) to
the leaves (i = L - 1).2 The bins are irregularly shaped and sized, and their boundaries are
determined by the Voronoi cells surrounding the cluster centers (see Figure 4-1). For each
bin in the vocabulary-guided pyramid we record its diameter--the maximal inter-feature
distance between any points from the initial feature corpus that were assigned to it.

Once we have constructed a vocabulary-guided pyramid, we can embed point sets from S as
multi-resolution histograms. A point's placement in the histogram pyramid is determined
by comparing it to the appropriate k bin centers at each of the L pyramid levels. The
histogram count is incremented for the bin (among the k choices) that the point is nearest
to in terms of the same distance function used to cluster the initial corpus. We then push
the point down the tree and continue to increment finer level counts only along the branch
(bin center) that is chosen at each level. So a point is first assigned to one of the top-level
clusters, then it is assigned to one of its children, and so on recursively. This amounts to a
total of kL distances that must be computed between a point and the pyramid's bin centers,
and this is the primary cost increase over the pyramid match with uniform bins.

It is feasible with the vocabulary-guided pyramid to apply a "soft" assignment function to
select multiple bins into which each point is entered. Doing so may potentially alleviate

quantization effects that are possible with a hard-assignment clustering. However, the more
neighboring bins that are incorporated into each assignment, the more the sparseness of the
resulting pyramids is reduced, which will influence the cost of pyramid intersections.

Given the bin structure of the vocabulary-guided pyramid, a point set X is mapped to its
pyramid t ,(X):

9, (X) = [Ho(X), ... ,HLtl(X)] , with

Hi(X) = [(p,n,d)l,...,(p,n,d)ki], (4.1)

where Hi(X) is a k0-dimensional histogram associated with level i in the vocabulary-guided
pyramid, p E Z' for entries in Hi(X), and 0 < i < L. Each entry in this histogram is a
triple (p, n, d) giving the bin index, the bin count, and the bin's points' maximal distance
to the bin center, respectively. Note the small change in notation: T referred to a pyramid
map with uniform bins in Chapter 3, while here TI, refers to a vocabulary-guided pyramid
map with non-uniform bins.

Storing the vocabulary-guided pyramid itself requires space for O(kL) d-dimensional feature
vectors, i.e., all of the cluster centers. However, as with the pyramids with uniform bins,
each point set's histogram embedding is stored sparsely, meaning only O(mL) nonzero bin
counts are maintained to encode the entire pyramid for a set with m features. This is an
important point: we do not store O(kL) counts for every point set; Hi(X) is represented by
at most m triples having n > 0.

2For notation convenience, for the vocabulary-guided pyramids, level L refers to the finest resolution,
while in the previous chapter the uniform bins at level L were the coarsest.



We achieve a sparse implementation as follows: each vector in a set is pushed through the
tree as described above. At every level i, we record a (p, n, d) triple describing the nonzero
entry for the current bin. The vector p = [pl,..., pi], j E [1, k], for 1 < j < i denotes the
indices of the clusters traversed from the root so far, n E Z + denotes the count for the bin
(initially 1), and d E R denotes the distance computed between the inserted point and the
current bin's center. Upon reaching the leaf level, p is an L - 1-dimensional path-vector
indicating which of the k bins were chosen at each level after the root, and every path-vector
uniquely identifies some bin on the pyramid.

Initially, an input set with m features yields a total of mL such triples-there is one nonzero
entry per level per point, and each has n = 1. Then each of the L lists of entries is sorted by
the index vectors (p in the triple), and they are collapsed to a list of sorted nonzero entries
with unique indices: when two or more entries with the same index are found, they are
replaced with a single entry with the same index for p, the summed counts for n, and the
maximum distance for d. The sorting is done in linear time using integer sorting algorithms.
Maintaining the maximum distance of any point in a bin to the bin center will allow us to
efficiently estimate inter-point distances at the time of matching, as I will describe in the
next section.

4.2 Computing a Vocabulary-Guided Pyramid Match

Given two point sets' vocabulary-guided pyramid encodings, we efficiently compute the
pyramid match score. The vocabulary-guided pyramid will provide a partitioning of the
feature space at multiple resolutions that is used to direct the matching. As before, the basic
intuition is to start collecting groups of matched points from the bottom of the tree up, i.e.,
from within increasingly larger partitions. In this way, we will first consider matching the
closest points (at the leaves), and as we climb to the higher-level clusters in the pyramid we
will allow increasingly further points to be matched. We define the number of new matches
within a bin to be a count of the minimum number of points either of the two input sets
contributes to that bin, minus the number of matches already counted by any of its child
bins. A weighted sum of these counts yields an approximate matching score.

Note in the following that aside from implementation details surrounding the sparse tree
construction, the primary distinction for the matching process here as opposed to the match-
ing described in Chapter 3 is that now match counts must be made per node, rather than
per level, and it matters which bin is a child of which. That is because every node at a given
level has a unique diameter and so matches accumulated in each node must be weighted
accordingly.

Let nij(X) denote the element n from (p,n,d)j, the jth bin entry of histogram Hi(X),
and let ch (nij(X)) denote the element n for the hth child bin of that entry, 1 < h < k.
Similarly, let dij(X) refer to the element d from the same triple. Given point sets X and



Y, we compute the matching score via their pyramids 'v,(X) and ',(Y) as follows:

L-1 kZ k
pfPA (Tv(X), Tv(Y)) = E E wij- min ([ i (X), nij(Y)) - E in (Ch (ni(X)), Ch (nij(Y)))

i=O j=1 h=1
(4.2)

The outer sum loops over the levels in the pyramids; the second sum loops over the bins at
a given level, and the innermost sum loops over the children of a given bin. The first min
term reflects the number of matchable points in the current bin, and the second min term
tallies the number of matches already counted at finer resolutions (in child bins). Note that
as the leaf nodes have no children, when i = L - 1 the last sum is zero. All matches are
new a.t the leaves. The matching scores are normalized according to the size of the input
sets in order to not bias towards (for similarity) or against (for cost) larger sets.

The number of new matches calculated for bin j at level i is weighted by wij, an estimate
of the distance between points contained in the bin. As in Chapter 3, to use the matching
as a cost function, weights are set as the distance estimates; to use as a similarity measure,
weights are set as (some function of) the inverse of the distance estimates.

With a vocabulary-guided pyramid match there are two alternatives for the distance esti-
mate, which are shown below for a cost measure. The first option (a) uses weights based
on the diameters of the pyramid's bins; option (b) uses input-dependent weights based on
the maximal distances of the points in the bin to its center:

(a) wi = Aij

(b) wi = dij(X) + dij(Y) (4.3)

where Aij is the diameter of the jth bin of the vocabulary-guided pyramid's ith level.

The first option is a conservative estimate of the actual inter-point distances in the bin if
the corpus of features that built the pyramid is representative of the feature space. As a
similarity measure, this choice has the advantage of providing a guaranteed Mercer kernel
(see below), and it also eliminates the need to store a distance d in the entry triples. This
weighting scheme can be viewed as analogous to the maximal-diagonal weighting scheme
employed in Chapter 3 for the uniformly-sized hypercube bins.

On the other hand, we can also produce input-specific distance estimates. The second option
(b) is to estimate the distance between any two points in the bin as the sum of the stored
maximal to-center distances from either input set. In fact, since points are inserted into
bins under a metric measure, due to the triangle inequality this is a true upper bound on the
furthest any two points could be from one another. Note that this second weighting option
exploits the distances to the bin centers that were already computed to insert the points
into the histograms; maintaining these distances costs space but not additional time. This
weighting has the potential to provide tighter estimates of inter-feature distances, which I
confirm experimentally in Chapter 6; however, we do not have a proof to guarantee this
weighting will yield a, Mercer kernel.

Just as the pyramids are encoded sparsely, I derive a means to compute intersections in



Eqn. 4.2 without ever traversing the entire pyramid tree. Given two sparse lists Hi(X)
and Hi(Y) which have been sorted according to the bin indices, we obtain the minimum
counts in linear time in the number of nonzero entries by moving pointers down the lists
and processing only entries that share an index, making the time required to compute
an approximate matching between two pyramids O(mL). The only inter-feature distances
computed are the kL distances need to insert a point into the pyramid, and this small one-
time cost is amortized every time we re-use a pyramid embedding to approximate another
matching against a different point set.

The proof of the expected error bounds of the pyramid match given in Section 3.5 of
the previous chapter applies only to the pyramid match when using randomly shifted his-
tograms with uniform bins. That proof relied on the fact that the bin boundaries were
placed at random in the feature space, allowing us to measure the probability that an edge
connecting two points would be cut by a boundary. I do not have a similar bound here
for the vocabulary-guided pyramid match, as its bill boundaries are placed according to
the distribution of features in a supplied corpus. However, as I will show in Chapter 6,
in practice the vocabulary-guided pyramid match remains accurate and efficient even for
high-dimensional feature spaces, while pyramid matching with uniform bins is limited in
practice to lower-dimensional features (with d on the order of 10). It is possible that theo-
retical error bounds could be shown for the vocabulary-guided variant based on knowledge
of the intrinsic dimensionality of the feature space, or by fitting some parametric form over
the features.

For the increased accuracy, there are some complexity trade-offs. The pyramid match with
uniform bins does not require computing any distances to place the points into bins; their
uniform shape and size allows points to be placed directly via division by bin size. On
the other hand, sorting the bin indices with the vocabulary-guided method usually has
a lower complexity, since the integer values only range to k, the branching factor, which
will typically be much smaller than the feature aspect ratio D that bounds the range in
the uniform bin case. In addition, as I will show in Chapter 6, in high dimensions the
cost of extracting an explicit correspondence field using the pyramids with uniform bins
approaches the cubic cost of the optimal measure, whereas it can remain linear with the
vocabulary-guided pyramids, assuming features are not uniformly distributed.

4.3 The Vocabulary-Guided Pyramid Match as a Mercer Ker-
nel

The vocabulary-guided pyramid match forms a Mercer kernel. We can rewrite Eqn. 4.2 as:

L-1 kI

PA (v,(X), ,v(Y)) = E 1 (wij - pij) min (nij(X), nij(Y)), (4.4)
i=o j=1

where pij refers to the weight associated with the parent bin of the jth node at level i.

Since the intersection (min) operation is positive-definite [86], and since kernels are closed
under summation and scaling by a positive constant [99], we have that the vocabulary-



guided pyramid match is a Mercer kernel if wij Ž pij. This inequality holds if every child
bin receives a similarity weight that is greater than its parent bin, or rather that every child
bin has a distance estimate that is less than that of its parent. Indeed this is the case for
our first weighting option (Eqn. 4.3 (a)), where wij is set to be inversely proportional to
the diameter of the bin in the vocabulary-guided pyramid. It holds by definition of the
hierarchical clustering: the diameter of a subset of points must be less than or equal to
the diameter of all those points. We cannot make this guarantee for the second weighting
option.

In Chapter 6 I demonstrate the accuracy advantages of the vocabulary-guided pyramid
match for high-dimensional features, and in Chapter 8 I report object recognition results
using the vocabulary-guided pyramid match as a kernel.





Chapter 5

Approximate Similarity Search
with Approximate Matchings

Even when there is an efficient way to compare two inputs, there is a second computational
hurdle: given a query example, how can a very large database of examples be efficiently
indexed to retrieve the most similar items? A naive linear scan of all database items quickly
becomes intractable for large databases. Considering that web image databases and even
personal photo collections can easily exceed thousands to millions of images, the ability to
efficiently index under a similarity measure of choice is crucial for real-world applications.

For similarity search in the d-dimensional Euclidean space, structures such as a k-d tree
may be pre-computed to reduce the searching process to a smaller portion of the entire
database and avoid a brute-force linear scan. However, these techniques assume inputs are
in a vector space, and in practice break down for high-dimensional inputs.

In this chapter I describe how to perform approximate similarity search where inputs are
sets of vectors and similarity is measured by the matching between two sets. To do this for
sets with equal cardinality, I make use of an existing randomized hashing technique called
Locality-Sensitive Hashing [56, 38] and the embedding of Indyk and Thaper [57]. This
framework is reviewed in Section 5.1. Then in Section 5.2, I derive an embedding based on
the pyramid match to allow randomized hashing over the matching between variable-sized
sets. These two hashing approaches allow us to perform database retrievals in sub-linear
time in the number of database examples. Related results are provided in Chapter 7.

5.1 Locality-Sensitive Hashing for Equal-Sized Sets

Locality-Sensitive Hashing (LSH) is a randomized hashing algorithm developed by Indyk
and Motwani [56]. LSH indexes a database of examples residing in a normed space by a
number of hash tables, such that the probability of collision is high for similar examples and
low for dissimilar ones. In particular, LSH guarantees that if for a query point q there exists
a point in the database p such that D(p, q) _ r, then (with high probability) a point p' is
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(a) Database query via a naive linear scan
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(b) Sub-linear time database query via randomized hashing

Figure 5-1: For large databases, a naive linear scan to compute similarities against a query
(a) quickly becomes impractical, even with the most efficient similarity measure. With
randomized hashing techniques such as Locality-Sensitive Hashing, we can perform sub-
linear time queries of very large databases (b). The chosen hash function h must guarantee
that examples similar under the measure of interest will collide in the hash buckets. All N
database examples are hashed into tables where there will be a high probability that similar
examples collide. Then given a new query example, only those database entries that share
a hash bucket with the query must be exhaustively searched to identify the most similar
examples.
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returned such that D(p', q) < (1 + E)r. Otherwise, the absence of such a point is reported.
The query time for a database of N d-dimensional examples is bounded by O(dN 1/(1+0))

(see Figure 5-1).

Locality-Sensitive Hashing presumes inputs are in a normed space. To hash over a spe-
cialized similarity or distance function of interest, an appropriate family of hash functions
must be selected; or, the hash functions proposed in [38, 56] may be applied if the inputs
can be embedded in such a way that a norm (Li or L 2) over the embeddings induces that
similarity function.

As described in Chapter 2, Indyk and Thaper have previously shown that the L 1 distance
between randomly shifted multi-resolution histograms provides a low-distortion embedding
for the least-cost matching between equal-mass point sets [57]. The histograms provide an
embedding of the original data into a normed space, making it possible to apply LSH. The
distortion C of a metric embedding E describes how much information loss the embedding
induces: C(M(A, B; 7r*)) • I!E(A) - E(B)I L,  • C.C(M(A, B; 7r*)). The distortion of the
embedding given by Indyk and Thaper has an upper bound of O(dlog D) for feature aspect
ratio D and dimension d.1 In [19], Charikar has independently explored hash fimctions
for matching with equal-sized sets that have closely related properties to those proposed
in [38, 57].

In [57] the authors show an image retrieval application using the L 1 embedding. Global
color histograms (or "signatures" over the color space) are extracted for each image as in
Rubner et al. [92], and a database of these color histograms is embedded via the multi-
resolution histogram. Then given a query image, sub-linear nearest-neighbor search with
LSH is performed to retrieve the most relevant items in terms of the matching between the
color signatures.

I have built upon this framework to show Locality-Sensitive Hashing over the approximate
matching between sets of local image feature vectors. The method proceeds as follows: local
shape or appearance features are extracted from a database of images, and each image's
features are treated as a uniformly weighted point set. Note that for this approach, an
equal number of features must be sampled from every image. Using the L 1 embedding over
the point sets, one sparse vector is produced for each input shape or image. Next, a set of
random LSH hash functions are generated, and all of the embedded database vectors are
entered into the hash tables. Both the database embedding and hash table construction is
performed off-line.

Then, given a novel image example, the embedding for its features is computed using the
same random grid translations used for the database embedding. Finally, images similar to
the novel query are retrieved from the database by computing the L 1 distance between the
query's embedding and only those vectors in the union of the hash buckets that are indexed
by the query's embedding (see Procedures 1 and 2). LSH guarantees that we will only have
to exhaustively compare the query to O(Nl/(lI+)) embedding vectors from the database;
with a typical setting of e = 1, this means that only O(viN) items are searched.

'While the embedding in [57] is described as an approximation for the Earth Mover's Distance (EMD), it
assumes inputs are weighted point sets with total equal mass, and so it does not produce partial matchings
as the original EMD measure developed by Rubner et al. does [92].



Procedure 1 To prepare an image data set for hashing:

Given: A data set of N images {II,... ,IN}, random LSH functions H = [hi,...,ht], randomly
translated histogram grids Hi, each with side lengths 2, 1 = 0,..., L, L= [log D], and neigh-
borhood radius r:

1: for all i = 1,...,N do
2: Detect in image Ii all interest points {Pi,...,p, }, either with a chosen interest operator or

simply on a uniform grid.
3: Extract a descriptor xj having the desired invariance properties (e.g., scale- or rotation-

invariance) from the image patch or region centered at each pj to form the set of features
Xi = {xP',...,xP',,}.

4: Weight each feature xP3 by - and apply the L 1 embedding:

E(Xi) = [Ho(Xi),...,21H,(Xi),..., DHL-I(Xi)], producing one sparse vector.
5: Insert vector E(Xi) into hash tables H, and record its hash buckets [bl,..., bt].
6: end for

Procedure 2 To query the prepared data set to find similar images:
Given: Image I, with set of features Xq, embedding E(Xq), and random LSH functions H =

[hl,...,ht]:
1: Hash into H with E(X,), yielding hash bucket indices [bl,...,bt]
2: for all c = 1, ... , t do
3: Compute the L1 distance between E(Xq) and the W database embedding vectors

(E(X 1),.., E(XW)}}, that share bucket b,:, W << N.
4: end for
5: Sort U 1C {E(X 1),..., E(XW)}, according to their L1 distance to E(Xq) to obtain a ranked

image list that includes the approximate r-neighbors of I,.

In Chapter 7 I demonstrate this L 1 embedding and LSH applied to contour shape retrievals
for multiple large databases.

5.2 Pyramid Match Hashing for Variable-Sized Sets

The above hashing technique assumes that inputs are sets with equal numbers of features,
or weighted sets with equal total mass. In this work I am also interested in being able
to match sets of variable sizes, since it is highly unlikely that every image will have a
local representation comprised of the same number of parts. That is, we would like to be
able to apply randomized hashing over sets that are compared by a partial matching as
approximated by the pyramid match (see Chapter 3).

To hash with sets of variable sizes, below I derive a new embedding via the pyramid match
for approximate similarity search under the matching similarity normalized by the sizes of
both input sets. I then show that locality sensitive hashing is not possible for a complete
partial match, where no penalty at all is accumulated for unmatched points.



5.2.1 Random Hyperplane Hash Functions for the Pyramid Match

In [19], Charikar gives a slightly different definition of Locality-Sensitive Hashing than the
one in [38] described above, although it is similar in spirit. In this case, a locality sensitive
hashing scheme is a distribution on a family .F of hash functions h operating on a collection
of objects, such that for two objects x, y,

Pr [h(x) = h(y)] = sim(x, y), (5.1)
he.F

where sim(x, y) is some similarity function defined on the collection of objects [19]. In other
words, the probability that two inputs collide in the hash table is equal to the similarity
between thenm, and so highly similar objects will be indexed by the hash table with high
probability.

In [39], Goemans and Williamson provide a randomized algorithm for the MAX-CUT prob-
lem using semidefinite programming. As part of this work, they prove that given a collection
of vectors {vz,...,v } belonging to the unit sphere Sn, and a randomly generated vector
r, the probability that any two vectors vi and ij each have dot products with r having
opposite signs is related to the vectors as follows:

Pr [sgn(Vi - r) sgn(vl = J - os- (i -ij). (5.2)
7"

That is, the probability a random hyperplane separates two vectors is directly proportional
to the angle cos - (vii vj).

This was exploited for locality sensitive hashing by Charikar [19], who considers a hash
function family for set similarity to generate hash keys using the above property of random
hyperplanes. Given a database of vectors in Rd, a vector ' is chosen at random from the
d-dimensional Gaussian distribution. The corresponding hash function hi, accepts a vector
t e Rd, and is defined as:

S1, if F .U,> 0 (5.3)
ht(iZ = ' . (5.3)0, if r*- 7 < 0"

Then, drawing on the relationship in Eqn. 5.2, a valid locality sensitive hashing scheme is:

Pr [h('i) = hh(1 %)] = 1 - V ~, where (5.4)

-1 J~~

( ,I c) os= cos

Charikar points out that if the vectors ''i and 'fl are treated as characteristic vectors for
sets, this could serve as a set similarity measure.

In the following, I show that we can achieve hashing over the pyramid match kernel using
this hash function family. We can consider the pyramid mapping T(X) as an embedding
for a point set X, and incorporate the weights used in the pyramid matching Pa. Then
by applying a type of unary encoding, we will have an embedding for each point set that
under a dot product yields the un-normalized pyramid match kernel value.



From Eqn. 3.16 in Chapter 3, we have the definition of the (un-normalized) pyramid match
kernel:

L-2

Pa (WP(Y), &(Z)) = WL-1 (HL-1(Y), HL-1(Z))+ - (wi -wi+l) I (Hi(Y), Hi(Z)), (5.5)
i=O

where wi is the weight associated with level i of the pyramids, and the value of the weights
decreases with i (e.g., wi = a is a valid option).

Given a histogram H that contains r bins, and a weight w, let [wH] denote an r-dimensional
vector giving the counts in each bin of the histogram, with each count scaled by w. Note
that this weighting is distributive over histogram intersection; that is, a weighted his-
togram intersection value is equivalent to the intersection of the weighted histograms, or
w I (H(Y), H(Z)) = I ([wH(Y)], [wH(Z)]).

Let U([wH]) denote the following (padded) unary encoding of the histogram H weighted
by w:

wHM) M - wH) wH(r) M - wH(r)

U ([wH]) = 1.1, 0,...,0 1 ... ,1,....,1, 0,...,0 ,(5.6)

first bin last bin

where M is the maximum possible weighted count in any histogram bin, and H(j) refers to
the count in bin j of histogram H. 2 Let ri(X) refer to the histogram for set X at pyramid
level i, weighted by w = wi - wi+l:

ri(X) = [(wi - Wi+) Hi(X)]. (5.7)

The following embedding f serves to map the set of vectors X to a single vector:

f(X) = [U(ro(X)), U(r(X)), U(r 2 (X)),...,U(rL_ 2 (X)), U([WL-lHL-1(X)])]. (5.8)

The dot product between two such encodings for sets Y and Z yields the un-normalized
pyramid match kernel score from Eqn. 5.5 above:

f (Y) - f(Z) = PA ((Y), I(Z)). (5.9)

The length If(Y)I of an encoding vector f(Y) is simply the sum of its total number of
nonzero (one) entries. Since self-intersection of a histogram returns the number of total
points in the histogram (I(H(Y), H(Y)) = IYI), the length of an embedding vector is

2If weighted counts are real-valued, this process can in theory proceed by scaling to a given precision and
truncating to integers. With the normalization factor also scaled, the output remains equivalent.



going to be equivalent to the original set's self-similarity score under the pyramid match:

L-2

If(Y)| = wL-1 jYI + (wi-wi+) YI
i=O

L-2

= WL-11(HL-1(Y), HL-(Y)) + Z(wi - wi+)I)(Hi(Y), Hi(Y))
i=O

= A (IF(Y), I(Y)) . (5.10)

Putting these pieces together, we have an embedding of the pyramid match kernel that
allows us to perform sub-linear time similarity search with random hyperplane hash func-
tions. With the new embedding in Eqn. 5.8 and the hashing guarantee from Eqn. 5.4, we
have:

6(f(Y), f(Z))Pr [h,~(f(Y)) = hF(f(Z))] = 1 - , where
7"

O(f(Y),f(Z)) = cos- ( f(Y) f (Z)

= cos-

= cos- (PA (W(Y), (Z))) . (5.11)

Notice that this last term is the normalized pyramid match kernel value, where normaliza-
tion is done according to the product of the self-similarity scores (Eqn. 3.12 in Chapter 3).
In Section 5.2.3 I discuss why locality sensitive hashing is not possible with the alternative
normalization scheme, where scores are normalized by the minimum input cardinality.

We do not need to explicitly expand the components ri(X) into their unary encodings.
Likewise, we do not need to generate an entry for every dimension of the random vector F
to compute a hash key from f(X). Instead, the counts in Hi(X) indicate which entries in F
will result in a nonzero contribution to f(X) -•, that is, those entries where the encoding for
ri(X) would be 1, not 0. The inner product between the random vector and the embedding
is then the sum of those particular entries in F, and the sign of this sum determines the
hash key value h,((f(X)).

A similar embedding is possible with the vocabulary-guided pyramid match, since the in-
tersected vocabulary-guided pyramid can analogously be written as a dot product between
weighted histograms (refer to Eqn. 4.4). The first weighting option (Eqn. 4.3 (a)) must
be used in this case to have a set of "global" weights to compute the embedding that is
independent of any two given input sets. As with the kernel or cost value computation, the
vocabulary-guided pyramid match embedding is also computed at the level of the bins, not
at the level of the pyramid resolutions, since each bin may have a unique size and shape
and must be weighted accordingly.



5.2.2 Comparison of Embedding Choices

In Chapter 3 I presented two possible normalization schemes: normalization by the product
of both sets' self-similarities, or normalization by only the minimum cardinality input set

(see Eqns. 3.11 and 3.12). The hashing described above makes use of the former, which
includes the sizes of both input sets. This yields a correspondence measure between two
variable-sized sets that does include some penalty for the unmatched points in the larger
set.

For example, consider two sets; with the minimum cardinality normalization, their pyramid
match kernel value would remain constant if we were to add more and more features to
one of the sets. In contrast, with the product normalization, the pyramid match kernel
value would slowly decrease as we added those features. When is this a desired property for
image matching? If there is expected to be an unknown amount of clutter, background, or
unmatched features in both of the images being matched, this normalization is reasonable.
The best matching will be the one that can find good matches for all the features in both
sets. An image matching with more clutter (unmatchable features) will receive a lower
similarity weight than an image matching with fewer unmatched features. However, note
that pyramid match hashing will not care how different the unmatched features are to
any features in the other set; that is, the penalty is only relative to how many unmatched
features there are (see Figure 5-2). I verify this property experimentally in Chapter 6,
Section 6.2.

The L 1 embedding of Indyk and Thaper is applicable only if the sum of the total weight
attached to points in any input set is constant. One way to achieve equal weights for
variable-sized sets is to normalize the feature weights to force an equal sum of weights for
each set. However, doing so alters the actual distribution of features that were extracted
from the image, forces a bijective matching, and thus alters the meaning of the matching
computed between two sets. The hashing approach I have proposed does not require altering
the input feature set; thus the true feature distribution is preserved, as is the meaning
behind matching parts of feature sets to one another. Whether a normalized partial match
or a bijective matching over re-weighted features is more appropriate will depend on the
application and what is desired from the matching scores.

5.2.3 Existence of Locality-Sensitive Hash Functions for a Partial Match

The above hashing framework relies on a metric-case of a matching between variable-sized
sets. In fact the metric property is necessary to allow locality sensitive hashing. For a
metric space M under metric distance D, the triangle inequality states that D(x, z) <
D(x, y) + D(y, z), Vx, y, z E M. In [19] it is shown that for any similarity function that
admits a locality sensitive hash function family as defined in Eqn. 5.1, the distance function
1 - sim(x, y) satisfies the triangle inequality.

Given this fact, I can show that there is no locality sensitive hash function family corre-
sponding to the similarity of the partial matching over sets X and Y normalized by the
minimum input set size. Let the partial match similarity judge similarity between points
as being inversely proportional to their distance, as it is in the pyramid match. The corre-
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Figure 5-2: These examples illustrate differences between using a bijective matching to
compare variable-sized sets whose feature weights are normalized to sum to one (a), versus
using a normalized partial matching to compare them without altering the feature weights
(b), versus using a partial matching normalized by only the minimum input cardinality
(c). Each group above depicts two point sets containing one-dimensional features. (The
top example contains one feature in each set, the remaining three examples contain two
features in one set, and one in the other.) The same sets are matched for (a) and (b)
and (c). A circle with a number in it represents a feature, and lines between features
denote what is being matched in every group. The numbers on the lines denote the cost
(a) or similarity (b,c) associated with that correspondence link. Total matching scores are
d(isplayed to the right for each set. Notice how outlier features skew the matching costs
in (a), while (b) assigns the same similarity to all three bottom matches. In addition, the
cost for (a) does not distinguish between the left set's feature distributions in the top two
examples, while the similarity in (b) does reflect their differences. When normalizing by the
minimum cardinality, there is absolutely no penalty for unmatched features (c); however,
this matching does not obey the triangle inequality and thus does admit locality sensitive
hash functions.



sponding distance for 1 - sim(x, y) is then

Dp(X, Y; ) = 1 -S(M (X, Y; r))

=1( 1 1 (5.12)
S min(IXI, IY ) E ii xi - y,r+l + 1

The partial match computed with this normalization --where there is no penalty for points
not matched from the larger set- -does not satisfy the triangle inequality, as we can see with
a simple counter-example. For sets with one-dimensional features: X = {[1] }, Y = {[2] },
and Z = {[1], [2]}, the pairwise distances are Dp(X,Y; rr*) = 1, Dp(X,Z;-r*) = 0, and
Dp(Z, Y; rr*) = 0. This breaks the triangle inequality, since Dp(X, Z; 7r*) + Dp(Z, Y; 7r*) <
Dp(X, Y; lr*). Therefore, a partial matching score normalized by the minimum input set
size does not admit a locality sensitive hash function.



Chapter 6

Approximating the Optimal
Matching in Practice

As described in Chapter 3, the pyramid match approximates the optimal correspondence-
based matching between two feature sets. The theoretical bounds we can show are actually
significantly weaker than what we observe in practice. In this chapter, I provide a series of
experiments to empirically evaluate the approximation quality of the pyramid match with
real and synthetic data sets. I evaluate the pyramid match using both uniform histogram
bins and the vocabulary-guided bins, and I make a direct comparison between my partial
matching approximation and the L1 embedding of Indyk and Thaper [57]. Throughout these
experiments, unless otherwise stated, I have employed the pyramid match using uniform
biIns.

6.1 Comparison with a Bijective Matching Embedding

I conducted experiments to evaluate how close the correspondences implicitly measured by
the pyramid match are to the true optimal correspondences -- the matching that results in
the minimal summed cost between corresponding points. In order to work with realistic
data but still have control over the sizes of the sets and the amount of clutter features, I
established synthetic "category" models. Each model is comprised of some fixed number m'
of parts, and each part has a Gaussian model that generates its d-dimensional appearance
vector (in the spirit of the "constellation model" used by Fergus et al. [34] and others).
Given these category models, I can then add clutter features, adjust noise parameters,
and so on, simulating in a controlled manner the variations that occur with the sets of
image patches extracted from an actual object. The appearance of the clutter features is
determined by selecting a random vector from a uniform distribution on the same range of
values as the model features.

I generated two data sets, one with equally-sized sets, and one with variable-sized sets.
Every point set was drawn from one of two synthetic category models, with m' = 35 and
d = 2. For the first data set, 50 point sets containing only the m' model features were



sampled from both of the two category models, for a total of 100 equally-sized point sets.
For the other data set, the model feature sets were merged with a randomly generated
number C of "extra" clutter features, for a total of 100 point sets with m' + C features
each, with C selected uniformly at random from [0, 100].

I compared the pyramid match's outputs to those produced by the optimal partial matching
obtained via a linear programming solution to the transportation problem [92], as well as
those produced by the L 1 approximation of [57]. For both of the data sets, I computed the
pairwise set-to-set distances using each of these three measures.

If an approximate measure is approximating the optimal matching well, we should find the
ranking induced by that approximation to be highly correlated with the ranking produced
by the optimal matching for the same data. In other words, the point sets should be sorted
similarly by either method. We can display results in two ways to evaluate if this is true:
1) by plotting the actual costs computed by the optimal and approximate method, and
2) by plotting the rankings induced by the optimal and approximate method. Spearman's
rank correlation coefficient R provides a good quantitative measure to evaluate the ranking
consistency:

E • (i ^(i))2
R = 1 - (6.1)

N(N 2 - 1)

where i is the rank value in the true order and i(i) is the corresponding rank assigned in
the approximate ordering, for each of the N corresponding ordinal values assigned by the
two measures.

Figures 6-1 and 6-2 display both types of plots for the two data sets. Figure 6-1 displays
plots corresponding to the data set with equally-sized sets, that is, for the bijective matching
problem. Figure 6-2 displays plots corresponding to the data set with variable-sized sets,
that is, for the partial matching problem.

The top two plots in both figures show the normalized output costs from 10,000 pairwise
set-to-set comparisons computed by the optimal matching (red in both), the pyramid match
with T = 3 (blue, right), and the L1 approximation, also with the number of random shifts
T = 3 (green, left). Note that in these figures we plot cost (so the pyramid match weights
are set to wi - d2i), and for display purposes the costs have been normalized by the
maximum cost produced for each measure to produce values between [0, 1]. The cost values
are sorted according to the optimal measure's magnitudes for visualization purposes. Note
that the raw values produced by the approximate measures will always overestimate the
cost; normalizing by the maximum cost value simply allows us to view them against the
optimal measure on the same scale.

The bottom two plots in both figures display the rankings for each approximation plotted
against the optimal rankings. The red diagonals in these plots denote the optimal perfor-
mance, where the approximate rankings would be identical to the optimal ones. The R
value displayed beneath the ranking quality plots refers to the Spearman rank correlation
score for that experiment; higher Spearman correlations have points clustered more tightly
along this diagonal.

Both approximations compute equivalent costs and rankings for the bijective matching
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Figure 6-1: Pyramid match and L 1 embedding comparison on bijective matchings (equally-
sized sets). When all input sets are the same size, the pyramid match and the L 1 embedding
give equivalent results. See text for details. (This figure is best viewed in color.)
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Figure 6-2: Pyramid match and L 1 embedding comparison on partial matchings (variable-
sized sets). The pyramid match approximates the optimal correspondences, even for input
sets of unequal cardinalities. See text for details. (This figure is best viewed in color.)
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case, as indicated by Figure 6-1. This is an expected outcome, since the L 1 distance over
histograms is directly related to histogram intersection if those histograms have equal
masses [104], as they do for the bijective matching test:

I(H(Y), H(Z)) = m - 2 IH(Y) - H(Z)IIL1 , if m = IYI = IZI. (6.2)

The structure along the diagonals in part (b) of Figure 6-1 reflects the fact that two types

(categories) of point sets were present in the data, causing items of the same category
to block together when they are sorted by matching cost. The square-shaped cluster in
the upper right portions of the plots show that while the approximate measures do not
distinguish between all examples within a category precisely the way the optimal measure
does, they do both consider all items within one category to be most distant from an
example drawn from the other category. Similarly, there are discontinuities in part (a) due
to distance clusters caused by drawing point sets from two distinct category models.

However, for the partial matching case (Figure 6-2), the L 1 approximation fails because it
can handle only sets with equal cardinalities and requires all points to match to something.
On the other hand, the pyramid match can also approximate the partial matching for the
unequal cardinality case: its matchings continue to follow the optimal matching's trend
since it does not penalize outliers, as evidenced by the tightly clustered points along the
diagonal in the bottom right ranking quality plot. Please note that this experiment is
something of a "sanity check", since we would expect the method of Indyk and Thaper to
fail for unequally-sized sets; it allows only equal-mass point sets as input, and is not meant
to compute partial matchings. I have performed this same experiment using data generated
from a uniform random point model, and the outcome was similar.

6.2 Impact of Clutter on the Approximation Accuracy

In this section I evaluate the accuracy of the partial matching computed by the pyramid
match with uniform bins in the presence of varying amounts of clutter.

In order to control the amount of clutter in the input point sets, I again establish realistic
synthetic object category models. Each category model is defined by a certain number of
parts, and each part has a Gaussian model that generates its appearance descriptor vector.
A number of example point sets are sampled from the category models using the Gaussian
parameters. Then, a controlled number of features representing clutter can be added to
each point set. The appearance of a clutter feature is determined by selecting a random
vector from a uniform distribution on the same range of values as the model features.

By adding increasing amounts of clutter to the point sets sampled from the model distribu-
tions, I can evaluate both how well a partial matching is able to resist clutter (i.e., how well
it can recognize similarity between point sets from the same model in spite of extraneous
clutter features), in addition to how well the pyramid match approximates the tolerance of
the optimal matching in this regard. There are a few metrics to assess this: distributions of
the raw error between the costs estimated by the pyramid match and the optimal matching,
their Spearman ranking correlations, and the relevant ranking quality of the optimal and



approximate measures. The Spearman ranking coefficient was used in the previous experi-
ments; it reflects how similarly two measures sort the collection of point sets. The raw cost
error between an approximate matching 7 and the optimal matching 7r* is defined as the
absolute difference between their associated costs:

Eraw (M(X, Y; f), M(X, Y; r*)) = C(MA(X,Y; )) -C(M(X,Y; 7*))

S 1[xi- yft- l - 5 (Ixi - y7*j (6.3)
xiEX xiEX

Notice that both the Spearman rank correlation and the absolute cost error do not take
into account any labels associated with the input sets. They solely evaluate how closely
the approximate measure estimates the optimal matching costs, or how similarly it ranks a
collection of inputs. For this experiment I also exploit the labels attached to each input set to
evaluate the actual quality of similarity measured by a matching, whether it is approximate
or optimal. That is, we can evaluate how well the partial matching serves to group point
sets that were drawn from the same model distribution; the partial matching is best if it
finds the highest similarity among sets representing instances of the same object category,
and vice versa. To quantify this, I use the normalized average rank f:

NNR I ri - NR(NR (6.4)

where ri is the rank assigned to the ith relevant example (set), NR is the number of relevant
examples for a given example, and N is the total number of examples. The normalized rank
is 0 for perfect performance (i.e., when all relevant examples in the data set are ranked as an
input's nearest neighbors), and it approaches 1 as performance worsens; a random ranking
results in an expected normalized rank of 0.5 [82]. In this case, relevant examples are those
sets that were sampled from the same category model.

I generated 50 examples for two synthetic category models, each of which was defined by a
set of m = 50 features with d = 2, for a total of 100 point sets. Then I added increasing
amounts of clutter features to every set and computed the resulting pairwise matching scores
for all sets according the pyramid match and the optimal partial matching. For a given
run, the amount of clutter added to each set varied uniformly between 0 and M; values of
M between 0 and 250 were tested, in increments of 25.

Figure 6-3 displays the results. The left plot in part (a) shows the distribution of the
normalized relevant ranking scores assigned by the optimal matching (red) and the pyramid
match (blue) across the different values of M. The points reflect mean values, and the
bars are standard deviations for all 100 x 100 matching scores. This plot reflects how
successfully the partial matching recognizes the similarity between relevant examples, even
when significant amounts of clutter must be ignored to do so. Both the approximate and
optimal measure have perfect rankings (f = 0) with M = 25, which is the case where
the clutter comprised as many as half the number of true model features. Even when the
amount of clutter equals the amount of model features (M = 50), the relevant ranking is
very strong (mean f < 0.025).
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Figure 6-3: Evaluating the impact of clutter features on the pyramid match's approximation

accuracy. See text for details.
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Beyond that, the relevant rankings deteriorate slowly for both measures as more clutter is
added. This is because once the clutter features in each set outnumber the model features,
it may be possible for a better partial match to be formed entirely between clutter features
from two sets, causing the relevant model features to be ignored. By the definition of a
partial matching, this is actually correct behavior; however, as the plot shows, it is rare
rather than typical for this degenerate case to occur since the distribution of the clutter
features is wider than that of the model features. Additionally, the rankings are always
much better than random (f = 0.5, the maximum value on the vertical axis), with the
optimal measure only slightly outperforming the pyramid match for values of M > 75.

The righthand plot of Figure 6-3 (a) shows the raw error distributions for each value of M,
displayed as boxplots. The lines in the center of the boxes denote the median value, the top
and bottom of each box denotes the upper and lower quartile values; the dashed lines show
the extent of the rest of the errors. This shows that the error of the pyramid match versus
the optimal matching remains fairly steady, regardless of the amount of clutter. This is
reasonable, since nothing about the approximation factor relates to the number of features
in a set.

Part (b) of the same figure shows four ranking plots covering the spectrum of amounts of
clutter tested, with the associated Spearman correlations (R) printed in the title of each.
Just as the pyramid match's absolute error is consistent across amounts of clutter, the
similarity of its ranking to the optimal matching's ranking remains steady.

In Chapter 5 I showed how to perform sub-linear time hashing with the pyramid match.
With point sets that are embedded as histogram pyramids, random hyperplane hashing
provides bounded approximate similarity search. In this case, similarity is measured by the
partial matching between point sets, normalized according to the product of the sizes of
both input sets. As discussed in Section 5.2.2, while this normalization scheme does admit
a locality-sensitive pyramid match hashing function, nornmalization by the minimum input
cardinality would not.

With the product normalization, the number of unmatchable features will have some effect
on the matching scores. However, the degree to which the unmatchable (or "outlier")
features differ from the matched features will not affect the matching scores, meaning
that pyramid match hashing is robust to increasingly distant outlier features. In contrast,
bijective matchings computed over point sets that have been re-weighted to achieve total
equal masses are not robust to increasingly distant outliers. (Recall Figure 5-2 in Chapter 5.)

These properties hold by definition, and I verify them empirically here with an experiment
with data similar to that used above. I again generated 50 examples for two synthetic
category models, each of which was defined by a set of m = 35 features with d = 2,
for a total of 100 point sets. I computed pairwise similarities using the pyramid match
normalized by the product of the input sets' cardinalities, pairwise similarities using the
optimal matching and the same normalization, and pairwise distances based on the bijective
matching approximation of [57]. To apply the bijective matching to unequally-sized sets,
points in a set were weighted so that all weights summed to one (as outlined in the pseudo-
code in Procedure 1 in Chapter 5).

Then I added to every set up to 100 clutter features having a value range bounded by
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Figure 6-4: A partial match normalized by the product of the sizes of both input sets will
remain robust to distant outlier clutter features (blue circles). This property cannot be
simulated by re-weighting point sets and computing a bijective matching (green squares).

a percentage Q of the inlier features' value range, and re-computed the resulting pairwise
matching scores. I tested for values of Q ranging from 100% to 1000%, in increments of 200.
(When Q = 100%, the inlier and outlier features have the same value range.) Figure 6-4
shows the results, with ranking quality quantified by the Spearman correlation coefficient.
The two left-most points on the plot correspond to matchings with equally-sized sets and
no clutter. The remaining points correspond to matchings with increasingly more distant
clutter or outlier features. The pyramid match scores normalized by the sizes of both input
sets remain robust to the addition of stronger outlier features (blue circles), whereas the
bijective matching must incorporate the distance of the outlier features in its matching and
suffers as that distance increases (green squares). For no outlier features, the results are
similar.

6.3 Impact of Missing Features on the Approximation Accu-
racy

In practice, we can expect some of an object's local features to be missing in different image
descriptions due to viewpoint changes, occlusions from other objects, or simply unreliable
feature detections. Therefore, it is important to consider the ability of a partial match to
handle inputs that may contain only a portion of the features belonging to a particular
category's model. In this section I present an experiment designed to evaluate the effect of
missing features on the pyramid match approximation accuracy and the ranking quality of
a partial match in general.

As in the previous section, I established two synthetic category models containing m = 50
parts each, with features of dimension d = 2. I again sampled 50 sets of points from each
model. Then, I computed the pairwise matchings for all the sets, but first altered each set
by removing some percentage P of its model features. I tested for values of P between 0%
and 90%, at increments of 10.
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Figure 6-5 displays the results. The format of this figure is identical to the format of
Figure 6-3, except that now the parameter we are testing (the horizontal axis in both
plots in part (a)) is the percentage of missing features per set. The left plot in part (a)
shows that even when as many as 30% of an object's features are missing, the impact
on the relevant ranking quality is negligible (r < 0.025). Then as we remove increasing
portions of the model's description, it becomes increasingly difficult for the matching to
discriminate between the two categories, as seen by the increasing relevant rank scores.
This is reasonable, since the pool of appearance features for both categories does overlap,
and so only observing a portion of the features can make the underlying model ambiguous.
Again, however, the pyramid match is very consistent with the optimal partial matching in
terms of producing relevant rankings.

The boxplots in the righthand plot in part (a) of the same figure show that the pyramid
match error distribution remains compact and low for percentages of missing features up to
about P = 70%. When 80% or 90% of the features are missing, the pyramid match's cost
estimates suffer a bit more, though the relevant rankings in the lefthand plot suggest that
the increase in raw error does not impact the quality of the relative ranks.

Finally, the four plots in part (b) of the same figure illustrate the approximate matching's
ranking similarity to the optimal matching across the spectrum of amounts of missing
features tested, with the associated Spearman correlations (R) printed in the title of each.
The top left plot in this group shows the rankings when there are no features missing.
Here, the Spearman correlation is only R = 0.81, meaning the rankings are fairly highly
correlated, but that the pyramid match does not exactly order items within a given category
as the optimal measure would, as reflected by the two blocks along the diagonal. However,
in terms of relevancy, the ranking is perfect. In other words, all items of the same category
are ranked by the pyramid match as more similar than all items of a different category,
regardless of how the rankings within the category may be shuffled versus the optimal
output.

The remaining three plots in this group show how the precise ranking quality is still strong
for P = 30% and P = 60% (R values of 0.84 and 0.71), but then significantly declines when
P = 90% of the features are missing per set. The vertical line structures in this plot reveal
that the pyramid match has assigned tied ranks for a large number of the sets, indicating
that when only 10% of the model features are present, they can match equally well to a
number of other sets drawn from either category.

6.4 Impact of the Feature Dimension on the Approximation
Accuracy

In the remaining experiments in this chapter, I provide results to empirically demonstrate
my method's accuracy and efficiency on real image data, and I compare the accuracy result-
ing from uniform bin pyramids to that obtained with vocabulary-guided pyramids. As in
the previous experiments, I directly evaluate the matching scores and correspondence fields
that are implied by the pyramid match against those produced with the optimal least-cost
matching.



In this section in particular I evaluate the accuracy of the approximate matching as the
dimension d of the feature space F increases.

For the following experiments, I extracted local SIFT [73] features from images in the ETH-
80 database [69], producing an unordered set of about m = 256 vectors for every example.
In this case, F is the space of SIFT image features. I used randomly sampled features from
300 of the images to build the vocabulary-guided pyramid, and 100 images were used to test
the matching. In order to test across varying feature dimensions, I also used some training
features to establish a PCA subspace that was used to project features onto varying numbers
of bases. For each feature dimension, I build a vocabulary-guided pyramid with k = 10 and
L = 5, encode the 100 point sets as pyramids, and then compute the pairwise matching
scores with the uniform-binned pyramid match, the vocabulary-guided pyramid match, and
the optimal least-cost matching. For the vocabulary-guided pyramid match I evaluate both
weighting schemes: the weights based on the "global" diameters of the histogram bins
(Eqn. 4.3 (a)) and the input-specific weights that exploit the features' distances to the bin
centers (Eqn. 4.3 (b)).

The top plot in Figure 6-6 (a) shows the Spearman correlation scores against the optimal
measure for the vocabulary-guided (VG) and uniform bin pyramid matchings. The results
from varying feature dimensions are shown for the 10,000 pairwise matching scores for the
100 test sets. The ranking quality of the input-specific weighting scheme (blue points) is
somewhat stronger than that of the "global" bin diameter weighting scheme (green points);
by definition, the input-specific weights can estimate a tighter limit on the distance between
two points in a bin, yielding a more precise sum of edge costs. Nonetheless, the global
weighting scheme does produce consistently accurate results across feature dimensions--
the average correlation with the optimal match is 0.89 -.---and as discussed in Chapter 4,
this choice of weights does have a small computational advantage over the input-specific
weights, and admits a Mercer kernel.

While the vocabulary-guided pyramid match remains consistently accurate (correlations
above 0.94 with input-specific weights) for high feature dimensions, the accuracy of the
approximation with uniform bins does degrade almost linearly as expected. The four plots
in part (b) of Figure 6-6 display the actual ranks computed for both approximations (VG
with input-specific weights and the uniform-binned pyramid match) for two of the 26 di-
mensions summarized in the plot in part (a). For low-dimensional features, both uniform
and vocabulary-guided pyramids perform fairly comparably; however, for the full 128-D fea-
tures, the vocabulary-guided pyramid match is far superior (right column of part (b)). The
optimal measure requires about 1.25s per match, while the pyramid match approximation
is about 2500x faster at 5 x 10- 4 s per match.

The well-known "curse of dimensionality" gives insights as to why the uniform bin pyramid
in practice suffers noticeably for high dimensions. For a pyramid matching to work well,
the gradation in bin sizes up the pyramid must be such that at most levels of the pyramid
we can capture distinct groups of points to match within the bins. That is, unless all
the points in two sets are equidistant, the bin placement must allow us to match very
near points at the finest resolutions, and gradually add matches that are more distant at
coarser resolutions. In low dimensions, both uniform or data-dependent bins can achieve
this. In high dimensions, however, uniform bin placement and exponentially increasing bin
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Figure 6-7: Number of new matches formed at each pyramid level for either uniform (dashed
red) or vocabulary-guided (solid blue) bins for sets with increasing feature dimensions.
Points represent mean counts at each level over 10,000 matches; bars denote standard devi-
ations. At low dimensions, both partition styles gradually collect matches up the pyramid.
However, in higher dimensions with the uniform partitioning, points begin sharing a bin
"all at once", i.e., at the same pyramid level. In contrast, the vocabulary-guided bins ac-
crue new matches consistently spread across levels---even for high dimensions-since the
decomposition is tailored to where points cluster in the feature space.

diameters fail to capture such a gradation: once any features from different point sets are
close enough to match (share bins), the bins are large enough that almost all of them match.
The matching score is then approximately the number of points weighted by a single bin
size. In contrast, because the vocabulary-guided pyramid tailors the feature space partitions
to the distribution of the data, even in high dimensions we will have a gradual increase in
bin size across levels, and in effect will obtain more discriminating implicit matches.

Figure 6-7 confirms this intuition, again using the ETH-80 image data from above. Note
that there are different numbers of total levels for the two types of pyramids in these plots
(L=6 and L=8); while the number of levels is set automatically based on the feature space
aspect ratio D for the uniform bin pyramids, for the vocabulary-guided pyramid the number
of levels is a parameter that dictates how fine grained the hierarchical clustering should get.
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6.5 Approximate Correspondence Fields

For many applications, the scalar matching score alone is desired and the implicit matching
is sufficient. However, we may have use for the explicit correspondence field that the
matching reflects. For example, when matching sets of image features, knowing which
component features were mapped to which could allow us to localize an object in a scene.

For the same image data, I used the pyramids to form an explicit matching as described in
Section 3.2.3, and compared the correspondences between features induced by my matching
to those produced by the globally optimal measure. For comparison, I computed corre-

spondences with both uniform-bin pyramids and vocabulary-guided pyramids. Using the
notation of Chapter 3, I measure the error of the correspondences of an approximate match-
ing ir as the sum of the errors at every link in the field:

(6.5)Ecorr (M (X, Y; ^) , M (X, Y; 7*)) = Iy -y -y ll.
xiEX

Figure 6-8 compares the correspondence field error and computation times for the vocabulary-
guided and uniform pyramids. For each approximation, there are two variations tested: in
one, an optimal assignment is computed for all points in the same bin; for the other, a ran-
dom assignment is made. The left plot shows the mean error per match for each method,
and the right plot shows the corresponding mean time required to compute those matches.

The computation times are as we would expect: the optimal matching is orders of magnitude
more expensive than the approximations (black line with triangles on right plot, which plots
time on a log scale). Using the random assignment variation, both approximations have
negligible costs, since they simply choose any combination of points within a bin.

It is important to note that in high dimensions, the time required by the uniform bin pyramid
with the optimal per-bin matching approaches the time required by the optimal matching
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itself. This occurs for similar reasons as the poorer matching score accuracy exhibited by
the uniform bins, both in the left plot and above in Figure 6-6; since most or all of the
points begin to match at a certain level, the pyramid does not help to divide-and-conquer
the computation, and for high dimensions, the optimal matching in its entirety must be
computed. In contrast, the expense of the vocabulary-guided pyramid matching remains
steady and low, even for high dimensions, since the data-dependent pyramids better divide
the matching labor into the natural segments in the feature space.

For similar reasons, the errors are comparable for the optimal per-bin variation with either
the vocabulary-guided or uniform bins. The vocabulary-guided bins divide the computation
so it can be done inexpensively, while the uniform bins divide the computation poorly and
must compute it expensively, but about as accurately. Likewise, the error for the uniform
bins when using a per-bin random assignment is very high for any but the lowest dimensions
(red line on left plot), since such a large number of points are being randomly assigned to
one another. In contrast, the vocabulary-guided pyramid bins actually result in similar
errors whether the points in a bin are matched optimally or randomly (blue and pink lines
on left plot). This again indicates that by tuning the bins to the data's distribution, the
vocabulary-guided pyramid achieves a more suitable breakdown of the computation, even
in high dimensions.

6.6 Summary

In this chapter I have shown the ability of the pyramid match to compute partial matchings
on real and synthetic data that approximate the optimal partial match at a significantly
lower computational cost. I have demonstrated the significant conceptual and practical
difference between the pyramid match and a related approximation developed by Indyk
and Thaper [57]. In a series of experiments I systematically assessed the pyramid match's
approximation accuracy under three important conditions: increasing feature dimension,
clutter, and missing features.

I demonstrated that a data-dependent hierarchical decomposition of the feature space can
result in more accurate correspondence fields than using a uniform decomposition for high-
dimensional features. By taking advantage of the underlying structure in the feature space,
the pyramid match can remain consistently accurate and efficient for high-dimensional in-
puts on real image data. The experiments also showed that even with significant amounts
of clutter or missing features, the pyramid match closely approximates the optimal partial
matching, in terms of both actual cost estimates and relevant rankings.



Chapter 7

Content-Based Image Retrieval

In this Chapter I provide content-based image retrieval results using approximate correspon-
dences between sets of local features, together with sub-linear time approximate similarity
search using Locality-Sensitive Hashing. With the matching approximations it is feasible
to quickly retrieve similar shapes and images from large databases -an ability which has
applications in various example-based vision systems--and the constraint on input feature
set size from which other techniques suffer is eliminated.

I experiment with several large data sets and compare against existing techniques, including
the Earth Mover's Distance (EMD). In Section 7.1 I present results for contour or shape
matching, while in Section 7.2 I focus on appearance-based local descriptions. In this chapter
I only consider matches between sets of equal cardinality, and I use the L 1 embedding
developed in [57], not the partial match described in Chapter 3. I initially reported the
results in this chapter in [41, 43] and [42], which pre-dated my development of the partial
match described in Chapter 3. Alongside the correspondence-based set matching approach,
on a series of data sets I also evaluate the two main alternative image matching approaches
reviewed in Chapter 2: voting and a bag-of-prototypes method.

7.1 Contour Matching with Local Shape Features

In this section, I first describe each of the data sets and feature representations used in
the shape-based retrieval experiments. Then I report on the matching performance of my
approach, followed by a discussion regarding its efficiency.1

7.1.1 Data Sets and Representation

I have run contour matching experiments on databases of human figures and handwrit-
ten digits. The human figure database contains 136,500 images of synthetic human figure
contours in random poses that were generated with a computer graphics package called

'I first reported the results in this section in [41] and [43].
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Figure 7-1: Projecting histograms of contour points onto the shape context subspace. The
points on the human figure on the right are colored according to their 3-D shape context
subspace feature values.

Poser [21]. I query this database with a separate test set of 7000 synthetic human figure
images, and a test set of 1000 real images from a single human subject in various poses. The
digit database we use is a publicly available benchmark data set, the MNIST database [80],
which has been used to test many different pattern recognition algorithms. It contains
60,000 training images and 10,000 test images of digits written by about 250 different peo-
ple. For the human figure images, we uniformly sampled 200 points from each silhouette
contour, and for the digits we sampled 100 edge points per example. Since in these ex-
periments we can sample equal numbers of contour points from every shape, we match the
equally-sized sets with the L 1 approximation described by Indyk and Thaper in [57].

Shape Context Subspace Features

To represent shapes in terms of their local parts, I employ the local shape context descriptor
of Belongie et al. [7]. The shape context feature at a single contour point is a log-polar
histogram of the coordinates of the rest of the point set, measured using the reference point
as the origin.

While matching with the full shape context feature is possible with the approximate match-
ing, a low-dimensional feature descriptor is desirable in these experiments, since we are using
a uniform bin approximation and can expect the matching accuracy to decline with the fea-
ture dimension d.2 Thus we find a low-dimensional feature subspace based on a large sample
of the shape context histograms, and then compute the pyramids in the domain of this sub-
space. The subspace is constructed from features sampled from the database of contours
to which the method will be applied. All contour features (from the database items and
novel queries alike) are then projected onto the subspace, and the approximate matching is
performed in the domain of a small number of their subspace coordinates (see Figure 7-1).
We use principal components analysis (PCA) to determine the set of bases that define this
"shape context subspace".

2The experiments in this chapter pre-dated my development of the vocabulary-guided pyramid match
(described in Chapter 4); it would provide another way to address this issue.



I found that a very low-dimensional subspace was able to capture much of the local contour
variation in these data sets. Figure 7-2 gives examples of the shape context subspace for
human figures and handwritten digits. Figure 7-3 measures its expressiveness as a function
of feature dimension, as compared to a higher-dimensional raw point histogram.

Each contour is described with an unordered set of shape context subspace features. I
construct shape context subspaces from 5 x 12 log-polar histograms extracted from the
training sets, using samples of 855,600 and 816,665 histograms from the human figure
and handwritten digit data sets, respectively. The representation of a novel contour is
determined by projecting its shape context histograms onto the low-dimensional subspace.
This representation is translation invariant, and the scale of the shape context histograms
initially extracted from the data is determined from the mean inter-point distance per shape.

There are several tradeoffs that must be considered when selecting d, the number of subspace
dimensions to use for the shape context subspace features. The larger d is, the more exactly
the projection coordinates will capture the original histogram feature extracted from the
image (i.e., the smaller the PCA reconstruction error will be). However, larger d values will
increase both the distortion that is induced by the embedding, as well as the complexity of
computing the embedding. The dimension of the embedded vectors- ---and the time required
to compute the L1 distances ------are also directly affected by d. Moreover, higher-dimensional
subspace projections, though strictly capturing the original data more faithfully, will not
necessarily provide the most meaningful representation of the feature; one purpose of re-
ducing the features' dimensionality with PCA is to distill the most significant modes of
variation within the high-dimensional feature and use only those most discrimininang di-
mensions as the descriptor. In fact, since we have a quantitative task by which retrievals
may be judged (k-nearest-neighbor classification performance), it is more appropriate to
choose d with this objective than to select it solely on the number of eigenvalues with the
highest magnitude (a standard approach).

Ultimately, the optimal setting of d.. -the setting that preserves both descriptiveness and
efficiency-- will depend on the data set. Thus in my experiments I determine the best
setting by looking directly at the relationships between d and both recognition performance
and retrieval efficiency. Using a reserved portion of the training set to query the remaining
training examples, I record the correct k-NN classification rate, embedding times, and query
times achieved with each increasing value of d. While seeking a good setting for d in this
way, I measure relative query times in terms of an exhaustive L 1 search on embedded vectors
(i.e., without LSH). This ensures both that the best possible classification performance is
observed, and that the query times are fairly uniform across examples for the same d, so
as not to be influenced by outlier cases that may occur with LSH. Plotting the recognition
rates, embedding times, and query times then reveals the tradeoffs between complexity and
classification performance and allows us to choose an appropriate value of d to be applied for
the actual test examples (see Figure 7-4). Using this process, I found that for the human
figure and MNIST digit data sets, a 2-D projection adequately captured the descriptive
power of the shape context feature and produced good contour matches, yet also yielded
very efficient embedding and query complexities.
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dimensions. The optimal correspondences for feature sets composed of five and 32 shape

context PCA coefficients are shown here and compared with the correspondences that result
with the raw (d=60) shape context feature. The optimal correspondence found by the raw

high-dimensional feature is generally achieved by projections onto a much lower-dimensional
subspace.

Locality-Sensitive Hashing Parameters

I constructed a separate set of hash functions for each image data set in order to perform LSH
approximate nearest-neighbor retrievals. I determined the LSH parameters (the number of
hash tables and the number of bits per hash value) based on the proof in [55] which shows
how to select parameters for the case of the Hamming space over a non-binary alphabet,
such that the desired level of approximation versus speed tradeoff is achieved. The radius r
denotes the distance from a query point where similar points (its "r-neighbors") are believed
to lie. The probability of collision of similar examples (examples within distance r), P1, is
set to 1 - ,, where d' = Zd, d is the dimension of the embedded vectors, and Z is the
largest coordinate value in any of the embeddings. The probability of collision for dissimilar
examples (examples farther than (1 + e)r from each other), P2, is set to 1 - r(1+. Then
the number of bits k and the number of hash tables 1 are set as follows:

k = log/p (N) , I= (B
(7.1)

where N is the total number of examples in the database, and B is the maximum number of
examples we wish to search exhaustively after hashing. For the complete data set of 136,500
human figure examples, this meant using eight tables and 120-bit functions. For the MNIST
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nents past the first two dimensions have eigenvalues of significant magnitude, the top right
plot reveals that these dimensions are superfluous in terms of recognition performance. The
data indicate that the choice of d = 2 is appropriate for this data set, since there is an
excellent balance between recognition performance and embedding/query efficiency at this
point.
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digit data set, I used five tables and 96-bit functions. The radius r is determined for each
data set by examining the distances and class labels corresponding to the nearest neighbors
of an embedded point set under L1. For all experiments, I set E to 1, which means the upper
bound on the query time is O(N2).

7.1.2 Retrieval Quality

To quantitatively measure the quality of the database retrievals our contour matching
method yields, we pose a k-NN classification task for each data set. A k-NN query se-
lects the nearest k examples among a database of training examples, and then labels the
test point by a majority vote of these samples.

Human Figures Data Set

For the human figures data set, I wmeasure retrieval quality by comparing the 3-D pose of
each query example with the pose of the k most similar examples that are retrieved from
the database. When the synthetic human figure database is generated, the 3-D pose (a list
of 19 3-D joint positions) is recorded for each example. If the joint positions corresponding
to a retrieved shape are on average within some threshold of distance from the known joint
positions of the query example, we consider the retrieved shape a good match. I chose a
threshold of 10 cm, since this is a distance at which the 3-D poses are perceptually similar.

Figure 7-5 shows some example retrievals using our approximate matching approach with
synthetic (Poser-generated) query images. Examples of the nearest neighbors that were
retrieved for the images from a real person are shown in Figure 7-6. These real image
queries contain a single subject performing various actions against a static background.
Background subtraction was done automatically using standard frame differencing followed
by nlorphological operations.

Figure 7-7 (a) quantitatively compares the quality of results obtained with the approximate
approach with those obtained from EMD (the optimal matching) for a database of 10,000
images. Due to the complexity of EMD, the optimal solutions were necessarily computed
with a parallel implementation. In this figure the optimal results were obtained by running
the transportation simplex algorithm to compute EMD on full 60D shape context features,
whereas results for the two approximations (the embedding and LSH) were obtained using
only 2-D shýape context subspace features. There is a slight decrease in classification per-
formanice at each approximation level; however, I found that the practical bound on the
distortion introduced by the L 1 embedding is significantly (about one order of magnitude)
lower than the upper theoretical bound. Moreover, the bar graph in Figure 7-7 (a) demon-
strates that our method shows only a 4% reduction in accuracy over the exact method, and
as I discuss in Section 7.1.3, this small error increase allows us a substantial speedup of four
orders of magnitude.

Figure 7-7 (b) shows how well our approach to contour matching serves as a means of
estimating 3-D pose from a set of 2-D occluding contour points. The boxplot shows the dis-
tributions of the highest rank that is assigned by my method to an example in the database
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Figure 7-7: (a) Comparison of the quality of contour matching retrievals from the exact
versus approximate methods for the human figures data set. Quality is measured via a
k-NN classification task. The test set and training set are composed of 1000 and 10,000
examples, respectively. For this problem, my approach achieves a speedup of four orders
of magnitude over the exact method, at the cost of only a 4% reduction in accuracy. (b)
Distributions of the highest rank of a correct match for human figure retrievals. Lines in
center of boxes denote median value; the top and bottom of boxes denote upper and lower
quartile values, respectively. The dashed lines show extent of rest of the data, and the
pluses denote outliers. These boxplots are shown on a log scale. See text for details.



with a very similar (within 10 cm) pose to a query. In most cases, the second nearest neigh-
bor is a "correct" match, meaning it correctly identifies the pose of the query. There are
of course ambiguities in the task of inferring 3-D pose from a single frame silhouette view;
due to self-occlusions or ambiguities about the orientation of the person, the information
provided by the outer contour may be an insufficient indicator of 3-D pose. Neverthe-
less, we are encouraged by the fact that the correct matches in pose are generally among
the highest ranked examples according to our method. We have also investigated how
example-based pose estimates may be integrated and improved by considering sequences
of silhouette frames [48] or incorporated within a probabilistic model-fitting technique for
pose tracking [29].

Handwritten Digits Data Set

In a practical system, classification rates can be improved by adding a refining step: some
number of the best matches retrieved by the fast approximate method may be fed as input
to a more elaborate (and presumably more expensive) matching algorithm for re-ranking.
For the MNIST handwritten digits data set, I took this refinement approach. The goal is
to correctly label the identity of a query handwritten digit based on the majority vote of its
k-NN in the training set of 60,000 examples. First, we use our approximate shape matching
method with shape context subspace features to retrieve an initial set of w nearest neighbors
for a query. Then we compute the exact shape context distance [7] between this initial
nearest neighbor set and the query example, which yields a re-ranking of the neighbors.3

The k closest neighbors in this re-ranked or refined set are then used to do the classification.
Figure 7-8 shows some example matching results for the handwritten digits and illustrates
the impact of the refinement stage.

Figure 7-9 shows classification performance for the handwritten digits data set. Since the
MNIST digit database is a publicly available benchmark data set, I am able to compare our
algorithm's performance against that of many other researchers. (See [80] for a summary of
d(ifferent algorithms' results.) At this writing, the best published classification performance
was achieved by the shape context matching method of Belongie et al. [7], which correctly
c·lassifies 99.37% of the 10,000-item test set. By combining our approximate contour match-
ing technique with shape context matching as described above, we are able to correctly
c(lassify 99.35% of the test set. Note that while the technique in [7] compares query shapes
against every database item, with the refinement framework we need only evaluate the
shape context distance between the query and a fraction of the database; so with w = 6000,
our method misclassifies only 65 of the 10,000 test digits, but classification is an order of
magnitude more efficient than doing a linear scan of the database.

Even with a much shorter refinement step that evaluates only 50 exact shape context dis-
tances, our method correctly classifies 97.42% of the test set. With only 100 exact shape
context distances, it correctly classifies 98.08%. In comparison, in [120] Zhang and Malik
report a correct classification rate of 97.0% on the same data using their discriminative

3 Note that the exact shape context distance is different from an optimal matching between features. It
first solves the optimal assignment problem, and then given those correspondences, it estimates the thin-plate
spline transformation that best aligns the two shapes. The scalar measure of dissimilarity is then the sum
of the matching errors between the corresponding points, plus the magnitude of the aligning transform [7].
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Figure 7-8: Example retrieval results for the MNIST handwritten digits database. The
approximate matching efficiently filters through the N-item database to find an initial set
of w examples whose edge point histograms have low-cost correspondences with the query's
histograms. Then, in order to refine the initial rankings, a more expensive shape matching
method (such as shape context matching [7]) can be applied to only the w examples that
were retrieved with an inexpensive approximate measure. Classification is then done using
only the first k re-ranked examples (k < w). Each row shows one example. Part (a)
shows some query digits from the MNIST test set. Part (b) shows the first w = 10 nearest
neighbors for these queries under the approximate matching with Li (in rank order). Part
(c) shows the same 10 nearest neighbors after they are re-ranked by the shape context
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Figure 7-9: Contour matching-based classification of the MNIST handwritten digit test set.
Given a query image, the approximate matching between sets of contour features is used
to obtain an initial set of nearest neighbors in the training set, and then shape context
matching is used to refine the ranks of this set of neighbors. Classification is based on the
refined rankings.

classifier, when allowing the same computational cost of 100 exact shape context distances
against selected prototypes. In addition, our method's training stage is substantially more
efficient and perhaps more easily updatable than that given in [120]. Since the method
in [120] relies on k-medoids to determine prototypes from the training set (an O(NdkT)
operation for T iterations), it is not clear that it will be able to accommodate new training
examples without an expensive re-training step. In contrast, since the "training" of our
method consists only of embedding available training examples, additional examples may
be incorporated simply by embedding the new examples and entering them into the LSH
hash tables.

7.1.3 Empirical Measure of Complexity

With the L 1 histogram embedding, the computational complexity of retrieving the approxi-
mate minimum cost feature correspondences for feature sets of cardinality m and dimension
d residing in a space of diameter D is O(md log D). The diameters of the spaces in which
our point sets reside are on the order of 103 up to 105, depending on the representation;
with m on the order of 102, d = 2, theoretically this means that a single embedding and
L 1 distance cost requires on the order of 103 operations. This is the cost of embedding two
point sets, plus performing an L 1 distance on the very sparse vectors.

In practice, with d = 2 and m = 200, an unoptimized C implementation of our method takes
about 0.005 seconds to perform a single matching between the human figure images with
exact L 1 (less than 0.005 seconds to compute the two embeddings, plus 7.9 x 10-5 seconds
to compute the L 1 distance). In comparison, to compute a single exact EMD distance using

-. ·- -..,~........1.... ..... ..i.... ....... -

-Ap- k =1
-4-k=3 ...

~k= 5



the C implementation of the simplex algorithm provided by Rubner [92] required on average
0.9 seconds for data of the same dimensions. In accordance with the upper bound on the
embedding's space requirements, the number of nonzero entries in the sparse embedded
vectors was on average 350 for the human figure contours with the shape context subspace
representation. For the MNIST digits data, with d = 2 and m = 100, the average time
needed to compute an embedding was 0.003 seconds, and each L 1 distance required 1.7 x
10- 4 seconds.4

Figure 7-10 (a) gives a summary of the empirical run-time behavior of the embedding. My
experiments confirm that the run-time for embedding point sets increases only linearly with
the size of the input's dimension or cardinality. This means that the method scales well to
handle inputs with large representation sizes.

An even larger payoff for using the approximate matching, however, comes when we use
LSH to query a large database with an embedded point set. With E set to 1, the upper
bound on the query time is O(N½). The input must be compared against only a small
fraction of the database's embedded vectors-- those in the union of the hash buckets that
are indexed by the query's embedding.

On average, in my experiments LSH needed to compute only 1915 L 1 distances per query
for the human figures database, less than 2% of the database. The median query time for
the complete 136,500-item Poser database was only 1.56 seconds. In comparison, a single
query with the exact EMD method would require 34 hours (performing a worst-case linear
scan of the database). Figure 7-10 (b) shows how query time for the human figure data set
varies with the database size.

For the MNIST digits data set, the median query time using LSH (and no refinement step)
was 0.14 seconds, and on average a query's embedding was compared to 94 training exam-
ples, less than 1% of the database. When the refinement step described in subsection 7.1.2
is included, the query time increases by w x g, where w is the number of rankings that are re-
fined and g is the time needed to perform one shape context distance. (The implementation
of the shape context distance that we are using requires g = 0.07 seconds.)

7.2 Image Matching with Sets of Invariant Local Features

In this section, I show results for content-based image matching where images are described
by local appearance features. I experiment with three types of image data: scenes, object
categories, and textures. For each data set, I directly compare the matching results against
the primary alternative techniques based on voting [73, 77, 105, 95] and a bag-of-prototypes
approach [102, 26]. 5

As reviewed in Chapter 2, image features that are stable across varying scales, rotations,
illuminations, or viewpoints are desirable for recognition and indexing tasks, since objects

4 All times reported above are taken from experiments run on a machine with a 1.67 GHz processor
and 3.5 GB of memory. Specific run times provided throughout should be considered relative, as recent
implementations perform even faster.

51I first reported the results in this section in [42].
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Figure 7-10: (a) Mean time required to compute the multi-resolution histograms for each
of 500 point sets, for varying dimensions and cardinalities. (b) Query time distributions
for embedded point sets for increasing database sizes. The test set is composed of 1000
examples from the human figure database, d = 2, m = 200. The lines in the center of
the boxes denote median values; the top and bottom of the boxes denote upper and lower
quartile values, respectively. The dashed lines show the extent of the rest of the data, and
the pluses denote outliers. The median query time for the 136,500 item database is only
1.56 seconds; exact EMD could require over a day to perform the same query.
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are likely to repeat these invariant features in real-world imaging conditions. An interest
operator is generally applied to the image to detect stable or distinctive points, and then a
local descriptor is extracted from the patch or ellipse around each interest point. I represent
each grayscale image by the unordered set of the local descriptor vectors extracted from its
interest points.

In these experiments I use two types of interest operators: the Harris-Affine detector de-
scribed in [79], which detects points that are invariant to scale and affine transformations,
and the Scale Invariant Feature Transform (SIFT) interest operator of Lowe [73], which
detects points that are invariant to scaling and rotation and has been shown in practice
to be resistant to common image transformations. I employ the low-dimensional gradient-
based descriptor called PCA-SIFT [63] to describe patches extracted at these interest points.
Other interest operators or descriptors are of course possible. For these experiments, the
weight given to each feature in a set is normalized to produce equal-mass sets. At the
time when I ran these experiments for [42] (which pre-dated my development of the partial
match for variable-sized sets) the weight normalization was necessary to fit the equal-mass
requirement of the L 1 embedding of [57]. See Chapter 8 for results using my approximate
partial matching between unequal-mass sets.

The type of local features used may not individually contain explicit spatial information.
However, my method allows spatial constraints among the local features to be enforced
by augmenting the feature representation to include an encoding of the geometry of other
interest points in relation to each given feature. The descriptor for each interest point
is concatenated with invariant information about the configuration of its spatially nearest
interest points in the image. Then, when these higher-order feature distributions are com-
pared under the set matching, the low-cost feature matching seeks to satisfy the additional
constraints.

There are various possible constraints to include. To designate simple proximity constraints
between features, each feature xPi is paired with its n nearest-located features in the image
to produce n new features of the form [xPi, Pi], , where pi is the ith closest interest point to

pj, for 1 < i < n. Additionally, the angle of separation Oi between two features' dominant
orientations can be incorporated to further constrain their geometric relationship, creating
features of the form [xPi, xPi, Oi]. Both result in a simnilarity-invariant descriptor, since the
length ratios of two lines and the angle between two lines are invariant binary relations under
similarity transformations [35]. Other constraints based on affine or projective invariants
are possible but would require larger tuples.

7.2.1 Methodology

For each data set, I use the normalized average rank f described in Chapter 6 (and repeated
here for convenience) as a measure of matching performance:

1 (R NR(NR - 1)(

r NN r 2 (7.2)
N NNi~ NR-N 2



where ri is the rank at which the ith relevant image is retrieved, NR is the number of
relevant images for a given query, and N is the number of examples in the database. The
normalized rank is 0 for perfect performance (i.e., when all relevant images in the database
are retrieved as a query's nearest neighbors), and it approaches 1 as performance worsens;
a random retrieval results in an expected normalized rank of 0.5 [82]. I also report results
in terms of the classification error rates when the k-nearest neighbors (k-NN) are used to
vote on the query's class label, with k = 3 in all experiments. The normalized rank is more
comprehensive, but recognition error is sometimes a more intuitive measure of performance.

For each data set, I compare our algorithm's performance with two other techniques: a
voting technique and a prototypical-feature technique. All three methods share the idea of
representing images based on their sparse sets of invariant features, but they vary in the
way that they judge similarity between the feature sets.

For the voting scheme, each feature in a query image is compared against all of the features
extracted from database images, and then that query feature casts a vote for the database
image containing the nearest neighbor feature in terms of L2 distance. The database im-
ages are then ranked in similarity to the query based on the number of votes they have
received. Note that when measuring the voting technique's performance, I used an exact
(exhaustive) search to determine each feature's nearest neighbor, but exhaustive search is
computationally infeasible in practice. So the voting results should be considered an upper
bound; in practice, an approximate-NN technique such as LSH or BBF [73] is used to make
voting comJputationally tractable, but at some cost of matching error.

For the prototypical feature scheme, vector quantization is used to map all descriptors to
a discrete set of prototypes, which are found by running k-means on a set of examples
containing images from each class. Each image is represented by a vector giving the fre-
quency of occurrence of each prototype, weighted by the term frequency - inverse document
.frequency. The database images are then ranked in similarity to the query based on the
normalized scalar product between their frequency vectors. Our implementation is modeled
on the video data mining method of Sivic and Zisserman [102]; we omit the "stop-list",

and temporal feature tracking steps since we are matching static, non-sequential images in
addition to video frames in these experiments.

To extract the SIFT, PCA-SIFT, and Harris-Affine features in these experiments, I used the
code that the authors of [73, 63, 79] have provided online. I used the first eight dimensions
of the PCA-SIFT features as input to all methods, and on the order of 102 prototypes for
the prototypical-feature method (100, 400, and 700 clusters for the scenes, objects, and
textures, respectively); these parameters were optimized for recognition performance on a
held out set of examples.

7.2.2 Scene Matching

Shot matching is a specific use of scene recognition where the goal is to automatically
identify which video frames belong to the same scene in a film. To test our method in this
regard, I used a data set of images from six episodes of the sitcom Friends. I extracted one
frame for every second of the video (so as to avoid redundancy in the database), for a total
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Figure 7-11: Matching results for the scenes data set. The plot on the left (a) shows the
distribution of normalized ranks of relevant images (boxplots shown for each method, axis
on left) as well as the k-NN classification error rates for k = 3 (dark bar on right for each
method, axis on right). VQNSP denotes matching with the normalized scalar product ap-
plied to vector-quantized features, VOTE denotes voting with each feature independently,
and AEMD denotes matching with approximate correspondences on raw feature distribu-
tions. A normalized rank of zero signifies a perfect ranking, where all relevant images are
returned as the closest nearest neighbors. The red lines in the boxes denote median values;
the top and bottom of boxes denote upper and lower quartile values, respectively. Dashed
lines show the extent of the rest of the data; pluses denote outliers. The images next to the
plot are example retrievals obtained with the approximate matching. The query in each
row is the leftmost image, and the subsequent images are its nearest neighbors.

of 8,335 images. The SIFT interest operator was used to detect keypoints, and PCA-SIFT
descriptors formed the feature sets.

With the approximate-NN technique LSH, it is only necessary to compute L 1 distances
between the query's histogram embedding and a small portion of the database embeddings.
In this case, queries on average required only 480 distances to be computed, i.e., on average
each image was compared to 5% of the database.

Figure 7-11 shows the matching performance of my method, voting, and prototype-feature
matching on a ground truth subset of the Friends data set containing 100 images that were
hand-labeled with scene identity. These 100 images contain frames from 27 different scenes,
with about four images from each scene. Each image from the same scene is taken from
a different camera shot so that the viewpoints and image content (actors' positions, etc.)
vary. I used leave-one-out cross validation (LOOCV) for these ground truth tests in order
to maximize the use of the labeled data.

Using the k-NN under each method as a classifier of scene identity, voting classifies 93%
correctly, my approach classifies 90% correctly, and the VQ approach classifies 84% cor-
rectly. This experiment indicates that the salient SIFT features were reliably extracted in
each instance of a scene, making voting very successful. This seems reasonable; although
the images have some viewpoint variation, due to the nature of the source-a TV sitcom
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Figure 7-12: Matching results for the objects data set. Plotted as in previous figure.

set-they have consistent quality and illumination, and each scene is unique enough that
discriminating features have good leverage under voting. However, this voting result did
require exhaustive search for NN features, which is computationally prohibitive in practice.
We would expect marginally worse performance from voting if an approximate method were
used to find NN features, as the reduction in computational complexity does come at the
cost of some accuracy. My method does nearly as well as "perfect" voting, yet is much
more efficient; exact voting requires hours for a match that my method performs in un-
der a second (see Section 7.2.5). The relevant rank distribution is somewhat wider under
the prototype-feature method (VQNSP), indicating that the quantization of the features
adversely affects performance for this data set.

7.2.3 Object Category Retrieval

Next I evaluated our method on an object retrieval task using the ETH-80 database [69],
which contains images of 80 objects from eight different classes in various poses against a
simple background. I included five widely separated views of each object in the database,
for a total of 400 images. The Harris-Affine detector was used to detect interest points, and
PCA-SIFT descriptors were again used to compose the feature sets. The k-NN classification
accuracy and the relevant rankings were measured via cross-validation, where all five views
of the current test object were held out from the database. Since no instances of the query
object are ever present in the database, this is a more challenging task than the previous
scene recognition experiment; the goal is to rank all other instances of the object class
as a query's nearest neighbors, but the other instances will exhibit intra-class appearance
variation.

Figure 7-12 shows the matching performance of the three methods for this data set. Our ap-
proximate feature matching approach (AEMD) gives the best k-NN classification accuracy,
meaning that the three nearest neighbors it found for each query were most consistently
from the correct class, although by this metric the other methods do nearly as well (errors
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Figure 7-13: Matching results for the textures data set. Plotted as in previous figures.

range from 19% to 22%). VQNSP achieves a slightly lower median relevant ranking score
than AEMD. However, both AEMD and VQNSP assign substantially better relevant rank-
ings than VOTE; under AEMD and VQNSP many of the relevant images from the same
object class were usually given high rankings, whereas VOTE could only assign high ranks
to a few very similar objects.

I found local gradient-based descriptors to be fairly effective for matching these images;
however, this representation does have some limitations that are revealed by this database.
Some objects from different classes are similar enough in terms of shape and local corner-
based interest points that the PCA-SIFT feature cannot discriminate between them. For
instance, an apple query at times retrieves a tomato among its nearest neighbors (see
Figure 7-12, third row of images). Additional features such as color distributions may be
necessary to improve performance for any of the methods on this type of data.

Voting does poorly in this experiment because it finds matches based on how well individual
features correspond, ignoring the higher-level information captured by the distribution of
local features that occur on an object. The appearance variation across different instances
of the same object class cause variations in the detected local features, which misguides
the independent votes cast by the query object's features. This indicates that generally the
set of features an object exhibits can be more discriminative than each individual feature
considered separately, causing the distribution-based approaches (AEMD and VQNSP) to
be more successful. Thus while voting appears to be an effective but expensive strategy
when searching for the same instance of an object (as in the scene matching task), this data
set shows it to be a weaker approach for category-level matching tasks.

7.2.4 Texture Matching

Finally, I have experimented with a data set of texture images. There are issues unique to
comparing textures as opposed to the scenes and objects compared in the above experiments;
in particular, textures are often defined in terms of how local features or structures co-

102

VI dM7
i
i
i---
i



S40%

S6%

.26

z
o 20

VQNSP matching error (scenes dataset)

1-" 500 1000 1500
Number of prototypes

Figure 7-14: The matching performance of prototype-based methods can be sensitive to the
number of prototypes chosen.

occur. Each instance of a texture is a sample of an underlying, nonuniform pattern. This
makes texture matching another domain that is especially amenable to my method since
it captures the joint statistics of invariant features. I ran experiments with the publicly
available VisTex Reference database, which contains 168 images of textures under real-
world conditions, including both frontal and oblique perspectives and non-studio lighting.

Figure 7-13 shows the matching performance of the three methods for this data set. I
randomly selected a set of 25 VisTex examples. 6 Each image was split into halves, making
50 images, and again we tested with LOOCV. The goal in this test was for each query to
match most closely with the other half of the texture image from which it originated. Note
that most of the textures are mainly homogeneous at a high level, but that the two halves
of each image still have significant variations, and different structures occur in each half.

Our approximate set matching approach results in the best texture classification perfor-
mance on this data set. While the methods capturing co-occurrence information (AEMD
and VQNSP) assign rankings that are tightly distributed close to zero (the ideal normalized
rank), voting fails to consistently assign low ranks to images of the same texture, resulting
in a much wider distribution centered at 0.14. While voting was successful for scene match-
ing where distinct features were repeated, it breaks down for texture matching due to the
variation of the features within different samples of the same texture. As with the object
categorization task, voting suffers because it does not capture co-occurrence information
that is critical for texture matching. Based on the texture retrievals obtained by voting, I
found that it risks casting excessive votes for images containing a repeated "generic" feature.

7.2.5 Discussion

In all these image retrieval experiments, I found that VQNSP matching quality was sensitive
to the clustering that defined the prototypes (see Figure 7-14), as was also observed in [26].
The number of clusters can be thought of as the "bin size" for this method - more clusters
means smaller bins. The quality of the matching varied substantially depending on both the

6 The entire VisTex database was not used for the comparative study due to the computation time needed
to get exact NN features for voting. Using all the textures, AEMD achieves a median normalized relevant
rank of 0.003.
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Figure 7-15: Mobile image-based object search.

number of clusters, as well as the random starting point of k-means. Additionally, the type
of images used to create the prototypes affected VQNSP's matching performance. I found
it necessary to build prototypes from images that were very similar to the test examples in
order to achieve VQNSP's best performance (i.e., other scene images from the same video,
or other examples from the same objects in the ETH-80 database), which suggests that it
may be difficult to use the prototype-based methods to do "general purpose" matching on
purely unseen test data.7 As shown in Figures 7-11, 7-12, and 7-13, compared to VQNSP,
AEMD more consistently ranked both the Friends and textures images (and equally ranked
the ETH-80 images), and it does not require a parameter choice since it matches the (un-
binned) features themselves.

As in the previous shape retrieval experiments, I set E to 1, making the upper bound on the
query time O(s v'N), where s is the number of nonzero histogram entries, s = O(m log D).
In comparison, to process one query, a voting scheme must perform m retrievals from a
database with on the order of N x m items in order to match each of its d-dimensional fea-
tures to the database, making a single query cost O(dm2N) if exact NN features are found.
For the prototype-frequency method, the query time has an upper bound of O(dpmN),
where p is the number of prototypes. To give a concrete example, with our implementa-
tions and d = 8, N = 8335, m = 1000, p = 500, and D = 316, a single voting query requires
over 2.2 hours, a single query with the prototype-based method requires 1.62 seconds, and
our method requires 0.49 seconds.

7.3 Related Applications

The results in this chapter have focused on the quality of correspondence-based image
and shape matching using approximate matching and similarity search techniques for local
feature representations. As the experiments are presented, the end goal is to produce highly

'However, researchers have made some advances on the problem of efficiently developing good image
vocabularies since I performed these experiments. See for instance [60].
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efficient, good quality retrievals. However, in work with my colleagues, I have also shown
higher-level applications of fast approximate retrieval techniques for situated search from a
mobile device (see Figure 7.2.5) and probabilistic pose tracking.

We have applied our approximate matching algorithm in a novel system for image-based
situated search on a mobile platform in [117]. Current systems for search are driven by
keywords reflecting concepts already known by a user. But often when a user is in an
unfamiliar environment or encounters a new object, keywords alone cannot adequately
specify what information is desired. When touring a new city, how should a user use her
miobile phone or PDA to access a web page describing an unmarked building of interest?
When hiking in the wilderness, how could a user get immediate information about an
exotic flower or creature he happens upon? Our system allows visual cues to be used in
cioncert with keywords on a mobile device to find web pages containing relevant text and
images. With this "point-and-search" interface, a user has a direct way to retrieve pertinent
information on the spot.
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Chapter 8

Supervised Learning and the
Pyramid Match Kernel

The previous chapter focused on content-based retrieval applications using approximate
correspondences and randomized hashing, where the approximate matching scores were
simply a vehicle to identify similar examples or infer categories via nearest neighbors. In
this chapter I show that we can in fact learn from sets of features using the pyramid
match as a kernel function and exploiting well-developed kernel-based learning methods. I
concentrate on two general supervised learning techniques: discriminative classification and
regression.

8.1 Kernel Methods and the Pyramid Match

For both classification and regression I make use of existing kernel-based learning methods,
but insert the pyramid match kernel (PMK) as the set kernel with which they operate.
In particular, I train Support Vector Machines (SVMs) and Support Vector Regressors
(SVR~s) to perform classification and regression with the PMK. In this section, for the
reader's convenience, I briefly overview binary classification with SVMs, using the notation
of [93]. I then discuss a practical issue regarding large diagonals that may occur in pyramid
match kernel matrices.

8.1.1 Support Vector Machines and Regressors

Consider the problem of learning to predict binary labels for patterns in the input space
X C sWN; we want to learn a function f : X -. {1} based on some training data pairs
(xl, y),. .., (xj, Yw) E RN x {±l}. When given a new unseen example x, this function should
predict the correct label y for examples generated from the same underlying distribution as
the training data, that is, f(x) = y.

A hyperplane classifier (w -x) + b = 0, w E RN, b E can be considered as a decision
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function: f(x) = sgn((w -x) + b). Among all such hyperplanes separating the training data
into two classes, the optimal separating hyperplane is the one yielding the maximum margin
of separation between the classes, as it provides the lowest bound on the expected general-
ization error. To construct the optimal hyperplane, the following optimization problem is
solved:

1
minimize 1w11 2

2
subject to yi - ((w xi) + b)2 1, i = 1,...,1. (8.1)

The constrained optimization problem is solved by introducing Lagrange multipliers ai _ 0
and a Lagrangian:

L(w, b, c) = lw12 - ai(yi. - ((xi. w) + b) - 1). (8.2)
i=1

The hyperplane decision function is then

f(x) = sgn yiai - (x-xi) + b (8.3)

and those patterns from the training set xi whose corresponding ai is non-zero in the
solution are called the support vectors. Only the support vectors, which lie on the margin,
play a role in the optimization and in the classification of a novel example. (For cases where
the classes are non-separable, slack variables may be introduced via an upper bound C on
the Lagrangian multipliers ai.)

To construct Support Vector Machines, the optimal hyperplane is computed in a feature
space: D(xi) is substituted for each training example xi. Since all patterns occur only in dot
products in the decision function, a Mercer kernel K can be inserted, making it unnecessary
to compute an explicit mapping to the feature space:

f(x) = sgn( E yiai- ( (D(x) '-(xi)) + bl

Ssgn yiai - K(x,xi) +b. (8.4)

The associated quadratic program is then

maximize W(a) = 1=ai - -i,j=l i•ajyiyjK(xi, xj)

subject to ai > 0, i = 1,..., 1, and =l aiyi = 0. (8.5)

As we can see above, relative to some particular training data, only the matrix of kernel
values between all pairs of training examples (K(xi, xj), for i,j = 1,..., 1) is needed to
train an SVM. Therefore, in general the inputs xi, xj need not be vectors; the input space
X need not be in RlN, but could for instance consist of graphs, trees, strings, or sets,
provided an appropriate Mercer kernel is available. The kernel's similarity values determine
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the examples' relative positions in an embedded space, and quadratic programming (QP)
is used to find the optimal separating hyperplane between the two classes in this space
(for classification), or to fit a function over the examples (for regression). Note that while
linear relations are sought in the embedded (feature) space, a decision boundary may still
be non-linear in the input space, depending on the choice of a feature mapping function D.
Because the pyramid match kernel is positive-definite (see Section 3.4) we are guaranteed
to find a unique optimal solution to the QP problem.

8.1.2 Dealing with Large Kernel Matrix Diagonals

The pyramid match kernel can produce kernel matrices with dominant diagonals, particu-
larly as the dimension of the features in the sets increases. The reason for this is that as the
dimension of the points increases, there are a greater number of finer-resolution histogram
levels in the pyramid where two input sets will have few shared bins. Once the quantization
level is coarse enough, the two sets will start having significant histogram intersection val-
ues. However, these intersections will receive lower weights due to the -1- weighting scheme,
which by construction accurately reflects the maximal distance between points falling into
the same bin at level i. On the other hand, an input set compared against itself will result
in large histogram intersection values at each level-specifically intersection values equal
to the number of points in the set, which after normalization generates a diagonal entry of
one.

The danger of having a kernel matrix diagonal that is significantly larger than the off-
diagonal entries is that the examples appear nearly orthogonal in the feature space, in some
cases causing an SVM or SVR. to essentially "memorize" the data, and thus impairing its
sparsity and generalization ability [99]. Nonetheless, we are able to work around this issue
by modifying the initial kernel matrix in such a way that reduces its dynamic range, while
preserving its positive-definiteness. I use the functional calculus transformation suggested
in [112]: a subpolynomial kernel is applied to the original kernel values, followed by an
empirical kernel mapping that embeds the distance measure into a feature space.

When necessary to reduce diagonal dominance, first kernel values Kij generated by the
PMK are updated to Kij +- (Kij)P, 0 < p < 1. Then the kernel matrix K is replaced with
KKT to obtain the empirical feature map 4e(y) = [K(y, xl),..., K(y, xI)]T for 1 training
examples. As in [112], the parameter p may be chosen with cross-validation. Note that
this post-processing of the kernel matrix is not always necessary; both the dimension of the
points as well as the specific structure of a given data set will determine how dominant the
initial kernel matrix diagonal is. In addition, the gradual growth of bins in a vocabulary-
guided match make it possible to avoid dominant diagonals.

8.2 Discriminative Category Recognition

Inl this section I report on object recognition experiments using SVMs and provide baseline
comparisons to other methods. I use the SVM implementation provided in the LIBSVM
library [17] and train one-versus-all classifiers in order to perform multi-class classification.
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Figure 8-1: Example images from the ETH-80 objects database. Five images from each of
the eight object classes (apple, cow, dog, pear, car, cup, horse, and tomato) are shown here.

Local affine- or scale-invariant feature descriptors extracted from a sparse set of interest
points in an image have been shown to be an effective, compact representation (e.g. [73,
77]). This is a good context in which to test the pyramid match kernel, since such local
features have no inherent ordering, and it is expected that the number of features will vary
across examples. In the following I experiment with two publicly available databases and
demonstrate that my method achieves better or comparable object recognition performance
at a significantly lower computational cost than other state-of-the-art approaches. All
pyramid match run-times reported below include the time needed to compute both the
pyramids and the weighted intersections, and were measured on 2.4 GHz processors with 2
GB of memory.

8.2.1 ETH-80 Data Set

A performance evaluation given by Eichhorn and Chapelle [30] compares the set kernels
developed by Kondor and Jebara [65], Wolf and Shashua [115], and Wallraven et al. [108]
in the context of an object categorization task using images from the publicly available
ETH-80 database [69]. The experiment uses eight object classes, with 10 unique objects
and five widely separated views of each, for a total of 400 images (see Figure 8-1). A Harris
detector is used to find interest points in each image, and various local descriptors (SIFT
features of [73], JET, patches) are used to compose the feature sets. A one-versus-all SVM
classifier is trained for each kernel type, and performance is measured via cross-validation,
where all five views of an object are held out at once. Since no instances of a test object
are ever present in the training set, this is a categorization task (as opposed to recognition
of the same specific object).

The experiments show the polynomial-time "match kernel" of Wallraven et al. [108] and
Bhattacharyya kernel of Kondor and Jebara [65] performing best, with a classification rate
of 74% using on average 40 SIFT features per image [30]. Using 120 interest points, the
Bhattacharyya kernel achieves 85% accuracy. However, the study also concluded that the
cubic complexity of the method made it impractical to use the desired number of features.
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Figure 8-2: Both the pyramid match kernel and the match kernel of Wallraven et al. yield

comparable recognition accuracy for input sets of the same size ((a), left plot). Both benefit
from using richer (larger) image descriptions. However, while the time required to learn
object categories with the quadratic-time match kernel grows quickly with the input size,
the time required by the linear-time pyramid match remains very efficient ((a), right plot).
Allowing the same run-time, the pyramid match kernel (with T = 1) produces better
recognition rates than the match kernel (b).
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I evaluated the pyramid match kernel on this same subset of the ETH-80 database under
the conditions provided in [30], and it achieved a recognition rate of 83% using PCA-SIFT
features [63] from all Harris-detected interest points (averages 153 points per image) and
T = 8. Restricting the input sets to an average of 40 interest points yields a recognition
rate of 73%. Thus the PMK performs comparably to the others at their best for this data
set, but is much more efficient than those tested above, requiring time only linear in the
number of features.

In fact, the ability of a kernel to handle large numbers of features can be critical to its
success. An interest operator may be tuned to select only the most salient features, but in
my experiments I found that recognition rates always benefitted from having larger numbers
of features per image with which to judge similarity. Figure 8-2 (a) depicts the run-time
versus recognition accuracy of my method as compared to the match kernel of Wallraven
et al. [108], which has O(dm2 ) complexity. The match kernel computes kernel values by
averaging over the distances between every point in one set and its nearest point in the other
set. These are results from our own implementation of the match kernel. Each point in
the figure represents one experiment; the saliency threshold of the Harris interest operator
was adjusted to generate varying numbers of features, thus trading off accuracy versus run-
time. With no filtering of the Harris detector output (i.e., with a threshold of 0), there is on
average 153 features per set. To extract an average of 256 features per set I used no interest
operator and sampled features densely and uniformly from the images. Computing a kernel
matrix for the same data is significantly faster with the pyramid match kernel (right plot
in Figure 8-2 (a)), and for similar run-times my method produces much better recognition
results (Figure 8-2 (b)).

The ETH-80 data set contains relatively simple images against uncluttered backgrounds,
making the limit of the number of features we can extract per image rather small. Thus while
the pyramid match is significantly less expensive than the match kernel, the match kernel
computation is still tractable. However, for more complex images where several thousand
descriptors per image may be desirable, this quadratic growth in cost does become infeasible,
demanding on the order of weeks to train a classifier that the pyramid match can build in
hours.

8.2.2 Caltech-4 Data Set

To evaluate the impact of vocabulary-guided pyramid matching, I ran recognition experi-
ments on a well-studied benchmark database, the Caltech-4 collection of motorcycle, face,
car, and airplane images (see Figure 8-3). I trained SVMs with 200 images per class and
tested with all the remaining (2388) images. I extracted features using both the Harris and
Maximally Stable Extremal Region (MSER) [76] detectors and the 128-D SIFT [73] descrip-
tor. The Harris detector found between 10 and 700 features per image, while the MSER
operator detected between 3 and 458. Features from different detectors are matched only
to one another (i.e., MSER features to MSER features, and Harris to Harris), producing
two kernel values for every set-to-set comparison, which are then summed to combine both
feature channels.

In order to compare the uniform-bin pyramid match kernel against the vocabulary-guided
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Figure 8-3: Example images from the Caltech-4 database. Six images from each of the four

object categories are shown here.

Pyramid matching method Feature dimension Mean recognition rate/class Time/match (s)

Vocabulary-guided bins 128 99.0 6.1e-4
Uniform bins 128 64.9 1.5e-3

Vocabulary-guided bins 10 97.7 6.2e-4

Uniform bins 10 96.5 5.7e-4

Table 8.1: Caltech-4 object recognition results with uniform or vocabulary-guided bins and

the pyramid match kernel.

pyramid match kernel with different feature dimensions, I also generated lower-dimensional
(d = 10) features using PCA. To form a Mercer kernel, the weights were set according to

each bin diameter Aij: wij = e- A ijl/, where i is the pyramid level and j is the bin index

(see Eqn. 4.3 (a)). The parameter cr was set automatically as the mean distance between a

sample of features from the training set.

Table 8.1 shows the results for this data set. Particularly for high-dimensional (d = 128)

features, the vocabulary-guided pyramid match is more accurate than the uniform bin

pyramid match for these images, and requires minor additional computation. Our near-

perfect performance on this data set is comparable to that reached by several others in the
literature; the real significance of the result is that it distinguishes what can be achieved with
a vocabulary-guided pyramid embedding as opposed to the uniform histograms. Admittedly,
here the PCA features yield fairly close performance (96.5% versus 99.0%), which suggests
that the dimensionality reduction did not cause much loss in descriptive power. However,
we can expect that in cases where high-dimensional features are not well-captured by some
low-dimensional manifold, the vocabulary-guided pyramids will be necessary. Finally, on
the same data the optimal matching requires 0.31s per match, over 500x the cost of the
pyramid match kernel.
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Figure 8-4: Example images from the Caltech-101 database. Three images are shown for
each of 27 of the 101 categories.

8.2.3 Caltech-101 Data Set

I also tested our method with a challenging database of 101 object categories developed at
Caltech, called the Caltech-101 [31]. The creators of this database obtained the images using
Google Image Search, and many of the images contain a significant amount of intra-class
appearance variation (see Figure 8-4). In terms of the number of categories, the Caltech-101
is currently the largest benchmark recognition data set available, and as such it has been
the subject of many recent recognition experiments in the field. There are 8677 images in
the data set, with between 31 to 800 images for each of the 101 categories.

For this data set, the pyramid match operated on sets of SIFT features projected to 10
dimensions using PCA, with each appearance descriptor concatenated with its correspond-
ing positional feature (image position normalized by image dimensions). The features were
extracted on a uniform grid at every 8 pixels in the images, i.e., no interest operator was
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applied. The regions extracted for the SIFT descriptor were about 16 pixels in diameter,
and each set had on average 1140 features. I trained the algorithm using unsegmented
images. Since the pyramid match seeks a strong correspondence with some subset of the
images' features, it explicitly accounts for unsegmented, cluttered data. Classification was
again done with a one-vs-all SVM, and I set the number of grid shifts T = 3, and the finest
sides of the pyramid to f = [5, 7, 9]. I used the current version of the database, which does
not contain duplicated images. Note that, some images were rotated by the creators of the
database, causing some triangular artifacts in the corners of some images; this is how the
images are provided to any user.

Figure 8-5 (a) shows the multi-class category recognition results using the pyramid match
kernel. The recognition scores are given for varying numbers of training set sizes, ranging
from one to 30 examples per class. For each training set size, the mean and standard
deviation of the pyramid match accuracy over 10 runs is shown, where for each run we
randomly select the training examples and use all the remaining database images as test
examples. However, all recognition rates have been normalized according to the number
of novel test images per class; that is, the mean recognition rate per class is the average
normalized score for all 101 categories. Using only one training example per class, the
pyramnid match achieves an average recognition rate per class of 18%. Note that chance
performance with any number of training examples would be just 1%. Using 15 examples
(a standard point of comparison), the pyramid match achieves an average recognition rate
per class of 50%.

Figure 8-6 shows some of pairs of categories that caused the most confusion for the pyramid
match. The examples shown are images that were actually mislabeled by the PMK classifier
as belonging to the other category in the pair. Some of these confused category pairs (lotus
and water lily, schooner and ketch) have rather subtle distinctions in appearance. Based
on confusions caused between the animals here, the gerenuk and kangaroo, we can infer
that the local feature description has failed to capture what is important about the global
shapes of the two objects; while both creatures share similar-looking torsos, the long legs
of the gerenuk appear to not be captured well by the chosen representation.

Figure 8-5 (b) shows all published results on this data set as a function of time since
the data was released, including the PMK and results published more recently by other
authors [46, 54, 94, 114, 109, 9, 8, 31, 83, 68, 119]. From this comparison we can see that
even with its extreme computational efficiency, the pyramid match kernel achieves results
that are competitive with the state-of-the-art. We have previously obtained 50% accuracy
on average (0.9% standard deviation) when using the standard 15 training examples per
category [46]. In addition, Lazebnik and colleagues have also shown that using the pyramid
match kernel with sets of spatial features yields very good accuracy on this data set: 56.4%
for 15 training examples per class [68]. These results are based on a special case of the
pyranid match, where multiple pyramid match kernels computed on spatial features are
summed over a number of quantized appearance feature channels. This is in fact the second-
to-best performance reported to-date on the data set, and less than three percentage points
away firomi the most accurate result of 59% from Zhang et al. [119], who use a classifier
combining support vector machines with nearest-neighbor search and the local geometric
blur feature of [10].
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_Pyramid match on the Caltech-ll01 Categories Data Set

0 5 10 15 20 25
Number of training examples per class

(a) PMK categorization results

Caltech-101 performance, 15 training examples per class

u' 2004 6/05 12/05 3/05 6/06
Time of publication

(b) Comparison of all published results

Figure 8-5: Recognition results on the Caltech-101 data set. Plot (a) shows the mean
and standard deviation for the recognition accuracy using the pyramid match kernel when
given varying numbers of training examples per class, over 10 runs with randomly selected
training examples. These are recognition rates that have been normalized according to
the number of test examples per class. Plot (b) shows all published results on the same
Caltech-101 data set over time since the database's release. Each recognition rate on this
plot represents the mean accuracy per class when using 15 training examples per class.
Grauman & Darrell refers to our PMK result using appearance descriptors, and Lazebnik
et al. refers to a variant of the PMK applied to spatial features in each channel of quantized
appearance.
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(a) Schooner and ketch

(b) Lotus and water lily

(c) Gerenuk and kangaroo

(d) Nautilus and brain

Figure 8-6: Confused examples from the most confused pairs of categories in the Caltech-
101 using the PMK. For each pair of categories shown, these images are examples that
the pyramid match classifier misclassified as belonging to the other class. The two cate-
gory names in each group refer to the top row and bottom row of images for that group,
respectively.
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Unfortunately most authors for the methods shown in Figure 8-5 do not report the run-
times required, so we cannot directly compare all the varied computational costs alongside
these reported accuracy numbers. However, to give some concrete complexity comparisons,
we do know that the correspondence-based nearest-neighbor classifier given by Berg and
colleagues requires about 5 seconds per match [9], while the variant in [8] requires about
0.04 seconds per match in practice. On the same data, the pyramid match kernel requires
0.002 seconds per match. The method of Berg et al. [9] measures similarity between sets
of geometric blur descriptors by approximating the optimal low-distortion correspondences
via linear programming, and then uses nearest-neighbors to classify images. It requires
O(m 2n log n) time to compare two images for n test features and m model features. In [8],
nearest neighbor classification is also performed, but on the basis of independent feature
voting. Processing one image with voting requires O(Nm2) time in order to compare its
features against all of the features in the N training examples. This breaks down into
O(m 2) computation time for every pair of images.

In comparison, pyramid match comparisons require only O(mL) time for the result of 50%
accuracy in [46]. For the pyramid match-based result of 56.4% accuracy by Lazebnik et
al. in [68] there is an additional one-time O(mk) cost of assigning each of a set's features
to one of the k pre-established quantized appearance features; however, once a point set has
been mapped to its prototypes, they need not be re-computed to match against additional
sets.

The correspondences between local features provide a useful measure of similarity for recog-
nition on this data. But what loss in recognition accuracy do we incur by using the pyramid
match approximation instead of the optimal least-cost matching? In Chapter 3 I provided
theoretical bounds on the pyramid match's approximation error, and in Chapter 6 I evalu-
ated the approximation error empirically in terms of raw cost differences, ordinal rankings,
and relevant rankings. In the following experiment, I evaluate the loss induced by the pyra-
mid match relative to the optimal matching in terms of the generalization accuracy of the
classifiers based on either measure.

Given the high values of m that result from the dense feature sampling (on average m = 1140
features), it is impractical to use the optimal matching to compute all pairwise kernel values
for all 8677 Caltech-101 images for multi-class recognition, as I have done for the pyramid
match. However, to make some comparison, I randomly selected 10 pairs of categories, and
18 images from each. For every category pair, I computed the (36 x 36) pairwise kernel
values using both the pyramid match and the optimal matching. As defined in Eqn. 3.5
in Chapter 3, the optimal similarity function computes the least-cost assignment between
features in the two sets, then uses a weight for each edge that is inversely proportional to
its length. Once the PMK and optimal matching kernel values were computed for each pair
of categories, I trained binary SVM classifiers with varying numbers of (randomly selected)
training examples per class, with 18 random selections of training sets per training set size.
Every SVM instance was then tested using the remainder of the example images as novel
inputs.

Figure 8-7 displays 10 plots corresponding to these 10 category pairs; in each the recognition
accuracy for the optimal match and the pyramid match are plotted for increasing numbers
of training examples. The left side of Figure 8-8 (b) summarizes these plots with a histogram
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Figure 8-7: Recognition performance on two-class problems from the Caltech-101 data set
using the optimal matching and the pyramid match kernel. Points and error bars denote
mean and standard deviation of the recognition rate over 18 runs with randomly selected
training examples. In each plot, the optimal matching result is shown in red, and the PMK
result is shown in blue.
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Figure 8-8: Part (a) shows the computation time distributions for each category pair, for the
optimal (left) and pyramid match measures (right). Note the different vertical axis scales on
these two plots. The histogram on the left in part (b) shows the distribution of differences
in recognition rates for all instances of the two-class recognition accuracy plots summarized
in the previous figure. The right plot in part (b) shows the ratio of the mean time required
by the optimal matching to the mean time required by the PMK, for each of the 10 category
pairs. In most cases, the optimal measure yields no recognition improvement over the PMK

(see the large count over 0 in left plot of (b)), while the pyramid match is several orders of
magnitude faster to compute (right plot of (b)).
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of the differences between the recognition accuracy of the optimal matching and the PMK
over all of the test runs. Both figures reveal that in most cases, the pyramid match accuracy
matches that of the optimal measure. In 70% of the cases (1127 of 1620 trials), the pyramid
match recognition accuracy is equivalent to that of the optimal match. Overall, the average
recognition improvement of the optimal match over the pyramid match is 0.13%, meaning
the PMK lost us much less than 1% in the output accuracy score for these categories.
Among only those cases where the optimal match outperforms the PMK, the improvement
in recognition accuracy averages 7.5%.

In addition, categories in this experiment that were "easy" to distinguish with the optimal
matching are also recognized consistently with the pyramid match (e.g., the PMK shares the
optimal measure's high recognition rates and small variance across runs for the sunflower
versus windsor chair, and the face versus flamingo or starfish.) Likewise, category pairs that
are more difficult for the pyramid match are also difficult for the optimal measure (e.g., the
anchor versus cup).

The boxplots in Figure 8-8 (a) show the computation time required per matching on this
data for the optimal matching (left) and the pyramid match (right). These times were
all nmeasured running C code on 2.4 GHz processors with 2 GB of RAM. For the optimal
matching I used the implementation of EMD provided online by Rubner [92] with the
maximum number of iterations set to 4000. In both plots the vertical axis denotes seconds,
but the axes are on different scales. The optimal matching required on average four minutes
to compare two sets, while the PMK (with T = 3) required only 0.003 seconds. On average,
the PMK is 70,535x faster. The righthand plot in Figure 8-8 (b) summarizes the complexity
advantage of the PMK by showing the mean computation time per comparison ratios for
each category pair.

The time distributions for both measures are noticeably higher for category pairs 2 and 7;
this is due to the fact that the face category was randomly drawn for both of these pairs,
and it contains on average 1000 more features per set than the rest of the categories selected
here.
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8.3 Learning a Function over Sets of Features

In the following experiments I demonstrate the pyramid match kernel applied to two re-
gression problems: time of publication inference from a collection of research papers, and
articulated pose estimation from monocular silhouettes. I use the SVR implementation in
the LIBSVM library [17]. In these experiments I use an e-insensitive loss function in order
to obtain solutions that are defined in terms of a small subset of the training examples, and
which provide good generalization ability. For all experiments, the SVR. parameters C and
e were chosen using cross-validation.

8.3.1 Estimating a Document's Time of Publication

I have applied the pyramid match kernel to learn a function that maps a bag of local latent
semantic features extracted from a research paper (written in a specific field) to an estimate
of the paper's time of publication. While much work has been done using bag-of-words
representations and latent semantic concept models for text classification and information
retrieval, we are not aware of previous work showing bags of local semantic features, nor
demonstrating direct regression on documents to estimate their publication times.

The bag-of-words model is a widely used representation in which each document is repre-
sented by a vector giving the frequencies of words that occur in it, and it has been used in
kernel methods [99]. The well-known limitation of such a model, however, is that it encodes
nothing about the semantic relationships between words. Each word is treated as an isolated
entity, ignoring the fact that distinct words may share degrees of semantic equivalency (e.g.,
synonyms), or may have different connotations in different contexts (e.g., homonymy). Re-
searchers have therefore adopted latent semantic indexing (LSI) [28] to instill semantic cues
into the basic bag-of-words representation. LSI projects data onto a subspace determined
using singular value decomposition (SVD) to represent document-term frequency vectors
in a lower-dimensional space where semantic relationls are better preserved. Generally the
subspace for LSI is learned from document vectors that give the frequency of occurrence
for each given word (e.g., [25]), which means each document is mapped to a point in a
"semantic space" where documents with correlated word frequencies are related.

However, requiring a document to map to a single point in this space assumes that inputs
have no clutter (e.g., extra words caused from OCR errors, or text inserted from a webpage
ad), and that each document can be represented as a linear combination of the document-
level concepts recovered by LSI. Instead, we propose treating documents as bags of word
meanings by learning the subspace for LSI from term vectors, which record the frequency
with which a word occurs in each given document. Each document is then a bag of local
semantic features, and two documents are compared with the partial matching implied by
the pyramid match kernel, i.e., in terms of how well (some subset) of the LSI term-space
projections can be put into correspondence. Note that standard kernels (e.g., linear, RBF,
polynomial) cannot be used with the bag of word meanings representation, since each word
is represented by a real-valued vector. Additionally, the PMK makes it possible to learn a
latent semantic space from narrower contexts than entire documents (e.g., paragraphs or
sentences) and then represent documents by their component features in this space.

122



8

7

05
..

053
o
W2

1

0

Time of publication inference errors

.. 

.... ..... .... .... ... .

...... .................* U

. .
II a

* I I

................... . . . . . . . . . . . . . . . . . ...... ii....... . . . . . . . . . . . .I . .............

........... I ...................... W ............................ .......

U

BOW LSI DOC BOWM PMK Test example

Figure 8-9: Inferring the time of publication for papers from 13 volumes of NIPS pro-
ceedings. Boxplots (left) compare errors produced by three methods with a Support Vector
Regressor: bag-of-words (BOW) and latent semantic document-vectors (LSI DOC) with lin-
ear kernels, and "bag of word meanings" with the pyramid match kernel (BOWM PMK).
Lines in center of boxes denote median value, top and bottom of boxes denote upper and
lower quartile values, dashed lines show the extent of the rest of the errors. The plot on
the right shows the true targets and corresponding predictions made by the pyramid match
method (BOWM PMK).

I have experimented with a database containing 13 volumes of Neural Information Process-
ing Systems (NIPS) proceedings-a total of 1,740 documents, available online [84]. For each
paper, I extracted the text from the abstract up to (but not including) the references sec-
tion. While authors' names and bibliography information would likely be good indicators of
publication time, they were excluded from the bags of features because we want our method
to learn a function indicating topic trends over time, as opposed to a look-up table of dates
and names. I applied standard steps to pre-process the text data. Suffixes were removed
from words using the Porter stemmer [87], and the WordNet [116] set of stop-list words
were removed. Finally, co-occurrence matrices were weighted using term frequency-inverse
document frequency (tf-idf) to normalize for text lengths and distill the most informative
words.

Figure 8-9 shows results for regressing directly on the year of publication for a NIPS paper
using the classic bag-of-words approach (BOW), a standard approach applying LSI at the
document level (LSI DOC) [25], and the PMK with bags of word meanings (BOWM PMK).
All methods were trained with the same randomly selected subset of the data (1393 exam-
ples) and tested with the remaining 347 examples. The pyramid match kernel with bags
of word meanings performs the best, with a median error of 1.6 years. The PMK values
took on average 0.002 seconds to compute. Using a paired difference T-test with a = 0.01,
I found the difference in performance between our approach and the two existing methods
to be statistically significant.
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Figure 8-10: A training example generated with graphics software is composed of a silhou-
ette and its corresponding 3-D pose, as represented by the 3-D positions of 15 joints.

8.3.2 Inferring 3-D Pose from Shape Features

In this set of experiments, I use regression with the PMK to directly learn the mapping
between monocular silhouette images of humans walking and the corresponding articulated
3-D body poses. Many vision researchers have addressed the difficult problem of articulated
pose estimation; recent approaches have attempted to directly learn the relationship between
images and 3-D pose [1, 97, 47]. Like these techniques, we learn a function that maps
observable image features to 3-D poses.

However, whereas ordered, fixed-length feature sets are required by [47] and [97] (i.e., points
are extracted in sequence around the contour, or features are taken from fixed image win-
dows), my method accepts unordered features and inputs that may vary in size. This is
a critical difference: images will naturally have varying numbers of features (due to oc-
clusions, clutter, translations, shape deformations, viewpoint changes, etc.), and a robust
global ordering among features within a single view may not be possible in the presence of
viewpoint and pose variations.

In the pose estimation method of Agarwal and Triggs [1], local features are mapped to
pre-established prototypes, and every image is represented by a frequency vector counting
the number of times each prototype occurred. A relevance vector machine is then trained
using these vectors with a Gaussian kernel. While this type of approach allows unordered
features, it can be sensitive to clutter, as I will show below.

Note that in the shape retrieval experiments of Chapter 7, the human silhouette images con-
tained people in a wide variety of arbitrary poses, and the objective was to retrieve examples
having similar overall shape. In these experiments, the space of poses is more constrained-
only images of people walking are used-and the objective is to use the similarity measured
between shapes to learn the function from silhouettes to pose.

For a training set, I used the graphics package Poser [21] to generate 3,040 images of realis-
tic synthetic images of pedestrians. Each image was rendered from a humanoid model with
randomly adjusted anatomical shape parameters walking in a randomly selected direction.
For each image, both the silhouette and the 3-D locations of 15 landmarks on the model's
skeleton corresponding to selected anatomical joints were recorded (see Figure 8-10). Re-
gressors are trained with silhouette inputs and produce 3-D joint position outputs. Once
regressors have been trained with the synthetic data, we can use them to perform regression
with either additional synthetic examples (for which we have ground truth poses), or with
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real image data (for which we can only evaluate predicted poses qualitatively).

Each silhouette is represented with a set of local contour descriptors. At each contour
point, we extract a shape context histogram [7], which bins nearby edge pixels into a log-
polar histogram, thereby encoding local shape. For each shape context histogram, I used
12 angular and five radial bins with a fixed scale to capture only local points relative to
each edge point. To form a more compact descriptor, I used 5-D PCA projections of the
initial 60-D shape context histogram features. Thus each silhouette shape is represented
by an unordered set of shape context subspace features, and each set varies in size due to
the varying number of contour points per image. Note that although this representation
does not contain explicit spatial constraints, the overlap between neighboring shape context
histograms provides an implicit encoding of how the features should be related spatially.

The munber of contour points (and thus features) per image varied from 405 to 878. The
multi-resolution histograms used by the pyramid match contained ten resolution levels, as
determined by the diameter of the features in the training examples, and each contained
on average 2644 non-empty bills. Computing a pyramid match kernel value required about
0.002 seconds. For each dimension of the pose targets, I trained anl E-insensitive SVR, using
the pyramid match kernel matrix between the training examples. Each SVR had on average
308 support vectors.

As a baseline, I also implemented a method that uses frequency vectors over feature pro-
totypes to represent each image, using [1] as a guideline. Vector quantization (VQ) is
performned on the shape context subspace features found in the training set to establish a
set of 100 prototype features. Then all of the features detected in a new image are mapped
to a 1-D frequency histogram over these prototypes using soft voting with Gaussian weights.
A Gaussian RBF kernel is then applied, with 7 chosen based on the maximum inter-feature
distance. In the following I will refer to this baseline as VQ-RBF.

For a novel test set of 300 Poser-generated silhouettes, the pose inferred using the PMK
had a median error of 4.9 cm per joint position. For the same test set, VQ-RBF obtained
a slightly worse median error of 6.8 cmn (see Figure 8-11). Using a paired difference T-test
with a = 0.001, I found the difference in performance between the two methods to be
statistically significant.

The silhouette contours produced with Poser are of course very "clean", that is, the shapes
are perfectly segmented since they were formed by directly projecting the CG body. While
it is reasonable to train a model with this well-segmented data, we can expect real-world
examples to exhibit poorer foreground-background segmentations due to occlusions, clutter,
shadows, or backgrounds that look similar to the foreground object. Therefore, I altered
the silhouettes for a separate test set of 300 examples to introduce clutter and occlusions;
starting with a Poser silhouette, I generated one to eight random blob regions in the image
for which the foreground/background labels were swapped. The blobs' positions, sizes, and
shapes were generated randomly. The result is a test set that mimics real-world occlusions
and clutter, yielding imperfect contours for which estimating pose is more challenging (see
Figure 8-11).

O()n the cluttered test set, our method inferred poses with a median error of 8.0 cm per
joint, while VQ-RBF had a median error of 14.1 cmn (see Figure 8-11). Again, using a
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Figure 8-11: Pose inference results. The top row (a) gives a quantitative evaluation of per-
formance on synthetic data with ground truth. The boxplots compare the error distributions
for the pyramid match kernel (PMK) and an RBF kernel over prototype frequency vectors
(VQ-RBF). Errors are measured by the distance between the 15 true and inferred joint
positions in each image. Results for two test sets are shown: a set of novel, clean silhouettes
(left plot), and a set with randomly generated clutter or extra foreground blobs (right plot).
The bottom row (b) shows example poses inferred by our method from synthetic cluttered
silhouettes. In each, the true pose (solid black) is overlayed with the estimate (dotted blue).
These examples contain average case errors.

paired difference T-test, I found the difference in performance to be statistically significant:
with 99.99% confidence, the pyramid match yields average errors that are smaller than
those of VQ-RBF by amounts between 4.5 and 5.2 cm per joint.

This experiment demonstrates the pyramid match kernel's robustness to superfluous fea-
tures in an input. The blobs added to the cluttered test set introduced extra contour features
to the silhouettes, and they altered parts of the true contour in cases where they overlapped
with the real silhouette. The VQ-RBF distance over prototype frequency vectors essentially
penalizes any features that have no "match" in a support vector training example's set of
features. In contrast, the pyramid match's partial matching rewards similarity only for the
features placed into correspondence, and ignores the extraneous clutter features. This is an
important advantage for many vision applications, where segmentation errors, viewpoint
changes, or image noise will often affect which features (and how many) are detected.
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Finally, I applied our method to a test set of real images of various subjects walking through
a scene. A basic background subtraction method was used, which resulted in rough seg-
mentations; body parts are frequently truncated in the silhouettes where the background
is not highly textured, or else parts are inaccurately distended due to common segmenta-
tion problems from shadows. Ground truth poses are not available for this test set, but
Figure 8-12 shows some example output poses inferred by our method.
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Figure 8-12: Pose inference on real images of people walking. A function to estimate body
pose is learned with the pyramid match kernel from synthetically generated examples. Then
given novel real images (left column), a simple background subtraction is used to extract
the silhouette shapes (middle column). Local contour features are extracted from these
silhouettes. Given a set of these unordered contour features, the learned function returns a
list of 15 3-D joint positions (right column).
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Chapter 9

Unsupervised Category Learning
from Sets of Partially Matching
Features

Current approaches to object and scene recognition typically require some amount of super-
vision, whether it is in the form of class labels for training examples, foreground-background
segmentations, or even a detailed labeling of objects' component parts. In part due to the
significant expense of providing these manual annotations, such approaches are in practice
restricted to relatively small numbers of classes and/or few training examples per class.
Additionally, human supervision may result in unintentional biases that can be detrimental
to generalization performance. An unsupervised (or semi-supervised) technique that is able
to recover salient categories directly from images would relieve these burdens and possibly
offer new insights into image representation choices.

In this chapter I present a method to automatically learn object categories from unlabeled
images. Each image is represented by an unordered set of local features, and all sets are
embedded with the pyramid match into a space where they cluster according to their partial-
match feature correspondences. After efficiently computing the pairwise affinities between
the input images in this space, a spectral clustering technique is used to recover the primary
groupings among the images.

I introduce an efficient means of refining these groupings according to intra-cluster statistics
over the subsets of features selected by the partial matches between the images, and based
on an optional, variable amount of user supervision. The consistent subsets of feature
correspondences within a grouping are computed to infer category feature masks. The
output of the algorithm is a partition of the data into a set of learned categories, and a set
of classifiers trained from these ranked partitions that can recognize the categories in novel
images.

Implied in the motivation for unsupervised learning of categories is the idea that while
labeled data is expensive and must be used frugally, unlabeled data is generally inexpensive
to obtain in large quantities. Thus a critical criterion for a method intended to learn from
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large amounts of unlabeled data is computational efficiency; by leveraging the PMK in this
context, I have designed a method that will scale well with both the amount of input data
as well as the size of the inputs themselves.

Possible applications of the proposed method include learning object class models from
unlabeled data, shot matching or scene grouping from video sequences, and content-based
refinement of keyword-based image retrievals. In this chapter I demonstrate the applicability
to learning object categories to allow unsupervised training of discriminative classifiers.

9.1 Related Work on Unsupervised Category Learning

Existing approaches to this problem use vector quantization to build a codebook of feature
descriptors, and then transform each set input to a single vector counting the number of
occurrences of each prototype feature. Conventional clustering methods or latent semantic
analysis (LSA) may then be directly applied [89, 101, 33], and have been shown to yield
promising results when learning object or scene categories or filtering keyword-based image
retrieval outputs.

However, such approaches do not explicitly allow for "clutter" features caused by image
backgrounds or occlusions, and the need to pre-compute a codebook raises computational
complexity and data availability issues. In addition, it is not clear how existing techniques
could accommodate the addition of small amounts of labeled data or a priori knowledge
about pairwise constraints between particular unlabeled examples.

As discussed earlier, in general methods to solve for explicit correspondence are compu-
tationally expensive, requiring cubic time to form globally optimal assignments, and even
more for assignments including higher order constraints between features. Some approxi-
mate methods have been defined, which offer improved performance under certain restric-
tions. Berg et al. introduced a powerful recognition algorithm that uses linear programming
to solve for approximate correspondences, and they showed how to use the correspondence-
based metric to find regions of common spatial support for objects in labeled training ex-
amples, thus avoiding the need for manually segmented images [9]. In Chapter 8 (and [44]),
I showed the strength of the pyramid match kernel for discriminative classification when
inputs are variable-sized sets of features. However, in both recognition frameworks, it was
assumed that class labels were provided for all training images.

9.2 Grouping Feature Sets with Partial Correspondences

Every input image is decomposed into some number of local appearance features, where
each feature is a vector descriptor for the local region or patch. So given an unlabeled
data set U= {I,. . . , IN} containing N images, image Ii is as before represented by a set
Xi = X1, ... ,Xm }, where xj is a descriptor vector, and mi may vary across images in U

depending on the number of features detected in each image. In my implementation I chose
to use Lowe's SIFT descriptor [73], but other options are certainly possible.
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(a) Pyramid match graph

(b) Graph partition

Figure 9-1: Clustering according to partial match correspondences.

The initial image groupings are formed by embedding the feature sets into a space where they
cluster according to their partial-match correspondences (see Figure 9-1). I use the pyramid
match kernel to efficiently obtain these matchings. Comparing sets of image descriptors in
this way provides an efficient (linear in the number of features mi) measure of how well the
two sets' features may be put into correspondence. That the matching formed is partial is
useful when we want to learn from unlabeled images containing multiple classes, varying
backgrounds, and occlusions-cases where portions of the feature sets may be considered
outliers that should not affect the matching quality.

The pairwise pyramid match affinities over feature sets serve to form an undirected, fully-
connected graph over U: nodes are images, and edges are weighted according to partial-
match similarity between the images' feature sets. Within this graph, we would like to
discover categories from those images with the strongest aggregate feature matchings. We
seek the partitioning of the nodes that will preserve strongly connected groups while dividing
nodes with minimal joint correspondences.
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To this end, we employ spectral clustering and use the normalized cuts criterion developed
by Shi and Malik for image segmentation [100]. The algorithm "cuts" the nodes into
disjoint sets by removing connecting edges; the optimal partitioning both minimizes the
amount of dissociation between groups and maximizes the association within groups. The
normalized cut dissociation measure is essentially designed to remove edges between the
least similar nodes without favoring cuts that partition out small numbers of isolated nodes.
In this case, that means prohibiting a few images that happen to have exceptional feature
matchings from being selected as categories when there exist broader range associations
between feature sets.

Though minimizing the normalized cut is NP-complete, the authors provide an efficient
approximate solution based on solving an eigenvalue problem,

D- (D - K)D x = Ax, (9.1)

where K is an N x N affinity matrix over data nodes {X 1,..., XN}, D is an N x N diagonal
matrix containing the sums of the rows of K, and x is an N-dimensional indicator vector
used to obtain the bi-partition of the graph. To form multiple partitions, recursive cuts
or multiple top eigenvectors are used. Extracting the normalized cuts grouping over the
pyramid match affinity matrix K with entries Kij = PA (Xi, Xj) for all images in U thus
provides our initial set of learned categories.

This framework allows the introduction of weak semi-supervision in the form of pairwise
constraints between the unlabeled images. Specifically, a user may specify "cannot-group"
or "must-group" connections between any number of pairs in the data set. Following the
paradigm suggested in [62], we modify the graph over U to incorporate this information to
assist category learning: entries in the affinity matrix K are set to the maximal (diagonal)
value for pairs that ought to be reinforced in the groupings, or set to zero for pairs that
ought to be divided.

For data sets with a large number of example sets to be clustered, we can avoid computing
all O(N 2) affinities and obtain a more efficient estimate of the pyramid match kernel matrix
by employing the Nystrim approximation technique [113].

9.3 Inferring Category Feature Masks

Due to the nature of a partial matching, the clusters produced with normalized cuts risk
containing non-homogenous members. While ignoring superfluous features without penalty
to the matching similarity is desirable in the sense that it allows a degree of tolerance to
clutter, outlier features, and noise, it also means that sets containing similar backgrounds
may be allowed to match just as well as those containing similar objects of interest. Like-
wise, images containing multiple objects may find strong partial matchings with examples
containing single objects from each class, thereby confounding the normalized cuts criterion
in some cases (see Figure 9-2).

To address this, we look to the pattern of correspondences within each cluster, and leverage
the information contained in the intra-cluster partial matching statistics to refine the initial
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Figure 9-2: Graph partitioning according to partial matchings may allow problematic
groups, for example when background features and foreground features find good match-
ings in different categories of images. In the top row, the image-to-image similarity between
the right and center images may be indistinguishable from that of the center and left im-
ages, even though the right image is matching what are background features for the domed
building category. In the bottom row, the presence of two categories in the center image
causes it to match equally well to the images on its left and right, which contain individual
instances of those categories. As a result, graph partitioning algorithms may be unable to
make appropriate cuts.

grouping. The goal is to identify prototypical cluster members (or, conversely, outlier cluster
members) by computing for each example the distribution of its features that were used
most heavily to form matchings with other examples within the cluster. The intuition is
that we expect "inlier" images to utilize similar portions of their feature sets to form partial
matches with one another, while outlier cluster members will cause most images within the
cluster to contribute an inconsistent subset of features relative to their other matchings.

To apply this concept, we require the inter-feature correspondences for the pairwise partial
matches within each cluster. We can use the implicit correspondences of the pyramid
match to induce explicit approximate correspondences between two images, as described in
Section 3.2.3. The pyramid match considers feature points matched at the finest resolution
pyramid level in which they share the same bin. This means that in any bin where two
point sets both contribute points, the points from the set with fewer points in that bin
are certainly matched, but only some (unknown) subset of points is matched from the set
having more points in that bin. If the counts are equal in a given bin, all points falling in
that bin from both sets are matched to each other, in some permutation.

When computing the multi-resolution histograms for an input set of descriptors, we attach
to each bin index the indices of the features that the bin spans. This allows us to trace
feature matchings during the summation over histogram intersections in Eqn. 3.10 based
on which specific points are responsible for causing an intersection at a particular level.
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Figure 9-3: Examples of explicit feature correspondences extracted from a pyramid match-
ing. Displayed here are the most confident matches found for two image pairs, as denoted
by the color-coded elliptical feature regions. (This figure is best viewed in color.)

For each input Xi, a weighted indicator vector ri of dimension mi is maintained, i.e., ri is
indexed by the input's feature set. Each indicator is initialized to zero, and then at each
level of the pyramid intersections it is updated to reflect the new matches formed.

The partitioning of the feature space provided by the pyramid decomposes the required
matching computation into a hierarchy of smaller matchings. Upon encountering a bin
with a nonzero intersection value, an explicit matching is computed between only those
features from the two sets that fall into that particular bin. Given this matching, entries
in the two input sets' indicator vectors corresponding to that bin's attached feature indices
are recorded as the similarity between the respective matched points. All points that are
used in that per-bin optimal matching are then flagged as matched and may not take part
in subsequent matchings within larger bins at coarser resolutions of the pyramid. (Results
evaluating the quality of the approximate correspondence fields as compared to the globally
optimal correspondences were provided in Chapter 6.)

The result is one weighted indicator vector per image, per matching comparison that reveals
both which features were used in each partial match, as well as how strongly those features
played a role in the total matching cost (see Figures 9-3 and 9-4). We use these indicator
vectors as feature masks that designate which component features each set contributed to
matchings. For each image in a cluster containing C members, a typical feature mask is
computed as the median indicator vector over that image's C - 1 within-cluster matchings.

9.4 Identifying Prototypes

To refine the groupings provided by normalized cuts clustering, the pyramid match affinities
are re-computed between cluster members using the median feature masks to weight the
input feature sets. That is, rather than entering unit bin counts for each feature during
the pyramid computation, each feature adds a mass to the bin that is proportional to its
weighting in the median feature mask for that example. Essentially this re-weights the
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Figure 9-4: Inferred feature masks for a face category. The elliptical regions indicate where
features were extracted from the images based on the Harris-Affine interest operator. The
boundaries of these regions are color-coded in order to show which features contribute most
strongly to each image's matchings against the other face images: blue (darker colored)
ellipses denote the features in each image with the high weights in the mask, and yellow
(light colored) ellipses denote the remaining features, which have low weights in the mask.
Each entry in an inferred feature mask reflects how consistently that feature can be matched
against all other images in a cluster. These examples demonstrate how the inferred feature
masks reveal which parts of the images correspond to the in-class category, and can be used
to downplay the impact of background or clutter features in the matching. (This figure is
best viewed in color.)
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Figure 9-5: A schematic view of category feature mask inference. Within a single clus-
ter, outlier images are detected by considering the typical per-image feature masks implied
by which component features of an image contribute most strongly to partial matchings
with other members of the cluster. In this illustrative example, the similarity between the
matched-feature distributions among the faces reveals the outlier non-face image, whose
features happen to match the background of the top image. Shown here are the four
matched-feature distributions for the top center image against the rest, with the in-mask
features colored green, and non-mask features colored red. Re-weighting the correspon-
dences according to the example's median indicator mask causes the similarity against the
outlier image to be downgraded, as indicated by the dashed line. To deduce cluster outliers,
feature masks are determined using all pairs in this manner. (This figure is best viewed in
color.)

individual feature matchings to favor those that are established between features likely to
belong to the "inlier" cluster examples, and to downplay those caused by the inconsistent
outlier matchings (see Figure 9-5). This new C x C affinity matrix is left un-normalized,
since given the feature masks we no longer wish to treat small correspondence fields as being
equally significant to large ones.

Having adjusted the within-cluster affinities to take the feature masks into account, we can

then sort the images in each group according to how consistently they match the remainder
of the group. I define the flow per example within a cluster to be the sum of its re-weighted
pyramid match scores against the rest of the cluster members. Items in the cluster are
then ranked according to their flow magnitudes, and examples falling within a specified
top percentile of this ranking are identified as candidate prototypes. In my implementation
I have evaluated the categories learned with no supervision under various settings of the
percentile parameter, but one could also envision allowing minimal semi-supervision at this
stage, where a user could be presented with a small number of prototypes to label. Should
the user disagree with the cluster labels, we could introduce link constraints into the re-
weighted cluster affinity matrices here (as well as prior to performing normalized cuts) and
iteratively recompute the prototypes.

The prototypes are then considered the best representatives for the particular learned cat-
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Category learning performance on Caltech-4 data set

top percentile included

Figure 9-6: Accuracy of categories learned without supervision, as measured by agreement
with ground truth labels. The percentiles determine the amount of prototype candidates
to keep per learned class, and the results shown here are averaged over 40 runs for each
percentile. The plotted points denote the mean performance for those runs and error bars
denote the standard deviation. See text for details.

egory, and may be used to build a classifier that can predict categories for novel images. In
my implementation I have chosen to use a discriminative kernel-based classifier, the Sup-
port Vector Machine, since it can directly use the same pyramid match kernel matrix as
the normalized cuts computation; however, other alternatives are equally plausible.

9.5 Category Learning Results

In this section I present results evaluating the proposed method when applied to perform
unsupervised or semi-supervised learning of object categories, and I show its ability to
automatically train a classifier that can be used to predict the labels of unseen images.

I have experimented with a common benchmark data set containing four object classes, the
Caltech-4 database, which is comprised of 1155 rear views of cars, 800 images of airplanes,
435 images of frontal faces, and 798 images of motorcycles. (See Chapter 8 for results on
this data set using supervised learning and the PMK.) Many of the images of the airplanes
and motorcycles contain white borders which I removed before any processing was done, so
as to avoid inserting features that might provide either misleading or helpful cues to our
algorithm. I detected salient points in the images with a Harris-Affine interest operator [79],
and decomposed images into sets of SIFT features [73], scale-invariant descriptors based
on histograms of oriented image gradients. More compact (10-dimensional) features were
obtained from the original SIFT descriptors using PCA.

For the first experiment, I provided our method with a pool of unlabeled images containing
examples from each class and requested that it learn four categories. Figure 9-6 summarizes
the accuracy of the groupings produced as a function of the percentage of prototypes ex-
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Figure 9-7: Recognition performance on unseen images using categories learned with varying
amounts of weak semi-supervision. The horizontal axis denotes the number of (randomly
chosen) "must-group" pairings provided, and the vertical axis denotes the recognition per-
formance averaged over four classes. The plotted points are mean values and error bars are
the standard deviations over 40 runs with randomly selected training/testing pools. See
text for details.

tracted from each initial normalized cuts grouping as discussed above. Accuracy is measured
as the mean diagonal of a confusion matrix computed for the learned categories against the
ground truth labels. For each percentile level tested, I ran the method 40 times, each time
with a different random subset of 400 images from the 3188 total images, with 100 im-
ages per class. This result demonstrates the impact of the refinement mechanism to detect
prototypical cluster examples based on the inferred feature masks. Figure 9-4 shows some
examples of inferred category masks for face images with cluttered backgrounds from the
Caltech data set.

I have also evaluated how the categories learned with our method will generalize to predict
labels for novel images. I trained Support Vector Machines with the pyramid match ker-
nel using the labels produced with varying amounts of semi-supervision (see Figure 9-7).
Recognition performance is measured as the mean diagonal of a confusion matrix computed
for a total of 2788 novel test images of the four classes (ranging from about 300 to 1000 test
images per class), and results are averaged over 40 runs with different randomly selected
pools of 400 unlabeled "training" images. Semi-supervised constraints are of the "must-
group" form between pairs of unlabeled examples, and an equal number of such constraints
was randomly selected for each class from among the training pool. The results suggest that
the category learning stands to gain from even rather small amounts of weak supervision.

Sivic and colleagues have developed an unsupervised approach to category learning [101]
that is based on the probabilistic Latent Semantic Analysis (pLSA) model of Hofmann [51,
52]. In their technique, a set of local features is transformed into a single word frequency
vector, based on a pre-determined local patch vocabulary found with vector-quantization.
Then, probabilistic Latent Semantic Analysis is applied to automatically recover the un-
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derlying visual "topics". Sivic et al. obtain 98% clustering accuracy using pLSA on the
Caltech-4 database. They also provide a baseline performance of 72% obtained using k-
means clustering on the word frequency vectors. With no supervision at all, we obtain a
result of 85%, which is about halfway between the k-means and pLSA results. Our semi-
supervised approach can match the 98% performance on the entire data set, though this is
with about 175 random pairwise constraints provided (see Figure 9-7).

Since we have selected different feature types than the authors of [101], in the future it
will be interesting to see what impact alternative feature types might have on the grouping
accuracy. While the approach of Sivic et al. requires clustering feature data to initially
establish a visual word vocabulary, with the pyramid match we compare feature sets directly
and thus do not have this start-up cost. Additionally, alternative classifiers in the back-end
of the method presented here may prove to be more effective; as Figure 9-6 shows, without
any supervision, the prototypes automatically discovered with our approach are on average
94% correct. It is possible, for example, that training exemplar-based classifiers with these
strong prototypes would prove more effective than the discriminative classifier applied in
these experiments.

In these experiments, the number of groupings formed by normalized cuts was specified
as the number of classes expected in the data set; however automated model selection
techniques could be applied (see for instance, [118]) to remove this user-supplied parameter.
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Chapter 10

Conclusions

In this dissertation I have introduced computationally efficient techniques that effectively
handle comparisons, learning, and indexing for the set-of-features representation. I have
demonstrated my approach successfully on a variety of data sets for vision tasks related to
content-based image retrieval and object recognition.

A central contribution of this work is the pyramid match algorithm, a linear-time method
for computing an implicit partial matching between two unordered sets of vectors. I have
shown both theoretically and empirically that the pyramid match approximates the cost of
the optimal partial matching. Unlike previous matching approximations that were limited to
inputs with equal nunmbers of features, the pyramid match can accept variable-sized inputs.
This is critical for image matching, where the number of detected salient features generally
varies per example. Additionally, since the pyramid match allows partial matchings, it
tolerates clutter features without any penalty to the matching score.

I have shown how an approximate matching can benefit from knowledge of underlying struc-
ture in the feature space. The voc.abulary-guided pyramid match exploits the structure when
hierarchically partitioning the feature space, resulting in a data-dependent pyramid that can
remain accurate even for high-dimensional feature spaces. Whereas previously suggested
approximations suffer from a linear decrease in accuracy with the feature dimension, in

p)ractice the vocabulary-guided pyramid match is consistently strong for spaces of over 100
dimensions.

In previous work, randomized hashing algorithms for normed spaces [38] and hash function
families specialized for particular distances of interest [57, 19] have been developed. I have
drawn on existing techniques to demonstrate sub-linear time approximate similarity search
over a matching between equally-sized sets of local shape or appearance features.

Furthermore, I have introduced a new embedding for the pyramid match that makes it
)possible to perform sub-linear time hashing over a matching between variable-sized sets

of vectors. While previous techniques would necessitate altering the feature distribution of
variable-sized sets in order to fit the constraints of existing hashing methods, the embedding
I have proposed allows us to maintain the feature distributions of input sets. The embedding
is also by definition robust to outlier feature values. I have proven that locality sensitive
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hashing is not possible with a partial match normalized by the minimum input cardinality.

Through several content-based image retrieval experiments, I showed the power of approx-
imate similarity search over sets of local features for querying very large image databases.
While correspondences between local parts are widely held to provide a robust reflection of
image or shape similarity, the expense of previous techniques prevented them from scaling
to realistically sized databases. Earlier results for correspondence-based shape and image
matching have only been shown for relatively small data sets. In contrast, in this work
I have demonstrated reliable matching on a database exceeding 130,000 examples. The
computational savings is dramatic. For example, in cases where exact matching methods
would require hours to return a result, my approach returns relevant examples in less than
a second. This is an important gain, since this speed and scalability is imperative to drive
applications that demand real-time query responses, such as situated search on a mobile
device.

Within my content-based image retrieval experiments, I evaluated standard alternative
approaches for handling unordered sets of image features. A side-by-side comparison of
voting, a bag-of-prototypes technique, and correspondence-based matching revealed that-.---
computational costs aside-particular types of image data may be more suited to each
different kind of similarity measure. In a test using images of repeated scenes, voting pre-
vailed due to the distinctive, reliably detected features. On the other hand, the approaches
which consider the distribution of features in a set at once (both the bag-of-prototypes and
matching approaches) outperformed voting on tasks that seem to require knowledge of the
features' co-occurrence: comparing textures and object categories with some appearance
variation.

I have shown that the pyramid match forms a Mercer kernel, which makes it suitable for
use in kernel-based learning methods, including those that have convergence guarantees
requiring a Mercer kernel. This connection is quite powerful, since we can use the pyramid
match kernel to access a wide class of existing kernel methods with robust local image
feature representations. In Chapter 2 I outlined the conceptual differences between existing
set kernels and the pyramid match kernel (PMK); one important distinction is that the PMK
requires time linear in the number of features per set to compute, while others require cubic
or quadratic time.

The PMK's low cost relative to input size is a significant advantage for recognition. While
other methods will in practice be forced to artificially limit the quantity of local descriptors,
the PMK offers a scalable solution to correspondence-based learning. In my object catego-
rization experiments I demonstrated how critical rich, dense local representations can be to
recognition accuracy. I have shown very strong performance using the PMK to recognize
categories in several well-studied data sets, but for a significantly lower computational cost
than other state-of-the-art techniques.

I further demonstrated the flexibility of the PMK by showing how we can learn functions
over the set-of-features representation for some parameter of interest. In my experiments,
regression oni two types of data with the PMK ----human figure contours and sets of word
meanings in text documents -----yielded accurate results relative to existing methods. A com-
parison against a bag-of-prototypes approach showed that the PMK is more tolerant of
clutter in the form of foregrouind-background estimation errors; its partial match compar-
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isons allow clutter features to be ignored, whereas bag-of-prototypes comparisons consider
an entire feature distribution at once.

Finally, I have proposed an approach to automatically learn object categories from unlabeled
images. I leverage the partial matching between sets of local features to perform unsuper-
vised clustering, and I have introduced an efficient means of refining groupings according to
intra-cluster statistics over the subsets of features selected by the partial matches between
the images. While previous techniques have shown how to select the most discriminative or
salient features for a given category when images have class labels [9, 111, 34], my approach
makes it possible to infer category feature masks for images that have no labels. In contrast
to category discovery methods based on probabilistic Latent Semantic Analysis [89, 101, 33],
my approach allows the introduction of variable amounts of semi-supervision.

While I have concentrated on vision-related applications, the techniques I have developed
are generally applicable to matching and indexing problems with sets of vectors; my research
is completely suitable for applications with alternate image feature types or even in alternate
learning domains.
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